]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/trace/ring_buffer.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-2.6-omap-h63xx.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>        /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18
19 /* Up this if you want to test the TIME_EXTENTS and normalization */
20 #define DEBUG_SHIFT 0
21
22 /* FIXME!!! */
23 u64 ring_buffer_time_stamp(int cpu)
24 {
25         /* shift to debug/test normalization and TIME_EXTENTS */
26         return sched_clock() << DEBUG_SHIFT;
27 }
28
29 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
30 {
31         /* Just stupid testing the normalize function and deltas */
32         *ts >>= DEBUG_SHIFT;
33 }
34
35 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
36 #define RB_ALIGNMENT_SHIFT      2
37 #define RB_ALIGNMENT            (1 << RB_ALIGNMENT_SHIFT)
38 #define RB_MAX_SMALL_DATA       28
39
40 enum {
41         RB_LEN_TIME_EXTEND = 8,
42         RB_LEN_TIME_STAMP = 16,
43 };
44
45 /* inline for ring buffer fast paths */
46 static inline unsigned
47 rb_event_length(struct ring_buffer_event *event)
48 {
49         unsigned length;
50
51         switch (event->type) {
52         case RINGBUF_TYPE_PADDING:
53                 /* undefined */
54                 return -1;
55
56         case RINGBUF_TYPE_TIME_EXTEND:
57                 return RB_LEN_TIME_EXTEND;
58
59         case RINGBUF_TYPE_TIME_STAMP:
60                 return RB_LEN_TIME_STAMP;
61
62         case RINGBUF_TYPE_DATA:
63                 if (event->len)
64                         length = event->len << RB_ALIGNMENT_SHIFT;
65                 else
66                         length = event->array[0];
67                 return length + RB_EVNT_HDR_SIZE;
68         default:
69                 BUG();
70         }
71         /* not hit */
72         return 0;
73 }
74
75 /**
76  * ring_buffer_event_length - return the length of the event
77  * @event: the event to get the length of
78  */
79 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
80 {
81         return rb_event_length(event);
82 }
83
84 /* inline for ring buffer fast paths */
85 static inline void *
86 rb_event_data(struct ring_buffer_event *event)
87 {
88         BUG_ON(event->type != RINGBUF_TYPE_DATA);
89         /* If length is in len field, then array[0] has the data */
90         if (event->len)
91                 return (void *)&event->array[0];
92         /* Otherwise length is in array[0] and array[1] has the data */
93         return (void *)&event->array[1];
94 }
95
96 /**
97  * ring_buffer_event_data - return the data of the event
98  * @event: the event to get the data from
99  */
100 void *ring_buffer_event_data(struct ring_buffer_event *event)
101 {
102         return rb_event_data(event);
103 }
104
105 #define for_each_buffer_cpu(buffer, cpu)                \
106         for_each_cpu_mask(cpu, buffer->cpumask)
107
108 #define TS_SHIFT        27
109 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
110 #define TS_DELTA_TEST   (~TS_MASK)
111
112 /*
113  * This hack stolen from mm/slob.c.
114  * We can store per page timing information in the page frame of the page.
115  * Thanks to Peter Zijlstra for suggesting this idea.
116  */
117 struct buffer_page {
118         u64              time_stamp;    /* page time stamp */
119         local_t          write;         /* index for next write */
120         local_t          commit;        /* write commited index */
121         unsigned         read;          /* index for next read */
122         struct list_head list;          /* list of free pages */
123         void *page;                     /* Actual data page */
124 };
125
126 /*
127  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
128  * this issue out.
129  */
130 static inline void free_buffer_page(struct buffer_page *bpage)
131 {
132         if (bpage->page)
133                 free_page((unsigned long)bpage->page);
134         kfree(bpage);
135 }
136
137 /*
138  * We need to fit the time_stamp delta into 27 bits.
139  */
140 static inline int test_time_stamp(u64 delta)
141 {
142         if (delta & TS_DELTA_TEST)
143                 return 1;
144         return 0;
145 }
146
147 #define BUF_PAGE_SIZE PAGE_SIZE
148
149 /*
150  * head_page == tail_page && head == tail then buffer is empty.
151  */
152 struct ring_buffer_per_cpu {
153         int                             cpu;
154         struct ring_buffer              *buffer;
155         spinlock_t                      lock;
156         struct lock_class_key           lock_key;
157         struct list_head                pages;
158         struct buffer_page              *head_page;     /* read from head */
159         struct buffer_page              *tail_page;     /* write to tail */
160         struct buffer_page              *commit_page;   /* commited pages */
161         struct buffer_page              *reader_page;
162         unsigned long                   overrun;
163         unsigned long                   entries;
164         u64                             write_stamp;
165         u64                             read_stamp;
166         atomic_t                        record_disabled;
167 };
168
169 struct ring_buffer {
170         unsigned long                   size;
171         unsigned                        pages;
172         unsigned                        flags;
173         int                             cpus;
174         cpumask_t                       cpumask;
175         atomic_t                        record_disabled;
176
177         struct mutex                    mutex;
178
179         struct ring_buffer_per_cpu      **buffers;
180 };
181
182 struct ring_buffer_iter {
183         struct ring_buffer_per_cpu      *cpu_buffer;
184         unsigned long                   head;
185         struct buffer_page              *head_page;
186         u64                             read_stamp;
187 };
188
189 #define RB_WARN_ON(buffer, cond)                                \
190         do {                                                    \
191                 if (unlikely(cond)) {                           \
192                         atomic_inc(&buffer->record_disabled);   \
193                         WARN_ON(1);                             \
194                 }                                               \
195         } while (0)
196
197 #define RB_WARN_ON_RET(buffer, cond)                            \
198         do {                                                    \
199                 if (unlikely(cond)) {                           \
200                         atomic_inc(&buffer->record_disabled);   \
201                         WARN_ON(1);                             \
202                         return -1;                              \
203                 }                                               \
204         } while (0)
205
206 #define RB_WARN_ON_ONCE(buffer, cond)                           \
207         do {                                                    \
208                 static int once;                                \
209                 if (unlikely(cond) && !once) {                  \
210                         once++;                                 \
211                         atomic_inc(&buffer->record_disabled);   \
212                         WARN_ON(1);                             \
213                 }                                               \
214         } while (0)
215
216 /**
217  * check_pages - integrity check of buffer pages
218  * @cpu_buffer: CPU buffer with pages to test
219  *
220  * As a safty measure we check to make sure the data pages have not
221  * been corrupted.
222  */
223 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
224 {
225         struct list_head *head = &cpu_buffer->pages;
226         struct buffer_page *page, *tmp;
227
228         RB_WARN_ON_RET(cpu_buffer, head->next->prev != head);
229         RB_WARN_ON_RET(cpu_buffer, head->prev->next != head);
230
231         list_for_each_entry_safe(page, tmp, head, list) {
232                 RB_WARN_ON_RET(cpu_buffer,
233                                page->list.next->prev != &page->list);
234                 RB_WARN_ON_RET(cpu_buffer,
235                                page->list.prev->next != &page->list);
236         }
237
238         return 0;
239 }
240
241 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
242                              unsigned nr_pages)
243 {
244         struct list_head *head = &cpu_buffer->pages;
245         struct buffer_page *page, *tmp;
246         unsigned long addr;
247         LIST_HEAD(pages);
248         unsigned i;
249
250         for (i = 0; i < nr_pages; i++) {
251                 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
252                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
253                 if (!page)
254                         goto free_pages;
255                 list_add(&page->list, &pages);
256
257                 addr = __get_free_page(GFP_KERNEL);
258                 if (!addr)
259                         goto free_pages;
260                 page->page = (void *)addr;
261         }
262
263         list_splice(&pages, head);
264
265         rb_check_pages(cpu_buffer);
266
267         return 0;
268
269  free_pages:
270         list_for_each_entry_safe(page, tmp, &pages, list) {
271                 list_del_init(&page->list);
272                 free_buffer_page(page);
273         }
274         return -ENOMEM;
275 }
276
277 static struct ring_buffer_per_cpu *
278 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
279 {
280         struct ring_buffer_per_cpu *cpu_buffer;
281         struct buffer_page *page;
282         unsigned long addr;
283         int ret;
284
285         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
286                                   GFP_KERNEL, cpu_to_node(cpu));
287         if (!cpu_buffer)
288                 return NULL;
289
290         cpu_buffer->cpu = cpu;
291         cpu_buffer->buffer = buffer;
292         spin_lock_init(&cpu_buffer->lock);
293         INIT_LIST_HEAD(&cpu_buffer->pages);
294
295         page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
296                             GFP_KERNEL, cpu_to_node(cpu));
297         if (!page)
298                 goto fail_free_buffer;
299
300         cpu_buffer->reader_page = page;
301         addr = __get_free_page(GFP_KERNEL);
302         if (!addr)
303                 goto fail_free_reader;
304         page->page = (void *)addr;
305
306         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
307
308         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
309         if (ret < 0)
310                 goto fail_free_reader;
311
312         cpu_buffer->head_page
313                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
314         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
315
316         return cpu_buffer;
317
318  fail_free_reader:
319         free_buffer_page(cpu_buffer->reader_page);
320
321  fail_free_buffer:
322         kfree(cpu_buffer);
323         return NULL;
324 }
325
326 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
327 {
328         struct list_head *head = &cpu_buffer->pages;
329         struct buffer_page *page, *tmp;
330
331         list_del_init(&cpu_buffer->reader_page->list);
332         free_buffer_page(cpu_buffer->reader_page);
333
334         list_for_each_entry_safe(page, tmp, head, list) {
335                 list_del_init(&page->list);
336                 free_buffer_page(page);
337         }
338         kfree(cpu_buffer);
339 }
340
341 /*
342  * Causes compile errors if the struct buffer_page gets bigger
343  * than the struct page.
344  */
345 extern int ring_buffer_page_too_big(void);
346
347 /**
348  * ring_buffer_alloc - allocate a new ring_buffer
349  * @size: the size in bytes that is needed.
350  * @flags: attributes to set for the ring buffer.
351  *
352  * Currently the only flag that is available is the RB_FL_OVERWRITE
353  * flag. This flag means that the buffer will overwrite old data
354  * when the buffer wraps. If this flag is not set, the buffer will
355  * drop data when the tail hits the head.
356  */
357 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
358 {
359         struct ring_buffer *buffer;
360         int bsize;
361         int cpu;
362
363         /* Paranoid! Optimizes out when all is well */
364         if (sizeof(struct buffer_page) > sizeof(struct page))
365                 ring_buffer_page_too_big();
366
367
368         /* keep it in its own cache line */
369         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
370                          GFP_KERNEL);
371         if (!buffer)
372                 return NULL;
373
374         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
375         buffer->flags = flags;
376
377         /* need at least two pages */
378         if (buffer->pages == 1)
379                 buffer->pages++;
380
381         buffer->cpumask = cpu_possible_map;
382         buffer->cpus = nr_cpu_ids;
383
384         bsize = sizeof(void *) * nr_cpu_ids;
385         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
386                                   GFP_KERNEL);
387         if (!buffer->buffers)
388                 goto fail_free_buffer;
389
390         for_each_buffer_cpu(buffer, cpu) {
391                 buffer->buffers[cpu] =
392                         rb_allocate_cpu_buffer(buffer, cpu);
393                 if (!buffer->buffers[cpu])
394                         goto fail_free_buffers;
395         }
396
397         mutex_init(&buffer->mutex);
398
399         return buffer;
400
401  fail_free_buffers:
402         for_each_buffer_cpu(buffer, cpu) {
403                 if (buffer->buffers[cpu])
404                         rb_free_cpu_buffer(buffer->buffers[cpu]);
405         }
406         kfree(buffer->buffers);
407
408  fail_free_buffer:
409         kfree(buffer);
410         return NULL;
411 }
412
413 /**
414  * ring_buffer_free - free a ring buffer.
415  * @buffer: the buffer to free.
416  */
417 void
418 ring_buffer_free(struct ring_buffer *buffer)
419 {
420         int cpu;
421
422         for_each_buffer_cpu(buffer, cpu)
423                 rb_free_cpu_buffer(buffer->buffers[cpu]);
424
425         kfree(buffer);
426 }
427
428 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
429
430 static void
431 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
432 {
433         struct buffer_page *page;
434         struct list_head *p;
435         unsigned i;
436
437         atomic_inc(&cpu_buffer->record_disabled);
438         synchronize_sched();
439
440         for (i = 0; i < nr_pages; i++) {
441                 BUG_ON(list_empty(&cpu_buffer->pages));
442                 p = cpu_buffer->pages.next;
443                 page = list_entry(p, struct buffer_page, list);
444                 list_del_init(&page->list);
445                 free_buffer_page(page);
446         }
447         BUG_ON(list_empty(&cpu_buffer->pages));
448
449         rb_reset_cpu(cpu_buffer);
450
451         rb_check_pages(cpu_buffer);
452
453         atomic_dec(&cpu_buffer->record_disabled);
454
455 }
456
457 static void
458 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
459                 struct list_head *pages, unsigned nr_pages)
460 {
461         struct buffer_page *page;
462         struct list_head *p;
463         unsigned i;
464
465         atomic_inc(&cpu_buffer->record_disabled);
466         synchronize_sched();
467
468         for (i = 0; i < nr_pages; i++) {
469                 BUG_ON(list_empty(pages));
470                 p = pages->next;
471                 page = list_entry(p, struct buffer_page, list);
472                 list_del_init(&page->list);
473                 list_add_tail(&page->list, &cpu_buffer->pages);
474         }
475         rb_reset_cpu(cpu_buffer);
476
477         rb_check_pages(cpu_buffer);
478
479         atomic_dec(&cpu_buffer->record_disabled);
480 }
481
482 /**
483  * ring_buffer_resize - resize the ring buffer
484  * @buffer: the buffer to resize.
485  * @size: the new size.
486  *
487  * The tracer is responsible for making sure that the buffer is
488  * not being used while changing the size.
489  * Note: We may be able to change the above requirement by using
490  *  RCU synchronizations.
491  *
492  * Minimum size is 2 * BUF_PAGE_SIZE.
493  *
494  * Returns -1 on failure.
495  */
496 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
497 {
498         struct ring_buffer_per_cpu *cpu_buffer;
499         unsigned nr_pages, rm_pages, new_pages;
500         struct buffer_page *page, *tmp;
501         unsigned long buffer_size;
502         unsigned long addr;
503         LIST_HEAD(pages);
504         int i, cpu;
505
506         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
507         size *= BUF_PAGE_SIZE;
508         buffer_size = buffer->pages * BUF_PAGE_SIZE;
509
510         /* we need a minimum of two pages */
511         if (size < BUF_PAGE_SIZE * 2)
512                 size = BUF_PAGE_SIZE * 2;
513
514         if (size == buffer_size)
515                 return size;
516
517         mutex_lock(&buffer->mutex);
518
519         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
520
521         if (size < buffer_size) {
522
523                 /* easy case, just free pages */
524                 BUG_ON(nr_pages >= buffer->pages);
525
526                 rm_pages = buffer->pages - nr_pages;
527
528                 for_each_buffer_cpu(buffer, cpu) {
529                         cpu_buffer = buffer->buffers[cpu];
530                         rb_remove_pages(cpu_buffer, rm_pages);
531                 }
532                 goto out;
533         }
534
535         /*
536          * This is a bit more difficult. We only want to add pages
537          * when we can allocate enough for all CPUs. We do this
538          * by allocating all the pages and storing them on a local
539          * link list. If we succeed in our allocation, then we
540          * add these pages to the cpu_buffers. Otherwise we just free
541          * them all and return -ENOMEM;
542          */
543         BUG_ON(nr_pages <= buffer->pages);
544         new_pages = nr_pages - buffer->pages;
545
546         for_each_buffer_cpu(buffer, cpu) {
547                 for (i = 0; i < new_pages; i++) {
548                         page = kzalloc_node(ALIGN(sizeof(*page),
549                                                   cache_line_size()),
550                                             GFP_KERNEL, cpu_to_node(cpu));
551                         if (!page)
552                                 goto free_pages;
553                         list_add(&page->list, &pages);
554                         addr = __get_free_page(GFP_KERNEL);
555                         if (!addr)
556                                 goto free_pages;
557                         page->page = (void *)addr;
558                 }
559         }
560
561         for_each_buffer_cpu(buffer, cpu) {
562                 cpu_buffer = buffer->buffers[cpu];
563                 rb_insert_pages(cpu_buffer, &pages, new_pages);
564         }
565
566         BUG_ON(!list_empty(&pages));
567
568  out:
569         buffer->pages = nr_pages;
570         mutex_unlock(&buffer->mutex);
571
572         return size;
573
574  free_pages:
575         list_for_each_entry_safe(page, tmp, &pages, list) {
576                 list_del_init(&page->list);
577                 free_buffer_page(page);
578         }
579         return -ENOMEM;
580 }
581
582 static inline int rb_null_event(struct ring_buffer_event *event)
583 {
584         return event->type == RINGBUF_TYPE_PADDING;
585 }
586
587 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
588 {
589         return page->page + index;
590 }
591
592 static inline struct ring_buffer_event *
593 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
594 {
595         return __rb_page_index(cpu_buffer->reader_page,
596                                cpu_buffer->reader_page->read);
597 }
598
599 static inline struct ring_buffer_event *
600 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
601 {
602         return __rb_page_index(cpu_buffer->head_page,
603                                cpu_buffer->head_page->read);
604 }
605
606 static inline struct ring_buffer_event *
607 rb_iter_head_event(struct ring_buffer_iter *iter)
608 {
609         return __rb_page_index(iter->head_page, iter->head);
610 }
611
612 static inline unsigned rb_page_write(struct buffer_page *bpage)
613 {
614         return local_read(&bpage->write);
615 }
616
617 static inline unsigned rb_page_commit(struct buffer_page *bpage)
618 {
619         return local_read(&bpage->commit);
620 }
621
622 /* Size is determined by what has been commited */
623 static inline unsigned rb_page_size(struct buffer_page *bpage)
624 {
625         return rb_page_commit(bpage);
626 }
627
628 static inline unsigned
629 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
630 {
631         return rb_page_commit(cpu_buffer->commit_page);
632 }
633
634 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
635 {
636         return rb_page_commit(cpu_buffer->head_page);
637 }
638
639 /*
640  * When the tail hits the head and the buffer is in overwrite mode,
641  * the head jumps to the next page and all content on the previous
642  * page is discarded. But before doing so, we update the overrun
643  * variable of the buffer.
644  */
645 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
646 {
647         struct ring_buffer_event *event;
648         unsigned long head;
649
650         for (head = 0; head < rb_head_size(cpu_buffer);
651              head += rb_event_length(event)) {
652
653                 event = __rb_page_index(cpu_buffer->head_page, head);
654                 BUG_ON(rb_null_event(event));
655                 /* Only count data entries */
656                 if (event->type != RINGBUF_TYPE_DATA)
657                         continue;
658                 cpu_buffer->overrun++;
659                 cpu_buffer->entries--;
660         }
661 }
662
663 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
664                                struct buffer_page **page)
665 {
666         struct list_head *p = (*page)->list.next;
667
668         if (p == &cpu_buffer->pages)
669                 p = p->next;
670
671         *page = list_entry(p, struct buffer_page, list);
672 }
673
674 static inline unsigned
675 rb_event_index(struct ring_buffer_event *event)
676 {
677         unsigned long addr = (unsigned long)event;
678
679         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
680 }
681
682 static inline int
683 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
684              struct ring_buffer_event *event)
685 {
686         unsigned long addr = (unsigned long)event;
687         unsigned long index;
688
689         index = rb_event_index(event);
690         addr &= PAGE_MASK;
691
692         return cpu_buffer->commit_page->page == (void *)addr &&
693                 rb_commit_index(cpu_buffer) == index;
694 }
695
696 static inline void
697 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
698                     struct ring_buffer_event *event)
699 {
700         unsigned long addr = (unsigned long)event;
701         unsigned long index;
702
703         index = rb_event_index(event);
704         addr &= PAGE_MASK;
705
706         while (cpu_buffer->commit_page->page != (void *)addr) {
707                 RB_WARN_ON(cpu_buffer,
708                            cpu_buffer->commit_page == cpu_buffer->tail_page);
709                 cpu_buffer->commit_page->commit =
710                         cpu_buffer->commit_page->write;
711                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
712                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
713         }
714
715         /* Now set the commit to the event's index */
716         local_set(&cpu_buffer->commit_page->commit, index);
717 }
718
719 static inline void
720 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
721 {
722         /*
723          * We only race with interrupts and NMIs on this CPU.
724          * If we own the commit event, then we can commit
725          * all others that interrupted us, since the interruptions
726          * are in stack format (they finish before they come
727          * back to us). This allows us to do a simple loop to
728          * assign the commit to the tail.
729          */
730         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
731                 cpu_buffer->commit_page->commit =
732                         cpu_buffer->commit_page->write;
733                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
734                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
735                 /* add barrier to keep gcc from optimizing too much */
736                 barrier();
737         }
738         while (rb_commit_index(cpu_buffer) !=
739                rb_page_write(cpu_buffer->commit_page)) {
740                 cpu_buffer->commit_page->commit =
741                         cpu_buffer->commit_page->write;
742                 barrier();
743         }
744 }
745
746 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
747 {
748         cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
749         cpu_buffer->reader_page->read = 0;
750 }
751
752 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
753 {
754         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
755
756         /*
757          * The iterator could be on the reader page (it starts there).
758          * But the head could have moved, since the reader was
759          * found. Check for this case and assign the iterator
760          * to the head page instead of next.
761          */
762         if (iter->head_page == cpu_buffer->reader_page)
763                 iter->head_page = cpu_buffer->head_page;
764         else
765                 rb_inc_page(cpu_buffer, &iter->head_page);
766
767         iter->read_stamp = iter->head_page->time_stamp;
768         iter->head = 0;
769 }
770
771 /**
772  * ring_buffer_update_event - update event type and data
773  * @event: the even to update
774  * @type: the type of event
775  * @length: the size of the event field in the ring buffer
776  *
777  * Update the type and data fields of the event. The length
778  * is the actual size that is written to the ring buffer,
779  * and with this, we can determine what to place into the
780  * data field.
781  */
782 static inline void
783 rb_update_event(struct ring_buffer_event *event,
784                          unsigned type, unsigned length)
785 {
786         event->type = type;
787
788         switch (type) {
789
790         case RINGBUF_TYPE_PADDING:
791                 break;
792
793         case RINGBUF_TYPE_TIME_EXTEND:
794                 event->len =
795                         (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
796                         >> RB_ALIGNMENT_SHIFT;
797                 break;
798
799         case RINGBUF_TYPE_TIME_STAMP:
800                 event->len =
801                         (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
802                         >> RB_ALIGNMENT_SHIFT;
803                 break;
804
805         case RINGBUF_TYPE_DATA:
806                 length -= RB_EVNT_HDR_SIZE;
807                 if (length > RB_MAX_SMALL_DATA) {
808                         event->len = 0;
809                         event->array[0] = length;
810                 } else
811                         event->len =
812                                 (length + (RB_ALIGNMENT-1))
813                                 >> RB_ALIGNMENT_SHIFT;
814                 break;
815         default:
816                 BUG();
817         }
818 }
819
820 static inline unsigned rb_calculate_event_length(unsigned length)
821 {
822         struct ring_buffer_event event; /* Used only for sizeof array */
823
824         /* zero length can cause confusions */
825         if (!length)
826                 length = 1;
827
828         if (length > RB_MAX_SMALL_DATA)
829                 length += sizeof(event.array[0]);
830
831         length += RB_EVNT_HDR_SIZE;
832         length = ALIGN(length, RB_ALIGNMENT);
833
834         return length;
835 }
836
837 static struct ring_buffer_event *
838 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
839                   unsigned type, unsigned long length, u64 *ts)
840 {
841         struct buffer_page *tail_page, *head_page, *reader_page;
842         unsigned long tail, write;
843         struct ring_buffer *buffer = cpu_buffer->buffer;
844         struct ring_buffer_event *event;
845         unsigned long flags;
846
847         tail_page = cpu_buffer->tail_page;
848         write = local_add_return(length, &tail_page->write);
849         tail = write - length;
850
851         /* See if we shot pass the end of this buffer page */
852         if (write > BUF_PAGE_SIZE) {
853                 struct buffer_page *next_page = tail_page;
854
855                 spin_lock_irqsave(&cpu_buffer->lock, flags);
856
857                 rb_inc_page(cpu_buffer, &next_page);
858
859                 head_page = cpu_buffer->head_page;
860                 reader_page = cpu_buffer->reader_page;
861
862                 /* we grabbed the lock before incrementing */
863                 RB_WARN_ON(cpu_buffer, next_page == reader_page);
864
865                 /*
866                  * If for some reason, we had an interrupt storm that made
867                  * it all the way around the buffer, bail, and warn
868                  * about it.
869                  */
870                 if (unlikely(next_page == cpu_buffer->commit_page)) {
871                         WARN_ON_ONCE(1);
872                         goto out_unlock;
873                 }
874
875                 if (next_page == head_page) {
876                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
877                                 /* reset write */
878                                 if (tail <= BUF_PAGE_SIZE)
879                                         local_set(&tail_page->write, tail);
880                                 goto out_unlock;
881                         }
882
883                         /* tail_page has not moved yet? */
884                         if (tail_page == cpu_buffer->tail_page) {
885                                 /* count overflows */
886                                 rb_update_overflow(cpu_buffer);
887
888                                 rb_inc_page(cpu_buffer, &head_page);
889                                 cpu_buffer->head_page = head_page;
890                                 cpu_buffer->head_page->read = 0;
891                         }
892                 }
893
894                 /*
895                  * If the tail page is still the same as what we think
896                  * it is, then it is up to us to update the tail
897                  * pointer.
898                  */
899                 if (tail_page == cpu_buffer->tail_page) {
900                         local_set(&next_page->write, 0);
901                         local_set(&next_page->commit, 0);
902                         cpu_buffer->tail_page = next_page;
903
904                         /* reread the time stamp */
905                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
906                         cpu_buffer->tail_page->time_stamp = *ts;
907                 }
908
909                 /*
910                  * The actual tail page has moved forward.
911                  */
912                 if (tail < BUF_PAGE_SIZE) {
913                         /* Mark the rest of the page with padding */
914                         event = __rb_page_index(tail_page, tail);
915                         event->type = RINGBUF_TYPE_PADDING;
916                 }
917
918                 if (tail <= BUF_PAGE_SIZE)
919                         /* Set the write back to the previous setting */
920                         local_set(&tail_page->write, tail);
921
922                 /*
923                  * If this was a commit entry that failed,
924                  * increment that too
925                  */
926                 if (tail_page == cpu_buffer->commit_page &&
927                     tail == rb_commit_index(cpu_buffer)) {
928                         rb_set_commit_to_write(cpu_buffer);
929                 }
930
931                 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
932
933                 /* fail and let the caller try again */
934                 return ERR_PTR(-EAGAIN);
935         }
936
937         /* We reserved something on the buffer */
938
939         BUG_ON(write > BUF_PAGE_SIZE);
940
941         event = __rb_page_index(tail_page, tail);
942         rb_update_event(event, type, length);
943
944         /*
945          * If this is a commit and the tail is zero, then update
946          * this page's time stamp.
947          */
948         if (!tail && rb_is_commit(cpu_buffer, event))
949                 cpu_buffer->commit_page->time_stamp = *ts;
950
951         return event;
952
953  out_unlock:
954         spin_unlock_irqrestore(&cpu_buffer->lock, flags);
955         return NULL;
956 }
957
958 static int
959 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
960                   u64 *ts, u64 *delta)
961 {
962         struct ring_buffer_event *event;
963         static int once;
964         int ret;
965
966         if (unlikely(*delta > (1ULL << 59) && !once++)) {
967                 printk(KERN_WARNING "Delta way too big! %llu"
968                        " ts=%llu write stamp = %llu\n",
969                        (unsigned long long)*delta,
970                        (unsigned long long)*ts,
971                        (unsigned long long)cpu_buffer->write_stamp);
972                 WARN_ON(1);
973         }
974
975         /*
976          * The delta is too big, we to add a
977          * new timestamp.
978          */
979         event = __rb_reserve_next(cpu_buffer,
980                                   RINGBUF_TYPE_TIME_EXTEND,
981                                   RB_LEN_TIME_EXTEND,
982                                   ts);
983         if (!event)
984                 return -EBUSY;
985
986         if (PTR_ERR(event) == -EAGAIN)
987                 return -EAGAIN;
988
989         /* Only a commited time event can update the write stamp */
990         if (rb_is_commit(cpu_buffer, event)) {
991                 /*
992                  * If this is the first on the page, then we need to
993                  * update the page itself, and just put in a zero.
994                  */
995                 if (rb_event_index(event)) {
996                         event->time_delta = *delta & TS_MASK;
997                         event->array[0] = *delta >> TS_SHIFT;
998                 } else {
999                         cpu_buffer->commit_page->time_stamp = *ts;
1000                         event->time_delta = 0;
1001                         event->array[0] = 0;
1002                 }
1003                 cpu_buffer->write_stamp = *ts;
1004                 /* let the caller know this was the commit */
1005                 ret = 1;
1006         } else {
1007                 /* Darn, this is just wasted space */
1008                 event->time_delta = 0;
1009                 event->array[0] = 0;
1010                 ret = 0;
1011         }
1012
1013         *delta = 0;
1014
1015         return ret;
1016 }
1017
1018 static struct ring_buffer_event *
1019 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1020                       unsigned type, unsigned long length)
1021 {
1022         struct ring_buffer_event *event;
1023         u64 ts, delta;
1024         int commit = 0;
1025
1026  again:
1027         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1028
1029         /*
1030          * Only the first commit can update the timestamp.
1031          * Yes there is a race here. If an interrupt comes in
1032          * just after the conditional and it traces too, then it
1033          * will also check the deltas. More than one timestamp may
1034          * also be made. But only the entry that did the actual
1035          * commit will be something other than zero.
1036          */
1037         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1038             rb_page_write(cpu_buffer->tail_page) ==
1039             rb_commit_index(cpu_buffer)) {
1040
1041                 delta = ts - cpu_buffer->write_stamp;
1042
1043                 /* make sure this delta is calculated here */
1044                 barrier();
1045
1046                 /* Did the write stamp get updated already? */
1047                 if (unlikely(ts < cpu_buffer->write_stamp))
1048                         goto again;
1049
1050                 if (test_time_stamp(delta)) {
1051
1052                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1053
1054                         if (commit == -EBUSY)
1055                                 return NULL;
1056
1057                         if (commit == -EAGAIN)
1058                                 goto again;
1059
1060                         RB_WARN_ON(cpu_buffer, commit < 0);
1061                 }
1062         } else
1063                 /* Non commits have zero deltas */
1064                 delta = 0;
1065
1066         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1067         if (PTR_ERR(event) == -EAGAIN)
1068                 goto again;
1069
1070         if (!event) {
1071                 if (unlikely(commit))
1072                         /*
1073                          * Ouch! We needed a timestamp and it was commited. But
1074                          * we didn't get our event reserved.
1075                          */
1076                         rb_set_commit_to_write(cpu_buffer);
1077                 return NULL;
1078         }
1079
1080         /*
1081          * If the timestamp was commited, make the commit our entry
1082          * now so that we will update it when needed.
1083          */
1084         if (commit)
1085                 rb_set_commit_event(cpu_buffer, event);
1086         else if (!rb_is_commit(cpu_buffer, event))
1087                 delta = 0;
1088
1089         event->time_delta = delta;
1090
1091         return event;
1092 }
1093
1094 static DEFINE_PER_CPU(int, rb_need_resched);
1095
1096 /**
1097  * ring_buffer_lock_reserve - reserve a part of the buffer
1098  * @buffer: the ring buffer to reserve from
1099  * @length: the length of the data to reserve (excluding event header)
1100  * @flags: a pointer to save the interrupt flags
1101  *
1102  * Returns a reseverd event on the ring buffer to copy directly to.
1103  * The user of this interface will need to get the body to write into
1104  * and can use the ring_buffer_event_data() interface.
1105  *
1106  * The length is the length of the data needed, not the event length
1107  * which also includes the event header.
1108  *
1109  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1110  * If NULL is returned, then nothing has been allocated or locked.
1111  */
1112 struct ring_buffer_event *
1113 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1114                          unsigned long length,
1115                          unsigned long *flags)
1116 {
1117         struct ring_buffer_per_cpu *cpu_buffer;
1118         struct ring_buffer_event *event;
1119         int cpu, resched;
1120
1121         if (atomic_read(&buffer->record_disabled))
1122                 return NULL;
1123
1124         /* If we are tracing schedule, we don't want to recurse */
1125         resched = need_resched();
1126         preempt_disable_notrace();
1127
1128         cpu = raw_smp_processor_id();
1129
1130         if (!cpu_isset(cpu, buffer->cpumask))
1131                 goto out;
1132
1133         cpu_buffer = buffer->buffers[cpu];
1134
1135         if (atomic_read(&cpu_buffer->record_disabled))
1136                 goto out;
1137
1138         length = rb_calculate_event_length(length);
1139         if (length > BUF_PAGE_SIZE)
1140                 goto out;
1141
1142         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1143         if (!event)
1144                 goto out;
1145
1146         /*
1147          * Need to store resched state on this cpu.
1148          * Only the first needs to.
1149          */
1150
1151         if (preempt_count() == 1)
1152                 per_cpu(rb_need_resched, cpu) = resched;
1153
1154         return event;
1155
1156  out:
1157         if (resched)
1158                 preempt_enable_notrace();
1159         else
1160                 preempt_enable_notrace();
1161         return NULL;
1162 }
1163
1164 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1165                       struct ring_buffer_event *event)
1166 {
1167         cpu_buffer->entries++;
1168
1169         /* Only process further if we own the commit */
1170         if (!rb_is_commit(cpu_buffer, event))
1171                 return;
1172
1173         cpu_buffer->write_stamp += event->time_delta;
1174
1175         rb_set_commit_to_write(cpu_buffer);
1176 }
1177
1178 /**
1179  * ring_buffer_unlock_commit - commit a reserved
1180  * @buffer: The buffer to commit to
1181  * @event: The event pointer to commit.
1182  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1183  *
1184  * This commits the data to the ring buffer, and releases any locks held.
1185  *
1186  * Must be paired with ring_buffer_lock_reserve.
1187  */
1188 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1189                               struct ring_buffer_event *event,
1190                               unsigned long flags)
1191 {
1192         struct ring_buffer_per_cpu *cpu_buffer;
1193         int cpu = raw_smp_processor_id();
1194
1195         cpu_buffer = buffer->buffers[cpu];
1196
1197         rb_commit(cpu_buffer, event);
1198
1199         /*
1200          * Only the last preempt count needs to restore preemption.
1201          */
1202         if (preempt_count() == 1) {
1203                 if (per_cpu(rb_need_resched, cpu))
1204                         preempt_enable_no_resched_notrace();
1205                 else
1206                         preempt_enable_notrace();
1207         } else
1208                 preempt_enable_no_resched_notrace();
1209
1210         return 0;
1211 }
1212
1213 /**
1214  * ring_buffer_write - write data to the buffer without reserving
1215  * @buffer: The ring buffer to write to.
1216  * @length: The length of the data being written (excluding the event header)
1217  * @data: The data to write to the buffer.
1218  *
1219  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1220  * one function. If you already have the data to write to the buffer, it
1221  * may be easier to simply call this function.
1222  *
1223  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1224  * and not the length of the event which would hold the header.
1225  */
1226 int ring_buffer_write(struct ring_buffer *buffer,
1227                         unsigned long length,
1228                         void *data)
1229 {
1230         struct ring_buffer_per_cpu *cpu_buffer;
1231         struct ring_buffer_event *event;
1232         unsigned long event_length;
1233         void *body;
1234         int ret = -EBUSY;
1235         int cpu, resched;
1236
1237         if (atomic_read(&buffer->record_disabled))
1238                 return -EBUSY;
1239
1240         resched = need_resched();
1241         preempt_disable_notrace();
1242
1243         cpu = raw_smp_processor_id();
1244
1245         if (!cpu_isset(cpu, buffer->cpumask))
1246                 goto out;
1247
1248         cpu_buffer = buffer->buffers[cpu];
1249
1250         if (atomic_read(&cpu_buffer->record_disabled))
1251                 goto out;
1252
1253         event_length = rb_calculate_event_length(length);
1254         event = rb_reserve_next_event(cpu_buffer,
1255                                       RINGBUF_TYPE_DATA, event_length);
1256         if (!event)
1257                 goto out;
1258
1259         body = rb_event_data(event);
1260
1261         memcpy(body, data, length);
1262
1263         rb_commit(cpu_buffer, event);
1264
1265         ret = 0;
1266  out:
1267         if (resched)
1268                 preempt_enable_no_resched_notrace();
1269         else
1270                 preempt_enable_notrace();
1271
1272         return ret;
1273 }
1274
1275 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1276 {
1277         struct buffer_page *reader = cpu_buffer->reader_page;
1278         struct buffer_page *head = cpu_buffer->head_page;
1279         struct buffer_page *commit = cpu_buffer->commit_page;
1280
1281         return reader->read == rb_page_commit(reader) &&
1282                 (commit == reader ||
1283                  (commit == head &&
1284                   head->read == rb_page_commit(commit)));
1285 }
1286
1287 /**
1288  * ring_buffer_record_disable - stop all writes into the buffer
1289  * @buffer: The ring buffer to stop writes to.
1290  *
1291  * This prevents all writes to the buffer. Any attempt to write
1292  * to the buffer after this will fail and return NULL.
1293  *
1294  * The caller should call synchronize_sched() after this.
1295  */
1296 void ring_buffer_record_disable(struct ring_buffer *buffer)
1297 {
1298         atomic_inc(&buffer->record_disabled);
1299 }
1300
1301 /**
1302  * ring_buffer_record_enable - enable writes to the buffer
1303  * @buffer: The ring buffer to enable writes
1304  *
1305  * Note, multiple disables will need the same number of enables
1306  * to truely enable the writing (much like preempt_disable).
1307  */
1308 void ring_buffer_record_enable(struct ring_buffer *buffer)
1309 {
1310         atomic_dec(&buffer->record_disabled);
1311 }
1312
1313 /**
1314  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1315  * @buffer: The ring buffer to stop writes to.
1316  * @cpu: The CPU buffer to stop
1317  *
1318  * This prevents all writes to the buffer. Any attempt to write
1319  * to the buffer after this will fail and return NULL.
1320  *
1321  * The caller should call synchronize_sched() after this.
1322  */
1323 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1324 {
1325         struct ring_buffer_per_cpu *cpu_buffer;
1326
1327         if (!cpu_isset(cpu, buffer->cpumask))
1328                 return;
1329
1330         cpu_buffer = buffer->buffers[cpu];
1331         atomic_inc(&cpu_buffer->record_disabled);
1332 }
1333
1334 /**
1335  * ring_buffer_record_enable_cpu - enable writes to the buffer
1336  * @buffer: The ring buffer to enable writes
1337  * @cpu: The CPU to enable.
1338  *
1339  * Note, multiple disables will need the same number of enables
1340  * to truely enable the writing (much like preempt_disable).
1341  */
1342 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1343 {
1344         struct ring_buffer_per_cpu *cpu_buffer;
1345
1346         if (!cpu_isset(cpu, buffer->cpumask))
1347                 return;
1348
1349         cpu_buffer = buffer->buffers[cpu];
1350         atomic_dec(&cpu_buffer->record_disabled);
1351 }
1352
1353 /**
1354  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1355  * @buffer: The ring buffer
1356  * @cpu: The per CPU buffer to get the entries from.
1357  */
1358 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1359 {
1360         struct ring_buffer_per_cpu *cpu_buffer;
1361
1362         if (!cpu_isset(cpu, buffer->cpumask))
1363                 return 0;
1364
1365         cpu_buffer = buffer->buffers[cpu];
1366         return cpu_buffer->entries;
1367 }
1368
1369 /**
1370  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1371  * @buffer: The ring buffer
1372  * @cpu: The per CPU buffer to get the number of overruns from
1373  */
1374 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1375 {
1376         struct ring_buffer_per_cpu *cpu_buffer;
1377
1378         if (!cpu_isset(cpu, buffer->cpumask))
1379                 return 0;
1380
1381         cpu_buffer = buffer->buffers[cpu];
1382         return cpu_buffer->overrun;
1383 }
1384
1385 /**
1386  * ring_buffer_entries - get the number of entries in a buffer
1387  * @buffer: The ring buffer
1388  *
1389  * Returns the total number of entries in the ring buffer
1390  * (all CPU entries)
1391  */
1392 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1393 {
1394         struct ring_buffer_per_cpu *cpu_buffer;
1395         unsigned long entries = 0;
1396         int cpu;
1397
1398         /* if you care about this being correct, lock the buffer */
1399         for_each_buffer_cpu(buffer, cpu) {
1400                 cpu_buffer = buffer->buffers[cpu];
1401                 entries += cpu_buffer->entries;
1402         }
1403
1404         return entries;
1405 }
1406
1407 /**
1408  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1409  * @buffer: The ring buffer
1410  *
1411  * Returns the total number of overruns in the ring buffer
1412  * (all CPU entries)
1413  */
1414 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1415 {
1416         struct ring_buffer_per_cpu *cpu_buffer;
1417         unsigned long overruns = 0;
1418         int cpu;
1419
1420         /* if you care about this being correct, lock the buffer */
1421         for_each_buffer_cpu(buffer, cpu) {
1422                 cpu_buffer = buffer->buffers[cpu];
1423                 overruns += cpu_buffer->overrun;
1424         }
1425
1426         return overruns;
1427 }
1428
1429 /**
1430  * ring_buffer_iter_reset - reset an iterator
1431  * @iter: The iterator to reset
1432  *
1433  * Resets the iterator, so that it will start from the beginning
1434  * again.
1435  */
1436 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1437 {
1438         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1439
1440         /* Iterator usage is expected to have record disabled */
1441         if (list_empty(&cpu_buffer->reader_page->list)) {
1442                 iter->head_page = cpu_buffer->head_page;
1443                 iter->head = cpu_buffer->head_page->read;
1444         } else {
1445                 iter->head_page = cpu_buffer->reader_page;
1446                 iter->head = cpu_buffer->reader_page->read;
1447         }
1448         if (iter->head)
1449                 iter->read_stamp = cpu_buffer->read_stamp;
1450         else
1451                 iter->read_stamp = iter->head_page->time_stamp;
1452 }
1453
1454 /**
1455  * ring_buffer_iter_empty - check if an iterator has no more to read
1456  * @iter: The iterator to check
1457  */
1458 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1459 {
1460         struct ring_buffer_per_cpu *cpu_buffer;
1461
1462         cpu_buffer = iter->cpu_buffer;
1463
1464         return iter->head_page == cpu_buffer->commit_page &&
1465                 iter->head == rb_commit_index(cpu_buffer);
1466 }
1467
1468 static void
1469 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1470                      struct ring_buffer_event *event)
1471 {
1472         u64 delta;
1473
1474         switch (event->type) {
1475         case RINGBUF_TYPE_PADDING:
1476                 return;
1477
1478         case RINGBUF_TYPE_TIME_EXTEND:
1479                 delta = event->array[0];
1480                 delta <<= TS_SHIFT;
1481                 delta += event->time_delta;
1482                 cpu_buffer->read_stamp += delta;
1483                 return;
1484
1485         case RINGBUF_TYPE_TIME_STAMP:
1486                 /* FIXME: not implemented */
1487                 return;
1488
1489         case RINGBUF_TYPE_DATA:
1490                 cpu_buffer->read_stamp += event->time_delta;
1491                 return;
1492
1493         default:
1494                 BUG();
1495         }
1496         return;
1497 }
1498
1499 static void
1500 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1501                           struct ring_buffer_event *event)
1502 {
1503         u64 delta;
1504
1505         switch (event->type) {
1506         case RINGBUF_TYPE_PADDING:
1507                 return;
1508
1509         case RINGBUF_TYPE_TIME_EXTEND:
1510                 delta = event->array[0];
1511                 delta <<= TS_SHIFT;
1512                 delta += event->time_delta;
1513                 iter->read_stamp += delta;
1514                 return;
1515
1516         case RINGBUF_TYPE_TIME_STAMP:
1517                 /* FIXME: not implemented */
1518                 return;
1519
1520         case RINGBUF_TYPE_DATA:
1521                 iter->read_stamp += event->time_delta;
1522                 return;
1523
1524         default:
1525                 BUG();
1526         }
1527         return;
1528 }
1529
1530 static struct buffer_page *
1531 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1532 {
1533         struct buffer_page *reader = NULL;
1534         unsigned long flags;
1535
1536         spin_lock_irqsave(&cpu_buffer->lock, flags);
1537
1538  again:
1539         reader = cpu_buffer->reader_page;
1540
1541         /* If there's more to read, return this page */
1542         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1543                 goto out;
1544
1545         /* Never should we have an index greater than the size */
1546         RB_WARN_ON(cpu_buffer,
1547                    cpu_buffer->reader_page->read > rb_page_size(reader));
1548
1549         /* check if we caught up to the tail */
1550         reader = NULL;
1551         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1552                 goto out;
1553
1554         /*
1555          * Splice the empty reader page into the list around the head.
1556          * Reset the reader page to size zero.
1557          */
1558
1559         reader = cpu_buffer->head_page;
1560         cpu_buffer->reader_page->list.next = reader->list.next;
1561         cpu_buffer->reader_page->list.prev = reader->list.prev;
1562
1563         local_set(&cpu_buffer->reader_page->write, 0);
1564         local_set(&cpu_buffer->reader_page->commit, 0);
1565
1566         /* Make the reader page now replace the head */
1567         reader->list.prev->next = &cpu_buffer->reader_page->list;
1568         reader->list.next->prev = &cpu_buffer->reader_page->list;
1569
1570         /*
1571          * If the tail is on the reader, then we must set the head
1572          * to the inserted page, otherwise we set it one before.
1573          */
1574         cpu_buffer->head_page = cpu_buffer->reader_page;
1575
1576         if (cpu_buffer->commit_page != reader)
1577                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1578
1579         /* Finally update the reader page to the new head */
1580         cpu_buffer->reader_page = reader;
1581         rb_reset_reader_page(cpu_buffer);
1582
1583         goto again;
1584
1585  out:
1586         spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1587
1588         return reader;
1589 }
1590
1591 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1592 {
1593         struct ring_buffer_event *event;
1594         struct buffer_page *reader;
1595         unsigned length;
1596
1597         reader = rb_get_reader_page(cpu_buffer);
1598
1599         /* This function should not be called when buffer is empty */
1600         BUG_ON(!reader);
1601
1602         event = rb_reader_event(cpu_buffer);
1603
1604         if (event->type == RINGBUF_TYPE_DATA)
1605                 cpu_buffer->entries--;
1606
1607         rb_update_read_stamp(cpu_buffer, event);
1608
1609         length = rb_event_length(event);
1610         cpu_buffer->reader_page->read += length;
1611 }
1612
1613 static void rb_advance_iter(struct ring_buffer_iter *iter)
1614 {
1615         struct ring_buffer *buffer;
1616         struct ring_buffer_per_cpu *cpu_buffer;
1617         struct ring_buffer_event *event;
1618         unsigned length;
1619
1620         cpu_buffer = iter->cpu_buffer;
1621         buffer = cpu_buffer->buffer;
1622
1623         /*
1624          * Check if we are at the end of the buffer.
1625          */
1626         if (iter->head >= rb_page_size(iter->head_page)) {
1627                 BUG_ON(iter->head_page == cpu_buffer->commit_page);
1628                 rb_inc_iter(iter);
1629                 return;
1630         }
1631
1632         event = rb_iter_head_event(iter);
1633
1634         length = rb_event_length(event);
1635
1636         /*
1637          * This should not be called to advance the header if we are
1638          * at the tail of the buffer.
1639          */
1640         BUG_ON((iter->head_page == cpu_buffer->commit_page) &&
1641                (iter->head + length > rb_commit_index(cpu_buffer)));
1642
1643         rb_update_iter_read_stamp(iter, event);
1644
1645         iter->head += length;
1646
1647         /* check for end of page padding */
1648         if ((iter->head >= rb_page_size(iter->head_page)) &&
1649             (iter->head_page != cpu_buffer->commit_page))
1650                 rb_advance_iter(iter);
1651 }
1652
1653 /**
1654  * ring_buffer_peek - peek at the next event to be read
1655  * @buffer: The ring buffer to read
1656  * @cpu: The cpu to peak at
1657  * @ts: The timestamp counter of this event.
1658  *
1659  * This will return the event that will be read next, but does
1660  * not consume the data.
1661  */
1662 struct ring_buffer_event *
1663 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1664 {
1665         struct ring_buffer_per_cpu *cpu_buffer;
1666         struct ring_buffer_event *event;
1667         struct buffer_page *reader;
1668
1669         if (!cpu_isset(cpu, buffer->cpumask))
1670                 return NULL;
1671
1672         cpu_buffer = buffer->buffers[cpu];
1673
1674  again:
1675         reader = rb_get_reader_page(cpu_buffer);
1676         if (!reader)
1677                 return NULL;
1678
1679         event = rb_reader_event(cpu_buffer);
1680
1681         switch (event->type) {
1682         case RINGBUF_TYPE_PADDING:
1683                 RB_WARN_ON(cpu_buffer, 1);
1684                 rb_advance_reader(cpu_buffer);
1685                 return NULL;
1686
1687         case RINGBUF_TYPE_TIME_EXTEND:
1688                 /* Internal data, OK to advance */
1689                 rb_advance_reader(cpu_buffer);
1690                 goto again;
1691
1692         case RINGBUF_TYPE_TIME_STAMP:
1693                 /* FIXME: not implemented */
1694                 rb_advance_reader(cpu_buffer);
1695                 goto again;
1696
1697         case RINGBUF_TYPE_DATA:
1698                 if (ts) {
1699                         *ts = cpu_buffer->read_stamp + event->time_delta;
1700                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1701                 }
1702                 return event;
1703
1704         default:
1705                 BUG();
1706         }
1707
1708         return NULL;
1709 }
1710
1711 /**
1712  * ring_buffer_iter_peek - peek at the next event to be read
1713  * @iter: The ring buffer iterator
1714  * @ts: The timestamp counter of this event.
1715  *
1716  * This will return the event that will be read next, but does
1717  * not increment the iterator.
1718  */
1719 struct ring_buffer_event *
1720 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1721 {
1722         struct ring_buffer *buffer;
1723         struct ring_buffer_per_cpu *cpu_buffer;
1724         struct ring_buffer_event *event;
1725
1726         if (ring_buffer_iter_empty(iter))
1727                 return NULL;
1728
1729         cpu_buffer = iter->cpu_buffer;
1730         buffer = cpu_buffer->buffer;
1731
1732  again:
1733         if (rb_per_cpu_empty(cpu_buffer))
1734                 return NULL;
1735
1736         event = rb_iter_head_event(iter);
1737
1738         switch (event->type) {
1739         case RINGBUF_TYPE_PADDING:
1740                 rb_inc_iter(iter);
1741                 goto again;
1742
1743         case RINGBUF_TYPE_TIME_EXTEND:
1744                 /* Internal data, OK to advance */
1745                 rb_advance_iter(iter);
1746                 goto again;
1747
1748         case RINGBUF_TYPE_TIME_STAMP:
1749                 /* FIXME: not implemented */
1750                 rb_advance_iter(iter);
1751                 goto again;
1752
1753         case RINGBUF_TYPE_DATA:
1754                 if (ts) {
1755                         *ts = iter->read_stamp + event->time_delta;
1756                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1757                 }
1758                 return event;
1759
1760         default:
1761                 BUG();
1762         }
1763
1764         return NULL;
1765 }
1766
1767 /**
1768  * ring_buffer_consume - return an event and consume it
1769  * @buffer: The ring buffer to get the next event from
1770  *
1771  * Returns the next event in the ring buffer, and that event is consumed.
1772  * Meaning, that sequential reads will keep returning a different event,
1773  * and eventually empty the ring buffer if the producer is slower.
1774  */
1775 struct ring_buffer_event *
1776 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1777 {
1778         struct ring_buffer_per_cpu *cpu_buffer;
1779         struct ring_buffer_event *event;
1780
1781         if (!cpu_isset(cpu, buffer->cpumask))
1782                 return NULL;
1783
1784         event = ring_buffer_peek(buffer, cpu, ts);
1785         if (!event)
1786                 return NULL;
1787
1788         cpu_buffer = buffer->buffers[cpu];
1789         rb_advance_reader(cpu_buffer);
1790
1791         return event;
1792 }
1793
1794 /**
1795  * ring_buffer_read_start - start a non consuming read of the buffer
1796  * @buffer: The ring buffer to read from
1797  * @cpu: The cpu buffer to iterate over
1798  *
1799  * This starts up an iteration through the buffer. It also disables
1800  * the recording to the buffer until the reading is finished.
1801  * This prevents the reading from being corrupted. This is not
1802  * a consuming read, so a producer is not expected.
1803  *
1804  * Must be paired with ring_buffer_finish.
1805  */
1806 struct ring_buffer_iter *
1807 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1808 {
1809         struct ring_buffer_per_cpu *cpu_buffer;
1810         struct ring_buffer_iter *iter;
1811         unsigned long flags;
1812
1813         if (!cpu_isset(cpu, buffer->cpumask))
1814                 return NULL;
1815
1816         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1817         if (!iter)
1818                 return NULL;
1819
1820         cpu_buffer = buffer->buffers[cpu];
1821
1822         iter->cpu_buffer = cpu_buffer;
1823
1824         atomic_inc(&cpu_buffer->record_disabled);
1825         synchronize_sched();
1826
1827         spin_lock_irqsave(&cpu_buffer->lock, flags);
1828         ring_buffer_iter_reset(iter);
1829         spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1830
1831         return iter;
1832 }
1833
1834 /**
1835  * ring_buffer_finish - finish reading the iterator of the buffer
1836  * @iter: The iterator retrieved by ring_buffer_start
1837  *
1838  * This re-enables the recording to the buffer, and frees the
1839  * iterator.
1840  */
1841 void
1842 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1843 {
1844         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1845
1846         atomic_dec(&cpu_buffer->record_disabled);
1847         kfree(iter);
1848 }
1849
1850 /**
1851  * ring_buffer_read - read the next item in the ring buffer by the iterator
1852  * @iter: The ring buffer iterator
1853  * @ts: The time stamp of the event read.
1854  *
1855  * This reads the next event in the ring buffer and increments the iterator.
1856  */
1857 struct ring_buffer_event *
1858 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1859 {
1860         struct ring_buffer_event *event;
1861
1862         event = ring_buffer_iter_peek(iter, ts);
1863         if (!event)
1864                 return NULL;
1865
1866         rb_advance_iter(iter);
1867
1868         return event;
1869 }
1870
1871 /**
1872  * ring_buffer_size - return the size of the ring buffer (in bytes)
1873  * @buffer: The ring buffer.
1874  */
1875 unsigned long ring_buffer_size(struct ring_buffer *buffer)
1876 {
1877         return BUF_PAGE_SIZE * buffer->pages;
1878 }
1879
1880 static void
1881 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
1882 {
1883         cpu_buffer->head_page
1884                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
1885         local_set(&cpu_buffer->head_page->write, 0);
1886         local_set(&cpu_buffer->head_page->commit, 0);
1887
1888         cpu_buffer->head_page->read = 0;
1889
1890         cpu_buffer->tail_page = cpu_buffer->head_page;
1891         cpu_buffer->commit_page = cpu_buffer->head_page;
1892
1893         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1894         local_set(&cpu_buffer->reader_page->write, 0);
1895         local_set(&cpu_buffer->reader_page->commit, 0);
1896         cpu_buffer->reader_page->read = 0;
1897
1898         cpu_buffer->overrun = 0;
1899         cpu_buffer->entries = 0;
1900 }
1901
1902 /**
1903  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
1904  * @buffer: The ring buffer to reset a per cpu buffer of
1905  * @cpu: The CPU buffer to be reset
1906  */
1907 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
1908 {
1909         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1910         unsigned long flags;
1911
1912         if (!cpu_isset(cpu, buffer->cpumask))
1913                 return;
1914
1915         spin_lock_irqsave(&cpu_buffer->lock, flags);
1916
1917         rb_reset_cpu(cpu_buffer);
1918
1919         spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1920 }
1921
1922 /**
1923  * ring_buffer_reset - reset a ring buffer
1924  * @buffer: The ring buffer to reset all cpu buffers
1925  */
1926 void ring_buffer_reset(struct ring_buffer *buffer)
1927 {
1928         int cpu;
1929
1930         for_each_buffer_cpu(buffer, cpu)
1931                 ring_buffer_reset_cpu(buffer, cpu);
1932 }
1933
1934 /**
1935  * rind_buffer_empty - is the ring buffer empty?
1936  * @buffer: The ring buffer to test
1937  */
1938 int ring_buffer_empty(struct ring_buffer *buffer)
1939 {
1940         struct ring_buffer_per_cpu *cpu_buffer;
1941         int cpu;
1942
1943         /* yes this is racy, but if you don't like the race, lock the buffer */
1944         for_each_buffer_cpu(buffer, cpu) {
1945                 cpu_buffer = buffer->buffers[cpu];
1946                 if (!rb_per_cpu_empty(cpu_buffer))
1947                         return 0;
1948         }
1949         return 1;
1950 }
1951
1952 /**
1953  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
1954  * @buffer: The ring buffer
1955  * @cpu: The CPU buffer to test
1956  */
1957 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
1958 {
1959         struct ring_buffer_per_cpu *cpu_buffer;
1960
1961         if (!cpu_isset(cpu, buffer->cpumask))
1962                 return 1;
1963
1964         cpu_buffer = buffer->buffers[cpu];
1965         return rb_per_cpu_empty(cpu_buffer);
1966 }
1967
1968 /**
1969  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
1970  * @buffer_a: One buffer to swap with
1971  * @buffer_b: The other buffer to swap with
1972  *
1973  * This function is useful for tracers that want to take a "snapshot"
1974  * of a CPU buffer and has another back up buffer lying around.
1975  * it is expected that the tracer handles the cpu buffer not being
1976  * used at the moment.
1977  */
1978 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
1979                          struct ring_buffer *buffer_b, int cpu)
1980 {
1981         struct ring_buffer_per_cpu *cpu_buffer_a;
1982         struct ring_buffer_per_cpu *cpu_buffer_b;
1983
1984         if (!cpu_isset(cpu, buffer_a->cpumask) ||
1985             !cpu_isset(cpu, buffer_b->cpumask))
1986                 return -EINVAL;
1987
1988         /* At least make sure the two buffers are somewhat the same */
1989         if (buffer_a->size != buffer_b->size ||
1990             buffer_a->pages != buffer_b->pages)
1991                 return -EINVAL;
1992
1993         cpu_buffer_a = buffer_a->buffers[cpu];
1994         cpu_buffer_b = buffer_b->buffers[cpu];
1995
1996         /*
1997          * We can't do a synchronize_sched here because this
1998          * function can be called in atomic context.
1999          * Normally this will be called from the same CPU as cpu.
2000          * If not it's up to the caller to protect this.
2001          */
2002         atomic_inc(&cpu_buffer_a->record_disabled);
2003         atomic_inc(&cpu_buffer_b->record_disabled);
2004
2005         buffer_a->buffers[cpu] = cpu_buffer_b;
2006         buffer_b->buffers[cpu] = cpu_buffer_a;
2007
2008         cpu_buffer_b->buffer = buffer_a;
2009         cpu_buffer_a->buffer = buffer_b;
2010
2011         atomic_dec(&cpu_buffer_a->record_disabled);
2012         atomic_dec(&cpu_buffer_b->record_disabled);
2013
2014         return 0;
2015 }
2016