]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/serial/jsm/jsm_neo.c
tty: jsm cleanups
[linux-2.6-omap-h63xx.git] / drivers / serial / jsm / jsm_neo.c
1 /************************************************************************
2  * Copyright 2003 Digi International (www.digi.com)
3  *
4  * Copyright (C) 2004 IBM Corporation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2, or (at your option)
9  * any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13  * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14  * PURPOSE.  See the GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19  * MA  02111-1307, USA.
20  *
21  * Contact Information:
22  * Scott H Kilau <Scott_Kilau@digi.com>
23  * Wendy Xiong   <wendyx@us.ibm.com>
24  *
25  ***********************************************************************/
26 #include <linux/delay.h>        /* For udelay */
27 #include <linux/serial_reg.h>   /* For the various UART offsets */
28 #include <linux/tty.h>
29 #include <linux/pci.h>
30 #include <asm/io.h>
31
32 #include "jsm.h"                /* Driver main header file */
33
34 static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
35
36 /*
37  * This function allows calls to ensure that all outstanding
38  * PCI writes have been completed, by doing a PCI read against
39  * a non-destructive, read-only location on the Neo card.
40  *
41  * In this case, we are reading the DVID (Read-only Device Identification)
42  * value of the Neo card.
43  */
44 static inline void neo_pci_posting_flush(struct jsm_board *bd)
45 {
46       readb(bd->re_map_membase + 0x8D);
47 }
48
49 static void neo_set_cts_flow_control(struct jsm_channel *ch)
50 {
51         u8 ier, efr;
52         ier = readb(&ch->ch_neo_uart->ier);
53         efr = readb(&ch->ch_neo_uart->efr);
54
55         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
56
57         /* Turn on auto CTS flow control */
58         ier |= (UART_17158_IER_CTSDSR);
59         efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
60
61         /* Turn off auto Xon flow control */
62         efr &= ~(UART_17158_EFR_IXON);
63
64         /* Why? Becuz Exar's spec says we have to zero it out before setting it */
65         writeb(0, &ch->ch_neo_uart->efr);
66
67         /* Turn on UART enhanced bits */
68         writeb(efr, &ch->ch_neo_uart->efr);
69
70         /* Turn on table D, with 8 char hi/low watermarks */
71         writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
72
73         /* Feed the UART our trigger levels */
74         writeb(8, &ch->ch_neo_uart->tfifo);
75         ch->ch_t_tlevel = 8;
76
77         writeb(ier, &ch->ch_neo_uart->ier);
78 }
79
80 static void neo_set_rts_flow_control(struct jsm_channel *ch)
81 {
82         u8 ier, efr;
83         ier = readb(&ch->ch_neo_uart->ier);
84         efr = readb(&ch->ch_neo_uart->efr);
85
86         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
87
88         /* Turn on auto RTS flow control */
89         ier |= (UART_17158_IER_RTSDTR);
90         efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
91
92         /* Turn off auto Xoff flow control */
93         ier &= ~(UART_17158_IER_XOFF);
94         efr &= ~(UART_17158_EFR_IXOFF);
95
96         /* Why? Becuz Exar's spec says we have to zero it out before setting it */
97         writeb(0, &ch->ch_neo_uart->efr);
98
99         /* Turn on UART enhanced bits */
100         writeb(efr, &ch->ch_neo_uart->efr);
101
102         writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
103         ch->ch_r_watermark = 4;
104
105         writeb(56, &ch->ch_neo_uart->rfifo);
106         ch->ch_r_tlevel = 56;
107
108         writeb(ier, &ch->ch_neo_uart->ier);
109
110         /*
111          * From the Neo UART spec sheet:
112          * The auto RTS/DTR function must be started by asserting
113          * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
114          * it is enabled.
115          */
116         ch->ch_mostat |= (UART_MCR_RTS);
117 }
118
119
120 static void neo_set_ixon_flow_control(struct jsm_channel *ch)
121 {
122         u8 ier, efr;
123         ier = readb(&ch->ch_neo_uart->ier);
124         efr = readb(&ch->ch_neo_uart->efr);
125
126         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
127
128         /* Turn off auto CTS flow control */
129         ier &= ~(UART_17158_IER_CTSDSR);
130         efr &= ~(UART_17158_EFR_CTSDSR);
131
132         /* Turn on auto Xon flow control */
133         efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
134
135         /* Why? Becuz Exar's spec says we have to zero it out before setting it */
136         writeb(0, &ch->ch_neo_uart->efr);
137
138         /* Turn on UART enhanced bits */
139         writeb(efr, &ch->ch_neo_uart->efr);
140
141         writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
142         ch->ch_r_watermark = 4;
143
144         writeb(32, &ch->ch_neo_uart->rfifo);
145         ch->ch_r_tlevel = 32;
146
147         /* Tell UART what start/stop chars it should be looking for */
148         writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
149         writeb(0, &ch->ch_neo_uart->xonchar2);
150
151         writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
152         writeb(0, &ch->ch_neo_uart->xoffchar2);
153
154         writeb(ier, &ch->ch_neo_uart->ier);
155 }
156
157 static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
158 {
159         u8 ier, efr;
160         ier = readb(&ch->ch_neo_uart->ier);
161         efr = readb(&ch->ch_neo_uart->efr);
162
163         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
164
165         /* Turn off auto RTS flow control */
166         ier &= ~(UART_17158_IER_RTSDTR);
167         efr &= ~(UART_17158_EFR_RTSDTR);
168
169         /* Turn on auto Xoff flow control */
170         ier |= (UART_17158_IER_XOFF);
171         efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
172
173         /* Why? Becuz Exar's spec says we have to zero it out before setting it */
174         writeb(0, &ch->ch_neo_uart->efr);
175
176         /* Turn on UART enhanced bits */
177         writeb(efr, &ch->ch_neo_uart->efr);
178
179         /* Turn on table D, with 8 char hi/low watermarks */
180         writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
181
182         writeb(8, &ch->ch_neo_uart->tfifo);
183         ch->ch_t_tlevel = 8;
184
185         /* Tell UART what start/stop chars it should be looking for */
186         writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
187         writeb(0, &ch->ch_neo_uart->xonchar2);
188
189         writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
190         writeb(0, &ch->ch_neo_uart->xoffchar2);
191
192         writeb(ier, &ch->ch_neo_uart->ier);
193 }
194
195 static void neo_set_no_input_flow_control(struct jsm_channel *ch)
196 {
197         u8 ier, efr;
198         ier = readb(&ch->ch_neo_uart->ier);
199         efr = readb(&ch->ch_neo_uart->efr);
200
201         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
202
203         /* Turn off auto RTS flow control */
204         ier &= ~(UART_17158_IER_RTSDTR);
205         efr &= ~(UART_17158_EFR_RTSDTR);
206
207         /* Turn off auto Xoff flow control */
208         ier &= ~(UART_17158_IER_XOFF);
209         if (ch->ch_c_iflag & IXON)
210                 efr &= ~(UART_17158_EFR_IXOFF);
211         else
212                 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
213
214         /* Why? Becuz Exar's spec says we have to zero it out before setting it */
215         writeb(0, &ch->ch_neo_uart->efr);
216
217         /* Turn on UART enhanced bits */
218         writeb(efr, &ch->ch_neo_uart->efr);
219
220         /* Turn on table D, with 8 char hi/low watermarks */
221         writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
222
223         ch->ch_r_watermark = 0;
224
225         writeb(16, &ch->ch_neo_uart->tfifo);
226         ch->ch_t_tlevel = 16;
227
228         writeb(16, &ch->ch_neo_uart->rfifo);
229         ch->ch_r_tlevel = 16;
230
231         writeb(ier, &ch->ch_neo_uart->ier);
232 }
233
234 static void neo_set_no_output_flow_control(struct jsm_channel *ch)
235 {
236         u8 ier, efr;
237         ier = readb(&ch->ch_neo_uart->ier);
238         efr = readb(&ch->ch_neo_uart->efr);
239
240         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
241
242         /* Turn off auto CTS flow control */
243         ier &= ~(UART_17158_IER_CTSDSR);
244         efr &= ~(UART_17158_EFR_CTSDSR);
245
246         /* Turn off auto Xon flow control */
247         if (ch->ch_c_iflag & IXOFF)
248                 efr &= ~(UART_17158_EFR_IXON);
249         else
250                 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
251
252         /* Why? Becuz Exar's spec says we have to zero it out before setting it */
253         writeb(0, &ch->ch_neo_uart->efr);
254
255         /* Turn on UART enhanced bits */
256         writeb(efr, &ch->ch_neo_uart->efr);
257
258         /* Turn on table D, with 8 char hi/low watermarks */
259         writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
260
261         ch->ch_r_watermark = 0;
262
263         writeb(16, &ch->ch_neo_uart->tfifo);
264         ch->ch_t_tlevel = 16;
265
266         writeb(16, &ch->ch_neo_uart->rfifo);
267         ch->ch_r_tlevel = 16;
268
269         writeb(ier, &ch->ch_neo_uart->ier);
270 }
271
272 static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
273 {
274
275         /* if hardware flow control is set, then skip this whole thing */
276         if (ch->ch_c_cflag & CRTSCTS)
277                 return;
278
279         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n");
280
281         /* Tell UART what start/stop chars it should be looking for */
282         writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
283         writeb(0, &ch->ch_neo_uart->xonchar2);
284
285         writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
286         writeb(0, &ch->ch_neo_uart->xoffchar2);
287 }
288
289 static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
290 {
291         int qleft = 0;
292         u8 linestatus = 0;
293         u8 error_mask = 0;
294         int n = 0;
295         int total = 0;
296         u16 head;
297         u16 tail;
298
299         if (!ch)
300                 return;
301
302         /* cache head and tail of queue */
303         head = ch->ch_r_head & RQUEUEMASK;
304         tail = ch->ch_r_tail & RQUEUEMASK;
305
306         /* Get our cached LSR */
307         linestatus = ch->ch_cached_lsr;
308         ch->ch_cached_lsr = 0;
309
310         /* Store how much space we have left in the queue */
311         if ((qleft = tail - head - 1) < 0)
312                 qleft += RQUEUEMASK + 1;
313
314         /*
315          * If the UART is not in FIFO mode, force the FIFO copy to
316          * NOT be run, by setting total to 0.
317          *
318          * On the other hand, if the UART IS in FIFO mode, then ask
319          * the UART to give us an approximation of data it has RX'ed.
320          */
321         if (!(ch->ch_flags & CH_FIFO_ENABLED))
322                 total = 0;
323         else {
324                 total = readb(&ch->ch_neo_uart->rfifo);
325
326                 /*
327                  * EXAR chip bug - RX FIFO COUNT - Fudge factor.
328                  *
329                  * This resolves a problem/bug with the Exar chip that sometimes
330                  * returns a bogus value in the rfifo register.
331                  * The count can be any where from 0-3 bytes "off".
332                  * Bizarre, but true.
333                  */
334                 total -= 3;
335         }
336
337         /*
338          * Finally, bound the copy to make sure we don't overflow
339          * our own queue...
340          * The byte by byte copy loop below this loop this will
341          * deal with the queue overflow possibility.
342          */
343         total = min(total, qleft);
344
345         while (total > 0) {
346                 /*
347                  * Grab the linestatus register, we need to check
348                  * to see if there are any errors in the FIFO.
349                  */
350                 linestatus = readb(&ch->ch_neo_uart->lsr);
351
352                 /*
353                  * Break out if there is a FIFO error somewhere.
354                  * This will allow us to go byte by byte down below,
355                  * finding the exact location of the error.
356                  */
357                 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
358                         break;
359
360                 /* Make sure we don't go over the end of our queue */
361                 n = min(((u32) total), (RQUEUESIZE - (u32) head));
362
363                 /*
364                  * Cut down n even further if needed, this is to fix
365                  * a problem with memcpy_fromio() with the Neo on the
366                  * IBM pSeries platform.
367                  * 15 bytes max appears to be the magic number.
368                  */
369                 n = min((u32) n, (u32) 12);
370
371                 /*
372                  * Since we are grabbing the linestatus register, which
373                  * will reset some bits after our read, we need to ensure
374                  * we don't miss our TX FIFO emptys.
375                  */
376                 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
377                         ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
378
379                 linestatus = 0;
380
381                 /* Copy data from uart to the queue */
382                 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
383                 /*
384                  * Since RX_FIFO_DATA_ERROR was 0, we are guarenteed
385                  * that all the data currently in the FIFO is free of
386                  * breaks and parity/frame/orun errors.
387                  */
388                 memset(ch->ch_equeue + head, 0, n);
389
390                 /* Add to and flip head if needed */
391                 head = (head + n) & RQUEUEMASK;
392                 total -= n;
393                 qleft -= n;
394                 ch->ch_rxcount += n;
395         }
396
397         /*
398          * Create a mask to determine whether we should
399          * insert the character (if any) into our queue.
400          */
401         if (ch->ch_c_iflag & IGNBRK)
402                 error_mask |= UART_LSR_BI;
403
404         /*
405          * Now cleanup any leftover bytes still in the UART.
406          * Also deal with any possible queue overflow here as well.
407          */
408         while (1) {
409
410                 /*
411                  * Its possible we have a linestatus from the loop above
412                  * this, so we "OR" on any extra bits.
413                  */
414                 linestatus |= readb(&ch->ch_neo_uart->lsr);
415
416                 /*
417                  * If the chip tells us there is no more data pending to
418                  * be read, we can then leave.
419                  * But before we do, cache the linestatus, just in case.
420                  */
421                 if (!(linestatus & UART_LSR_DR)) {
422                         ch->ch_cached_lsr = linestatus;
423                         break;
424                 }
425
426                 /* No need to store this bit */
427                 linestatus &= ~UART_LSR_DR;
428
429                 /*
430                  * Since we are grabbing the linestatus register, which
431                  * will reset some bits after our read, we need to ensure
432                  * we don't miss our TX FIFO emptys.
433                  */
434                 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
435                         linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
436                         ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
437                 }
438
439                 /*
440                  * Discard character if we are ignoring the error mask.
441                  */
442                 if (linestatus & error_mask) {
443                         u8 discard;
444                         linestatus = 0;
445                         memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
446                         continue;
447                 }
448
449                 /*
450                  * If our queue is full, we have no choice but to drop some data.
451                  * The assumption is that HWFLOW or SWFLOW should have stopped
452                  * things way way before we got to this point.
453                  *
454                  * I decided that I wanted to ditch the oldest data first,
455                  * I hope thats okay with everyone? Yes? Good.
456                  */
457                 while (qleft < 1) {
458                         jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
459                                 "Queue full, dropping DATA:%x LSR:%x\n",
460                                 ch->ch_rqueue[tail], ch->ch_equeue[tail]);
461
462                         ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
463                         ch->ch_err_overrun++;
464                         qleft++;
465                 }
466
467                 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
468                 ch->ch_equeue[head] = (u8) linestatus;
469
470                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
471                                 "DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]);
472
473                 /* Ditch any remaining linestatus value. */
474                 linestatus = 0;
475
476                 /* Add to and flip head if needed */
477                 head = (head + 1) & RQUEUEMASK;
478
479                 qleft--;
480                 ch->ch_rxcount++;
481         }
482
483         /*
484          * Write new final heads to channel structure.
485          */
486         ch->ch_r_head = head & RQUEUEMASK;
487         ch->ch_e_head = head & EQUEUEMASK;
488         jsm_input(ch);
489 }
490
491 static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
492 {
493         u16 head;
494         u16 tail;
495         int n;
496         int s;
497         int qlen;
498         u32 len_written = 0;
499
500         if (!ch)
501                 return;
502
503         /* No data to write to the UART */
504         if (ch->ch_w_tail == ch->ch_w_head)
505                 return;
506
507         /* If port is "stopped", don't send any data to the UART */
508         if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
509                 return;
510         /*
511          * If FIFOs are disabled. Send data directly to txrx register
512          */
513         if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
514                 u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
515
516                 ch->ch_cached_lsr |= lsrbits;
517                 if (ch->ch_cached_lsr & UART_LSR_THRE) {
518                         ch->ch_cached_lsr &= ~(UART_LSR_THRE);
519
520                         writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx);
521                         jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev,
522                                         "Tx data: %x\n", ch->ch_wqueue[ch->ch_w_head]);
523                         ch->ch_w_tail++;
524                         ch->ch_w_tail &= WQUEUEMASK;
525                         ch->ch_txcount++;
526                 }
527                 return;
528         }
529
530         /*
531          * We have to do it this way, because of the EXAR TXFIFO count bug.
532          */
533         if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
534                 return;
535
536         n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
537
538         /* cache head and tail of queue */
539         head = ch->ch_w_head & WQUEUEMASK;
540         tail = ch->ch_w_tail & WQUEUEMASK;
541         qlen = (head - tail) & WQUEUEMASK;
542
543         /* Find minimum of the FIFO space, versus queue length */
544         n = min(n, qlen);
545
546         while (n > 0) {
547
548                 s = ((head >= tail) ? head : WQUEUESIZE) - tail;
549                 s = min(s, n);
550
551                 if (s <= 0)
552                         break;
553
554                 memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s);
555                 /* Add and flip queue if needed */
556                 tail = (tail + s) & WQUEUEMASK;
557                 n -= s;
558                 ch->ch_txcount += s;
559                 len_written += s;
560         }
561
562         /* Update the final tail */
563         ch->ch_w_tail = tail & WQUEUEMASK;
564
565         if (len_written >= ch->ch_t_tlevel)
566                 ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
567
568         if (!jsm_tty_write(&ch->uart_port))
569                 uart_write_wakeup(&ch->uart_port);
570 }
571
572 static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
573 {
574         u8 msignals = signals;
575
576         jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
577                         "neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals);
578
579         /* Scrub off lower bits. They signify delta's, which I don't care about */
580         /* Keep DDCD and DDSR though */
581         msignals &= 0xf8;
582
583         if (msignals & UART_MSR_DDCD)
584                 uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD);
585         if (msignals & UART_MSR_DDSR)
586                 uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS);
587         if (msignals & UART_MSR_DCD)
588                 ch->ch_mistat |= UART_MSR_DCD;
589         else
590                 ch->ch_mistat &= ~UART_MSR_DCD;
591
592         if (msignals & UART_MSR_DSR)
593                 ch->ch_mistat |= UART_MSR_DSR;
594         else
595                 ch->ch_mistat &= ~UART_MSR_DSR;
596
597         if (msignals & UART_MSR_RI)
598                 ch->ch_mistat |= UART_MSR_RI;
599         else
600                 ch->ch_mistat &= ~UART_MSR_RI;
601
602         if (msignals & UART_MSR_CTS)
603                 ch->ch_mistat |= UART_MSR_CTS;
604         else
605                 ch->ch_mistat &= ~UART_MSR_CTS;
606
607         jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
608                         "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
609                 ch->ch_portnum,
610                 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
611                 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
612                 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
613                 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
614                 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
615                 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
616 }
617
618 /* Make the UART raise any of the output signals we want up */
619 static void neo_assert_modem_signals(struct jsm_channel *ch)
620 {
621         if (!ch)
622                 return;
623
624         writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
625
626         /* flush write operation */
627         neo_pci_posting_flush(ch->ch_bd);
628 }
629
630 /*
631  * Flush the WRITE FIFO on the Neo.
632  *
633  * NOTE: Channel lock MUST be held before calling this function!
634  */
635 static void neo_flush_uart_write(struct jsm_channel *ch)
636 {
637         u8 tmp = 0;
638         int i = 0;
639
640         if (!ch)
641                 return;
642
643         writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
644
645         for (i = 0; i < 10; i++) {
646
647                 /* Check to see if the UART feels it completely flushed the FIFO. */
648                 tmp = readb(&ch->ch_neo_uart->isr_fcr);
649                 if (tmp & 4) {
650                         jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
651                                         "Still flushing TX UART... i: %d\n", i);
652                         udelay(10);
653                 }
654                 else
655                         break;
656         }
657
658         ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
659 }
660
661
662 /*
663  * Flush the READ FIFO on the Neo.
664  *
665  * NOTE: Channel lock MUST be held before calling this function!
666  */
667 static void neo_flush_uart_read(struct jsm_channel *ch)
668 {
669         u8 tmp = 0;
670         int i = 0;
671
672         if (!ch)
673                 return;
674
675         writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
676
677         for (i = 0; i < 10; i++) {
678
679                 /* Check to see if the UART feels it completely flushed the FIFO. */
680                 tmp = readb(&ch->ch_neo_uart->isr_fcr);
681                 if (tmp & 2) {
682                         jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
683                                         "Still flushing RX UART... i: %d\n", i);
684                         udelay(10);
685                 }
686                 else
687                         break;
688         }
689 }
690
691 /*
692  * No locks are assumed to be held when calling this function.
693  */
694 static void neo_clear_break(struct jsm_channel *ch, int force)
695 {
696         unsigned long lock_flags;
697
698         spin_lock_irqsave(&ch->ch_lock, lock_flags);
699
700         /* Turn break off, and unset some variables */
701         if (ch->ch_flags & CH_BREAK_SENDING) {
702                 u8 temp = readb(&ch->ch_neo_uart->lcr);
703                 writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
704
705                 ch->ch_flags &= ~(CH_BREAK_SENDING);
706                 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
707                                 "clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies);
708
709                 /* flush write operation */
710                 neo_pci_posting_flush(ch->ch_bd);
711         }
712         spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
713 }
714
715 /*
716  * Parse the ISR register.
717  */
718 static inline void neo_parse_isr(struct jsm_board *brd, u32 port)
719 {
720         struct jsm_channel *ch;
721         u8 isr;
722         u8 cause;
723         unsigned long lock_flags;
724
725         if (!brd)
726                 return;
727
728         if (port > brd->maxports)
729                 return;
730
731         ch = brd->channels[port];
732         if (!ch)
733                 return;
734
735         /* Here we try to figure out what caused the interrupt to happen */
736         while (1) {
737
738                 isr = readb(&ch->ch_neo_uart->isr_fcr);
739
740                 /* Bail if no pending interrupt */
741                 if (isr & UART_IIR_NO_INT)
742                         break;
743
744                 /*
745                  * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
746                  */
747                 isr &= ~(UART_17158_IIR_FIFO_ENABLED);
748
749                 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
750                                 "%s:%d isr: %x\n", __FILE__, __LINE__, isr);
751
752                 if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
753                         /* Read data from uart -> queue */
754                         neo_copy_data_from_uart_to_queue(ch);
755
756                         /* Call our tty layer to enforce queue flow control if needed. */
757                         spin_lock_irqsave(&ch->ch_lock, lock_flags);
758                         jsm_check_queue_flow_control(ch);
759                         spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
760                 }
761
762                 if (isr & UART_IIR_THRI) {
763                         /* Transfer data (if any) from Write Queue -> UART. */
764                         spin_lock_irqsave(&ch->ch_lock, lock_flags);
765                         ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
766                         spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
767                         neo_copy_data_from_queue_to_uart(ch);
768                 }
769
770                 if (isr & UART_17158_IIR_XONXOFF) {
771                         cause = readb(&ch->ch_neo_uart->xoffchar1);
772
773                         jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
774                                         "Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause);
775
776                         /*
777                          * Since the UART detected either an XON or
778                          * XOFF match, we need to figure out which
779                          * one it was, so we can suspend or resume data flow.
780                          */
781                         spin_lock_irqsave(&ch->ch_lock, lock_flags);
782                         if (cause == UART_17158_XON_DETECT) {
783                                 /* Is output stopped right now, if so, resume it */
784                                 if (brd->channels[port]->ch_flags & CH_STOP) {
785                                         ch->ch_flags &= ~(CH_STOP);
786                                 }
787                                 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
788                                                 "Port %d. XON detected in incoming data\n", port);
789                         }
790                         else if (cause == UART_17158_XOFF_DETECT) {
791                                 if (!(brd->channels[port]->ch_flags & CH_STOP)) {
792                                         ch->ch_flags |= CH_STOP;
793                                         jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
794                                                         "Setting CH_STOP\n");
795                                 }
796                                 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
797                                                 "Port: %d. XOFF detected in incoming data\n", port);
798                         }
799                         spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
800                 }
801
802                 if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
803                         /*
804                          * If we get here, this means the hardware is doing auto flow control.
805                          * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
806                          */
807                         cause = readb(&ch->ch_neo_uart->mcr);
808
809                         /* Which pin is doing auto flow? RTS or DTR? */
810                         spin_lock_irqsave(&ch->ch_lock, lock_flags);
811                         if ((cause & 0x4) == 0) {
812                                 if (cause & UART_MCR_RTS)
813                                         ch->ch_mostat |= UART_MCR_RTS;
814                                 else
815                                         ch->ch_mostat &= ~(UART_MCR_RTS);
816                         } else {
817                                 if (cause & UART_MCR_DTR)
818                                         ch->ch_mostat |= UART_MCR_DTR;
819                                 else
820                                         ch->ch_mostat &= ~(UART_MCR_DTR);
821                         }
822                         spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
823                 }
824
825                 /* Parse any modem signal changes */
826                 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
827                                 "MOD_STAT: sending to parse_modem_sigs\n");
828                 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
829         }
830 }
831
832 static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
833 {
834         struct jsm_channel *ch;
835         int linestatus;
836         unsigned long lock_flags;
837
838         if (!brd)
839                 return;
840
841         if (port > brd->maxports)
842                 return;
843
844         ch = brd->channels[port];
845         if (!ch)
846                 return;
847
848         linestatus = readb(&ch->ch_neo_uart->lsr);
849
850         jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
851                         "%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus);
852
853         ch->ch_cached_lsr |= linestatus;
854
855         if (ch->ch_cached_lsr & UART_LSR_DR) {
856                 /* Read data from uart -> queue */
857                 neo_copy_data_from_uart_to_queue(ch);
858                 spin_lock_irqsave(&ch->ch_lock, lock_flags);
859                 jsm_check_queue_flow_control(ch);
860                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
861         }
862
863         /*
864          * This is a special flag. It indicates that at least 1
865          * RX error (parity, framing, or break) has happened.
866          * Mark this in our struct, which will tell me that I have
867          *to do the special RX+LSR read for this FIFO load.
868          */
869         if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
870                 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
871                         "%s:%d Port: %d Got an RX error, need to parse LSR\n",
872                         __FILE__, __LINE__, port);
873
874         /*
875          * The next 3 tests should *NOT* happen, as the above test
876          * should encapsulate all 3... At least, thats what Exar says.
877          */
878
879         if (linestatus & UART_LSR_PE) {
880                 ch->ch_err_parity++;
881                 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
882                         "%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port);
883         }
884
885         if (linestatus & UART_LSR_FE) {
886                 ch->ch_err_frame++;
887                 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
888                         "%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port);
889         }
890
891         if (linestatus & UART_LSR_BI) {
892                 ch->ch_err_break++;
893                 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
894                         "%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port);
895         }
896
897         if (linestatus & UART_LSR_OE) {
898                 /*
899                  * Rx Oruns. Exar says that an orun will NOT corrupt
900                  * the FIFO. It will just replace the holding register
901                  * with this new data byte. So basically just ignore this.
902                  * Probably we should eventually have an orun stat in our driver...
903                  */
904                 ch->ch_err_overrun++;
905                 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
906                         "%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port);
907         }
908
909         if (linestatus & UART_LSR_THRE) {
910                 spin_lock_irqsave(&ch->ch_lock, lock_flags);
911                 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
912                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
913
914                 /* Transfer data (if any) from Write Queue -> UART. */
915                 neo_copy_data_from_queue_to_uart(ch);
916         }
917         else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
918                 spin_lock_irqsave(&ch->ch_lock, lock_flags);
919                 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
920                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
921
922                 /* Transfer data (if any) from Write Queue -> UART. */
923                 neo_copy_data_from_queue_to_uart(ch);
924         }
925 }
926
927 /*
928  * neo_param()
929  * Send any/all changes to the line to the UART.
930  */
931 static void neo_param(struct jsm_channel *ch)
932 {
933         u8 lcr = 0;
934         u8 uart_lcr, ier;
935         u32 baud;
936         int quot;
937         struct jsm_board *bd;
938
939         bd = ch->ch_bd;
940         if (!bd)
941                 return;
942
943         /*
944          * If baud rate is zero, flush queues, and set mval to drop DTR.
945          */
946         if ((ch->ch_c_cflag & (CBAUD)) == 0) {
947                 ch->ch_r_head = ch->ch_r_tail = 0;
948                 ch->ch_e_head = ch->ch_e_tail = 0;
949                 ch->ch_w_head = ch->ch_w_tail = 0;
950
951                 neo_flush_uart_write(ch);
952                 neo_flush_uart_read(ch);
953
954                 ch->ch_flags |= (CH_BAUD0);
955                 ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
956                 neo_assert_modem_signals(ch);
957                 ch->ch_old_baud = 0;
958                 return;
959
960         } else if (ch->ch_custom_speed) {
961                         baud = ch->ch_custom_speed;
962                         if (ch->ch_flags & CH_BAUD0)
963                                 ch->ch_flags &= ~(CH_BAUD0);
964         } else {
965                 int i;
966                 unsigned int cflag;
967                 static struct {
968                         unsigned int rate;
969                         unsigned int cflag;
970                 } baud_rates[] = {
971                         { 921600, B921600 },
972                         { 460800, B460800 },
973                         { 230400, B230400 },
974                         { 115200, B115200 },
975                         {  57600, B57600  },
976                         {  38400, B38400  },
977                         {  19200, B19200  },
978                         {   9600, B9600   },
979                         {   4800, B4800   },
980                         {   2400, B2400   },
981                         {   1200, B1200   },
982                         {    600, B600    },
983                         {    300, B300    },
984                         {    200, B200    },
985                         {    150, B150    },
986                         {    134, B134    },
987                         {    110, B110    },
988                         {     75, B75     },
989                         {     50, B50     },
990                 };
991
992                 cflag = C_BAUD(ch->uart_port.info->port.tty);
993                 baud = 9600;
994                 for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
995                         if (baud_rates[i].cflag == cflag) {
996                                 baud = baud_rates[i].rate;
997                                 break;
998                         }
999                 }
1000
1001                 if (ch->ch_flags & CH_BAUD0)
1002                         ch->ch_flags &= ~(CH_BAUD0);
1003         }
1004
1005         if (ch->ch_c_cflag & PARENB)
1006                 lcr |= UART_LCR_PARITY;
1007
1008         if (!(ch->ch_c_cflag & PARODD))
1009                 lcr |= UART_LCR_EPAR;
1010
1011         /*
1012          * Not all platforms support mark/space parity,
1013          * so this will hide behind an ifdef.
1014          */
1015 #ifdef CMSPAR
1016         if (ch->ch_c_cflag & CMSPAR)
1017                 lcr |= UART_LCR_SPAR;
1018 #endif
1019
1020         if (ch->ch_c_cflag & CSTOPB)
1021                 lcr |= UART_LCR_STOP;
1022
1023         switch (ch->ch_c_cflag & CSIZE) {
1024                 case CS5:
1025                         lcr |= UART_LCR_WLEN5;
1026                         break;
1027                 case CS6:
1028                         lcr |= UART_LCR_WLEN6;
1029                         break;
1030                 case CS7:
1031                         lcr |= UART_LCR_WLEN7;
1032                         break;
1033                 case CS8:
1034                 default:
1035                         lcr |= UART_LCR_WLEN8;
1036                 break;
1037         }
1038
1039         ier = readb(&ch->ch_neo_uart->ier);
1040         uart_lcr = readb(&ch->ch_neo_uart->lcr);
1041
1042         if (baud == 0)
1043                 baud = 9600;
1044
1045         quot = ch->ch_bd->bd_dividend / baud;
1046
1047         if (quot != 0) {
1048                 ch->ch_old_baud = baud;
1049                 writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
1050                 writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
1051                 writeb((quot >> 8), &ch->ch_neo_uart->ier);
1052                 writeb(lcr, &ch->ch_neo_uart->lcr);
1053         }
1054
1055         if (uart_lcr != lcr)
1056                 writeb(lcr, &ch->ch_neo_uart->lcr);
1057
1058         if (ch->ch_c_cflag & CREAD)
1059                 ier |= (UART_IER_RDI | UART_IER_RLSI);
1060
1061         ier |= (UART_IER_THRI | UART_IER_MSI);
1062
1063         writeb(ier, &ch->ch_neo_uart->ier);
1064
1065         /* Set new start/stop chars */
1066         neo_set_new_start_stop_chars(ch);
1067
1068         if (ch->ch_c_cflag & CRTSCTS)
1069                 neo_set_cts_flow_control(ch);
1070         else if (ch->ch_c_iflag & IXON) {
1071                 /* If start/stop is set to disable, then we should disable flow control */
1072                 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1073                         neo_set_no_output_flow_control(ch);
1074                 else
1075                         neo_set_ixon_flow_control(ch);
1076         }
1077         else
1078                 neo_set_no_output_flow_control(ch);
1079
1080         if (ch->ch_c_cflag & CRTSCTS)
1081                 neo_set_rts_flow_control(ch);
1082         else if (ch->ch_c_iflag & IXOFF) {
1083                 /* If start/stop is set to disable, then we should disable flow control */
1084                 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1085                         neo_set_no_input_flow_control(ch);
1086                 else
1087                         neo_set_ixoff_flow_control(ch);
1088         }
1089         else
1090                 neo_set_no_input_flow_control(ch);
1091         /*
1092          * Adjust the RX FIFO Trigger level if baud is less than 9600.
1093          * Not exactly elegant, but this is needed because of the Exar chip's
1094          * delay on firing off the RX FIFO interrupt on slower baud rates.
1095          */
1096         if (baud < 9600) {
1097                 writeb(1, &ch->ch_neo_uart->rfifo);
1098                 ch->ch_r_tlevel = 1;
1099         }
1100
1101         neo_assert_modem_signals(ch);
1102
1103         /* Get current status of the modem signals now */
1104         neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
1105         return;
1106 }
1107
1108 /*
1109  * jsm_neo_intr()
1110  *
1111  * Neo specific interrupt handler.
1112  */
1113 static irqreturn_t neo_intr(int irq, void *voidbrd)
1114 {
1115         struct jsm_board *brd = voidbrd;
1116         struct jsm_channel *ch;
1117         int port = 0;
1118         int type = 0;
1119         int current_port;
1120         u32 tmp;
1121         u32 uart_poll;
1122         unsigned long lock_flags;
1123         unsigned long lock_flags2;
1124         int outofloop_count = 0;
1125
1126         brd->intr_count++;
1127
1128         /* Lock out the slow poller from running on this board. */
1129         spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
1130
1131         /*
1132          * Read in "extended" IRQ information from the 32bit Neo register.
1133          * Bits 0-7: What port triggered the interrupt.
1134          * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
1135          */
1136         uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
1137
1138         jsm_printk(INTR, INFO, &brd->pci_dev,
1139                 "%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll);
1140
1141         if (!uart_poll) {
1142                 jsm_printk(INTR, INFO, &brd->pci_dev,
1143                         "Kernel interrupted to me, but no pending interrupts...\n");
1144                 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1145                 return IRQ_NONE;
1146         }
1147
1148         /* At this point, we have at least SOMETHING to service, dig further... */
1149
1150         current_port = 0;
1151
1152         /* Loop on each port */
1153         while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
1154
1155                 tmp = uart_poll;
1156                 outofloop_count++;
1157
1158                 /* Check current port to see if it has interrupt pending */
1159                 if ((tmp & jsm_offset_table[current_port]) != 0) {
1160                         port = current_port;
1161                         type = tmp >> (8 + (port * 3));
1162                         type &= 0x7;
1163                 } else {
1164                         current_port++;
1165                         continue;
1166                 }
1167
1168                 jsm_printk(INTR, INFO, &brd->pci_dev,
1169                 "%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type);
1170
1171                 /* Remove this port + type from uart_poll */
1172                 uart_poll &= ~(jsm_offset_table[port]);
1173
1174                 if (!type) {
1175                         /* If no type, just ignore it, and move onto next port */
1176                         jsm_printk(INTR, ERR, &brd->pci_dev,
1177                                 "Interrupt with no type! port: %d\n", port);
1178                         continue;
1179                 }
1180
1181                 /* Switch on type of interrupt we have */
1182                 switch (type) {
1183
1184                 case UART_17158_RXRDY_TIMEOUT:
1185                         /*
1186                          * RXRDY Time-out is cleared by reading data in the
1187                         * RX FIFO until it falls below the trigger level.
1188                          */
1189
1190                         /* Verify the port is in range. */
1191                         if (port > brd->nasync)
1192                                 continue;
1193
1194                         ch = brd->channels[port];
1195                         neo_copy_data_from_uart_to_queue(ch);
1196
1197                         /* Call our tty layer to enforce queue flow control if needed. */
1198                         spin_lock_irqsave(&ch->ch_lock, lock_flags2);
1199                         jsm_check_queue_flow_control(ch);
1200                         spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
1201
1202                         continue;
1203
1204                 case UART_17158_RX_LINE_STATUS:
1205                         /*
1206                          * RXRDY and RX LINE Status (logic OR of LSR[4:1])
1207                          */
1208                         neo_parse_lsr(brd, port);
1209                         continue;
1210
1211                 case UART_17158_TXRDY:
1212                         /*
1213                          * TXRDY interrupt clears after reading ISR register for the UART channel.
1214                          */
1215
1216                         /*
1217                          * Yes, this is odd...
1218                          * Why would I check EVERY possibility of type of
1219                          * interrupt, when we know its TXRDY???
1220                          * Becuz for some reason, even tho we got triggered for TXRDY,
1221                          * it seems to be occassionally wrong. Instead of TX, which
1222                          * it should be, I was getting things like RXDY too. Weird.
1223                          */
1224                         neo_parse_isr(brd, port);
1225                         continue;
1226
1227                 case UART_17158_MSR:
1228                         /*
1229                          * MSR or flow control was seen.
1230                          */
1231                         neo_parse_isr(brd, port);
1232                         continue;
1233
1234                 default:
1235                         /*
1236                          * The UART triggered us with a bogus interrupt type.
1237                          * It appears the Exar chip, when REALLY bogged down, will throw
1238                          * these once and awhile.
1239                          * Its harmless, just ignore it and move on.
1240                          */
1241                         jsm_printk(INTR, ERR, &brd->pci_dev,
1242                                 "%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type);
1243                         continue;
1244                 }
1245         }
1246
1247         spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1248
1249         jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n");
1250         return IRQ_HANDLED;
1251 }
1252
1253 /*
1254  * Neo specific way of turning off the receiver.
1255  * Used as a way to enforce queue flow control when in
1256  * hardware flow control mode.
1257  */
1258 static void neo_disable_receiver(struct jsm_channel *ch)
1259 {
1260         u8 tmp = readb(&ch->ch_neo_uart->ier);
1261         tmp &= ~(UART_IER_RDI);
1262         writeb(tmp, &ch->ch_neo_uart->ier);
1263
1264         /* flush write operation */
1265         neo_pci_posting_flush(ch->ch_bd);
1266 }
1267
1268
1269 /*
1270  * Neo specific way of turning on the receiver.
1271  * Used as a way to un-enforce queue flow control when in
1272  * hardware flow control mode.
1273  */
1274 static void neo_enable_receiver(struct jsm_channel *ch)
1275 {
1276         u8 tmp = readb(&ch->ch_neo_uart->ier);
1277         tmp |= (UART_IER_RDI);
1278         writeb(tmp, &ch->ch_neo_uart->ier);
1279
1280         /* flush write operation */
1281         neo_pci_posting_flush(ch->ch_bd);
1282 }
1283
1284 static void neo_send_start_character(struct jsm_channel *ch)
1285 {
1286         if (!ch)
1287                 return;
1288
1289         if (ch->ch_startc != __DISABLED_CHAR) {
1290                 ch->ch_xon_sends++;
1291                 writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
1292
1293                 /* flush write operation */
1294                 neo_pci_posting_flush(ch->ch_bd);
1295         }
1296 }
1297
1298 static void neo_send_stop_character(struct jsm_channel *ch)
1299 {
1300         if (!ch)
1301                 return;
1302
1303         if (ch->ch_stopc != __DISABLED_CHAR) {
1304                 ch->ch_xoff_sends++;
1305                 writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
1306
1307                 /* flush write operation */
1308                 neo_pci_posting_flush(ch->ch_bd);
1309         }
1310 }
1311
1312 /*
1313  * neo_uart_init
1314  */
1315 static void neo_uart_init(struct jsm_channel *ch)
1316 {
1317         writeb(0, &ch->ch_neo_uart->ier);
1318         writeb(0, &ch->ch_neo_uart->efr);
1319         writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
1320
1321         /* Clear out UART and FIFO */
1322         readb(&ch->ch_neo_uart->txrx);
1323         writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
1324         readb(&ch->ch_neo_uart->lsr);
1325         readb(&ch->ch_neo_uart->msr);
1326
1327         ch->ch_flags |= CH_FIFO_ENABLED;
1328
1329         /* Assert any signals we want up */
1330         writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
1331 }
1332
1333 /*
1334  * Make the UART completely turn off.
1335  */
1336 static void neo_uart_off(struct jsm_channel *ch)
1337 {
1338         /* Turn off UART enhanced bits */
1339         writeb(0, &ch->ch_neo_uart->efr);
1340
1341         /* Stop all interrupts from occurring. */
1342         writeb(0, &ch->ch_neo_uart->ier);
1343 }
1344
1345 static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
1346 {
1347         u8 left = 0;
1348         u8 lsr = readb(&ch->ch_neo_uart->lsr);
1349
1350         /* We must cache the LSR as some of the bits get reset once read... */
1351         ch->ch_cached_lsr |= lsr;
1352
1353         /* Determine whether the Transmitter is empty or not */
1354         if (!(lsr & UART_LSR_TEMT))
1355                 left = 1;
1356         else {
1357                 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
1358                 left = 0;
1359         }
1360
1361         return left;
1362 }
1363
1364 /* Channel lock MUST be held by the calling function! */
1365 static void neo_send_break(struct jsm_channel *ch)
1366 {
1367         /*
1368          * Set the time we should stop sending the break.
1369          * If we are already sending a break, toss away the existing
1370          * time to stop, and use this new value instead.
1371          */
1372
1373         /* Tell the UART to start sending the break */
1374         if (!(ch->ch_flags & CH_BREAK_SENDING)) {
1375                 u8 temp = readb(&ch->ch_neo_uart->lcr);
1376                 writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
1377                 ch->ch_flags |= (CH_BREAK_SENDING);
1378
1379                 /* flush write operation */
1380                 neo_pci_posting_flush(ch->ch_bd);
1381         }
1382 }
1383
1384 /*
1385  * neo_send_immediate_char.
1386  *
1387  * Sends a specific character as soon as possible to the UART,
1388  * jumping over any bytes that might be in the write queue.
1389  *
1390  * The channel lock MUST be held by the calling function.
1391  */
1392 static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
1393 {
1394         if (!ch)
1395                 return;
1396
1397         writeb(c, &ch->ch_neo_uart->txrx);
1398
1399         /* flush write operation */
1400         neo_pci_posting_flush(ch->ch_bd);
1401 }
1402
1403 struct board_ops jsm_neo_ops = {
1404         .intr                           = neo_intr,
1405         .uart_init                      = neo_uart_init,
1406         .uart_off                       = neo_uart_off,
1407         .param                          = neo_param,
1408         .assert_modem_signals           = neo_assert_modem_signals,
1409         .flush_uart_write               = neo_flush_uart_write,
1410         .flush_uart_read                = neo_flush_uart_read,
1411         .disable_receiver               = neo_disable_receiver,
1412         .enable_receiver                = neo_enable_receiver,
1413         .send_break                     = neo_send_break,
1414         .clear_break                    = neo_clear_break,
1415         .send_start_character           = neo_send_start_character,
1416         .send_stop_character            = neo_send_stop_character,
1417         .copy_data_from_queue_to_uart   = neo_copy_data_from_queue_to_uart,
1418         .get_uart_bytes_left            = neo_get_uart_bytes_left,
1419         .send_immediate_char            = neo_send_immediate_char
1420 };