]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ext4/inode.c
ext4: Don't add the inode to journal handle until after the block is allocated
[linux-2.6-omap-h63xx.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47                                               loff_t new_size)
48 {
49         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50                                                    new_size);
51 }
52
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60         int ea_blocks = EXT4_I(inode)->i_file_acl ?
61                 (inode->i_sb->s_blocksize >> 9) : 0;
62
63         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76                         struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78         int err;
79
80         might_sleep();
81
82         BUFFER_TRACE(bh, "enter");
83
84         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85                   "data mode %lx\n",
86                   bh, is_metadata, inode->i_mode,
87                   test_opt(inode->i_sb, DATA_FLAGS));
88
89         /* Never use the revoke function if we are doing full data
90          * journaling: there is no need to, and a V1 superblock won't
91          * support it.  Otherwise, only skip the revoke on un-journaled
92          * data blocks. */
93
94         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95             (!is_metadata && !ext4_should_journal_data(inode))) {
96                 if (bh) {
97                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
98                         return ext4_journal_forget(handle, bh);
99                 }
100                 return 0;
101         }
102
103         /*
104          * data!=journal && (is_metadata || should_journal_data(inode))
105          */
106         BUFFER_TRACE(bh, "call ext4_journal_revoke");
107         err = ext4_journal_revoke(handle, blocknr, bh);
108         if (err)
109                 ext4_abort(inode->i_sb, __func__,
110                            "error %d when attempting revoke", err);
111         BUFFER_TRACE(bh, "exit");
112         return err;
113 }
114
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121         ext4_lblk_t needed;
122
123         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125         /* Give ourselves just enough room to cope with inodes in which
126          * i_blocks is corrupt: we've seen disk corruptions in the past
127          * which resulted in random data in an inode which looked enough
128          * like a regular file for ext4 to try to delete it.  Things
129          * will go a bit crazy if that happens, but at least we should
130          * try not to panic the whole kernel. */
131         if (needed < 2)
132                 needed = 2;
133
134         /* But we need to bound the transaction so we don't overflow the
135          * journal. */
136         if (needed > EXT4_MAX_TRANS_DATA)
137                 needed = EXT4_MAX_TRANS_DATA;
138
139         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154         handle_t *result;
155
156         result = ext4_journal_start(inode, blocks_for_truncate(inode));
157         if (!IS_ERR(result))
158                 return result;
159
160         ext4_std_error(inode->i_sb, PTR_ERR(result));
161         return result;
162 }
163
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173                 return 0;
174         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175                 return 0;
176         return 1;
177 }
178
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186         jbd_debug(2, "restarting handle %p\n", handle);
187         return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode(struct inode *inode)
194 {
195         handle_t *handle;
196         int err;
197
198         if (ext4_should_order_data(inode))
199                 ext4_begin_ordered_truncate(inode, 0);
200         truncate_inode_pages(&inode->i_data, 0);
201
202         if (is_bad_inode(inode))
203                 goto no_delete;
204
205         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206         if (IS_ERR(handle)) {
207                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
208                 /*
209                  * If we're going to skip the normal cleanup, we still need to
210                  * make sure that the in-core orphan linked list is properly
211                  * cleaned up.
212                  */
213                 ext4_orphan_del(NULL, inode);
214                 goto no_delete;
215         }
216
217         if (IS_SYNC(inode))
218                 handle->h_sync = 1;
219         inode->i_size = 0;
220         err = ext4_mark_inode_dirty(handle, inode);
221         if (err) {
222                 ext4_warning(inode->i_sb, __func__,
223                              "couldn't mark inode dirty (err %d)", err);
224                 goto stop_handle;
225         }
226         if (inode->i_blocks)
227                 ext4_truncate(inode);
228
229         /*
230          * ext4_ext_truncate() doesn't reserve any slop when it
231          * restarts journal transactions; therefore there may not be
232          * enough credits left in the handle to remove the inode from
233          * the orphan list and set the dtime field.
234          */
235         if (handle->h_buffer_credits < 3) {
236                 err = ext4_journal_extend(handle, 3);
237                 if (err > 0)
238                         err = ext4_journal_restart(handle, 3);
239                 if (err != 0) {
240                         ext4_warning(inode->i_sb, __func__,
241                                      "couldn't extend journal (err %d)", err);
242                 stop_handle:
243                         ext4_journal_stop(handle);
244                         goto no_delete;
245                 }
246         }
247
248         /*
249          * Kill off the orphan record which ext4_truncate created.
250          * AKPM: I think this can be inside the above `if'.
251          * Note that ext4_orphan_del() has to be able to cope with the
252          * deletion of a non-existent orphan - this is because we don't
253          * know if ext4_truncate() actually created an orphan record.
254          * (Well, we could do this if we need to, but heck - it works)
255          */
256         ext4_orphan_del(handle, inode);
257         EXT4_I(inode)->i_dtime  = get_seconds();
258
259         /*
260          * One subtle ordering requirement: if anything has gone wrong
261          * (transaction abort, IO errors, whatever), then we can still
262          * do these next steps (the fs will already have been marked as
263          * having errors), but we can't free the inode if the mark_dirty
264          * fails.
265          */
266         if (ext4_mark_inode_dirty(handle, inode))
267                 /* If that failed, just do the required in-core inode clear. */
268                 clear_inode(inode);
269         else
270                 ext4_free_inode(handle, inode);
271         ext4_journal_stop(handle);
272         return;
273 no_delete:
274         clear_inode(inode);     /* We must guarantee clearing of inode... */
275 }
276
277 typedef struct {
278         __le32  *p;
279         __le32  key;
280         struct buffer_head *bh;
281 } Indirect;
282
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285         p->key = *(p->p = v);
286         p->bh = bh;
287 }
288
289 /**
290  *      ext4_block_to_path - parse the block number into array of offsets
291  *      @inode: inode in question (we are only interested in its superblock)
292  *      @i_block: block number to be parsed
293  *      @offsets: array to store the offsets in
294  *      @boundary: set this non-zero if the referred-to block is likely to be
295  *             followed (on disk) by an indirect block.
296  *
297  *      To store the locations of file's data ext4 uses a data structure common
298  *      for UNIX filesystems - tree of pointers anchored in the inode, with
299  *      data blocks at leaves and indirect blocks in intermediate nodes.
300  *      This function translates the block number into path in that tree -
301  *      return value is the path length and @offsets[n] is the offset of
302  *      pointer to (n+1)th node in the nth one. If @block is out of range
303  *      (negative or too large) warning is printed and zero returned.
304  *
305  *      Note: function doesn't find node addresses, so no IO is needed. All
306  *      we need to know is the capacity of indirect blocks (taken from the
307  *      inode->i_sb).
308  */
309
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319
320 static int ext4_block_to_path(struct inode *inode,
321                         ext4_lblk_t i_block,
322                         ext4_lblk_t offsets[4], int *boundary)
323 {
324         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326         const long direct_blocks = EXT4_NDIR_BLOCKS,
327                 indirect_blocks = ptrs,
328                 double_blocks = (1 << (ptrs_bits * 2));
329         int n = 0;
330         int final = 0;
331
332         if (i_block < 0) {
333                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334         } else if (i_block < direct_blocks) {
335                 offsets[n++] = i_block;
336                 final = direct_blocks;
337         } else if ((i_block -= direct_blocks) < indirect_blocks) {
338                 offsets[n++] = EXT4_IND_BLOCK;
339                 offsets[n++] = i_block;
340                 final = ptrs;
341         } else if ((i_block -= indirect_blocks) < double_blocks) {
342                 offsets[n++] = EXT4_DIND_BLOCK;
343                 offsets[n++] = i_block >> ptrs_bits;
344                 offsets[n++] = i_block & (ptrs - 1);
345                 final = ptrs;
346         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347                 offsets[n++] = EXT4_TIND_BLOCK;
348                 offsets[n++] = i_block >> (ptrs_bits * 2);
349                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350                 offsets[n++] = i_block & (ptrs - 1);
351                 final = ptrs;
352         } else {
353                 ext4_warning(inode->i_sb, "ext4_block_to_path",
354                                 "block %lu > max",
355                                 i_block + direct_blocks +
356                                 indirect_blocks + double_blocks);
357         }
358         if (boundary)
359                 *boundary = final - 1 - (i_block & (ptrs - 1));
360         return n;
361 }
362
363 /**
364  *      ext4_get_branch - read the chain of indirect blocks leading to data
365  *      @inode: inode in question
366  *      @depth: depth of the chain (1 - direct pointer, etc.)
367  *      @offsets: offsets of pointers in inode/indirect blocks
368  *      @chain: place to store the result
369  *      @err: here we store the error value
370  *
371  *      Function fills the array of triples <key, p, bh> and returns %NULL
372  *      if everything went OK or the pointer to the last filled triple
373  *      (incomplete one) otherwise. Upon the return chain[i].key contains
374  *      the number of (i+1)-th block in the chain (as it is stored in memory,
375  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *      number (it points into struct inode for i==0 and into the bh->b_data
377  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *      block for i>0 and NULL for i==0. In other words, it holds the block
379  *      numbers of the chain, addresses they were taken from (and where we can
380  *      verify that chain did not change) and buffer_heads hosting these
381  *      numbers.
382  *
383  *      Function stops when it stumbles upon zero pointer (absent block)
384  *              (pointer to last triple returned, *@err == 0)
385  *      or when it gets an IO error reading an indirect block
386  *              (ditto, *@err == -EIO)
387  *      or when it reads all @depth-1 indirect blocks successfully and finds
388  *      the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394                                  ext4_lblk_t  *offsets,
395                                  Indirect chain[4], int *err)
396 {
397         struct super_block *sb = inode->i_sb;
398         Indirect *p = chain;
399         struct buffer_head *bh;
400
401         *err = 0;
402         /* i_data is not going away, no lock needed */
403         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404         if (!p->key)
405                 goto no_block;
406         while (--depth) {
407                 bh = sb_bread(sb, le32_to_cpu(p->key));
408                 if (!bh)
409                         goto failure;
410                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411                 /* Reader: end */
412                 if (!p->key)
413                         goto no_block;
414         }
415         return NULL;
416
417 failure:
418         *err = -EIO;
419 no_block:
420         return p;
421 }
422
423 /**
424  *      ext4_find_near - find a place for allocation with sufficient locality
425  *      @inode: owner
426  *      @ind: descriptor of indirect block.
427  *
428  *      This function returns the preferred place for block allocation.
429  *      It is used when heuristic for sequential allocation fails.
430  *      Rules are:
431  *        + if there is a block to the left of our position - allocate near it.
432  *        + if pointer will live in indirect block - allocate near that block.
433  *        + if pointer will live in inode - allocate in the same
434  *          cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *      Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445         struct ext4_inode_info *ei = EXT4_I(inode);
446         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447         __le32 *p;
448         ext4_fsblk_t bg_start;
449         ext4_fsblk_t last_block;
450         ext4_grpblk_t colour;
451
452         /* Try to find previous block */
453         for (p = ind->p - 1; p >= start; p--) {
454                 if (*p)
455                         return le32_to_cpu(*p);
456         }
457
458         /* No such thing, so let's try location of indirect block */
459         if (ind->bh)
460                 return ind->bh->b_blocknr;
461
462         /*
463          * It is going to be referred to from the inode itself? OK, just put it
464          * into the same cylinder group then.
465          */
466         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470                 colour = (current->pid % 16) *
471                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472         else
473                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474         return bg_start + colour;
475 }
476
477 /**
478  *      ext4_find_goal - find a preferred place for allocation.
479  *      @inode: owner
480  *      @block:  block we want
481  *      @partial: pointer to the last triple within a chain
482  *
483  *      Normally this function find the preferred place for block allocation,
484  *      returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487                 Indirect *partial)
488 {
489         struct ext4_block_alloc_info *block_i;
490
491         block_i =  EXT4_I(inode)->i_block_alloc_info;
492
493         /*
494          * try the heuristic for sequential allocation,
495          * failing that at least try to get decent locality.
496          */
497         if (block_i && (block == block_i->last_alloc_logical_block + 1)
498                 && (block_i->last_alloc_physical_block != 0)) {
499                 return block_i->last_alloc_physical_block + 1;
500         }
501
502         return ext4_find_near(inode, partial);
503 }
504
505 /**
506  *      ext4_blks_to_allocate: Look up the block map and count the number
507  *      of direct blocks need to be allocated for the given branch.
508  *
509  *      @branch: chain of indirect blocks
510  *      @k: number of blocks need for indirect blocks
511  *      @blks: number of data blocks to be mapped.
512  *      @blocks_to_boundary:  the offset in the indirect block
513  *
514  *      return the total number of blocks to be allocate, including the
515  *      direct and indirect blocks.
516  */
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518                 int blocks_to_boundary)
519 {
520         unsigned long count = 0;
521
522         /*
523          * Simple case, [t,d]Indirect block(s) has not allocated yet
524          * then it's clear blocks on that path have not allocated
525          */
526         if (k > 0) {
527                 /* right now we don't handle cross boundary allocation */
528                 if (blks < blocks_to_boundary + 1)
529                         count += blks;
530                 else
531                         count += blocks_to_boundary + 1;
532                 return count;
533         }
534
535         count++;
536         while (count < blks && count <= blocks_to_boundary &&
537                 le32_to_cpu(*(branch[0].p + count)) == 0) {
538                 count++;
539         }
540         return count;
541 }
542
543 /**
544  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
545  *      @indirect_blks: the number of blocks need to allocate for indirect
546  *                      blocks
547  *
548  *      @new_blocks: on return it will store the new block numbers for
549  *      the indirect blocks(if needed) and the first direct block,
550  *      @blks:  on return it will store the total number of allocated
551  *              direct blocks
552  */
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
555                                 int indirect_blks, int blks,
556                                 ext4_fsblk_t new_blocks[4], int *err)
557 {
558         int target, i;
559         unsigned long count = 0, blk_allocated = 0;
560         int index = 0;
561         ext4_fsblk_t current_block = 0;
562         int ret = 0;
563
564         /*
565          * Here we try to allocate the requested multiple blocks at once,
566          * on a best-effort basis.
567          * To build a branch, we should allocate blocks for
568          * the indirect blocks(if not allocated yet), and at least
569          * the first direct block of this branch.  That's the
570          * minimum number of blocks need to allocate(required)
571          */
572         /* first we try to allocate the indirect blocks */
573         target = indirect_blks;
574         while (target > 0) {
575                 count = target;
576                 /* allocating blocks for indirect blocks and direct blocks */
577                 current_block = ext4_new_meta_blocks(handle, inode,
578                                                         goal, &count, err);
579                 if (*err)
580                         goto failed_out;
581
582                 target -= count;
583                 /* allocate blocks for indirect blocks */
584                 while (index < indirect_blks && count) {
585                         new_blocks[index++] = current_block++;
586                         count--;
587                 }
588                 if (count > 0) {
589                         /*
590                          * save the new block number
591                          * for the first direct block
592                          */
593                         new_blocks[index] = current_block;
594                         printk(KERN_INFO "%s returned more blocks than "
595                                                 "requested\n", __func__);
596                         WARN_ON(1);
597                         break;
598                 }
599         }
600
601         target = blks - count ;
602         blk_allocated = count;
603         if (!target)
604                 goto allocated;
605         /* Now allocate data blocks */
606         count = target;
607         /* allocating blocks for data blocks */
608         current_block = ext4_new_blocks(handle, inode, iblock,
609                                                 goal, &count, err);
610         if (*err && (target == blks)) {
611                 /*
612                  * if the allocation failed and we didn't allocate
613                  * any blocks before
614                  */
615                 goto failed_out;
616         }
617         if (!*err) {
618                 if (target == blks) {
619                 /*
620                  * save the new block number
621                  * for the first direct block
622                  */
623                         new_blocks[index] = current_block;
624                 }
625                 blk_allocated += count;
626         }
627 allocated:
628         /* total number of blocks allocated for direct blocks */
629         ret = blk_allocated;
630         *err = 0;
631         return ret;
632 failed_out:
633         for (i = 0; i < index; i++)
634                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635         return ret;
636 }
637
638 /**
639  *      ext4_alloc_branch - allocate and set up a chain of blocks.
640  *      @inode: owner
641  *      @indirect_blks: number of allocated indirect blocks
642  *      @blks: number of allocated direct blocks
643  *      @offsets: offsets (in the blocks) to store the pointers to next.
644  *      @branch: place to store the chain in.
645  *
646  *      This function allocates blocks, zeroes out all but the last one,
647  *      links them into chain and (if we are synchronous) writes them to disk.
648  *      In other words, it prepares a branch that can be spliced onto the
649  *      inode. It stores the information about that chain in the branch[], in
650  *      the same format as ext4_get_branch() would do. We are calling it after
651  *      we had read the existing part of chain and partial points to the last
652  *      triple of that (one with zero ->key). Upon the exit we have the same
653  *      picture as after the successful ext4_get_block(), except that in one
654  *      place chain is disconnected - *branch->p is still zero (we did not
655  *      set the last link), but branch->key contains the number that should
656  *      be placed into *branch->p to fill that gap.
657  *
658  *      If allocation fails we free all blocks we've allocated (and forget
659  *      their buffer_heads) and return the error value the from failed
660  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661  *      as described above and return 0.
662  */
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664                                 ext4_lblk_t iblock, int indirect_blks,
665                                 int *blks, ext4_fsblk_t goal,
666                                 ext4_lblk_t *offsets, Indirect *branch)
667 {
668         int blocksize = inode->i_sb->s_blocksize;
669         int i, n = 0;
670         int err = 0;
671         struct buffer_head *bh;
672         int num;
673         ext4_fsblk_t new_blocks[4];
674         ext4_fsblk_t current_block;
675
676         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677                                 *blks, new_blocks, &err);
678         if (err)
679                 return err;
680
681         branch[0].key = cpu_to_le32(new_blocks[0]);
682         /*
683          * metadata blocks and data blocks are allocated.
684          */
685         for (n = 1; n <= indirect_blks;  n++) {
686                 /*
687                  * Get buffer_head for parent block, zero it out
688                  * and set the pointer to new one, then send
689                  * parent to disk.
690                  */
691                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692                 branch[n].bh = bh;
693                 lock_buffer(bh);
694                 BUFFER_TRACE(bh, "call get_create_access");
695                 err = ext4_journal_get_create_access(handle, bh);
696                 if (err) {
697                         unlock_buffer(bh);
698                         brelse(bh);
699                         goto failed;
700                 }
701
702                 memset(bh->b_data, 0, blocksize);
703                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704                 branch[n].key = cpu_to_le32(new_blocks[n]);
705                 *branch[n].p = branch[n].key;
706                 if (n == indirect_blks) {
707                         current_block = new_blocks[n];
708                         /*
709                          * End of chain, update the last new metablock of
710                          * the chain to point to the new allocated
711                          * data blocks numbers
712                          */
713                         for (i=1; i < num; i++)
714                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
715                 }
716                 BUFFER_TRACE(bh, "marking uptodate");
717                 set_buffer_uptodate(bh);
718                 unlock_buffer(bh);
719
720                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721                 err = ext4_journal_dirty_metadata(handle, bh);
722                 if (err)
723                         goto failed;
724         }
725         *blks = num;
726         return err;
727 failed:
728         /* Allocation failed, free what we already allocated */
729         for (i = 1; i <= n ; i++) {
730                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731                 ext4_journal_forget(handle, branch[i].bh);
732         }
733         for (i = 0; i < indirect_blks; i++)
734                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735
736         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737
738         return err;
739 }
740
741 /**
742  * ext4_splice_branch - splice the allocated branch onto inode.
743  * @inode: owner
744  * @block: (logical) number of block we are adding
745  * @chain: chain of indirect blocks (with a missing link - see
746  *      ext4_alloc_branch)
747  * @where: location of missing link
748  * @num:   number of indirect blocks we are adding
749  * @blks:  number of direct blocks we are adding
750  *
751  * This function fills the missing link and does all housekeeping needed in
752  * inode (->i_blocks, etc.). In case of success we end up with the full
753  * chain to new block and return 0.
754  */
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756                         ext4_lblk_t block, Indirect *where, int num, int blks)
757 {
758         int i;
759         int err = 0;
760         struct ext4_block_alloc_info *block_i;
761         ext4_fsblk_t current_block;
762
763         block_i = EXT4_I(inode)->i_block_alloc_info;
764         /*
765          * If we're splicing into a [td]indirect block (as opposed to the
766          * inode) then we need to get write access to the [td]indirect block
767          * before the splice.
768          */
769         if (where->bh) {
770                 BUFFER_TRACE(where->bh, "get_write_access");
771                 err = ext4_journal_get_write_access(handle, where->bh);
772                 if (err)
773                         goto err_out;
774         }
775         /* That's it */
776
777         *where->p = where->key;
778
779         /*
780          * Update the host buffer_head or inode to point to more just allocated
781          * direct blocks blocks
782          */
783         if (num == 0 && blks > 1) {
784                 current_block = le32_to_cpu(where->key) + 1;
785                 for (i = 1; i < blks; i++)
786                         *(where->p + i) = cpu_to_le32(current_block++);
787         }
788
789         /*
790          * update the most recently allocated logical & physical block
791          * in i_block_alloc_info, to assist find the proper goal block for next
792          * allocation
793          */
794         if (block_i) {
795                 block_i->last_alloc_logical_block = block + blks - 1;
796                 block_i->last_alloc_physical_block =
797                                 le32_to_cpu(where[num].key) + blks - 1;
798         }
799
800         /* We are done with atomic stuff, now do the rest of housekeeping */
801
802         inode->i_ctime = ext4_current_time(inode);
803         ext4_mark_inode_dirty(handle, inode);
804
805         /* had we spliced it onto indirect block? */
806         if (where->bh) {
807                 /*
808                  * If we spliced it onto an indirect block, we haven't
809                  * altered the inode.  Note however that if it is being spliced
810                  * onto an indirect block at the very end of the file (the
811                  * file is growing) then we *will* alter the inode to reflect
812                  * the new i_size.  But that is not done here - it is done in
813                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
814                  */
815                 jbd_debug(5, "splicing indirect only\n");
816                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817                 err = ext4_journal_dirty_metadata(handle, where->bh);
818                 if (err)
819                         goto err_out;
820         } else {
821                 /*
822                  * OK, we spliced it into the inode itself on a direct block.
823                  * Inode was dirtied above.
824                  */
825                 jbd_debug(5, "splicing direct\n");
826         }
827         return err;
828
829 err_out:
830         for (i = 1; i <= num; i++) {
831                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832                 ext4_journal_forget(handle, where[i].bh);
833                 ext4_free_blocks(handle, inode,
834                                         le32_to_cpu(where[i-1].key), 1, 0);
835         }
836         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
837
838         return err;
839 }
840
841 /*
842  * Allocation strategy is simple: if we have to allocate something, we will
843  * have to go the whole way to leaf. So let's do it before attaching anything
844  * to tree, set linkage between the newborn blocks, write them if sync is
845  * required, recheck the path, free and repeat if check fails, otherwise
846  * set the last missing link (that will protect us from any truncate-generated
847  * removals - all blocks on the path are immune now) and possibly force the
848  * write on the parent block.
849  * That has a nice additional property: no special recovery from the failed
850  * allocations is needed - we simply release blocks and do not touch anything
851  * reachable from inode.
852  *
853  * `handle' can be NULL if create == 0.
854  *
855  * return > 0, # of blocks mapped or allocated.
856  * return = 0, if plain lookup failed.
857  * return < 0, error case.
858  *
859  *
860  * Need to be called with
861  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
863  */
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865                 ext4_lblk_t iblock, unsigned long maxblocks,
866                 struct buffer_head *bh_result,
867                 int create, int extend_disksize)
868 {
869         int err = -EIO;
870         ext4_lblk_t offsets[4];
871         Indirect chain[4];
872         Indirect *partial;
873         ext4_fsblk_t goal;
874         int indirect_blks;
875         int blocks_to_boundary = 0;
876         int depth;
877         struct ext4_inode_info *ei = EXT4_I(inode);
878         int count = 0;
879         ext4_fsblk_t first_block = 0;
880         loff_t disksize;
881
882
883         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884         J_ASSERT(handle != NULL || create == 0);
885         depth = ext4_block_to_path(inode, iblock, offsets,
886                                         &blocks_to_boundary);
887
888         if (depth == 0)
889                 goto out;
890
891         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
892
893         /* Simplest case - block found, no allocation needed */
894         if (!partial) {
895                 first_block = le32_to_cpu(chain[depth - 1].key);
896                 clear_buffer_new(bh_result);
897                 count++;
898                 /*map more blocks*/
899                 while (count < maxblocks && count <= blocks_to_boundary) {
900                         ext4_fsblk_t blk;
901
902                         blk = le32_to_cpu(*(chain[depth-1].p + count));
903
904                         if (blk == first_block + count)
905                                 count++;
906                         else
907                                 break;
908                 }
909                 goto got_it;
910         }
911
912         /* Next simple case - plain lookup or failed read of indirect block */
913         if (!create || err == -EIO)
914                 goto cleanup;
915
916         /*
917          * Okay, we need to do block allocation.  Lazily initialize the block
918          * allocation info here if necessary
919         */
920         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921                 ext4_init_block_alloc_info(inode);
922
923         goal = ext4_find_goal(inode, iblock, partial);
924
925         /* the number of blocks need to allocate for [d,t]indirect blocks */
926         indirect_blks = (chain + depth) - partial - 1;
927
928         /*
929          * Next look up the indirect map to count the totoal number of
930          * direct blocks to allocate for this branch.
931          */
932         count = ext4_blks_to_allocate(partial, indirect_blks,
933                                         maxblocks, blocks_to_boundary);
934         /*
935          * Block out ext4_truncate while we alter the tree
936          */
937         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938                                         &count, goal,
939                                         offsets + (partial - chain), partial);
940
941         /*
942          * The ext4_splice_branch call will free and forget any buffers
943          * on the new chain if there is a failure, but that risks using
944          * up transaction credits, especially for bitmaps where the
945          * credits cannot be returned.  Can we handle this somehow?  We
946          * may need to return -EAGAIN upwards in the worst case.  --sct
947          */
948         if (!err)
949                 err = ext4_splice_branch(handle, inode, iblock,
950                                         partial, indirect_blks, count);
951         /*
952          * i_disksize growing is protected by i_data_sem.  Don't forget to
953          * protect it if you're about to implement concurrent
954          * ext4_get_block() -bzzz
955         */
956         if (!err && extend_disksize) {
957                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958                 if (disksize > i_size_read(inode))
959                         disksize = i_size_read(inode);
960                 if (disksize > ei->i_disksize)
961                         ei->i_disksize = disksize;
962         }
963         if (err)
964                 goto cleanup;
965
966         set_buffer_new(bh_result);
967 got_it:
968         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969         if (count > blocks_to_boundary)
970                 set_buffer_boundary(bh_result);
971         err = count;
972         /* Clean up and exit */
973         partial = chain + depth - 1;    /* the whole chain */
974 cleanup:
975         while (partial > chain) {
976                 BUFFER_TRACE(partial->bh, "call brelse");
977                 brelse(partial->bh);
978                 partial--;
979         }
980         BUFFER_TRACE(bh_result, "returned");
981 out:
982         return err;
983 }
984
985 /*
986  * Calculate the number of metadata blocks need to reserve
987  * to allocate @blocks for non extent file based file
988  */
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990 {
991         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992         int ind_blks, dind_blks, tind_blks;
993
994         /* number of new indirect blocks needed */
995         ind_blks = (blocks + icap - 1) / icap;
996
997         dind_blks = (ind_blks + icap - 1) / icap;
998
999         tind_blks = 1;
1000
1001         return ind_blks + dind_blks + tind_blks;
1002 }
1003
1004 /*
1005  * Calculate the number of metadata blocks need to reserve
1006  * to allocate given number of blocks
1007  */
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009 {
1010         if (!blocks)
1011                 return 0;
1012
1013         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014                 return ext4_ext_calc_metadata_amount(inode, blocks);
1015
1016         return ext4_indirect_calc_metadata_amount(inode, blocks);
1017 }
1018
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020 {
1021         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022         int total, mdb, mdb_free;
1023
1024         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025         /* recalculate the number of metablocks still need to be reserved */
1026         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027         mdb = ext4_calc_metadata_amount(inode, total);
1028
1029         /* figure out how many metablocks to release */
1030         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032
1033         if (mdb_free) {
1034                 /* Account for allocated meta_blocks */
1035                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1036
1037                 /* update fs dirty blocks counter */
1038                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1039                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1040                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1041         }
1042
1043         /* update per-inode reservations */
1044         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1045         EXT4_I(inode)->i_reserved_data_blocks -= used;
1046
1047         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1048 }
1049
1050 /*
1051  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1052  * and returns if the blocks are already mapped.
1053  *
1054  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1055  * and store the allocated blocks in the result buffer head and mark it
1056  * mapped.
1057  *
1058  * If file type is extents based, it will call ext4_ext_get_blocks(),
1059  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1060  * based files
1061  *
1062  * On success, it returns the number of blocks being mapped or allocate.
1063  * if create==0 and the blocks are pre-allocated and uninitialized block,
1064  * the result buffer head is unmapped. If the create ==1, it will make sure
1065  * the buffer head is mapped.
1066  *
1067  * It returns 0 if plain look up failed (blocks have not been allocated), in
1068  * that casem, buffer head is unmapped
1069  *
1070  * It returns the error in case of allocation failure.
1071  */
1072 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1073                         unsigned long max_blocks, struct buffer_head *bh,
1074                         int create, int extend_disksize, int flag)
1075 {
1076         int retval;
1077
1078         clear_buffer_mapped(bh);
1079
1080         /*
1081          * Try to see if we can get  the block without requesting
1082          * for new file system block.
1083          */
1084         down_read((&EXT4_I(inode)->i_data_sem));
1085         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1086                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1087                                 bh, 0, 0);
1088         } else {
1089                 retval = ext4_get_blocks_handle(handle,
1090                                 inode, block, max_blocks, bh, 0, 0);
1091         }
1092         up_read((&EXT4_I(inode)->i_data_sem));
1093
1094         /* If it is only a block(s) look up */
1095         if (!create)
1096                 return retval;
1097
1098         /*
1099          * Returns if the blocks have already allocated
1100          *
1101          * Note that if blocks have been preallocated
1102          * ext4_ext_get_block() returns th create = 0
1103          * with buffer head unmapped.
1104          */
1105         if (retval > 0 && buffer_mapped(bh))
1106                 return retval;
1107
1108         /*
1109          * New blocks allocate and/or writing to uninitialized extent
1110          * will possibly result in updating i_data, so we take
1111          * the write lock of i_data_sem, and call get_blocks()
1112          * with create == 1 flag.
1113          */
1114         down_write((&EXT4_I(inode)->i_data_sem));
1115
1116         /*
1117          * if the caller is from delayed allocation writeout path
1118          * we have already reserved fs blocks for allocation
1119          * let the underlying get_block() function know to
1120          * avoid double accounting
1121          */
1122         if (flag)
1123                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1124         /*
1125          * We need to check for EXT4 here because migrate
1126          * could have changed the inode type in between
1127          */
1128         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1129                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1130                                 bh, create, extend_disksize);
1131         } else {
1132                 retval = ext4_get_blocks_handle(handle, inode, block,
1133                                 max_blocks, bh, create, extend_disksize);
1134
1135                 if (retval > 0 && buffer_new(bh)) {
1136                         /*
1137                          * We allocated new blocks which will result in
1138                          * i_data's format changing.  Force the migrate
1139                          * to fail by clearing migrate flags
1140                          */
1141                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1142                                                         ~EXT4_EXT_MIGRATE;
1143                 }
1144         }
1145
1146         if (flag) {
1147                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1148                 /*
1149                  * Update reserved blocks/metadata blocks
1150                  * after successful block allocation
1151                  * which were deferred till now
1152                  */
1153                 if ((retval > 0) && buffer_delay(bh))
1154                         ext4_da_update_reserve_space(inode, retval);
1155         }
1156
1157         up_write((&EXT4_I(inode)->i_data_sem));
1158         return retval;
1159 }
1160
1161 /* Maximum number of blocks we map for direct IO at once. */
1162 #define DIO_MAX_BLOCKS 4096
1163
1164 static int ext4_get_block(struct inode *inode, sector_t iblock,
1165                         struct buffer_head *bh_result, int create)
1166 {
1167         handle_t *handle = ext4_journal_current_handle();
1168         int ret = 0, started = 0;
1169         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1170         int dio_credits;
1171
1172         if (create && !handle) {
1173                 /* Direct IO write... */
1174                 if (max_blocks > DIO_MAX_BLOCKS)
1175                         max_blocks = DIO_MAX_BLOCKS;
1176                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1177                 handle = ext4_journal_start(inode, dio_credits);
1178                 if (IS_ERR(handle)) {
1179                         ret = PTR_ERR(handle);
1180                         goto out;
1181                 }
1182                 started = 1;
1183         }
1184
1185         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1186                                         max_blocks, bh_result, create, 0, 0);
1187         if (ret > 0) {
1188                 bh_result->b_size = (ret << inode->i_blkbits);
1189                 ret = 0;
1190         }
1191         if (started)
1192                 ext4_journal_stop(handle);
1193 out:
1194         return ret;
1195 }
1196
1197 /*
1198  * `handle' can be NULL if create is zero
1199  */
1200 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1201                                 ext4_lblk_t block, int create, int *errp)
1202 {
1203         struct buffer_head dummy;
1204         int fatal = 0, err;
1205
1206         J_ASSERT(handle != NULL || create == 0);
1207
1208         dummy.b_state = 0;
1209         dummy.b_blocknr = -1000;
1210         buffer_trace_init(&dummy.b_history);
1211         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1212                                         &dummy, create, 1, 0);
1213         /*
1214          * ext4_get_blocks_handle() returns number of blocks
1215          * mapped. 0 in case of a HOLE.
1216          */
1217         if (err > 0) {
1218                 if (err > 1)
1219                         WARN_ON(1);
1220                 err = 0;
1221         }
1222         *errp = err;
1223         if (!err && buffer_mapped(&dummy)) {
1224                 struct buffer_head *bh;
1225                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1226                 if (!bh) {
1227                         *errp = -EIO;
1228                         goto err;
1229                 }
1230                 if (buffer_new(&dummy)) {
1231                         J_ASSERT(create != 0);
1232                         J_ASSERT(handle != NULL);
1233
1234                         /*
1235                          * Now that we do not always journal data, we should
1236                          * keep in mind whether this should always journal the
1237                          * new buffer as metadata.  For now, regular file
1238                          * writes use ext4_get_block instead, so it's not a
1239                          * problem.
1240                          */
1241                         lock_buffer(bh);
1242                         BUFFER_TRACE(bh, "call get_create_access");
1243                         fatal = ext4_journal_get_create_access(handle, bh);
1244                         if (!fatal && !buffer_uptodate(bh)) {
1245                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1246                                 set_buffer_uptodate(bh);
1247                         }
1248                         unlock_buffer(bh);
1249                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1250                         err = ext4_journal_dirty_metadata(handle, bh);
1251                         if (!fatal)
1252                                 fatal = err;
1253                 } else {
1254                         BUFFER_TRACE(bh, "not a new buffer");
1255                 }
1256                 if (fatal) {
1257                         *errp = fatal;
1258                         brelse(bh);
1259                         bh = NULL;
1260                 }
1261                 return bh;
1262         }
1263 err:
1264         return NULL;
1265 }
1266
1267 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1268                                ext4_lblk_t block, int create, int *err)
1269 {
1270         struct buffer_head *bh;
1271
1272         bh = ext4_getblk(handle, inode, block, create, err);
1273         if (!bh)
1274                 return bh;
1275         if (buffer_uptodate(bh))
1276                 return bh;
1277         ll_rw_block(READ_META, 1, &bh);
1278         wait_on_buffer(bh);
1279         if (buffer_uptodate(bh))
1280                 return bh;
1281         put_bh(bh);
1282         *err = -EIO;
1283         return NULL;
1284 }
1285
1286 static int walk_page_buffers(handle_t *handle,
1287                              struct buffer_head *head,
1288                              unsigned from,
1289                              unsigned to,
1290                              int *partial,
1291                              int (*fn)(handle_t *handle,
1292                                        struct buffer_head *bh))
1293 {
1294         struct buffer_head *bh;
1295         unsigned block_start, block_end;
1296         unsigned blocksize = head->b_size;
1297         int err, ret = 0;
1298         struct buffer_head *next;
1299
1300         for (bh = head, block_start = 0;
1301              ret == 0 && (bh != head || !block_start);
1302              block_start = block_end, bh = next)
1303         {
1304                 next = bh->b_this_page;
1305                 block_end = block_start + blocksize;
1306                 if (block_end <= from || block_start >= to) {
1307                         if (partial && !buffer_uptodate(bh))
1308                                 *partial = 1;
1309                         continue;
1310                 }
1311                 err = (*fn)(handle, bh);
1312                 if (!ret)
1313                         ret = err;
1314         }
1315         return ret;
1316 }
1317
1318 /*
1319  * To preserve ordering, it is essential that the hole instantiation and
1320  * the data write be encapsulated in a single transaction.  We cannot
1321  * close off a transaction and start a new one between the ext4_get_block()
1322  * and the commit_write().  So doing the jbd2_journal_start at the start of
1323  * prepare_write() is the right place.
1324  *
1325  * Also, this function can nest inside ext4_writepage() ->
1326  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1327  * has generated enough buffer credits to do the whole page.  So we won't
1328  * block on the journal in that case, which is good, because the caller may
1329  * be PF_MEMALLOC.
1330  *
1331  * By accident, ext4 can be reentered when a transaction is open via
1332  * quota file writes.  If we were to commit the transaction while thus
1333  * reentered, there can be a deadlock - we would be holding a quota
1334  * lock, and the commit would never complete if another thread had a
1335  * transaction open and was blocking on the quota lock - a ranking
1336  * violation.
1337  *
1338  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1339  * will _not_ run commit under these circumstances because handle->h_ref
1340  * is elevated.  We'll still have enough credits for the tiny quotafile
1341  * write.
1342  */
1343 static int do_journal_get_write_access(handle_t *handle,
1344                                         struct buffer_head *bh)
1345 {
1346         if (!buffer_mapped(bh) || buffer_freed(bh))
1347                 return 0;
1348         return ext4_journal_get_write_access(handle, bh);
1349 }
1350
1351 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1352                                 loff_t pos, unsigned len, unsigned flags,
1353                                 struct page **pagep, void **fsdata)
1354 {
1355         struct inode *inode = mapping->host;
1356         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1357         handle_t *handle;
1358         int retries = 0;
1359         struct page *page;
1360         pgoff_t index;
1361         unsigned from, to;
1362
1363         index = pos >> PAGE_CACHE_SHIFT;
1364         from = pos & (PAGE_CACHE_SIZE - 1);
1365         to = from + len;
1366
1367 retry:
1368         handle = ext4_journal_start(inode, needed_blocks);
1369         if (IS_ERR(handle)) {
1370                 ret = PTR_ERR(handle);
1371                 goto out;
1372         }
1373
1374         page = __grab_cache_page(mapping, index);
1375         if (!page) {
1376                 ext4_journal_stop(handle);
1377                 ret = -ENOMEM;
1378                 goto out;
1379         }
1380         *pagep = page;
1381
1382         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1383                                                         ext4_get_block);
1384
1385         if (!ret && ext4_should_journal_data(inode)) {
1386                 ret = walk_page_buffers(handle, page_buffers(page),
1387                                 from, to, NULL, do_journal_get_write_access);
1388         }
1389
1390         if (ret) {
1391                 unlock_page(page);
1392                 ext4_journal_stop(handle);
1393                 page_cache_release(page);
1394         }
1395
1396         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1397                 goto retry;
1398 out:
1399         return ret;
1400 }
1401
1402 /* For write_end() in data=journal mode */
1403 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1404 {
1405         if (!buffer_mapped(bh) || buffer_freed(bh))
1406                 return 0;
1407         set_buffer_uptodate(bh);
1408         return ext4_journal_dirty_metadata(handle, bh);
1409 }
1410
1411 /*
1412  * We need to pick up the new inode size which generic_commit_write gave us
1413  * `file' can be NULL - eg, when called from page_symlink().
1414  *
1415  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1416  * buffers are managed internally.
1417  */
1418 static int ext4_ordered_write_end(struct file *file,
1419                                 struct address_space *mapping,
1420                                 loff_t pos, unsigned len, unsigned copied,
1421                                 struct page *page, void *fsdata)
1422 {
1423         handle_t *handle = ext4_journal_current_handle();
1424         struct inode *inode = mapping->host;
1425         int ret = 0, ret2;
1426
1427         ret = ext4_jbd2_file_inode(handle, inode);
1428
1429         if (ret == 0) {
1430                 /*
1431                  * generic_write_end() will run mark_inode_dirty() if i_size
1432                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1433                  * into that.
1434                  */
1435                 loff_t new_i_size;
1436
1437                 new_i_size = pos + copied;
1438                 if (new_i_size > EXT4_I(inode)->i_disksize)
1439                         EXT4_I(inode)->i_disksize = new_i_size;
1440                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1441                                                         page, fsdata);
1442                 copied = ret2;
1443                 if (ret2 < 0)
1444                         ret = ret2;
1445         }
1446         ret2 = ext4_journal_stop(handle);
1447         if (!ret)
1448                 ret = ret2;
1449
1450         return ret ? ret : copied;
1451 }
1452
1453 static int ext4_writeback_write_end(struct file *file,
1454                                 struct address_space *mapping,
1455                                 loff_t pos, unsigned len, unsigned copied,
1456                                 struct page *page, void *fsdata)
1457 {
1458         handle_t *handle = ext4_journal_current_handle();
1459         struct inode *inode = mapping->host;
1460         int ret = 0, ret2;
1461         loff_t new_i_size;
1462
1463         new_i_size = pos + copied;
1464         if (new_i_size > EXT4_I(inode)->i_disksize)
1465                 EXT4_I(inode)->i_disksize = new_i_size;
1466
1467         ret2 = generic_write_end(file, mapping, pos, len, copied,
1468                                                         page, fsdata);
1469         copied = ret2;
1470         if (ret2 < 0)
1471                 ret = ret2;
1472
1473         ret2 = ext4_journal_stop(handle);
1474         if (!ret)
1475                 ret = ret2;
1476
1477         return ret ? ret : copied;
1478 }
1479
1480 static int ext4_journalled_write_end(struct file *file,
1481                                 struct address_space *mapping,
1482                                 loff_t pos, unsigned len, unsigned copied,
1483                                 struct page *page, void *fsdata)
1484 {
1485         handle_t *handle = ext4_journal_current_handle();
1486         struct inode *inode = mapping->host;
1487         int ret = 0, ret2;
1488         int partial = 0;
1489         unsigned from, to;
1490
1491         from = pos & (PAGE_CACHE_SIZE - 1);
1492         to = from + len;
1493
1494         if (copied < len) {
1495                 if (!PageUptodate(page))
1496                         copied = 0;
1497                 page_zero_new_buffers(page, from+copied, to);
1498         }
1499
1500         ret = walk_page_buffers(handle, page_buffers(page), from,
1501                                 to, &partial, write_end_fn);
1502         if (!partial)
1503                 SetPageUptodate(page);
1504         if (pos+copied > inode->i_size)
1505                 i_size_write(inode, pos+copied);
1506         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1507         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1508                 EXT4_I(inode)->i_disksize = inode->i_size;
1509                 ret2 = ext4_mark_inode_dirty(handle, inode);
1510                 if (!ret)
1511                         ret = ret2;
1512         }
1513
1514         unlock_page(page);
1515         ret2 = ext4_journal_stop(handle);
1516         if (!ret)
1517                 ret = ret2;
1518         page_cache_release(page);
1519
1520         return ret ? ret : copied;
1521 }
1522
1523 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1524 {
1525         int retries = 0;
1526        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527        unsigned long md_needed, mdblocks, total = 0;
1528
1529         /*
1530          * recalculate the amount of metadata blocks to reserve
1531          * in order to allocate nrblocks
1532          * worse case is one extent per block
1533          */
1534 repeat:
1535         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537         mdblocks = ext4_calc_metadata_amount(inode, total);
1538         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1539
1540         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541         total = md_needed + nrblocks;
1542
1543         if (ext4_claim_free_blocks(sbi, total)) {
1544                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1546                         yield();
1547                         goto repeat;
1548                 }
1549                 return -ENOSPC;
1550         }
1551         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1552         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1553
1554         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555         return 0;       /* success */
1556 }
1557
1558 static void ext4_da_release_space(struct inode *inode, int to_free)
1559 {
1560         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561         int total, mdb, mdb_free, release;
1562
1563         if (!to_free)
1564                 return;         /* Nothing to release, exit */
1565
1566         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1567
1568         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1569                 /*
1570                  * if there is no reserved blocks, but we try to free some
1571                  * then the counter is messed up somewhere.
1572                  * but since this function is called from invalidate
1573                  * page, it's harmless to return without any action
1574                  */
1575                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1576                             "blocks for inode %lu, but there is no reserved "
1577                             "data blocks\n", to_free, inode->i_ino);
1578                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579                 return;
1580         }
1581
1582         /* recalculate the number of metablocks still need to be reserved */
1583         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1584         mdb = ext4_calc_metadata_amount(inode, total);
1585
1586         /* figure out how many metablocks to release */
1587         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1588         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1589
1590         release = to_free + mdb_free;
1591
1592         /* update fs dirty blocks counter for truncate case */
1593         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1594
1595         /* update per-inode reservations */
1596         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1597         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1598
1599         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1600         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1601         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1602 }
1603
1604 static void ext4_da_page_release_reservation(struct page *page,
1605                                                 unsigned long offset)
1606 {
1607         int to_release = 0;
1608         struct buffer_head *head, *bh;
1609         unsigned int curr_off = 0;
1610
1611         head = page_buffers(page);
1612         bh = head;
1613         do {
1614                 unsigned int next_off = curr_off + bh->b_size;
1615
1616                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1617                         to_release++;
1618                         clear_buffer_delay(bh);
1619                 }
1620                 curr_off = next_off;
1621         } while ((bh = bh->b_this_page) != head);
1622         ext4_da_release_space(page->mapping->host, to_release);
1623 }
1624
1625 /*
1626  * Delayed allocation stuff
1627  */
1628
1629 struct mpage_da_data {
1630         struct inode *inode;
1631         struct buffer_head lbh;                 /* extent of blocks */
1632         unsigned long first_page, next_page;    /* extent of pages */
1633         get_block_t *get_block;
1634         struct writeback_control *wbc;
1635         int io_done;
1636         long pages_written;
1637 };
1638
1639 /*
1640  * mpage_da_submit_io - walks through extent of pages and try to write
1641  * them with writepage() call back
1642  *
1643  * @mpd->inode: inode
1644  * @mpd->first_page: first page of the extent
1645  * @mpd->next_page: page after the last page of the extent
1646  * @mpd->get_block: the filesystem's block mapper function
1647  *
1648  * By the time mpage_da_submit_io() is called we expect all blocks
1649  * to be allocated. this may be wrong if allocation failed.
1650  *
1651  * As pages are already locked by write_cache_pages(), we can't use it
1652  */
1653 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1654 {
1655         struct address_space *mapping = mpd->inode->i_mapping;
1656         int ret = 0, err, nr_pages, i;
1657         unsigned long index, end;
1658         struct pagevec pvec;
1659
1660         BUG_ON(mpd->next_page <= mpd->first_page);
1661         pagevec_init(&pvec, 0);
1662         index = mpd->first_page;
1663         end = mpd->next_page - 1;
1664
1665         while (index <= end) {
1666                 /* XXX: optimize tail */
1667                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1668                 if (nr_pages == 0)
1669                         break;
1670                 for (i = 0; i < nr_pages; i++) {
1671                         struct page *page = pvec.pages[i];
1672
1673                         index = page->index;
1674                         if (index > end)
1675                                 break;
1676                         index++;
1677
1678                         err = mapping->a_ops->writepage(page, mpd->wbc);
1679                         if (!err)
1680                                 mpd->pages_written++;
1681                         /*
1682                          * In error case, we have to continue because
1683                          * remaining pages are still locked
1684                          * XXX: unlock and re-dirty them?
1685                          */
1686                         if (ret == 0)
1687                                 ret = err;
1688                 }
1689                 pagevec_release(&pvec);
1690         }
1691         return ret;
1692 }
1693
1694 /*
1695  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1696  *
1697  * @mpd->inode - inode to walk through
1698  * @exbh->b_blocknr - first block on a disk
1699  * @exbh->b_size - amount of space in bytes
1700  * @logical - first logical block to start assignment with
1701  *
1702  * the function goes through all passed space and put actual disk
1703  * block numbers into buffer heads, dropping BH_Delay
1704  */
1705 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1706                                  struct buffer_head *exbh)
1707 {
1708         struct inode *inode = mpd->inode;
1709         struct address_space *mapping = inode->i_mapping;
1710         int blocks = exbh->b_size >> inode->i_blkbits;
1711         sector_t pblock = exbh->b_blocknr, cur_logical;
1712         struct buffer_head *head, *bh;
1713         pgoff_t index, end;
1714         struct pagevec pvec;
1715         int nr_pages, i;
1716
1717         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1718         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1719         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1720
1721         pagevec_init(&pvec, 0);
1722
1723         while (index <= end) {
1724                 /* XXX: optimize tail */
1725                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1726                 if (nr_pages == 0)
1727                         break;
1728                 for (i = 0; i < nr_pages; i++) {
1729                         struct page *page = pvec.pages[i];
1730
1731                         index = page->index;
1732                         if (index > end)
1733                                 break;
1734                         index++;
1735
1736                         BUG_ON(!PageLocked(page));
1737                         BUG_ON(PageWriteback(page));
1738                         BUG_ON(!page_has_buffers(page));
1739
1740                         bh = page_buffers(page);
1741                         head = bh;
1742
1743                         /* skip blocks out of the range */
1744                         do {
1745                                 if (cur_logical >= logical)
1746                                         break;
1747                                 cur_logical++;
1748                         } while ((bh = bh->b_this_page) != head);
1749
1750                         do {
1751                                 if (cur_logical >= logical + blocks)
1752                                         break;
1753                                 if (buffer_delay(bh)) {
1754                                         bh->b_blocknr = pblock;
1755                                         clear_buffer_delay(bh);
1756                                         bh->b_bdev = inode->i_sb->s_bdev;
1757                                 } else if (buffer_unwritten(bh)) {
1758                                         bh->b_blocknr = pblock;
1759                                         clear_buffer_unwritten(bh);
1760                                         set_buffer_mapped(bh);
1761                                         set_buffer_new(bh);
1762                                         bh->b_bdev = inode->i_sb->s_bdev;
1763                                 } else if (buffer_mapped(bh))
1764                                         BUG_ON(bh->b_blocknr != pblock);
1765
1766                                 cur_logical++;
1767                                 pblock++;
1768                         } while ((bh = bh->b_this_page) != head);
1769                 }
1770                 pagevec_release(&pvec);
1771         }
1772 }
1773
1774
1775 /*
1776  * __unmap_underlying_blocks - just a helper function to unmap
1777  * set of blocks described by @bh
1778  */
1779 static inline void __unmap_underlying_blocks(struct inode *inode,
1780                                              struct buffer_head *bh)
1781 {
1782         struct block_device *bdev = inode->i_sb->s_bdev;
1783         int blocks, i;
1784
1785         blocks = bh->b_size >> inode->i_blkbits;
1786         for (i = 0; i < blocks; i++)
1787                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1788 }
1789
1790 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1791                                         sector_t logical, long blk_cnt)
1792 {
1793         int nr_pages, i;
1794         pgoff_t index, end;
1795         struct pagevec pvec;
1796         struct inode *inode = mpd->inode;
1797         struct address_space *mapping = inode->i_mapping;
1798
1799         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1800         end   = (logical + blk_cnt - 1) >>
1801                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1802         while (index <= end) {
1803                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1804                 if (nr_pages == 0)
1805                         break;
1806                 for (i = 0; i < nr_pages; i++) {
1807                         struct page *page = pvec.pages[i];
1808                         index = page->index;
1809                         if (index > end)
1810                                 break;
1811                         index++;
1812
1813                         BUG_ON(!PageLocked(page));
1814                         BUG_ON(PageWriteback(page));
1815                         block_invalidatepage(page, 0);
1816                         ClearPageUptodate(page);
1817                         unlock_page(page);
1818                 }
1819         }
1820         return;
1821 }
1822
1823 /*
1824  * mpage_da_map_blocks - go through given space
1825  *
1826  * @mpd->lbh - bh describing space
1827  * @mpd->get_block - the filesystem's block mapper function
1828  *
1829  * The function skips space we know is already mapped to disk blocks.
1830  *
1831  */
1832 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1833 {
1834         int err = 0;
1835         struct buffer_head new;
1836         struct buffer_head *lbh = &mpd->lbh;
1837         sector_t next = lbh->b_blocknr;
1838
1839         /*
1840          * We consider only non-mapped and non-allocated blocks
1841          */
1842         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1843                 return 0;
1844         new.b_state = lbh->b_state;
1845         new.b_blocknr = 0;
1846         new.b_size = lbh->b_size;
1847         /*
1848          * If we didn't accumulate anything
1849          * to write simply return
1850          */
1851         if (!new.b_size)
1852                 return 0;
1853         err = mpd->get_block(mpd->inode, next, &new, 1);
1854         if (err) {
1855
1856                 /* If get block returns with error
1857                  * we simply return. Later writepage
1858                  * will redirty the page and writepages
1859                  * will find the dirty page again
1860                  */
1861                 if (err == -EAGAIN)
1862                         return 0;
1863                 /*
1864                  * get block failure will cause us
1865                  * to loop in writepages. Because
1866                  * a_ops->writepage won't be able to
1867                  * make progress. The page will be redirtied
1868                  * by writepage and writepages will again
1869                  * try to write the same.
1870                  */
1871                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1872                                   "at logical offset %llu with max blocks "
1873                                   "%zd with error %d\n",
1874                                   __func__, mpd->inode->i_ino,
1875                                   (unsigned long long)next,
1876                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1877                 printk(KERN_EMERG "This should not happen.!! "
1878                                         "Data will be lost\n");
1879                 if (err == -ENOSPC) {
1880                         printk(KERN_CRIT "Total free blocks count %lld\n",
1881                                 ext4_count_free_blocks(mpd->inode->i_sb));
1882                 }
1883                 /* invlaidate all the pages */
1884                 ext4_da_block_invalidatepages(mpd, next,
1885                                 lbh->b_size >> mpd->inode->i_blkbits);
1886                 return err;
1887         }
1888         BUG_ON(new.b_size == 0);
1889
1890         if (buffer_new(&new))
1891                 __unmap_underlying_blocks(mpd->inode, &new);
1892
1893         /*
1894          * If blocks are delayed marked, we need to
1895          * put actual blocknr and drop delayed bit
1896          */
1897         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1898                 mpage_put_bnr_to_bhs(mpd, next, &new);
1899
1900         return 0;
1901 }
1902
1903 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1904                 (1 << BH_Delay) | (1 << BH_Unwritten))
1905
1906 /*
1907  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1908  *
1909  * @mpd->lbh - extent of blocks
1910  * @logical - logical number of the block in the file
1911  * @bh - bh of the block (used to access block's state)
1912  *
1913  * the function is used to collect contig. blocks in same state
1914  */
1915 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1916                                    sector_t logical, struct buffer_head *bh)
1917 {
1918         sector_t next;
1919         size_t b_size = bh->b_size;
1920         struct buffer_head *lbh = &mpd->lbh;
1921         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1922
1923         /* check if thereserved journal credits might overflow */
1924         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1925                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1926                         /*
1927                          * With non-extent format we are limited by the journal
1928                          * credit available.  Total credit needed to insert
1929                          * nrblocks contiguous blocks is dependent on the
1930                          * nrblocks.  So limit nrblocks.
1931                          */
1932                         goto flush_it;
1933                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1934                                 EXT4_MAX_TRANS_DATA) {
1935                         /*
1936                          * Adding the new buffer_head would make it cross the
1937                          * allowed limit for which we have journal credit
1938                          * reserved. So limit the new bh->b_size
1939                          */
1940                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1941                                                 mpd->inode->i_blkbits;
1942                         /* we will do mpage_da_submit_io in the next loop */
1943                 }
1944         }
1945         /*
1946          * First block in the extent
1947          */
1948         if (lbh->b_size == 0) {
1949                 lbh->b_blocknr = logical;
1950                 lbh->b_size = b_size;
1951                 lbh->b_state = bh->b_state & BH_FLAGS;
1952                 return;
1953         }
1954
1955         next = lbh->b_blocknr + nrblocks;
1956         /*
1957          * Can we merge the block to our big extent?
1958          */
1959         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1960                 lbh->b_size += b_size;
1961                 return;
1962         }
1963
1964 flush_it:
1965         /*
1966          * We couldn't merge the block to our extent, so we
1967          * need to flush current  extent and start new one
1968          */
1969         if (mpage_da_map_blocks(mpd) == 0)
1970                 mpage_da_submit_io(mpd);
1971         mpd->io_done = 1;
1972         return;
1973 }
1974
1975 /*
1976  * __mpage_da_writepage - finds extent of pages and blocks
1977  *
1978  * @page: page to consider
1979  * @wbc: not used, we just follow rules
1980  * @data: context
1981  *
1982  * The function finds extents of pages and scan them for all blocks.
1983  */
1984 static int __mpage_da_writepage(struct page *page,
1985                                 struct writeback_control *wbc, void *data)
1986 {
1987         struct mpage_da_data *mpd = data;
1988         struct inode *inode = mpd->inode;
1989         struct buffer_head *bh, *head, fake;
1990         sector_t logical;
1991
1992         if (mpd->io_done) {
1993                 /*
1994                  * Rest of the page in the page_vec
1995                  * redirty then and skip then. We will
1996                  * try to to write them again after
1997                  * starting a new transaction
1998                  */
1999                 redirty_page_for_writepage(wbc, page);
2000                 unlock_page(page);
2001                 return MPAGE_DA_EXTENT_TAIL;
2002         }
2003         /*
2004          * Can we merge this page to current extent?
2005          */
2006         if (mpd->next_page != page->index) {
2007                 /*
2008                  * Nope, we can't. So, we map non-allocated blocks
2009                  * and start IO on them using writepage()
2010                  */
2011                 if (mpd->next_page != mpd->first_page) {
2012                         if (mpage_da_map_blocks(mpd) == 0)
2013                                 mpage_da_submit_io(mpd);
2014                         /*
2015                          * skip rest of the page in the page_vec
2016                          */
2017                         mpd->io_done = 1;
2018                         redirty_page_for_writepage(wbc, page);
2019                         unlock_page(page);
2020                         return MPAGE_DA_EXTENT_TAIL;
2021                 }
2022
2023                 /*
2024                  * Start next extent of pages ...
2025                  */
2026                 mpd->first_page = page->index;
2027
2028                 /*
2029                  * ... and blocks
2030                  */
2031                 mpd->lbh.b_size = 0;
2032                 mpd->lbh.b_state = 0;
2033                 mpd->lbh.b_blocknr = 0;
2034         }
2035
2036         mpd->next_page = page->index + 1;
2037         logical = (sector_t) page->index <<
2038                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2039
2040         if (!page_has_buffers(page)) {
2041                 /*
2042                  * There is no attached buffer heads yet (mmap?)
2043                  * we treat the page asfull of dirty blocks
2044                  */
2045                 bh = &fake;
2046                 bh->b_size = PAGE_CACHE_SIZE;
2047                 bh->b_state = 0;
2048                 set_buffer_dirty(bh);
2049                 set_buffer_uptodate(bh);
2050                 mpage_add_bh_to_extent(mpd, logical, bh);
2051                 if (mpd->io_done)
2052                         return MPAGE_DA_EXTENT_TAIL;
2053         } else {
2054                 /*
2055                  * Page with regular buffer heads, just add all dirty ones
2056                  */
2057                 head = page_buffers(page);
2058                 bh = head;
2059                 do {
2060                         BUG_ON(buffer_locked(bh));
2061                         if (buffer_dirty(bh) &&
2062                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2063                                 mpage_add_bh_to_extent(mpd, logical, bh);
2064                                 if (mpd->io_done)
2065                                         return MPAGE_DA_EXTENT_TAIL;
2066                         }
2067                         logical++;
2068                 } while ((bh = bh->b_this_page) != head);
2069         }
2070
2071         return 0;
2072 }
2073
2074 /*
2075  * mpage_da_writepages - walk the list of dirty pages of the given
2076  * address space, allocates non-allocated blocks, maps newly-allocated
2077  * blocks to existing bhs and issue IO them
2078  *
2079  * @mapping: address space structure to write
2080  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2081  * @get_block: the filesystem's block mapper function.
2082  *
2083  * This is a library function, which implements the writepages()
2084  * address_space_operation.
2085  */
2086 static int mpage_da_writepages(struct address_space *mapping,
2087                                struct writeback_control *wbc,
2088                                get_block_t get_block)
2089 {
2090         struct mpage_da_data mpd;
2091         long to_write;
2092         int ret;
2093
2094         if (!get_block)
2095                 return generic_writepages(mapping, wbc);
2096
2097         mpd.wbc = wbc;
2098         mpd.inode = mapping->host;
2099         mpd.lbh.b_size = 0;
2100         mpd.lbh.b_state = 0;
2101         mpd.lbh.b_blocknr = 0;
2102         mpd.first_page = 0;
2103         mpd.next_page = 0;
2104         mpd.get_block = get_block;
2105         mpd.io_done = 0;
2106         mpd.pages_written = 0;
2107
2108         to_write = wbc->nr_to_write;
2109
2110         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2111
2112         /*
2113          * Handle last extent of pages
2114          */
2115         if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2116                 if (mpage_da_map_blocks(&mpd) == 0)
2117                         mpage_da_submit_io(&mpd);
2118         }
2119
2120         wbc->nr_to_write = to_write - mpd.pages_written;
2121         return ret;
2122 }
2123
2124 /*
2125  * this is a special callback for ->write_begin() only
2126  * it's intention is to return mapped block or reserve space
2127  */
2128 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2129                                   struct buffer_head *bh_result, int create)
2130 {
2131         int ret = 0;
2132
2133         BUG_ON(create == 0);
2134         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2135
2136         /*
2137          * first, we need to know whether the block is allocated already
2138          * preallocated blocks are unmapped but should treated
2139          * the same as allocated blocks.
2140          */
2141         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2142         if ((ret == 0) && !buffer_delay(bh_result)) {
2143                 /* the block isn't (pre)allocated yet, let's reserve space */
2144                 /*
2145                  * XXX: __block_prepare_write() unmaps passed block,
2146                  * is it OK?
2147                  */
2148                 ret = ext4_da_reserve_space(inode, 1);
2149                 if (ret)
2150                         /* not enough space to reserve */
2151                         return ret;
2152
2153                 map_bh(bh_result, inode->i_sb, 0);
2154                 set_buffer_new(bh_result);
2155                 set_buffer_delay(bh_result);
2156         } else if (ret > 0) {
2157                 bh_result->b_size = (ret << inode->i_blkbits);
2158                 ret = 0;
2159         }
2160
2161         return ret;
2162 }
2163 #define         EXT4_DELALLOC_RSVED     1
2164 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2165                                    struct buffer_head *bh_result, int create)
2166 {
2167         int ret;
2168         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2169         loff_t disksize = EXT4_I(inode)->i_disksize;
2170         handle_t *handle = NULL;
2171
2172         handle = ext4_journal_current_handle();
2173         BUG_ON(!handle);
2174         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2175                         bh_result, create, 0, EXT4_DELALLOC_RSVED);
2176         if (ret > 0) {
2177
2178                 bh_result->b_size = (ret << inode->i_blkbits);
2179
2180                 if (ext4_should_order_data(inode)) {
2181                         int retval;
2182                         retval = ext4_jbd2_file_inode(handle, inode);
2183                         if (retval)
2184                                 /*
2185                                  * Failed to add inode for ordered
2186                                  * mode. Don't update file size
2187                                  */
2188                                 return retval;
2189                 }
2190
2191                 /*
2192                  * Update on-disk size along with block allocation
2193                  * we don't use 'extend_disksize' as size may change
2194                  * within already allocated block -bzzz
2195                  */
2196                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2197                 if (disksize > i_size_read(inode))
2198                         disksize = i_size_read(inode);
2199                 if (disksize > EXT4_I(inode)->i_disksize) {
2200                         /*
2201                          * XXX: replace with spinlock if seen contended -bzzz
2202                          */
2203                         down_write(&EXT4_I(inode)->i_data_sem);
2204                         if (disksize > EXT4_I(inode)->i_disksize)
2205                                 EXT4_I(inode)->i_disksize = disksize;
2206                         up_write(&EXT4_I(inode)->i_data_sem);
2207
2208                         if (EXT4_I(inode)->i_disksize == disksize) {
2209                                 ret = ext4_mark_inode_dirty(handle, inode);
2210                                 return ret;
2211                         }
2212                 }
2213                 ret = 0;
2214         }
2215         return ret;
2216 }
2217
2218 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2219 {
2220         /*
2221          * unmapped buffer is possible for holes.
2222          * delay buffer is possible with delayed allocation
2223          */
2224         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2225 }
2226
2227 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2228                                    struct buffer_head *bh_result, int create)
2229 {
2230         int ret = 0;
2231         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2232
2233         /*
2234          * we don't want to do block allocation in writepage
2235          * so call get_block_wrap with create = 0
2236          */
2237         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2238                                    bh_result, 0, 0, 0);
2239         if (ret > 0) {
2240                 bh_result->b_size = (ret << inode->i_blkbits);
2241                 ret = 0;
2242         }
2243         return ret;
2244 }
2245
2246 /*
2247  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2248  * get called via journal_submit_inode_data_buffers (no journal handle)
2249  * get called via shrink_page_list via pdflush (no journal handle)
2250  * or grab_page_cache when doing write_begin (have journal handle)
2251  */
2252 static int ext4_da_writepage(struct page *page,
2253                                 struct writeback_control *wbc)
2254 {
2255         int ret = 0;
2256         loff_t size;
2257         unsigned long len;
2258         struct buffer_head *page_bufs;
2259         struct inode *inode = page->mapping->host;
2260
2261         size = i_size_read(inode);
2262         if (page->index == size >> PAGE_CACHE_SHIFT)
2263                 len = size & ~PAGE_CACHE_MASK;
2264         else
2265                 len = PAGE_CACHE_SIZE;
2266
2267         if (page_has_buffers(page)) {
2268                 page_bufs = page_buffers(page);
2269                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2270                                         ext4_bh_unmapped_or_delay)) {
2271                         /*
2272                          * We don't want to do  block allocation
2273                          * So redirty the page and return
2274                          * We may reach here when we do a journal commit
2275                          * via journal_submit_inode_data_buffers.
2276                          * If we don't have mapping block we just ignore
2277                          * them. We can also reach here via shrink_page_list
2278                          */
2279                         redirty_page_for_writepage(wbc, page);
2280                         unlock_page(page);
2281                         return 0;
2282                 }
2283         } else {
2284                 /*
2285                  * The test for page_has_buffers() is subtle:
2286                  * We know the page is dirty but it lost buffers. That means
2287                  * that at some moment in time after write_begin()/write_end()
2288                  * has been called all buffers have been clean and thus they
2289                  * must have been written at least once. So they are all
2290                  * mapped and we can happily proceed with mapping them
2291                  * and writing the page.
2292                  *
2293                  * Try to initialize the buffer_heads and check whether
2294                  * all are mapped and non delay. We don't want to
2295                  * do block allocation here.
2296                  */
2297                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2298                                                 ext4_normal_get_block_write);
2299                 if (!ret) {
2300                         page_bufs = page_buffers(page);
2301                         /* check whether all are mapped and non delay */
2302                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2303                                                 ext4_bh_unmapped_or_delay)) {
2304                                 redirty_page_for_writepage(wbc, page);
2305                                 unlock_page(page);
2306                                 return 0;
2307                         }
2308                 } else {
2309                         /*
2310                          * We can't do block allocation here
2311                          * so just redity the page and unlock
2312                          * and return
2313                          */
2314                         redirty_page_for_writepage(wbc, page);
2315                         unlock_page(page);
2316                         return 0;
2317                 }
2318         }
2319
2320         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2321                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2322         else
2323                 ret = block_write_full_page(page,
2324                                                 ext4_normal_get_block_write,
2325                                                 wbc);
2326
2327         return ret;
2328 }
2329
2330 /*
2331  * This is called via ext4_da_writepages() to
2332  * calulate the total number of credits to reserve to fit
2333  * a single extent allocation into a single transaction,
2334  * ext4_da_writpeages() will loop calling this before
2335  * the block allocation.
2336  */
2337
2338 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2339 {
2340         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2341
2342         /*
2343          * With non-extent format the journal credit needed to
2344          * insert nrblocks contiguous block is dependent on
2345          * number of contiguous block. So we will limit
2346          * number of contiguous block to a sane value
2347          */
2348         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2349             (max_blocks > EXT4_MAX_TRANS_DATA))
2350                 max_blocks = EXT4_MAX_TRANS_DATA;
2351
2352         return ext4_chunk_trans_blocks(inode, max_blocks);
2353 }
2354
2355 static int ext4_da_writepages(struct address_space *mapping,
2356                               struct writeback_control *wbc)
2357 {
2358         handle_t *handle = NULL;
2359         loff_t range_start = 0;
2360         struct inode *inode = mapping->host;
2361         int needed_blocks, ret = 0, nr_to_writebump = 0;
2362         long to_write, pages_skipped = 0;
2363         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2364
2365         /*
2366          * No pages to write? This is mainly a kludge to avoid starting
2367          * a transaction for special inodes like journal inode on last iput()
2368          * because that could violate lock ordering on umount
2369          */
2370         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2371                 return 0;
2372         /*
2373          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2374          * This make sure small files blocks are allocated in
2375          * single attempt. This ensure that small files
2376          * get less fragmented.
2377          */
2378         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2379                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2380                 wbc->nr_to_write = sbi->s_mb_stream_request;
2381         }
2382
2383         if (!wbc->range_cyclic)
2384                 /*
2385                  * If range_cyclic is not set force range_cont
2386                  * and save the old writeback_index
2387                  */
2388                 wbc->range_cont = 1;
2389
2390         range_start =  wbc->range_start;
2391         pages_skipped = wbc->pages_skipped;
2392
2393 restart_loop:
2394         to_write = wbc->nr_to_write;
2395         while (!ret && to_write > 0) {
2396
2397                 /*
2398                  * we  insert one extent at a time. So we need
2399                  * credit needed for single extent allocation.
2400                  * journalled mode is currently not supported
2401                  * by delalloc
2402                  */
2403                 BUG_ON(ext4_should_journal_data(inode));
2404                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2405
2406                 /* start a new transaction*/
2407                 handle = ext4_journal_start(inode, needed_blocks);
2408                 if (IS_ERR(handle)) {
2409                         ret = PTR_ERR(handle);
2410                         printk(KERN_EMERG "%s: jbd2_start: "
2411                                "%ld pages, ino %lu; err %d\n", __func__,
2412                                 wbc->nr_to_write, inode->i_ino, ret);
2413                         dump_stack();
2414                         goto out_writepages;
2415                 }
2416
2417                 to_write -= wbc->nr_to_write;
2418                 ret = mpage_da_writepages(mapping, wbc,
2419                                           ext4_da_get_block_write);
2420                 ext4_journal_stop(handle);
2421                 if (ret == MPAGE_DA_EXTENT_TAIL) {
2422                         /*
2423                          * got one extent now try with
2424                          * rest of the pages
2425                          */
2426                         to_write += wbc->nr_to_write;
2427                         ret = 0;
2428                 } else if (wbc->nr_to_write) {
2429                         /*
2430                          * There is no more writeout needed
2431                          * or we requested for a noblocking writeout
2432                          * and we found the device congested
2433                          */
2434                         to_write += wbc->nr_to_write;
2435                         break;
2436                 }
2437                 wbc->nr_to_write = to_write;
2438         }
2439
2440         if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2441                 /* We skipped pages in this loop */
2442                 wbc->range_start = range_start;
2443                 wbc->nr_to_write = to_write +
2444                                 wbc->pages_skipped - pages_skipped;
2445                 wbc->pages_skipped = pages_skipped;
2446                 goto restart_loop;
2447         }
2448
2449 out_writepages:
2450         wbc->nr_to_write = to_write - nr_to_writebump;
2451         wbc->range_start = range_start;
2452         return ret;
2453 }
2454
2455 #define FALL_BACK_TO_NONDELALLOC 1
2456 static int ext4_nonda_switch(struct super_block *sb)
2457 {
2458         s64 free_blocks, dirty_blocks;
2459         struct ext4_sb_info *sbi = EXT4_SB(sb);
2460
2461         /*
2462          * switch to non delalloc mode if we are running low
2463          * on free block. The free block accounting via percpu
2464          * counters can get slightly wrong with FBC_BATCH getting
2465          * accumulated on each CPU without updating global counters
2466          * Delalloc need an accurate free block accounting. So switch
2467          * to non delalloc when we are near to error range.
2468          */
2469         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2470         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2471         if (2 * free_blocks < 3 * dirty_blocks ||
2472                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2473                 /*
2474                  * free block count is less that 150% of dirty blocks
2475                  * or free blocks is less that watermark
2476                  */
2477                 return 1;
2478         }
2479         return 0;
2480 }
2481
2482 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2483                                 loff_t pos, unsigned len, unsigned flags,
2484                                 struct page **pagep, void **fsdata)
2485 {
2486         int ret, retries = 0;
2487         struct page *page;
2488         pgoff_t index;
2489         unsigned from, to;
2490         struct inode *inode = mapping->host;
2491         handle_t *handle;
2492
2493         index = pos >> PAGE_CACHE_SHIFT;
2494         from = pos & (PAGE_CACHE_SIZE - 1);
2495         to = from + len;
2496
2497         if (ext4_nonda_switch(inode->i_sb)) {
2498                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2499                 return ext4_write_begin(file, mapping, pos,
2500                                         len, flags, pagep, fsdata);
2501         }
2502         *fsdata = (void *)0;
2503 retry:
2504         /*
2505          * With delayed allocation, we don't log the i_disksize update
2506          * if there is delayed block allocation. But we still need
2507          * to journalling the i_disksize update if writes to the end
2508          * of file which has an already mapped buffer.
2509          */
2510         handle = ext4_journal_start(inode, 1);
2511         if (IS_ERR(handle)) {
2512                 ret = PTR_ERR(handle);
2513                 goto out;
2514         }
2515
2516         page = __grab_cache_page(mapping, index);
2517         if (!page) {
2518                 ext4_journal_stop(handle);
2519                 ret = -ENOMEM;
2520                 goto out;
2521         }
2522         *pagep = page;
2523
2524         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2525                                                         ext4_da_get_block_prep);
2526         if (ret < 0) {
2527                 unlock_page(page);
2528                 ext4_journal_stop(handle);
2529                 page_cache_release(page);
2530         }
2531
2532         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2533                 goto retry;
2534 out:
2535         return ret;
2536 }
2537
2538 /*
2539  * Check if we should update i_disksize
2540  * when write to the end of file but not require block allocation
2541  */
2542 static int ext4_da_should_update_i_disksize(struct page *page,
2543                                          unsigned long offset)
2544 {
2545         struct buffer_head *bh;
2546         struct inode *inode = page->mapping->host;
2547         unsigned int idx;
2548         int i;
2549
2550         bh = page_buffers(page);
2551         idx = offset >> inode->i_blkbits;
2552
2553         for (i = 0; i < idx; i++)
2554                 bh = bh->b_this_page;
2555
2556         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2557                 return 0;
2558         return 1;
2559 }
2560
2561 static int ext4_da_write_end(struct file *file,
2562                                 struct address_space *mapping,
2563                                 loff_t pos, unsigned len, unsigned copied,
2564                                 struct page *page, void *fsdata)
2565 {
2566         struct inode *inode = mapping->host;
2567         int ret = 0, ret2;
2568         handle_t *handle = ext4_journal_current_handle();
2569         loff_t new_i_size;
2570         unsigned long start, end;
2571         int write_mode = (int)(unsigned long)fsdata;
2572
2573         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2574                 if (ext4_should_order_data(inode)) {
2575                         return ext4_ordered_write_end(file, mapping, pos,
2576                                         len, copied, page, fsdata);
2577                 } else if (ext4_should_writeback_data(inode)) {
2578                         return ext4_writeback_write_end(file, mapping, pos,
2579                                         len, copied, page, fsdata);
2580                 } else {
2581                         BUG();
2582                 }
2583         }
2584
2585         start = pos & (PAGE_CACHE_SIZE - 1);
2586         end = start + copied - 1;
2587
2588         /*
2589          * generic_write_end() will run mark_inode_dirty() if i_size
2590          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2591          * into that.
2592          */
2593
2594         new_i_size = pos + copied;
2595         if (new_i_size > EXT4_I(inode)->i_disksize) {
2596                 if (ext4_da_should_update_i_disksize(page, end)) {
2597                         down_write(&EXT4_I(inode)->i_data_sem);
2598                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2599                                 /*
2600                                  * Updating i_disksize when extending file
2601                                  * without needing block allocation
2602                                  */
2603                                 if (ext4_should_order_data(inode))
2604                                         ret = ext4_jbd2_file_inode(handle,
2605                                                                    inode);
2606
2607                                 EXT4_I(inode)->i_disksize = new_i_size;
2608                         }
2609                         up_write(&EXT4_I(inode)->i_data_sem);
2610                 }
2611         }
2612         ret2 = generic_write_end(file, mapping, pos, len, copied,
2613                                                         page, fsdata);
2614         copied = ret2;
2615         if (ret2 < 0)
2616                 ret = ret2;
2617         ret2 = ext4_journal_stop(handle);
2618         if (!ret)
2619                 ret = ret2;
2620
2621         return ret ? ret : copied;
2622 }
2623
2624 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2625 {
2626         /*
2627          * Drop reserved blocks
2628          */
2629         BUG_ON(!PageLocked(page));
2630         if (!page_has_buffers(page))
2631                 goto out;
2632
2633         ext4_da_page_release_reservation(page, offset);
2634
2635 out:
2636         ext4_invalidatepage(page, offset);
2637
2638         return;
2639 }
2640
2641
2642 /*
2643  * bmap() is special.  It gets used by applications such as lilo and by
2644  * the swapper to find the on-disk block of a specific piece of data.
2645  *
2646  * Naturally, this is dangerous if the block concerned is still in the
2647  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2648  * filesystem and enables swap, then they may get a nasty shock when the
2649  * data getting swapped to that swapfile suddenly gets overwritten by
2650  * the original zero's written out previously to the journal and
2651  * awaiting writeback in the kernel's buffer cache.
2652  *
2653  * So, if we see any bmap calls here on a modified, data-journaled file,
2654  * take extra steps to flush any blocks which might be in the cache.
2655  */
2656 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2657 {
2658         struct inode *inode = mapping->host;
2659         journal_t *journal;
2660         int err;
2661
2662         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2663                         test_opt(inode->i_sb, DELALLOC)) {
2664                 /*
2665                  * With delalloc we want to sync the file
2666                  * so that we can make sure we allocate
2667                  * blocks for file
2668                  */
2669                 filemap_write_and_wait(mapping);
2670         }
2671
2672         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2673                 /*
2674                  * This is a REALLY heavyweight approach, but the use of
2675                  * bmap on dirty files is expected to be extremely rare:
2676                  * only if we run lilo or swapon on a freshly made file
2677                  * do we expect this to happen.
2678                  *
2679                  * (bmap requires CAP_SYS_RAWIO so this does not
2680                  * represent an unprivileged user DOS attack --- we'd be
2681                  * in trouble if mortal users could trigger this path at
2682                  * will.)
2683                  *
2684                  * NB. EXT4_STATE_JDATA is not set on files other than
2685                  * regular files.  If somebody wants to bmap a directory
2686                  * or symlink and gets confused because the buffer
2687                  * hasn't yet been flushed to disk, they deserve
2688                  * everything they get.
2689                  */
2690
2691                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2692                 journal = EXT4_JOURNAL(inode);
2693                 jbd2_journal_lock_updates(journal);
2694                 err = jbd2_journal_flush(journal);
2695                 jbd2_journal_unlock_updates(journal);
2696
2697                 if (err)
2698                         return 0;
2699         }
2700
2701         return generic_block_bmap(mapping, block, ext4_get_block);
2702 }
2703
2704 static int bget_one(handle_t *handle, struct buffer_head *bh)
2705 {
2706         get_bh(bh);
2707         return 0;
2708 }
2709
2710 static int bput_one(handle_t *handle, struct buffer_head *bh)
2711 {
2712         put_bh(bh);
2713         return 0;
2714 }
2715
2716 /*
2717  * Note that we don't need to start a transaction unless we're journaling data
2718  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2719  * need to file the inode to the transaction's list in ordered mode because if
2720  * we are writing back data added by write(), the inode is already there and if
2721  * we are writing back data modified via mmap(), noone guarantees in which
2722  * transaction the data will hit the disk. In case we are journaling data, we
2723  * cannot start transaction directly because transaction start ranks above page
2724  * lock so we have to do some magic.
2725  *
2726  * In all journaling modes block_write_full_page() will start the I/O.
2727  *
2728  * Problem:
2729  *
2730  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2731  *              ext4_writepage()
2732  *
2733  * Similar for:
2734  *
2735  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2736  *
2737  * Same applies to ext4_get_block().  We will deadlock on various things like
2738  * lock_journal and i_data_sem
2739  *
2740  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2741  * allocations fail.
2742  *
2743  * 16May01: If we're reentered then journal_current_handle() will be
2744  *          non-zero. We simply *return*.
2745  *
2746  * 1 July 2001: @@@ FIXME:
2747  *   In journalled data mode, a data buffer may be metadata against the
2748  *   current transaction.  But the same file is part of a shared mapping
2749  *   and someone does a writepage() on it.
2750  *
2751  *   We will move the buffer onto the async_data list, but *after* it has
2752  *   been dirtied. So there's a small window where we have dirty data on
2753  *   BJ_Metadata.
2754  *
2755  *   Note that this only applies to the last partial page in the file.  The
2756  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2757  *   broken code anyway: it's wrong for msync()).
2758  *
2759  *   It's a rare case: affects the final partial page, for journalled data
2760  *   where the file is subject to bith write() and writepage() in the same
2761  *   transction.  To fix it we'll need a custom block_write_full_page().
2762  *   We'll probably need that anyway for journalling writepage() output.
2763  *
2764  * We don't honour synchronous mounts for writepage().  That would be
2765  * disastrous.  Any write() or metadata operation will sync the fs for
2766  * us.
2767  *
2768  */
2769 static int __ext4_normal_writepage(struct page *page,
2770                                 struct writeback_control *wbc)
2771 {
2772         struct inode *inode = page->mapping->host;
2773
2774         if (test_opt(inode->i_sb, NOBH))
2775                 return nobh_writepage(page,
2776                                         ext4_normal_get_block_write, wbc);
2777         else
2778                 return block_write_full_page(page,
2779                                                 ext4_normal_get_block_write,
2780                                                 wbc);
2781 }
2782
2783 static int ext4_normal_writepage(struct page *page,
2784                                 struct writeback_control *wbc)
2785 {
2786         struct inode *inode = page->mapping->host;
2787         loff_t size = i_size_read(inode);
2788         loff_t len;
2789
2790         J_ASSERT(PageLocked(page));
2791         if (page->index == size >> PAGE_CACHE_SHIFT)
2792                 len = size & ~PAGE_CACHE_MASK;
2793         else
2794                 len = PAGE_CACHE_SIZE;
2795
2796         if (page_has_buffers(page)) {
2797                 /* if page has buffers it should all be mapped
2798                  * and allocated. If there are not buffers attached
2799                  * to the page we know the page is dirty but it lost
2800                  * buffers. That means that at some moment in time
2801                  * after write_begin() / write_end() has been called
2802                  * all buffers have been clean and thus they must have been
2803                  * written at least once. So they are all mapped and we can
2804                  * happily proceed with mapping them and writing the page.
2805                  */
2806                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2807                                         ext4_bh_unmapped_or_delay));
2808         }
2809
2810         if (!ext4_journal_current_handle())
2811                 return __ext4_normal_writepage(page, wbc);
2812
2813         redirty_page_for_writepage(wbc, page);
2814         unlock_page(page);
2815         return 0;
2816 }
2817
2818 static int __ext4_journalled_writepage(struct page *page,
2819                                 struct writeback_control *wbc)
2820 {
2821         struct address_space *mapping = page->mapping;
2822         struct inode *inode = mapping->host;
2823         struct buffer_head *page_bufs;
2824         handle_t *handle = NULL;
2825         int ret = 0;
2826         int err;
2827
2828         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2829                                         ext4_normal_get_block_write);
2830         if (ret != 0)
2831                 goto out_unlock;
2832
2833         page_bufs = page_buffers(page);
2834         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2835                                                                 bget_one);
2836         /* As soon as we unlock the page, it can go away, but we have
2837          * references to buffers so we are safe */
2838         unlock_page(page);
2839
2840         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2841         if (IS_ERR(handle)) {
2842                 ret = PTR_ERR(handle);
2843                 goto out;
2844         }
2845
2846         ret = walk_page_buffers(handle, page_bufs, 0,
2847                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2848
2849         err = walk_page_buffers(handle, page_bufs, 0,
2850                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2851         if (ret == 0)
2852                 ret = err;
2853         err = ext4_journal_stop(handle);
2854         if (!ret)
2855                 ret = err;
2856
2857         walk_page_buffers(handle, page_bufs, 0,
2858                                 PAGE_CACHE_SIZE, NULL, bput_one);
2859         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2860         goto out;
2861
2862 out_unlock:
2863         unlock_page(page);
2864 out:
2865         return ret;
2866 }
2867
2868 static int ext4_journalled_writepage(struct page *page,
2869                                 struct writeback_control *wbc)
2870 {
2871         struct inode *inode = page->mapping->host;
2872         loff_t size = i_size_read(inode);
2873         loff_t len;
2874
2875         J_ASSERT(PageLocked(page));
2876         if (page->index == size >> PAGE_CACHE_SHIFT)
2877                 len = size & ~PAGE_CACHE_MASK;
2878         else
2879                 len = PAGE_CACHE_SIZE;
2880
2881         if (page_has_buffers(page)) {
2882                 /* if page has buffers it should all be mapped
2883                  * and allocated. If there are not buffers attached
2884                  * to the page we know the page is dirty but it lost
2885                  * buffers. That means that at some moment in time
2886                  * after write_begin() / write_end() has been called
2887                  * all buffers have been clean and thus they must have been
2888                  * written at least once. So they are all mapped and we can
2889                  * happily proceed with mapping them and writing the page.
2890                  */
2891                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2892                                         ext4_bh_unmapped_or_delay));
2893         }
2894
2895         if (ext4_journal_current_handle())
2896                 goto no_write;
2897
2898         if (PageChecked(page)) {
2899                 /*
2900                  * It's mmapped pagecache.  Add buffers and journal it.  There
2901                  * doesn't seem much point in redirtying the page here.
2902                  */
2903                 ClearPageChecked(page);
2904                 return __ext4_journalled_writepage(page, wbc);
2905         } else {
2906                 /*
2907                  * It may be a page full of checkpoint-mode buffers.  We don't
2908                  * really know unless we go poke around in the buffer_heads.
2909                  * But block_write_full_page will do the right thing.
2910                  */
2911                 return block_write_full_page(page,
2912                                                 ext4_normal_get_block_write,
2913                                                 wbc);
2914         }
2915 no_write:
2916         redirty_page_for_writepage(wbc, page);
2917         unlock_page(page);
2918         return 0;
2919 }
2920
2921 static int ext4_readpage(struct file *file, struct page *page)
2922 {
2923         return mpage_readpage(page, ext4_get_block);
2924 }
2925
2926 static int
2927 ext4_readpages(struct file *file, struct address_space *mapping,
2928                 struct list_head *pages, unsigned nr_pages)
2929 {
2930         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2931 }
2932
2933 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2934 {
2935         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2936
2937         /*
2938          * If it's a full truncate we just forget about the pending dirtying
2939          */
2940         if (offset == 0)
2941                 ClearPageChecked(page);
2942
2943         jbd2_journal_invalidatepage(journal, page, offset);
2944 }
2945
2946 static int ext4_releasepage(struct page *page, gfp_t wait)
2947 {
2948         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2949
2950         WARN_ON(PageChecked(page));
2951         if (!page_has_buffers(page))
2952                 return 0;
2953         return jbd2_journal_try_to_free_buffers(journal, page, wait);
2954 }
2955
2956 /*
2957  * If the O_DIRECT write will extend the file then add this inode to the
2958  * orphan list.  So recovery will truncate it back to the original size
2959  * if the machine crashes during the write.
2960  *
2961  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2962  * crashes then stale disk data _may_ be exposed inside the file. But current
2963  * VFS code falls back into buffered path in that case so we are safe.
2964  */
2965 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2966                         const struct iovec *iov, loff_t offset,
2967                         unsigned long nr_segs)
2968 {
2969         struct file *file = iocb->ki_filp;
2970         struct inode *inode = file->f_mapping->host;
2971         struct ext4_inode_info *ei = EXT4_I(inode);
2972         handle_t *handle;
2973         ssize_t ret;
2974         int orphan = 0;
2975         size_t count = iov_length(iov, nr_segs);
2976
2977         if (rw == WRITE) {
2978                 loff_t final_size = offset + count;
2979
2980                 if (final_size > inode->i_size) {
2981                         /* Credits for sb + inode write */
2982                         handle = ext4_journal_start(inode, 2);
2983                         if (IS_ERR(handle)) {
2984                                 ret = PTR_ERR(handle);
2985                                 goto out;
2986                         }
2987                         ret = ext4_orphan_add(handle, inode);
2988                         if (ret) {
2989                                 ext4_journal_stop(handle);
2990                                 goto out;
2991                         }
2992                         orphan = 1;
2993                         ei->i_disksize = inode->i_size;
2994                         ext4_journal_stop(handle);
2995                 }
2996         }
2997
2998         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2999                                  offset, nr_segs,
3000                                  ext4_get_block, NULL);
3001
3002         if (orphan) {
3003                 int err;
3004
3005                 /* Credits for sb + inode write */
3006                 handle = ext4_journal_start(inode, 2);
3007                 if (IS_ERR(handle)) {
3008                         /* This is really bad luck. We've written the data
3009                          * but cannot extend i_size. Bail out and pretend
3010                          * the write failed... */
3011                         ret = PTR_ERR(handle);
3012                         goto out;
3013                 }
3014                 if (inode->i_nlink)
3015                         ext4_orphan_del(handle, inode);
3016                 if (ret > 0) {
3017                         loff_t end = offset + ret;
3018                         if (end > inode->i_size) {
3019                                 ei->i_disksize = end;
3020                                 i_size_write(inode, end);
3021                                 /*
3022                                  * We're going to return a positive `ret'
3023                                  * here due to non-zero-length I/O, so there's
3024                                  * no way of reporting error returns from
3025                                  * ext4_mark_inode_dirty() to userspace.  So
3026                                  * ignore it.
3027                                  */
3028                                 ext4_mark_inode_dirty(handle, inode);
3029                         }
3030                 }
3031                 err = ext4_journal_stop(handle);
3032                 if (ret == 0)
3033                         ret = err;
3034         }
3035 out:
3036         return ret;
3037 }
3038
3039 /*
3040  * Pages can be marked dirty completely asynchronously from ext4's journalling
3041  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3042  * much here because ->set_page_dirty is called under VFS locks.  The page is
3043  * not necessarily locked.
3044  *
3045  * We cannot just dirty the page and leave attached buffers clean, because the
3046  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3047  * or jbddirty because all the journalling code will explode.
3048  *
3049  * So what we do is to mark the page "pending dirty" and next time writepage
3050  * is called, propagate that into the buffers appropriately.
3051  */
3052 static int ext4_journalled_set_page_dirty(struct page *page)
3053 {
3054         SetPageChecked(page);
3055         return __set_page_dirty_nobuffers(page);
3056 }
3057
3058 static const struct address_space_operations ext4_ordered_aops = {
3059         .readpage               = ext4_readpage,
3060         .readpages              = ext4_readpages,
3061         .writepage              = ext4_normal_writepage,
3062         .sync_page              = block_sync_page,
3063         .write_begin            = ext4_write_begin,
3064         .write_end              = ext4_ordered_write_end,
3065         .bmap                   = ext4_bmap,
3066         .invalidatepage         = ext4_invalidatepage,
3067         .releasepage            = ext4_releasepage,
3068         .direct_IO              = ext4_direct_IO,
3069         .migratepage            = buffer_migrate_page,
3070         .is_partially_uptodate  = block_is_partially_uptodate,
3071 };
3072
3073 static const struct address_space_operations ext4_writeback_aops = {
3074         .readpage               = ext4_readpage,
3075         .readpages              = ext4_readpages,
3076         .writepage              = ext4_normal_writepage,
3077         .sync_page              = block_sync_page,
3078         .write_begin            = ext4_write_begin,
3079         .write_end              = ext4_writeback_write_end,
3080         .bmap                   = ext4_bmap,
3081         .invalidatepage         = ext4_invalidatepage,
3082         .releasepage            = ext4_releasepage,
3083         .direct_IO              = ext4_direct_IO,
3084         .migratepage            = buffer_migrate_page,
3085         .is_partially_uptodate  = block_is_partially_uptodate,
3086 };
3087
3088 static const struct address_space_operations ext4_journalled_aops = {
3089         .readpage               = ext4_readpage,
3090         .readpages              = ext4_readpages,
3091         .writepage              = ext4_journalled_writepage,
3092         .sync_page              = block_sync_page,
3093         .write_begin            = ext4_write_begin,
3094         .write_end              = ext4_journalled_write_end,
3095         .set_page_dirty         = ext4_journalled_set_page_dirty,
3096         .bmap                   = ext4_bmap,
3097         .invalidatepage         = ext4_invalidatepage,
3098         .releasepage            = ext4_releasepage,
3099         .is_partially_uptodate  = block_is_partially_uptodate,
3100 };
3101
3102 static const struct address_space_operations ext4_da_aops = {
3103         .readpage               = ext4_readpage,
3104         .readpages              = ext4_readpages,
3105         .writepage              = ext4_da_writepage,
3106         .writepages             = ext4_da_writepages,
3107         .sync_page              = block_sync_page,
3108         .write_begin            = ext4_da_write_begin,
3109         .write_end              = ext4_da_write_end,
3110         .bmap                   = ext4_bmap,
3111         .invalidatepage         = ext4_da_invalidatepage,
3112         .releasepage            = ext4_releasepage,
3113         .direct_IO              = ext4_direct_IO,
3114         .migratepage            = buffer_migrate_page,
3115         .is_partially_uptodate  = block_is_partially_uptodate,
3116 };
3117
3118 void ext4_set_aops(struct inode *inode)
3119 {
3120         if (ext4_should_order_data(inode) &&
3121                 test_opt(inode->i_sb, DELALLOC))
3122                 inode->i_mapping->a_ops = &ext4_da_aops;
3123         else if (ext4_should_order_data(inode))
3124                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3125         else if (ext4_should_writeback_data(inode) &&
3126                  test_opt(inode->i_sb, DELALLOC))
3127                 inode->i_mapping->a_ops = &ext4_da_aops;
3128         else if (ext4_should_writeback_data(inode))
3129                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3130         else
3131                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3132 }
3133
3134 /*
3135  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3136  * up to the end of the block which corresponds to `from'.
3137  * This required during truncate. We need to physically zero the tail end
3138  * of that block so it doesn't yield old data if the file is later grown.
3139  */
3140 int ext4_block_truncate_page(handle_t *handle,
3141                 struct address_space *mapping, loff_t from)
3142 {
3143         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3144         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3145         unsigned blocksize, length, pos;
3146         ext4_lblk_t iblock;
3147         struct inode *inode = mapping->host;
3148         struct buffer_head *bh;
3149         struct page *page;
3150         int err = 0;
3151
3152         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3153         if (!page)
3154                 return -EINVAL;
3155
3156         blocksize = inode->i_sb->s_blocksize;
3157         length = blocksize - (offset & (blocksize - 1));
3158         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3159
3160         /*
3161          * For "nobh" option,  we can only work if we don't need to
3162          * read-in the page - otherwise we create buffers to do the IO.
3163          */
3164         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3165              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3166                 zero_user(page, offset, length);
3167                 set_page_dirty(page);
3168                 goto unlock;
3169         }
3170
3171         if (!page_has_buffers(page))
3172                 create_empty_buffers(page, blocksize, 0);
3173
3174         /* Find the buffer that contains "offset" */
3175         bh = page_buffers(page);
3176         pos = blocksize;
3177         while (offset >= pos) {
3178                 bh = bh->b_this_page;
3179                 iblock++;
3180                 pos += blocksize;
3181         }
3182
3183         err = 0;
3184         if (buffer_freed(bh)) {
3185                 BUFFER_TRACE(bh, "freed: skip");
3186                 goto unlock;
3187         }
3188
3189         if (!buffer_mapped(bh)) {
3190                 BUFFER_TRACE(bh, "unmapped");
3191                 ext4_get_block(inode, iblock, bh, 0);
3192                 /* unmapped? It's a hole - nothing to do */
3193                 if (!buffer_mapped(bh)) {
3194                         BUFFER_TRACE(bh, "still unmapped");
3195                         goto unlock;
3196                 }
3197         }
3198
3199         /* Ok, it's mapped. Make sure it's up-to-date */
3200         if (PageUptodate(page))
3201                 set_buffer_uptodate(bh);
3202
3203         if (!buffer_uptodate(bh)) {
3204                 err = -EIO;
3205                 ll_rw_block(READ, 1, &bh);
3206                 wait_on_buffer(bh);
3207                 /* Uhhuh. Read error. Complain and punt. */
3208                 if (!buffer_uptodate(bh))
3209                         goto unlock;
3210         }
3211
3212         if (ext4_should_journal_data(inode)) {
3213                 BUFFER_TRACE(bh, "get write access");
3214                 err = ext4_journal_get_write_access(handle, bh);
3215                 if (err)
3216                         goto unlock;
3217         }
3218
3219         zero_user(page, offset, length);
3220
3221         BUFFER_TRACE(bh, "zeroed end of block");
3222
3223         err = 0;
3224         if (ext4_should_journal_data(inode)) {
3225                 err = ext4_journal_dirty_metadata(handle, bh);
3226         } else {
3227                 if (ext4_should_order_data(inode))
3228                         err = ext4_jbd2_file_inode(handle, inode);
3229                 mark_buffer_dirty(bh);
3230         }
3231
3232 unlock:
3233         unlock_page(page);
3234         page_cache_release(page);
3235         return err;
3236 }
3237
3238 /*
3239  * Probably it should be a library function... search for first non-zero word
3240  * or memcmp with zero_page, whatever is better for particular architecture.
3241  * Linus?
3242  */
3243 static inline int all_zeroes(__le32 *p, __le32 *q)
3244 {
3245         while (p < q)
3246                 if (*p++)
3247                         return 0;
3248         return 1;
3249 }
3250
3251 /**
3252  *      ext4_find_shared - find the indirect blocks for partial truncation.
3253  *      @inode:   inode in question
3254  *      @depth:   depth of the affected branch
3255  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3256  *      @chain:   place to store the pointers to partial indirect blocks
3257  *      @top:     place to the (detached) top of branch
3258  *
3259  *      This is a helper function used by ext4_truncate().
3260  *
3261  *      When we do truncate() we may have to clean the ends of several
3262  *      indirect blocks but leave the blocks themselves alive. Block is
3263  *      partially truncated if some data below the new i_size is refered
3264  *      from it (and it is on the path to the first completely truncated
3265  *      data block, indeed).  We have to free the top of that path along
3266  *      with everything to the right of the path. Since no allocation
3267  *      past the truncation point is possible until ext4_truncate()
3268  *      finishes, we may safely do the latter, but top of branch may
3269  *      require special attention - pageout below the truncation point
3270  *      might try to populate it.
3271  *
3272  *      We atomically detach the top of branch from the tree, store the
3273  *      block number of its root in *@top, pointers to buffer_heads of
3274  *      partially truncated blocks - in @chain[].bh and pointers to
3275  *      their last elements that should not be removed - in
3276  *      @chain[].p. Return value is the pointer to last filled element
3277  *      of @chain.
3278  *
3279  *      The work left to caller to do the actual freeing of subtrees:
3280  *              a) free the subtree starting from *@top
3281  *              b) free the subtrees whose roots are stored in
3282  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3283  *              c) free the subtrees growing from the inode past the @chain[0].
3284  *                      (no partially truncated stuff there).  */
3285
3286 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3287                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3288 {
3289         Indirect *partial, *p;
3290         int k, err;
3291
3292         *top = 0;
3293         /* Make k index the deepest non-null offest + 1 */
3294         for (k = depth; k > 1 && !offsets[k-1]; k--)
3295                 ;
3296         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3297         /* Writer: pointers */
3298         if (!partial)
3299                 partial = chain + k-1;
3300         /*
3301          * If the branch acquired continuation since we've looked at it -
3302          * fine, it should all survive and (new) top doesn't belong to us.
3303          */
3304         if (!partial->key && *partial->p)
3305                 /* Writer: end */
3306                 goto no_top;
3307         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3308                 ;
3309         /*
3310          * OK, we've found the last block that must survive. The rest of our
3311          * branch should be detached before unlocking. However, if that rest
3312          * of branch is all ours and does not grow immediately from the inode
3313          * it's easier to cheat and just decrement partial->p.
3314          */
3315         if (p == chain + k - 1 && p > chain) {
3316                 p->p--;
3317         } else {
3318                 *top = *p->p;
3319                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3320 #if 0
3321                 *p->p = 0;
3322 #endif
3323         }
3324         /* Writer: end */
3325
3326         while (partial > p) {
3327                 brelse(partial->bh);
3328                 partial--;
3329         }
3330 no_top:
3331         return partial;
3332 }
3333
3334 /*
3335  * Zero a number of block pointers in either an inode or an indirect block.
3336  * If we restart the transaction we must again get write access to the
3337  * indirect block for further modification.
3338  *
3339  * We release `count' blocks on disk, but (last - first) may be greater
3340  * than `count' because there can be holes in there.
3341  */
3342 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3343                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3344                 unsigned long count, __le32 *first, __le32 *last)
3345 {
3346         __le32 *p;
3347         if (try_to_extend_transaction(handle, inode)) {
3348                 if (bh) {
3349                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3350                         ext4_journal_dirty_metadata(handle, bh);
3351                 }
3352                 ext4_mark_inode_dirty(handle, inode);
3353                 ext4_journal_test_restart(handle, inode);
3354                 if (bh) {
3355                         BUFFER_TRACE(bh, "retaking write access");
3356                         ext4_journal_get_write_access(handle, bh);
3357                 }
3358         }
3359
3360         /*
3361          * Any buffers which are on the journal will be in memory. We find
3362          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3363          * on them.  We've already detached each block from the file, so
3364          * bforget() in jbd2_journal_forget() should be safe.
3365          *
3366          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3367          */
3368         for (p = first; p < last; p++) {
3369                 u32 nr = le32_to_cpu(*p);
3370                 if (nr) {
3371                         struct buffer_head *tbh;
3372
3373                         *p = 0;
3374                         tbh = sb_find_get_block(inode->i_sb, nr);
3375                         ext4_forget(handle, 0, inode, tbh, nr);
3376                 }
3377         }
3378
3379         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3380 }
3381
3382 /**
3383  * ext4_free_data - free a list of data blocks
3384  * @handle:     handle for this transaction
3385  * @inode:      inode we are dealing with
3386  * @this_bh:    indirect buffer_head which contains *@first and *@last
3387  * @first:      array of block numbers
3388  * @last:       points immediately past the end of array
3389  *
3390  * We are freeing all blocks refered from that array (numbers are stored as
3391  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3392  *
3393  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3394  * blocks are contiguous then releasing them at one time will only affect one
3395  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3396  * actually use a lot of journal space.
3397  *
3398  * @this_bh will be %NULL if @first and @last point into the inode's direct
3399  * block pointers.
3400  */
3401 static void ext4_free_data(handle_t *handle, struct inode *inode,
3402                            struct buffer_head *this_bh,
3403                            __le32 *first, __le32 *last)
3404 {
3405         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3406         unsigned long count = 0;            /* Number of blocks in the run */
3407         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3408                                                corresponding to
3409                                                block_to_free */
3410         ext4_fsblk_t nr;                    /* Current block # */
3411         __le32 *p;                          /* Pointer into inode/ind
3412                                                for current block */
3413         int err;
3414
3415         if (this_bh) {                          /* For indirect block */
3416                 BUFFER_TRACE(this_bh, "get_write_access");
3417                 err = ext4_journal_get_write_access(handle, this_bh);
3418                 /* Important: if we can't update the indirect pointers
3419                  * to the blocks, we can't free them. */
3420                 if (err)
3421                         return;
3422         }
3423
3424         for (p = first; p < last; p++) {
3425                 nr = le32_to_cpu(*p);
3426                 if (nr) {
3427                         /* accumulate blocks to free if they're contiguous */
3428                         if (count == 0) {
3429                                 block_to_free = nr;
3430                                 block_to_free_p = p;
3431                                 count = 1;
3432                         } else if (nr == block_to_free + count) {
3433                                 count++;
3434                         } else {
3435                                 ext4_clear_blocks(handle, inode, this_bh,
3436                                                   block_to_free,
3437                                                   count, block_to_free_p, p);
3438                                 block_to_free = nr;
3439                                 block_to_free_p = p;
3440                                 count = 1;
3441                         }
3442                 }
3443         }
3444
3445         if (count > 0)
3446                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3447                                   count, block_to_free_p, p);
3448
3449         if (this_bh) {
3450                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3451
3452                 /*
3453                  * The buffer head should have an attached journal head at this
3454                  * point. However, if the data is corrupted and an indirect
3455                  * block pointed to itself, it would have been detached when
3456                  * the block was cleared. Check for this instead of OOPSing.
3457                  */
3458                 if (bh2jh(this_bh))
3459                         ext4_journal_dirty_metadata(handle, this_bh);
3460                 else
3461                         ext4_error(inode->i_sb, __func__,
3462                                    "circular indirect block detected, "
3463                                    "inode=%lu, block=%llu",
3464                                    inode->i_ino,
3465                                    (unsigned long long) this_bh->b_blocknr);
3466         }
3467 }
3468
3469 /**
3470  *      ext4_free_branches - free an array of branches
3471  *      @handle: JBD handle for this transaction
3472  *      @inode: inode we are dealing with
3473  *      @parent_bh: the buffer_head which contains *@first and *@last
3474  *      @first: array of block numbers
3475  *      @last:  pointer immediately past the end of array
3476  *      @depth: depth of the branches to free
3477  *
3478  *      We are freeing all blocks refered from these branches (numbers are
3479  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3480  *      appropriately.
3481  */
3482 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3483                                struct buffer_head *parent_bh,
3484                                __le32 *first, __le32 *last, int depth)
3485 {
3486         ext4_fsblk_t nr;
3487         __le32 *p;
3488
3489         if (is_handle_aborted(handle))
3490                 return;
3491
3492         if (depth--) {
3493                 struct buffer_head *bh;
3494                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3495                 p = last;
3496                 while (--p >= first) {
3497                         nr = le32_to_cpu(*p);
3498                         if (!nr)
3499                                 continue;               /* A hole */
3500
3501                         /* Go read the buffer for the next level down */
3502                         bh = sb_bread(inode->i_sb, nr);
3503
3504                         /*
3505                          * A read failure? Report error and clear slot
3506                          * (should be rare).
3507                          */
3508                         if (!bh) {
3509                                 ext4_error(inode->i_sb, "ext4_free_branches",
3510                                            "Read failure, inode=%lu, block=%llu",
3511                                            inode->i_ino, nr);
3512                                 continue;
3513                         }
3514
3515                         /* This zaps the entire block.  Bottom up. */
3516                         BUFFER_TRACE(bh, "free child branches");
3517                         ext4_free_branches(handle, inode, bh,
3518                                         (__le32 *) bh->b_data,
3519                                         (__le32 *) bh->b_data + addr_per_block,
3520                                         depth);
3521
3522                         /*
3523                          * We've probably journalled the indirect block several
3524                          * times during the truncate.  But it's no longer
3525                          * needed and we now drop it from the transaction via
3526                          * jbd2_journal_revoke().
3527                          *
3528                          * That's easy if it's exclusively part of this
3529                          * transaction.  But if it's part of the committing
3530                          * transaction then jbd2_journal_forget() will simply
3531                          * brelse() it.  That means that if the underlying
3532                          * block is reallocated in ext4_get_block(),
3533                          * unmap_underlying_metadata() will find this block
3534                          * and will try to get rid of it.  damn, damn.
3535                          *
3536                          * If this block has already been committed to the
3537                          * journal, a revoke record will be written.  And
3538                          * revoke records must be emitted *before* clearing
3539                          * this block's bit in the bitmaps.
3540                          */
3541                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3542
3543                         /*
3544                          * Everything below this this pointer has been
3545                          * released.  Now let this top-of-subtree go.
3546                          *
3547                          * We want the freeing of this indirect block to be
3548                          * atomic in the journal with the updating of the
3549                          * bitmap block which owns it.  So make some room in
3550                          * the journal.
3551                          *
3552                          * We zero the parent pointer *after* freeing its
3553                          * pointee in the bitmaps, so if extend_transaction()
3554                          * for some reason fails to put the bitmap changes and
3555                          * the release into the same transaction, recovery
3556                          * will merely complain about releasing a free block,
3557                          * rather than leaking blocks.
3558                          */
3559                         if (is_handle_aborted(handle))
3560                                 return;
3561                         if (try_to_extend_transaction(handle, inode)) {
3562                                 ext4_mark_inode_dirty(handle, inode);
3563                                 ext4_journal_test_restart(handle, inode);
3564                         }
3565
3566                         ext4_free_blocks(handle, inode, nr, 1, 1);
3567
3568                         if (parent_bh) {
3569                                 /*
3570                                  * The block which we have just freed is
3571                                  * pointed to by an indirect block: journal it
3572                                  */
3573                                 BUFFER_TRACE(parent_bh, "get_write_access");
3574                                 if (!ext4_journal_get_write_access(handle,
3575                                                                    parent_bh)){
3576                                         *p = 0;
3577                                         BUFFER_TRACE(parent_bh,
3578                                         "call ext4_journal_dirty_metadata");
3579                                         ext4_journal_dirty_metadata(handle,
3580                                                                     parent_bh);
3581                                 }
3582                         }
3583                 }
3584         } else {
3585                 /* We have reached the bottom of the tree. */
3586                 BUFFER_TRACE(parent_bh, "free data blocks");
3587                 ext4_free_data(handle, inode, parent_bh, first, last);
3588         }
3589 }
3590
3591 int ext4_can_truncate(struct inode *inode)
3592 {
3593         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3594                 return 0;
3595         if (S_ISREG(inode->i_mode))
3596                 return 1;
3597         if (S_ISDIR(inode->i_mode))
3598                 return 1;
3599         if (S_ISLNK(inode->i_mode))
3600                 return !ext4_inode_is_fast_symlink(inode);
3601         return 0;
3602 }
3603
3604 /*
3605  * ext4_truncate()
3606  *
3607  * We block out ext4_get_block() block instantiations across the entire
3608  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3609  * simultaneously on behalf of the same inode.
3610  *
3611  * As we work through the truncate and commmit bits of it to the journal there
3612  * is one core, guiding principle: the file's tree must always be consistent on
3613  * disk.  We must be able to restart the truncate after a crash.
3614  *
3615  * The file's tree may be transiently inconsistent in memory (although it
3616  * probably isn't), but whenever we close off and commit a journal transaction,
3617  * the contents of (the filesystem + the journal) must be consistent and
3618  * restartable.  It's pretty simple, really: bottom up, right to left (although
3619  * left-to-right works OK too).
3620  *
3621  * Note that at recovery time, journal replay occurs *before* the restart of
3622  * truncate against the orphan inode list.
3623  *
3624  * The committed inode has the new, desired i_size (which is the same as
3625  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3626  * that this inode's truncate did not complete and it will again call
3627  * ext4_truncate() to have another go.  So there will be instantiated blocks
3628  * to the right of the truncation point in a crashed ext4 filesystem.  But
3629  * that's fine - as long as they are linked from the inode, the post-crash
3630  * ext4_truncate() run will find them and release them.
3631  */
3632 void ext4_truncate(struct inode *inode)
3633 {
3634         handle_t *handle;
3635         struct ext4_inode_info *ei = EXT4_I(inode);
3636         __le32 *i_data = ei->i_data;
3637         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3638         struct address_space *mapping = inode->i_mapping;
3639         ext4_lblk_t offsets[4];
3640         Indirect chain[4];
3641         Indirect *partial;
3642         __le32 nr = 0;
3643         int n;
3644         ext4_lblk_t last_block;
3645         unsigned blocksize = inode->i_sb->s_blocksize;
3646
3647         if (!ext4_can_truncate(inode))
3648                 return;
3649
3650         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3651                 ext4_ext_truncate(inode);
3652                 return;
3653         }
3654
3655         handle = start_transaction(inode);
3656         if (IS_ERR(handle))
3657                 return;         /* AKPM: return what? */
3658
3659         last_block = (inode->i_size + blocksize-1)
3660                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3661
3662         if (inode->i_size & (blocksize - 1))
3663                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3664                         goto out_stop;
3665
3666         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3667         if (n == 0)
3668                 goto out_stop;  /* error */
3669
3670         /*
3671          * OK.  This truncate is going to happen.  We add the inode to the
3672          * orphan list, so that if this truncate spans multiple transactions,
3673          * and we crash, we will resume the truncate when the filesystem
3674          * recovers.  It also marks the inode dirty, to catch the new size.
3675          *
3676          * Implication: the file must always be in a sane, consistent
3677          * truncatable state while each transaction commits.
3678          */
3679         if (ext4_orphan_add(handle, inode))
3680                 goto out_stop;
3681
3682         /*
3683          * From here we block out all ext4_get_block() callers who want to
3684          * modify the block allocation tree.
3685          */
3686         down_write(&ei->i_data_sem);
3687
3688         ext4_discard_reservation(inode);
3689
3690         /*
3691          * The orphan list entry will now protect us from any crash which
3692          * occurs before the truncate completes, so it is now safe to propagate
3693          * the new, shorter inode size (held for now in i_size) into the
3694          * on-disk inode. We do this via i_disksize, which is the value which
3695          * ext4 *really* writes onto the disk inode.
3696          */
3697         ei->i_disksize = inode->i_size;
3698
3699         if (n == 1) {           /* direct blocks */
3700                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3701                                i_data + EXT4_NDIR_BLOCKS);
3702                 goto do_indirects;
3703         }
3704
3705         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3706         /* Kill the top of shared branch (not detached) */
3707         if (nr) {
3708                 if (partial == chain) {
3709                         /* Shared branch grows from the inode */
3710                         ext4_free_branches(handle, inode, NULL,
3711                                            &nr, &nr+1, (chain+n-1) - partial);
3712                         *partial->p = 0;
3713                         /*
3714                          * We mark the inode dirty prior to restart,
3715                          * and prior to stop.  No need for it here.
3716                          */
3717                 } else {
3718                         /* Shared branch grows from an indirect block */
3719                         BUFFER_TRACE(partial->bh, "get_write_access");
3720                         ext4_free_branches(handle, inode, partial->bh,
3721                                         partial->p,
3722                                         partial->p+1, (chain+n-1) - partial);
3723                 }
3724         }
3725         /* Clear the ends of indirect blocks on the shared branch */
3726         while (partial > chain) {
3727                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3728                                    (__le32*)partial->bh->b_data+addr_per_block,
3729                                    (chain+n-1) - partial);
3730                 BUFFER_TRACE(partial->bh, "call brelse");
3731                 brelse (partial->bh);
3732                 partial--;
3733         }
3734 do_indirects:
3735         /* Kill the remaining (whole) subtrees */
3736         switch (offsets[0]) {
3737         default:
3738                 nr = i_data[EXT4_IND_BLOCK];
3739                 if (nr) {
3740                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3741                         i_data[EXT4_IND_BLOCK] = 0;
3742                 }
3743         case EXT4_IND_BLOCK:
3744                 nr = i_data[EXT4_DIND_BLOCK];
3745                 if (nr) {
3746                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3747                         i_data[EXT4_DIND_BLOCK] = 0;
3748                 }
3749         case EXT4_DIND_BLOCK:
3750                 nr = i_data[EXT4_TIND_BLOCK];
3751                 if (nr) {
3752                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3753                         i_data[EXT4_TIND_BLOCK] = 0;
3754                 }
3755         case EXT4_TIND_BLOCK:
3756                 ;
3757         }
3758
3759         up_write(&ei->i_data_sem);
3760         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3761         ext4_mark_inode_dirty(handle, inode);
3762
3763         /*
3764          * In a multi-transaction truncate, we only make the final transaction
3765          * synchronous
3766          */
3767         if (IS_SYNC(inode))
3768                 handle->h_sync = 1;
3769 out_stop:
3770         /*
3771          * If this was a simple ftruncate(), and the file will remain alive
3772          * then we need to clear up the orphan record which we created above.
3773          * However, if this was a real unlink then we were called by
3774          * ext4_delete_inode(), and we allow that function to clean up the
3775          * orphan info for us.
3776          */
3777         if (inode->i_nlink)
3778                 ext4_orphan_del(handle, inode);
3779
3780         ext4_journal_stop(handle);
3781 }
3782
3783 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3784                 unsigned long ino, struct ext4_iloc *iloc)
3785 {
3786         ext4_group_t block_group;
3787         unsigned long offset;
3788         ext4_fsblk_t block;
3789         struct ext4_group_desc *gdp;
3790
3791         if (!ext4_valid_inum(sb, ino)) {
3792                 /*
3793                  * This error is already checked for in namei.c unless we are
3794                  * looking at an NFS filehandle, in which case no error
3795                  * report is needed
3796                  */
3797                 return 0;
3798         }
3799
3800         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3801         gdp = ext4_get_group_desc(sb, block_group, NULL);
3802         if (!gdp)
3803                 return 0;
3804
3805         /*
3806          * Figure out the offset within the block group inode table
3807          */
3808         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3809                 EXT4_INODE_SIZE(sb);
3810         block = ext4_inode_table(sb, gdp) +
3811                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3812
3813         iloc->block_group = block_group;
3814         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3815         return block;
3816 }
3817
3818 /*
3819  * ext4_get_inode_loc returns with an extra refcount against the inode's
3820  * underlying buffer_head on success. If 'in_mem' is true, we have all
3821  * data in memory that is needed to recreate the on-disk version of this
3822  * inode.
3823  */
3824 static int __ext4_get_inode_loc(struct inode *inode,
3825                                 struct ext4_iloc *iloc, int in_mem)
3826 {
3827         ext4_fsblk_t block;
3828         struct buffer_head *bh;
3829
3830         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3831         if (!block)
3832                 return -EIO;
3833
3834         bh = sb_getblk(inode->i_sb, block);
3835         if (!bh) {
3836                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3837                                 "unable to read inode block - "
3838                                 "inode=%lu, block=%llu",
3839                                  inode->i_ino, block);
3840                 return -EIO;
3841         }
3842         if (!buffer_uptodate(bh)) {
3843                 lock_buffer(bh);
3844
3845                 /*
3846                  * If the buffer has the write error flag, we have failed
3847                  * to write out another inode in the same block.  In this
3848                  * case, we don't have to read the block because we may
3849                  * read the old inode data successfully.
3850                  */
3851                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3852                         set_buffer_uptodate(bh);
3853
3854                 if (buffer_uptodate(bh)) {
3855                         /* someone brought it uptodate while we waited */
3856                         unlock_buffer(bh);
3857                         goto has_buffer;
3858                 }
3859
3860                 /*
3861                  * If we have all information of the inode in memory and this
3862                  * is the only valid inode in the block, we need not read the
3863                  * block.
3864                  */
3865                 if (in_mem) {
3866                         struct buffer_head *bitmap_bh;
3867                         struct ext4_group_desc *desc;
3868                         int inodes_per_buffer;
3869                         int inode_offset, i;
3870                         ext4_group_t block_group;
3871                         int start;
3872
3873                         block_group = (inode->i_ino - 1) /
3874                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3875                         inodes_per_buffer = bh->b_size /
3876                                 EXT4_INODE_SIZE(inode->i_sb);
3877                         inode_offset = ((inode->i_ino - 1) %
3878                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3879                         start = inode_offset & ~(inodes_per_buffer - 1);
3880
3881                         /* Is the inode bitmap in cache? */
3882                         desc = ext4_get_group_desc(inode->i_sb,
3883                                                 block_group, NULL);
3884                         if (!desc)
3885                                 goto make_io;
3886
3887                         bitmap_bh = sb_getblk(inode->i_sb,
3888                                 ext4_inode_bitmap(inode->i_sb, desc));
3889                         if (!bitmap_bh)
3890                                 goto make_io;
3891
3892                         /*
3893                          * If the inode bitmap isn't in cache then the
3894                          * optimisation may end up performing two reads instead
3895                          * of one, so skip it.
3896                          */
3897                         if (!buffer_uptodate(bitmap_bh)) {
3898                                 brelse(bitmap_bh);
3899                                 goto make_io;
3900                         }
3901                         for (i = start; i < start + inodes_per_buffer; i++) {
3902                                 if (i == inode_offset)
3903                                         continue;
3904                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3905                                         break;
3906                         }
3907                         brelse(bitmap_bh);
3908                         if (i == start + inodes_per_buffer) {
3909                                 /* all other inodes are free, so skip I/O */
3910                                 memset(bh->b_data, 0, bh->b_size);
3911                                 set_buffer_uptodate(bh);
3912                                 unlock_buffer(bh);
3913                                 goto has_buffer;
3914                         }
3915                 }
3916
3917 make_io:
3918                 /*
3919                  * There are other valid inodes in the buffer, this inode
3920                  * has in-inode xattrs, or we don't have this inode in memory.
3921                  * Read the block from disk.
3922                  */
3923                 get_bh(bh);
3924                 bh->b_end_io = end_buffer_read_sync;
3925                 submit_bh(READ_META, bh);
3926                 wait_on_buffer(bh);
3927                 if (!buffer_uptodate(bh)) {
3928                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
3929                                         "unable to read inode block - "
3930                                         "inode=%lu, block=%llu",
3931                                         inode->i_ino, block);
3932                         brelse(bh);
3933                         return -EIO;
3934                 }
3935         }
3936 has_buffer:
3937         iloc->bh = bh;
3938         return 0;
3939 }
3940
3941 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3942 {
3943         /* We have all inode data except xattrs in memory here. */
3944         return __ext4_get_inode_loc(inode, iloc,
3945                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3946 }
3947
3948 void ext4_set_inode_flags(struct inode *inode)
3949 {
3950         unsigned int flags = EXT4_I(inode)->i_flags;
3951
3952         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3953         if (flags & EXT4_SYNC_FL)
3954                 inode->i_flags |= S_SYNC;
3955         if (flags & EXT4_APPEND_FL)
3956                 inode->i_flags |= S_APPEND;
3957         if (flags & EXT4_IMMUTABLE_FL)
3958                 inode->i_flags |= S_IMMUTABLE;
3959         if (flags & EXT4_NOATIME_FL)
3960                 inode->i_flags |= S_NOATIME;
3961         if (flags & EXT4_DIRSYNC_FL)
3962                 inode->i_flags |= S_DIRSYNC;
3963 }
3964
3965 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3966 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3967 {
3968         unsigned int flags = ei->vfs_inode.i_flags;
3969
3970         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3971                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3972         if (flags & S_SYNC)
3973                 ei->i_flags |= EXT4_SYNC_FL;
3974         if (flags & S_APPEND)
3975                 ei->i_flags |= EXT4_APPEND_FL;
3976         if (flags & S_IMMUTABLE)
3977                 ei->i_flags |= EXT4_IMMUTABLE_FL;
3978         if (flags & S_NOATIME)
3979                 ei->i_flags |= EXT4_NOATIME_FL;
3980         if (flags & S_DIRSYNC)
3981                 ei->i_flags |= EXT4_DIRSYNC_FL;
3982 }
3983 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3984                                         struct ext4_inode_info *ei)
3985 {
3986         blkcnt_t i_blocks ;
3987         struct inode *inode = &(ei->vfs_inode);
3988         struct super_block *sb = inode->i_sb;
3989
3990         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3991                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3992                 /* we are using combined 48 bit field */
3993                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3994                                         le32_to_cpu(raw_inode->i_blocks_lo);
3995                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3996                         /* i_blocks represent file system block size */
3997                         return i_blocks  << (inode->i_blkbits - 9);
3998                 } else {
3999                         return i_blocks;
4000                 }
4001         } else {
4002                 return le32_to_cpu(raw_inode->i_blocks_lo);
4003         }
4004 }
4005
4006 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4007 {
4008         struct ext4_iloc iloc;
4009         struct ext4_inode *raw_inode;
4010         struct ext4_inode_info *ei;
4011         struct buffer_head *bh;
4012         struct inode *inode;
4013         long ret;
4014         int block;
4015
4016         inode = iget_locked(sb, ino);
4017         if (!inode)
4018                 return ERR_PTR(-ENOMEM);
4019         if (!(inode->i_state & I_NEW))
4020                 return inode;
4021
4022         ei = EXT4_I(inode);
4023 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4024         ei->i_acl = EXT4_ACL_NOT_CACHED;
4025         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4026 #endif
4027         ei->i_block_alloc_info = NULL;
4028
4029         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4030         if (ret < 0)
4031                 goto bad_inode;
4032         bh = iloc.bh;
4033         raw_inode = ext4_raw_inode(&iloc);
4034         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4035         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4036         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4037         if (!(test_opt(inode->i_sb, NO_UID32))) {
4038                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4039                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4040         }
4041         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4042
4043         ei->i_state = 0;
4044         ei->i_dir_start_lookup = 0;
4045         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4046         /* We now have enough fields to check if the inode was active or not.
4047          * This is needed because nfsd might try to access dead inodes
4048          * the test is that same one that e2fsck uses
4049          * NeilBrown 1999oct15
4050          */
4051         if (inode->i_nlink == 0) {
4052                 if (inode->i_mode == 0 ||
4053                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4054                         /* this inode is deleted */
4055                         brelse(bh);
4056                         ret = -ESTALE;
4057                         goto bad_inode;
4058                 }
4059                 /* The only unlinked inodes we let through here have
4060                  * valid i_mode and are being read by the orphan
4061                  * recovery code: that's fine, we're about to complete
4062                  * the process of deleting those. */
4063         }
4064         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4065         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4066         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4067         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4068             cpu_to_le32(EXT4_OS_HURD)) {
4069                 ei->i_file_acl |=
4070                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4071         }
4072         inode->i_size = ext4_isize(raw_inode);
4073         ei->i_disksize = inode->i_size;
4074         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4075         ei->i_block_group = iloc.block_group;
4076         /*
4077          * NOTE! The in-memory inode i_data array is in little-endian order
4078          * even on big-endian machines: we do NOT byteswap the block numbers!
4079          */
4080         for (block = 0; block < EXT4_N_BLOCKS; block++)
4081                 ei->i_data[block] = raw_inode->i_block[block];
4082         INIT_LIST_HEAD(&ei->i_orphan);
4083
4084         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4085                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4086                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4087                     EXT4_INODE_SIZE(inode->i_sb)) {
4088                         brelse(bh);
4089                         ret = -EIO;
4090                         goto bad_inode;
4091                 }
4092                 if (ei->i_extra_isize == 0) {
4093                         /* The extra space is currently unused. Use it. */
4094                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4095                                             EXT4_GOOD_OLD_INODE_SIZE;
4096                 } else {
4097                         __le32 *magic = (void *)raw_inode +
4098                                         EXT4_GOOD_OLD_INODE_SIZE +
4099                                         ei->i_extra_isize;
4100                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4101                                  ei->i_state |= EXT4_STATE_XATTR;
4102                 }
4103         } else
4104                 ei->i_extra_isize = 0;
4105
4106         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4107         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4108         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4109         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4110
4111         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4113                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4114                         inode->i_version |=
4115                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4116         }
4117
4118         if (S_ISREG(inode->i_mode)) {
4119                 inode->i_op = &ext4_file_inode_operations;
4120                 inode->i_fop = &ext4_file_operations;
4121                 ext4_set_aops(inode);
4122         } else if (S_ISDIR(inode->i_mode)) {
4123                 inode->i_op = &ext4_dir_inode_operations;
4124                 inode->i_fop = &ext4_dir_operations;
4125         } else if (S_ISLNK(inode->i_mode)) {
4126                 if (ext4_inode_is_fast_symlink(inode))
4127                         inode->i_op = &ext4_fast_symlink_inode_operations;
4128                 else {
4129                         inode->i_op = &ext4_symlink_inode_operations;
4130                         ext4_set_aops(inode);
4131                 }
4132         } else {
4133                 inode->i_op = &ext4_special_inode_operations;
4134                 if (raw_inode->i_block[0])
4135                         init_special_inode(inode, inode->i_mode,
4136                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4137                 else
4138                         init_special_inode(inode, inode->i_mode,
4139                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4140         }
4141         brelse(iloc.bh);
4142         ext4_set_inode_flags(inode);
4143         unlock_new_inode(inode);
4144         return inode;
4145
4146 bad_inode:
4147         iget_failed(inode);
4148         return ERR_PTR(ret);
4149 }
4150
4151 static int ext4_inode_blocks_set(handle_t *handle,
4152                                 struct ext4_inode *raw_inode,
4153                                 struct ext4_inode_info *ei)
4154 {
4155         struct inode *inode = &(ei->vfs_inode);
4156         u64 i_blocks = inode->i_blocks;
4157         struct super_block *sb = inode->i_sb;
4158         int err = 0;
4159
4160         if (i_blocks <= ~0U) {
4161                 /*
4162                  * i_blocks can be represnted in a 32 bit variable
4163                  * as multiple of 512 bytes
4164                  */
4165                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4166                 raw_inode->i_blocks_high = 0;
4167                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4168         } else if (i_blocks <= 0xffffffffffffULL) {
4169                 /*
4170                  * i_blocks can be represented in a 48 bit variable
4171                  * as multiple of 512 bytes
4172                  */
4173                 err = ext4_update_rocompat_feature(handle, sb,
4174                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4175                 if (err)
4176                         goto  err_out;
4177                 /* i_block is stored in the split  48 bit fields */
4178                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4179                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4180                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4181         } else {
4182                 /*
4183                  * i_blocks should be represented in a 48 bit variable
4184                  * as multiple of  file system block size
4185                  */
4186                 err = ext4_update_rocompat_feature(handle, sb,
4187                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4188                 if (err)
4189                         goto  err_out;
4190                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4191                 /* i_block is stored in file system block size */
4192                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4193                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4194                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4195         }
4196 err_out:
4197         return err;
4198 }
4199
4200 /*
4201  * Post the struct inode info into an on-disk inode location in the
4202  * buffer-cache.  This gobbles the caller's reference to the
4203  * buffer_head in the inode location struct.
4204  *
4205  * The caller must have write access to iloc->bh.
4206  */
4207 static int ext4_do_update_inode(handle_t *handle,
4208                                 struct inode *inode,
4209                                 struct ext4_iloc *iloc)
4210 {
4211         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4212         struct ext4_inode_info *ei = EXT4_I(inode);
4213         struct buffer_head *bh = iloc->bh;
4214         int err = 0, rc, block;
4215
4216         /* For fields not not tracking in the in-memory inode,
4217          * initialise them to zero for new inodes. */
4218         if (ei->i_state & EXT4_STATE_NEW)
4219                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4220
4221         ext4_get_inode_flags(ei);
4222         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4223         if (!(test_opt(inode->i_sb, NO_UID32))) {
4224                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4225                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4226 /*
4227  * Fix up interoperability with old kernels. Otherwise, old inodes get
4228  * re-used with the upper 16 bits of the uid/gid intact
4229  */
4230                 if (!ei->i_dtime) {
4231                         raw_inode->i_uid_high =
4232                                 cpu_to_le16(high_16_bits(inode->i_uid));
4233                         raw_inode->i_gid_high =
4234                                 cpu_to_le16(high_16_bits(inode->i_gid));
4235                 } else {
4236                         raw_inode->i_uid_high = 0;
4237                         raw_inode->i_gid_high = 0;
4238                 }
4239         } else {
4240                 raw_inode->i_uid_low =
4241                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4242                 raw_inode->i_gid_low =
4243                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4244                 raw_inode->i_uid_high = 0;
4245                 raw_inode->i_gid_high = 0;
4246         }
4247         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4248
4249         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4250         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4251         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4252         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4253
4254         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4255                 goto out_brelse;
4256         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4257         /* clear the migrate flag in the raw_inode */
4258         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4259         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4260             cpu_to_le32(EXT4_OS_HURD))
4261                 raw_inode->i_file_acl_high =
4262                         cpu_to_le16(ei->i_file_acl >> 32);
4263         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4264         ext4_isize_set(raw_inode, ei->i_disksize);
4265         if (ei->i_disksize > 0x7fffffffULL) {
4266                 struct super_block *sb = inode->i_sb;
4267                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4268                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4269                                 EXT4_SB(sb)->s_es->s_rev_level ==
4270                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4271                         /* If this is the first large file
4272                          * created, add a flag to the superblock.
4273                          */
4274                         err = ext4_journal_get_write_access(handle,
4275                                         EXT4_SB(sb)->s_sbh);
4276                         if (err)
4277                                 goto out_brelse;
4278                         ext4_update_dynamic_rev(sb);
4279                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4280                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4281                         sb->s_dirt = 1;
4282                         handle->h_sync = 1;
4283                         err = ext4_journal_dirty_metadata(handle,
4284                                         EXT4_SB(sb)->s_sbh);
4285                 }
4286         }
4287         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4288         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4289                 if (old_valid_dev(inode->i_rdev)) {
4290                         raw_inode->i_block[0] =
4291                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4292                         raw_inode->i_block[1] = 0;
4293                 } else {
4294                         raw_inode->i_block[0] = 0;
4295                         raw_inode->i_block[1] =
4296                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4297                         raw_inode->i_block[2] = 0;
4298                 }
4299         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4300                 raw_inode->i_block[block] = ei->i_data[block];
4301
4302         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4303         if (ei->i_extra_isize) {
4304                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4305                         raw_inode->i_version_hi =
4306                         cpu_to_le32(inode->i_version >> 32);
4307                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4308         }
4309
4310
4311         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4312         rc = ext4_journal_dirty_metadata(handle, bh);
4313         if (!err)
4314                 err = rc;
4315         ei->i_state &= ~EXT4_STATE_NEW;
4316
4317 out_brelse:
4318         brelse(bh);
4319         ext4_std_error(inode->i_sb, err);
4320         return err;
4321 }
4322
4323 /*
4324  * ext4_write_inode()
4325  *
4326  * We are called from a few places:
4327  *
4328  * - Within generic_file_write() for O_SYNC files.
4329  *   Here, there will be no transaction running. We wait for any running
4330  *   trasnaction to commit.
4331  *
4332  * - Within sys_sync(), kupdate and such.
4333  *   We wait on commit, if tol to.
4334  *
4335  * - Within prune_icache() (PF_MEMALLOC == true)
4336  *   Here we simply return.  We can't afford to block kswapd on the
4337  *   journal commit.
4338  *
4339  * In all cases it is actually safe for us to return without doing anything,
4340  * because the inode has been copied into a raw inode buffer in
4341  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4342  * knfsd.
4343  *
4344  * Note that we are absolutely dependent upon all inode dirtiers doing the
4345  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4346  * which we are interested.
4347  *
4348  * It would be a bug for them to not do this.  The code:
4349  *
4350  *      mark_inode_dirty(inode)
4351  *      stuff();
4352  *      inode->i_size = expr;
4353  *
4354  * is in error because a kswapd-driven write_inode() could occur while
4355  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4356  * will no longer be on the superblock's dirty inode list.
4357  */
4358 int ext4_write_inode(struct inode *inode, int wait)
4359 {
4360         if (current->flags & PF_MEMALLOC)
4361                 return 0;
4362
4363         if (ext4_journal_current_handle()) {
4364                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4365                 dump_stack();
4366                 return -EIO;
4367         }
4368
4369         if (!wait)
4370                 return 0;
4371
4372         return ext4_force_commit(inode->i_sb);
4373 }
4374
4375 /*
4376  * ext4_setattr()
4377  *
4378  * Called from notify_change.
4379  *
4380  * We want to trap VFS attempts to truncate the file as soon as
4381  * possible.  In particular, we want to make sure that when the VFS
4382  * shrinks i_size, we put the inode on the orphan list and modify
4383  * i_disksize immediately, so that during the subsequent flushing of
4384  * dirty pages and freeing of disk blocks, we can guarantee that any
4385  * commit will leave the blocks being flushed in an unused state on
4386  * disk.  (On recovery, the inode will get truncated and the blocks will
4387  * be freed, so we have a strong guarantee that no future commit will
4388  * leave these blocks visible to the user.)
4389  *
4390  * Another thing we have to assure is that if we are in ordered mode
4391  * and inode is still attached to the committing transaction, we must
4392  * we start writeout of all the dirty pages which are being truncated.
4393  * This way we are sure that all the data written in the previous
4394  * transaction are already on disk (truncate waits for pages under
4395  * writeback).
4396  *
4397  * Called with inode->i_mutex down.
4398  */
4399 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4400 {
4401         struct inode *inode = dentry->d_inode;
4402         int error, rc = 0;
4403         const unsigned int ia_valid = attr->ia_valid;
4404
4405         error = inode_change_ok(inode, attr);
4406         if (error)
4407                 return error;
4408
4409         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4410                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4411                 handle_t *handle;
4412
4413                 /* (user+group)*(old+new) structure, inode write (sb,
4414                  * inode block, ? - but truncate inode update has it) */
4415                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4416                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4417                 if (IS_ERR(handle)) {
4418                         error = PTR_ERR(handle);
4419                         goto err_out;
4420                 }
4421                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4422                 if (error) {
4423                         ext4_journal_stop(handle);
4424                         return error;
4425                 }
4426                 /* Update corresponding info in inode so that everything is in
4427                  * one transaction */
4428                 if (attr->ia_valid & ATTR_UID)
4429                         inode->i_uid = attr->ia_uid;
4430                 if (attr->ia_valid & ATTR_GID)
4431                         inode->i_gid = attr->ia_gid;
4432                 error = ext4_mark_inode_dirty(handle, inode);
4433                 ext4_journal_stop(handle);
4434         }
4435
4436         if (attr->ia_valid & ATTR_SIZE) {
4437                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4438                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4439
4440                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4441                                 error = -EFBIG;
4442                                 goto err_out;
4443                         }
4444                 }
4445         }
4446
4447         if (S_ISREG(inode->i_mode) &&
4448             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4449                 handle_t *handle;
4450
4451                 handle = ext4_journal_start(inode, 3);
4452                 if (IS_ERR(handle)) {
4453                         error = PTR_ERR(handle);
4454                         goto err_out;
4455                 }
4456
4457                 error = ext4_orphan_add(handle, inode);
4458                 EXT4_I(inode)->i_disksize = attr->ia_size;
4459                 rc = ext4_mark_inode_dirty(handle, inode);
4460                 if (!error)
4461                         error = rc;
4462                 ext4_journal_stop(handle);
4463
4464                 if (ext4_should_order_data(inode)) {
4465                         error = ext4_begin_ordered_truncate(inode,
4466                                                             attr->ia_size);
4467                         if (error) {
4468                                 /* Do as much error cleanup as possible */
4469                                 handle = ext4_journal_start(inode, 3);
4470                                 if (IS_ERR(handle)) {
4471                                         ext4_orphan_del(NULL, inode);
4472                                         goto err_out;
4473                                 }
4474                                 ext4_orphan_del(handle, inode);
4475                                 ext4_journal_stop(handle);
4476                                 goto err_out;
4477                         }
4478                 }
4479         }
4480
4481         rc = inode_setattr(inode, attr);
4482
4483         /* If inode_setattr's call to ext4_truncate failed to get a
4484          * transaction handle at all, we need to clean up the in-core
4485          * orphan list manually. */
4486         if (inode->i_nlink)
4487                 ext4_orphan_del(NULL, inode);
4488
4489         if (!rc && (ia_valid & ATTR_MODE))
4490                 rc = ext4_acl_chmod(inode);
4491
4492 err_out:
4493         ext4_std_error(inode->i_sb, error);
4494         if (!error)
4495                 error = rc;
4496         return error;
4497 }
4498
4499 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4500                  struct kstat *stat)
4501 {
4502         struct inode *inode;
4503         unsigned long delalloc_blocks;
4504
4505         inode = dentry->d_inode;
4506         generic_fillattr(inode, stat);
4507
4508         /*
4509          * We can't update i_blocks if the block allocation is delayed
4510          * otherwise in the case of system crash before the real block
4511          * allocation is done, we will have i_blocks inconsistent with
4512          * on-disk file blocks.
4513          * We always keep i_blocks updated together with real
4514          * allocation. But to not confuse with user, stat
4515          * will return the blocks that include the delayed allocation
4516          * blocks for this file.
4517          */
4518         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4519         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4520         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4521
4522         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4523         return 0;
4524 }
4525
4526 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4527                                       int chunk)
4528 {
4529         int indirects;
4530
4531         /* if nrblocks are contiguous */
4532         if (chunk) {
4533                 /*
4534                  * With N contiguous data blocks, it need at most
4535                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4536                  * 2 dindirect blocks
4537                  * 1 tindirect block
4538                  */
4539                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4540                 return indirects + 3;
4541         }
4542         /*
4543          * if nrblocks are not contiguous, worse case, each block touch
4544          * a indirect block, and each indirect block touch a double indirect
4545          * block, plus a triple indirect block
4546          */
4547         indirects = nrblocks * 2 + 1;
4548         return indirects;
4549 }
4550
4551 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4552 {
4553         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4554                 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4555         return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4556 }
4557 /*
4558  * Account for index blocks, block groups bitmaps and block group
4559  * descriptor blocks if modify datablocks and index blocks
4560  * worse case, the indexs blocks spread over different block groups
4561  *
4562  * If datablocks are discontiguous, they are possible to spread over
4563  * different block groups too. If they are contiugous, with flexbg,
4564  * they could still across block group boundary.
4565  *
4566  * Also account for superblock, inode, quota and xattr blocks
4567  */
4568 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4569 {
4570         int groups, gdpblocks;
4571         int idxblocks;
4572         int ret = 0;
4573
4574         /*
4575          * How many index blocks need to touch to modify nrblocks?
4576          * The "Chunk" flag indicating whether the nrblocks is
4577          * physically contiguous on disk
4578          *
4579          * For Direct IO and fallocate, they calls get_block to allocate
4580          * one single extent at a time, so they could set the "Chunk" flag
4581          */
4582         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4583
4584         ret = idxblocks;
4585
4586         /*
4587          * Now let's see how many group bitmaps and group descriptors need
4588          * to account
4589          */
4590         groups = idxblocks;
4591         if (chunk)
4592                 groups += 1;
4593         else
4594                 groups += nrblocks;
4595
4596         gdpblocks = groups;
4597         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4598                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4599         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4600                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4601
4602         /* bitmaps and block group descriptor blocks */
4603         ret += groups + gdpblocks;
4604
4605         /* Blocks for super block, inode, quota and xattr blocks */
4606         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4607
4608         return ret;
4609 }
4610
4611 /*
4612  * Calulate the total number of credits to reserve to fit
4613  * the modification of a single pages into a single transaction,
4614  * which may include multiple chunks of block allocations.
4615  *
4616  * This could be called via ext4_write_begin()
4617  *
4618  * We need to consider the worse case, when
4619  * one new block per extent.
4620  */
4621 int ext4_writepage_trans_blocks(struct inode *inode)
4622 {
4623         int bpp = ext4_journal_blocks_per_page(inode);
4624         int ret;
4625
4626         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4627
4628         /* Account for data blocks for journalled mode */
4629         if (ext4_should_journal_data(inode))
4630                 ret += bpp;
4631         return ret;
4632 }
4633
4634 /*
4635  * Calculate the journal credits for a chunk of data modification.
4636  *
4637  * This is called from DIO, fallocate or whoever calling
4638  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4639  *
4640  * journal buffers for data blocks are not included here, as DIO
4641  * and fallocate do no need to journal data buffers.
4642  */
4643 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4644 {
4645         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4646 }
4647
4648 /*
4649  * The caller must have previously called ext4_reserve_inode_write().
4650  * Give this, we know that the caller already has write access to iloc->bh.
4651  */
4652 int ext4_mark_iloc_dirty(handle_t *handle,
4653                 struct inode *inode, struct ext4_iloc *iloc)
4654 {
4655         int err = 0;
4656
4657         if (test_opt(inode->i_sb, I_VERSION))
4658                 inode_inc_iversion(inode);
4659
4660         /* the do_update_inode consumes one bh->b_count */
4661         get_bh(iloc->bh);
4662
4663         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4664         err = ext4_do_update_inode(handle, inode, iloc);
4665         put_bh(iloc->bh);
4666         return err;
4667 }
4668
4669 /*
4670  * On success, We end up with an outstanding reference count against
4671  * iloc->bh.  This _must_ be cleaned up later.
4672  */
4673
4674 int
4675 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4676                          struct ext4_iloc *iloc)
4677 {
4678         int err = 0;
4679         if (handle) {
4680                 err = ext4_get_inode_loc(inode, iloc);
4681                 if (!err) {
4682                         BUFFER_TRACE(iloc->bh, "get_write_access");
4683                         err = ext4_journal_get_write_access(handle, iloc->bh);
4684                         if (err) {
4685                                 brelse(iloc->bh);
4686                                 iloc->bh = NULL;
4687                         }
4688                 }
4689         }
4690         ext4_std_error(inode->i_sb, err);
4691         return err;
4692 }
4693
4694 /*
4695  * Expand an inode by new_extra_isize bytes.
4696  * Returns 0 on success or negative error number on failure.
4697  */
4698 static int ext4_expand_extra_isize(struct inode *inode,
4699                                    unsigned int new_extra_isize,
4700                                    struct ext4_iloc iloc,
4701                                    handle_t *handle)
4702 {
4703         struct ext4_inode *raw_inode;
4704         struct ext4_xattr_ibody_header *header;
4705         struct ext4_xattr_entry *entry;
4706
4707         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4708                 return 0;
4709
4710         raw_inode = ext4_raw_inode(&iloc);
4711
4712         header = IHDR(inode, raw_inode);
4713         entry = IFIRST(header);
4714
4715         /* No extended attributes present */
4716         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4717                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4718                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4719                         new_extra_isize);
4720                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4721                 return 0;
4722         }
4723
4724         /* try to expand with EAs present */
4725         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4726                                           raw_inode, handle);
4727 }
4728
4729 /*
4730  * What we do here is to mark the in-core inode as clean with respect to inode
4731  * dirtiness (it may still be data-dirty).
4732  * This means that the in-core inode may be reaped by prune_icache
4733  * without having to perform any I/O.  This is a very good thing,
4734  * because *any* task may call prune_icache - even ones which
4735  * have a transaction open against a different journal.
4736  *
4737  * Is this cheating?  Not really.  Sure, we haven't written the
4738  * inode out, but prune_icache isn't a user-visible syncing function.
4739  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4740  * we start and wait on commits.
4741  *
4742  * Is this efficient/effective?  Well, we're being nice to the system
4743  * by cleaning up our inodes proactively so they can be reaped
4744  * without I/O.  But we are potentially leaving up to five seconds'
4745  * worth of inodes floating about which prune_icache wants us to
4746  * write out.  One way to fix that would be to get prune_icache()
4747  * to do a write_super() to free up some memory.  It has the desired
4748  * effect.
4749  */
4750 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4751 {
4752         struct ext4_iloc iloc;
4753         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4754         static unsigned int mnt_count;
4755         int err, ret;
4756
4757         might_sleep();
4758         err = ext4_reserve_inode_write(handle, inode, &iloc);
4759         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4760             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4761                 /*
4762                  * We need extra buffer credits since we may write into EA block
4763                  * with this same handle. If journal_extend fails, then it will
4764                  * only result in a minor loss of functionality for that inode.
4765                  * If this is felt to be critical, then e2fsck should be run to
4766                  * force a large enough s_min_extra_isize.
4767                  */
4768                 if ((jbd2_journal_extend(handle,
4769                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4770                         ret = ext4_expand_extra_isize(inode,
4771                                                       sbi->s_want_extra_isize,
4772                                                       iloc, handle);
4773                         if (ret) {
4774                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4775                                 if (mnt_count !=
4776                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4777                                         ext4_warning(inode->i_sb, __func__,
4778                                         "Unable to expand inode %lu. Delete"
4779                                         " some EAs or run e2fsck.",
4780                                         inode->i_ino);
4781                                         mnt_count =
4782                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4783                                 }
4784                         }
4785                 }
4786         }
4787         if (!err)
4788                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4789         return err;
4790 }
4791
4792 /*
4793  * ext4_dirty_inode() is called from __mark_inode_dirty()
4794  *
4795  * We're really interested in the case where a file is being extended.
4796  * i_size has been changed by generic_commit_write() and we thus need
4797  * to include the updated inode in the current transaction.
4798  *
4799  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4800  * are allocated to the file.
4801  *
4802  * If the inode is marked synchronous, we don't honour that here - doing
4803  * so would cause a commit on atime updates, which we don't bother doing.
4804  * We handle synchronous inodes at the highest possible level.
4805  */
4806 void ext4_dirty_inode(struct inode *inode)
4807 {
4808         handle_t *current_handle = ext4_journal_current_handle();
4809         handle_t *handle;
4810
4811         handle = ext4_journal_start(inode, 2);
4812         if (IS_ERR(handle))
4813                 goto out;
4814         if (current_handle &&
4815                 current_handle->h_transaction != handle->h_transaction) {
4816                 /* This task has a transaction open against a different fs */
4817                 printk(KERN_EMERG "%s: transactions do not match!\n",
4818                        __func__);
4819         } else {
4820                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4821                                 current_handle);
4822                 ext4_mark_inode_dirty(handle, inode);
4823         }
4824         ext4_journal_stop(handle);
4825 out:
4826         return;
4827 }
4828
4829 #if 0
4830 /*
4831  * Bind an inode's backing buffer_head into this transaction, to prevent
4832  * it from being flushed to disk early.  Unlike
4833  * ext4_reserve_inode_write, this leaves behind no bh reference and
4834  * returns no iloc structure, so the caller needs to repeat the iloc
4835  * lookup to mark the inode dirty later.
4836  */
4837 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4838 {
4839         struct ext4_iloc iloc;
4840
4841         int err = 0;
4842         if (handle) {
4843                 err = ext4_get_inode_loc(inode, &iloc);
4844                 if (!err) {
4845                         BUFFER_TRACE(iloc.bh, "get_write_access");
4846                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4847                         if (!err)
4848                                 err = ext4_journal_dirty_metadata(handle,
4849                                                                   iloc.bh);
4850                         brelse(iloc.bh);
4851                 }
4852         }
4853         ext4_std_error(inode->i_sb, err);
4854         return err;
4855 }
4856 #endif
4857
4858 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4859 {
4860         journal_t *journal;
4861         handle_t *handle;
4862         int err;
4863
4864         /*
4865          * We have to be very careful here: changing a data block's
4866          * journaling status dynamically is dangerous.  If we write a
4867          * data block to the journal, change the status and then delete
4868          * that block, we risk forgetting to revoke the old log record
4869          * from the journal and so a subsequent replay can corrupt data.
4870          * So, first we make sure that the journal is empty and that
4871          * nobody is changing anything.
4872          */
4873
4874         journal = EXT4_JOURNAL(inode);
4875         if (is_journal_aborted(journal))
4876                 return -EROFS;
4877
4878         jbd2_journal_lock_updates(journal);
4879         jbd2_journal_flush(journal);
4880
4881         /*
4882          * OK, there are no updates running now, and all cached data is
4883          * synced to disk.  We are now in a completely consistent state
4884          * which doesn't have anything in the journal, and we know that
4885          * no filesystem updates are running, so it is safe to modify
4886          * the inode's in-core data-journaling state flag now.
4887          */
4888
4889         if (val)
4890                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4891         else
4892                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4893         ext4_set_aops(inode);
4894
4895         jbd2_journal_unlock_updates(journal);
4896
4897         /* Finally we can mark the inode as dirty. */
4898
4899         handle = ext4_journal_start(inode, 1);
4900         if (IS_ERR(handle))
4901                 return PTR_ERR(handle);
4902
4903         err = ext4_mark_inode_dirty(handle, inode);
4904         handle->h_sync = 1;
4905         ext4_journal_stop(handle);
4906         ext4_std_error(inode->i_sb, err);
4907
4908         return err;
4909 }
4910
4911 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4912 {
4913         return !buffer_mapped(bh);
4914 }
4915
4916 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4917 {
4918         loff_t size;
4919         unsigned long len;
4920         int ret = -EINVAL;
4921         void *fsdata;
4922         struct file *file = vma->vm_file;
4923         struct inode *inode = file->f_path.dentry->d_inode;
4924         struct address_space *mapping = inode->i_mapping;
4925
4926         /*
4927          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4928          * get i_mutex because we are already holding mmap_sem.
4929          */
4930         down_read(&inode->i_alloc_sem);
4931         size = i_size_read(inode);
4932         if (page->mapping != mapping || size <= page_offset(page)
4933             || !PageUptodate(page)) {
4934                 /* page got truncated from under us? */
4935                 goto out_unlock;
4936         }
4937         ret = 0;
4938         if (PageMappedToDisk(page))
4939                 goto out_unlock;
4940
4941         if (page->index == size >> PAGE_CACHE_SHIFT)
4942                 len = size & ~PAGE_CACHE_MASK;
4943         else
4944                 len = PAGE_CACHE_SIZE;
4945
4946         if (page_has_buffers(page)) {
4947                 /* return if we have all the buffers mapped */
4948                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4949                                        ext4_bh_unmapped))
4950                         goto out_unlock;
4951         }
4952         /*
4953          * OK, we need to fill the hole... Do write_begin write_end
4954          * to do block allocation/reservation.We are not holding
4955          * inode.i__mutex here. That allow * parallel write_begin,
4956          * write_end call. lock_page prevent this from happening
4957          * on the same page though
4958          */
4959         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4960                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4961         if (ret < 0)
4962                 goto out_unlock;
4963         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4964                         len, len, page, fsdata);
4965         if (ret < 0)
4966                 goto out_unlock;
4967         ret = 0;
4968 out_unlock:
4969         up_read(&inode->i_alloc_sem);
4970         return ret;
4971 }