]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/usb/core/urb.c
4342bd9c3bb610d9582217aae0bc524378a28a7f
[linux-2.6-omap-h63xx.git] / drivers / usb / core / urb.c
1 #include <linux/module.h>
2 #include <linux/string.h>
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/init.h>
6 #include <linux/log2.h>
7 #include <linux/usb.h>
8 #include <linux/wait.h>
9 #include "hcd.h"
10
11 #define to_urb(d) container_of(d, struct urb, kref)
12
13 static DEFINE_SPINLOCK(usb_reject_lock);
14
15 static void urb_destroy(struct kref *kref)
16 {
17         struct urb *urb = to_urb(kref);
18
19         if (urb->transfer_flags & URB_FREE_BUFFER)
20                 kfree(urb->transfer_buffer);
21
22         kfree(urb);
23 }
24
25 /**
26  * usb_init_urb - initializes a urb so that it can be used by a USB driver
27  * @urb: pointer to the urb to initialize
28  *
29  * Initializes a urb so that the USB subsystem can use it properly.
30  *
31  * If a urb is created with a call to usb_alloc_urb() it is not
32  * necessary to call this function.  Only use this if you allocate the
33  * space for a struct urb on your own.  If you call this function, be
34  * careful when freeing the memory for your urb that it is no longer in
35  * use by the USB core.
36  *
37  * Only use this function if you _really_ understand what you are doing.
38  */
39 void usb_init_urb(struct urb *urb)
40 {
41         if (urb) {
42                 memset(urb, 0, sizeof(*urb));
43                 kref_init(&urb->kref);
44                 INIT_LIST_HEAD(&urb->anchor_list);
45         }
46 }
47 EXPORT_SYMBOL_GPL(usb_init_urb);
48
49 /**
50  * usb_alloc_urb - creates a new urb for a USB driver to use
51  * @iso_packets: number of iso packets for this urb
52  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
53  *      valid options for this.
54  *
55  * Creates an urb for the USB driver to use, initializes a few internal
56  * structures, incrementes the usage counter, and returns a pointer to it.
57  *
58  * If no memory is available, NULL is returned.
59  *
60  * If the driver want to use this urb for interrupt, control, or bulk
61  * endpoints, pass '0' as the number of iso packets.
62  *
63  * The driver must call usb_free_urb() when it is finished with the urb.
64  */
65 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
66 {
67         struct urb *urb;
68
69         urb = kmalloc(sizeof(struct urb) +
70                 iso_packets * sizeof(struct usb_iso_packet_descriptor),
71                 mem_flags);
72         if (!urb) {
73                 printk(KERN_ERR "alloc_urb: kmalloc failed\n");
74                 return NULL;
75         }
76         usb_init_urb(urb);
77         return urb;
78 }
79 EXPORT_SYMBOL_GPL(usb_alloc_urb);
80
81 /**
82  * usb_free_urb - frees the memory used by a urb when all users of it are finished
83  * @urb: pointer to the urb to free, may be NULL
84  *
85  * Must be called when a user of a urb is finished with it.  When the last user
86  * of the urb calls this function, the memory of the urb is freed.
87  *
88  * Note: The transfer buffer associated with the urb is not freed, that must be
89  * done elsewhere.
90  */
91 void usb_free_urb(struct urb *urb)
92 {
93         if (urb)
94                 kref_put(&urb->kref, urb_destroy);
95 }
96 EXPORT_SYMBOL_GPL(usb_free_urb);
97
98 /**
99  * usb_get_urb - increments the reference count of the urb
100  * @urb: pointer to the urb to modify, may be NULL
101  *
102  * This must be  called whenever a urb is transferred from a device driver to a
103  * host controller driver.  This allows proper reference counting to happen
104  * for urbs.
105  *
106  * A pointer to the urb with the incremented reference counter is returned.
107  */
108 struct urb *usb_get_urb(struct urb *urb)
109 {
110         if (urb)
111                 kref_get(&urb->kref);
112         return urb;
113 }
114 EXPORT_SYMBOL_GPL(usb_get_urb);
115
116 /**
117  * usb_anchor_urb - anchors an URB while it is processed
118  * @urb: pointer to the urb to anchor
119  * @anchor: pointer to the anchor
120  *
121  * This can be called to have access to URBs which are to be executed
122  * without bothering to track them
123  */
124 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
125 {
126         unsigned long flags;
127
128         spin_lock_irqsave(&anchor->lock, flags);
129         usb_get_urb(urb);
130         list_add_tail(&urb->anchor_list, &anchor->urb_list);
131         urb->anchor = anchor;
132
133         if (unlikely(anchor->poisoned)) {
134                 spin_lock(&usb_reject_lock);
135                 urb->reject++;
136                 spin_unlock(&usb_reject_lock);
137         }
138
139         spin_unlock_irqrestore(&anchor->lock, flags);
140 }
141 EXPORT_SYMBOL_GPL(usb_anchor_urb);
142
143 /**
144  * usb_unanchor_urb - unanchors an URB
145  * @urb: pointer to the urb to anchor
146  *
147  * Call this to stop the system keeping track of this URB
148  */
149 void usb_unanchor_urb(struct urb *urb)
150 {
151         unsigned long flags;
152         struct usb_anchor *anchor;
153
154         if (!urb)
155                 return;
156
157         anchor = urb->anchor;
158         if (!anchor)
159                 return;
160
161         spin_lock_irqsave(&anchor->lock, flags);
162         if (unlikely(anchor != urb->anchor)) {
163                 /* we've lost the race to another thread */
164                 spin_unlock_irqrestore(&anchor->lock, flags);
165                 return;
166         }
167         urb->anchor = NULL;
168         list_del(&urb->anchor_list);
169         spin_unlock_irqrestore(&anchor->lock, flags);
170         usb_put_urb(urb);
171         if (list_empty(&anchor->urb_list))
172                 wake_up(&anchor->wait);
173 }
174 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
175
176 /*-------------------------------------------------------------------*/
177
178 /**
179  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
180  * @urb: pointer to the urb describing the request
181  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
182  *      of valid options for this.
183  *
184  * This submits a transfer request, and transfers control of the URB
185  * describing that request to the USB subsystem.  Request completion will
186  * be indicated later, asynchronously, by calling the completion handler.
187  * The three types of completion are success, error, and unlink
188  * (a software-induced fault, also called "request cancellation").
189  *
190  * URBs may be submitted in interrupt context.
191  *
192  * The caller must have correctly initialized the URB before submitting
193  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
194  * available to ensure that most fields are correctly initialized, for
195  * the particular kind of transfer, although they will not initialize
196  * any transfer flags.
197  *
198  * Successful submissions return 0; otherwise this routine returns a
199  * negative error number.  If the submission is successful, the complete()
200  * callback from the URB will be called exactly once, when the USB core and
201  * Host Controller Driver (HCD) are finished with the URB.  When the completion
202  * function is called, control of the URB is returned to the device
203  * driver which issued the request.  The completion handler may then
204  * immediately free or reuse that URB.
205  *
206  * With few exceptions, USB device drivers should never access URB fields
207  * provided by usbcore or the HCD until its complete() is called.
208  * The exceptions relate to periodic transfer scheduling.  For both
209  * interrupt and isochronous urbs, as part of successful URB submission
210  * urb->interval is modified to reflect the actual transfer period used
211  * (normally some power of two units).  And for isochronous urbs,
212  * urb->start_frame is modified to reflect when the URB's transfers were
213  * scheduled to start.  Not all isochronous transfer scheduling policies
214  * will work, but most host controller drivers should easily handle ISO
215  * queues going from now until 10-200 msec into the future.
216  *
217  * For control endpoints, the synchronous usb_control_msg() call is
218  * often used (in non-interrupt context) instead of this call.
219  * That is often used through convenience wrappers, for the requests
220  * that are standardized in the USB 2.0 specification.  For bulk
221  * endpoints, a synchronous usb_bulk_msg() call is available.
222  *
223  * Request Queuing:
224  *
225  * URBs may be submitted to endpoints before previous ones complete, to
226  * minimize the impact of interrupt latencies and system overhead on data
227  * throughput.  With that queuing policy, an endpoint's queue would never
228  * be empty.  This is required for continuous isochronous data streams,
229  * and may also be required for some kinds of interrupt transfers. Such
230  * queuing also maximizes bandwidth utilization by letting USB controllers
231  * start work on later requests before driver software has finished the
232  * completion processing for earlier (successful) requests.
233  *
234  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
235  * than one.  This was previously a HCD-specific behavior, except for ISO
236  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
237  * after faults (transfer errors or cancellation).
238  *
239  * Reserved Bandwidth Transfers:
240  *
241  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
242  * using the interval specified in the urb.  Submitting the first urb to
243  * the endpoint reserves the bandwidth necessary to make those transfers.
244  * If the USB subsystem can't allocate sufficient bandwidth to perform
245  * the periodic request, submitting such a periodic request should fail.
246  *
247  * Device drivers must explicitly request that repetition, by ensuring that
248  * some URB is always on the endpoint's queue (except possibly for short
249  * periods during completion callacks).  When there is no longer an urb
250  * queued, the endpoint's bandwidth reservation is canceled.  This means
251  * drivers can use their completion handlers to ensure they keep bandwidth
252  * they need, by reinitializing and resubmitting the just-completed urb
253  * until the driver longer needs that periodic bandwidth.
254  *
255  * Memory Flags:
256  *
257  * The general rules for how to decide which mem_flags to use
258  * are the same as for kmalloc.  There are four
259  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
260  * GFP_ATOMIC.
261  *
262  * GFP_NOFS is not ever used, as it has not been implemented yet.
263  *
264  * GFP_ATOMIC is used when
265  *   (a) you are inside a completion handler, an interrupt, bottom half,
266  *       tasklet or timer, or
267  *   (b) you are holding a spinlock or rwlock (does not apply to
268  *       semaphores), or
269  *   (c) current->state != TASK_RUNNING, this is the case only after
270  *       you've changed it.
271  *
272  * GFP_NOIO is used in the block io path and error handling of storage
273  * devices.
274  *
275  * All other situations use GFP_KERNEL.
276  *
277  * Some more specific rules for mem_flags can be inferred, such as
278  *  (1) start_xmit, timeout, and receive methods of network drivers must
279  *      use GFP_ATOMIC (they are called with a spinlock held);
280  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
281  *      called with a spinlock held);
282  *  (3) If you use a kernel thread with a network driver you must use
283  *      GFP_NOIO, unless (b) or (c) apply;
284  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
285  *      apply or your are in a storage driver's block io path;
286  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
287  *  (6) changing firmware on a running storage or net device uses
288  *      GFP_NOIO, unless b) or c) apply
289  *
290  */
291 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
292 {
293         int                             xfertype, max;
294         struct usb_device               *dev;
295         struct usb_host_endpoint        *ep;
296         int                             is_out;
297
298         if (!urb || urb->hcpriv || !urb->complete)
299                 return -EINVAL;
300         dev = urb->dev;
301         if ((!dev) || (dev->state < USB_STATE_DEFAULT))
302                 return -ENODEV;
303
304         /* For now, get the endpoint from the pipe.  Eventually drivers
305          * will be required to set urb->ep directly and we will eliminate
306          * urb->pipe.
307          */
308         ep = (usb_pipein(urb->pipe) ? dev->ep_in : dev->ep_out)
309                         [usb_pipeendpoint(urb->pipe)];
310         if (!ep)
311                 return -ENOENT;
312
313         urb->ep = ep;
314         urb->status = -EINPROGRESS;
315         urb->actual_length = 0;
316
317         /* Lots of sanity checks, so HCDs can rely on clean data
318          * and don't need to duplicate tests
319          */
320         xfertype = usb_endpoint_type(&ep->desc);
321         if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
322                 struct usb_ctrlrequest *setup =
323                                 (struct usb_ctrlrequest *) urb->setup_packet;
324
325                 if (!setup)
326                         return -ENOEXEC;
327                 is_out = !(setup->bRequestType & USB_DIR_IN) ||
328                                 !setup->wLength;
329         } else {
330                 is_out = usb_endpoint_dir_out(&ep->desc);
331         }
332
333         /* Cache the direction for later use */
334         urb->transfer_flags = (urb->transfer_flags & ~URB_DIR_MASK) |
335                         (is_out ? URB_DIR_OUT : URB_DIR_IN);
336
337         if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
338                         dev->state < USB_STATE_CONFIGURED)
339                 return -ENODEV;
340
341         max = le16_to_cpu(ep->desc.wMaxPacketSize);
342         if (max <= 0) {
343                 dev_dbg(&dev->dev,
344                         "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
345                         usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
346                         __func__, max);
347                 return -EMSGSIZE;
348         }
349
350         /* periodic transfers limit size per frame/uframe,
351          * but drivers only control those sizes for ISO.
352          * while we're checking, initialize return status.
353          */
354         if (xfertype == USB_ENDPOINT_XFER_ISOC) {
355                 int     n, len;
356
357                 /* "high bandwidth" mode, 1-3 packets/uframe? */
358                 if (dev->speed == USB_SPEED_HIGH) {
359                         int     mult = 1 + ((max >> 11) & 0x03);
360                         max &= 0x07ff;
361                         max *= mult;
362                 }
363
364                 if (urb->number_of_packets <= 0)
365                         return -EINVAL;
366                 for (n = 0; n < urb->number_of_packets; n++) {
367                         len = urb->iso_frame_desc[n].length;
368                         if (len < 0 || len > max)
369                                 return -EMSGSIZE;
370                         urb->iso_frame_desc[n].status = -EXDEV;
371                         urb->iso_frame_desc[n].actual_length = 0;
372                 }
373         }
374
375         /* the I/O buffer must be mapped/unmapped, except when length=0 */
376         if (urb->transfer_buffer_length < 0)
377                 return -EMSGSIZE;
378
379 #ifdef DEBUG
380         /* stuff that drivers shouldn't do, but which shouldn't
381          * cause problems in HCDs if they get it wrong.
382          */
383         {
384         unsigned int    orig_flags = urb->transfer_flags;
385         unsigned int    allowed;
386
387         /* enforce simple/standard policy */
388         allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP |
389                         URB_NO_INTERRUPT | URB_DIR_MASK | URB_FREE_BUFFER);
390         switch (xfertype) {
391         case USB_ENDPOINT_XFER_BULK:
392                 if (is_out)
393                         allowed |= URB_ZERO_PACKET;
394                 /* FALLTHROUGH */
395         case USB_ENDPOINT_XFER_CONTROL:
396                 allowed |= URB_NO_FSBR; /* only affects UHCI */
397                 /* FALLTHROUGH */
398         default:                        /* all non-iso endpoints */
399                 if (!is_out)
400                         allowed |= URB_SHORT_NOT_OK;
401                 break;
402         case USB_ENDPOINT_XFER_ISOC:
403                 allowed |= URB_ISO_ASAP;
404                 break;
405         }
406         urb->transfer_flags &= allowed;
407
408         /* fail if submitter gave bogus flags */
409         if (urb->transfer_flags != orig_flags) {
410                 dev_err(&dev->dev, "BOGUS urb flags, %x --> %x\n",
411                         orig_flags, urb->transfer_flags);
412                 return -EINVAL;
413         }
414         }
415 #endif
416         /*
417          * Force periodic transfer intervals to be legal values that are
418          * a power of two (so HCDs don't need to).
419          *
420          * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
421          * supports different values... this uses EHCI/UHCI defaults (and
422          * EHCI can use smaller non-default values).
423          */
424         switch (xfertype) {
425         case USB_ENDPOINT_XFER_ISOC:
426         case USB_ENDPOINT_XFER_INT:
427                 /* too small? */
428                 if (urb->interval <= 0)
429                         return -EINVAL;
430                 /* too big? */
431                 switch (dev->speed) {
432                 case USB_SPEED_HIGH:    /* units are microframes */
433                         /* NOTE usb handles 2^15 */
434                         if (urb->interval > (1024 * 8))
435                                 urb->interval = 1024 * 8;
436                         max = 1024 * 8;
437                         break;
438                 case USB_SPEED_FULL:    /* units are frames/msec */
439                 case USB_SPEED_LOW:
440                         if (xfertype == USB_ENDPOINT_XFER_INT) {
441                                 if (urb->interval > 255)
442                                         return -EINVAL;
443                                 /* NOTE ohci only handles up to 32 */
444                                 max = 128;
445                         } else {
446                                 if (urb->interval > 1024)
447                                         urb->interval = 1024;
448                                 /* NOTE usb and ohci handle up to 2^15 */
449                                 max = 1024;
450                         }
451                         break;
452                 default:
453                         return -EINVAL;
454                 }
455                 /* Round down to a power of 2, no more than max */
456                 urb->interval = min(max, 1 << ilog2(urb->interval));
457         }
458
459         return usb_hcd_submit_urb(urb, mem_flags);
460 }
461 EXPORT_SYMBOL_GPL(usb_submit_urb);
462
463 /*-------------------------------------------------------------------*/
464
465 /**
466  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
467  * @urb: pointer to urb describing a previously submitted request,
468  *      may be NULL
469  *
470  * This routine cancels an in-progress request.  URBs complete only once
471  * per submission, and may be canceled only once per submission.
472  * Successful cancellation means termination of @urb will be expedited
473  * and the completion handler will be called with a status code
474  * indicating that the request has been canceled (rather than any other
475  * code).
476  *
477  * Drivers should not call this routine or related routines, such as
478  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
479  * method has returned.  The disconnect function should synchronize with
480  * a driver's I/O routines to insure that all URB-related activity has
481  * completed before it returns.
482  *
483  * This request is always asynchronous.  Success is indicated by
484  * returning -EINPROGRESS, at which time the URB will probably not yet
485  * have been given back to the device driver.  When it is eventually
486  * called, the completion function will see @urb->status == -ECONNRESET.
487  * Failure is indicated by usb_unlink_urb() returning any other value.
488  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
489  * never submitted, or it was unlinked before, or the hardware is already
490  * finished with it), even if the completion handler has not yet run.
491  *
492  * Unlinking and Endpoint Queues:
493  *
494  * [The behaviors and guarantees described below do not apply to virtual
495  * root hubs but only to endpoint queues for physical USB devices.]
496  *
497  * Host Controller Drivers (HCDs) place all the URBs for a particular
498  * endpoint in a queue.  Normally the queue advances as the controller
499  * hardware processes each request.  But when an URB terminates with an
500  * error its queue generally stops (see below), at least until that URB's
501  * completion routine returns.  It is guaranteed that a stopped queue
502  * will not restart until all its unlinked URBs have been fully retired,
503  * with their completion routines run, even if that's not until some time
504  * after the original completion handler returns.  The same behavior and
505  * guarantee apply when an URB terminates because it was unlinked.
506  *
507  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
508  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
509  * and -EREMOTEIO.  Control endpoint queues behave the same way except
510  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
511  * for isochronous endpoints are treated differently, because they must
512  * advance at fixed rates.  Such queues do not stop when an URB
513  * encounters an error or is unlinked.  An unlinked isochronous URB may
514  * leave a gap in the stream of packets; it is undefined whether such
515  * gaps can be filled in.
516  *
517  * Note that early termination of an URB because a short packet was
518  * received will generate a -EREMOTEIO error if and only if the
519  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
520  * drivers can build deep queues for large or complex bulk transfers
521  * and clean them up reliably after any sort of aborted transfer by
522  * unlinking all pending URBs at the first fault.
523  *
524  * When a control URB terminates with an error other than -EREMOTEIO, it
525  * is quite likely that the status stage of the transfer will not take
526  * place.
527  */
528 int usb_unlink_urb(struct urb *urb)
529 {
530         if (!urb)
531                 return -EINVAL;
532         if (!urb->dev)
533                 return -ENODEV;
534         if (!urb->ep)
535                 return -EIDRM;
536         return usb_hcd_unlink_urb(urb, -ECONNRESET);
537 }
538 EXPORT_SYMBOL_GPL(usb_unlink_urb);
539
540 /**
541  * usb_kill_urb - cancel a transfer request and wait for it to finish
542  * @urb: pointer to URB describing a previously submitted request,
543  *      may be NULL
544  *
545  * This routine cancels an in-progress request.  It is guaranteed that
546  * upon return all completion handlers will have finished and the URB
547  * will be totally idle and available for reuse.  These features make
548  * this an ideal way to stop I/O in a disconnect() callback or close()
549  * function.  If the request has not already finished or been unlinked
550  * the completion handler will see urb->status == -ENOENT.
551  *
552  * While the routine is running, attempts to resubmit the URB will fail
553  * with error -EPERM.  Thus even if the URB's completion handler always
554  * tries to resubmit, it will not succeed and the URB will become idle.
555  *
556  * This routine may not be used in an interrupt context (such as a bottom
557  * half or a completion handler), or when holding a spinlock, or in other
558  * situations where the caller can't schedule().
559  *
560  * This routine should not be called by a driver after its disconnect
561  * method has returned.
562  */
563 void usb_kill_urb(struct urb *urb)
564 {
565         might_sleep();
566         if (!(urb && urb->dev && urb->ep))
567                 return;
568         spin_lock_irq(&usb_reject_lock);
569         ++urb->reject;
570         spin_unlock_irq(&usb_reject_lock);
571
572         usb_hcd_unlink_urb(urb, -ENOENT);
573         wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
574
575         spin_lock_irq(&usb_reject_lock);
576         --urb->reject;
577         spin_unlock_irq(&usb_reject_lock);
578 }
579 EXPORT_SYMBOL_GPL(usb_kill_urb);
580
581 /**
582  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
583  * @urb: pointer to URB describing a previously submitted request,
584  *      may be NULL
585  *
586  * This routine cancels an in-progress request.  It is guaranteed that
587  * upon return all completion handlers will have finished and the URB
588  * will be totally idle and cannot be reused.  These features make
589  * this an ideal way to stop I/O in a disconnect() callback.
590  * If the request has not already finished or been unlinked
591  * the completion handler will see urb->status == -ENOENT.
592  *
593  * After and while the routine runs, attempts to resubmit the URB will fail
594  * with error -EPERM.  Thus even if the URB's completion handler always
595  * tries to resubmit, it will not succeed and the URB will become idle.
596  *
597  * This routine may not be used in an interrupt context (such as a bottom
598  * half or a completion handler), or when holding a spinlock, or in other
599  * situations where the caller can't schedule().
600  *
601  * This routine should not be called by a driver after its disconnect
602  * method has returned.
603  */
604 void usb_poison_urb(struct urb *urb)
605 {
606         might_sleep();
607         if (!(urb && urb->dev && urb->ep))
608                 return;
609         spin_lock_irq(&usb_reject_lock);
610         ++urb->reject;
611         spin_unlock_irq(&usb_reject_lock);
612
613         usb_hcd_unlink_urb(urb, -ENOENT);
614         wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
615 }
616 EXPORT_SYMBOL_GPL(usb_poison_urb);
617
618 void usb_unpoison_urb(struct urb *urb)
619 {
620         unsigned long flags;
621
622         if (!urb)
623                 return;
624
625         spin_lock_irqsave(&usb_reject_lock, flags);
626         --urb->reject;
627         spin_unlock_irqrestore(&usb_reject_lock, flags);
628 }
629 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
630
631 /**
632  * usb_kill_anchored_urbs - cancel transfer requests en masse
633  * @anchor: anchor the requests are bound to
634  *
635  * this allows all outstanding URBs to be killed starting
636  * from the back of the queue
637  *
638  * This routine should not be called by a driver after its disconnect
639  * method has returned.
640  */
641 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
642 {
643         struct urb *victim;
644
645         spin_lock_irq(&anchor->lock);
646         while (!list_empty(&anchor->urb_list)) {
647                 victim = list_entry(anchor->urb_list.prev, struct urb,
648                                     anchor_list);
649                 /* we must make sure the URB isn't freed before we kill it*/
650                 usb_get_urb(victim);
651                 spin_unlock_irq(&anchor->lock);
652                 /* this will unanchor the URB */
653                 usb_kill_urb(victim);
654                 usb_put_urb(victim);
655                 spin_lock_irq(&anchor->lock);
656         }
657         spin_unlock_irq(&anchor->lock);
658 }
659 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
660
661
662 /**
663  * usb_poison_anchored_urbs - cease all traffic from an anchor
664  * @anchor: anchor the requests are bound to
665  *
666  * this allows all outstanding URBs to be poisoned starting
667  * from the back of the queue. Newly added URBs will also be
668  * poisoned
669  *
670  * This routine should not be called by a driver after its disconnect
671  * method has returned.
672  */
673 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
674 {
675         struct urb *victim;
676
677         spin_lock_irq(&anchor->lock);
678         anchor->poisoned = 1;
679         while (!list_empty(&anchor->urb_list)) {
680                 victim = list_entry(anchor->urb_list.prev, struct urb,
681                                     anchor_list);
682                 /* we must make sure the URB isn't freed before we kill it*/
683                 usb_get_urb(victim);
684                 spin_unlock_irq(&anchor->lock);
685                 /* this will unanchor the URB */
686                 usb_poison_urb(victim);
687                 usb_put_urb(victim);
688                 spin_lock_irq(&anchor->lock);
689         }
690         spin_unlock_irq(&anchor->lock);
691 }
692 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
693
694 /**
695  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
696  * @anchor: anchor the requests are bound to
697  *
698  * this allows all outstanding URBs to be unlinked starting
699  * from the back of the queue. This function is asynchronous.
700  * The unlinking is just tiggered. It may happen after this
701  * function has returned.
702  *
703  * This routine should not be called by a driver after its disconnect
704  * method has returned.
705  */
706 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
707 {
708         struct urb *victim;
709         unsigned long flags;
710
711         spin_lock_irqsave(&anchor->lock, flags);
712         while (!list_empty(&anchor->urb_list)) {
713                 victim = list_entry(anchor->urb_list.prev, struct urb,
714                                     anchor_list);
715                 usb_get_urb(victim);
716                 spin_unlock_irqrestore(&anchor->lock, flags);
717                 /* this will unanchor the URB */
718                 usb_unlink_urb(victim);
719                 usb_put_urb(victim);
720                 spin_lock_irqsave(&anchor->lock, flags);
721         }
722         spin_unlock_irqrestore(&anchor->lock, flags);
723 }
724 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
725
726 /**
727  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
728  * @anchor: the anchor you want to become unused
729  * @timeout: how long you are willing to wait in milliseconds
730  *
731  * Call this is you want to be sure all an anchor's
732  * URBs have finished
733  */
734 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
735                                   unsigned int timeout)
736 {
737         return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
738                                   msecs_to_jiffies(timeout));
739 }
740 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
741
742 /**
743  * usb_get_from_anchor - get an anchor's oldest urb
744  * @anchor: the anchor whose urb you want
745  *
746  * this will take the oldest urb from an anchor,
747  * unanchor and return it
748  */
749 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
750 {
751         struct urb *victim;
752         unsigned long flags;
753
754         spin_lock_irqsave(&anchor->lock, flags);
755         if (!list_empty(&anchor->urb_list)) {
756                 victim = list_entry(anchor->urb_list.next, struct urb,
757                                     anchor_list);
758                 usb_get_urb(victim);
759                 spin_unlock_irqrestore(&anchor->lock, flags);
760                 usb_unanchor_urb(victim);
761         } else {
762                 spin_unlock_irqrestore(&anchor->lock, flags);
763                 victim = NULL;
764         }
765
766         return victim;
767 }
768
769 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
770
771 /**
772  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
773  * @anchor: the anchor whose urbs you want to unanchor
774  *
775  * use this to get rid of all an anchor's urbs
776  */
777 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
778 {
779         struct urb *victim;
780         unsigned long flags;
781
782         spin_lock_irqsave(&anchor->lock, flags);
783         while (!list_empty(&anchor->urb_list)) {
784                 victim = list_entry(anchor->urb_list.prev, struct urb,
785                                     anchor_list);
786                 usb_get_urb(victim);
787                 spin_unlock_irqrestore(&anchor->lock, flags);
788                 /* this may free the URB */
789                 usb_unanchor_urb(victim);
790                 usb_put_urb(victim);
791                 spin_lock_irqsave(&anchor->lock, flags);
792         }
793         spin_unlock_irqrestore(&anchor->lock, flags);
794 }
795
796 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
797
798 /**
799  * usb_anchor_empty - is an anchor empty
800  * @anchor: the anchor you want to query
801  *
802  * returns 1 if the anchor has no urbs associated with it
803  */
804 int usb_anchor_empty(struct usb_anchor *anchor)
805 {
806         return list_empty(&anchor->urb_list);
807 }
808
809 EXPORT_SYMBOL_GPL(usb_anchor_empty);
810