]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ext4/balloc.c
ext4: Return after ext4_error in case of failures
[linux-2.6-omap-h63xx.git] / fs / ext4 / balloc.c
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22
23 #include "group.h"
24 /*
25  * balloc.c contains the blocks allocation and deallocation routines
26  */
27
28 /*
29  * Calculate the block group number and offset, given a block number
30  */
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32                 ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
33 {
34         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35         ext4_grpblk_t offset;
36
37         blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38         offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39         if (offsetp)
40                 *offsetp = offset;
41         if (blockgrpp)
42                 *blockgrpp = blocknr;
43
44 }
45
46 /* Initializes an uninitialized block bitmap if given, and returns the
47  * number of blocks free in the group. */
48 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
49                  ext4_group_t block_group, struct ext4_group_desc *gdp)
50 {
51         unsigned long start;
52         int bit, bit_max;
53         unsigned free_blocks, group_blocks;
54         struct ext4_sb_info *sbi = EXT4_SB(sb);
55
56         if (bh) {
57                 J_ASSERT_BH(bh, buffer_locked(bh));
58
59                 /* If checksum is bad mark all blocks used to prevent allocation
60                  * essentially implementing a per-group read-only flag. */
61                 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
62                         ext4_error(sb, __FUNCTION__,
63                                   "Checksum bad for group %lu\n", block_group);
64                         gdp->bg_free_blocks_count = 0;
65                         gdp->bg_free_inodes_count = 0;
66                         gdp->bg_itable_unused = 0;
67                         memset(bh->b_data, 0xff, sb->s_blocksize);
68                         return 0;
69                 }
70                 memset(bh->b_data, 0, sb->s_blocksize);
71         }
72
73         /* Check for superblock and gdt backups in this group */
74         bit_max = ext4_bg_has_super(sb, block_group);
75
76         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
77             block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
78                           sbi->s_desc_per_block) {
79                 if (bit_max) {
80                         bit_max += ext4_bg_num_gdb(sb, block_group);
81                         bit_max +=
82                                 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
83                 }
84         } else { /* For META_BG_BLOCK_GROUPS */
85                 int group_rel = (block_group -
86                                  le32_to_cpu(sbi->s_es->s_first_meta_bg)) %
87                                 EXT4_DESC_PER_BLOCK(sb);
88                 if (group_rel == 0 || group_rel == 1 ||
89                     (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1))
90                         bit_max += 1;
91         }
92
93         if (block_group == sbi->s_groups_count - 1) {
94                 /*
95                  * Even though mke2fs always initialize first and last group
96                  * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
97                  * to make sure we calculate the right free blocks
98                  */
99                 group_blocks = ext4_blocks_count(sbi->s_es) -
100                         le32_to_cpu(sbi->s_es->s_first_data_block) -
101                         (EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
102         } else {
103                 group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
104         }
105
106         free_blocks = group_blocks - bit_max;
107
108         if (bh) {
109                 for (bit = 0; bit < bit_max; bit++)
110                         ext4_set_bit(bit, bh->b_data);
111
112                 start = block_group * EXT4_BLOCKS_PER_GROUP(sb) +
113                         le32_to_cpu(sbi->s_es->s_first_data_block);
114
115                 /* Set bits for block and inode bitmaps, and inode table */
116                 ext4_set_bit(ext4_block_bitmap(sb, gdp) - start, bh->b_data);
117                 ext4_set_bit(ext4_inode_bitmap(sb, gdp) - start, bh->b_data);
118                 for (bit = (ext4_inode_table(sb, gdp) - start),
119                      bit_max = bit + sbi->s_itb_per_group; bit < bit_max; bit++)
120                         ext4_set_bit(bit, bh->b_data);
121
122                 /*
123                  * Also if the number of blocks within the group is
124                  * less than the blocksize * 8 ( which is the size
125                  * of bitmap ), set rest of the block bitmap to 1
126                  */
127                 mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
128         }
129
130         return free_blocks - sbi->s_itb_per_group - 2;
131 }
132
133
134 /*
135  * The free blocks are managed by bitmaps.  A file system contains several
136  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
137  * block for inodes, N blocks for the inode table and data blocks.
138  *
139  * The file system contains group descriptors which are located after the
140  * super block.  Each descriptor contains the number of the bitmap block and
141  * the free blocks count in the block.  The descriptors are loaded in memory
142  * when a file system is mounted (see ext4_fill_super).
143  */
144
145
146 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
147
148 /**
149  * ext4_get_group_desc() -- load group descriptor from disk
150  * @sb:                 super block
151  * @block_group:        given block group
152  * @bh:                 pointer to the buffer head to store the block
153  *                      group descriptor
154  */
155 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
156                                              ext4_group_t block_group,
157                                              struct buffer_head ** bh)
158 {
159         unsigned long group_desc;
160         unsigned long offset;
161         struct ext4_group_desc * desc;
162         struct ext4_sb_info *sbi = EXT4_SB(sb);
163
164         if (block_group >= sbi->s_groups_count) {
165                 ext4_error (sb, "ext4_get_group_desc",
166                             "block_group >= groups_count - "
167                             "block_group = %lu, groups_count = %lu",
168                             block_group, sbi->s_groups_count);
169
170                 return NULL;
171         }
172         smp_rmb();
173
174         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
175         offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
176         if (!sbi->s_group_desc[group_desc]) {
177                 ext4_error (sb, "ext4_get_group_desc",
178                             "Group descriptor not loaded - "
179                             "block_group = %lu, group_desc = %lu, desc = %lu",
180                              block_group, group_desc, offset);
181                 return NULL;
182         }
183
184         desc = (struct ext4_group_desc *)(
185                 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
186                 offset * EXT4_DESC_SIZE(sb));
187         if (bh)
188                 *bh = sbi->s_group_desc[group_desc];
189         return desc;
190 }
191
192 /**
193  * read_block_bitmap()
194  * @sb:                 super block
195  * @block_group:        given block group
196  *
197  * Read the bitmap for a given block_group, reading into the specified
198  * slot in the superblock's bitmap cache.
199  *
200  * Return buffer_head on success or NULL in case of failure.
201  */
202 struct buffer_head *
203 read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
204 {
205         struct ext4_group_desc * desc;
206         struct buffer_head * bh = NULL;
207         ext4_fsblk_t bitmap_blk;
208
209         desc = ext4_get_group_desc(sb, block_group, NULL);
210         if (!desc)
211                 return NULL;
212         bitmap_blk = ext4_block_bitmap(sb, desc);
213         if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
214                 bh = sb_getblk(sb, bitmap_blk);
215                 if (!buffer_uptodate(bh)) {
216                         lock_buffer(bh);
217                         if (!buffer_uptodate(bh)) {
218                                 ext4_init_block_bitmap(sb, bh, block_group,
219                                                        desc);
220                                 set_buffer_uptodate(bh);
221                         }
222                         unlock_buffer(bh);
223                 }
224         } else {
225                 bh = sb_bread(sb, bitmap_blk);
226         }
227         if (!bh)
228                 ext4_error (sb, __FUNCTION__,
229                             "Cannot read block bitmap - "
230                             "block_group = %lu, block_bitmap = %llu",
231                             block_group, bitmap_blk);
232         return bh;
233 }
234 /*
235  * The reservation window structure operations
236  * --------------------------------------------
237  * Operations include:
238  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
239  *
240  * We use a red-black tree to represent per-filesystem reservation
241  * windows.
242  *
243  */
244
245 /**
246  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
247  * @rb_root:            root of per-filesystem reservation rb tree
248  * @verbose:            verbose mode
249  * @fn:                 function which wishes to dump the reservation map
250  *
251  * If verbose is turned on, it will print the whole block reservation
252  * windows(start, end). Otherwise, it will only print out the "bad" windows,
253  * those windows that overlap with their immediate neighbors.
254  */
255 #if 1
256 static void __rsv_window_dump(struct rb_root *root, int verbose,
257                               const char *fn)
258 {
259         struct rb_node *n;
260         struct ext4_reserve_window_node *rsv, *prev;
261         int bad;
262
263 restart:
264         n = rb_first(root);
265         bad = 0;
266         prev = NULL;
267
268         printk("Block Allocation Reservation Windows Map (%s):\n", fn);
269         while (n) {
270                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
271                 if (verbose)
272                         printk("reservation window 0x%p "
273                                "start:  %llu, end:  %llu\n",
274                                rsv, rsv->rsv_start, rsv->rsv_end);
275                 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
276                         printk("Bad reservation %p (start >= end)\n",
277                                rsv);
278                         bad = 1;
279                 }
280                 if (prev && prev->rsv_end >= rsv->rsv_start) {
281                         printk("Bad reservation %p (prev->end >= start)\n",
282                                rsv);
283                         bad = 1;
284                 }
285                 if (bad) {
286                         if (!verbose) {
287                                 printk("Restarting reservation walk in verbose mode\n");
288                                 verbose = 1;
289                                 goto restart;
290                         }
291                 }
292                 n = rb_next(n);
293                 prev = rsv;
294         }
295         printk("Window map complete.\n");
296         if (bad)
297                 BUG();
298 }
299 #define rsv_window_dump(root, verbose) \
300         __rsv_window_dump((root), (verbose), __FUNCTION__)
301 #else
302 #define rsv_window_dump(root, verbose) do {} while (0)
303 #endif
304
305 /**
306  * goal_in_my_reservation()
307  * @rsv:                inode's reservation window
308  * @grp_goal:           given goal block relative to the allocation block group
309  * @group:              the current allocation block group
310  * @sb:                 filesystem super block
311  *
312  * Test if the given goal block (group relative) is within the file's
313  * own block reservation window range.
314  *
315  * If the reservation window is outside the goal allocation group, return 0;
316  * grp_goal (given goal block) could be -1, which means no specific
317  * goal block. In this case, always return 1.
318  * If the goal block is within the reservation window, return 1;
319  * otherwise, return 0;
320  */
321 static int
322 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
323                         ext4_group_t group, struct super_block *sb)
324 {
325         ext4_fsblk_t group_first_block, group_last_block;
326
327         group_first_block = ext4_group_first_block_no(sb, group);
328         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
329
330         if ((rsv->_rsv_start > group_last_block) ||
331             (rsv->_rsv_end < group_first_block))
332                 return 0;
333         if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
334                 || (grp_goal + group_first_block > rsv->_rsv_end)))
335                 return 0;
336         return 1;
337 }
338
339 /**
340  * search_reserve_window()
341  * @rb_root:            root of reservation tree
342  * @goal:               target allocation block
343  *
344  * Find the reserved window which includes the goal, or the previous one
345  * if the goal is not in any window.
346  * Returns NULL if there are no windows or if all windows start after the goal.
347  */
348 static struct ext4_reserve_window_node *
349 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
350 {
351         struct rb_node *n = root->rb_node;
352         struct ext4_reserve_window_node *rsv;
353
354         if (!n)
355                 return NULL;
356
357         do {
358                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
359
360                 if (goal < rsv->rsv_start)
361                         n = n->rb_left;
362                 else if (goal > rsv->rsv_end)
363                         n = n->rb_right;
364                 else
365                         return rsv;
366         } while (n);
367         /*
368          * We've fallen off the end of the tree: the goal wasn't inside
369          * any particular node.  OK, the previous node must be to one
370          * side of the interval containing the goal.  If it's the RHS,
371          * we need to back up one.
372          */
373         if (rsv->rsv_start > goal) {
374                 n = rb_prev(&rsv->rsv_node);
375                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
376         }
377         return rsv;
378 }
379
380 /**
381  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
382  * @sb:                 super block
383  * @rsv:                reservation window to add
384  *
385  * Must be called with rsv_lock hold.
386  */
387 void ext4_rsv_window_add(struct super_block *sb,
388                     struct ext4_reserve_window_node *rsv)
389 {
390         struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
391         struct rb_node *node = &rsv->rsv_node;
392         ext4_fsblk_t start = rsv->rsv_start;
393
394         struct rb_node ** p = &root->rb_node;
395         struct rb_node * parent = NULL;
396         struct ext4_reserve_window_node *this;
397
398         while (*p)
399         {
400                 parent = *p;
401                 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
402
403                 if (start < this->rsv_start)
404                         p = &(*p)->rb_left;
405                 else if (start > this->rsv_end)
406                         p = &(*p)->rb_right;
407                 else {
408                         rsv_window_dump(root, 1);
409                         BUG();
410                 }
411         }
412
413         rb_link_node(node, parent, p);
414         rb_insert_color(node, root);
415 }
416
417 /**
418  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
419  * @sb:                 super block
420  * @rsv:                reservation window to remove
421  *
422  * Mark the block reservation window as not allocated, and unlink it
423  * from the filesystem reservation window rb tree. Must be called with
424  * rsv_lock hold.
425  */
426 static void rsv_window_remove(struct super_block *sb,
427                               struct ext4_reserve_window_node *rsv)
428 {
429         rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
430         rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
431         rsv->rsv_alloc_hit = 0;
432         rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
433 }
434
435 /*
436  * rsv_is_empty() -- Check if the reservation window is allocated.
437  * @rsv:                given reservation window to check
438  *
439  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
440  */
441 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
442 {
443         /* a valid reservation end block could not be 0 */
444         return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
445 }
446
447 /**
448  * ext4_init_block_alloc_info()
449  * @inode:              file inode structure
450  *
451  * Allocate and initialize the  reservation window structure, and
452  * link the window to the ext4 inode structure at last
453  *
454  * The reservation window structure is only dynamically allocated
455  * and linked to ext4 inode the first time the open file
456  * needs a new block. So, before every ext4_new_block(s) call, for
457  * regular files, we should check whether the reservation window
458  * structure exists or not. In the latter case, this function is called.
459  * Fail to do so will result in block reservation being turned off for that
460  * open file.
461  *
462  * This function is called from ext4_get_blocks_handle(), also called
463  * when setting the reservation window size through ioctl before the file
464  * is open for write (needs block allocation).
465  *
466  * Needs truncate_mutex protection prior to call this function.
467  */
468 void ext4_init_block_alloc_info(struct inode *inode)
469 {
470         struct ext4_inode_info *ei = EXT4_I(inode);
471         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
472         struct super_block *sb = inode->i_sb;
473
474         block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
475         if (block_i) {
476                 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
477
478                 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
479                 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
480
481                 /*
482                  * if filesystem is mounted with NORESERVATION, the goal
483                  * reservation window size is set to zero to indicate
484                  * block reservation is off
485                  */
486                 if (!test_opt(sb, RESERVATION))
487                         rsv->rsv_goal_size = 0;
488                 else
489                         rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
490                 rsv->rsv_alloc_hit = 0;
491                 block_i->last_alloc_logical_block = 0;
492                 block_i->last_alloc_physical_block = 0;
493         }
494         ei->i_block_alloc_info = block_i;
495 }
496
497 /**
498  * ext4_discard_reservation()
499  * @inode:              inode
500  *
501  * Discard(free) block reservation window on last file close, or truncate
502  * or at last iput().
503  *
504  * It is being called in three cases:
505  *      ext4_release_file(): last writer close the file
506  *      ext4_clear_inode(): last iput(), when nobody link to this file.
507  *      ext4_truncate(): when the block indirect map is about to change.
508  *
509  */
510 void ext4_discard_reservation(struct inode *inode)
511 {
512         struct ext4_inode_info *ei = EXT4_I(inode);
513         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
514         struct ext4_reserve_window_node *rsv;
515         spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
516
517         if (!block_i)
518                 return;
519
520         rsv = &block_i->rsv_window_node;
521         if (!rsv_is_empty(&rsv->rsv_window)) {
522                 spin_lock(rsv_lock);
523                 if (!rsv_is_empty(&rsv->rsv_window))
524                         rsv_window_remove(inode->i_sb, rsv);
525                 spin_unlock(rsv_lock);
526         }
527 }
528
529 /**
530  * ext4_free_blocks_sb() -- Free given blocks and update quota
531  * @handle:                     handle to this transaction
532  * @sb:                         super block
533  * @block:                      start physcial block to free
534  * @count:                      number of blocks to free
535  * @pdquot_freed_blocks:        pointer to quota
536  */
537 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
538                          ext4_fsblk_t block, unsigned long count,
539                          unsigned long *pdquot_freed_blocks)
540 {
541         struct buffer_head *bitmap_bh = NULL;
542         struct buffer_head *gd_bh;
543         ext4_group_t block_group;
544         ext4_grpblk_t bit;
545         unsigned long i;
546         unsigned long overflow;
547         struct ext4_group_desc * desc;
548         struct ext4_super_block * es;
549         struct ext4_sb_info *sbi;
550         int err = 0, ret;
551         ext4_grpblk_t group_freed;
552
553         *pdquot_freed_blocks = 0;
554         sbi = EXT4_SB(sb);
555         es = sbi->s_es;
556         if (block < le32_to_cpu(es->s_first_data_block) ||
557             block + count < block ||
558             block + count > ext4_blocks_count(es)) {
559                 ext4_error (sb, "ext4_free_blocks",
560                             "Freeing blocks not in datazone - "
561                             "block = %llu, count = %lu", block, count);
562                 goto error_return;
563         }
564
565         ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
566
567 do_more:
568         overflow = 0;
569         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
570         /*
571          * Check to see if we are freeing blocks across a group
572          * boundary.
573          */
574         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
575                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
576                 count -= overflow;
577         }
578         brelse(bitmap_bh);
579         bitmap_bh = read_block_bitmap(sb, block_group);
580         if (!bitmap_bh)
581                 goto error_return;
582         desc = ext4_get_group_desc (sb, block_group, &gd_bh);
583         if (!desc)
584                 goto error_return;
585
586         if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
587             in_range(ext4_inode_bitmap(sb, desc), block, count) ||
588             in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
589             in_range(block + count - 1, ext4_inode_table(sb, desc),
590                      sbi->s_itb_per_group)) {
591                 ext4_error (sb, "ext4_free_blocks",
592                             "Freeing blocks in system zones - "
593                             "Block = %llu, count = %lu",
594                             block, count);
595                 goto error_return;
596         }
597
598         /*
599          * We are about to start releasing blocks in the bitmap,
600          * so we need undo access.
601          */
602         /* @@@ check errors */
603         BUFFER_TRACE(bitmap_bh, "getting undo access");
604         err = ext4_journal_get_undo_access(handle, bitmap_bh);
605         if (err)
606                 goto error_return;
607
608         /*
609          * We are about to modify some metadata.  Call the journal APIs
610          * to unshare ->b_data if a currently-committing transaction is
611          * using it
612          */
613         BUFFER_TRACE(gd_bh, "get_write_access");
614         err = ext4_journal_get_write_access(handle, gd_bh);
615         if (err)
616                 goto error_return;
617
618         jbd_lock_bh_state(bitmap_bh);
619
620         for (i = 0, group_freed = 0; i < count; i++) {
621                 /*
622                  * An HJ special.  This is expensive...
623                  */
624 #ifdef CONFIG_JBD2_DEBUG
625                 jbd_unlock_bh_state(bitmap_bh);
626                 {
627                         struct buffer_head *debug_bh;
628                         debug_bh = sb_find_get_block(sb, block + i);
629                         if (debug_bh) {
630                                 BUFFER_TRACE(debug_bh, "Deleted!");
631                                 if (!bh2jh(bitmap_bh)->b_committed_data)
632                                         BUFFER_TRACE(debug_bh,
633                                                 "No commited data in bitmap");
634                                 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
635                                 __brelse(debug_bh);
636                         }
637                 }
638                 jbd_lock_bh_state(bitmap_bh);
639 #endif
640                 if (need_resched()) {
641                         jbd_unlock_bh_state(bitmap_bh);
642                         cond_resched();
643                         jbd_lock_bh_state(bitmap_bh);
644                 }
645                 /* @@@ This prevents newly-allocated data from being
646                  * freed and then reallocated within the same
647                  * transaction.
648                  *
649                  * Ideally we would want to allow that to happen, but to
650                  * do so requires making jbd2_journal_forget() capable of
651                  * revoking the queued write of a data block, which
652                  * implies blocking on the journal lock.  *forget()
653                  * cannot block due to truncate races.
654                  *
655                  * Eventually we can fix this by making jbd2_journal_forget()
656                  * return a status indicating whether or not it was able
657                  * to revoke the buffer.  On successful revoke, it is
658                  * safe not to set the allocation bit in the committed
659                  * bitmap, because we know that there is no outstanding
660                  * activity on the buffer any more and so it is safe to
661                  * reallocate it.
662                  */
663                 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
664                 J_ASSERT_BH(bitmap_bh,
665                                 bh2jh(bitmap_bh)->b_committed_data != NULL);
666                 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
667                                 bh2jh(bitmap_bh)->b_committed_data);
668
669                 /*
670                  * We clear the bit in the bitmap after setting the committed
671                  * data bit, because this is the reverse order to that which
672                  * the allocator uses.
673                  */
674                 BUFFER_TRACE(bitmap_bh, "clear bit");
675                 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
676                                                 bit + i, bitmap_bh->b_data)) {
677                         jbd_unlock_bh_state(bitmap_bh);
678                         ext4_error(sb, __FUNCTION__,
679                                    "bit already cleared for block %llu",
680                                    (ext4_fsblk_t)(block + i));
681                         jbd_lock_bh_state(bitmap_bh);
682                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
683                 } else {
684                         group_freed++;
685                 }
686         }
687         jbd_unlock_bh_state(bitmap_bh);
688
689         spin_lock(sb_bgl_lock(sbi, block_group));
690         desc->bg_free_blocks_count =
691                 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
692                         group_freed);
693         desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
694         spin_unlock(sb_bgl_lock(sbi, block_group));
695         percpu_counter_add(&sbi->s_freeblocks_counter, count);
696
697         /* We dirtied the bitmap block */
698         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
699         err = ext4_journal_dirty_metadata(handle, bitmap_bh);
700
701         /* And the group descriptor block */
702         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
703         ret = ext4_journal_dirty_metadata(handle, gd_bh);
704         if (!err) err = ret;
705         *pdquot_freed_blocks += group_freed;
706
707         if (overflow && !err) {
708                 block += count;
709                 count = overflow;
710                 goto do_more;
711         }
712         sb->s_dirt = 1;
713 error_return:
714         brelse(bitmap_bh);
715         ext4_std_error(sb, err);
716         return;
717 }
718
719 /**
720  * ext4_free_blocks() -- Free given blocks and update quota
721  * @handle:             handle for this transaction
722  * @inode:              inode
723  * @block:              start physical block to free
724  * @count:              number of blocks to count
725  */
726 void ext4_free_blocks(handle_t *handle, struct inode *inode,
727                         ext4_fsblk_t block, unsigned long count)
728 {
729         struct super_block * sb;
730         unsigned long dquot_freed_blocks;
731
732         sb = inode->i_sb;
733         if (!sb) {
734                 printk ("ext4_free_blocks: nonexistent device");
735                 return;
736         }
737         ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
738         if (dquot_freed_blocks)
739                 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
740         return;
741 }
742
743 /**
744  * ext4_test_allocatable()
745  * @nr:                 given allocation block group
746  * @bh:                 bufferhead contains the bitmap of the given block group
747  *
748  * For ext4 allocations, we must not reuse any blocks which are
749  * allocated in the bitmap buffer's "last committed data" copy.  This
750  * prevents deletes from freeing up the page for reuse until we have
751  * committed the delete transaction.
752  *
753  * If we didn't do this, then deleting something and reallocating it as
754  * data would allow the old block to be overwritten before the
755  * transaction committed (because we force data to disk before commit).
756  * This would lead to corruption if we crashed between overwriting the
757  * data and committing the delete.
758  *
759  * @@@ We may want to make this allocation behaviour conditional on
760  * data-writes at some point, and disable it for metadata allocations or
761  * sync-data inodes.
762  */
763 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
764 {
765         int ret;
766         struct journal_head *jh = bh2jh(bh);
767
768         if (ext4_test_bit(nr, bh->b_data))
769                 return 0;
770
771         jbd_lock_bh_state(bh);
772         if (!jh->b_committed_data)
773                 ret = 1;
774         else
775                 ret = !ext4_test_bit(nr, jh->b_committed_data);
776         jbd_unlock_bh_state(bh);
777         return ret;
778 }
779
780 /**
781  * bitmap_search_next_usable_block()
782  * @start:              the starting block (group relative) of the search
783  * @bh:                 bufferhead contains the block group bitmap
784  * @maxblocks:          the ending block (group relative) of the reservation
785  *
786  * The bitmap search --- search forward alternately through the actual
787  * bitmap on disk and the last-committed copy in journal, until we find a
788  * bit free in both bitmaps.
789  */
790 static ext4_grpblk_t
791 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
792                                         ext4_grpblk_t maxblocks)
793 {
794         ext4_grpblk_t next;
795         struct journal_head *jh = bh2jh(bh);
796
797         while (start < maxblocks) {
798                 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
799                 if (next >= maxblocks)
800                         return -1;
801                 if (ext4_test_allocatable(next, bh))
802                         return next;
803                 jbd_lock_bh_state(bh);
804                 if (jh->b_committed_data)
805                         start = ext4_find_next_zero_bit(jh->b_committed_data,
806                                                         maxblocks, next);
807                 jbd_unlock_bh_state(bh);
808         }
809         return -1;
810 }
811
812 /**
813  * find_next_usable_block()
814  * @start:              the starting block (group relative) to find next
815  *                      allocatable block in bitmap.
816  * @bh:                 bufferhead contains the block group bitmap
817  * @maxblocks:          the ending block (group relative) for the search
818  *
819  * Find an allocatable block in a bitmap.  We honor both the bitmap and
820  * its last-committed copy (if that exists), and perform the "most
821  * appropriate allocation" algorithm of looking for a free block near
822  * the initial goal; then for a free byte somewhere in the bitmap; then
823  * for any free bit in the bitmap.
824  */
825 static ext4_grpblk_t
826 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
827                         ext4_grpblk_t maxblocks)
828 {
829         ext4_grpblk_t here, next;
830         char *p, *r;
831
832         if (start > 0) {
833                 /*
834                  * The goal was occupied; search forward for a free
835                  * block within the next XX blocks.
836                  *
837                  * end_goal is more or less random, but it has to be
838                  * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
839                  * next 64-bit boundary is simple..
840                  */
841                 ext4_grpblk_t end_goal = (start + 63) & ~63;
842                 if (end_goal > maxblocks)
843                         end_goal = maxblocks;
844                 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
845                 if (here < end_goal && ext4_test_allocatable(here, bh))
846                         return here;
847                 ext4_debug("Bit not found near goal\n");
848         }
849
850         here = start;
851         if (here < 0)
852                 here = 0;
853
854         p = ((char *)bh->b_data) + (here >> 3);
855         r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
856         next = (r - ((char *)bh->b_data)) << 3;
857
858         if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
859                 return next;
860
861         /*
862          * The bitmap search --- search forward alternately through the actual
863          * bitmap and the last-committed copy until we find a bit free in
864          * both
865          */
866         here = bitmap_search_next_usable_block(here, bh, maxblocks);
867         return here;
868 }
869
870 /**
871  * claim_block()
872  * @block:              the free block (group relative) to allocate
873  * @bh:                 the bufferhead containts the block group bitmap
874  *
875  * We think we can allocate this block in this bitmap.  Try to set the bit.
876  * If that succeeds then check that nobody has allocated and then freed the
877  * block since we saw that is was not marked in b_committed_data.  If it _was_
878  * allocated and freed then clear the bit in the bitmap again and return
879  * zero (failure).
880  */
881 static inline int
882 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
883 {
884         struct journal_head *jh = bh2jh(bh);
885         int ret;
886
887         if (ext4_set_bit_atomic(lock, block, bh->b_data))
888                 return 0;
889         jbd_lock_bh_state(bh);
890         if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
891                 ext4_clear_bit_atomic(lock, block, bh->b_data);
892                 ret = 0;
893         } else {
894                 ret = 1;
895         }
896         jbd_unlock_bh_state(bh);
897         return ret;
898 }
899
900 /**
901  * ext4_try_to_allocate()
902  * @sb:                 superblock
903  * @handle:             handle to this transaction
904  * @group:              given allocation block group
905  * @bitmap_bh:          bufferhead holds the block bitmap
906  * @grp_goal:           given target block within the group
907  * @count:              target number of blocks to allocate
908  * @my_rsv:             reservation window
909  *
910  * Attempt to allocate blocks within a give range. Set the range of allocation
911  * first, then find the first free bit(s) from the bitmap (within the range),
912  * and at last, allocate the blocks by claiming the found free bit as allocated.
913  *
914  * To set the range of this allocation:
915  *      if there is a reservation window, only try to allocate block(s) from the
916  *      file's own reservation window;
917  *      Otherwise, the allocation range starts from the give goal block, ends at
918  *      the block group's last block.
919  *
920  * If we failed to allocate the desired block then we may end up crossing to a
921  * new bitmap.  In that case we must release write access to the old one via
922  * ext4_journal_release_buffer(), else we'll run out of credits.
923  */
924 static ext4_grpblk_t
925 ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
926                         ext4_group_t group, struct buffer_head *bitmap_bh,
927                         ext4_grpblk_t grp_goal, unsigned long *count,
928                         struct ext4_reserve_window *my_rsv)
929 {
930         ext4_fsblk_t group_first_block;
931         ext4_grpblk_t start, end;
932         unsigned long num = 0;
933
934         /* we do allocation within the reservation window if we have a window */
935         if (my_rsv) {
936                 group_first_block = ext4_group_first_block_no(sb, group);
937                 if (my_rsv->_rsv_start >= group_first_block)
938                         start = my_rsv->_rsv_start - group_first_block;
939                 else
940                         /* reservation window cross group boundary */
941                         start = 0;
942                 end = my_rsv->_rsv_end - group_first_block + 1;
943                 if (end > EXT4_BLOCKS_PER_GROUP(sb))
944                         /* reservation window crosses group boundary */
945                         end = EXT4_BLOCKS_PER_GROUP(sb);
946                 if ((start <= grp_goal) && (grp_goal < end))
947                         start = grp_goal;
948                 else
949                         grp_goal = -1;
950         } else {
951                 if (grp_goal > 0)
952                         start = grp_goal;
953                 else
954                         start = 0;
955                 end = EXT4_BLOCKS_PER_GROUP(sb);
956         }
957
958         BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
959
960 repeat:
961         if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
962                 grp_goal = find_next_usable_block(start, bitmap_bh, end);
963                 if (grp_goal < 0)
964                         goto fail_access;
965                 if (!my_rsv) {
966                         int i;
967
968                         for (i = 0; i < 7 && grp_goal > start &&
969                                         ext4_test_allocatable(grp_goal - 1,
970                                                                 bitmap_bh);
971                                         i++, grp_goal--)
972                                 ;
973                 }
974         }
975         start = grp_goal;
976
977         if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
978                 grp_goal, bitmap_bh)) {
979                 /*
980                  * The block was allocated by another thread, or it was
981                  * allocated and then freed by another thread
982                  */
983                 start++;
984                 grp_goal++;
985                 if (start >= end)
986                         goto fail_access;
987                 goto repeat;
988         }
989         num++;
990         grp_goal++;
991         while (num < *count && grp_goal < end
992                 && ext4_test_allocatable(grp_goal, bitmap_bh)
993                 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
994                                 grp_goal, bitmap_bh)) {
995                 num++;
996                 grp_goal++;
997         }
998         *count = num;
999         return grp_goal - num;
1000 fail_access:
1001         *count = num;
1002         return -1;
1003 }
1004
1005 /**
1006  *      find_next_reservable_window():
1007  *              find a reservable space within the given range.
1008  *              It does not allocate the reservation window for now:
1009  *              alloc_new_reservation() will do the work later.
1010  *
1011  *      @search_head: the head of the searching list;
1012  *              This is not necessarily the list head of the whole filesystem
1013  *
1014  *              We have both head and start_block to assist the search
1015  *              for the reservable space. The list starts from head,
1016  *              but we will shift to the place where start_block is,
1017  *              then start from there, when looking for a reservable space.
1018  *
1019  *      @size: the target new reservation window size
1020  *
1021  *      @group_first_block: the first block we consider to start
1022  *                      the real search from
1023  *
1024  *      @last_block:
1025  *              the maximum block number that our goal reservable space
1026  *              could start from. This is normally the last block in this
1027  *              group. The search will end when we found the start of next
1028  *              possible reservable space is out of this boundary.
1029  *              This could handle the cross boundary reservation window
1030  *              request.
1031  *
1032  *      basically we search from the given range, rather than the whole
1033  *      reservation double linked list, (start_block, last_block)
1034  *      to find a free region that is of my size and has not
1035  *      been reserved.
1036  *
1037  */
1038 static int find_next_reservable_window(
1039                                 struct ext4_reserve_window_node *search_head,
1040                                 struct ext4_reserve_window_node *my_rsv,
1041                                 struct super_block * sb,
1042                                 ext4_fsblk_t start_block,
1043                                 ext4_fsblk_t last_block)
1044 {
1045         struct rb_node *next;
1046         struct ext4_reserve_window_node *rsv, *prev;
1047         ext4_fsblk_t cur;
1048         int size = my_rsv->rsv_goal_size;
1049
1050         /* TODO: make the start of the reservation window byte-aligned */
1051         /* cur = *start_block & ~7;*/
1052         cur = start_block;
1053         rsv = search_head;
1054         if (!rsv)
1055                 return -1;
1056
1057         while (1) {
1058                 if (cur <= rsv->rsv_end)
1059                         cur = rsv->rsv_end + 1;
1060
1061                 /* TODO?
1062                  * in the case we could not find a reservable space
1063                  * that is what is expected, during the re-search, we could
1064                  * remember what's the largest reservable space we could have
1065                  * and return that one.
1066                  *
1067                  * For now it will fail if we could not find the reservable
1068                  * space with expected-size (or more)...
1069                  */
1070                 if (cur > last_block)
1071                         return -1;              /* fail */
1072
1073                 prev = rsv;
1074                 next = rb_next(&rsv->rsv_node);
1075                 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1076
1077                 /*
1078                  * Reached the last reservation, we can just append to the
1079                  * previous one.
1080                  */
1081                 if (!next)
1082                         break;
1083
1084                 if (cur + size <= rsv->rsv_start) {
1085                         /*
1086                          * Found a reserveable space big enough.  We could
1087                          * have a reservation across the group boundary here
1088                          */
1089                         break;
1090                 }
1091         }
1092         /*
1093          * we come here either :
1094          * when we reach the end of the whole list,
1095          * and there is empty reservable space after last entry in the list.
1096          * append it to the end of the list.
1097          *
1098          * or we found one reservable space in the middle of the list,
1099          * return the reservation window that we could append to.
1100          * succeed.
1101          */
1102
1103         if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1104                 rsv_window_remove(sb, my_rsv);
1105
1106         /*
1107          * Let's book the whole avaliable window for now.  We will check the
1108          * disk bitmap later and then, if there are free blocks then we adjust
1109          * the window size if it's larger than requested.
1110          * Otherwise, we will remove this node from the tree next time
1111          * call find_next_reservable_window.
1112          */
1113         my_rsv->rsv_start = cur;
1114         my_rsv->rsv_end = cur + size - 1;
1115         my_rsv->rsv_alloc_hit = 0;
1116
1117         if (prev != my_rsv)
1118                 ext4_rsv_window_add(sb, my_rsv);
1119
1120         return 0;
1121 }
1122
1123 /**
1124  *      alloc_new_reservation()--allocate a new reservation window
1125  *
1126  *              To make a new reservation, we search part of the filesystem
1127  *              reservation list (the list that inside the group). We try to
1128  *              allocate a new reservation window near the allocation goal,
1129  *              or the beginning of the group, if there is no goal.
1130  *
1131  *              We first find a reservable space after the goal, then from
1132  *              there, we check the bitmap for the first free block after
1133  *              it. If there is no free block until the end of group, then the
1134  *              whole group is full, we failed. Otherwise, check if the free
1135  *              block is inside the expected reservable space, if so, we
1136  *              succeed.
1137  *              If the first free block is outside the reservable space, then
1138  *              start from the first free block, we search for next available
1139  *              space, and go on.
1140  *
1141  *      on succeed, a new reservation will be found and inserted into the list
1142  *      It contains at least one free block, and it does not overlap with other
1143  *      reservation windows.
1144  *
1145  *      failed: we failed to find a reservation window in this group
1146  *
1147  *      @rsv: the reservation
1148  *
1149  *      @grp_goal: The goal (group-relative).  It is where the search for a
1150  *              free reservable space should start from.
1151  *              if we have a grp_goal(grp_goal >0 ), then start from there,
1152  *              no grp_goal(grp_goal = -1), we start from the first block
1153  *              of the group.
1154  *
1155  *      @sb: the super block
1156  *      @group: the group we are trying to allocate in
1157  *      @bitmap_bh: the block group block bitmap
1158  *
1159  */
1160 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1161                 ext4_grpblk_t grp_goal, struct super_block *sb,
1162                 ext4_group_t group, struct buffer_head *bitmap_bh)
1163 {
1164         struct ext4_reserve_window_node *search_head;
1165         ext4_fsblk_t group_first_block, group_end_block, start_block;
1166         ext4_grpblk_t first_free_block;
1167         struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1168         unsigned long size;
1169         int ret;
1170         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1171
1172         group_first_block = ext4_group_first_block_no(sb, group);
1173         group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1174
1175         if (grp_goal < 0)
1176                 start_block = group_first_block;
1177         else
1178                 start_block = grp_goal + group_first_block;
1179
1180         size = my_rsv->rsv_goal_size;
1181
1182         if (!rsv_is_empty(&my_rsv->rsv_window)) {
1183                 /*
1184                  * if the old reservation is cross group boundary
1185                  * and if the goal is inside the old reservation window,
1186                  * we will come here when we just failed to allocate from
1187                  * the first part of the window. We still have another part
1188                  * that belongs to the next group. In this case, there is no
1189                  * point to discard our window and try to allocate a new one
1190                  * in this group(which will fail). we should
1191                  * keep the reservation window, just simply move on.
1192                  *
1193                  * Maybe we could shift the start block of the reservation
1194                  * window to the first block of next group.
1195                  */
1196
1197                 if ((my_rsv->rsv_start <= group_end_block) &&
1198                                 (my_rsv->rsv_end > group_end_block) &&
1199                                 (start_block >= my_rsv->rsv_start))
1200                         return -1;
1201
1202                 if ((my_rsv->rsv_alloc_hit >
1203                      (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1204                         /*
1205                          * if the previously allocation hit ratio is
1206                          * greater than 1/2, then we double the size of
1207                          * the reservation window the next time,
1208                          * otherwise we keep the same size window
1209                          */
1210                         size = size * 2;
1211                         if (size > EXT4_MAX_RESERVE_BLOCKS)
1212                                 size = EXT4_MAX_RESERVE_BLOCKS;
1213                         my_rsv->rsv_goal_size= size;
1214                 }
1215         }
1216
1217         spin_lock(rsv_lock);
1218         /*
1219          * shift the search start to the window near the goal block
1220          */
1221         search_head = search_reserve_window(fs_rsv_root, start_block);
1222
1223         /*
1224          * find_next_reservable_window() simply finds a reservable window
1225          * inside the given range(start_block, group_end_block).
1226          *
1227          * To make sure the reservation window has a free bit inside it, we
1228          * need to check the bitmap after we found a reservable window.
1229          */
1230 retry:
1231         ret = find_next_reservable_window(search_head, my_rsv, sb,
1232                                                 start_block, group_end_block);
1233
1234         if (ret == -1) {
1235                 if (!rsv_is_empty(&my_rsv->rsv_window))
1236                         rsv_window_remove(sb, my_rsv);
1237                 spin_unlock(rsv_lock);
1238                 return -1;
1239         }
1240
1241         /*
1242          * On success, find_next_reservable_window() returns the
1243          * reservation window where there is a reservable space after it.
1244          * Before we reserve this reservable space, we need
1245          * to make sure there is at least a free block inside this region.
1246          *
1247          * searching the first free bit on the block bitmap and copy of
1248          * last committed bitmap alternatively, until we found a allocatable
1249          * block. Search start from the start block of the reservable space
1250          * we just found.
1251          */
1252         spin_unlock(rsv_lock);
1253         first_free_block = bitmap_search_next_usable_block(
1254                         my_rsv->rsv_start - group_first_block,
1255                         bitmap_bh, group_end_block - group_first_block + 1);
1256
1257         if (first_free_block < 0) {
1258                 /*
1259                  * no free block left on the bitmap, no point
1260                  * to reserve the space. return failed.
1261                  */
1262                 spin_lock(rsv_lock);
1263                 if (!rsv_is_empty(&my_rsv->rsv_window))
1264                         rsv_window_remove(sb, my_rsv);
1265                 spin_unlock(rsv_lock);
1266                 return -1;              /* failed */
1267         }
1268
1269         start_block = first_free_block + group_first_block;
1270         /*
1271          * check if the first free block is within the
1272          * free space we just reserved
1273          */
1274         if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1275                 return 0;               /* success */
1276         /*
1277          * if the first free bit we found is out of the reservable space
1278          * continue search for next reservable space,
1279          * start from where the free block is,
1280          * we also shift the list head to where we stopped last time
1281          */
1282         search_head = my_rsv;
1283         spin_lock(rsv_lock);
1284         goto retry;
1285 }
1286
1287 /**
1288  * try_to_extend_reservation()
1289  * @my_rsv:             given reservation window
1290  * @sb:                 super block
1291  * @size:               the delta to extend
1292  *
1293  * Attempt to expand the reservation window large enough to have
1294  * required number of free blocks
1295  *
1296  * Since ext4_try_to_allocate() will always allocate blocks within
1297  * the reservation window range, if the window size is too small,
1298  * multiple blocks allocation has to stop at the end of the reservation
1299  * window. To make this more efficient, given the total number of
1300  * blocks needed and the current size of the window, we try to
1301  * expand the reservation window size if necessary on a best-effort
1302  * basis before ext4_new_blocks() tries to allocate blocks,
1303  */
1304 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1305                         struct super_block *sb, int size)
1306 {
1307         struct ext4_reserve_window_node *next_rsv;
1308         struct rb_node *next;
1309         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1310
1311         if (!spin_trylock(rsv_lock))
1312                 return;
1313
1314         next = rb_next(&my_rsv->rsv_node);
1315
1316         if (!next)
1317                 my_rsv->rsv_end += size;
1318         else {
1319                 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1320
1321                 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1322                         my_rsv->rsv_end += size;
1323                 else
1324                         my_rsv->rsv_end = next_rsv->rsv_start - 1;
1325         }
1326         spin_unlock(rsv_lock);
1327 }
1328
1329 /**
1330  * ext4_try_to_allocate_with_rsv()
1331  * @sb:                 superblock
1332  * @handle:             handle to this transaction
1333  * @group:              given allocation block group
1334  * @bitmap_bh:          bufferhead holds the block bitmap
1335  * @grp_goal:           given target block within the group
1336  * @count:              target number of blocks to allocate
1337  * @my_rsv:             reservation window
1338  * @errp:               pointer to store the error code
1339  *
1340  * This is the main function used to allocate a new block and its reservation
1341  * window.
1342  *
1343  * Each time when a new block allocation is need, first try to allocate from
1344  * its own reservation.  If it does not have a reservation window, instead of
1345  * looking for a free bit on bitmap first, then look up the reservation list to
1346  * see if it is inside somebody else's reservation window, we try to allocate a
1347  * reservation window for it starting from the goal first. Then do the block
1348  * allocation within the reservation window.
1349  *
1350  * This will avoid keeping on searching the reservation list again and
1351  * again when somebody is looking for a free block (without
1352  * reservation), and there are lots of free blocks, but they are all
1353  * being reserved.
1354  *
1355  * We use a red-black tree for the per-filesystem reservation list.
1356  *
1357  */
1358 static ext4_grpblk_t
1359 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1360                         ext4_group_t group, struct buffer_head *bitmap_bh,
1361                         ext4_grpblk_t grp_goal,
1362                         struct ext4_reserve_window_node * my_rsv,
1363                         unsigned long *count, int *errp)
1364 {
1365         ext4_fsblk_t group_first_block, group_last_block;
1366         ext4_grpblk_t ret = 0;
1367         int fatal;
1368         unsigned long num = *count;
1369
1370         *errp = 0;
1371
1372         /*
1373          * Make sure we use undo access for the bitmap, because it is critical
1374          * that we do the frozen_data COW on bitmap buffers in all cases even
1375          * if the buffer is in BJ_Forget state in the committing transaction.
1376          */
1377         BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1378         fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1379         if (fatal) {
1380                 *errp = fatal;
1381                 return -1;
1382         }
1383
1384         /*
1385          * we don't deal with reservation when
1386          * filesystem is mounted without reservation
1387          * or the file is not a regular file
1388          * or last attempt to allocate a block with reservation turned on failed
1389          */
1390         if (my_rsv == NULL ) {
1391                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1392                                                 grp_goal, count, NULL);
1393                 goto out;
1394         }
1395         /*
1396          * grp_goal is a group relative block number (if there is a goal)
1397          * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1398          * first block is a filesystem wide block number
1399          * first block is the block number of the first block in this group
1400          */
1401         group_first_block = ext4_group_first_block_no(sb, group);
1402         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1403
1404         /*
1405          * Basically we will allocate a new block from inode's reservation
1406          * window.
1407          *
1408          * We need to allocate a new reservation window, if:
1409          * a) inode does not have a reservation window; or
1410          * b) last attempt to allocate a block from existing reservation
1411          *    failed; or
1412          * c) we come here with a goal and with a reservation window
1413          *
1414          * We do not need to allocate a new reservation window if we come here
1415          * at the beginning with a goal and the goal is inside the window, or
1416          * we don't have a goal but already have a reservation window.
1417          * then we could go to allocate from the reservation window directly.
1418          */
1419         while (1) {
1420                 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1421                         !goal_in_my_reservation(&my_rsv->rsv_window,
1422                                                 grp_goal, group, sb)) {
1423                         if (my_rsv->rsv_goal_size < *count)
1424                                 my_rsv->rsv_goal_size = *count;
1425                         ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1426                                                         group, bitmap_bh);
1427                         if (ret < 0)
1428                                 break;                  /* failed */
1429
1430                         if (!goal_in_my_reservation(&my_rsv->rsv_window,
1431                                                         grp_goal, group, sb))
1432                                 grp_goal = -1;
1433                 } else if (grp_goal >= 0) {
1434                         int curr = my_rsv->rsv_end -
1435                                         (grp_goal + group_first_block) + 1;
1436
1437                         if (curr < *count)
1438                                 try_to_extend_reservation(my_rsv, sb,
1439                                                         *count - curr);
1440                 }
1441
1442                 if ((my_rsv->rsv_start > group_last_block) ||
1443                                 (my_rsv->rsv_end < group_first_block)) {
1444                         rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1445                         BUG();
1446                 }
1447                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1448                                            grp_goal, &num, &my_rsv->rsv_window);
1449                 if (ret >= 0) {
1450                         my_rsv->rsv_alloc_hit += num;
1451                         *count = num;
1452                         break;                          /* succeed */
1453                 }
1454                 num = *count;
1455         }
1456 out:
1457         if (ret >= 0) {
1458                 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1459                                         "bitmap block");
1460                 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1461                 if (fatal) {
1462                         *errp = fatal;
1463                         return -1;
1464                 }
1465                 return ret;
1466         }
1467
1468         BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1469         ext4_journal_release_buffer(handle, bitmap_bh);
1470         return ret;
1471 }
1472
1473 /**
1474  * ext4_has_free_blocks()
1475  * @sbi:                in-core super block structure.
1476  *
1477  * Check if filesystem has at least 1 free block available for allocation.
1478  */
1479 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1480 {
1481         ext4_fsblk_t free_blocks, root_blocks;
1482
1483         free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1484         root_blocks = ext4_r_blocks_count(sbi->s_es);
1485         if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1486                 sbi->s_resuid != current->fsuid &&
1487                 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1488                 return 0;
1489         }
1490         return 1;
1491 }
1492
1493 /**
1494  * ext4_should_retry_alloc()
1495  * @sb:                 super block
1496  * @retries             number of attemps has been made
1497  *
1498  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1499  * it is profitable to retry the operation, this function will wait
1500  * for the current or commiting transaction to complete, and then
1501  * return TRUE.
1502  *
1503  * if the total number of retries exceed three times, return FALSE.
1504  */
1505 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1506 {
1507         if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1508                 return 0;
1509
1510         jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1511
1512         return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1513 }
1514
1515 /**
1516  * ext4_new_blocks() -- core block(s) allocation function
1517  * @handle:             handle to this transaction
1518  * @inode:              file inode
1519  * @goal:               given target block(filesystem wide)
1520  * @count:              target number of blocks to allocate
1521  * @errp:               error code
1522  *
1523  * ext4_new_blocks uses a goal block to assist allocation.  It tries to
1524  * allocate block(s) from the block group contains the goal block first. If that
1525  * fails, it will try to allocate block(s) from other block groups without
1526  * any specific goal block.
1527  *
1528  */
1529 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1530                         ext4_fsblk_t goal, unsigned long *count, int *errp)
1531 {
1532         struct buffer_head *bitmap_bh = NULL;
1533         struct buffer_head *gdp_bh;
1534         ext4_group_t group_no;
1535         ext4_group_t goal_group;
1536         ext4_grpblk_t grp_target_blk;   /* blockgroup relative goal block */
1537         ext4_grpblk_t grp_alloc_blk;    /* blockgroup-relative allocated block*/
1538         ext4_fsblk_t ret_block;         /* filesyetem-wide allocated block */
1539         ext4_group_t bgi;                       /* blockgroup iteration index */
1540         int fatal = 0, err;
1541         int performed_allocation = 0;
1542         ext4_grpblk_t free_blocks;      /* number of free blocks in a group */
1543         struct super_block *sb;
1544         struct ext4_group_desc *gdp;
1545         struct ext4_super_block *es;
1546         struct ext4_sb_info *sbi;
1547         struct ext4_reserve_window_node *my_rsv = NULL;
1548         struct ext4_block_alloc_info *block_i;
1549         unsigned short windowsz = 0;
1550         ext4_group_t ngroups;
1551         unsigned long num = *count;
1552
1553         *errp = -ENOSPC;
1554         sb = inode->i_sb;
1555         if (!sb) {
1556                 printk("ext4_new_block: nonexistent device");
1557                 return 0;
1558         }
1559
1560         /*
1561          * Check quota for allocation of this block.
1562          */
1563         if (DQUOT_ALLOC_BLOCK(inode, num)) {
1564                 *errp = -EDQUOT;
1565                 return 0;
1566         }
1567
1568         sbi = EXT4_SB(sb);
1569         es = EXT4_SB(sb)->s_es;
1570         ext4_debug("goal=%lu.\n", goal);
1571         /*
1572          * Allocate a block from reservation only when
1573          * filesystem is mounted with reservation(default,-o reservation), and
1574          * it's a regular file, and
1575          * the desired window size is greater than 0 (One could use ioctl
1576          * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1577          * reservation on that particular file)
1578          */
1579         block_i = EXT4_I(inode)->i_block_alloc_info;
1580         if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1581                 my_rsv = &block_i->rsv_window_node;
1582
1583         if (!ext4_has_free_blocks(sbi)) {
1584                 *errp = -ENOSPC;
1585                 goto out;
1586         }
1587
1588         /*
1589          * First, test whether the goal block is free.
1590          */
1591         if (goal < le32_to_cpu(es->s_first_data_block) ||
1592             goal >= ext4_blocks_count(es))
1593                 goal = le32_to_cpu(es->s_first_data_block);
1594         ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1595         goal_group = group_no;
1596 retry_alloc:
1597         gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1598         if (!gdp)
1599                 goto io_error;
1600
1601         free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1602         /*
1603          * if there is not enough free blocks to make a new resevation
1604          * turn off reservation for this allocation
1605          */
1606         if (my_rsv && (free_blocks < windowsz)
1607                 && (rsv_is_empty(&my_rsv->rsv_window)))
1608                 my_rsv = NULL;
1609
1610         if (free_blocks > 0) {
1611                 bitmap_bh = read_block_bitmap(sb, group_no);
1612                 if (!bitmap_bh)
1613                         goto io_error;
1614                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1615                                         group_no, bitmap_bh, grp_target_blk,
1616                                         my_rsv, &num, &fatal);
1617                 if (fatal)
1618                         goto out;
1619                 if (grp_alloc_blk >= 0)
1620                         goto allocated;
1621         }
1622
1623         ngroups = EXT4_SB(sb)->s_groups_count;
1624         smp_rmb();
1625
1626         /*
1627          * Now search the rest of the groups.  We assume that
1628          * i and gdp correctly point to the last group visited.
1629          */
1630         for (bgi = 0; bgi < ngroups; bgi++) {
1631                 group_no++;
1632                 if (group_no >= ngroups)
1633                         group_no = 0;
1634                 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1635                 if (!gdp)
1636                         goto io_error;
1637                 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1638                 /*
1639                  * skip this group if the number of
1640                  * free blocks is less than half of the reservation
1641                  * window size.
1642                  */
1643                 if (free_blocks <= (windowsz/2))
1644                         continue;
1645
1646                 brelse(bitmap_bh);
1647                 bitmap_bh = read_block_bitmap(sb, group_no);
1648                 if (!bitmap_bh)
1649                         goto io_error;
1650                 /*
1651                  * try to allocate block(s) from this group, without a goal(-1).
1652                  */
1653                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1654                                         group_no, bitmap_bh, -1, my_rsv,
1655                                         &num, &fatal);
1656                 if (fatal)
1657                         goto out;
1658                 if (grp_alloc_blk >= 0)
1659                         goto allocated;
1660         }
1661         /*
1662          * We may end up a bogus ealier ENOSPC error due to
1663          * filesystem is "full" of reservations, but
1664          * there maybe indeed free blocks avaliable on disk
1665          * In this case, we just forget about the reservations
1666          * just do block allocation as without reservations.
1667          */
1668         if (my_rsv) {
1669                 my_rsv = NULL;
1670                 windowsz = 0;
1671                 group_no = goal_group;
1672                 goto retry_alloc;
1673         }
1674         /* No space left on the device */
1675         *errp = -ENOSPC;
1676         goto out;
1677
1678 allocated:
1679
1680         ext4_debug("using block group %d(%d)\n",
1681                         group_no, gdp->bg_free_blocks_count);
1682
1683         BUFFER_TRACE(gdp_bh, "get_write_access");
1684         fatal = ext4_journal_get_write_access(handle, gdp_bh);
1685         if (fatal)
1686                 goto out;
1687
1688         ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1689
1690         if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1691             in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1692             in_range(ret_block, ext4_inode_table(sb, gdp),
1693                      EXT4_SB(sb)->s_itb_per_group) ||
1694             in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1695                      EXT4_SB(sb)->s_itb_per_group)) {
1696                 ext4_error(sb, "ext4_new_block",
1697                             "Allocating block in system zone - "
1698                             "blocks from %llu, length %lu",
1699                              ret_block, num);
1700                 goto out;
1701         }
1702
1703         performed_allocation = 1;
1704
1705 #ifdef CONFIG_JBD2_DEBUG
1706         {
1707                 struct buffer_head *debug_bh;
1708
1709                 /* Record bitmap buffer state in the newly allocated block */
1710                 debug_bh = sb_find_get_block(sb, ret_block);
1711                 if (debug_bh) {
1712                         BUFFER_TRACE(debug_bh, "state when allocated");
1713                         BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1714                         brelse(debug_bh);
1715                 }
1716         }
1717         jbd_lock_bh_state(bitmap_bh);
1718         spin_lock(sb_bgl_lock(sbi, group_no));
1719         if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1720                 int i;
1721
1722                 for (i = 0; i < num; i++) {
1723                         if (ext4_test_bit(grp_alloc_blk+i,
1724                                         bh2jh(bitmap_bh)->b_committed_data)) {
1725                                 printk("%s: block was unexpectedly set in "
1726                                         "b_committed_data\n", __FUNCTION__);
1727                         }
1728                 }
1729         }
1730         ext4_debug("found bit %d\n", grp_alloc_blk);
1731         spin_unlock(sb_bgl_lock(sbi, group_no));
1732         jbd_unlock_bh_state(bitmap_bh);
1733 #endif
1734
1735         if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1736                 ext4_error(sb, "ext4_new_block",
1737                             "block(%llu) >= blocks count(%llu) - "
1738                             "block_group = %lu, es == %p ", ret_block,
1739                         ext4_blocks_count(es), group_no, es);
1740                 goto out;
1741         }
1742
1743         /*
1744          * It is up to the caller to add the new buffer to a journal
1745          * list of some description.  We don't know in advance whether
1746          * the caller wants to use it as metadata or data.
1747          */
1748         spin_lock(sb_bgl_lock(sbi, group_no));
1749         if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1750                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1751         gdp->bg_free_blocks_count =
1752                         cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1753         gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1754         spin_unlock(sb_bgl_lock(sbi, group_no));
1755         percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1756
1757         BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1758         err = ext4_journal_dirty_metadata(handle, gdp_bh);
1759         if (!fatal)
1760                 fatal = err;
1761
1762         sb->s_dirt = 1;
1763         if (fatal)
1764                 goto out;
1765
1766         *errp = 0;
1767         brelse(bitmap_bh);
1768         DQUOT_FREE_BLOCK(inode, *count-num);
1769         *count = num;
1770         return ret_block;
1771
1772 io_error:
1773         *errp = -EIO;
1774 out:
1775         if (fatal) {
1776                 *errp = fatal;
1777                 ext4_std_error(sb, fatal);
1778         }
1779         /*
1780          * Undo the block allocation
1781          */
1782         if (!performed_allocation)
1783                 DQUOT_FREE_BLOCK(inode, *count);
1784         brelse(bitmap_bh);
1785         return 0;
1786 }
1787
1788 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1789                         ext4_fsblk_t goal, int *errp)
1790 {
1791         unsigned long count = 1;
1792
1793         return ext4_new_blocks(handle, inode, goal, &count, errp);
1794 }
1795
1796 /**
1797  * ext4_count_free_blocks() -- count filesystem free blocks
1798  * @sb:         superblock
1799  *
1800  * Adds up the number of free blocks from each block group.
1801  */
1802 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1803 {
1804         ext4_fsblk_t desc_count;
1805         struct ext4_group_desc *gdp;
1806         ext4_group_t i;
1807         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
1808 #ifdef EXT4FS_DEBUG
1809         struct ext4_super_block *es;
1810         ext4_fsblk_t bitmap_count;
1811         unsigned long x;
1812         struct buffer_head *bitmap_bh = NULL;
1813
1814         es = EXT4_SB(sb)->s_es;
1815         desc_count = 0;
1816         bitmap_count = 0;
1817         gdp = NULL;
1818
1819         smp_rmb();
1820         for (i = 0; i < ngroups; i++) {
1821                 gdp = ext4_get_group_desc(sb, i, NULL);
1822                 if (!gdp)
1823                         continue;
1824                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1825                 brelse(bitmap_bh);
1826                 bitmap_bh = read_block_bitmap(sb, i);
1827                 if (bitmap_bh == NULL)
1828                         continue;
1829
1830                 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1831                 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1832                         i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1833                 bitmap_count += x;
1834         }
1835         brelse(bitmap_bh);
1836         printk("ext4_count_free_blocks: stored = %llu"
1837                 ", computed = %llu, %llu\n",
1838                EXT4_FREE_BLOCKS_COUNT(es),
1839                 desc_count, bitmap_count);
1840         return bitmap_count;
1841 #else
1842         desc_count = 0;
1843         smp_rmb();
1844         for (i = 0; i < ngroups; i++) {
1845                 gdp = ext4_get_group_desc(sb, i, NULL);
1846                 if (!gdp)
1847                         continue;
1848                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1849         }
1850
1851         return desc_count;
1852 #endif
1853 }
1854
1855 static inline int test_root(ext4_group_t a, int b)
1856 {
1857         int num = b;
1858
1859         while (a > num)
1860                 num *= b;
1861         return num == a;
1862 }
1863
1864 static int ext4_group_sparse(ext4_group_t group)
1865 {
1866         if (group <= 1)
1867                 return 1;
1868         if (!(group & 1))
1869                 return 0;
1870         return (test_root(group, 7) || test_root(group, 5) ||
1871                 test_root(group, 3));
1872 }
1873
1874 /**
1875  *      ext4_bg_has_super - number of blocks used by the superblock in group
1876  *      @sb: superblock for filesystem
1877  *      @group: group number to check
1878  *
1879  *      Return the number of blocks used by the superblock (primary or backup)
1880  *      in this group.  Currently this will be only 0 or 1.
1881  */
1882 int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
1883 {
1884         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1885                                 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1886                         !ext4_group_sparse(group))
1887                 return 0;
1888         return 1;
1889 }
1890
1891 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
1892                                         ext4_group_t group)
1893 {
1894         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1895         ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
1896         ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1897
1898         if (group == first || group == first + 1 || group == last)
1899                 return 1;
1900         return 0;
1901 }
1902
1903 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
1904                                         ext4_group_t group)
1905 {
1906         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1907                                 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1908                         !ext4_group_sparse(group))
1909                 return 0;
1910         return EXT4_SB(sb)->s_gdb_count;
1911 }
1912
1913 /**
1914  *      ext4_bg_num_gdb - number of blocks used by the group table in group
1915  *      @sb: superblock for filesystem
1916  *      @group: group number to check
1917  *
1918  *      Return the number of blocks used by the group descriptor table
1919  *      (primary or backup) in this group.  In the future there may be a
1920  *      different number of descriptor blocks in each group.
1921  */
1922 unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
1923 {
1924         unsigned long first_meta_bg =
1925                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
1926         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1927
1928         if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1929                         metagroup < first_meta_bg)
1930                 return ext4_bg_num_gdb_nometa(sb,group);
1931
1932         return ext4_bg_num_gdb_meta(sb,group);
1933
1934 }