]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/rtc/rtc-sh.c
rtc: rtc-sh: Bump version up to reflect single IRQ support changes.
[linux-2.6-omap-h63xx.git] / drivers / rtc / rtc-sh.c
1 /*
2  * SuperH On-Chip RTC Support
3  *
4  * Copyright (C) 2006, 2007, 2008  Paul Mundt
5  * Copyright (C) 2006  Jamie Lenehan
6  * Copyright (C) 2008  Angelo Castello
7  *
8  * Based on the old arch/sh/kernel/cpu/rtc.c by:
9  *
10  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
11  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
12  *
13  * This file is subject to the terms and conditions of the GNU General Public
14  * License.  See the file "COPYING" in the main directory of this archive
15  * for more details.
16  */
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <linux/log2.h>
28 #include <asm/rtc.h>
29
30 #define DRV_NAME        "sh-rtc"
31 #define DRV_VERSION     "0.2.1"
32
33 #define RTC_REG(r)      ((r) * rtc_reg_size)
34
35 #define R64CNT          RTC_REG(0)
36
37 #define RSECCNT         RTC_REG(1)      /* RTC sec */
38 #define RMINCNT         RTC_REG(2)      /* RTC min */
39 #define RHRCNT          RTC_REG(3)      /* RTC hour */
40 #define RWKCNT          RTC_REG(4)      /* RTC week */
41 #define RDAYCNT         RTC_REG(5)      /* RTC day */
42 #define RMONCNT         RTC_REG(6)      /* RTC month */
43 #define RYRCNT          RTC_REG(7)      /* RTC year */
44 #define RSECAR          RTC_REG(8)      /* ALARM sec */
45 #define RMINAR          RTC_REG(9)      /* ALARM min */
46 #define RHRAR           RTC_REG(10)     /* ALARM hour */
47 #define RWKAR           RTC_REG(11)     /* ALARM week */
48 #define RDAYAR          RTC_REG(12)     /* ALARM day */
49 #define RMONAR          RTC_REG(13)     /* ALARM month */
50 #define RCR1            RTC_REG(14)     /* Control */
51 #define RCR2            RTC_REG(15)     /* Control */
52
53 /*
54  * Note on RYRAR and RCR3: Up until this point most of the register
55  * definitions are consistent across all of the available parts. However,
56  * the placement of the optional RYRAR and RCR3 (the RYRAR control
57  * register used to control RYRCNT/RYRAR compare) varies considerably
58  * across various parts, occasionally being mapped in to a completely
59  * unrelated address space. For proper RYRAR support a separate resource
60  * would have to be handed off, but as this is purely optional in
61  * practice, we simply opt not to support it, thereby keeping the code
62  * quite a bit more simplified.
63  */
64
65 /* ALARM Bits - or with BCD encoded value */
66 #define AR_ENB          0x80    /* Enable for alarm cmp   */
67
68 /* Period Bits */
69 #define PF_HP           0x100   /* Enable Half Period to support 8,32,128Hz */
70 #define PF_COUNT        0x200   /* Half periodic counter */
71 #define PF_OXS          0x400   /* Periodic One x Second */
72 #define PF_KOU          0x800   /* Kernel or User periodic request 1=kernel */
73 #define PF_MASK         0xf00
74
75 /* RCR1 Bits */
76 #define RCR1_CF         0x80    /* Carry Flag             */
77 #define RCR1_CIE        0x10    /* Carry Interrupt Enable */
78 #define RCR1_AIE        0x08    /* Alarm Interrupt Enable */
79 #define RCR1_AF         0x01    /* Alarm Flag             */
80
81 /* RCR2 Bits */
82 #define RCR2_PEF        0x80    /* PEriodic interrupt Flag */
83 #define RCR2_PESMASK    0x70    /* Periodic interrupt Set  */
84 #define RCR2_RTCEN      0x08    /* ENable RTC              */
85 #define RCR2_ADJ        0x04    /* ADJustment (30-second)  */
86 #define RCR2_RESET      0x02    /* Reset bit               */
87 #define RCR2_START      0x01    /* Start bit               */
88
89 struct sh_rtc {
90         void __iomem *regbase;
91         unsigned long regsize;
92         struct resource *res;
93         int alarm_irq;
94         int periodic_irq;
95         int carry_irq;
96         struct rtc_device *rtc_dev;
97         spinlock_t lock;
98         unsigned long capabilities;     /* See asm-sh/rtc.h for cap bits */
99         unsigned short periodic_freq;
100 };
101
102 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
103 {
104         unsigned int tmp, pending;
105
106         tmp = readb(rtc->regbase + RCR1);
107         pending = tmp & RCR1_CF;
108         tmp &= ~RCR1_CF;
109         writeb(tmp, rtc->regbase + RCR1);
110
111         /* Users have requested One x Second IRQ */
112         if (pending && rtc->periodic_freq & PF_OXS)
113                 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
114
115         return pending;
116 }
117
118 static int __sh_rtc_alarm(struct sh_rtc *rtc)
119 {
120         unsigned int tmp, pending;
121
122         tmp = readb(rtc->regbase + RCR1);
123         pending = tmp & RCR1_AF;
124         tmp &= ~(RCR1_AF | RCR1_AIE);
125         writeb(tmp, rtc->regbase + RCR1);
126
127         if (pending)
128                 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
129
130         return pending;
131 }
132
133 static int __sh_rtc_periodic(struct sh_rtc *rtc)
134 {
135         struct rtc_device *rtc_dev = rtc->rtc_dev;
136         struct rtc_task *irq_task;
137         unsigned int tmp, pending;
138
139         tmp = readb(rtc->regbase + RCR2);
140         pending = tmp & RCR2_PEF;
141         tmp &= ~RCR2_PEF;
142         writeb(tmp, rtc->regbase + RCR2);
143
144         if (!pending)
145                 return 0;
146
147         /* Half period enabled than one skipped and the next notified */
148         if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
149                 rtc->periodic_freq &= ~PF_COUNT;
150         else {
151                 if (rtc->periodic_freq & PF_HP)
152                         rtc->periodic_freq |= PF_COUNT;
153                 if (rtc->periodic_freq & PF_KOU) {
154                         spin_lock(&rtc_dev->irq_task_lock);
155                         irq_task = rtc_dev->irq_task;
156                         if (irq_task)
157                                 irq_task->func(irq_task->private_data);
158                         spin_unlock(&rtc_dev->irq_task_lock);
159                 } else
160                         rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
161         }
162
163         return pending;
164 }
165
166 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
167 {
168         struct sh_rtc *rtc = dev_id;
169         int ret;
170
171         spin_lock(&rtc->lock);
172         ret = __sh_rtc_interrupt(rtc);
173         spin_unlock(&rtc->lock);
174
175         return IRQ_RETVAL(ret);
176 }
177
178 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
179 {
180         struct sh_rtc *rtc = dev_id;
181         int ret;
182
183         spin_lock(&rtc->lock);
184         ret = __sh_rtc_alarm(rtc);
185         spin_unlock(&rtc->lock);
186
187         return IRQ_RETVAL(ret);
188 }
189
190 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
191 {
192         struct sh_rtc *rtc = dev_id;
193         int ret;
194
195         spin_lock(&rtc->lock);
196         ret = __sh_rtc_periodic(rtc);
197         spin_unlock(&rtc->lock);
198
199         return IRQ_RETVAL(ret);
200 }
201
202 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
203 {
204         struct sh_rtc *rtc = dev_id;
205         int ret;
206
207         spin_lock(&rtc->lock);
208         ret = __sh_rtc_interrupt(rtc);
209         ret |= __sh_rtc_alarm(rtc);
210         ret |= __sh_rtc_periodic(rtc);
211         spin_unlock(&rtc->lock);
212
213         return IRQ_RETVAL(ret);
214 }
215
216 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
217 {
218         struct sh_rtc *rtc = dev_get_drvdata(dev);
219         unsigned int tmp;
220
221         spin_lock_irq(&rtc->lock);
222
223         tmp = readb(rtc->regbase + RCR2);
224
225         if (enable) {
226                 tmp &= ~RCR2_PEF;       /* Clear PES bit */
227                 tmp |= (rtc->periodic_freq & ~PF_HP);   /* Set PES2-0 */
228         } else
229                 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
230
231         writeb(tmp, rtc->regbase + RCR2);
232
233         spin_unlock_irq(&rtc->lock);
234 }
235
236 static inline int sh_rtc_setfreq(struct device *dev, unsigned int freq)
237 {
238         struct sh_rtc *rtc = dev_get_drvdata(dev);
239         int tmp, ret = 0;
240
241         spin_lock_irq(&rtc->lock);
242         tmp = rtc->periodic_freq & PF_MASK;
243
244         switch (freq) {
245         case 0:
246                 rtc->periodic_freq = 0x00;
247                 break;
248         case 1:
249                 rtc->periodic_freq = 0x60;
250                 break;
251         case 2:
252                 rtc->periodic_freq = 0x50;
253                 break;
254         case 4:
255                 rtc->periodic_freq = 0x40;
256                 break;
257         case 8:
258                 rtc->periodic_freq = 0x30 | PF_HP;
259                 break;
260         case 16:
261                 rtc->periodic_freq = 0x30;
262                 break;
263         case 32:
264                 rtc->periodic_freq = 0x20 | PF_HP;
265                 break;
266         case 64:
267                 rtc->periodic_freq = 0x20;
268                 break;
269         case 128:
270                 rtc->periodic_freq = 0x10 | PF_HP;
271                 break;
272         case 256:
273                 rtc->periodic_freq = 0x10;
274                 break;
275         default:
276                 ret = -ENOTSUPP;
277         }
278
279         if (ret == 0) {
280                 rtc->periodic_freq |= tmp;
281                 rtc->rtc_dev->irq_freq = freq;
282         }
283
284         spin_unlock_irq(&rtc->lock);
285         return ret;
286 }
287
288 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
289 {
290         struct sh_rtc *rtc = dev_get_drvdata(dev);
291         unsigned int tmp;
292
293         spin_lock_irq(&rtc->lock);
294
295         tmp = readb(rtc->regbase + RCR1);
296
297         if (!enable)
298                 tmp &= ~RCR1_AIE;
299         else
300                 tmp |= RCR1_AIE;
301
302         writeb(tmp, rtc->regbase + RCR1);
303
304         spin_unlock_irq(&rtc->lock);
305 }
306
307 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
308 {
309         struct sh_rtc *rtc = dev_get_drvdata(dev);
310         unsigned int tmp;
311
312         tmp = readb(rtc->regbase + RCR1);
313         seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
314
315         tmp = readb(rtc->regbase + RCR2);
316         seq_printf(seq, "periodic_IRQ\t: %s\n",
317                    (tmp & RCR2_PESMASK) ? "yes" : "no");
318
319         return 0;
320 }
321
322 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
323 {
324         struct sh_rtc *rtc = dev_get_drvdata(dev);
325         unsigned int ret = 0;
326
327         switch (cmd) {
328         case RTC_PIE_OFF:
329         case RTC_PIE_ON:
330                 sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
331                 break;
332         case RTC_AIE_OFF:
333         case RTC_AIE_ON:
334                 sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
335                 break;
336         case RTC_UIE_OFF:
337                 rtc->periodic_freq &= ~PF_OXS;
338                 break;
339         case RTC_UIE_ON:
340                 rtc->periodic_freq |= PF_OXS;
341                 break;
342         case RTC_IRQP_READ:
343                 ret = put_user(rtc->rtc_dev->irq_freq,
344                                (unsigned long __user *)arg);
345                 break;
346         case RTC_IRQP_SET:
347                 ret = sh_rtc_setfreq(dev, arg);
348                 break;
349         default:
350                 ret = -ENOIOCTLCMD;
351         }
352
353         return ret;
354 }
355
356 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
357 {
358         struct platform_device *pdev = to_platform_device(dev);
359         struct sh_rtc *rtc = platform_get_drvdata(pdev);
360         unsigned int sec128, sec2, yr, yr100, cf_bit;
361
362         do {
363                 unsigned int tmp;
364
365                 spin_lock_irq(&rtc->lock);
366
367                 tmp = readb(rtc->regbase + RCR1);
368                 tmp &= ~RCR1_CF; /* Clear CF-bit */
369                 tmp |= RCR1_CIE;
370                 writeb(tmp, rtc->regbase + RCR1);
371
372                 sec128 = readb(rtc->regbase + R64CNT);
373
374                 tm->tm_sec      = bcd2bin(readb(rtc->regbase + RSECCNT));
375                 tm->tm_min      = bcd2bin(readb(rtc->regbase + RMINCNT));
376                 tm->tm_hour     = bcd2bin(readb(rtc->regbase + RHRCNT));
377                 tm->tm_wday     = bcd2bin(readb(rtc->regbase + RWKCNT));
378                 tm->tm_mday     = bcd2bin(readb(rtc->regbase + RDAYCNT));
379                 tm->tm_mon      = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
380
381                 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
382                         yr  = readw(rtc->regbase + RYRCNT);
383                         yr100 = bcd2bin(yr >> 8);
384                         yr &= 0xff;
385                 } else {
386                         yr  = readb(rtc->regbase + RYRCNT);
387                         yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
388                 }
389
390                 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
391
392                 sec2 = readb(rtc->regbase + R64CNT);
393                 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
394
395                 spin_unlock_irq(&rtc->lock);
396         } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
397
398 #if RTC_BIT_INVERTED != 0
399         if ((sec128 & RTC_BIT_INVERTED))
400                 tm->tm_sec--;
401 #endif
402
403         dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
404                 "mday=%d, mon=%d, year=%d, wday=%d\n",
405                 __func__,
406                 tm->tm_sec, tm->tm_min, tm->tm_hour,
407                 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
408
409         if (rtc_valid_tm(tm) < 0) {
410                 dev_err(dev, "invalid date\n");
411                 rtc_time_to_tm(0, tm);
412         }
413
414         return 0;
415 }
416
417 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
418 {
419         struct platform_device *pdev = to_platform_device(dev);
420         struct sh_rtc *rtc = platform_get_drvdata(pdev);
421         unsigned int tmp;
422         int year;
423
424         spin_lock_irq(&rtc->lock);
425
426         /* Reset pre-scaler & stop RTC */
427         tmp = readb(rtc->regbase + RCR2);
428         tmp |= RCR2_RESET;
429         tmp &= ~RCR2_START;
430         writeb(tmp, rtc->regbase + RCR2);
431
432         writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
433         writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
434         writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
435         writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
436         writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
437         writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
438
439         if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
440                 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
441                         bin2bcd(tm->tm_year % 100);
442                 writew(year, rtc->regbase + RYRCNT);
443         } else {
444                 year = tm->tm_year % 100;
445                 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
446         }
447
448         /* Start RTC */
449         tmp = readb(rtc->regbase + RCR2);
450         tmp &= ~RCR2_RESET;
451         tmp |= RCR2_RTCEN | RCR2_START;
452         writeb(tmp, rtc->regbase + RCR2);
453
454         spin_unlock_irq(&rtc->lock);
455
456         return 0;
457 }
458
459 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
460 {
461         unsigned int byte;
462         int value = 0xff;       /* return 0xff for ignored values */
463
464         byte = readb(rtc->regbase + reg_off);
465         if (byte & AR_ENB) {
466                 byte &= ~AR_ENB;        /* strip the enable bit */
467                 value = bcd2bin(byte);
468         }
469
470         return value;
471 }
472
473 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
474 {
475         struct platform_device *pdev = to_platform_device(dev);
476         struct sh_rtc *rtc = platform_get_drvdata(pdev);
477         struct rtc_time *tm = &wkalrm->time;
478
479         spin_lock_irq(&rtc->lock);
480
481         tm->tm_sec      = sh_rtc_read_alarm_value(rtc, RSECAR);
482         tm->tm_min      = sh_rtc_read_alarm_value(rtc, RMINAR);
483         tm->tm_hour     = sh_rtc_read_alarm_value(rtc, RHRAR);
484         tm->tm_wday     = sh_rtc_read_alarm_value(rtc, RWKAR);
485         tm->tm_mday     = sh_rtc_read_alarm_value(rtc, RDAYAR);
486         tm->tm_mon      = sh_rtc_read_alarm_value(rtc, RMONAR);
487         if (tm->tm_mon > 0)
488                 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
489         tm->tm_year     = 0xffff;
490
491         wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
492
493         spin_unlock_irq(&rtc->lock);
494
495         return 0;
496 }
497
498 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
499                                             int value, int reg_off)
500 {
501         /* < 0 for a value that is ignored */
502         if (value < 0)
503                 writeb(0, rtc->regbase + reg_off);
504         else
505                 writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
506 }
507
508 static int sh_rtc_check_alarm(struct rtc_time *tm)
509 {
510         /*
511          * The original rtc says anything > 0xc0 is "don't care" or "match
512          * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
513          * The original rtc doesn't support years - some things use -1 and
514          * some 0xffff. We use -1 to make out tests easier.
515          */
516         if (tm->tm_year == 0xffff)
517                 tm->tm_year = -1;
518         if (tm->tm_mon >= 0xff)
519                 tm->tm_mon = -1;
520         if (tm->tm_mday >= 0xff)
521                 tm->tm_mday = -1;
522         if (tm->tm_wday >= 0xff)
523                 tm->tm_wday = -1;
524         if (tm->tm_hour >= 0xff)
525                 tm->tm_hour = -1;
526         if (tm->tm_min >= 0xff)
527                 tm->tm_min = -1;
528         if (tm->tm_sec >= 0xff)
529                 tm->tm_sec = -1;
530
531         if (tm->tm_year > 9999 ||
532                 tm->tm_mon >= 12 ||
533                 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
534                 tm->tm_wday >= 7 ||
535                 tm->tm_hour >= 24 ||
536                 tm->tm_min >= 60 ||
537                 tm->tm_sec >= 60)
538                 return -EINVAL;
539
540         return 0;
541 }
542
543 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
544 {
545         struct platform_device *pdev = to_platform_device(dev);
546         struct sh_rtc *rtc = platform_get_drvdata(pdev);
547         unsigned int rcr1;
548         struct rtc_time *tm = &wkalrm->time;
549         int mon, err;
550
551         err = sh_rtc_check_alarm(tm);
552         if (unlikely(err < 0))
553                 return err;
554
555         spin_lock_irq(&rtc->lock);
556
557         /* disable alarm interrupt and clear the alarm flag */
558         rcr1 = readb(rtc->regbase + RCR1);
559         rcr1 &= ~(RCR1_AF | RCR1_AIE);
560         writeb(rcr1, rtc->regbase + RCR1);
561
562         /* set alarm time */
563         sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
564         sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
565         sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
566         sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
567         sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
568         mon = tm->tm_mon;
569         if (mon >= 0)
570                 mon += 1;
571         sh_rtc_write_alarm_value(rtc, mon, RMONAR);
572
573         if (wkalrm->enabled) {
574                 rcr1 |= RCR1_AIE;
575                 writeb(rcr1, rtc->regbase + RCR1);
576         }
577
578         spin_unlock_irq(&rtc->lock);
579
580         return 0;
581 }
582
583 static int sh_rtc_irq_set_state(struct device *dev, int enabled)
584 {
585         struct platform_device *pdev = to_platform_device(dev);
586         struct sh_rtc *rtc = platform_get_drvdata(pdev);
587
588         if (enabled) {
589                 rtc->periodic_freq |= PF_KOU;
590                 return sh_rtc_ioctl(dev, RTC_PIE_ON, 0);
591         } else {
592                 rtc->periodic_freq &= ~PF_KOU;
593                 return sh_rtc_ioctl(dev, RTC_PIE_OFF, 0);
594         }
595 }
596
597 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
598 {
599         if (!is_power_of_2(freq))
600                 return -EINVAL;
601         return sh_rtc_ioctl(dev, RTC_IRQP_SET, freq);
602 }
603
604 static struct rtc_class_ops sh_rtc_ops = {
605         .ioctl          = sh_rtc_ioctl,
606         .read_time      = sh_rtc_read_time,
607         .set_time       = sh_rtc_set_time,
608         .read_alarm     = sh_rtc_read_alarm,
609         .set_alarm      = sh_rtc_set_alarm,
610         .irq_set_state  = sh_rtc_irq_set_state,
611         .irq_set_freq   = sh_rtc_irq_set_freq,
612         .proc           = sh_rtc_proc,
613 };
614
615 static int __devinit sh_rtc_probe(struct platform_device *pdev)
616 {
617         struct sh_rtc *rtc;
618         struct resource *res;
619         unsigned int tmp;
620         int ret;
621
622         rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
623         if (unlikely(!rtc))
624                 return -ENOMEM;
625
626         spin_lock_init(&rtc->lock);
627
628         /* get periodic/carry/alarm irqs */
629         ret = platform_get_irq(pdev, 0);
630         if (unlikely(ret <= 0)) {
631                 ret = -ENOENT;
632                 dev_err(&pdev->dev, "No IRQ resource\n");
633                 goto err_badres;
634         }
635         rtc->periodic_irq = ret;
636         rtc->carry_irq = platform_get_irq(pdev, 1);
637         rtc->alarm_irq = platform_get_irq(pdev, 2);
638
639         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
640         if (unlikely(res == NULL)) {
641                 ret = -ENOENT;
642                 dev_err(&pdev->dev, "No IO resource\n");
643                 goto err_badres;
644         }
645
646         rtc->regsize = res->end - res->start + 1;
647
648         rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
649         if (unlikely(!rtc->res)) {
650                 ret = -EBUSY;
651                 goto err_badres;
652         }
653
654         rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
655         if (unlikely(!rtc->regbase)) {
656                 ret = -EINVAL;
657                 goto err_badmap;
658         }
659
660         rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
661                                            &sh_rtc_ops, THIS_MODULE);
662         if (IS_ERR(rtc->rtc_dev)) {
663                 ret = PTR_ERR(rtc->rtc_dev);
664                 goto err_unmap;
665         }
666
667         rtc->capabilities = RTC_DEF_CAPABILITIES;
668         if (pdev->dev.platform_data) {
669                 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
670
671                 /*
672                  * Some CPUs have special capabilities in addition to the
673                  * default set. Add those in here.
674                  */
675                 rtc->capabilities |= pinfo->capabilities;
676         }
677
678         rtc->rtc_dev->max_user_freq = 256;
679         rtc->rtc_dev->irq_freq = 1;
680         rtc->periodic_freq = 0x60;
681
682         platform_set_drvdata(pdev, rtc);
683
684         if (rtc->carry_irq <= 0) {
685                 /* register shared periodic/carry/alarm irq */
686                 ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
687                                   IRQF_DISABLED, "sh-rtc", rtc);
688                 if (unlikely(ret)) {
689                         dev_err(&pdev->dev,
690                                 "request IRQ failed with %d, IRQ %d\n", ret,
691                                 rtc->periodic_irq);
692                         goto err_unmap;
693                 }
694         } else {
695                 /* register periodic/carry/alarm irqs */
696                 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
697                                   IRQF_DISABLED, "sh-rtc period", rtc);
698                 if (unlikely(ret)) {
699                         dev_err(&pdev->dev,
700                                 "request period IRQ failed with %d, IRQ %d\n",
701                                 ret, rtc->periodic_irq);
702                         goto err_unmap;
703                 }
704
705                 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
706                                   IRQF_DISABLED, "sh-rtc carry", rtc);
707                 if (unlikely(ret)) {
708                         dev_err(&pdev->dev,
709                                 "request carry IRQ failed with %d, IRQ %d\n",
710                                 ret, rtc->carry_irq);
711                         free_irq(rtc->periodic_irq, rtc);
712                         goto err_unmap;
713                 }
714
715                 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
716                                   IRQF_DISABLED, "sh-rtc alarm", rtc);
717                 if (unlikely(ret)) {
718                         dev_err(&pdev->dev,
719                                 "request alarm IRQ failed with %d, IRQ %d\n",
720                                 ret, rtc->alarm_irq);
721                         free_irq(rtc->carry_irq, rtc);
722                         free_irq(rtc->periodic_irq, rtc);
723                         goto err_unmap;
724                 }
725         }
726
727         tmp = readb(rtc->regbase + RCR1);
728         tmp &= ~RCR1_CF;
729         tmp |= RCR1_CIE;
730         writeb(tmp, rtc->regbase + RCR1);
731
732         return 0;
733
734 err_unmap:
735         iounmap(rtc->regbase);
736 err_badmap:
737         release_resource(rtc->res);
738 err_badres:
739         kfree(rtc);
740
741         return ret;
742 }
743
744 static int __devexit sh_rtc_remove(struct platform_device *pdev)
745 {
746         struct sh_rtc *rtc = platform_get_drvdata(pdev);
747
748         if (likely(rtc->rtc_dev))
749                 rtc_device_unregister(rtc->rtc_dev);
750
751         sh_rtc_setpie(&pdev->dev, 0);
752         sh_rtc_setaie(&pdev->dev, 0);
753
754         free_irq(rtc->periodic_irq, rtc);
755         if (rtc->carry_irq > 0) {
756                 free_irq(rtc->carry_irq, rtc);
757                 free_irq(rtc->alarm_irq, rtc);
758         }
759
760         release_resource(rtc->res);
761
762         iounmap(rtc->regbase);
763
764         platform_set_drvdata(pdev, NULL);
765
766         kfree(rtc);
767
768         return 0;
769 }
770 static struct platform_driver sh_rtc_platform_driver = {
771         .driver         = {
772                 .name   = DRV_NAME,
773                 .owner  = THIS_MODULE,
774         },
775         .probe          = sh_rtc_probe,
776         .remove         = __devexit_p(sh_rtc_remove),
777 };
778
779 static int __init sh_rtc_init(void)
780 {
781         return platform_driver_register(&sh_rtc_platform_driver);
782 }
783
784 static void __exit sh_rtc_exit(void)
785 {
786         platform_driver_unregister(&sh_rtc_platform_driver);
787 }
788
789 module_init(sh_rtc_init);
790 module_exit(sh_rtc_exit);
791
792 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
793 MODULE_VERSION(DRV_VERSION);
794 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
795               "Jamie Lenehan <lenehan@twibble.org>, "
796               "Angelo Castello <angelo.castello@st.com>");
797 MODULE_LICENSE("GPL");
798 MODULE_ALIAS("platform:" DRV_NAME);