]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ext4/inode.c
ext4: Take read lock during overwrite case.
[linux-2.6-omap-h63xx.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
41
42 /*
43  * Test whether an inode is a fast symlink.
44  */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47         int ea_blocks = EXT4_I(inode)->i_file_acl ?
48                 (inode->i_sb->s_blocksize >> 9) : 0;
49
50         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52
53 /*
54  * The ext4 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases.
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63                         struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65         int err;
66
67         might_sleep();
68
69         BUFFER_TRACE(bh, "enter");
70
71         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72                   "data mode %lx\n",
73                   bh, is_metadata, inode->i_mode,
74                   test_opt(inode->i_sb, DATA_FLAGS));
75
76         /* Never use the revoke function if we are doing full data
77          * journaling: there is no need to, and a V1 superblock won't
78          * support it.  Otherwise, only skip the revoke on un-journaled
79          * data blocks. */
80
81         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82             (!is_metadata && !ext4_should_journal_data(inode))) {
83                 if (bh) {
84                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
85                         return ext4_journal_forget(handle, bh);
86                 }
87                 return 0;
88         }
89
90         /*
91          * data!=journal && (is_metadata || should_journal_data(inode))
92          */
93         BUFFER_TRACE(bh, "call ext4_journal_revoke");
94         err = ext4_journal_revoke(handle, blocknr, bh);
95         if (err)
96                 ext4_abort(inode->i_sb, __FUNCTION__,
97                            "error %d when attempting revoke", err);
98         BUFFER_TRACE(bh, "exit");
99         return err;
100 }
101
102 /*
103  * Work out how many blocks we need to proceed with the next chunk of a
104  * truncate transaction.
105  */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108         ext4_lblk_t needed;
109
110         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112         /* Give ourselves just enough room to cope with inodes in which
113          * i_blocks is corrupt: we've seen disk corruptions in the past
114          * which resulted in random data in an inode which looked enough
115          * like a regular file for ext4 to try to delete it.  Things
116          * will go a bit crazy if that happens, but at least we should
117          * try not to panic the whole kernel. */
118         if (needed < 2)
119                 needed = 2;
120
121         /* But we need to bound the transaction so we don't overflow the
122          * journal. */
123         if (needed > EXT4_MAX_TRANS_DATA)
124                 needed = EXT4_MAX_TRANS_DATA;
125
126         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128
129 /*
130  * Truncate transactions can be complex and absolutely huge.  So we need to
131  * be able to restart the transaction at a conventient checkpoint to make
132  * sure we don't overflow the journal.
133  *
134  * start_transaction gets us a new handle for a truncate transaction,
135  * and extend_transaction tries to extend the existing one a bit.  If
136  * extend fails, we need to propagate the failure up and restart the
137  * transaction in the top-level truncate loop. --sct
138  */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141         handle_t *result;
142
143         result = ext4_journal_start(inode, blocks_for_truncate(inode));
144         if (!IS_ERR(result))
145                 return result;
146
147         ext4_std_error(inode->i_sb, PTR_ERR(result));
148         return result;
149 }
150
151 /*
152  * Try to extend this transaction for the purposes of truncation.
153  *
154  * Returns 0 if we managed to create more room.  If we can't create more
155  * room, and the transaction must be restarted we return 1.
156  */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160                 return 0;
161         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162                 return 0;
163         return 1;
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173         jbd_debug(2, "restarting handle %p\n", handle);
174         return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176
177 /*
178  * Called at the last iput() if i_nlink is zero.
179  */
180 void ext4_delete_inode (struct inode * inode)
181 {
182         handle_t *handle;
183
184         truncate_inode_pages(&inode->i_data, 0);
185
186         if (is_bad_inode(inode))
187                 goto no_delete;
188
189         handle = start_transaction(inode);
190         if (IS_ERR(handle)) {
191                 /*
192                  * If we're going to skip the normal cleanup, we still need to
193                  * make sure that the in-core orphan linked list is properly
194                  * cleaned up.
195                  */
196                 ext4_orphan_del(NULL, inode);
197                 goto no_delete;
198         }
199
200         if (IS_SYNC(inode))
201                 handle->h_sync = 1;
202         inode->i_size = 0;
203         if (inode->i_blocks)
204                 ext4_truncate(inode);
205         /*
206          * Kill off the orphan record which ext4_truncate created.
207          * AKPM: I think this can be inside the above `if'.
208          * Note that ext4_orphan_del() has to be able to cope with the
209          * deletion of a non-existent orphan - this is because we don't
210          * know if ext4_truncate() actually created an orphan record.
211          * (Well, we could do this if we need to, but heck - it works)
212          */
213         ext4_orphan_del(handle, inode);
214         EXT4_I(inode)->i_dtime  = get_seconds();
215
216         /*
217          * One subtle ordering requirement: if anything has gone wrong
218          * (transaction abort, IO errors, whatever), then we can still
219          * do these next steps (the fs will already have been marked as
220          * having errors), but we can't free the inode if the mark_dirty
221          * fails.
222          */
223         if (ext4_mark_inode_dirty(handle, inode))
224                 /* If that failed, just do the required in-core inode clear. */
225                 clear_inode(inode);
226         else
227                 ext4_free_inode(handle, inode);
228         ext4_journal_stop(handle);
229         return;
230 no_delete:
231         clear_inode(inode);     /* We must guarantee clearing of inode... */
232 }
233
234 typedef struct {
235         __le32  *p;
236         __le32  key;
237         struct buffer_head *bh;
238 } Indirect;
239
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242         p->key = *(p->p = v);
243         p->bh = bh;
244 }
245
246 /**
247  *      ext4_block_to_path - parse the block number into array of offsets
248  *      @inode: inode in question (we are only interested in its superblock)
249  *      @i_block: block number to be parsed
250  *      @offsets: array to store the offsets in
251  *      @boundary: set this non-zero if the referred-to block is likely to be
252  *             followed (on disk) by an indirect block.
253  *
254  *      To store the locations of file's data ext4 uses a data structure common
255  *      for UNIX filesystems - tree of pointers anchored in the inode, with
256  *      data blocks at leaves and indirect blocks in intermediate nodes.
257  *      This function translates the block number into path in that tree -
258  *      return value is the path length and @offsets[n] is the offset of
259  *      pointer to (n+1)th node in the nth one. If @block is out of range
260  *      (negative or too large) warning is printed and zero returned.
261  *
262  *      Note: function doesn't find node addresses, so no IO is needed. All
263  *      we need to know is the capacity of indirect blocks (taken from the
264  *      inode->i_sb).
265  */
266
267 /*
268  * Portability note: the last comparison (check that we fit into triple
269  * indirect block) is spelled differently, because otherwise on an
270  * architecture with 32-bit longs and 8Kb pages we might get into trouble
271  * if our filesystem had 8Kb blocks. We might use long long, but that would
272  * kill us on x86. Oh, well, at least the sign propagation does not matter -
273  * i_block would have to be negative in the very beginning, so we would not
274  * get there at all.
275  */
276
277 static int ext4_block_to_path(struct inode *inode,
278                         ext4_lblk_t i_block,
279                         ext4_lblk_t offsets[4], int *boundary)
280 {
281         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283         const long direct_blocks = EXT4_NDIR_BLOCKS,
284                 indirect_blocks = ptrs,
285                 double_blocks = (1 << (ptrs_bits * 2));
286         int n = 0;
287         int final = 0;
288
289         if (i_block < 0) {
290                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291         } else if (i_block < direct_blocks) {
292                 offsets[n++] = i_block;
293                 final = direct_blocks;
294         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295                 offsets[n++] = EXT4_IND_BLOCK;
296                 offsets[n++] = i_block;
297                 final = ptrs;
298         } else if ((i_block -= indirect_blocks) < double_blocks) {
299                 offsets[n++] = EXT4_DIND_BLOCK;
300                 offsets[n++] = i_block >> ptrs_bits;
301                 offsets[n++] = i_block & (ptrs - 1);
302                 final = ptrs;
303         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304                 offsets[n++] = EXT4_TIND_BLOCK;
305                 offsets[n++] = i_block >> (ptrs_bits * 2);
306                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307                 offsets[n++] = i_block & (ptrs - 1);
308                 final = ptrs;
309         } else {
310                 ext4_warning(inode->i_sb, "ext4_block_to_path",
311                                 "block %lu > max",
312                                 i_block + direct_blocks +
313                                 indirect_blocks + double_blocks);
314         }
315         if (boundary)
316                 *boundary = final - 1 - (i_block & (ptrs - 1));
317         return n;
318 }
319
320 /**
321  *      ext4_get_branch - read the chain of indirect blocks leading to data
322  *      @inode: inode in question
323  *      @depth: depth of the chain (1 - direct pointer, etc.)
324  *      @offsets: offsets of pointers in inode/indirect blocks
325  *      @chain: place to store the result
326  *      @err: here we store the error value
327  *
328  *      Function fills the array of triples <key, p, bh> and returns %NULL
329  *      if everything went OK or the pointer to the last filled triple
330  *      (incomplete one) otherwise. Upon the return chain[i].key contains
331  *      the number of (i+1)-th block in the chain (as it is stored in memory,
332  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
333  *      number (it points into struct inode for i==0 and into the bh->b_data
334  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335  *      block for i>0 and NULL for i==0. In other words, it holds the block
336  *      numbers of the chain, addresses they were taken from (and where we can
337  *      verify that chain did not change) and buffer_heads hosting these
338  *      numbers.
339  *
340  *      Function stops when it stumbles upon zero pointer (absent block)
341  *              (pointer to last triple returned, *@err == 0)
342  *      or when it gets an IO error reading an indirect block
343  *              (ditto, *@err == -EIO)
344  *      or when it reads all @depth-1 indirect blocks successfully and finds
345  *      the whole chain, all way to the data (returns %NULL, *err == 0).
346  *
347  *      Need to be called with
348  *      down_read(&EXT4_I(inode)->i_data_sem)
349  */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351                                  ext4_lblk_t  *offsets,
352                                  Indirect chain[4], int *err)
353 {
354         struct super_block *sb = inode->i_sb;
355         Indirect *p = chain;
356         struct buffer_head *bh;
357
358         *err = 0;
359         /* i_data is not going away, no lock needed */
360         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361         if (!p->key)
362                 goto no_block;
363         while (--depth) {
364                 bh = sb_bread(sb, le32_to_cpu(p->key));
365                 if (!bh)
366                         goto failure;
367                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368                 /* Reader: end */
369                 if (!p->key)
370                         goto no_block;
371         }
372         return NULL;
373
374 failure:
375         *err = -EIO;
376 no_block:
377         return p;
378 }
379
380 /**
381  *      ext4_find_near - find a place for allocation with sufficient locality
382  *      @inode: owner
383  *      @ind: descriptor of indirect block.
384  *
385  *      This function returns the prefered place for block allocation.
386  *      It is used when heuristic for sequential allocation fails.
387  *      Rules are:
388  *        + if there is a block to the left of our position - allocate near it.
389  *        + if pointer will live in indirect block - allocate near that block.
390  *        + if pointer will live in inode - allocate in the same
391  *          cylinder group.
392  *
393  * In the latter case we colour the starting block by the callers PID to
394  * prevent it from clashing with concurrent allocations for a different inode
395  * in the same block group.   The PID is used here so that functionally related
396  * files will be close-by on-disk.
397  *
398  *      Caller must make sure that @ind is valid and will stay that way.
399  */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 {
402         struct ext4_inode_info *ei = EXT4_I(inode);
403         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404         __le32 *p;
405         ext4_fsblk_t bg_start;
406         ext4_grpblk_t colour;
407
408         /* Try to find previous block */
409         for (p = ind->p - 1; p >= start; p--) {
410                 if (*p)
411                         return le32_to_cpu(*p);
412         }
413
414         /* No such thing, so let's try location of indirect block */
415         if (ind->bh)
416                 return ind->bh->b_blocknr;
417
418         /*
419          * It is going to be referred to from the inode itself? OK, just put it
420          * into the same cylinder group then.
421          */
422         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423         colour = (current->pid % 16) *
424                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425         return bg_start + colour;
426 }
427
428 /**
429  *      ext4_find_goal - find a prefered place for allocation.
430  *      @inode: owner
431  *      @block:  block we want
432  *      @chain:  chain of indirect blocks
433  *      @partial: pointer to the last triple within a chain
434  *      @goal:  place to store the result.
435  *
436  *      Normally this function find the prefered place for block allocation,
437  *      stores it in *@goal and returns zero.
438  */
439
440 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
441                 Indirect chain[4], Indirect *partial)
442 {
443         struct ext4_block_alloc_info *block_i;
444
445         block_i =  EXT4_I(inode)->i_block_alloc_info;
446
447         /*
448          * try the heuristic for sequential allocation,
449          * failing that at least try to get decent locality.
450          */
451         if (block_i && (block == block_i->last_alloc_logical_block + 1)
452                 && (block_i->last_alloc_physical_block != 0)) {
453                 return block_i->last_alloc_physical_block + 1;
454         }
455
456         return ext4_find_near(inode, partial);
457 }
458
459 /**
460  *      ext4_blks_to_allocate: Look up the block map and count the number
461  *      of direct blocks need to be allocated for the given branch.
462  *
463  *      @branch: chain of indirect blocks
464  *      @k: number of blocks need for indirect blocks
465  *      @blks: number of data blocks to be mapped.
466  *      @blocks_to_boundary:  the offset in the indirect block
467  *
468  *      return the total number of blocks to be allocate, including the
469  *      direct and indirect blocks.
470  */
471 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
472                 int blocks_to_boundary)
473 {
474         unsigned long count = 0;
475
476         /*
477          * Simple case, [t,d]Indirect block(s) has not allocated yet
478          * then it's clear blocks on that path have not allocated
479          */
480         if (k > 0) {
481                 /* right now we don't handle cross boundary allocation */
482                 if (blks < blocks_to_boundary + 1)
483                         count += blks;
484                 else
485                         count += blocks_to_boundary + 1;
486                 return count;
487         }
488
489         count++;
490         while (count < blks && count <= blocks_to_boundary &&
491                 le32_to_cpu(*(branch[0].p + count)) == 0) {
492                 count++;
493         }
494         return count;
495 }
496
497 /**
498  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
499  *      @indirect_blks: the number of blocks need to allocate for indirect
500  *                      blocks
501  *
502  *      @new_blocks: on return it will store the new block numbers for
503  *      the indirect blocks(if needed) and the first direct block,
504  *      @blks:  on return it will store the total number of allocated
505  *              direct blocks
506  */
507 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
508                         ext4_fsblk_t goal, int indirect_blks, int blks,
509                         ext4_fsblk_t new_blocks[4], int *err)
510 {
511         int target, i;
512         unsigned long count = 0;
513         int index = 0;
514         ext4_fsblk_t current_block = 0;
515         int ret = 0;
516
517         /*
518          * Here we try to allocate the requested multiple blocks at once,
519          * on a best-effort basis.
520          * To build a branch, we should allocate blocks for
521          * the indirect blocks(if not allocated yet), and at least
522          * the first direct block of this branch.  That's the
523          * minimum number of blocks need to allocate(required)
524          */
525         target = blks + indirect_blks;
526
527         while (1) {
528                 count = target;
529                 /* allocating blocks for indirect blocks and direct blocks */
530                 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
531                 if (*err)
532                         goto failed_out;
533
534                 target -= count;
535                 /* allocate blocks for indirect blocks */
536                 while (index < indirect_blks && count) {
537                         new_blocks[index++] = current_block++;
538                         count--;
539                 }
540
541                 if (count > 0)
542                         break;
543         }
544
545         /* save the new block number for the first direct block */
546         new_blocks[index] = current_block;
547
548         /* total number of blocks allocated for direct blocks */
549         ret = count;
550         *err = 0;
551         return ret;
552 failed_out:
553         for (i = 0; i <index; i++)
554                 ext4_free_blocks(handle, inode, new_blocks[i], 1);
555         return ret;
556 }
557
558 /**
559  *      ext4_alloc_branch - allocate and set up a chain of blocks.
560  *      @inode: owner
561  *      @indirect_blks: number of allocated indirect blocks
562  *      @blks: number of allocated direct blocks
563  *      @offsets: offsets (in the blocks) to store the pointers to next.
564  *      @branch: place to store the chain in.
565  *
566  *      This function allocates blocks, zeroes out all but the last one,
567  *      links them into chain and (if we are synchronous) writes them to disk.
568  *      In other words, it prepares a branch that can be spliced onto the
569  *      inode. It stores the information about that chain in the branch[], in
570  *      the same format as ext4_get_branch() would do. We are calling it after
571  *      we had read the existing part of chain and partial points to the last
572  *      triple of that (one with zero ->key). Upon the exit we have the same
573  *      picture as after the successful ext4_get_block(), except that in one
574  *      place chain is disconnected - *branch->p is still zero (we did not
575  *      set the last link), but branch->key contains the number that should
576  *      be placed into *branch->p to fill that gap.
577  *
578  *      If allocation fails we free all blocks we've allocated (and forget
579  *      their buffer_heads) and return the error value the from failed
580  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
581  *      as described above and return 0.
582  */
583 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
584                         int indirect_blks, int *blks, ext4_fsblk_t goal,
585                         ext4_lblk_t *offsets, Indirect *branch)
586 {
587         int blocksize = inode->i_sb->s_blocksize;
588         int i, n = 0;
589         int err = 0;
590         struct buffer_head *bh;
591         int num;
592         ext4_fsblk_t new_blocks[4];
593         ext4_fsblk_t current_block;
594
595         num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
596                                 *blks, new_blocks, &err);
597         if (err)
598                 return err;
599
600         branch[0].key = cpu_to_le32(new_blocks[0]);
601         /*
602          * metadata blocks and data blocks are allocated.
603          */
604         for (n = 1; n <= indirect_blks;  n++) {
605                 /*
606                  * Get buffer_head for parent block, zero it out
607                  * and set the pointer to new one, then send
608                  * parent to disk.
609                  */
610                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
611                 branch[n].bh = bh;
612                 lock_buffer(bh);
613                 BUFFER_TRACE(bh, "call get_create_access");
614                 err = ext4_journal_get_create_access(handle, bh);
615                 if (err) {
616                         unlock_buffer(bh);
617                         brelse(bh);
618                         goto failed;
619                 }
620
621                 memset(bh->b_data, 0, blocksize);
622                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
623                 branch[n].key = cpu_to_le32(new_blocks[n]);
624                 *branch[n].p = branch[n].key;
625                 if ( n == indirect_blks) {
626                         current_block = new_blocks[n];
627                         /*
628                          * End of chain, update the last new metablock of
629                          * the chain to point to the new allocated
630                          * data blocks numbers
631                          */
632                         for (i=1; i < num; i++)
633                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
634                 }
635                 BUFFER_TRACE(bh, "marking uptodate");
636                 set_buffer_uptodate(bh);
637                 unlock_buffer(bh);
638
639                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
640                 err = ext4_journal_dirty_metadata(handle, bh);
641                 if (err)
642                         goto failed;
643         }
644         *blks = num;
645         return err;
646 failed:
647         /* Allocation failed, free what we already allocated */
648         for (i = 1; i <= n ; i++) {
649                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
650                 ext4_journal_forget(handle, branch[i].bh);
651         }
652         for (i = 0; i <indirect_blks; i++)
653                 ext4_free_blocks(handle, inode, new_blocks[i], 1);
654
655         ext4_free_blocks(handle, inode, new_blocks[i], num);
656
657         return err;
658 }
659
660 /**
661  * ext4_splice_branch - splice the allocated branch onto inode.
662  * @inode: owner
663  * @block: (logical) number of block we are adding
664  * @chain: chain of indirect blocks (with a missing link - see
665  *      ext4_alloc_branch)
666  * @where: location of missing link
667  * @num:   number of indirect blocks we are adding
668  * @blks:  number of direct blocks we are adding
669  *
670  * This function fills the missing link and does all housekeeping needed in
671  * inode (->i_blocks, etc.). In case of success we end up with the full
672  * chain to new block and return 0.
673  */
674 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
675                         ext4_lblk_t block, Indirect *where, int num, int blks)
676 {
677         int i;
678         int err = 0;
679         struct ext4_block_alloc_info *block_i;
680         ext4_fsblk_t current_block;
681
682         block_i = EXT4_I(inode)->i_block_alloc_info;
683         /*
684          * If we're splicing into a [td]indirect block (as opposed to the
685          * inode) then we need to get write access to the [td]indirect block
686          * before the splice.
687          */
688         if (where->bh) {
689                 BUFFER_TRACE(where->bh, "get_write_access");
690                 err = ext4_journal_get_write_access(handle, where->bh);
691                 if (err)
692                         goto err_out;
693         }
694         /* That's it */
695
696         *where->p = where->key;
697
698         /*
699          * Update the host buffer_head or inode to point to more just allocated
700          * direct blocks blocks
701          */
702         if (num == 0 && blks > 1) {
703                 current_block = le32_to_cpu(where->key) + 1;
704                 for (i = 1; i < blks; i++)
705                         *(where->p + i ) = cpu_to_le32(current_block++);
706         }
707
708         /*
709          * update the most recently allocated logical & physical block
710          * in i_block_alloc_info, to assist find the proper goal block for next
711          * allocation
712          */
713         if (block_i) {
714                 block_i->last_alloc_logical_block = block + blks - 1;
715                 block_i->last_alloc_physical_block =
716                                 le32_to_cpu(where[num].key) + blks - 1;
717         }
718
719         /* We are done with atomic stuff, now do the rest of housekeeping */
720
721         inode->i_ctime = ext4_current_time(inode);
722         ext4_mark_inode_dirty(handle, inode);
723
724         /* had we spliced it onto indirect block? */
725         if (where->bh) {
726                 /*
727                  * If we spliced it onto an indirect block, we haven't
728                  * altered the inode.  Note however that if it is being spliced
729                  * onto an indirect block at the very end of the file (the
730                  * file is growing) then we *will* alter the inode to reflect
731                  * the new i_size.  But that is not done here - it is done in
732                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
733                  */
734                 jbd_debug(5, "splicing indirect only\n");
735                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
736                 err = ext4_journal_dirty_metadata(handle, where->bh);
737                 if (err)
738                         goto err_out;
739         } else {
740                 /*
741                  * OK, we spliced it into the inode itself on a direct block.
742                  * Inode was dirtied above.
743                  */
744                 jbd_debug(5, "splicing direct\n");
745         }
746         return err;
747
748 err_out:
749         for (i = 1; i <= num; i++) {
750                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
751                 ext4_journal_forget(handle, where[i].bh);
752                 ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
753         }
754         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
755
756         return err;
757 }
758
759 /*
760  * Allocation strategy is simple: if we have to allocate something, we will
761  * have to go the whole way to leaf. So let's do it before attaching anything
762  * to tree, set linkage between the newborn blocks, write them if sync is
763  * required, recheck the path, free and repeat if check fails, otherwise
764  * set the last missing link (that will protect us from any truncate-generated
765  * removals - all blocks on the path are immune now) and possibly force the
766  * write on the parent block.
767  * That has a nice additional property: no special recovery from the failed
768  * allocations is needed - we simply release blocks and do not touch anything
769  * reachable from inode.
770  *
771  * `handle' can be NULL if create == 0.
772  *
773  * The BKL may not be held on entry here.  Be sure to take it early.
774  * return > 0, # of blocks mapped or allocated.
775  * return = 0, if plain lookup failed.
776  * return < 0, error case.
777  *
778  *
779  * Need to be called with
780  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
781  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
782  */
783 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
784                 ext4_lblk_t iblock, unsigned long maxblocks,
785                 struct buffer_head *bh_result,
786                 int create, int extend_disksize)
787 {
788         int err = -EIO;
789         ext4_lblk_t offsets[4];
790         Indirect chain[4];
791         Indirect *partial;
792         ext4_fsblk_t goal;
793         int indirect_blks;
794         int blocks_to_boundary = 0;
795         int depth;
796         struct ext4_inode_info *ei = EXT4_I(inode);
797         int count = 0;
798         ext4_fsblk_t first_block = 0;
799
800
801         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
802         J_ASSERT(handle != NULL || create == 0);
803         depth = ext4_block_to_path(inode, iblock, offsets,
804                                         &blocks_to_boundary);
805
806         if (depth == 0)
807                 goto out;
808
809         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
810
811         /* Simplest case - block found, no allocation needed */
812         if (!partial) {
813                 first_block = le32_to_cpu(chain[depth - 1].key);
814                 clear_buffer_new(bh_result);
815                 count++;
816                 /*map more blocks*/
817                 while (count < maxblocks && count <= blocks_to_boundary) {
818                         ext4_fsblk_t blk;
819
820                         blk = le32_to_cpu(*(chain[depth-1].p + count));
821
822                         if (blk == first_block + count)
823                                 count++;
824                         else
825                                 break;
826                 }
827                 goto got_it;
828         }
829
830         /* Next simple case - plain lookup or failed read of indirect block */
831         if (!create || err == -EIO)
832                 goto cleanup;
833
834         /*
835          * Okay, we need to do block allocation.  Lazily initialize the block
836          * allocation info here if necessary
837         */
838         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
839                 ext4_init_block_alloc_info(inode);
840
841         goal = ext4_find_goal(inode, iblock, chain, partial);
842
843         /* the number of blocks need to allocate for [d,t]indirect blocks */
844         indirect_blks = (chain + depth) - partial - 1;
845
846         /*
847          * Next look up the indirect map to count the totoal number of
848          * direct blocks to allocate for this branch.
849          */
850         count = ext4_blks_to_allocate(partial, indirect_blks,
851                                         maxblocks, blocks_to_boundary);
852         /*
853          * Block out ext4_truncate while we alter the tree
854          */
855         err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
856                                 offsets + (partial - chain), partial);
857
858         /*
859          * The ext4_splice_branch call will free and forget any buffers
860          * on the new chain if there is a failure, but that risks using
861          * up transaction credits, especially for bitmaps where the
862          * credits cannot be returned.  Can we handle this somehow?  We
863          * may need to return -EAGAIN upwards in the worst case.  --sct
864          */
865         if (!err)
866                 err = ext4_splice_branch(handle, inode, iblock,
867                                         partial, indirect_blks, count);
868         /*
869          * i_disksize growing is protected by i_data_sem.  Don't forget to
870          * protect it if you're about to implement concurrent
871          * ext4_get_block() -bzzz
872         */
873         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
874                 ei->i_disksize = inode->i_size;
875         if (err)
876                 goto cleanup;
877
878         set_buffer_new(bh_result);
879 got_it:
880         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
881         if (count > blocks_to_boundary)
882                 set_buffer_boundary(bh_result);
883         err = count;
884         /* Clean up and exit */
885         partial = chain + depth - 1;    /* the whole chain */
886 cleanup:
887         while (partial > chain) {
888                 BUFFER_TRACE(partial->bh, "call brelse");
889                 brelse(partial->bh);
890                 partial--;
891         }
892         BUFFER_TRACE(bh_result, "returned");
893 out:
894         return err;
895 }
896
897 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
898
899 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
900                         unsigned long max_blocks, struct buffer_head *bh,
901                         int create, int extend_disksize)
902 {
903         int retval;
904         /*
905          * Try to see if we can get  the block without requesting
906          * for new file system block.
907          */
908         down_read((&EXT4_I(inode)->i_data_sem));
909         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
910                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
911                                 bh, 0, 0);
912         } else {
913                 retval = ext4_get_blocks_handle(handle,
914                                 inode, block, max_blocks, bh, 0, 0);
915         }
916         up_read((&EXT4_I(inode)->i_data_sem));
917         if (!create || (retval > 0))
918                 return retval;
919
920         /*
921          * We need to allocate new blocks which will result
922          * in i_data update
923          */
924         down_write((&EXT4_I(inode)->i_data_sem));
925         /*
926          * We need to check for EXT4 here because migrate
927          * could have changed the inode type in between
928          */
929         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
930                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
931                                 bh, create, extend_disksize);
932         } else {
933                 retval = ext4_get_blocks_handle(handle, inode, block,
934                                 max_blocks, bh, create, extend_disksize);
935         }
936         up_write((&EXT4_I(inode)->i_data_sem));
937         return retval;
938 }
939
940 static int ext4_get_block(struct inode *inode, sector_t iblock,
941                         struct buffer_head *bh_result, int create)
942 {
943         handle_t *handle = ext4_journal_current_handle();
944         int ret = 0;
945         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
946
947         if (!create)
948                 goto get_block;         /* A read */
949
950         if (max_blocks == 1)
951                 goto get_block;         /* A single block get */
952
953         if (handle->h_transaction->t_state == T_LOCKED) {
954                 /*
955                  * Huge direct-io writes can hold off commits for long
956                  * periods of time.  Let this commit run.
957                  */
958                 ext4_journal_stop(handle);
959                 handle = ext4_journal_start(inode, DIO_CREDITS);
960                 if (IS_ERR(handle))
961                         ret = PTR_ERR(handle);
962                 goto get_block;
963         }
964
965         if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
966                 /*
967                  * Getting low on buffer credits...
968                  */
969                 ret = ext4_journal_extend(handle, DIO_CREDITS);
970                 if (ret > 0) {
971                         /*
972                          * Couldn't extend the transaction.  Start a new one.
973                          */
974                         ret = ext4_journal_restart(handle, DIO_CREDITS);
975                 }
976         }
977
978 get_block:
979         if (ret == 0) {
980                 ret = ext4_get_blocks_wrap(handle, inode, iblock,
981                                         max_blocks, bh_result, create, 0);
982                 if (ret > 0) {
983                         bh_result->b_size = (ret << inode->i_blkbits);
984                         ret = 0;
985                 }
986         }
987         return ret;
988 }
989
990 /*
991  * `handle' can be NULL if create is zero
992  */
993 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
994                                 ext4_lblk_t block, int create, int *errp)
995 {
996         struct buffer_head dummy;
997         int fatal = 0, err;
998
999         J_ASSERT(handle != NULL || create == 0);
1000
1001         dummy.b_state = 0;
1002         dummy.b_blocknr = -1000;
1003         buffer_trace_init(&dummy.b_history);
1004         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1005                                         &dummy, create, 1);
1006         /*
1007          * ext4_get_blocks_handle() returns number of blocks
1008          * mapped. 0 in case of a HOLE.
1009          */
1010         if (err > 0) {
1011                 if (err > 1)
1012                         WARN_ON(1);
1013                 err = 0;
1014         }
1015         *errp = err;
1016         if (!err && buffer_mapped(&dummy)) {
1017                 struct buffer_head *bh;
1018                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1019                 if (!bh) {
1020                         *errp = -EIO;
1021                         goto err;
1022                 }
1023                 if (buffer_new(&dummy)) {
1024                         J_ASSERT(create != 0);
1025                         J_ASSERT(handle != NULL);
1026
1027                         /*
1028                          * Now that we do not always journal data, we should
1029                          * keep in mind whether this should always journal the
1030                          * new buffer as metadata.  For now, regular file
1031                          * writes use ext4_get_block instead, so it's not a
1032                          * problem.
1033                          */
1034                         lock_buffer(bh);
1035                         BUFFER_TRACE(bh, "call get_create_access");
1036                         fatal = ext4_journal_get_create_access(handle, bh);
1037                         if (!fatal && !buffer_uptodate(bh)) {
1038                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1039                                 set_buffer_uptodate(bh);
1040                         }
1041                         unlock_buffer(bh);
1042                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1043                         err = ext4_journal_dirty_metadata(handle, bh);
1044                         if (!fatal)
1045                                 fatal = err;
1046                 } else {
1047                         BUFFER_TRACE(bh, "not a new buffer");
1048                 }
1049                 if (fatal) {
1050                         *errp = fatal;
1051                         brelse(bh);
1052                         bh = NULL;
1053                 }
1054                 return bh;
1055         }
1056 err:
1057         return NULL;
1058 }
1059
1060 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1061                                ext4_lblk_t block, int create, int *err)
1062 {
1063         struct buffer_head * bh;
1064
1065         bh = ext4_getblk(handle, inode, block, create, err);
1066         if (!bh)
1067                 return bh;
1068         if (buffer_uptodate(bh))
1069                 return bh;
1070         ll_rw_block(READ_META, 1, &bh);
1071         wait_on_buffer(bh);
1072         if (buffer_uptodate(bh))
1073                 return bh;
1074         put_bh(bh);
1075         *err = -EIO;
1076         return NULL;
1077 }
1078
1079 static int walk_page_buffers(   handle_t *handle,
1080                                 struct buffer_head *head,
1081                                 unsigned from,
1082                                 unsigned to,
1083                                 int *partial,
1084                                 int (*fn)(      handle_t *handle,
1085                                                 struct buffer_head *bh))
1086 {
1087         struct buffer_head *bh;
1088         unsigned block_start, block_end;
1089         unsigned blocksize = head->b_size;
1090         int err, ret = 0;
1091         struct buffer_head *next;
1092
1093         for (   bh = head, block_start = 0;
1094                 ret == 0 && (bh != head || !block_start);
1095                 block_start = block_end, bh = next)
1096         {
1097                 next = bh->b_this_page;
1098                 block_end = block_start + blocksize;
1099                 if (block_end <= from || block_start >= to) {
1100                         if (partial && !buffer_uptodate(bh))
1101                                 *partial = 1;
1102                         continue;
1103                 }
1104                 err = (*fn)(handle, bh);
1105                 if (!ret)
1106                         ret = err;
1107         }
1108         return ret;
1109 }
1110
1111 /*
1112  * To preserve ordering, it is essential that the hole instantiation and
1113  * the data write be encapsulated in a single transaction.  We cannot
1114  * close off a transaction and start a new one between the ext4_get_block()
1115  * and the commit_write().  So doing the jbd2_journal_start at the start of
1116  * prepare_write() is the right place.
1117  *
1118  * Also, this function can nest inside ext4_writepage() ->
1119  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1120  * has generated enough buffer credits to do the whole page.  So we won't
1121  * block on the journal in that case, which is good, because the caller may
1122  * be PF_MEMALLOC.
1123  *
1124  * By accident, ext4 can be reentered when a transaction is open via
1125  * quota file writes.  If we were to commit the transaction while thus
1126  * reentered, there can be a deadlock - we would be holding a quota
1127  * lock, and the commit would never complete if another thread had a
1128  * transaction open and was blocking on the quota lock - a ranking
1129  * violation.
1130  *
1131  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1132  * will _not_ run commit under these circumstances because handle->h_ref
1133  * is elevated.  We'll still have enough credits for the tiny quotafile
1134  * write.
1135  */
1136 static int do_journal_get_write_access(handle_t *handle,
1137                                         struct buffer_head *bh)
1138 {
1139         if (!buffer_mapped(bh) || buffer_freed(bh))
1140                 return 0;
1141         return ext4_journal_get_write_access(handle, bh);
1142 }
1143
1144 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1145                                 loff_t pos, unsigned len, unsigned flags,
1146                                 struct page **pagep, void **fsdata)
1147 {
1148         struct inode *inode = mapping->host;
1149         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1150         handle_t *handle;
1151         int retries = 0;
1152         struct page *page;
1153         pgoff_t index;
1154         unsigned from, to;
1155
1156         index = pos >> PAGE_CACHE_SHIFT;
1157         from = pos & (PAGE_CACHE_SIZE - 1);
1158         to = from + len;
1159
1160 retry:
1161         page = __grab_cache_page(mapping, index);
1162         if (!page)
1163                 return -ENOMEM;
1164         *pagep = page;
1165
1166         handle = ext4_journal_start(inode, needed_blocks);
1167         if (IS_ERR(handle)) {
1168                 unlock_page(page);
1169                 page_cache_release(page);
1170                 ret = PTR_ERR(handle);
1171                 goto out;
1172         }
1173
1174         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1175                                                         ext4_get_block);
1176
1177         if (!ret && ext4_should_journal_data(inode)) {
1178                 ret = walk_page_buffers(handle, page_buffers(page),
1179                                 from, to, NULL, do_journal_get_write_access);
1180         }
1181
1182         if (ret) {
1183                 ext4_journal_stop(handle);
1184                 unlock_page(page);
1185                 page_cache_release(page);
1186         }
1187
1188         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1189                 goto retry;
1190 out:
1191         return ret;
1192 }
1193
1194 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1195 {
1196         int err = jbd2_journal_dirty_data(handle, bh);
1197         if (err)
1198                 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1199                                                 bh, handle, err);
1200         return err;
1201 }
1202
1203 /* For write_end() in data=journal mode */
1204 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1205 {
1206         if (!buffer_mapped(bh) || buffer_freed(bh))
1207                 return 0;
1208         set_buffer_uptodate(bh);
1209         return ext4_journal_dirty_metadata(handle, bh);
1210 }
1211
1212 /*
1213  * Generic write_end handler for ordered and writeback ext4 journal modes.
1214  * We can't use generic_write_end, because that unlocks the page and we need to
1215  * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1216  * after block_write_end.
1217  */
1218 static int ext4_generic_write_end(struct file *file,
1219                                 struct address_space *mapping,
1220                                 loff_t pos, unsigned len, unsigned copied,
1221                                 struct page *page, void *fsdata)
1222 {
1223         struct inode *inode = file->f_mapping->host;
1224
1225         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1226
1227         if (pos+copied > inode->i_size) {
1228                 i_size_write(inode, pos+copied);
1229                 mark_inode_dirty(inode);
1230         }
1231
1232         return copied;
1233 }
1234
1235 /*
1236  * We need to pick up the new inode size which generic_commit_write gave us
1237  * `file' can be NULL - eg, when called from page_symlink().
1238  *
1239  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1240  * buffers are managed internally.
1241  */
1242 static int ext4_ordered_write_end(struct file *file,
1243                                 struct address_space *mapping,
1244                                 loff_t pos, unsigned len, unsigned copied,
1245                                 struct page *page, void *fsdata)
1246 {
1247         handle_t *handle = ext4_journal_current_handle();
1248         struct inode *inode = file->f_mapping->host;
1249         unsigned from, to;
1250         int ret = 0, ret2;
1251
1252         from = pos & (PAGE_CACHE_SIZE - 1);
1253         to = from + len;
1254
1255         ret = walk_page_buffers(handle, page_buffers(page),
1256                 from, to, NULL, ext4_journal_dirty_data);
1257
1258         if (ret == 0) {
1259                 /*
1260                  * generic_write_end() will run mark_inode_dirty() if i_size
1261                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1262                  * into that.
1263                  */
1264                 loff_t new_i_size;
1265
1266                 new_i_size = pos + copied;
1267                 if (new_i_size > EXT4_I(inode)->i_disksize)
1268                         EXT4_I(inode)->i_disksize = new_i_size;
1269                 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1270                                                         page, fsdata);
1271                 if (copied < 0)
1272                         ret = copied;
1273         }
1274         ret2 = ext4_journal_stop(handle);
1275         if (!ret)
1276                 ret = ret2;
1277         unlock_page(page);
1278         page_cache_release(page);
1279
1280         return ret ? ret : copied;
1281 }
1282
1283 static int ext4_writeback_write_end(struct file *file,
1284                                 struct address_space *mapping,
1285                                 loff_t pos, unsigned len, unsigned copied,
1286                                 struct page *page, void *fsdata)
1287 {
1288         handle_t *handle = ext4_journal_current_handle();
1289         struct inode *inode = file->f_mapping->host;
1290         int ret = 0, ret2;
1291         loff_t new_i_size;
1292
1293         new_i_size = pos + copied;
1294         if (new_i_size > EXT4_I(inode)->i_disksize)
1295                 EXT4_I(inode)->i_disksize = new_i_size;
1296
1297         copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1298                                                         page, fsdata);
1299         if (copied < 0)
1300                 ret = copied;
1301
1302         ret2 = ext4_journal_stop(handle);
1303         if (!ret)
1304                 ret = ret2;
1305         unlock_page(page);
1306         page_cache_release(page);
1307
1308         return ret ? ret : copied;
1309 }
1310
1311 static int ext4_journalled_write_end(struct file *file,
1312                                 struct address_space *mapping,
1313                                 loff_t pos, unsigned len, unsigned copied,
1314                                 struct page *page, void *fsdata)
1315 {
1316         handle_t *handle = ext4_journal_current_handle();
1317         struct inode *inode = mapping->host;
1318         int ret = 0, ret2;
1319         int partial = 0;
1320         unsigned from, to;
1321
1322         from = pos & (PAGE_CACHE_SIZE - 1);
1323         to = from + len;
1324
1325         if (copied < len) {
1326                 if (!PageUptodate(page))
1327                         copied = 0;
1328                 page_zero_new_buffers(page, from+copied, to);
1329         }
1330
1331         ret = walk_page_buffers(handle, page_buffers(page), from,
1332                                 to, &partial, write_end_fn);
1333         if (!partial)
1334                 SetPageUptodate(page);
1335         if (pos+copied > inode->i_size)
1336                 i_size_write(inode, pos+copied);
1337         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1338         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1339                 EXT4_I(inode)->i_disksize = inode->i_size;
1340                 ret2 = ext4_mark_inode_dirty(handle, inode);
1341                 if (!ret)
1342                         ret = ret2;
1343         }
1344
1345         ret2 = ext4_journal_stop(handle);
1346         if (!ret)
1347                 ret = ret2;
1348         unlock_page(page);
1349         page_cache_release(page);
1350
1351         return ret ? ret : copied;
1352 }
1353
1354 /*
1355  * bmap() is special.  It gets used by applications such as lilo and by
1356  * the swapper to find the on-disk block of a specific piece of data.
1357  *
1358  * Naturally, this is dangerous if the block concerned is still in the
1359  * journal.  If somebody makes a swapfile on an ext4 data-journaling
1360  * filesystem and enables swap, then they may get a nasty shock when the
1361  * data getting swapped to that swapfile suddenly gets overwritten by
1362  * the original zero's written out previously to the journal and
1363  * awaiting writeback in the kernel's buffer cache.
1364  *
1365  * So, if we see any bmap calls here on a modified, data-journaled file,
1366  * take extra steps to flush any blocks which might be in the cache.
1367  */
1368 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1369 {
1370         struct inode *inode = mapping->host;
1371         journal_t *journal;
1372         int err;
1373
1374         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1375                 /*
1376                  * This is a REALLY heavyweight approach, but the use of
1377                  * bmap on dirty files is expected to be extremely rare:
1378                  * only if we run lilo or swapon on a freshly made file
1379                  * do we expect this to happen.
1380                  *
1381                  * (bmap requires CAP_SYS_RAWIO so this does not
1382                  * represent an unprivileged user DOS attack --- we'd be
1383                  * in trouble if mortal users could trigger this path at
1384                  * will.)
1385                  *
1386                  * NB. EXT4_STATE_JDATA is not set on files other than
1387                  * regular files.  If somebody wants to bmap a directory
1388                  * or symlink and gets confused because the buffer
1389                  * hasn't yet been flushed to disk, they deserve
1390                  * everything they get.
1391                  */
1392
1393                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1394                 journal = EXT4_JOURNAL(inode);
1395                 jbd2_journal_lock_updates(journal);
1396                 err = jbd2_journal_flush(journal);
1397                 jbd2_journal_unlock_updates(journal);
1398
1399                 if (err)
1400                         return 0;
1401         }
1402
1403         return generic_block_bmap(mapping,block,ext4_get_block);
1404 }
1405
1406 static int bget_one(handle_t *handle, struct buffer_head *bh)
1407 {
1408         get_bh(bh);
1409         return 0;
1410 }
1411
1412 static int bput_one(handle_t *handle, struct buffer_head *bh)
1413 {
1414         put_bh(bh);
1415         return 0;
1416 }
1417
1418 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1419 {
1420         if (buffer_mapped(bh))
1421                 return ext4_journal_dirty_data(handle, bh);
1422         return 0;
1423 }
1424
1425 /*
1426  * Note that we always start a transaction even if we're not journalling
1427  * data.  This is to preserve ordering: any hole instantiation within
1428  * __block_write_full_page -> ext4_get_block() should be journalled
1429  * along with the data so we don't crash and then get metadata which
1430  * refers to old data.
1431  *
1432  * In all journalling modes block_write_full_page() will start the I/O.
1433  *
1434  * Problem:
1435  *
1436  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1437  *              ext4_writepage()
1438  *
1439  * Similar for:
1440  *
1441  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1442  *
1443  * Same applies to ext4_get_block().  We will deadlock on various things like
1444  * lock_journal and i_data_sem
1445  *
1446  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1447  * allocations fail.
1448  *
1449  * 16May01: If we're reentered then journal_current_handle() will be
1450  *          non-zero. We simply *return*.
1451  *
1452  * 1 July 2001: @@@ FIXME:
1453  *   In journalled data mode, a data buffer may be metadata against the
1454  *   current transaction.  But the same file is part of a shared mapping
1455  *   and someone does a writepage() on it.
1456  *
1457  *   We will move the buffer onto the async_data list, but *after* it has
1458  *   been dirtied. So there's a small window where we have dirty data on
1459  *   BJ_Metadata.
1460  *
1461  *   Note that this only applies to the last partial page in the file.  The
1462  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1463  *   broken code anyway: it's wrong for msync()).
1464  *
1465  *   It's a rare case: affects the final partial page, for journalled data
1466  *   where the file is subject to bith write() and writepage() in the same
1467  *   transction.  To fix it we'll need a custom block_write_full_page().
1468  *   We'll probably need that anyway for journalling writepage() output.
1469  *
1470  * We don't honour synchronous mounts for writepage().  That would be
1471  * disastrous.  Any write() or metadata operation will sync the fs for
1472  * us.
1473  *
1474  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1475  * we don't need to open a transaction here.
1476  */
1477 static int ext4_ordered_writepage(struct page *page,
1478                                 struct writeback_control *wbc)
1479 {
1480         struct inode *inode = page->mapping->host;
1481         struct buffer_head *page_bufs;
1482         handle_t *handle = NULL;
1483         int ret = 0;
1484         int err;
1485
1486         J_ASSERT(PageLocked(page));
1487
1488         /*
1489          * We give up here if we're reentered, because it might be for a
1490          * different filesystem.
1491          */
1492         if (ext4_journal_current_handle())
1493                 goto out_fail;
1494
1495         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1496
1497         if (IS_ERR(handle)) {
1498                 ret = PTR_ERR(handle);
1499                 goto out_fail;
1500         }
1501
1502         if (!page_has_buffers(page)) {
1503                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1504                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1505         }
1506         page_bufs = page_buffers(page);
1507         walk_page_buffers(handle, page_bufs, 0,
1508                         PAGE_CACHE_SIZE, NULL, bget_one);
1509
1510         ret = block_write_full_page(page, ext4_get_block, wbc);
1511
1512         /*
1513          * The page can become unlocked at any point now, and
1514          * truncate can then come in and change things.  So we
1515          * can't touch *page from now on.  But *page_bufs is
1516          * safe due to elevated refcount.
1517          */
1518
1519         /*
1520          * And attach them to the current transaction.  But only if
1521          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1522          * and generally junk.
1523          */
1524         if (ret == 0) {
1525                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1526                                         NULL, jbd2_journal_dirty_data_fn);
1527                 if (!ret)
1528                         ret = err;
1529         }
1530         walk_page_buffers(handle, page_bufs, 0,
1531                         PAGE_CACHE_SIZE, NULL, bput_one);
1532         err = ext4_journal_stop(handle);
1533         if (!ret)
1534                 ret = err;
1535         return ret;
1536
1537 out_fail:
1538         redirty_page_for_writepage(wbc, page);
1539         unlock_page(page);
1540         return ret;
1541 }
1542
1543 static int ext4_writeback_writepage(struct page *page,
1544                                 struct writeback_control *wbc)
1545 {
1546         struct inode *inode = page->mapping->host;
1547         handle_t *handle = NULL;
1548         int ret = 0;
1549         int err;
1550
1551         if (ext4_journal_current_handle())
1552                 goto out_fail;
1553
1554         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1555         if (IS_ERR(handle)) {
1556                 ret = PTR_ERR(handle);
1557                 goto out_fail;
1558         }
1559
1560         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1561                 ret = nobh_writepage(page, ext4_get_block, wbc);
1562         else
1563                 ret = block_write_full_page(page, ext4_get_block, wbc);
1564
1565         err = ext4_journal_stop(handle);
1566         if (!ret)
1567                 ret = err;
1568         return ret;
1569
1570 out_fail:
1571         redirty_page_for_writepage(wbc, page);
1572         unlock_page(page);
1573         return ret;
1574 }
1575
1576 static int ext4_journalled_writepage(struct page *page,
1577                                 struct writeback_control *wbc)
1578 {
1579         struct inode *inode = page->mapping->host;
1580         handle_t *handle = NULL;
1581         int ret = 0;
1582         int err;
1583
1584         if (ext4_journal_current_handle())
1585                 goto no_write;
1586
1587         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1588         if (IS_ERR(handle)) {
1589                 ret = PTR_ERR(handle);
1590                 goto no_write;
1591         }
1592
1593         if (!page_has_buffers(page) || PageChecked(page)) {
1594                 /*
1595                  * It's mmapped pagecache.  Add buffers and journal it.  There
1596                  * doesn't seem much point in redirtying the page here.
1597                  */
1598                 ClearPageChecked(page);
1599                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1600                                         ext4_get_block);
1601                 if (ret != 0) {
1602                         ext4_journal_stop(handle);
1603                         goto out_unlock;
1604                 }
1605                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1606                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1607
1608                 err = walk_page_buffers(handle, page_buffers(page), 0,
1609                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1610                 if (ret == 0)
1611                         ret = err;
1612                 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1613                 unlock_page(page);
1614         } else {
1615                 /*
1616                  * It may be a page full of checkpoint-mode buffers.  We don't
1617                  * really know unless we go poke around in the buffer_heads.
1618                  * But block_write_full_page will do the right thing.
1619                  */
1620                 ret = block_write_full_page(page, ext4_get_block, wbc);
1621         }
1622         err = ext4_journal_stop(handle);
1623         if (!ret)
1624                 ret = err;
1625 out:
1626         return ret;
1627
1628 no_write:
1629         redirty_page_for_writepage(wbc, page);
1630 out_unlock:
1631         unlock_page(page);
1632         goto out;
1633 }
1634
1635 static int ext4_readpage(struct file *file, struct page *page)
1636 {
1637         return mpage_readpage(page, ext4_get_block);
1638 }
1639
1640 static int
1641 ext4_readpages(struct file *file, struct address_space *mapping,
1642                 struct list_head *pages, unsigned nr_pages)
1643 {
1644         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1645 }
1646
1647 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1648 {
1649         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1650
1651         /*
1652          * If it's a full truncate we just forget about the pending dirtying
1653          */
1654         if (offset == 0)
1655                 ClearPageChecked(page);
1656
1657         jbd2_journal_invalidatepage(journal, page, offset);
1658 }
1659
1660 static int ext4_releasepage(struct page *page, gfp_t wait)
1661 {
1662         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1663
1664         WARN_ON(PageChecked(page));
1665         if (!page_has_buffers(page))
1666                 return 0;
1667         return jbd2_journal_try_to_free_buffers(journal, page, wait);
1668 }
1669
1670 /*
1671  * If the O_DIRECT write will extend the file then add this inode to the
1672  * orphan list.  So recovery will truncate it back to the original size
1673  * if the machine crashes during the write.
1674  *
1675  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1676  * crashes then stale disk data _may_ be exposed inside the file.
1677  */
1678 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1679                         const struct iovec *iov, loff_t offset,
1680                         unsigned long nr_segs)
1681 {
1682         struct file *file = iocb->ki_filp;
1683         struct inode *inode = file->f_mapping->host;
1684         struct ext4_inode_info *ei = EXT4_I(inode);
1685         handle_t *handle = NULL;
1686         ssize_t ret;
1687         int orphan = 0;
1688         size_t count = iov_length(iov, nr_segs);
1689
1690         if (rw == WRITE) {
1691                 loff_t final_size = offset + count;
1692
1693                 handle = ext4_journal_start(inode, DIO_CREDITS);
1694                 if (IS_ERR(handle)) {
1695                         ret = PTR_ERR(handle);
1696                         goto out;
1697                 }
1698                 if (final_size > inode->i_size) {
1699                         ret = ext4_orphan_add(handle, inode);
1700                         if (ret)
1701                                 goto out_stop;
1702                         orphan = 1;
1703                         ei->i_disksize = inode->i_size;
1704                 }
1705         }
1706
1707         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1708                                  offset, nr_segs,
1709                                  ext4_get_block, NULL);
1710
1711         /*
1712          * Reacquire the handle: ext4_get_block() can restart the transaction
1713          */
1714         handle = ext4_journal_current_handle();
1715
1716 out_stop:
1717         if (handle) {
1718                 int err;
1719
1720                 if (orphan && inode->i_nlink)
1721                         ext4_orphan_del(handle, inode);
1722                 if (orphan && ret > 0) {
1723                         loff_t end = offset + ret;
1724                         if (end > inode->i_size) {
1725                                 ei->i_disksize = end;
1726                                 i_size_write(inode, end);
1727                                 /*
1728                                  * We're going to return a positive `ret'
1729                                  * here due to non-zero-length I/O, so there's
1730                                  * no way of reporting error returns from
1731                                  * ext4_mark_inode_dirty() to userspace.  So
1732                                  * ignore it.
1733                                  */
1734                                 ext4_mark_inode_dirty(handle, inode);
1735                         }
1736                 }
1737                 err = ext4_journal_stop(handle);
1738                 if (ret == 0)
1739                         ret = err;
1740         }
1741 out:
1742         return ret;
1743 }
1744
1745 /*
1746  * Pages can be marked dirty completely asynchronously from ext4's journalling
1747  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1748  * much here because ->set_page_dirty is called under VFS locks.  The page is
1749  * not necessarily locked.
1750  *
1751  * We cannot just dirty the page and leave attached buffers clean, because the
1752  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1753  * or jbddirty because all the journalling code will explode.
1754  *
1755  * So what we do is to mark the page "pending dirty" and next time writepage
1756  * is called, propagate that into the buffers appropriately.
1757  */
1758 static int ext4_journalled_set_page_dirty(struct page *page)
1759 {
1760         SetPageChecked(page);
1761         return __set_page_dirty_nobuffers(page);
1762 }
1763
1764 static const struct address_space_operations ext4_ordered_aops = {
1765         .readpage       = ext4_readpage,
1766         .readpages      = ext4_readpages,
1767         .writepage      = ext4_ordered_writepage,
1768         .sync_page      = block_sync_page,
1769         .write_begin    = ext4_write_begin,
1770         .write_end      = ext4_ordered_write_end,
1771         .bmap           = ext4_bmap,
1772         .invalidatepage = ext4_invalidatepage,
1773         .releasepage    = ext4_releasepage,
1774         .direct_IO      = ext4_direct_IO,
1775         .migratepage    = buffer_migrate_page,
1776 };
1777
1778 static const struct address_space_operations ext4_writeback_aops = {
1779         .readpage       = ext4_readpage,
1780         .readpages      = ext4_readpages,
1781         .writepage      = ext4_writeback_writepage,
1782         .sync_page      = block_sync_page,
1783         .write_begin    = ext4_write_begin,
1784         .write_end      = ext4_writeback_write_end,
1785         .bmap           = ext4_bmap,
1786         .invalidatepage = ext4_invalidatepage,
1787         .releasepage    = ext4_releasepage,
1788         .direct_IO      = ext4_direct_IO,
1789         .migratepage    = buffer_migrate_page,
1790 };
1791
1792 static const struct address_space_operations ext4_journalled_aops = {
1793         .readpage       = ext4_readpage,
1794         .readpages      = ext4_readpages,
1795         .writepage      = ext4_journalled_writepage,
1796         .sync_page      = block_sync_page,
1797         .write_begin    = ext4_write_begin,
1798         .write_end      = ext4_journalled_write_end,
1799         .set_page_dirty = ext4_journalled_set_page_dirty,
1800         .bmap           = ext4_bmap,
1801         .invalidatepage = ext4_invalidatepage,
1802         .releasepage    = ext4_releasepage,
1803 };
1804
1805 void ext4_set_aops(struct inode *inode)
1806 {
1807         if (ext4_should_order_data(inode))
1808                 inode->i_mapping->a_ops = &ext4_ordered_aops;
1809         else if (ext4_should_writeback_data(inode))
1810                 inode->i_mapping->a_ops = &ext4_writeback_aops;
1811         else
1812                 inode->i_mapping->a_ops = &ext4_journalled_aops;
1813 }
1814
1815 /*
1816  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1817  * up to the end of the block which corresponds to `from'.
1818  * This required during truncate. We need to physically zero the tail end
1819  * of that block so it doesn't yield old data if the file is later grown.
1820  */
1821 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1822                 struct address_space *mapping, loff_t from)
1823 {
1824         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1825         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1826         unsigned blocksize, length, pos;
1827         ext4_lblk_t iblock;
1828         struct inode *inode = mapping->host;
1829         struct buffer_head *bh;
1830         int err = 0;
1831
1832         blocksize = inode->i_sb->s_blocksize;
1833         length = blocksize - (offset & (blocksize - 1));
1834         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1835
1836         /*
1837          * For "nobh" option,  we can only work if we don't need to
1838          * read-in the page - otherwise we create buffers to do the IO.
1839          */
1840         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1841              ext4_should_writeback_data(inode) && PageUptodate(page)) {
1842                 zero_user_page(page, offset, length, KM_USER0);
1843                 set_page_dirty(page);
1844                 goto unlock;
1845         }
1846
1847         if (!page_has_buffers(page))
1848                 create_empty_buffers(page, blocksize, 0);
1849
1850         /* Find the buffer that contains "offset" */
1851         bh = page_buffers(page);
1852         pos = blocksize;
1853         while (offset >= pos) {
1854                 bh = bh->b_this_page;
1855                 iblock++;
1856                 pos += blocksize;
1857         }
1858
1859         err = 0;
1860         if (buffer_freed(bh)) {
1861                 BUFFER_TRACE(bh, "freed: skip");
1862                 goto unlock;
1863         }
1864
1865         if (!buffer_mapped(bh)) {
1866                 BUFFER_TRACE(bh, "unmapped");
1867                 ext4_get_block(inode, iblock, bh, 0);
1868                 /* unmapped? It's a hole - nothing to do */
1869                 if (!buffer_mapped(bh)) {
1870                         BUFFER_TRACE(bh, "still unmapped");
1871                         goto unlock;
1872                 }
1873         }
1874
1875         /* Ok, it's mapped. Make sure it's up-to-date */
1876         if (PageUptodate(page))
1877                 set_buffer_uptodate(bh);
1878
1879         if (!buffer_uptodate(bh)) {
1880                 err = -EIO;
1881                 ll_rw_block(READ, 1, &bh);
1882                 wait_on_buffer(bh);
1883                 /* Uhhuh. Read error. Complain and punt. */
1884                 if (!buffer_uptodate(bh))
1885                         goto unlock;
1886         }
1887
1888         if (ext4_should_journal_data(inode)) {
1889                 BUFFER_TRACE(bh, "get write access");
1890                 err = ext4_journal_get_write_access(handle, bh);
1891                 if (err)
1892                         goto unlock;
1893         }
1894
1895         zero_user_page(page, offset, length, KM_USER0);
1896
1897         BUFFER_TRACE(bh, "zeroed end of block");
1898
1899         err = 0;
1900         if (ext4_should_journal_data(inode)) {
1901                 err = ext4_journal_dirty_metadata(handle, bh);
1902         } else {
1903                 if (ext4_should_order_data(inode))
1904                         err = ext4_journal_dirty_data(handle, bh);
1905                 mark_buffer_dirty(bh);
1906         }
1907
1908 unlock:
1909         unlock_page(page);
1910         page_cache_release(page);
1911         return err;
1912 }
1913
1914 /*
1915  * Probably it should be a library function... search for first non-zero word
1916  * or memcmp with zero_page, whatever is better for particular architecture.
1917  * Linus?
1918  */
1919 static inline int all_zeroes(__le32 *p, __le32 *q)
1920 {
1921         while (p < q)
1922                 if (*p++)
1923                         return 0;
1924         return 1;
1925 }
1926
1927 /**
1928  *      ext4_find_shared - find the indirect blocks for partial truncation.
1929  *      @inode:   inode in question
1930  *      @depth:   depth of the affected branch
1931  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1932  *      @chain:   place to store the pointers to partial indirect blocks
1933  *      @top:     place to the (detached) top of branch
1934  *
1935  *      This is a helper function used by ext4_truncate().
1936  *
1937  *      When we do truncate() we may have to clean the ends of several
1938  *      indirect blocks but leave the blocks themselves alive. Block is
1939  *      partially truncated if some data below the new i_size is refered
1940  *      from it (and it is on the path to the first completely truncated
1941  *      data block, indeed).  We have to free the top of that path along
1942  *      with everything to the right of the path. Since no allocation
1943  *      past the truncation point is possible until ext4_truncate()
1944  *      finishes, we may safely do the latter, but top of branch may
1945  *      require special attention - pageout below the truncation point
1946  *      might try to populate it.
1947  *
1948  *      We atomically detach the top of branch from the tree, store the
1949  *      block number of its root in *@top, pointers to buffer_heads of
1950  *      partially truncated blocks - in @chain[].bh and pointers to
1951  *      their last elements that should not be removed - in
1952  *      @chain[].p. Return value is the pointer to last filled element
1953  *      of @chain.
1954  *
1955  *      The work left to caller to do the actual freeing of subtrees:
1956  *              a) free the subtree starting from *@top
1957  *              b) free the subtrees whose roots are stored in
1958  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1959  *              c) free the subtrees growing from the inode past the @chain[0].
1960  *                      (no partially truncated stuff there).  */
1961
1962 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1963                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1964 {
1965         Indirect *partial, *p;
1966         int k, err;
1967
1968         *top = 0;
1969         /* Make k index the deepest non-null offest + 1 */
1970         for (k = depth; k > 1 && !offsets[k-1]; k--)
1971                 ;
1972         partial = ext4_get_branch(inode, k, offsets, chain, &err);
1973         /* Writer: pointers */
1974         if (!partial)
1975                 partial = chain + k-1;
1976         /*
1977          * If the branch acquired continuation since we've looked at it -
1978          * fine, it should all survive and (new) top doesn't belong to us.
1979          */
1980         if (!partial->key && *partial->p)
1981                 /* Writer: end */
1982                 goto no_top;
1983         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1984                 ;
1985         /*
1986          * OK, we've found the last block that must survive. The rest of our
1987          * branch should be detached before unlocking. However, if that rest
1988          * of branch is all ours and does not grow immediately from the inode
1989          * it's easier to cheat and just decrement partial->p.
1990          */
1991         if (p == chain + k - 1 && p > chain) {
1992                 p->p--;
1993         } else {
1994                 *top = *p->p;
1995                 /* Nope, don't do this in ext4.  Must leave the tree intact */
1996 #if 0
1997                 *p->p = 0;
1998 #endif
1999         }
2000         /* Writer: end */
2001
2002         while(partial > p) {
2003                 brelse(partial->bh);
2004                 partial--;
2005         }
2006 no_top:
2007         return partial;
2008 }
2009
2010 /*
2011  * Zero a number of block pointers in either an inode or an indirect block.
2012  * If we restart the transaction we must again get write access to the
2013  * indirect block for further modification.
2014  *
2015  * We release `count' blocks on disk, but (last - first) may be greater
2016  * than `count' because there can be holes in there.
2017  */
2018 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2019                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2020                 unsigned long count, __le32 *first, __le32 *last)
2021 {
2022         __le32 *p;
2023         if (try_to_extend_transaction(handle, inode)) {
2024                 if (bh) {
2025                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2026                         ext4_journal_dirty_metadata(handle, bh);
2027                 }
2028                 ext4_mark_inode_dirty(handle, inode);
2029                 ext4_journal_test_restart(handle, inode);
2030                 if (bh) {
2031                         BUFFER_TRACE(bh, "retaking write access");
2032                         ext4_journal_get_write_access(handle, bh);
2033                 }
2034         }
2035
2036         /*
2037          * Any buffers which are on the journal will be in memory. We find
2038          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2039          * on them.  We've already detached each block from the file, so
2040          * bforget() in jbd2_journal_forget() should be safe.
2041          *
2042          * AKPM: turn on bforget in jbd2_journal_forget()!!!
2043          */
2044         for (p = first; p < last; p++) {
2045                 u32 nr = le32_to_cpu(*p);
2046                 if (nr) {
2047                         struct buffer_head *tbh;
2048
2049                         *p = 0;
2050                         tbh = sb_find_get_block(inode->i_sb, nr);
2051                         ext4_forget(handle, 0, inode, tbh, nr);
2052                 }
2053         }
2054
2055         ext4_free_blocks(handle, inode, block_to_free, count);
2056 }
2057
2058 /**
2059  * ext4_free_data - free a list of data blocks
2060  * @handle:     handle for this transaction
2061  * @inode:      inode we are dealing with
2062  * @this_bh:    indirect buffer_head which contains *@first and *@last
2063  * @first:      array of block numbers
2064  * @last:       points immediately past the end of array
2065  *
2066  * We are freeing all blocks refered from that array (numbers are stored as
2067  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2068  *
2069  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2070  * blocks are contiguous then releasing them at one time will only affect one
2071  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2072  * actually use a lot of journal space.
2073  *
2074  * @this_bh will be %NULL if @first and @last point into the inode's direct
2075  * block pointers.
2076  */
2077 static void ext4_free_data(handle_t *handle, struct inode *inode,
2078                            struct buffer_head *this_bh,
2079                            __le32 *first, __le32 *last)
2080 {
2081         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2082         unsigned long count = 0;            /* Number of blocks in the run */
2083         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2084                                                corresponding to
2085                                                block_to_free */
2086         ext4_fsblk_t nr;                    /* Current block # */
2087         __le32 *p;                          /* Pointer into inode/ind
2088                                                for current block */
2089         int err;
2090
2091         if (this_bh) {                          /* For indirect block */
2092                 BUFFER_TRACE(this_bh, "get_write_access");
2093                 err = ext4_journal_get_write_access(handle, this_bh);
2094                 /* Important: if we can't update the indirect pointers
2095                  * to the blocks, we can't free them. */
2096                 if (err)
2097                         return;
2098         }
2099
2100         for (p = first; p < last; p++) {
2101                 nr = le32_to_cpu(*p);
2102                 if (nr) {
2103                         /* accumulate blocks to free if they're contiguous */
2104                         if (count == 0) {
2105                                 block_to_free = nr;
2106                                 block_to_free_p = p;
2107                                 count = 1;
2108                         } else if (nr == block_to_free + count) {
2109                                 count++;
2110                         } else {
2111                                 ext4_clear_blocks(handle, inode, this_bh,
2112                                                   block_to_free,
2113                                                   count, block_to_free_p, p);
2114                                 block_to_free = nr;
2115                                 block_to_free_p = p;
2116                                 count = 1;
2117                         }
2118                 }
2119         }
2120
2121         if (count > 0)
2122                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2123                                   count, block_to_free_p, p);
2124
2125         if (this_bh) {
2126                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2127                 ext4_journal_dirty_metadata(handle, this_bh);
2128         }
2129 }
2130
2131 /**
2132  *      ext4_free_branches - free an array of branches
2133  *      @handle: JBD handle for this transaction
2134  *      @inode: inode we are dealing with
2135  *      @parent_bh: the buffer_head which contains *@first and *@last
2136  *      @first: array of block numbers
2137  *      @last:  pointer immediately past the end of array
2138  *      @depth: depth of the branches to free
2139  *
2140  *      We are freeing all blocks refered from these branches (numbers are
2141  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2142  *      appropriately.
2143  */
2144 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2145                                struct buffer_head *parent_bh,
2146                                __le32 *first, __le32 *last, int depth)
2147 {
2148         ext4_fsblk_t nr;
2149         __le32 *p;
2150
2151         if (is_handle_aborted(handle))
2152                 return;
2153
2154         if (depth--) {
2155                 struct buffer_head *bh;
2156                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2157                 p = last;
2158                 while (--p >= first) {
2159                         nr = le32_to_cpu(*p);
2160                         if (!nr)
2161                                 continue;               /* A hole */
2162
2163                         /* Go read the buffer for the next level down */
2164                         bh = sb_bread(inode->i_sb, nr);
2165
2166                         /*
2167                          * A read failure? Report error and clear slot
2168                          * (should be rare).
2169                          */
2170                         if (!bh) {
2171                                 ext4_error(inode->i_sb, "ext4_free_branches",
2172                                            "Read failure, inode=%lu, block=%llu",
2173                                            inode->i_ino, nr);
2174                                 continue;
2175                         }
2176
2177                         /* This zaps the entire block.  Bottom up. */
2178                         BUFFER_TRACE(bh, "free child branches");
2179                         ext4_free_branches(handle, inode, bh,
2180                                            (__le32*)bh->b_data,
2181                                            (__le32*)bh->b_data + addr_per_block,
2182                                            depth);
2183
2184                         /*
2185                          * We've probably journalled the indirect block several
2186                          * times during the truncate.  But it's no longer
2187                          * needed and we now drop it from the transaction via
2188                          * jbd2_journal_revoke().
2189                          *
2190                          * That's easy if it's exclusively part of this
2191                          * transaction.  But if it's part of the committing
2192                          * transaction then jbd2_journal_forget() will simply
2193                          * brelse() it.  That means that if the underlying
2194                          * block is reallocated in ext4_get_block(),
2195                          * unmap_underlying_metadata() will find this block
2196                          * and will try to get rid of it.  damn, damn.
2197                          *
2198                          * If this block has already been committed to the
2199                          * journal, a revoke record will be written.  And
2200                          * revoke records must be emitted *before* clearing
2201                          * this block's bit in the bitmaps.
2202                          */
2203                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2204
2205                         /*
2206                          * Everything below this this pointer has been
2207                          * released.  Now let this top-of-subtree go.
2208                          *
2209                          * We want the freeing of this indirect block to be
2210                          * atomic in the journal with the updating of the
2211                          * bitmap block which owns it.  So make some room in
2212                          * the journal.
2213                          *
2214                          * We zero the parent pointer *after* freeing its
2215                          * pointee in the bitmaps, so if extend_transaction()
2216                          * for some reason fails to put the bitmap changes and
2217                          * the release into the same transaction, recovery
2218                          * will merely complain about releasing a free block,
2219                          * rather than leaking blocks.
2220                          */
2221                         if (is_handle_aborted(handle))
2222                                 return;
2223                         if (try_to_extend_transaction(handle, inode)) {
2224                                 ext4_mark_inode_dirty(handle, inode);
2225                                 ext4_journal_test_restart(handle, inode);
2226                         }
2227
2228                         ext4_free_blocks(handle, inode, nr, 1);
2229
2230                         if (parent_bh) {
2231                                 /*
2232                                  * The block which we have just freed is
2233                                  * pointed to by an indirect block: journal it
2234                                  */
2235                                 BUFFER_TRACE(parent_bh, "get_write_access");
2236                                 if (!ext4_journal_get_write_access(handle,
2237                                                                    parent_bh)){
2238                                         *p = 0;
2239                                         BUFFER_TRACE(parent_bh,
2240                                         "call ext4_journal_dirty_metadata");
2241                                         ext4_journal_dirty_metadata(handle,
2242                                                                     parent_bh);
2243                                 }
2244                         }
2245                 }
2246         } else {
2247                 /* We have reached the bottom of the tree. */
2248                 BUFFER_TRACE(parent_bh, "free data blocks");
2249                 ext4_free_data(handle, inode, parent_bh, first, last);
2250         }
2251 }
2252
2253 /*
2254  * ext4_truncate()
2255  *
2256  * We block out ext4_get_block() block instantiations across the entire
2257  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2258  * simultaneously on behalf of the same inode.
2259  *
2260  * As we work through the truncate and commmit bits of it to the journal there
2261  * is one core, guiding principle: the file's tree must always be consistent on
2262  * disk.  We must be able to restart the truncate after a crash.
2263  *
2264  * The file's tree may be transiently inconsistent in memory (although it
2265  * probably isn't), but whenever we close off and commit a journal transaction,
2266  * the contents of (the filesystem + the journal) must be consistent and
2267  * restartable.  It's pretty simple, really: bottom up, right to left (although
2268  * left-to-right works OK too).
2269  *
2270  * Note that at recovery time, journal replay occurs *before* the restart of
2271  * truncate against the orphan inode list.
2272  *
2273  * The committed inode has the new, desired i_size (which is the same as
2274  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2275  * that this inode's truncate did not complete and it will again call
2276  * ext4_truncate() to have another go.  So there will be instantiated blocks
2277  * to the right of the truncation point in a crashed ext4 filesystem.  But
2278  * that's fine - as long as they are linked from the inode, the post-crash
2279  * ext4_truncate() run will find them and release them.
2280  */
2281 void ext4_truncate(struct inode *inode)
2282 {
2283         handle_t *handle;
2284         struct ext4_inode_info *ei = EXT4_I(inode);
2285         __le32 *i_data = ei->i_data;
2286         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2287         struct address_space *mapping = inode->i_mapping;
2288         ext4_lblk_t offsets[4];
2289         Indirect chain[4];
2290         Indirect *partial;
2291         __le32 nr = 0;
2292         int n;
2293         ext4_lblk_t last_block;
2294         unsigned blocksize = inode->i_sb->s_blocksize;
2295         struct page *page;
2296
2297         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2298             S_ISLNK(inode->i_mode)))
2299                 return;
2300         if (ext4_inode_is_fast_symlink(inode))
2301                 return;
2302         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2303                 return;
2304
2305         /*
2306          * We have to lock the EOF page here, because lock_page() nests
2307          * outside jbd2_journal_start().
2308          */
2309         if ((inode->i_size & (blocksize - 1)) == 0) {
2310                 /* Block boundary? Nothing to do */
2311                 page = NULL;
2312         } else {
2313                 page = grab_cache_page(mapping,
2314                                 inode->i_size >> PAGE_CACHE_SHIFT);
2315                 if (!page)
2316                         return;
2317         }
2318
2319         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2320                 ext4_ext_truncate(inode, page);
2321                 return;
2322         }
2323
2324         handle = start_transaction(inode);
2325         if (IS_ERR(handle)) {
2326                 if (page) {
2327                         clear_highpage(page);
2328                         flush_dcache_page(page);
2329                         unlock_page(page);
2330                         page_cache_release(page);
2331                 }
2332                 return;         /* AKPM: return what? */
2333         }
2334
2335         last_block = (inode->i_size + blocksize-1)
2336                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2337
2338         if (page)
2339                 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2340
2341         n = ext4_block_to_path(inode, last_block, offsets, NULL);
2342         if (n == 0)
2343                 goto out_stop;  /* error */
2344
2345         /*
2346          * OK.  This truncate is going to happen.  We add the inode to the
2347          * orphan list, so that if this truncate spans multiple transactions,
2348          * and we crash, we will resume the truncate when the filesystem
2349          * recovers.  It also marks the inode dirty, to catch the new size.
2350          *
2351          * Implication: the file must always be in a sane, consistent
2352          * truncatable state while each transaction commits.
2353          */
2354         if (ext4_orphan_add(handle, inode))
2355                 goto out_stop;
2356
2357         /*
2358          * The orphan list entry will now protect us from any crash which
2359          * occurs before the truncate completes, so it is now safe to propagate
2360          * the new, shorter inode size (held for now in i_size) into the
2361          * on-disk inode. We do this via i_disksize, which is the value which
2362          * ext4 *really* writes onto the disk inode.
2363          */
2364         ei->i_disksize = inode->i_size;
2365
2366         /*
2367          * From here we block out all ext4_get_block() callers who want to
2368          * modify the block allocation tree.
2369          */
2370         down_write(&ei->i_data_sem);
2371
2372         if (n == 1) {           /* direct blocks */
2373                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2374                                i_data + EXT4_NDIR_BLOCKS);
2375                 goto do_indirects;
2376         }
2377
2378         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2379         /* Kill the top of shared branch (not detached) */
2380         if (nr) {
2381                 if (partial == chain) {
2382                         /* Shared branch grows from the inode */
2383                         ext4_free_branches(handle, inode, NULL,
2384                                            &nr, &nr+1, (chain+n-1) - partial);
2385                         *partial->p = 0;
2386                         /*
2387                          * We mark the inode dirty prior to restart,
2388                          * and prior to stop.  No need for it here.
2389                          */
2390                 } else {
2391                         /* Shared branch grows from an indirect block */
2392                         BUFFER_TRACE(partial->bh, "get_write_access");
2393                         ext4_free_branches(handle, inode, partial->bh,
2394                                         partial->p,
2395                                         partial->p+1, (chain+n-1) - partial);
2396                 }
2397         }
2398         /* Clear the ends of indirect blocks on the shared branch */
2399         while (partial > chain) {
2400                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2401                                    (__le32*)partial->bh->b_data+addr_per_block,
2402                                    (chain+n-1) - partial);
2403                 BUFFER_TRACE(partial->bh, "call brelse");
2404                 brelse (partial->bh);
2405                 partial--;
2406         }
2407 do_indirects:
2408         /* Kill the remaining (whole) subtrees */
2409         switch (offsets[0]) {
2410         default:
2411                 nr = i_data[EXT4_IND_BLOCK];
2412                 if (nr) {
2413                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2414                         i_data[EXT4_IND_BLOCK] = 0;
2415                 }
2416         case EXT4_IND_BLOCK:
2417                 nr = i_data[EXT4_DIND_BLOCK];
2418                 if (nr) {
2419                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2420                         i_data[EXT4_DIND_BLOCK] = 0;
2421                 }
2422         case EXT4_DIND_BLOCK:
2423                 nr = i_data[EXT4_TIND_BLOCK];
2424                 if (nr) {
2425                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2426                         i_data[EXT4_TIND_BLOCK] = 0;
2427                 }
2428         case EXT4_TIND_BLOCK:
2429                 ;
2430         }
2431
2432         ext4_discard_reservation(inode);
2433
2434         up_write(&ei->i_data_sem);
2435         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2436         ext4_mark_inode_dirty(handle, inode);
2437
2438         /*
2439          * In a multi-transaction truncate, we only make the final transaction
2440          * synchronous
2441          */
2442         if (IS_SYNC(inode))
2443                 handle->h_sync = 1;
2444 out_stop:
2445         /*
2446          * If this was a simple ftruncate(), and the file will remain alive
2447          * then we need to clear up the orphan record which we created above.
2448          * However, if this was a real unlink then we were called by
2449          * ext4_delete_inode(), and we allow that function to clean up the
2450          * orphan info for us.
2451          */
2452         if (inode->i_nlink)
2453                 ext4_orphan_del(handle, inode);
2454
2455         ext4_journal_stop(handle);
2456 }
2457
2458 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2459                 unsigned long ino, struct ext4_iloc *iloc)
2460 {
2461         unsigned long desc, group_desc;
2462         ext4_group_t block_group;
2463         unsigned long offset;
2464         ext4_fsblk_t block;
2465         struct buffer_head *bh;
2466         struct ext4_group_desc * gdp;
2467
2468         if (!ext4_valid_inum(sb, ino)) {
2469                 /*
2470                  * This error is already checked for in namei.c unless we are
2471                  * looking at an NFS filehandle, in which case no error
2472                  * report is needed
2473                  */
2474                 return 0;
2475         }
2476
2477         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2478         if (block_group >= EXT4_SB(sb)->s_groups_count) {
2479                 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2480                 return 0;
2481         }
2482         smp_rmb();
2483         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2484         desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2485         bh = EXT4_SB(sb)->s_group_desc[group_desc];
2486         if (!bh) {
2487                 ext4_error (sb, "ext4_get_inode_block",
2488                             "Descriptor not loaded");
2489                 return 0;
2490         }
2491
2492         gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2493                 desc * EXT4_DESC_SIZE(sb));
2494         /*
2495          * Figure out the offset within the block group inode table
2496          */
2497         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2498                 EXT4_INODE_SIZE(sb);
2499         block = ext4_inode_table(sb, gdp) +
2500                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2501
2502         iloc->block_group = block_group;
2503         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2504         return block;
2505 }
2506
2507 /*
2508  * ext4_get_inode_loc returns with an extra refcount against the inode's
2509  * underlying buffer_head on success. If 'in_mem' is true, we have all
2510  * data in memory that is needed to recreate the on-disk version of this
2511  * inode.
2512  */
2513 static int __ext4_get_inode_loc(struct inode *inode,
2514                                 struct ext4_iloc *iloc, int in_mem)
2515 {
2516         ext4_fsblk_t block;
2517         struct buffer_head *bh;
2518
2519         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2520         if (!block)
2521                 return -EIO;
2522
2523         bh = sb_getblk(inode->i_sb, block);
2524         if (!bh) {
2525                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2526                                 "unable to read inode block - "
2527                                 "inode=%lu, block=%llu",
2528                                  inode->i_ino, block);
2529                 return -EIO;
2530         }
2531         if (!buffer_uptodate(bh)) {
2532                 lock_buffer(bh);
2533                 if (buffer_uptodate(bh)) {
2534                         /* someone brought it uptodate while we waited */
2535                         unlock_buffer(bh);
2536                         goto has_buffer;
2537                 }
2538
2539                 /*
2540                  * If we have all information of the inode in memory and this
2541                  * is the only valid inode in the block, we need not read the
2542                  * block.
2543                  */
2544                 if (in_mem) {
2545                         struct buffer_head *bitmap_bh;
2546                         struct ext4_group_desc *desc;
2547                         int inodes_per_buffer;
2548                         int inode_offset, i;
2549                         ext4_group_t block_group;
2550                         int start;
2551
2552                         block_group = (inode->i_ino - 1) /
2553                                         EXT4_INODES_PER_GROUP(inode->i_sb);
2554                         inodes_per_buffer = bh->b_size /
2555                                 EXT4_INODE_SIZE(inode->i_sb);
2556                         inode_offset = ((inode->i_ino - 1) %
2557                                         EXT4_INODES_PER_GROUP(inode->i_sb));
2558                         start = inode_offset & ~(inodes_per_buffer - 1);
2559
2560                         /* Is the inode bitmap in cache? */
2561                         desc = ext4_get_group_desc(inode->i_sb,
2562                                                 block_group, NULL);
2563                         if (!desc)
2564                                 goto make_io;
2565
2566                         bitmap_bh = sb_getblk(inode->i_sb,
2567                                 ext4_inode_bitmap(inode->i_sb, desc));
2568                         if (!bitmap_bh)
2569                                 goto make_io;
2570
2571                         /*
2572                          * If the inode bitmap isn't in cache then the
2573                          * optimisation may end up performing two reads instead
2574                          * of one, so skip it.
2575                          */
2576                         if (!buffer_uptodate(bitmap_bh)) {
2577                                 brelse(bitmap_bh);
2578                                 goto make_io;
2579                         }
2580                         for (i = start; i < start + inodes_per_buffer; i++) {
2581                                 if (i == inode_offset)
2582                                         continue;
2583                                 if (ext4_test_bit(i, bitmap_bh->b_data))
2584                                         break;
2585                         }
2586                         brelse(bitmap_bh);
2587                         if (i == start + inodes_per_buffer) {
2588                                 /* all other inodes are free, so skip I/O */
2589                                 memset(bh->b_data, 0, bh->b_size);
2590                                 set_buffer_uptodate(bh);
2591                                 unlock_buffer(bh);
2592                                 goto has_buffer;
2593                         }
2594                 }
2595
2596 make_io:
2597                 /*
2598                  * There are other valid inodes in the buffer, this inode
2599                  * has in-inode xattrs, or we don't have this inode in memory.
2600                  * Read the block from disk.
2601                  */
2602                 get_bh(bh);
2603                 bh->b_end_io = end_buffer_read_sync;
2604                 submit_bh(READ_META, bh);
2605                 wait_on_buffer(bh);
2606                 if (!buffer_uptodate(bh)) {
2607                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
2608                                         "unable to read inode block - "
2609                                         "inode=%lu, block=%llu",
2610                                         inode->i_ino, block);
2611                         brelse(bh);
2612                         return -EIO;
2613                 }
2614         }
2615 has_buffer:
2616         iloc->bh = bh;
2617         return 0;
2618 }
2619
2620 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2621 {
2622         /* We have all inode data except xattrs in memory here. */
2623         return __ext4_get_inode_loc(inode, iloc,
2624                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2625 }
2626
2627 void ext4_set_inode_flags(struct inode *inode)
2628 {
2629         unsigned int flags = EXT4_I(inode)->i_flags;
2630
2631         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2632         if (flags & EXT4_SYNC_FL)
2633                 inode->i_flags |= S_SYNC;
2634         if (flags & EXT4_APPEND_FL)
2635                 inode->i_flags |= S_APPEND;
2636         if (flags & EXT4_IMMUTABLE_FL)
2637                 inode->i_flags |= S_IMMUTABLE;
2638         if (flags & EXT4_NOATIME_FL)
2639                 inode->i_flags |= S_NOATIME;
2640         if (flags & EXT4_DIRSYNC_FL)
2641                 inode->i_flags |= S_DIRSYNC;
2642 }
2643
2644 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2645 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2646 {
2647         unsigned int flags = ei->vfs_inode.i_flags;
2648
2649         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2650                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2651         if (flags & S_SYNC)
2652                 ei->i_flags |= EXT4_SYNC_FL;
2653         if (flags & S_APPEND)
2654                 ei->i_flags |= EXT4_APPEND_FL;
2655         if (flags & S_IMMUTABLE)
2656                 ei->i_flags |= EXT4_IMMUTABLE_FL;
2657         if (flags & S_NOATIME)
2658                 ei->i_flags |= EXT4_NOATIME_FL;
2659         if (flags & S_DIRSYNC)
2660                 ei->i_flags |= EXT4_DIRSYNC_FL;
2661 }
2662 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2663                                         struct ext4_inode_info *ei)
2664 {
2665         blkcnt_t i_blocks ;
2666         struct inode *inode = &(ei->vfs_inode);
2667         struct super_block *sb = inode->i_sb;
2668
2669         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2670                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2671                 /* we are using combined 48 bit field */
2672                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2673                                         le32_to_cpu(raw_inode->i_blocks_lo);
2674                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2675                         /* i_blocks represent file system block size */
2676                         return i_blocks  << (inode->i_blkbits - 9);
2677                 } else {
2678                         return i_blocks;
2679                 }
2680         } else {
2681                 return le32_to_cpu(raw_inode->i_blocks_lo);
2682         }
2683 }
2684
2685 void ext4_read_inode(struct inode * inode)
2686 {
2687         struct ext4_iloc iloc;
2688         struct ext4_inode *raw_inode;
2689         struct ext4_inode_info *ei = EXT4_I(inode);
2690         struct buffer_head *bh;
2691         int block;
2692
2693 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2694         ei->i_acl = EXT4_ACL_NOT_CACHED;
2695         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2696 #endif
2697         ei->i_block_alloc_info = NULL;
2698
2699         if (__ext4_get_inode_loc(inode, &iloc, 0))
2700                 goto bad_inode;
2701         bh = iloc.bh;
2702         raw_inode = ext4_raw_inode(&iloc);
2703         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2704         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2705         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2706         if(!(test_opt (inode->i_sb, NO_UID32))) {
2707                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2708                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2709         }
2710         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2711
2712         ei->i_state = 0;
2713         ei->i_dir_start_lookup = 0;
2714         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2715         /* We now have enough fields to check if the inode was active or not.
2716          * This is needed because nfsd might try to access dead inodes
2717          * the test is that same one that e2fsck uses
2718          * NeilBrown 1999oct15
2719          */
2720         if (inode->i_nlink == 0) {
2721                 if (inode->i_mode == 0 ||
2722                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2723                         /* this inode is deleted */
2724                         brelse (bh);
2725                         goto bad_inode;
2726                 }
2727                 /* The only unlinked inodes we let through here have
2728                  * valid i_mode and are being read by the orphan
2729                  * recovery code: that's fine, we're about to complete
2730                  * the process of deleting those. */
2731         }
2732         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2733         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2734         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2735         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2736             cpu_to_le32(EXT4_OS_HURD)) {
2737                 ei->i_file_acl |=
2738                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2739         }
2740         inode->i_size = ext4_isize(raw_inode);
2741         ei->i_disksize = inode->i_size;
2742         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2743         ei->i_block_group = iloc.block_group;
2744         /*
2745          * NOTE! The in-memory inode i_data array is in little-endian order
2746          * even on big-endian machines: we do NOT byteswap the block numbers!
2747          */
2748         for (block = 0; block < EXT4_N_BLOCKS; block++)
2749                 ei->i_data[block] = raw_inode->i_block[block];
2750         INIT_LIST_HEAD(&ei->i_orphan);
2751
2752         if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2753             EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2754                 /*
2755                  * When mke2fs creates big inodes it does not zero out
2756                  * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2757                  * so ignore those first few inodes.
2758                  */
2759                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2760                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2761                     EXT4_INODE_SIZE(inode->i_sb)) {
2762                         brelse (bh);
2763                         goto bad_inode;
2764                 }
2765                 if (ei->i_extra_isize == 0) {
2766                         /* The extra space is currently unused. Use it. */
2767                         ei->i_extra_isize = sizeof(struct ext4_inode) -
2768                                             EXT4_GOOD_OLD_INODE_SIZE;
2769                 } else {
2770                         __le32 *magic = (void *)raw_inode +
2771                                         EXT4_GOOD_OLD_INODE_SIZE +
2772                                         ei->i_extra_isize;
2773                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2774                                  ei->i_state |= EXT4_STATE_XATTR;
2775                 }
2776         } else
2777                 ei->i_extra_isize = 0;
2778
2779         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2780         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2781         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2782         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2783
2784         if (S_ISREG(inode->i_mode)) {
2785                 inode->i_op = &ext4_file_inode_operations;
2786                 inode->i_fop = &ext4_file_operations;
2787                 ext4_set_aops(inode);
2788         } else if (S_ISDIR(inode->i_mode)) {
2789                 inode->i_op = &ext4_dir_inode_operations;
2790                 inode->i_fop = &ext4_dir_operations;
2791         } else if (S_ISLNK(inode->i_mode)) {
2792                 if (ext4_inode_is_fast_symlink(inode))
2793                         inode->i_op = &ext4_fast_symlink_inode_operations;
2794                 else {
2795                         inode->i_op = &ext4_symlink_inode_operations;
2796                         ext4_set_aops(inode);
2797                 }
2798         } else {
2799                 inode->i_op = &ext4_special_inode_operations;
2800                 if (raw_inode->i_block[0])
2801                         init_special_inode(inode, inode->i_mode,
2802                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2803                 else
2804                         init_special_inode(inode, inode->i_mode,
2805                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2806         }
2807         brelse (iloc.bh);
2808         ext4_set_inode_flags(inode);
2809         return;
2810
2811 bad_inode:
2812         make_bad_inode(inode);
2813         return;
2814 }
2815
2816 static int ext4_inode_blocks_set(handle_t *handle,
2817                                 struct ext4_inode *raw_inode,
2818                                 struct ext4_inode_info *ei)
2819 {
2820         struct inode *inode = &(ei->vfs_inode);
2821         u64 i_blocks = inode->i_blocks;
2822         struct super_block *sb = inode->i_sb;
2823         int err = 0;
2824
2825         if (i_blocks <= ~0U) {
2826                 /*
2827                  * i_blocks can be represnted in a 32 bit variable
2828                  * as multiple of 512 bytes
2829                  */
2830                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2831                 raw_inode->i_blocks_high = 0;
2832                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2833         } else if (i_blocks <= 0xffffffffffffULL) {
2834                 /*
2835                  * i_blocks can be represented in a 48 bit variable
2836                  * as multiple of 512 bytes
2837                  */
2838                 err = ext4_update_rocompat_feature(handle, sb,
2839                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2840                 if (err)
2841                         goto  err_out;
2842                 /* i_block is stored in the split  48 bit fields */
2843                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2844                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2845                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2846         } else {
2847                 /*
2848                  * i_blocks should be represented in a 48 bit variable
2849                  * as multiple of  file system block size
2850                  */
2851                 err = ext4_update_rocompat_feature(handle, sb,
2852                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2853                 if (err)
2854                         goto  err_out;
2855                 ei->i_flags |= EXT4_HUGE_FILE_FL;
2856                 /* i_block is stored in file system block size */
2857                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2858                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2859                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2860         }
2861 err_out:
2862         return err;
2863 }
2864
2865 /*
2866  * Post the struct inode info into an on-disk inode location in the
2867  * buffer-cache.  This gobbles the caller's reference to the
2868  * buffer_head in the inode location struct.
2869  *
2870  * The caller must have write access to iloc->bh.
2871  */
2872 static int ext4_do_update_inode(handle_t *handle,
2873                                 struct inode *inode,
2874                                 struct ext4_iloc *iloc)
2875 {
2876         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2877         struct ext4_inode_info *ei = EXT4_I(inode);
2878         struct buffer_head *bh = iloc->bh;
2879         int err = 0, rc, block;
2880
2881         /* For fields not not tracking in the in-memory inode,
2882          * initialise them to zero for new inodes. */
2883         if (ei->i_state & EXT4_STATE_NEW)
2884                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2885
2886         ext4_get_inode_flags(ei);
2887         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2888         if(!(test_opt(inode->i_sb, NO_UID32))) {
2889                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2890                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2891 /*
2892  * Fix up interoperability with old kernels. Otherwise, old inodes get
2893  * re-used with the upper 16 bits of the uid/gid intact
2894  */
2895                 if(!ei->i_dtime) {
2896                         raw_inode->i_uid_high =
2897                                 cpu_to_le16(high_16_bits(inode->i_uid));
2898                         raw_inode->i_gid_high =
2899                                 cpu_to_le16(high_16_bits(inode->i_gid));
2900                 } else {
2901                         raw_inode->i_uid_high = 0;
2902                         raw_inode->i_gid_high = 0;
2903                 }
2904         } else {
2905                 raw_inode->i_uid_low =
2906                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
2907                 raw_inode->i_gid_low =
2908                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
2909                 raw_inode->i_uid_high = 0;
2910                 raw_inode->i_gid_high = 0;
2911         }
2912         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2913
2914         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2915         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2916         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2917         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2918
2919         if (ext4_inode_blocks_set(handle, raw_inode, ei))
2920                 goto out_brelse;
2921         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2922         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2923         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2924             cpu_to_le32(EXT4_OS_HURD))
2925                 raw_inode->i_file_acl_high =
2926                         cpu_to_le16(ei->i_file_acl >> 32);
2927         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2928         ext4_isize_set(raw_inode, ei->i_disksize);
2929         if (ei->i_disksize > 0x7fffffffULL) {
2930                 struct super_block *sb = inode->i_sb;
2931                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2932                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2933                                 EXT4_SB(sb)->s_es->s_rev_level ==
2934                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2935                         /* If this is the first large file
2936                          * created, add a flag to the superblock.
2937                          */
2938                         err = ext4_journal_get_write_access(handle,
2939                                         EXT4_SB(sb)->s_sbh);
2940                         if (err)
2941                                 goto out_brelse;
2942                         ext4_update_dynamic_rev(sb);
2943                         EXT4_SET_RO_COMPAT_FEATURE(sb,
2944                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2945                         sb->s_dirt = 1;
2946                         handle->h_sync = 1;
2947                         err = ext4_journal_dirty_metadata(handle,
2948                                         EXT4_SB(sb)->s_sbh);
2949                 }
2950         }
2951         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2952         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2953                 if (old_valid_dev(inode->i_rdev)) {
2954                         raw_inode->i_block[0] =
2955                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
2956                         raw_inode->i_block[1] = 0;
2957                 } else {
2958                         raw_inode->i_block[0] = 0;
2959                         raw_inode->i_block[1] =
2960                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
2961                         raw_inode->i_block[2] = 0;
2962                 }
2963         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2964                 raw_inode->i_block[block] = ei->i_data[block];
2965
2966         if (ei->i_extra_isize)
2967                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2968
2969         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2970         rc = ext4_journal_dirty_metadata(handle, bh);
2971         if (!err)
2972                 err = rc;
2973         ei->i_state &= ~EXT4_STATE_NEW;
2974
2975 out_brelse:
2976         brelse (bh);
2977         ext4_std_error(inode->i_sb, err);
2978         return err;
2979 }
2980
2981 /*
2982  * ext4_write_inode()
2983  *
2984  * We are called from a few places:
2985  *
2986  * - Within generic_file_write() for O_SYNC files.
2987  *   Here, there will be no transaction running. We wait for any running
2988  *   trasnaction to commit.
2989  *
2990  * - Within sys_sync(), kupdate and such.
2991  *   We wait on commit, if tol to.
2992  *
2993  * - Within prune_icache() (PF_MEMALLOC == true)
2994  *   Here we simply return.  We can't afford to block kswapd on the
2995  *   journal commit.
2996  *
2997  * In all cases it is actually safe for us to return without doing anything,
2998  * because the inode has been copied into a raw inode buffer in
2999  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3000  * knfsd.
3001  *
3002  * Note that we are absolutely dependent upon all inode dirtiers doing the
3003  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3004  * which we are interested.
3005  *
3006  * It would be a bug for them to not do this.  The code:
3007  *
3008  *      mark_inode_dirty(inode)
3009  *      stuff();
3010  *      inode->i_size = expr;
3011  *
3012  * is in error because a kswapd-driven write_inode() could occur while
3013  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3014  * will no longer be on the superblock's dirty inode list.
3015  */
3016 int ext4_write_inode(struct inode *inode, int wait)
3017 {
3018         if (current->flags & PF_MEMALLOC)
3019                 return 0;
3020
3021         if (ext4_journal_current_handle()) {
3022                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3023                 dump_stack();
3024                 return -EIO;
3025         }
3026
3027         if (!wait)
3028                 return 0;
3029
3030         return ext4_force_commit(inode->i_sb);
3031 }
3032
3033 /*
3034  * ext4_setattr()
3035  *
3036  * Called from notify_change.
3037  *
3038  * We want to trap VFS attempts to truncate the file as soon as
3039  * possible.  In particular, we want to make sure that when the VFS
3040  * shrinks i_size, we put the inode on the orphan list and modify
3041  * i_disksize immediately, so that during the subsequent flushing of
3042  * dirty pages and freeing of disk blocks, we can guarantee that any
3043  * commit will leave the blocks being flushed in an unused state on
3044  * disk.  (On recovery, the inode will get truncated and the blocks will
3045  * be freed, so we have a strong guarantee that no future commit will
3046  * leave these blocks visible to the user.)
3047  *
3048  * Called with inode->sem down.
3049  */
3050 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3051 {
3052         struct inode *inode = dentry->d_inode;
3053         int error, rc = 0;
3054         const unsigned int ia_valid = attr->ia_valid;
3055
3056         error = inode_change_ok(inode, attr);
3057         if (error)
3058                 return error;
3059
3060         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3061                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3062                 handle_t *handle;
3063
3064                 /* (user+group)*(old+new) structure, inode write (sb,
3065                  * inode block, ? - but truncate inode update has it) */
3066                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3067                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3068                 if (IS_ERR(handle)) {
3069                         error = PTR_ERR(handle);
3070                         goto err_out;
3071                 }
3072                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3073                 if (error) {
3074                         ext4_journal_stop(handle);
3075                         return error;
3076                 }
3077                 /* Update corresponding info in inode so that everything is in
3078                  * one transaction */
3079                 if (attr->ia_valid & ATTR_UID)
3080                         inode->i_uid = attr->ia_uid;
3081                 if (attr->ia_valid & ATTR_GID)
3082                         inode->i_gid = attr->ia_gid;
3083                 error = ext4_mark_inode_dirty(handle, inode);
3084                 ext4_journal_stop(handle);
3085         }
3086
3087         if (attr->ia_valid & ATTR_SIZE) {
3088                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3089                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3090
3091                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3092                                 error = -EFBIG;
3093                                 goto err_out;
3094                         }
3095                 }
3096         }
3097
3098         if (S_ISREG(inode->i_mode) &&
3099             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3100                 handle_t *handle;
3101
3102                 handle = ext4_journal_start(inode, 3);
3103                 if (IS_ERR(handle)) {
3104                         error = PTR_ERR(handle);
3105                         goto err_out;
3106                 }
3107
3108                 error = ext4_orphan_add(handle, inode);
3109                 EXT4_I(inode)->i_disksize = attr->ia_size;
3110                 rc = ext4_mark_inode_dirty(handle, inode);
3111                 if (!error)
3112                         error = rc;
3113                 ext4_journal_stop(handle);
3114         }
3115
3116         rc = inode_setattr(inode, attr);
3117
3118         /* If inode_setattr's call to ext4_truncate failed to get a
3119          * transaction handle at all, we need to clean up the in-core
3120          * orphan list manually. */
3121         if (inode->i_nlink)
3122                 ext4_orphan_del(NULL, inode);
3123
3124         if (!rc && (ia_valid & ATTR_MODE))
3125                 rc = ext4_acl_chmod(inode);
3126
3127 err_out:
3128         ext4_std_error(inode->i_sb, error);
3129         if (!error)
3130                 error = rc;
3131         return error;
3132 }
3133
3134
3135 /*
3136  * How many blocks doth make a writepage()?
3137  *
3138  * With N blocks per page, it may be:
3139  * N data blocks
3140  * 2 indirect block
3141  * 2 dindirect
3142  * 1 tindirect
3143  * N+5 bitmap blocks (from the above)
3144  * N+5 group descriptor summary blocks
3145  * 1 inode block
3146  * 1 superblock.
3147  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3148  *
3149  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3150  *
3151  * With ordered or writeback data it's the same, less the N data blocks.
3152  *
3153  * If the inode's direct blocks can hold an integral number of pages then a
3154  * page cannot straddle two indirect blocks, and we can only touch one indirect
3155  * and dindirect block, and the "5" above becomes "3".
3156  *
3157  * This still overestimates under most circumstances.  If we were to pass the
3158  * start and end offsets in here as well we could do block_to_path() on each
3159  * block and work out the exact number of indirects which are touched.  Pah.
3160  */
3161
3162 int ext4_writepage_trans_blocks(struct inode *inode)
3163 {
3164         int bpp = ext4_journal_blocks_per_page(inode);
3165         int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3166         int ret;
3167
3168         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3169                 return ext4_ext_writepage_trans_blocks(inode, bpp);
3170
3171         if (ext4_should_journal_data(inode))
3172                 ret = 3 * (bpp + indirects) + 2;
3173         else
3174                 ret = 2 * (bpp + indirects) + 2;
3175
3176 #ifdef CONFIG_QUOTA
3177         /* We know that structure was already allocated during DQUOT_INIT so
3178          * we will be updating only the data blocks + inodes */
3179         ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3180 #endif
3181
3182         return ret;
3183 }
3184
3185 /*
3186  * The caller must have previously called ext4_reserve_inode_write().
3187  * Give this, we know that the caller already has write access to iloc->bh.
3188  */
3189 int ext4_mark_iloc_dirty(handle_t *handle,
3190                 struct inode *inode, struct ext4_iloc *iloc)
3191 {
3192         int err = 0;
3193
3194         /* the do_update_inode consumes one bh->b_count */
3195         get_bh(iloc->bh);
3196
3197         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3198         err = ext4_do_update_inode(handle, inode, iloc);
3199         put_bh(iloc->bh);
3200         return err;
3201 }
3202
3203 /*
3204  * On success, We end up with an outstanding reference count against
3205  * iloc->bh.  This _must_ be cleaned up later.
3206  */
3207
3208 int
3209 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3210                          struct ext4_iloc *iloc)
3211 {
3212         int err = 0;
3213         if (handle) {
3214                 err = ext4_get_inode_loc(inode, iloc);
3215                 if (!err) {
3216                         BUFFER_TRACE(iloc->bh, "get_write_access");
3217                         err = ext4_journal_get_write_access(handle, iloc->bh);
3218                         if (err) {
3219                                 brelse(iloc->bh);
3220                                 iloc->bh = NULL;
3221                         }
3222                 }
3223         }
3224         ext4_std_error(inode->i_sb, err);
3225         return err;
3226 }
3227
3228 /*
3229  * Expand an inode by new_extra_isize bytes.
3230  * Returns 0 on success or negative error number on failure.
3231  */
3232 static int ext4_expand_extra_isize(struct inode *inode,
3233                                    unsigned int new_extra_isize,
3234                                    struct ext4_iloc iloc,
3235                                    handle_t *handle)
3236 {
3237         struct ext4_inode *raw_inode;
3238         struct ext4_xattr_ibody_header *header;
3239         struct ext4_xattr_entry *entry;
3240
3241         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3242                 return 0;
3243
3244         raw_inode = ext4_raw_inode(&iloc);
3245
3246         header = IHDR(inode, raw_inode);
3247         entry = IFIRST(header);
3248
3249         /* No extended attributes present */
3250         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3251                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3252                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3253                         new_extra_isize);
3254                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3255                 return 0;
3256         }
3257
3258         /* try to expand with EAs present */
3259         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3260                                           raw_inode, handle);
3261 }
3262
3263 /*
3264  * What we do here is to mark the in-core inode as clean with respect to inode
3265  * dirtiness (it may still be data-dirty).
3266  * This means that the in-core inode may be reaped by prune_icache
3267  * without having to perform any I/O.  This is a very good thing,
3268  * because *any* task may call prune_icache - even ones which
3269  * have a transaction open against a different journal.
3270  *
3271  * Is this cheating?  Not really.  Sure, we haven't written the
3272  * inode out, but prune_icache isn't a user-visible syncing function.
3273  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3274  * we start and wait on commits.
3275  *
3276  * Is this efficient/effective?  Well, we're being nice to the system
3277  * by cleaning up our inodes proactively so they can be reaped
3278  * without I/O.  But we are potentially leaving up to five seconds'
3279  * worth of inodes floating about which prune_icache wants us to
3280  * write out.  One way to fix that would be to get prune_icache()
3281  * to do a write_super() to free up some memory.  It has the desired
3282  * effect.
3283  */
3284 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3285 {
3286         struct ext4_iloc iloc;
3287         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3288         static unsigned int mnt_count;
3289         int err, ret;
3290
3291         might_sleep();
3292         err = ext4_reserve_inode_write(handle, inode, &iloc);
3293         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3294             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3295                 /*
3296                  * We need extra buffer credits since we may write into EA block
3297                  * with this same handle. If journal_extend fails, then it will
3298                  * only result in a minor loss of functionality for that inode.
3299                  * If this is felt to be critical, then e2fsck should be run to
3300                  * force a large enough s_min_extra_isize.
3301                  */
3302                 if ((jbd2_journal_extend(handle,
3303                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3304                         ret = ext4_expand_extra_isize(inode,
3305                                                       sbi->s_want_extra_isize,
3306                                                       iloc, handle);
3307                         if (ret) {
3308                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3309                                 if (mnt_count !=
3310                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
3311                                         ext4_warning(inode->i_sb, __FUNCTION__,
3312                                         "Unable to expand inode %lu. Delete"
3313                                         " some EAs or run e2fsck.",
3314                                         inode->i_ino);
3315                                         mnt_count =
3316                                           le16_to_cpu(sbi->s_es->s_mnt_count);
3317                                 }
3318                         }
3319                 }
3320         }
3321         if (!err)
3322                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3323         return err;
3324 }
3325
3326 /*
3327  * ext4_dirty_inode() is called from __mark_inode_dirty()
3328  *
3329  * We're really interested in the case where a file is being extended.
3330  * i_size has been changed by generic_commit_write() and we thus need
3331  * to include the updated inode in the current transaction.
3332  *
3333  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3334  * are allocated to the file.
3335  *
3336  * If the inode is marked synchronous, we don't honour that here - doing
3337  * so would cause a commit on atime updates, which we don't bother doing.
3338  * We handle synchronous inodes at the highest possible level.
3339  */
3340 void ext4_dirty_inode(struct inode *inode)
3341 {
3342         handle_t *current_handle = ext4_journal_current_handle();
3343         handle_t *handle;
3344
3345         handle = ext4_journal_start(inode, 2);
3346         if (IS_ERR(handle))
3347                 goto out;
3348         if (current_handle &&
3349                 current_handle->h_transaction != handle->h_transaction) {
3350                 /* This task has a transaction open against a different fs */
3351                 printk(KERN_EMERG "%s: transactions do not match!\n",
3352                        __FUNCTION__);
3353         } else {
3354                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3355                                 current_handle);
3356                 ext4_mark_inode_dirty(handle, inode);
3357         }
3358         ext4_journal_stop(handle);
3359 out:
3360         return;
3361 }
3362
3363 #if 0
3364 /*
3365  * Bind an inode's backing buffer_head into this transaction, to prevent
3366  * it from being flushed to disk early.  Unlike
3367  * ext4_reserve_inode_write, this leaves behind no bh reference and
3368  * returns no iloc structure, so the caller needs to repeat the iloc
3369  * lookup to mark the inode dirty later.
3370  */
3371 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3372 {
3373         struct ext4_iloc iloc;
3374
3375         int err = 0;
3376         if (handle) {
3377                 err = ext4_get_inode_loc(inode, &iloc);
3378                 if (!err) {
3379                         BUFFER_TRACE(iloc.bh, "get_write_access");
3380                         err = jbd2_journal_get_write_access(handle, iloc.bh);
3381                         if (!err)
3382                                 err = ext4_journal_dirty_metadata(handle,
3383                                                                   iloc.bh);
3384                         brelse(iloc.bh);
3385                 }
3386         }
3387         ext4_std_error(inode->i_sb, err);
3388         return err;
3389 }
3390 #endif
3391
3392 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3393 {
3394         journal_t *journal;
3395         handle_t *handle;
3396         int err;
3397
3398         /*
3399          * We have to be very careful here: changing a data block's
3400          * journaling status dynamically is dangerous.  If we write a
3401          * data block to the journal, change the status and then delete
3402          * that block, we risk forgetting to revoke the old log record
3403          * from the journal and so a subsequent replay can corrupt data.
3404          * So, first we make sure that the journal is empty and that
3405          * nobody is changing anything.
3406          */
3407
3408         journal = EXT4_JOURNAL(inode);
3409         if (is_journal_aborted(journal))
3410                 return -EROFS;
3411
3412         jbd2_journal_lock_updates(journal);
3413         jbd2_journal_flush(journal);
3414
3415         /*
3416          * OK, there are no updates running now, and all cached data is
3417          * synced to disk.  We are now in a completely consistent state
3418          * which doesn't have anything in the journal, and we know that
3419          * no filesystem updates are running, so it is safe to modify
3420          * the inode's in-core data-journaling state flag now.
3421          */
3422
3423         if (val)
3424                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3425         else
3426                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3427         ext4_set_aops(inode);
3428
3429         jbd2_journal_unlock_updates(journal);
3430
3431         /* Finally we can mark the inode as dirty. */
3432
3433         handle = ext4_journal_start(inode, 1);
3434         if (IS_ERR(handle))
3435                 return PTR_ERR(handle);
3436
3437         err = ext4_mark_inode_dirty(handle, inode);
3438         handle->h_sync = 1;
3439         ext4_journal_stop(handle);
3440         ext4_std_error(inode->i_sb, err);
3441
3442         return err;
3443 }