]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ext4/balloc.c
ext4: add block bitmap validation
[linux-2.6-omap-h63xx.git] / fs / ext4 / balloc.c
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22
23 #include "group.h"
24 /*
25  * balloc.c contains the blocks allocation and deallocation routines
26  */
27
28 /*
29  * Calculate the block group number and offset, given a block number
30  */
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32                 ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
33 {
34         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35         ext4_grpblk_t offset;
36
37         blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38         offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39         if (offsetp)
40                 *offsetp = offset;
41         if (blockgrpp)
42                 *blockgrpp = blocknr;
43
44 }
45
46 /* Initializes an uninitialized block bitmap if given, and returns the
47  * number of blocks free in the group. */
48 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
49                  ext4_group_t block_group, struct ext4_group_desc *gdp)
50 {
51         unsigned long start;
52         int bit, bit_max;
53         unsigned free_blocks, group_blocks;
54         struct ext4_sb_info *sbi = EXT4_SB(sb);
55
56         if (bh) {
57                 J_ASSERT_BH(bh, buffer_locked(bh));
58
59                 /* If checksum is bad mark all blocks used to prevent allocation
60                  * essentially implementing a per-group read-only flag. */
61                 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
62                         ext4_error(sb, __FUNCTION__,
63                                   "Checksum bad for group %lu\n", block_group);
64                         gdp->bg_free_blocks_count = 0;
65                         gdp->bg_free_inodes_count = 0;
66                         gdp->bg_itable_unused = 0;
67                         memset(bh->b_data, 0xff, sb->s_blocksize);
68                         return 0;
69                 }
70                 memset(bh->b_data, 0, sb->s_blocksize);
71         }
72
73         /* Check for superblock and gdt backups in this group */
74         bit_max = ext4_bg_has_super(sb, block_group);
75
76         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
77             block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
78                           sbi->s_desc_per_block) {
79                 if (bit_max) {
80                         bit_max += ext4_bg_num_gdb(sb, block_group);
81                         bit_max +=
82                                 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
83                 }
84         } else { /* For META_BG_BLOCK_GROUPS */
85                 int group_rel = (block_group -
86                                  le32_to_cpu(sbi->s_es->s_first_meta_bg)) %
87                                 EXT4_DESC_PER_BLOCK(sb);
88                 if (group_rel == 0 || group_rel == 1 ||
89                     (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1))
90                         bit_max += 1;
91         }
92
93         if (block_group == sbi->s_groups_count - 1) {
94                 /*
95                  * Even though mke2fs always initialize first and last group
96                  * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
97                  * to make sure we calculate the right free blocks
98                  */
99                 group_blocks = ext4_blocks_count(sbi->s_es) -
100                         le32_to_cpu(sbi->s_es->s_first_data_block) -
101                         (EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
102         } else {
103                 group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
104         }
105
106         free_blocks = group_blocks - bit_max;
107
108         if (bh) {
109                 for (bit = 0; bit < bit_max; bit++)
110                         ext4_set_bit(bit, bh->b_data);
111
112                 start = block_group * EXT4_BLOCKS_PER_GROUP(sb) +
113                         le32_to_cpu(sbi->s_es->s_first_data_block);
114
115                 /* Set bits for block and inode bitmaps, and inode table */
116                 ext4_set_bit(ext4_block_bitmap(sb, gdp) - start, bh->b_data);
117                 ext4_set_bit(ext4_inode_bitmap(sb, gdp) - start, bh->b_data);
118                 for (bit = (ext4_inode_table(sb, gdp) - start),
119                      bit_max = bit + sbi->s_itb_per_group; bit < bit_max; bit++)
120                         ext4_set_bit(bit, bh->b_data);
121
122                 /*
123                  * Also if the number of blocks within the group is
124                  * less than the blocksize * 8 ( which is the size
125                  * of bitmap ), set rest of the block bitmap to 1
126                  */
127                 mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
128         }
129
130         return free_blocks - sbi->s_itb_per_group - 2;
131 }
132
133
134 /*
135  * The free blocks are managed by bitmaps.  A file system contains several
136  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
137  * block for inodes, N blocks for the inode table and data blocks.
138  *
139  * The file system contains group descriptors which are located after the
140  * super block.  Each descriptor contains the number of the bitmap block and
141  * the free blocks count in the block.  The descriptors are loaded in memory
142  * when a file system is mounted (see ext4_fill_super).
143  */
144
145
146 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
147
148 /**
149  * ext4_get_group_desc() -- load group descriptor from disk
150  * @sb:                 super block
151  * @block_group:        given block group
152  * @bh:                 pointer to the buffer head to store the block
153  *                      group descriptor
154  */
155 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
156                                              ext4_group_t block_group,
157                                              struct buffer_head ** bh)
158 {
159         unsigned long group_desc;
160         unsigned long offset;
161         struct ext4_group_desc * desc;
162         struct ext4_sb_info *sbi = EXT4_SB(sb);
163
164         if (block_group >= sbi->s_groups_count) {
165                 ext4_error (sb, "ext4_get_group_desc",
166                             "block_group >= groups_count - "
167                             "block_group = %lu, groups_count = %lu",
168                             block_group, sbi->s_groups_count);
169
170                 return NULL;
171         }
172         smp_rmb();
173
174         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
175         offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
176         if (!sbi->s_group_desc[group_desc]) {
177                 ext4_error (sb, "ext4_get_group_desc",
178                             "Group descriptor not loaded - "
179                             "block_group = %lu, group_desc = %lu, desc = %lu",
180                              block_group, group_desc, offset);
181                 return NULL;
182         }
183
184         desc = (struct ext4_group_desc *)(
185                 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
186                 offset * EXT4_DESC_SIZE(sb));
187         if (bh)
188                 *bh = sbi->s_group_desc[group_desc];
189         return desc;
190 }
191
192 static int ext4_valid_block_bitmap(struct super_block *sb,
193                                         struct ext4_group_desc *desc,
194                                         unsigned int block_group,
195                                         struct buffer_head *bh)
196 {
197         ext4_grpblk_t offset;
198         ext4_grpblk_t next_zero_bit;
199         ext4_fsblk_t bitmap_blk;
200         ext4_fsblk_t group_first_block;
201
202         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
203                 /* with FLEX_BG, the inode/block bitmaps and itable
204                  * blocks may not be in the group at all
205                  * so the bitmap validation will be skipped for those groups
206                  * or it has to also read the block group where the bitmaps
207                  * are located to verify they are set.
208                  */
209                 return 1;
210         }
211         group_first_block = ext4_group_first_block_no(sb, block_group);
212
213         /* check whether block bitmap block number is set */
214         bitmap_blk = ext4_block_bitmap(sb, desc);
215         offset = bitmap_blk - group_first_block;
216         if (!ext4_test_bit(offset, bh->b_data))
217                 /* bad block bitmap */
218                 goto err_out;
219
220         /* check whether the inode bitmap block number is set */
221         bitmap_blk = ext4_inode_bitmap(sb, desc);
222         offset = bitmap_blk - group_first_block;
223         if (!ext4_test_bit(offset, bh->b_data))
224                 /* bad block bitmap */
225                 goto err_out;
226
227         /* check whether the inode table block number is set */
228         bitmap_blk = ext4_inode_table(sb, desc);
229         offset = bitmap_blk - group_first_block;
230         next_zero_bit = ext4_find_next_zero_bit(bh->b_data,
231                                 offset + EXT4_SB(sb)->s_itb_per_group,
232                                 offset);
233         if (next_zero_bit >= offset + EXT4_SB(sb)->s_itb_per_group)
234                 /* good bitmap for inode tables */
235                 return 1;
236
237 err_out:
238         ext4_error(sb, __FUNCTION__,
239                         "Invalid block bitmap - "
240                         "block_group = %d, block = %llu",
241                         block_group, bitmap_blk);
242         return 0;
243 }
244 /**
245  * read_block_bitmap()
246  * @sb:                 super block
247  * @block_group:        given block group
248  *
249  * Read the bitmap for a given block_group,and validate the
250  * bits for block/inode/inode tables are set in the bitmaps
251  *
252  * Return buffer_head on success or NULL in case of failure.
253  */
254 struct buffer_head *
255 read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
256 {
257         struct ext4_group_desc * desc;
258         struct buffer_head * bh = NULL;
259         ext4_fsblk_t bitmap_blk;
260
261         desc = ext4_get_group_desc(sb, block_group, NULL);
262         if (!desc)
263                 return NULL;
264         bitmap_blk = ext4_block_bitmap(sb, desc);
265         bh = sb_getblk(sb, bitmap_blk);
266         if (unlikely(!bh)) {
267                 ext4_error(sb, __FUNCTION__,
268                             "Cannot read block bitmap - "
269                             "block_group = %d, block_bitmap = %llu",
270                             (int)block_group, (unsigned long long)bitmap_blk);
271                 return NULL;
272         }
273         if (bh_uptodate_or_lock(bh))
274                 return bh;
275
276         if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
277                 ext4_init_block_bitmap(sb, bh, block_group, desc);
278                 set_buffer_uptodate(bh);
279                 unlock_buffer(bh);
280                 return bh;
281         }
282         if (bh_submit_read(bh) < 0) {
283                 put_bh(bh);
284                 ext4_error(sb, __FUNCTION__,
285                             "Cannot read block bitmap - "
286                             "block_group = %d, block_bitmap = %llu",
287                             (int)block_group, (unsigned long long)bitmap_blk);
288                 return NULL;
289         }
290         if (!ext4_valid_block_bitmap(sb, desc, block_group, bh)) {
291                 put_bh(bh);
292                 return NULL;
293         }
294
295         return bh;
296 }
297 /*
298  * The reservation window structure operations
299  * --------------------------------------------
300  * Operations include:
301  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
302  *
303  * We use a red-black tree to represent per-filesystem reservation
304  * windows.
305  *
306  */
307
308 /**
309  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
310  * @rb_root:            root of per-filesystem reservation rb tree
311  * @verbose:            verbose mode
312  * @fn:                 function which wishes to dump the reservation map
313  *
314  * If verbose is turned on, it will print the whole block reservation
315  * windows(start, end). Otherwise, it will only print out the "bad" windows,
316  * those windows that overlap with their immediate neighbors.
317  */
318 #if 1
319 static void __rsv_window_dump(struct rb_root *root, int verbose,
320                               const char *fn)
321 {
322         struct rb_node *n;
323         struct ext4_reserve_window_node *rsv, *prev;
324         int bad;
325
326 restart:
327         n = rb_first(root);
328         bad = 0;
329         prev = NULL;
330
331         printk("Block Allocation Reservation Windows Map (%s):\n", fn);
332         while (n) {
333                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
334                 if (verbose)
335                         printk("reservation window 0x%p "
336                                "start:  %llu, end:  %llu\n",
337                                rsv, rsv->rsv_start, rsv->rsv_end);
338                 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
339                         printk("Bad reservation %p (start >= end)\n",
340                                rsv);
341                         bad = 1;
342                 }
343                 if (prev && prev->rsv_end >= rsv->rsv_start) {
344                         printk("Bad reservation %p (prev->end >= start)\n",
345                                rsv);
346                         bad = 1;
347                 }
348                 if (bad) {
349                         if (!verbose) {
350                                 printk("Restarting reservation walk in verbose mode\n");
351                                 verbose = 1;
352                                 goto restart;
353                         }
354                 }
355                 n = rb_next(n);
356                 prev = rsv;
357         }
358         printk("Window map complete.\n");
359         if (bad)
360                 BUG();
361 }
362 #define rsv_window_dump(root, verbose) \
363         __rsv_window_dump((root), (verbose), __FUNCTION__)
364 #else
365 #define rsv_window_dump(root, verbose) do {} while (0)
366 #endif
367
368 /**
369  * goal_in_my_reservation()
370  * @rsv:                inode's reservation window
371  * @grp_goal:           given goal block relative to the allocation block group
372  * @group:              the current allocation block group
373  * @sb:                 filesystem super block
374  *
375  * Test if the given goal block (group relative) is within the file's
376  * own block reservation window range.
377  *
378  * If the reservation window is outside the goal allocation group, return 0;
379  * grp_goal (given goal block) could be -1, which means no specific
380  * goal block. In this case, always return 1.
381  * If the goal block is within the reservation window, return 1;
382  * otherwise, return 0;
383  */
384 static int
385 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
386                         ext4_group_t group, struct super_block *sb)
387 {
388         ext4_fsblk_t group_first_block, group_last_block;
389
390         group_first_block = ext4_group_first_block_no(sb, group);
391         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
392
393         if ((rsv->_rsv_start > group_last_block) ||
394             (rsv->_rsv_end < group_first_block))
395                 return 0;
396         if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
397                 || (grp_goal + group_first_block > rsv->_rsv_end)))
398                 return 0;
399         return 1;
400 }
401
402 /**
403  * search_reserve_window()
404  * @rb_root:            root of reservation tree
405  * @goal:               target allocation block
406  *
407  * Find the reserved window which includes the goal, or the previous one
408  * if the goal is not in any window.
409  * Returns NULL if there are no windows or if all windows start after the goal.
410  */
411 static struct ext4_reserve_window_node *
412 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
413 {
414         struct rb_node *n = root->rb_node;
415         struct ext4_reserve_window_node *rsv;
416
417         if (!n)
418                 return NULL;
419
420         do {
421                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
422
423                 if (goal < rsv->rsv_start)
424                         n = n->rb_left;
425                 else if (goal > rsv->rsv_end)
426                         n = n->rb_right;
427                 else
428                         return rsv;
429         } while (n);
430         /*
431          * We've fallen off the end of the tree: the goal wasn't inside
432          * any particular node.  OK, the previous node must be to one
433          * side of the interval containing the goal.  If it's the RHS,
434          * we need to back up one.
435          */
436         if (rsv->rsv_start > goal) {
437                 n = rb_prev(&rsv->rsv_node);
438                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
439         }
440         return rsv;
441 }
442
443 /**
444  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
445  * @sb:                 super block
446  * @rsv:                reservation window to add
447  *
448  * Must be called with rsv_lock hold.
449  */
450 void ext4_rsv_window_add(struct super_block *sb,
451                     struct ext4_reserve_window_node *rsv)
452 {
453         struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
454         struct rb_node *node = &rsv->rsv_node;
455         ext4_fsblk_t start = rsv->rsv_start;
456
457         struct rb_node ** p = &root->rb_node;
458         struct rb_node * parent = NULL;
459         struct ext4_reserve_window_node *this;
460
461         while (*p)
462         {
463                 parent = *p;
464                 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
465
466                 if (start < this->rsv_start)
467                         p = &(*p)->rb_left;
468                 else if (start > this->rsv_end)
469                         p = &(*p)->rb_right;
470                 else {
471                         rsv_window_dump(root, 1);
472                         BUG();
473                 }
474         }
475
476         rb_link_node(node, parent, p);
477         rb_insert_color(node, root);
478 }
479
480 /**
481  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
482  * @sb:                 super block
483  * @rsv:                reservation window to remove
484  *
485  * Mark the block reservation window as not allocated, and unlink it
486  * from the filesystem reservation window rb tree. Must be called with
487  * rsv_lock hold.
488  */
489 static void rsv_window_remove(struct super_block *sb,
490                               struct ext4_reserve_window_node *rsv)
491 {
492         rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
493         rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
494         rsv->rsv_alloc_hit = 0;
495         rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
496 }
497
498 /*
499  * rsv_is_empty() -- Check if the reservation window is allocated.
500  * @rsv:                given reservation window to check
501  *
502  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
503  */
504 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
505 {
506         /* a valid reservation end block could not be 0 */
507         return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
508 }
509
510 /**
511  * ext4_init_block_alloc_info()
512  * @inode:              file inode structure
513  *
514  * Allocate and initialize the  reservation window structure, and
515  * link the window to the ext4 inode structure at last
516  *
517  * The reservation window structure is only dynamically allocated
518  * and linked to ext4 inode the first time the open file
519  * needs a new block. So, before every ext4_new_block(s) call, for
520  * regular files, we should check whether the reservation window
521  * structure exists or not. In the latter case, this function is called.
522  * Fail to do so will result in block reservation being turned off for that
523  * open file.
524  *
525  * This function is called from ext4_get_blocks_handle(), also called
526  * when setting the reservation window size through ioctl before the file
527  * is open for write (needs block allocation).
528  *
529  * Needs truncate_mutex protection prior to call this function.
530  */
531 void ext4_init_block_alloc_info(struct inode *inode)
532 {
533         struct ext4_inode_info *ei = EXT4_I(inode);
534         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
535         struct super_block *sb = inode->i_sb;
536
537         block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
538         if (block_i) {
539                 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
540
541                 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
542                 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
543
544                 /*
545                  * if filesystem is mounted with NORESERVATION, the goal
546                  * reservation window size is set to zero to indicate
547                  * block reservation is off
548                  */
549                 if (!test_opt(sb, RESERVATION))
550                         rsv->rsv_goal_size = 0;
551                 else
552                         rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
553                 rsv->rsv_alloc_hit = 0;
554                 block_i->last_alloc_logical_block = 0;
555                 block_i->last_alloc_physical_block = 0;
556         }
557         ei->i_block_alloc_info = block_i;
558 }
559
560 /**
561  * ext4_discard_reservation()
562  * @inode:              inode
563  *
564  * Discard(free) block reservation window on last file close, or truncate
565  * or at last iput().
566  *
567  * It is being called in three cases:
568  *      ext4_release_file(): last writer close the file
569  *      ext4_clear_inode(): last iput(), when nobody link to this file.
570  *      ext4_truncate(): when the block indirect map is about to change.
571  *
572  */
573 void ext4_discard_reservation(struct inode *inode)
574 {
575         struct ext4_inode_info *ei = EXT4_I(inode);
576         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
577         struct ext4_reserve_window_node *rsv;
578         spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
579
580         if (!block_i)
581                 return;
582
583         rsv = &block_i->rsv_window_node;
584         if (!rsv_is_empty(&rsv->rsv_window)) {
585                 spin_lock(rsv_lock);
586                 if (!rsv_is_empty(&rsv->rsv_window))
587                         rsv_window_remove(inode->i_sb, rsv);
588                 spin_unlock(rsv_lock);
589         }
590 }
591
592 /**
593  * ext4_free_blocks_sb() -- Free given blocks and update quota
594  * @handle:                     handle to this transaction
595  * @sb:                         super block
596  * @block:                      start physcial block to free
597  * @count:                      number of blocks to free
598  * @pdquot_freed_blocks:        pointer to quota
599  */
600 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
601                          ext4_fsblk_t block, unsigned long count,
602                          unsigned long *pdquot_freed_blocks)
603 {
604         struct buffer_head *bitmap_bh = NULL;
605         struct buffer_head *gd_bh;
606         ext4_group_t block_group;
607         ext4_grpblk_t bit;
608         unsigned long i;
609         unsigned long overflow;
610         struct ext4_group_desc * desc;
611         struct ext4_super_block * es;
612         struct ext4_sb_info *sbi;
613         int err = 0, ret;
614         ext4_grpblk_t group_freed;
615
616         *pdquot_freed_blocks = 0;
617         sbi = EXT4_SB(sb);
618         es = sbi->s_es;
619         if (block < le32_to_cpu(es->s_first_data_block) ||
620             block + count < block ||
621             block + count > ext4_blocks_count(es)) {
622                 ext4_error (sb, "ext4_free_blocks",
623                             "Freeing blocks not in datazone - "
624                             "block = %llu, count = %lu", block, count);
625                 goto error_return;
626         }
627
628         ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
629
630 do_more:
631         overflow = 0;
632         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
633         /*
634          * Check to see if we are freeing blocks across a group
635          * boundary.
636          */
637         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
638                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
639                 count -= overflow;
640         }
641         brelse(bitmap_bh);
642         bitmap_bh = read_block_bitmap(sb, block_group);
643         if (!bitmap_bh)
644                 goto error_return;
645         desc = ext4_get_group_desc (sb, block_group, &gd_bh);
646         if (!desc)
647                 goto error_return;
648
649         if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
650             in_range(ext4_inode_bitmap(sb, desc), block, count) ||
651             in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
652             in_range(block + count - 1, ext4_inode_table(sb, desc),
653                      sbi->s_itb_per_group)) {
654                 ext4_error (sb, "ext4_free_blocks",
655                             "Freeing blocks in system zones - "
656                             "Block = %llu, count = %lu",
657                             block, count);
658                 goto error_return;
659         }
660
661         /*
662          * We are about to start releasing blocks in the bitmap,
663          * so we need undo access.
664          */
665         /* @@@ check errors */
666         BUFFER_TRACE(bitmap_bh, "getting undo access");
667         err = ext4_journal_get_undo_access(handle, bitmap_bh);
668         if (err)
669                 goto error_return;
670
671         /*
672          * We are about to modify some metadata.  Call the journal APIs
673          * to unshare ->b_data if a currently-committing transaction is
674          * using it
675          */
676         BUFFER_TRACE(gd_bh, "get_write_access");
677         err = ext4_journal_get_write_access(handle, gd_bh);
678         if (err)
679                 goto error_return;
680
681         jbd_lock_bh_state(bitmap_bh);
682
683         for (i = 0, group_freed = 0; i < count; i++) {
684                 /*
685                  * An HJ special.  This is expensive...
686                  */
687 #ifdef CONFIG_JBD2_DEBUG
688                 jbd_unlock_bh_state(bitmap_bh);
689                 {
690                         struct buffer_head *debug_bh;
691                         debug_bh = sb_find_get_block(sb, block + i);
692                         if (debug_bh) {
693                                 BUFFER_TRACE(debug_bh, "Deleted!");
694                                 if (!bh2jh(bitmap_bh)->b_committed_data)
695                                         BUFFER_TRACE(debug_bh,
696                                                 "No commited data in bitmap");
697                                 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
698                                 __brelse(debug_bh);
699                         }
700                 }
701                 jbd_lock_bh_state(bitmap_bh);
702 #endif
703                 if (need_resched()) {
704                         jbd_unlock_bh_state(bitmap_bh);
705                         cond_resched();
706                         jbd_lock_bh_state(bitmap_bh);
707                 }
708                 /* @@@ This prevents newly-allocated data from being
709                  * freed and then reallocated within the same
710                  * transaction.
711                  *
712                  * Ideally we would want to allow that to happen, but to
713                  * do so requires making jbd2_journal_forget() capable of
714                  * revoking the queued write of a data block, which
715                  * implies blocking on the journal lock.  *forget()
716                  * cannot block due to truncate races.
717                  *
718                  * Eventually we can fix this by making jbd2_journal_forget()
719                  * return a status indicating whether or not it was able
720                  * to revoke the buffer.  On successful revoke, it is
721                  * safe not to set the allocation bit in the committed
722                  * bitmap, because we know that there is no outstanding
723                  * activity on the buffer any more and so it is safe to
724                  * reallocate it.
725                  */
726                 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
727                 J_ASSERT_BH(bitmap_bh,
728                                 bh2jh(bitmap_bh)->b_committed_data != NULL);
729                 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
730                                 bh2jh(bitmap_bh)->b_committed_data);
731
732                 /*
733                  * We clear the bit in the bitmap after setting the committed
734                  * data bit, because this is the reverse order to that which
735                  * the allocator uses.
736                  */
737                 BUFFER_TRACE(bitmap_bh, "clear bit");
738                 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
739                                                 bit + i, bitmap_bh->b_data)) {
740                         jbd_unlock_bh_state(bitmap_bh);
741                         ext4_error(sb, __FUNCTION__,
742                                    "bit already cleared for block %llu",
743                                    (ext4_fsblk_t)(block + i));
744                         jbd_lock_bh_state(bitmap_bh);
745                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
746                 } else {
747                         group_freed++;
748                 }
749         }
750         jbd_unlock_bh_state(bitmap_bh);
751
752         spin_lock(sb_bgl_lock(sbi, block_group));
753         desc->bg_free_blocks_count =
754                 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
755                         group_freed);
756         desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
757         spin_unlock(sb_bgl_lock(sbi, block_group));
758         percpu_counter_add(&sbi->s_freeblocks_counter, count);
759
760         /* We dirtied the bitmap block */
761         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
762         err = ext4_journal_dirty_metadata(handle, bitmap_bh);
763
764         /* And the group descriptor block */
765         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
766         ret = ext4_journal_dirty_metadata(handle, gd_bh);
767         if (!err) err = ret;
768         *pdquot_freed_blocks += group_freed;
769
770         if (overflow && !err) {
771                 block += count;
772                 count = overflow;
773                 goto do_more;
774         }
775         sb->s_dirt = 1;
776 error_return:
777         brelse(bitmap_bh);
778         ext4_std_error(sb, err);
779         return;
780 }
781
782 /**
783  * ext4_free_blocks() -- Free given blocks and update quota
784  * @handle:             handle for this transaction
785  * @inode:              inode
786  * @block:              start physical block to free
787  * @count:              number of blocks to count
788  */
789 void ext4_free_blocks(handle_t *handle, struct inode *inode,
790                         ext4_fsblk_t block, unsigned long count)
791 {
792         struct super_block * sb;
793         unsigned long dquot_freed_blocks;
794
795         sb = inode->i_sb;
796         if (!sb) {
797                 printk ("ext4_free_blocks: nonexistent device");
798                 return;
799         }
800         ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
801         if (dquot_freed_blocks)
802                 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
803         return;
804 }
805
806 /**
807  * ext4_test_allocatable()
808  * @nr:                 given allocation block group
809  * @bh:                 bufferhead contains the bitmap of the given block group
810  *
811  * For ext4 allocations, we must not reuse any blocks which are
812  * allocated in the bitmap buffer's "last committed data" copy.  This
813  * prevents deletes from freeing up the page for reuse until we have
814  * committed the delete transaction.
815  *
816  * If we didn't do this, then deleting something and reallocating it as
817  * data would allow the old block to be overwritten before the
818  * transaction committed (because we force data to disk before commit).
819  * This would lead to corruption if we crashed between overwriting the
820  * data and committing the delete.
821  *
822  * @@@ We may want to make this allocation behaviour conditional on
823  * data-writes at some point, and disable it for metadata allocations or
824  * sync-data inodes.
825  */
826 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
827 {
828         int ret;
829         struct journal_head *jh = bh2jh(bh);
830
831         if (ext4_test_bit(nr, bh->b_data))
832                 return 0;
833
834         jbd_lock_bh_state(bh);
835         if (!jh->b_committed_data)
836                 ret = 1;
837         else
838                 ret = !ext4_test_bit(nr, jh->b_committed_data);
839         jbd_unlock_bh_state(bh);
840         return ret;
841 }
842
843 /**
844  * bitmap_search_next_usable_block()
845  * @start:              the starting block (group relative) of the search
846  * @bh:                 bufferhead contains the block group bitmap
847  * @maxblocks:          the ending block (group relative) of the reservation
848  *
849  * The bitmap search --- search forward alternately through the actual
850  * bitmap on disk and the last-committed copy in journal, until we find a
851  * bit free in both bitmaps.
852  */
853 static ext4_grpblk_t
854 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
855                                         ext4_grpblk_t maxblocks)
856 {
857         ext4_grpblk_t next;
858         struct journal_head *jh = bh2jh(bh);
859
860         while (start < maxblocks) {
861                 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
862                 if (next >= maxblocks)
863                         return -1;
864                 if (ext4_test_allocatable(next, bh))
865                         return next;
866                 jbd_lock_bh_state(bh);
867                 if (jh->b_committed_data)
868                         start = ext4_find_next_zero_bit(jh->b_committed_data,
869                                                         maxblocks, next);
870                 jbd_unlock_bh_state(bh);
871         }
872         return -1;
873 }
874
875 /**
876  * find_next_usable_block()
877  * @start:              the starting block (group relative) to find next
878  *                      allocatable block in bitmap.
879  * @bh:                 bufferhead contains the block group bitmap
880  * @maxblocks:          the ending block (group relative) for the search
881  *
882  * Find an allocatable block in a bitmap.  We honor both the bitmap and
883  * its last-committed copy (if that exists), and perform the "most
884  * appropriate allocation" algorithm of looking for a free block near
885  * the initial goal; then for a free byte somewhere in the bitmap; then
886  * for any free bit in the bitmap.
887  */
888 static ext4_grpblk_t
889 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
890                         ext4_grpblk_t maxblocks)
891 {
892         ext4_grpblk_t here, next;
893         char *p, *r;
894
895         if (start > 0) {
896                 /*
897                  * The goal was occupied; search forward for a free
898                  * block within the next XX blocks.
899                  *
900                  * end_goal is more or less random, but it has to be
901                  * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
902                  * next 64-bit boundary is simple..
903                  */
904                 ext4_grpblk_t end_goal = (start + 63) & ~63;
905                 if (end_goal > maxblocks)
906                         end_goal = maxblocks;
907                 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
908                 if (here < end_goal && ext4_test_allocatable(here, bh))
909                         return here;
910                 ext4_debug("Bit not found near goal\n");
911         }
912
913         here = start;
914         if (here < 0)
915                 here = 0;
916
917         p = ((char *)bh->b_data) + (here >> 3);
918         r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
919         next = (r - ((char *)bh->b_data)) << 3;
920
921         if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
922                 return next;
923
924         /*
925          * The bitmap search --- search forward alternately through the actual
926          * bitmap and the last-committed copy until we find a bit free in
927          * both
928          */
929         here = bitmap_search_next_usable_block(here, bh, maxblocks);
930         return here;
931 }
932
933 /**
934  * claim_block()
935  * @block:              the free block (group relative) to allocate
936  * @bh:                 the bufferhead containts the block group bitmap
937  *
938  * We think we can allocate this block in this bitmap.  Try to set the bit.
939  * If that succeeds then check that nobody has allocated and then freed the
940  * block since we saw that is was not marked in b_committed_data.  If it _was_
941  * allocated and freed then clear the bit in the bitmap again and return
942  * zero (failure).
943  */
944 static inline int
945 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
946 {
947         struct journal_head *jh = bh2jh(bh);
948         int ret;
949
950         if (ext4_set_bit_atomic(lock, block, bh->b_data))
951                 return 0;
952         jbd_lock_bh_state(bh);
953         if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
954                 ext4_clear_bit_atomic(lock, block, bh->b_data);
955                 ret = 0;
956         } else {
957                 ret = 1;
958         }
959         jbd_unlock_bh_state(bh);
960         return ret;
961 }
962
963 /**
964  * ext4_try_to_allocate()
965  * @sb:                 superblock
966  * @handle:             handle to this transaction
967  * @group:              given allocation block group
968  * @bitmap_bh:          bufferhead holds the block bitmap
969  * @grp_goal:           given target block within the group
970  * @count:              target number of blocks to allocate
971  * @my_rsv:             reservation window
972  *
973  * Attempt to allocate blocks within a give range. Set the range of allocation
974  * first, then find the first free bit(s) from the bitmap (within the range),
975  * and at last, allocate the blocks by claiming the found free bit as allocated.
976  *
977  * To set the range of this allocation:
978  *      if there is a reservation window, only try to allocate block(s) from the
979  *      file's own reservation window;
980  *      Otherwise, the allocation range starts from the give goal block, ends at
981  *      the block group's last block.
982  *
983  * If we failed to allocate the desired block then we may end up crossing to a
984  * new bitmap.  In that case we must release write access to the old one via
985  * ext4_journal_release_buffer(), else we'll run out of credits.
986  */
987 static ext4_grpblk_t
988 ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
989                         ext4_group_t group, struct buffer_head *bitmap_bh,
990                         ext4_grpblk_t grp_goal, unsigned long *count,
991                         struct ext4_reserve_window *my_rsv)
992 {
993         ext4_fsblk_t group_first_block;
994         ext4_grpblk_t start, end;
995         unsigned long num = 0;
996
997         /* we do allocation within the reservation window if we have a window */
998         if (my_rsv) {
999                 group_first_block = ext4_group_first_block_no(sb, group);
1000                 if (my_rsv->_rsv_start >= group_first_block)
1001                         start = my_rsv->_rsv_start - group_first_block;
1002                 else
1003                         /* reservation window cross group boundary */
1004                         start = 0;
1005                 end = my_rsv->_rsv_end - group_first_block + 1;
1006                 if (end > EXT4_BLOCKS_PER_GROUP(sb))
1007                         /* reservation window crosses group boundary */
1008                         end = EXT4_BLOCKS_PER_GROUP(sb);
1009                 if ((start <= grp_goal) && (grp_goal < end))
1010                         start = grp_goal;
1011                 else
1012                         grp_goal = -1;
1013         } else {
1014                 if (grp_goal > 0)
1015                         start = grp_goal;
1016                 else
1017                         start = 0;
1018                 end = EXT4_BLOCKS_PER_GROUP(sb);
1019         }
1020
1021         BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
1022
1023 repeat:
1024         if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1025                 grp_goal = find_next_usable_block(start, bitmap_bh, end);
1026                 if (grp_goal < 0)
1027                         goto fail_access;
1028                 if (!my_rsv) {
1029                         int i;
1030
1031                         for (i = 0; i < 7 && grp_goal > start &&
1032                                         ext4_test_allocatable(grp_goal - 1,
1033                                                                 bitmap_bh);
1034                                         i++, grp_goal--)
1035                                 ;
1036                 }
1037         }
1038         start = grp_goal;
1039
1040         if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1041                 grp_goal, bitmap_bh)) {
1042                 /*
1043                  * The block was allocated by another thread, or it was
1044                  * allocated and then freed by another thread
1045                  */
1046                 start++;
1047                 grp_goal++;
1048                 if (start >= end)
1049                         goto fail_access;
1050                 goto repeat;
1051         }
1052         num++;
1053         grp_goal++;
1054         while (num < *count && grp_goal < end
1055                 && ext4_test_allocatable(grp_goal, bitmap_bh)
1056                 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1057                                 grp_goal, bitmap_bh)) {
1058                 num++;
1059                 grp_goal++;
1060         }
1061         *count = num;
1062         return grp_goal - num;
1063 fail_access:
1064         *count = num;
1065         return -1;
1066 }
1067
1068 /**
1069  *      find_next_reservable_window():
1070  *              find a reservable space within the given range.
1071  *              It does not allocate the reservation window for now:
1072  *              alloc_new_reservation() will do the work later.
1073  *
1074  *      @search_head: the head of the searching list;
1075  *              This is not necessarily the list head of the whole filesystem
1076  *
1077  *              We have both head and start_block to assist the search
1078  *              for the reservable space. The list starts from head,
1079  *              but we will shift to the place where start_block is,
1080  *              then start from there, when looking for a reservable space.
1081  *
1082  *      @size: the target new reservation window size
1083  *
1084  *      @group_first_block: the first block we consider to start
1085  *                      the real search from
1086  *
1087  *      @last_block:
1088  *              the maximum block number that our goal reservable space
1089  *              could start from. This is normally the last block in this
1090  *              group. The search will end when we found the start of next
1091  *              possible reservable space is out of this boundary.
1092  *              This could handle the cross boundary reservation window
1093  *              request.
1094  *
1095  *      basically we search from the given range, rather than the whole
1096  *      reservation double linked list, (start_block, last_block)
1097  *      to find a free region that is of my size and has not
1098  *      been reserved.
1099  *
1100  */
1101 static int find_next_reservable_window(
1102                                 struct ext4_reserve_window_node *search_head,
1103                                 struct ext4_reserve_window_node *my_rsv,
1104                                 struct super_block * sb,
1105                                 ext4_fsblk_t start_block,
1106                                 ext4_fsblk_t last_block)
1107 {
1108         struct rb_node *next;
1109         struct ext4_reserve_window_node *rsv, *prev;
1110         ext4_fsblk_t cur;
1111         int size = my_rsv->rsv_goal_size;
1112
1113         /* TODO: make the start of the reservation window byte-aligned */
1114         /* cur = *start_block & ~7;*/
1115         cur = start_block;
1116         rsv = search_head;
1117         if (!rsv)
1118                 return -1;
1119
1120         while (1) {
1121                 if (cur <= rsv->rsv_end)
1122                         cur = rsv->rsv_end + 1;
1123
1124                 /* TODO?
1125                  * in the case we could not find a reservable space
1126                  * that is what is expected, during the re-search, we could
1127                  * remember what's the largest reservable space we could have
1128                  * and return that one.
1129                  *
1130                  * For now it will fail if we could not find the reservable
1131                  * space with expected-size (or more)...
1132                  */
1133                 if (cur > last_block)
1134                         return -1;              /* fail */
1135
1136                 prev = rsv;
1137                 next = rb_next(&rsv->rsv_node);
1138                 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1139
1140                 /*
1141                  * Reached the last reservation, we can just append to the
1142                  * previous one.
1143                  */
1144                 if (!next)
1145                         break;
1146
1147                 if (cur + size <= rsv->rsv_start) {
1148                         /*
1149                          * Found a reserveable space big enough.  We could
1150                          * have a reservation across the group boundary here
1151                          */
1152                         break;
1153                 }
1154         }
1155         /*
1156          * we come here either :
1157          * when we reach the end of the whole list,
1158          * and there is empty reservable space after last entry in the list.
1159          * append it to the end of the list.
1160          *
1161          * or we found one reservable space in the middle of the list,
1162          * return the reservation window that we could append to.
1163          * succeed.
1164          */
1165
1166         if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1167                 rsv_window_remove(sb, my_rsv);
1168
1169         /*
1170          * Let's book the whole avaliable window for now.  We will check the
1171          * disk bitmap later and then, if there are free blocks then we adjust
1172          * the window size if it's larger than requested.
1173          * Otherwise, we will remove this node from the tree next time
1174          * call find_next_reservable_window.
1175          */
1176         my_rsv->rsv_start = cur;
1177         my_rsv->rsv_end = cur + size - 1;
1178         my_rsv->rsv_alloc_hit = 0;
1179
1180         if (prev != my_rsv)
1181                 ext4_rsv_window_add(sb, my_rsv);
1182
1183         return 0;
1184 }
1185
1186 /**
1187  *      alloc_new_reservation()--allocate a new reservation window
1188  *
1189  *              To make a new reservation, we search part of the filesystem
1190  *              reservation list (the list that inside the group). We try to
1191  *              allocate a new reservation window near the allocation goal,
1192  *              or the beginning of the group, if there is no goal.
1193  *
1194  *              We first find a reservable space after the goal, then from
1195  *              there, we check the bitmap for the first free block after
1196  *              it. If there is no free block until the end of group, then the
1197  *              whole group is full, we failed. Otherwise, check if the free
1198  *              block is inside the expected reservable space, if so, we
1199  *              succeed.
1200  *              If the first free block is outside the reservable space, then
1201  *              start from the first free block, we search for next available
1202  *              space, and go on.
1203  *
1204  *      on succeed, a new reservation will be found and inserted into the list
1205  *      It contains at least one free block, and it does not overlap with other
1206  *      reservation windows.
1207  *
1208  *      failed: we failed to find a reservation window in this group
1209  *
1210  *      @rsv: the reservation
1211  *
1212  *      @grp_goal: The goal (group-relative).  It is where the search for a
1213  *              free reservable space should start from.
1214  *              if we have a grp_goal(grp_goal >0 ), then start from there,
1215  *              no grp_goal(grp_goal = -1), we start from the first block
1216  *              of the group.
1217  *
1218  *      @sb: the super block
1219  *      @group: the group we are trying to allocate in
1220  *      @bitmap_bh: the block group block bitmap
1221  *
1222  */
1223 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1224                 ext4_grpblk_t grp_goal, struct super_block *sb,
1225                 ext4_group_t group, struct buffer_head *bitmap_bh)
1226 {
1227         struct ext4_reserve_window_node *search_head;
1228         ext4_fsblk_t group_first_block, group_end_block, start_block;
1229         ext4_grpblk_t first_free_block;
1230         struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1231         unsigned long size;
1232         int ret;
1233         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1234
1235         group_first_block = ext4_group_first_block_no(sb, group);
1236         group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1237
1238         if (grp_goal < 0)
1239                 start_block = group_first_block;
1240         else
1241                 start_block = grp_goal + group_first_block;
1242
1243         size = my_rsv->rsv_goal_size;
1244
1245         if (!rsv_is_empty(&my_rsv->rsv_window)) {
1246                 /*
1247                  * if the old reservation is cross group boundary
1248                  * and if the goal is inside the old reservation window,
1249                  * we will come here when we just failed to allocate from
1250                  * the first part of the window. We still have another part
1251                  * that belongs to the next group. In this case, there is no
1252                  * point to discard our window and try to allocate a new one
1253                  * in this group(which will fail). we should
1254                  * keep the reservation window, just simply move on.
1255                  *
1256                  * Maybe we could shift the start block of the reservation
1257                  * window to the first block of next group.
1258                  */
1259
1260                 if ((my_rsv->rsv_start <= group_end_block) &&
1261                                 (my_rsv->rsv_end > group_end_block) &&
1262                                 (start_block >= my_rsv->rsv_start))
1263                         return -1;
1264
1265                 if ((my_rsv->rsv_alloc_hit >
1266                      (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1267                         /*
1268                          * if the previously allocation hit ratio is
1269                          * greater than 1/2, then we double the size of
1270                          * the reservation window the next time,
1271                          * otherwise we keep the same size window
1272                          */
1273                         size = size * 2;
1274                         if (size > EXT4_MAX_RESERVE_BLOCKS)
1275                                 size = EXT4_MAX_RESERVE_BLOCKS;
1276                         my_rsv->rsv_goal_size= size;
1277                 }
1278         }
1279
1280         spin_lock(rsv_lock);
1281         /*
1282          * shift the search start to the window near the goal block
1283          */
1284         search_head = search_reserve_window(fs_rsv_root, start_block);
1285
1286         /*
1287          * find_next_reservable_window() simply finds a reservable window
1288          * inside the given range(start_block, group_end_block).
1289          *
1290          * To make sure the reservation window has a free bit inside it, we
1291          * need to check the bitmap after we found a reservable window.
1292          */
1293 retry:
1294         ret = find_next_reservable_window(search_head, my_rsv, sb,
1295                                                 start_block, group_end_block);
1296
1297         if (ret == -1) {
1298                 if (!rsv_is_empty(&my_rsv->rsv_window))
1299                         rsv_window_remove(sb, my_rsv);
1300                 spin_unlock(rsv_lock);
1301                 return -1;
1302         }
1303
1304         /*
1305          * On success, find_next_reservable_window() returns the
1306          * reservation window where there is a reservable space after it.
1307          * Before we reserve this reservable space, we need
1308          * to make sure there is at least a free block inside this region.
1309          *
1310          * searching the first free bit on the block bitmap and copy of
1311          * last committed bitmap alternatively, until we found a allocatable
1312          * block. Search start from the start block of the reservable space
1313          * we just found.
1314          */
1315         spin_unlock(rsv_lock);
1316         first_free_block = bitmap_search_next_usable_block(
1317                         my_rsv->rsv_start - group_first_block,
1318                         bitmap_bh, group_end_block - group_first_block + 1);
1319
1320         if (first_free_block < 0) {
1321                 /*
1322                  * no free block left on the bitmap, no point
1323                  * to reserve the space. return failed.
1324                  */
1325                 spin_lock(rsv_lock);
1326                 if (!rsv_is_empty(&my_rsv->rsv_window))
1327                         rsv_window_remove(sb, my_rsv);
1328                 spin_unlock(rsv_lock);
1329                 return -1;              /* failed */
1330         }
1331
1332         start_block = first_free_block + group_first_block;
1333         /*
1334          * check if the first free block is within the
1335          * free space we just reserved
1336          */
1337         if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1338                 return 0;               /* success */
1339         /*
1340          * if the first free bit we found is out of the reservable space
1341          * continue search for next reservable space,
1342          * start from where the free block is,
1343          * we also shift the list head to where we stopped last time
1344          */
1345         search_head = my_rsv;
1346         spin_lock(rsv_lock);
1347         goto retry;
1348 }
1349
1350 /**
1351  * try_to_extend_reservation()
1352  * @my_rsv:             given reservation window
1353  * @sb:                 super block
1354  * @size:               the delta to extend
1355  *
1356  * Attempt to expand the reservation window large enough to have
1357  * required number of free blocks
1358  *
1359  * Since ext4_try_to_allocate() will always allocate blocks within
1360  * the reservation window range, if the window size is too small,
1361  * multiple blocks allocation has to stop at the end of the reservation
1362  * window. To make this more efficient, given the total number of
1363  * blocks needed and the current size of the window, we try to
1364  * expand the reservation window size if necessary on a best-effort
1365  * basis before ext4_new_blocks() tries to allocate blocks,
1366  */
1367 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1368                         struct super_block *sb, int size)
1369 {
1370         struct ext4_reserve_window_node *next_rsv;
1371         struct rb_node *next;
1372         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1373
1374         if (!spin_trylock(rsv_lock))
1375                 return;
1376
1377         next = rb_next(&my_rsv->rsv_node);
1378
1379         if (!next)
1380                 my_rsv->rsv_end += size;
1381         else {
1382                 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1383
1384                 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1385                         my_rsv->rsv_end += size;
1386                 else
1387                         my_rsv->rsv_end = next_rsv->rsv_start - 1;
1388         }
1389         spin_unlock(rsv_lock);
1390 }
1391
1392 /**
1393  * ext4_try_to_allocate_with_rsv()
1394  * @sb:                 superblock
1395  * @handle:             handle to this transaction
1396  * @group:              given allocation block group
1397  * @bitmap_bh:          bufferhead holds the block bitmap
1398  * @grp_goal:           given target block within the group
1399  * @count:              target number of blocks to allocate
1400  * @my_rsv:             reservation window
1401  * @errp:               pointer to store the error code
1402  *
1403  * This is the main function used to allocate a new block and its reservation
1404  * window.
1405  *
1406  * Each time when a new block allocation is need, first try to allocate from
1407  * its own reservation.  If it does not have a reservation window, instead of
1408  * looking for a free bit on bitmap first, then look up the reservation list to
1409  * see if it is inside somebody else's reservation window, we try to allocate a
1410  * reservation window for it starting from the goal first. Then do the block
1411  * allocation within the reservation window.
1412  *
1413  * This will avoid keeping on searching the reservation list again and
1414  * again when somebody is looking for a free block (without
1415  * reservation), and there are lots of free blocks, but they are all
1416  * being reserved.
1417  *
1418  * We use a red-black tree for the per-filesystem reservation list.
1419  *
1420  */
1421 static ext4_grpblk_t
1422 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1423                         ext4_group_t group, struct buffer_head *bitmap_bh,
1424                         ext4_grpblk_t grp_goal,
1425                         struct ext4_reserve_window_node * my_rsv,
1426                         unsigned long *count, int *errp)
1427 {
1428         ext4_fsblk_t group_first_block, group_last_block;
1429         ext4_grpblk_t ret = 0;
1430         int fatal;
1431         unsigned long num = *count;
1432
1433         *errp = 0;
1434
1435         /*
1436          * Make sure we use undo access for the bitmap, because it is critical
1437          * that we do the frozen_data COW on bitmap buffers in all cases even
1438          * if the buffer is in BJ_Forget state in the committing transaction.
1439          */
1440         BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1441         fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1442         if (fatal) {
1443                 *errp = fatal;
1444                 return -1;
1445         }
1446
1447         /*
1448          * we don't deal with reservation when
1449          * filesystem is mounted without reservation
1450          * or the file is not a regular file
1451          * or last attempt to allocate a block with reservation turned on failed
1452          */
1453         if (my_rsv == NULL ) {
1454                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1455                                                 grp_goal, count, NULL);
1456                 goto out;
1457         }
1458         /*
1459          * grp_goal is a group relative block number (if there is a goal)
1460          * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1461          * first block is a filesystem wide block number
1462          * first block is the block number of the first block in this group
1463          */
1464         group_first_block = ext4_group_first_block_no(sb, group);
1465         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1466
1467         /*
1468          * Basically we will allocate a new block from inode's reservation
1469          * window.
1470          *
1471          * We need to allocate a new reservation window, if:
1472          * a) inode does not have a reservation window; or
1473          * b) last attempt to allocate a block from existing reservation
1474          *    failed; or
1475          * c) we come here with a goal and with a reservation window
1476          *
1477          * We do not need to allocate a new reservation window if we come here
1478          * at the beginning with a goal and the goal is inside the window, or
1479          * we don't have a goal but already have a reservation window.
1480          * then we could go to allocate from the reservation window directly.
1481          */
1482         while (1) {
1483                 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1484                         !goal_in_my_reservation(&my_rsv->rsv_window,
1485                                                 grp_goal, group, sb)) {
1486                         if (my_rsv->rsv_goal_size < *count)
1487                                 my_rsv->rsv_goal_size = *count;
1488                         ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1489                                                         group, bitmap_bh);
1490                         if (ret < 0)
1491                                 break;                  /* failed */
1492
1493                         if (!goal_in_my_reservation(&my_rsv->rsv_window,
1494                                                         grp_goal, group, sb))
1495                                 grp_goal = -1;
1496                 } else if (grp_goal >= 0) {
1497                         int curr = my_rsv->rsv_end -
1498                                         (grp_goal + group_first_block) + 1;
1499
1500                         if (curr < *count)
1501                                 try_to_extend_reservation(my_rsv, sb,
1502                                                         *count - curr);
1503                 }
1504
1505                 if ((my_rsv->rsv_start > group_last_block) ||
1506                                 (my_rsv->rsv_end < group_first_block)) {
1507                         rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1508                         BUG();
1509                 }
1510                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1511                                            grp_goal, &num, &my_rsv->rsv_window);
1512                 if (ret >= 0) {
1513                         my_rsv->rsv_alloc_hit += num;
1514                         *count = num;
1515                         break;                          /* succeed */
1516                 }
1517                 num = *count;
1518         }
1519 out:
1520         if (ret >= 0) {
1521                 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1522                                         "bitmap block");
1523                 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1524                 if (fatal) {
1525                         *errp = fatal;
1526                         return -1;
1527                 }
1528                 return ret;
1529         }
1530
1531         BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1532         ext4_journal_release_buffer(handle, bitmap_bh);
1533         return ret;
1534 }
1535
1536 /**
1537  * ext4_has_free_blocks()
1538  * @sbi:                in-core super block structure.
1539  *
1540  * Check if filesystem has at least 1 free block available for allocation.
1541  */
1542 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1543 {
1544         ext4_fsblk_t free_blocks, root_blocks;
1545
1546         free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1547         root_blocks = ext4_r_blocks_count(sbi->s_es);
1548         if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1549                 sbi->s_resuid != current->fsuid &&
1550                 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1551                 return 0;
1552         }
1553         return 1;
1554 }
1555
1556 /**
1557  * ext4_should_retry_alloc()
1558  * @sb:                 super block
1559  * @retries             number of attemps has been made
1560  *
1561  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1562  * it is profitable to retry the operation, this function will wait
1563  * for the current or commiting transaction to complete, and then
1564  * return TRUE.
1565  *
1566  * if the total number of retries exceed three times, return FALSE.
1567  */
1568 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1569 {
1570         if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1571                 return 0;
1572
1573         jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1574
1575         return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1576 }
1577
1578 /**
1579  * ext4_new_blocks() -- core block(s) allocation function
1580  * @handle:             handle to this transaction
1581  * @inode:              file inode
1582  * @goal:               given target block(filesystem wide)
1583  * @count:              target number of blocks to allocate
1584  * @errp:               error code
1585  *
1586  * ext4_new_blocks uses a goal block to assist allocation.  It tries to
1587  * allocate block(s) from the block group contains the goal block first. If that
1588  * fails, it will try to allocate block(s) from other block groups without
1589  * any specific goal block.
1590  *
1591  */
1592 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1593                         ext4_fsblk_t goal, unsigned long *count, int *errp)
1594 {
1595         struct buffer_head *bitmap_bh = NULL;
1596         struct buffer_head *gdp_bh;
1597         ext4_group_t group_no;
1598         ext4_group_t goal_group;
1599         ext4_grpblk_t grp_target_blk;   /* blockgroup relative goal block */
1600         ext4_grpblk_t grp_alloc_blk;    /* blockgroup-relative allocated block*/
1601         ext4_fsblk_t ret_block;         /* filesyetem-wide allocated block */
1602         ext4_group_t bgi;                       /* blockgroup iteration index */
1603         int fatal = 0, err;
1604         int performed_allocation = 0;
1605         ext4_grpblk_t free_blocks;      /* number of free blocks in a group */
1606         struct super_block *sb;
1607         struct ext4_group_desc *gdp;
1608         struct ext4_super_block *es;
1609         struct ext4_sb_info *sbi;
1610         struct ext4_reserve_window_node *my_rsv = NULL;
1611         struct ext4_block_alloc_info *block_i;
1612         unsigned short windowsz = 0;
1613         ext4_group_t ngroups;
1614         unsigned long num = *count;
1615
1616         *errp = -ENOSPC;
1617         sb = inode->i_sb;
1618         if (!sb) {
1619                 printk("ext4_new_block: nonexistent device");
1620                 return 0;
1621         }
1622
1623         /*
1624          * Check quota for allocation of this block.
1625          */
1626         if (DQUOT_ALLOC_BLOCK(inode, num)) {
1627                 *errp = -EDQUOT;
1628                 return 0;
1629         }
1630
1631         sbi = EXT4_SB(sb);
1632         es = EXT4_SB(sb)->s_es;
1633         ext4_debug("goal=%lu.\n", goal);
1634         /*
1635          * Allocate a block from reservation only when
1636          * filesystem is mounted with reservation(default,-o reservation), and
1637          * it's a regular file, and
1638          * the desired window size is greater than 0 (One could use ioctl
1639          * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1640          * reservation on that particular file)
1641          */
1642         block_i = EXT4_I(inode)->i_block_alloc_info;
1643         if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1644                 my_rsv = &block_i->rsv_window_node;
1645
1646         if (!ext4_has_free_blocks(sbi)) {
1647                 *errp = -ENOSPC;
1648                 goto out;
1649         }
1650
1651         /*
1652          * First, test whether the goal block is free.
1653          */
1654         if (goal < le32_to_cpu(es->s_first_data_block) ||
1655             goal >= ext4_blocks_count(es))
1656                 goal = le32_to_cpu(es->s_first_data_block);
1657         ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1658         goal_group = group_no;
1659 retry_alloc:
1660         gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1661         if (!gdp)
1662                 goto io_error;
1663
1664         free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1665         /*
1666          * if there is not enough free blocks to make a new resevation
1667          * turn off reservation for this allocation
1668          */
1669         if (my_rsv && (free_blocks < windowsz)
1670                 && (rsv_is_empty(&my_rsv->rsv_window)))
1671                 my_rsv = NULL;
1672
1673         if (free_blocks > 0) {
1674                 bitmap_bh = read_block_bitmap(sb, group_no);
1675                 if (!bitmap_bh)
1676                         goto io_error;
1677                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1678                                         group_no, bitmap_bh, grp_target_blk,
1679                                         my_rsv, &num, &fatal);
1680                 if (fatal)
1681                         goto out;
1682                 if (grp_alloc_blk >= 0)
1683                         goto allocated;
1684         }
1685
1686         ngroups = EXT4_SB(sb)->s_groups_count;
1687         smp_rmb();
1688
1689         /*
1690          * Now search the rest of the groups.  We assume that
1691          * i and gdp correctly point to the last group visited.
1692          */
1693         for (bgi = 0; bgi < ngroups; bgi++) {
1694                 group_no++;
1695                 if (group_no >= ngroups)
1696                         group_no = 0;
1697                 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1698                 if (!gdp)
1699                         goto io_error;
1700                 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1701                 /*
1702                  * skip this group if the number of
1703                  * free blocks is less than half of the reservation
1704                  * window size.
1705                  */
1706                 if (free_blocks <= (windowsz/2))
1707                         continue;
1708
1709                 brelse(bitmap_bh);
1710                 bitmap_bh = read_block_bitmap(sb, group_no);
1711                 if (!bitmap_bh)
1712                         goto io_error;
1713                 /*
1714                  * try to allocate block(s) from this group, without a goal(-1).
1715                  */
1716                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1717                                         group_no, bitmap_bh, -1, my_rsv,
1718                                         &num, &fatal);
1719                 if (fatal)
1720                         goto out;
1721                 if (grp_alloc_blk >= 0)
1722                         goto allocated;
1723         }
1724         /*
1725          * We may end up a bogus ealier ENOSPC error due to
1726          * filesystem is "full" of reservations, but
1727          * there maybe indeed free blocks avaliable on disk
1728          * In this case, we just forget about the reservations
1729          * just do block allocation as without reservations.
1730          */
1731         if (my_rsv) {
1732                 my_rsv = NULL;
1733                 windowsz = 0;
1734                 group_no = goal_group;
1735                 goto retry_alloc;
1736         }
1737         /* No space left on the device */
1738         *errp = -ENOSPC;
1739         goto out;
1740
1741 allocated:
1742
1743         ext4_debug("using block group %d(%d)\n",
1744                         group_no, gdp->bg_free_blocks_count);
1745
1746         BUFFER_TRACE(gdp_bh, "get_write_access");
1747         fatal = ext4_journal_get_write_access(handle, gdp_bh);
1748         if (fatal)
1749                 goto out;
1750
1751         ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1752
1753         if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1754             in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1755             in_range(ret_block, ext4_inode_table(sb, gdp),
1756                      EXT4_SB(sb)->s_itb_per_group) ||
1757             in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1758                      EXT4_SB(sb)->s_itb_per_group)) {
1759                 ext4_error(sb, "ext4_new_block",
1760                             "Allocating block in system zone - "
1761                             "blocks from %llu, length %lu",
1762                              ret_block, num);
1763                 goto out;
1764         }
1765
1766         performed_allocation = 1;
1767
1768 #ifdef CONFIG_JBD2_DEBUG
1769         {
1770                 struct buffer_head *debug_bh;
1771
1772                 /* Record bitmap buffer state in the newly allocated block */
1773                 debug_bh = sb_find_get_block(sb, ret_block);
1774                 if (debug_bh) {
1775                         BUFFER_TRACE(debug_bh, "state when allocated");
1776                         BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1777                         brelse(debug_bh);
1778                 }
1779         }
1780         jbd_lock_bh_state(bitmap_bh);
1781         spin_lock(sb_bgl_lock(sbi, group_no));
1782         if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1783                 int i;
1784
1785                 for (i = 0; i < num; i++) {
1786                         if (ext4_test_bit(grp_alloc_blk+i,
1787                                         bh2jh(bitmap_bh)->b_committed_data)) {
1788                                 printk("%s: block was unexpectedly set in "
1789                                         "b_committed_data\n", __FUNCTION__);
1790                         }
1791                 }
1792         }
1793         ext4_debug("found bit %d\n", grp_alloc_blk);
1794         spin_unlock(sb_bgl_lock(sbi, group_no));
1795         jbd_unlock_bh_state(bitmap_bh);
1796 #endif
1797
1798         if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1799                 ext4_error(sb, "ext4_new_block",
1800                             "block(%llu) >= blocks count(%llu) - "
1801                             "block_group = %lu, es == %p ", ret_block,
1802                         ext4_blocks_count(es), group_no, es);
1803                 goto out;
1804         }
1805
1806         /*
1807          * It is up to the caller to add the new buffer to a journal
1808          * list of some description.  We don't know in advance whether
1809          * the caller wants to use it as metadata or data.
1810          */
1811         spin_lock(sb_bgl_lock(sbi, group_no));
1812         if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1813                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1814         gdp->bg_free_blocks_count =
1815                         cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1816         gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1817         spin_unlock(sb_bgl_lock(sbi, group_no));
1818         percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1819
1820         BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1821         err = ext4_journal_dirty_metadata(handle, gdp_bh);
1822         if (!fatal)
1823                 fatal = err;
1824
1825         sb->s_dirt = 1;
1826         if (fatal)
1827                 goto out;
1828
1829         *errp = 0;
1830         brelse(bitmap_bh);
1831         DQUOT_FREE_BLOCK(inode, *count-num);
1832         *count = num;
1833         return ret_block;
1834
1835 io_error:
1836         *errp = -EIO;
1837 out:
1838         if (fatal) {
1839                 *errp = fatal;
1840                 ext4_std_error(sb, fatal);
1841         }
1842         /*
1843          * Undo the block allocation
1844          */
1845         if (!performed_allocation)
1846                 DQUOT_FREE_BLOCK(inode, *count);
1847         brelse(bitmap_bh);
1848         return 0;
1849 }
1850
1851 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1852                         ext4_fsblk_t goal, int *errp)
1853 {
1854         unsigned long count = 1;
1855
1856         return ext4_new_blocks(handle, inode, goal, &count, errp);
1857 }
1858
1859 /**
1860  * ext4_count_free_blocks() -- count filesystem free blocks
1861  * @sb:         superblock
1862  *
1863  * Adds up the number of free blocks from each block group.
1864  */
1865 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1866 {
1867         ext4_fsblk_t desc_count;
1868         struct ext4_group_desc *gdp;
1869         ext4_group_t i;
1870         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
1871 #ifdef EXT4FS_DEBUG
1872         struct ext4_super_block *es;
1873         ext4_fsblk_t bitmap_count;
1874         unsigned long x;
1875         struct buffer_head *bitmap_bh = NULL;
1876
1877         es = EXT4_SB(sb)->s_es;
1878         desc_count = 0;
1879         bitmap_count = 0;
1880         gdp = NULL;
1881
1882         smp_rmb();
1883         for (i = 0; i < ngroups; i++) {
1884                 gdp = ext4_get_group_desc(sb, i, NULL);
1885                 if (!gdp)
1886                         continue;
1887                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1888                 brelse(bitmap_bh);
1889                 bitmap_bh = read_block_bitmap(sb, i);
1890                 if (bitmap_bh == NULL)
1891                         continue;
1892
1893                 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1894                 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1895                         i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1896                 bitmap_count += x;
1897         }
1898         brelse(bitmap_bh);
1899         printk("ext4_count_free_blocks: stored = %llu"
1900                 ", computed = %llu, %llu\n",
1901                EXT4_FREE_BLOCKS_COUNT(es),
1902                 desc_count, bitmap_count);
1903         return bitmap_count;
1904 #else
1905         desc_count = 0;
1906         smp_rmb();
1907         for (i = 0; i < ngroups; i++) {
1908                 gdp = ext4_get_group_desc(sb, i, NULL);
1909                 if (!gdp)
1910                         continue;
1911                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1912         }
1913
1914         return desc_count;
1915 #endif
1916 }
1917
1918 static inline int test_root(ext4_group_t a, int b)
1919 {
1920         int num = b;
1921
1922         while (a > num)
1923                 num *= b;
1924         return num == a;
1925 }
1926
1927 static int ext4_group_sparse(ext4_group_t group)
1928 {
1929         if (group <= 1)
1930                 return 1;
1931         if (!(group & 1))
1932                 return 0;
1933         return (test_root(group, 7) || test_root(group, 5) ||
1934                 test_root(group, 3));
1935 }
1936
1937 /**
1938  *      ext4_bg_has_super - number of blocks used by the superblock in group
1939  *      @sb: superblock for filesystem
1940  *      @group: group number to check
1941  *
1942  *      Return the number of blocks used by the superblock (primary or backup)
1943  *      in this group.  Currently this will be only 0 or 1.
1944  */
1945 int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
1946 {
1947         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1948                                 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1949                         !ext4_group_sparse(group))
1950                 return 0;
1951         return 1;
1952 }
1953
1954 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
1955                                         ext4_group_t group)
1956 {
1957         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1958         ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
1959         ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1960
1961         if (group == first || group == first + 1 || group == last)
1962                 return 1;
1963         return 0;
1964 }
1965
1966 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
1967                                         ext4_group_t group)
1968 {
1969         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1970                                 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1971                         !ext4_group_sparse(group))
1972                 return 0;
1973         return EXT4_SB(sb)->s_gdb_count;
1974 }
1975
1976 /**
1977  *      ext4_bg_num_gdb - number of blocks used by the group table in group
1978  *      @sb: superblock for filesystem
1979  *      @group: group number to check
1980  *
1981  *      Return the number of blocks used by the group descriptor table
1982  *      (primary or backup) in this group.  In the future there may be a
1983  *      different number of descriptor blocks in each group.
1984  */
1985 unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
1986 {
1987         unsigned long first_meta_bg =
1988                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
1989         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1990
1991         if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1992                         metagroup < first_meta_bg)
1993                 return ext4_bg_num_gdb_nometa(sb,group);
1994
1995         return ext4_bg_num_gdb_meta(sb,group);
1996
1997 }