]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/isdn/hardware/mISDN/hfcpci.c
mISDN: Minor cleanups
[linux-2.6-omap-h63xx.git] / drivers / isdn / hardware / mISDN / hfcpci.c
1 /*
2  *
3  * hfcpci.c     low level driver for CCD's hfc-pci based cards
4  *
5  * Author     Werner Cornelius (werner@isdn4linux.de)
6  *            based on existing driver for CCD hfc ISA cards
7  *            type approval valid for HFC-S PCI A based card
8  *
9  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10  * Copyright 2008  by Karsten Keil <kkeil@novell.com>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module options:
27  *
28  * debug:
29  *      NOTE: only one poll value must be given for all cards
30  *      See hfc_pci.h for debug flags.
31  *
32  * poll:
33  *      NOTE: only one poll value must be given for all cards
34  *      Give the number of samples for each fifo process.
35  *      By default 128 is used. Decrease to reduce delay, increase to
36  *      reduce cpu load. If unsure, don't mess with it!
37  *      A value of 128 will use controller's interrupt. Other values will
38  *      use kernel timer, because the controller will not allow lower values
39  *      than 128.
40  *      Also note that the value depends on the kernel timer frequency.
41  *      If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
42  *      If the kernel uses 100 Hz, steps of 80 samples are possible.
43  *      If the kernel uses 300 Hz, steps of about 26 samples are possible.
44  *
45  */
46
47 #include <linux/module.h>
48 #include <linux/pci.h>
49 #include <linux/delay.h>
50 #include <linux/mISDNhw.h>
51
52 #include "hfc_pci.h"
53
54 static const char *hfcpci_revision = "2.0";
55
56 static int HFC_cnt;
57 static uint debug;
58 static uint poll, tics;
59 struct timer_list hfc_tl;
60 u32     hfc_jiffies;
61
62 MODULE_AUTHOR("Karsten Keil");
63 MODULE_LICENSE("GPL");
64 module_param(debug, uint, 0);
65 module_param(poll, uint, S_IRUGO | S_IWUSR);
66
67 enum {
68         HFC_CCD_2BD0,
69         HFC_CCD_B000,
70         HFC_CCD_B006,
71         HFC_CCD_B007,
72         HFC_CCD_B008,
73         HFC_CCD_B009,
74         HFC_CCD_B00A,
75         HFC_CCD_B00B,
76         HFC_CCD_B00C,
77         HFC_CCD_B100,
78         HFC_CCD_B700,
79         HFC_CCD_B701,
80         HFC_ASUS_0675,
81         HFC_BERKOM_A1T,
82         HFC_BERKOM_TCONCEPT,
83         HFC_ANIGMA_MC145575,
84         HFC_ZOLTRIX_2BD0,
85         HFC_DIGI_DF_M_IOM2_E,
86         HFC_DIGI_DF_M_E,
87         HFC_DIGI_DF_M_IOM2_A,
88         HFC_DIGI_DF_M_A,
89         HFC_ABOCOM_2BD1,
90         HFC_SITECOM_DC105V2,
91 };
92
93 struct hfcPCI_hw {
94         unsigned char           cirm;
95         unsigned char           ctmt;
96         unsigned char           clkdel;
97         unsigned char           states;
98         unsigned char           conn;
99         unsigned char           mst_m;
100         unsigned char           int_m1;
101         unsigned char           int_m2;
102         unsigned char           sctrl;
103         unsigned char           sctrl_r;
104         unsigned char           sctrl_e;
105         unsigned char           trm;
106         unsigned char           fifo_en;
107         unsigned char           bswapped;
108         unsigned char           protocol;
109         int                     nt_timer;
110         unsigned char __iomem   *pci_io; /* start of PCI IO memory */
111         dma_addr_t              dmahandle;
112         void                    *fifos; /* FIFO memory */
113         int                     last_bfifo_cnt[2];
114             /* marker saving last b-fifo frame count */
115         struct timer_list       timer;
116 };
117
118 #define HFC_CFG_MASTER          1
119 #define HFC_CFG_SLAVE           2
120 #define HFC_CFG_PCM             3
121 #define HFC_CFG_2HFC            4
122 #define HFC_CFG_SLAVEHFC        5
123 #define HFC_CFG_NEG_F0          6
124 #define HFC_CFG_SW_DD_DU        7
125
126 #define FLG_HFC_TIMER_T1        16
127 #define FLG_HFC_TIMER_T3        17
128
129 #define NT_T1_COUNT     1120    /* number of 3.125ms interrupts (3.5s) */
130 #define NT_T3_COUNT     31      /* number of 3.125ms interrupts (97 ms) */
131 #define CLKDEL_TE       0x0e    /* CLKDEL in TE mode */
132 #define CLKDEL_NT       0x6c    /* CLKDEL in NT mode */
133
134
135 struct hfc_pci {
136         u_char                  subtype;
137         u_char                  chanlimit;
138         u_char                  initdone;
139         u_long                  cfg;
140         u_int                   irq;
141         u_int                   irqcnt;
142         struct pci_dev          *pdev;
143         struct hfcPCI_hw        hw;
144         spinlock_t              lock;   /* card lock */
145         struct dchannel         dch;
146         struct bchannel         bch[2];
147 };
148
149 /* Interface functions */
150 static void
151 enable_hwirq(struct hfc_pci *hc)
152 {
153         hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
154         Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
155 }
156
157 static void
158 disable_hwirq(struct hfc_pci *hc)
159 {
160         hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
161         Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
162 }
163
164 /*
165  * free hardware resources used by driver
166  */
167 static void
168 release_io_hfcpci(struct hfc_pci *hc)
169 {
170         /* disable memory mapped ports + busmaster */
171         pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
172         del_timer(&hc->hw.timer);
173         pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
174         iounmap(hc->hw.pci_io);
175 }
176
177 /*
178  * set mode (NT or TE)
179  */
180 static void
181 hfcpci_setmode(struct hfc_pci *hc)
182 {
183         if (hc->hw.protocol == ISDN_P_NT_S0) {
184                 hc->hw.clkdel = CLKDEL_NT;      /* ST-Bit delay for NT-Mode */
185                 hc->hw.sctrl |= SCTRL_MODE_NT;  /* NT-MODE */
186                 hc->hw.states = 1;              /* G1 */
187         } else {
188                 hc->hw.clkdel = CLKDEL_TE;      /* ST-Bit delay for TE-Mode */
189                 hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */
190                 hc->hw.states = 2;              /* F2 */
191         }
192         Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
193         Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
194         udelay(10);
195         Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
196         Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
197 }
198
199 /*
200  * function called to reset the HFC PCI chip. A complete software reset of chip
201  * and fifos is done.
202  */
203 static void
204 reset_hfcpci(struct hfc_pci *hc)
205 {
206         u_char  val;
207         int     cnt = 0;
208
209         printk(KERN_DEBUG "reset_hfcpci: entered\n");
210         val = Read_hfc(hc, HFCPCI_CHIP_ID);
211         printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
212         /* enable memory mapped ports, disable busmaster */
213         pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
214         disable_hwirq(hc);
215         /* enable memory ports + busmaster */
216         pci_write_config_word(hc->pdev, PCI_COMMAND,
217             PCI_ENA_MEMIO + PCI_ENA_MASTER);
218         val = Read_hfc(hc, HFCPCI_STATUS);
219         printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
220         hc->hw.cirm = HFCPCI_RESET;     /* Reset On */
221         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
222         set_current_state(TASK_UNINTERRUPTIBLE);
223         mdelay(10);                     /* Timeout 10ms */
224         hc->hw.cirm = 0;                /* Reset Off */
225         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
226         val = Read_hfc(hc, HFCPCI_STATUS);
227         printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
228         while (cnt < 50000) { /* max 50000 us */
229                 udelay(5);
230                 cnt += 5;
231                 val = Read_hfc(hc, HFCPCI_STATUS);
232                 if (!(val & 2))
233                         break;
234         }
235         printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
236
237         hc->hw.fifo_en = 0x30;  /* only D fifos enabled */
238
239         hc->hw.bswapped = 0;    /* no exchange */
240         hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
241         hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
242         hc->hw.sctrl = 0x40;    /* set tx_lo mode, error in datasheet ! */
243         hc->hw.sctrl_r = 0;
244         hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE;     /* S/T Auto awake */
245         hc->hw.mst_m = 0;
246         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
247                 hc->hw.mst_m |= HFCPCI_MASTER;  /* HFC Master Mode */
248         if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
249                 hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
250         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
251         Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
252         Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
253         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
254
255         hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
256             HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
257         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
258
259         /* Clear already pending ints */
260         if (Read_hfc(hc, HFCPCI_INT_S1));
261
262         /* set NT/TE mode */
263         hfcpci_setmode(hc);
264
265         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
266         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
267
268         /*
269          * Init GCI/IOM2 in master mode
270          * Slots 0 and 1 are set for B-chan 1 and 2
271          * D- and monitor/CI channel are not enabled
272          * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
273          * STIO2 is used as data input, B1+B2 from IOM->ST
274          * ST B-channel send disabled -> continous 1s
275          * The IOM slots are always enabled
276          */
277         if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
278                 /* set data flow directions: connect B1,B2: HFC to/from PCM */
279                 hc->hw.conn = 0x09;
280         } else {
281                 hc->hw.conn = 0x36;     /* set data flow directions */
282                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
283                         Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
284                         Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
285                         Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
286                         Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
287                 } else {
288                         Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
289                         Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
290                         Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
291                         Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
292                 }
293         }
294         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
295         val = Read_hfc(hc, HFCPCI_INT_S2);
296 }
297
298 /*
299  * Timer function called when kernel timer expires
300  */
301 static void
302 hfcpci_Timer(struct hfc_pci *hc)
303 {
304         hc->hw.timer.expires = jiffies + 75;
305         /* WD RESET */
306 /*
307  *      WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
308  *      add_timer(&hc->hw.timer);
309  */
310 }
311
312
313 /*
314  * select a b-channel entry matching and active
315  */
316 static struct bchannel *
317 Sel_BCS(struct hfc_pci *hc, int channel)
318 {
319         if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
320                 (hc->bch[0].nr & channel))
321                 return &hc->bch[0];
322         else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
323                 (hc->bch[1].nr & channel))
324                 return &hc->bch[1];
325         else
326                 return NULL;
327 }
328
329 /*
330  * clear the desired B-channel rx fifo
331  */
332 static void
333 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
334 {
335         u_char          fifo_state;
336         struct bzfifo   *bzr;
337
338         if (fifo) {
339                 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
340                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
341         } else {
342                 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
343                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
344         }
345         if (fifo_state)
346                 hc->hw.fifo_en ^= fifo_state;
347         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
348         hc->hw.last_bfifo_cnt[fifo] = 0;
349         bzr->f1 = MAX_B_FRAMES;
350         bzr->f2 = bzr->f1;      /* init F pointers to remain constant */
351         bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
352         bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
353             le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
354         if (fifo_state)
355                 hc->hw.fifo_en |= fifo_state;
356         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
357 }
358
359 /*
360  * clear the desired B-channel tx fifo
361  */
362 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
363 {
364         u_char          fifo_state;
365         struct bzfifo   *bzt;
366
367         if (fifo) {
368                 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
369                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
370         } else {
371                 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
372                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
373         }
374         if (fifo_state)
375                 hc->hw.fifo_en ^= fifo_state;
376         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
377         if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
378                 printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
379                     "z1(%x) z2(%x) state(%x)\n",
380                     fifo, bzt->f1, bzt->f2,
381                     le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
382                     le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
383                     fifo_state);
384         bzt->f2 = MAX_B_FRAMES;
385         bzt->f1 = bzt->f2;      /* init F pointers to remain constant */
386         bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
387         bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
388         if (fifo_state)
389                 hc->hw.fifo_en |= fifo_state;
390         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
391         if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
392                 printk(KERN_DEBUG
393                     "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
394                     fifo, bzt->f1, bzt->f2,
395                     le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
396                     le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
397 }
398
399 /*
400  * read a complete B-frame out of the buffer
401  */
402 static void
403 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
404     u_char *bdata, int count)
405 {
406         u_char          *ptr, *ptr1, new_f2;
407         int             total, maxlen, new_z2;
408         struct zt       *zp;
409
410         if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
411                 printk(KERN_DEBUG "hfcpci_empty_fifo\n");
412         zp = &bz->za[bz->f2];   /* point to Z-Regs */
413         new_z2 = le16_to_cpu(zp->z2) + count;   /* new position in fifo */
414         if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
415                 new_z2 -= B_FIFO_SIZE;  /* buffer wrap */
416         new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
417         if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
418             (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
419                 if (bch->debug & DEBUG_HW)
420                         printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
421                             "invalid length %d or crc\n", count);
422 #ifdef ERROR_STATISTIC
423                 bch->err_inv++;
424 #endif
425                 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
426                 bz->f2 = new_f2;        /* next buffer */
427         } else {
428                 bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
429                 if (!bch->rx_skb) {
430                         printk(KERN_WARNING "HFCPCI: receive out of memory\n");
431                         return;
432                 }
433                 total = count;
434                 count -= 3;
435                 ptr = skb_put(bch->rx_skb, count);
436
437                 if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
438                         maxlen = count;         /* complete transfer */
439                 else
440                         maxlen = B_FIFO_SIZE + B_SUB_VAL -
441                             le16_to_cpu(zp->z2);        /* maximum */
442
443                 ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
444                     /* start of data */
445                 memcpy(ptr, ptr1, maxlen);      /* copy data */
446                 count -= maxlen;
447
448                 if (count) {    /* rest remaining */
449                         ptr += maxlen;
450                         ptr1 = bdata;   /* start of buffer */
451                         memcpy(ptr, ptr1, count);       /* rest */
452                 }
453                 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
454                 bz->f2 = new_f2;        /* next buffer */
455                 recv_Bchannel(bch);
456         }
457 }
458
459 /*
460  * D-channel receive procedure
461  */
462 static int
463 receive_dmsg(struct hfc_pci *hc)
464 {
465         struct dchannel *dch = &hc->dch;
466         int             maxlen;
467         int             rcnt, total;
468         int             count = 5;
469         u_char          *ptr, *ptr1;
470         struct dfifo    *df;
471         struct zt       *zp;
472
473         df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
474         while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
475                 zp = &df->za[df->f2 & D_FREG_MASK];
476                 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
477                 if (rcnt < 0)
478                         rcnt += D_FIFO_SIZE;
479                 rcnt++;
480                 if (dch->debug & DEBUG_HW_DCHANNEL)
481                         printk(KERN_DEBUG
482                             "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
483                                 df->f1, df->f2,
484                                 le16_to_cpu(zp->z1),
485                                 le16_to_cpu(zp->z2),
486                                 rcnt);
487
488                 if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
489                     (df->data[le16_to_cpu(zp->z1)])) {
490                         if (dch->debug & DEBUG_HW)
491                                 printk(KERN_DEBUG
492                                     "empty_fifo hfcpci paket inv. len "
493                                     "%d or crc %d\n",
494                                     rcnt,
495                                     df->data[le16_to_cpu(zp->z1)]);
496 #ifdef ERROR_STATISTIC
497                         cs->err_rx++;
498 #endif
499                         df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
500                             (MAX_D_FRAMES + 1); /* next buffer */
501                         df->za[df->f2 & D_FREG_MASK].z2 =
502                             cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) & (D_FIFO_SIZE - 1));
503                 } else {
504                         dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
505                         if (!dch->rx_skb) {
506                                 printk(KERN_WARNING
507                                     "HFC-PCI: D receive out of memory\n");
508                                 break;
509                         }
510                         total = rcnt;
511                         rcnt -= 3;
512                         ptr = skb_put(dch->rx_skb, rcnt);
513
514                         if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
515                                 maxlen = rcnt;  /* complete transfer */
516                         else
517                                 maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
518                                     /* maximum */
519
520                         ptr1 = df->data + le16_to_cpu(zp->z2);
521                             /* start of data */
522                         memcpy(ptr, ptr1, maxlen);      /* copy data */
523                         rcnt -= maxlen;
524
525                         if (rcnt) {     /* rest remaining */
526                                 ptr += maxlen;
527                                 ptr1 = df->data;        /* start of buffer */
528                                 memcpy(ptr, ptr1, rcnt);        /* rest */
529                         }
530                         df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
531                             (MAX_D_FRAMES + 1); /* next buffer */
532                         df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
533                             le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
534                         recv_Dchannel(dch);
535                 }
536         }
537         return 1;
538 }
539
540 /*
541  * check for transparent receive data and read max one 'poll' size if avail
542  */
543 static void
544 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *bz, u_char *bdata)
545 {
546          __le16 *z1r, *z2r;
547         int             new_z2, fcnt, maxlen;
548         u_char          *ptr, *ptr1;
549
550         z1r = &bz->za[MAX_B_FRAMES].z1;         /* pointer to z reg */
551         z2r = z1r + 1;
552
553         fcnt = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
554         if (!fcnt)
555                 return; /* no data avail */
556
557         if (fcnt <= 0)
558                 fcnt += B_FIFO_SIZE;    /* bytes actually buffered */
559         new_z2 = le16_to_cpu(*z2r) + fcnt;      /* new position in fifo */
560         if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
561                 new_z2 -= B_FIFO_SIZE;  /* buffer wrap */
562
563         if (fcnt > MAX_DATA_SIZE) {     /* flush, if oversized */
564                 *z2r = cpu_to_le16(new_z2);             /* new position */
565                 return;
566         }
567
568         bch->rx_skb = mI_alloc_skb(fcnt, GFP_ATOMIC);
569         if (bch->rx_skb) {
570                 ptr = skb_put(bch->rx_skb, fcnt);
571                 if (le16_to_cpu(*z2r) + fcnt <= B_FIFO_SIZE + B_SUB_VAL)
572                         maxlen = fcnt;  /* complete transfer */
573                 else
574                         maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
575                             /* maximum */
576
577                 ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
578                     /* start of data */
579                 memcpy(ptr, ptr1, maxlen);      /* copy data */
580                 fcnt -= maxlen;
581
582                 if (fcnt) {     /* rest remaining */
583                         ptr += maxlen;
584                         ptr1 = bdata;   /* start of buffer */
585                         memcpy(ptr, ptr1, fcnt);        /* rest */
586                 }
587                 recv_Bchannel(bch);
588         } else
589                 printk(KERN_WARNING "HFCPCI: receive out of memory\n");
590
591         *z2r = cpu_to_le16(new_z2);             /* new position */
592 }
593
594 /*
595  * B-channel main receive routine
596  */
597 static void
598 main_rec_hfcpci(struct bchannel *bch)
599 {
600         struct hfc_pci  *hc = bch->hw;
601         int             rcnt, real_fifo;
602         int             receive = 0, count = 5;
603         struct bzfifo   *bz;
604         u_char          *bdata;
605         struct zt       *zp;
606
607         if ((bch->nr & 2) && (!hc->hw.bswapped)) {
608                 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
609                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
610                 real_fifo = 1;
611         } else {
612                 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
613                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
614                 real_fifo = 0;
615         }
616 Begin:
617         count--;
618         if (bz->f1 != bz->f2) {
619                 if (bch->debug & DEBUG_HW_BCHANNEL)
620                         printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
621                             bch->nr, bz->f1, bz->f2);
622                 zp = &bz->za[bz->f2];
623
624                 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
625                 if (rcnt < 0)
626                         rcnt += B_FIFO_SIZE;
627                 rcnt++;
628                 if (bch->debug & DEBUG_HW_BCHANNEL)
629                         printk(KERN_DEBUG
630                             "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
631                             bch->nr, le16_to_cpu(zp->z1),
632                             le16_to_cpu(zp->z2), rcnt);
633                 hfcpci_empty_bfifo(bch, bz, bdata, rcnt);
634                 rcnt = bz->f1 - bz->f2;
635                 if (rcnt < 0)
636                         rcnt += MAX_B_FRAMES + 1;
637                 if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
638                         rcnt = 0;
639                         hfcpci_clear_fifo_rx(hc, real_fifo);
640                 }
641                 hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
642                 if (rcnt > 1)
643                         receive = 1;
644                 else
645                         receive = 0;
646         } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
647                 hfcpci_empty_fifo_trans(bch, bz, bdata);
648                 return;
649         } else
650                 receive = 0;
651         if (count && receive)
652                 goto Begin;
653
654 }
655
656 /*
657  * D-channel send routine
658  */
659 static void
660 hfcpci_fill_dfifo(struct hfc_pci *hc)
661 {
662         struct dchannel *dch = &hc->dch;
663         int             fcnt;
664         int             count, new_z1, maxlen;
665         struct dfifo    *df;
666         u_char          *src, *dst, new_f1;
667
668         if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
669                 printk(KERN_DEBUG "%s\n", __func__);
670
671         if (!dch->tx_skb)
672                 return;
673         count = dch->tx_skb->len - dch->tx_idx;
674         if (count <= 0)
675                 return;
676         df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
677
678         if (dch->debug & DEBUG_HW_DFIFO)
679                 printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
680                     df->f1, df->f2,
681                     le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
682         fcnt = df->f1 - df->f2; /* frame count actually buffered */
683         if (fcnt < 0)
684                 fcnt += (MAX_D_FRAMES + 1);     /* if wrap around */
685         if (fcnt > (MAX_D_FRAMES - 1)) {
686                 if (dch->debug & DEBUG_HW_DCHANNEL)
687                         printk(KERN_DEBUG
688                             "hfcpci_fill_Dfifo more as 14 frames\n");
689 #ifdef ERROR_STATISTIC
690                 cs->err_tx++;
691 #endif
692                 return;
693         }
694         /* now determine free bytes in FIFO buffer */
695         maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
696             le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
697         if (maxlen <= 0)
698                 maxlen += D_FIFO_SIZE;  /* count now contains available bytes */
699
700         if (dch->debug & DEBUG_HW_DCHANNEL)
701                 printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
702                         count, maxlen);
703         if (count > maxlen) {
704                 if (dch->debug & DEBUG_HW_DCHANNEL)
705                         printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
706                 return;
707         }
708         new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
709             (D_FIFO_SIZE - 1);
710         new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
711         src = dch->tx_skb->data + dch->tx_idx;  /* source pointer */
712         dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
713         maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
714             /* end fifo */
715         if (maxlen > count)
716                 maxlen = count; /* limit size */
717         memcpy(dst, src, maxlen);       /* first copy */
718
719         count -= maxlen;        /* remaining bytes */
720         if (count) {
721                 dst = df->data; /* start of buffer */
722                 src += maxlen;  /* new position */
723                 memcpy(dst, src, count);
724         }
725         df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
726             /* for next buffer */
727         df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
728             /* new pos actual buffer */
729         df->f1 = new_f1;        /* next frame */
730         dch->tx_idx = dch->tx_skb->len;
731 }
732
733 /*
734  * B-channel send routine
735  */
736 static void
737 hfcpci_fill_fifo(struct bchannel *bch)
738 {
739         struct hfc_pci  *hc = bch->hw;
740         int             maxlen, fcnt;
741         int             count, new_z1;
742         struct bzfifo   *bz;
743         u_char          *bdata;
744         u_char          new_f1, *src, *dst;
745         __le16 *z1t, *z2t;
746
747         if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
748                 printk(KERN_DEBUG "%s\n", __func__);
749         if ((!bch->tx_skb) || bch->tx_skb->len <= 0)
750                 return;
751         count = bch->tx_skb->len - bch->tx_idx;
752         if ((bch->nr & 2) && (!hc->hw.bswapped)) {
753                 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
754                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
755         } else {
756                 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
757                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
758         }
759
760         if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
761                 z1t = &bz->za[MAX_B_FRAMES].z1;
762                 z2t = z1t + 1;
763                 if (bch->debug & DEBUG_HW_BCHANNEL)
764                         printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
765                             "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
766                             le16_to_cpu(*z1t), le16_to_cpu(*z2t));
767                 fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
768                 if (fcnt <= 0)
769                         fcnt += B_FIFO_SIZE;
770                             /* fcnt contains available bytes in fifo */
771                 fcnt = B_FIFO_SIZE - fcnt;
772                     /* remaining bytes to send (bytes in fifo) */
773
774                 /* "fill fifo if empty" feature */
775                 if (test_bit(FLG_FILLEMPTY, &bch->Flags) && !fcnt) {
776                         /* printk(KERN_DEBUG "%s: buffer empty, so we have "
777                                 "underrun\n", __func__); */
778                         /* fill buffer, to prevent future underrun */
779                         count = HFCPCI_FILLEMPTY;
780                         new_z1 = le16_to_cpu(*z1t) + count;
781                            /* new buffer Position */
782                         if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
783                                 new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
784                         dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
785                         maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
786                             /* end of fifo */
787                         if (bch->debug & DEBUG_HW_BFIFO)
788                                 printk(KERN_DEBUG "hfcpci_FFt fillempty "
789                                     "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
790                                     fcnt, maxlen, new_z1, dst);
791                         fcnt += count;
792                         if (maxlen > count)
793                                 maxlen = count;         /* limit size */
794                         memset(dst, 0x2a, maxlen);      /* first copy */
795                         count -= maxlen;                /* remaining bytes */
796                         if (count) {
797                                 dst = bdata;            /* start of buffer */
798                                 memset(dst, 0x2a, count);
799                         }
800                         *z1t = cpu_to_le16(new_z1);     /* now send data */
801                 }
802
803 next_t_frame:
804                 count = bch->tx_skb->len - bch->tx_idx;
805                 /* maximum fill shall be poll*2 */
806                 if (count > (poll << 1) - fcnt)
807                         count = (poll << 1) - fcnt;
808                 if (count <= 0)
809                         return;
810                 /* data is suitable for fifo */
811                 new_z1 = le16_to_cpu(*z1t) + count;
812                     /* new buffer Position */
813                 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
814                         new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
815                 src = bch->tx_skb->data + bch->tx_idx;
816                     /* source pointer */
817                 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
818                 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
819                     /* end of fifo */
820                 if (bch->debug & DEBUG_HW_BFIFO)
821                         printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
822                             "maxl(%d) nz1(%x) dst(%p)\n",
823                             fcnt, maxlen, new_z1, dst);
824                 fcnt += count;
825                 bch->tx_idx += count;
826                 if (maxlen > count)
827                         maxlen = count;         /* limit size */
828                 memcpy(dst, src, maxlen);       /* first copy */
829                 count -= maxlen;        /* remaining bytes */
830                 if (count) {
831                         dst = bdata;    /* start of buffer */
832                         src += maxlen;  /* new position */
833                         memcpy(dst, src, count);
834                 }
835                 *z1t = cpu_to_le16(new_z1);     /* now send data */
836                 if (bch->tx_idx < bch->tx_skb->len)
837                         return;
838                 /* send confirm, on trans, free on hdlc. */
839                 if (test_bit(FLG_TRANSPARENT, &bch->Flags))
840                         confirm_Bsend(bch);
841                 dev_kfree_skb(bch->tx_skb);
842                 if (get_next_bframe(bch))
843                         goto next_t_frame;
844                 return;
845         }
846         if (bch->debug & DEBUG_HW_BCHANNEL)
847                 printk(KERN_DEBUG
848                     "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
849                     __func__, bch->nr, bz->f1, bz->f2,
850                     bz->za[bz->f1].z1);
851         fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
852         if (fcnt < 0)
853                 fcnt += (MAX_B_FRAMES + 1);     /* if wrap around */
854         if (fcnt > (MAX_B_FRAMES - 1)) {
855                 if (bch->debug & DEBUG_HW_BCHANNEL)
856                         printk(KERN_DEBUG
857                             "hfcpci_fill_Bfifo more as 14 frames\n");
858                 return;
859         }
860         /* now determine free bytes in FIFO buffer */
861         maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
862             le16_to_cpu(bz->za[bz->f1].z1) - 1;
863         if (maxlen <= 0)
864                 maxlen += B_FIFO_SIZE;  /* count now contains available bytes */
865
866         if (bch->debug & DEBUG_HW_BCHANNEL)
867                 printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
868                         bch->nr, count, maxlen);
869
870         if (maxlen < count) {
871                 if (bch->debug & DEBUG_HW_BCHANNEL)
872                         printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
873                 return;
874         }
875         new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
876             /* new buffer Position */
877         if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
878                 new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
879
880         new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
881         src = bch->tx_skb->data + bch->tx_idx;  /* source pointer */
882         dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
883         maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
884             /* end fifo */
885         if (maxlen > count)
886                 maxlen = count; /* limit size */
887         memcpy(dst, src, maxlen);       /* first copy */
888
889         count -= maxlen;        /* remaining bytes */
890         if (count) {
891                 dst = bdata;    /* start of buffer */
892                 src += maxlen;  /* new position */
893                 memcpy(dst, src, count);
894         }
895         bz->za[new_f1].z1 = cpu_to_le16(new_z1);        /* for next buffer */
896         bz->f1 = new_f1;        /* next frame */
897         dev_kfree_skb(bch->tx_skb);
898         get_next_bframe(bch);
899 }
900
901
902
903 /*
904  * handle L1 state changes TE
905  */
906
907 static void
908 ph_state_te(struct dchannel *dch)
909 {
910         if (dch->debug)
911                 printk(KERN_DEBUG "%s: TE newstate %x\n",
912                         __func__, dch->state);
913         switch (dch->state) {
914         case 0:
915                 l1_event(dch->l1, HW_RESET_IND);
916                 break;
917         case 3:
918                 l1_event(dch->l1, HW_DEACT_IND);
919                 break;
920         case 5:
921         case 8:
922                 l1_event(dch->l1, ANYSIGNAL);
923                 break;
924         case 6:
925                 l1_event(dch->l1, INFO2);
926                 break;
927         case 7:
928                 l1_event(dch->l1, INFO4_P8);
929                 break;
930         }
931 }
932
933 /*
934  * handle L1 state changes NT
935  */
936
937 static void
938 handle_nt_timer3(struct dchannel *dch) {
939         struct hfc_pci  *hc = dch->hw;
940
941         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
942         hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
943         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
944         hc->hw.nt_timer = 0;
945         test_and_set_bit(FLG_ACTIVE, &dch->Flags);
946         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
947                 hc->hw.mst_m |= HFCPCI_MASTER;
948         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
949         _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
950             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
951 }
952
953 static void
954 ph_state_nt(struct dchannel *dch)
955 {
956         struct hfc_pci  *hc = dch->hw;
957
958         if (dch->debug)
959                 printk(KERN_DEBUG "%s: NT newstate %x\n",
960                         __func__, dch->state);
961         switch (dch->state) {
962         case 2:
963                 if (hc->hw.nt_timer < 0) {
964                         hc->hw.nt_timer = 0;
965                         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
966                         test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
967                         hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
968                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
969                         /* Clear already pending ints */
970                         if (Read_hfc(hc, HFCPCI_INT_S1));
971                         Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
972                         udelay(10);
973                         Write_hfc(hc, HFCPCI_STATES, 4);
974                         dch->state = 4;
975                 } else if (hc->hw.nt_timer == 0) {
976                         hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
977                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
978                         hc->hw.nt_timer = NT_T1_COUNT;
979                         hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
980                         hc->hw.ctmt |= HFCPCI_TIM3_125;
981                         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
982                                 HFCPCI_CLTIMER);
983                         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
984                         test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
985                         /* allow G2 -> G3 transition */
986                         Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
987                 } else {
988                         Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
989                 }
990                 break;
991         case 1:
992                 hc->hw.nt_timer = 0;
993                 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
994                 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
995                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
996                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
997                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
998                 hc->hw.mst_m &= ~HFCPCI_MASTER;
999                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1000                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1001                 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1002                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1003                 break;
1004         case 4:
1005                 hc->hw.nt_timer = 0;
1006                 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1007                 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1008                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1009                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1010                 break;
1011         case 3:
1012                 if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1013                         if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1014                             &dch->Flags)) {
1015                                 handle_nt_timer3(dch);
1016                                 break;
1017                         }
1018                         test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1019                         hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1020                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1021                         hc->hw.nt_timer = NT_T3_COUNT;
1022                         hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1023                         hc->hw.ctmt |= HFCPCI_TIM3_125;
1024                         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1025                                 HFCPCI_CLTIMER);
1026                 }
1027                 break;
1028         }
1029 }
1030
1031 static void
1032 ph_state(struct dchannel *dch)
1033 {
1034         struct hfc_pci  *hc = dch->hw;
1035
1036         if (hc->hw.protocol == ISDN_P_NT_S0) {
1037                 if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1038                     hc->hw.nt_timer < 0)
1039                         handle_nt_timer3(dch);
1040                 else
1041                         ph_state_nt(dch);
1042         } else
1043                 ph_state_te(dch);
1044 }
1045
1046 /*
1047  * Layer 1 callback function
1048  */
1049 static int
1050 hfc_l1callback(struct dchannel *dch, u_int cmd)
1051 {
1052         struct hfc_pci          *hc = dch->hw;
1053
1054         switch (cmd) {
1055         case INFO3_P8:
1056         case INFO3_P10:
1057                 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1058                         hc->hw.mst_m |= HFCPCI_MASTER;
1059                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1060                 break;
1061         case HW_RESET_REQ:
1062                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1063                 /* HFC ST 3 */
1064                 udelay(6);
1065                 Write_hfc(hc, HFCPCI_STATES, 3);        /* HFC ST 2 */
1066                 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1067                         hc->hw.mst_m |= HFCPCI_MASTER;
1068                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1069                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1070                    HFCPCI_DO_ACTION);
1071                 l1_event(dch->l1, HW_POWERUP_IND);
1072                 break;
1073         case HW_DEACT_REQ:
1074                 hc->hw.mst_m &= ~HFCPCI_MASTER;
1075                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1076                 skb_queue_purge(&dch->squeue);
1077                 if (dch->tx_skb) {
1078                         dev_kfree_skb(dch->tx_skb);
1079                         dch->tx_skb = NULL;
1080                 }
1081                 dch->tx_idx = 0;
1082                 if (dch->rx_skb) {
1083                         dev_kfree_skb(dch->rx_skb);
1084                         dch->rx_skb = NULL;
1085                 }
1086                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1087                 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1088                         del_timer(&dch->timer);
1089                 break;
1090         case HW_POWERUP_REQ:
1091                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1092                 break;
1093         case PH_ACTIVATE_IND:
1094                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1095                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1096                         GFP_ATOMIC);
1097                 break;
1098         case PH_DEACTIVATE_IND:
1099                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1100                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1101                         GFP_ATOMIC);
1102                 break;
1103         default:
1104                 if (dch->debug & DEBUG_HW)
1105                         printk(KERN_DEBUG "%s: unknown command %x\n",
1106                             __func__, cmd);
1107                 return -1;
1108         }
1109         return 0;
1110 }
1111
1112 /*
1113  * Interrupt handler
1114  */
1115 static inline void
1116 tx_birq(struct bchannel *bch)
1117 {
1118         if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1119                 hfcpci_fill_fifo(bch);
1120         else {
1121                 if (bch->tx_skb)
1122                         dev_kfree_skb(bch->tx_skb);
1123                 if (get_next_bframe(bch))
1124                         hfcpci_fill_fifo(bch);
1125         }
1126 }
1127
1128 static inline void
1129 tx_dirq(struct dchannel *dch)
1130 {
1131         if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1132                 hfcpci_fill_dfifo(dch->hw);
1133         else {
1134                 if (dch->tx_skb)
1135                         dev_kfree_skb(dch->tx_skb);
1136                 if (get_next_dframe(dch))
1137                         hfcpci_fill_dfifo(dch->hw);
1138         }
1139 }
1140
1141 static irqreturn_t
1142 hfcpci_int(int intno, void *dev_id)
1143 {
1144         struct hfc_pci  *hc = dev_id;
1145         u_char          exval;
1146         struct bchannel *bch;
1147         u_char          val, stat;
1148
1149         spin_lock(&hc->lock);
1150         if (!(hc->hw.int_m2 & 0x08)) {
1151                 spin_unlock(&hc->lock);
1152                 return IRQ_NONE; /* not initialised */
1153         }
1154         stat = Read_hfc(hc, HFCPCI_STATUS);
1155         if (HFCPCI_ANYINT & stat) {
1156                 val = Read_hfc(hc, HFCPCI_INT_S1);
1157                 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1158                         printk(KERN_DEBUG
1159                             "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1160         } else {
1161                 /* shared */
1162                 spin_unlock(&hc->lock);
1163                 return IRQ_NONE;
1164         }
1165         hc->irqcnt++;
1166
1167         if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1168                 printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1169         val &= hc->hw.int_m1;
1170         if (val & 0x40) {       /* state machine irq */
1171                 exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1172                 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1173                         printk(KERN_DEBUG "ph_state chg %d->%d\n",
1174                                 hc->dch.state, exval);
1175                 hc->dch.state = exval;
1176                 schedule_event(&hc->dch, FLG_PHCHANGE);
1177                 val &= ~0x40;
1178         }
1179         if (val & 0x80) {       /* timer irq */
1180                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1181                         if ((--hc->hw.nt_timer) < 0)
1182                                 schedule_event(&hc->dch, FLG_PHCHANGE);
1183                 }
1184                 val &= ~0x80;
1185                 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1186         }
1187         if (val & 0x08) {       /* B1 rx */
1188                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1189                 if (bch)
1190                         main_rec_hfcpci(bch);
1191                 else if (hc->dch.debug)
1192                         printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1193         }
1194         if (val & 0x10) {       /* B2 rx */
1195                 bch = Sel_BCS(hc, 2);
1196                 if (bch)
1197                         main_rec_hfcpci(bch);
1198                 else if (hc->dch.debug)
1199                         printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1200         }
1201         if (val & 0x01) {       /* B1 tx */
1202                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1203                 if (bch)
1204                         tx_birq(bch);
1205                 else if (hc->dch.debug)
1206                         printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1207         }
1208         if (val & 0x02) {       /* B2 tx */
1209                 bch = Sel_BCS(hc, 2);
1210                 if (bch)
1211                         tx_birq(bch);
1212                 else if (hc->dch.debug)
1213                         printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1214         }
1215         if (val & 0x20)         /* D rx */
1216                 receive_dmsg(hc);
1217         if (val & 0x04) {       /* D tx */
1218                 if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1219                         del_timer(&hc->dch.timer);
1220                 tx_dirq(&hc->dch);
1221         }
1222         spin_unlock(&hc->lock);
1223         return IRQ_HANDLED;
1224 }
1225
1226 /*
1227  * timer callback for D-chan busy resolution. Currently no function
1228  */
1229 static void
1230 hfcpci_dbusy_timer(struct hfc_pci *hc)
1231 {
1232 }
1233
1234 /*
1235  * activate/deactivate hardware for selected channels and mode
1236  */
1237 static int
1238 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1239 {
1240         struct hfc_pci  *hc = bch->hw;
1241         int             fifo2;
1242         u_char          rx_slot = 0, tx_slot = 0, pcm_mode;
1243
1244         if (bch->debug & DEBUG_HW_BCHANNEL)
1245                 printk(KERN_DEBUG
1246                     "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1247                     bch->state, protocol, bch->nr, bc);
1248
1249         fifo2 = bc;
1250         pcm_mode = (bc>>24) & 0xff;
1251         if (pcm_mode) { /* PCM SLOT USE */
1252                 if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1253                         printk(KERN_WARNING
1254                             "%s: pcm channel id without HFC_CFG_PCM\n",
1255                             __func__);
1256                 rx_slot = (bc>>8) & 0xff;
1257                 tx_slot = (bc>>16) & 0xff;
1258                 bc = bc & 0xff;
1259         } else if (test_bit(HFC_CFG_PCM, &hc->cfg) &&
1260             (protocol > ISDN_P_NONE))
1261                 printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1262                     __func__);
1263         if (hc->chanlimit > 1) {
1264                 hc->hw.bswapped = 0;    /* B1 and B2 normal mode */
1265                 hc->hw.sctrl_e &= ~0x80;
1266         } else {
1267                 if (bc & 2) {
1268                         if (protocol != ISDN_P_NONE) {
1269                                 hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1270                                 hc->hw.sctrl_e |= 0x80;
1271                         } else {
1272                                 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1273                                 hc->hw.sctrl_e &= ~0x80;
1274                         }
1275                         fifo2 = 1;
1276                 } else {
1277                         hc->hw.bswapped = 0;    /* B1 and B2 normal mode */
1278                         hc->hw.sctrl_e &= ~0x80;
1279                 }
1280         }
1281         switch (protocol) {
1282         case (-1): /* used for init */
1283                 bch->state = -1;
1284                 bch->nr = bc;
1285         case (ISDN_P_NONE):
1286                 if (bch->state == ISDN_P_NONE)
1287                         return 0;
1288                 if (bc & 2) {
1289                         hc->hw.sctrl &= ~SCTRL_B2_ENA;
1290                         hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1291                 } else {
1292                         hc->hw.sctrl &= ~SCTRL_B1_ENA;
1293                         hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1294                 }
1295                 if (fifo2 & 2) {
1296                         hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1297                         hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS +
1298                                 HFCPCI_INTS_B2REC);
1299                 } else {
1300                         hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1301                         hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS +
1302                                 HFCPCI_INTS_B1REC);
1303                 }
1304 #ifdef REVERSE_BITORDER
1305                 if (bch->nr & 2)
1306                         hc->hw.cirm &= 0x7f;
1307                 else
1308                         hc->hw.cirm &= 0xbf;
1309 #endif
1310                 bch->state = ISDN_P_NONE;
1311                 bch->nr = bc;
1312                 test_and_clear_bit(FLG_HDLC, &bch->Flags);
1313                 test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1314                 break;
1315         case (ISDN_P_B_RAW):
1316                 bch->state = protocol;
1317                 bch->nr = bc;
1318                 hfcpci_clear_fifo_rx(hc, (fifo2 & 2)?1:0);
1319                 hfcpci_clear_fifo_tx(hc, (fifo2 & 2)?1:0);
1320                 if (bc & 2) {
1321                         hc->hw.sctrl |= SCTRL_B2_ENA;
1322                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1323 #ifdef REVERSE_BITORDER
1324                         hc->hw.cirm |= 0x80;
1325 #endif
1326                 } else {
1327                         hc->hw.sctrl |= SCTRL_B1_ENA;
1328                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1329 #ifdef REVERSE_BITORDER
1330                         hc->hw.cirm |= 0x40;
1331 #endif
1332                 }
1333                 if (fifo2 & 2) {
1334                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1335                         if (!tics)
1336                                 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1337                                     HFCPCI_INTS_B2REC);
1338                         hc->hw.ctmt |= 2;
1339                         hc->hw.conn &= ~0x18;
1340                 } else {
1341                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1342                         if (!tics)
1343                                 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1344                                     HFCPCI_INTS_B1REC);
1345                         hc->hw.ctmt |= 1;
1346                         hc->hw.conn &= ~0x03;
1347                 }
1348                 test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1349                 break;
1350         case (ISDN_P_B_HDLC):
1351                 bch->state = protocol;
1352                 bch->nr = bc;
1353                 hfcpci_clear_fifo_rx(hc, (fifo2 & 2)?1:0);
1354                 hfcpci_clear_fifo_tx(hc, (fifo2 & 2)?1:0);
1355                 if (bc & 2) {
1356                         hc->hw.sctrl |= SCTRL_B2_ENA;
1357                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1358                 } else {
1359                         hc->hw.sctrl |= SCTRL_B1_ENA;
1360                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1361                 }
1362                 if (fifo2 & 2) {
1363                         hc->hw.last_bfifo_cnt[1] = 0;
1364                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1365                         hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1366                             HFCPCI_INTS_B2REC);
1367                         hc->hw.ctmt &= ~2;
1368                         hc->hw.conn &= ~0x18;
1369                 } else {
1370                         hc->hw.last_bfifo_cnt[0] = 0;
1371                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1372                         hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1373                             HFCPCI_INTS_B1REC);
1374                         hc->hw.ctmt &= ~1;
1375                         hc->hw.conn &= ~0x03;
1376                 }
1377                 test_and_set_bit(FLG_HDLC, &bch->Flags);
1378                 break;
1379         default:
1380                 printk(KERN_DEBUG "prot not known %x\n", protocol);
1381                 return -ENOPROTOOPT;
1382         }
1383         if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1384                 if ((protocol == ISDN_P_NONE) ||
1385                         (protocol == -1)) {     /* init case */
1386                         rx_slot = 0;
1387                         tx_slot = 0;
1388                 } else {
1389                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1390                                 rx_slot |= 0xC0;
1391                                 tx_slot |= 0xC0;
1392                         } else {
1393                                 rx_slot |= 0x80;
1394                                 tx_slot |= 0x80;
1395                         }
1396                 }
1397                 if (bc & 2) {
1398                         hc->hw.conn &= 0xc7;
1399                         hc->hw.conn |= 0x08;
1400                         printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1401                                 __func__, tx_slot);
1402                         printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1403                                 __func__, rx_slot);
1404                         Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1405                         Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1406                 } else {
1407                         hc->hw.conn &= 0xf8;
1408                         hc->hw.conn |= 0x01;
1409                         printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1410                                 __func__, tx_slot);
1411                         printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1412                                 __func__, rx_slot);
1413                         Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1414                         Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1415                 }
1416         }
1417         Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1418         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1419         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1420         Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1421         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1422         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1423         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1424 #ifdef REVERSE_BITORDER
1425         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1426 #endif
1427         return 0;
1428 }
1429
1430 static int
1431 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1432 {
1433         struct hfc_pci  *hc = bch->hw;
1434
1435         if (bch->debug & DEBUG_HW_BCHANNEL)
1436                 printk(KERN_DEBUG
1437                     "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1438                     bch->state, protocol, bch->nr, chan);
1439         if (bch->nr != chan) {
1440                 printk(KERN_DEBUG
1441                     "HFCPCI rxtest wrong channel parameter %x/%x\n",
1442                     bch->nr, chan);
1443                 return -EINVAL;
1444         }
1445         switch (protocol) {
1446         case (ISDN_P_B_RAW):
1447                 bch->state = protocol;
1448                 hfcpci_clear_fifo_rx(hc, (chan & 2)?1:0);
1449                 if (chan & 2) {
1450                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1451                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1452                         if (!tics)
1453                                 hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1454                         hc->hw.ctmt |= 2;
1455                         hc->hw.conn &= ~0x18;
1456 #ifdef REVERSE_BITORDER
1457                         hc->hw.cirm |= 0x80;
1458 #endif
1459                 } else {
1460                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1461                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1462                         if (!tics)
1463                                 hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1464                         hc->hw.ctmt |= 1;
1465                         hc->hw.conn &= ~0x03;
1466 #ifdef REVERSE_BITORDER
1467                         hc->hw.cirm |= 0x40;
1468 #endif
1469                 }
1470                 break;
1471         case (ISDN_P_B_HDLC):
1472                 bch->state = protocol;
1473                 hfcpci_clear_fifo_rx(hc, (chan & 2)?1:0);
1474                 if (chan & 2) {
1475                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1476                         hc->hw.last_bfifo_cnt[1] = 0;
1477                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1478                         hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1479                         hc->hw.ctmt &= ~2;
1480                         hc->hw.conn &= ~0x18;
1481                 } else {
1482                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1483                         hc->hw.last_bfifo_cnt[0] = 0;
1484                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1485                         hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1486                         hc->hw.ctmt &= ~1;
1487                         hc->hw.conn &= ~0x03;
1488                 }
1489                 break;
1490         default:
1491                 printk(KERN_DEBUG "prot not known %x\n", protocol);
1492                 return -ENOPROTOOPT;
1493         }
1494         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1495         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1496         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1497         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1498         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1499 #ifdef REVERSE_BITORDER
1500         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1501 #endif
1502         return 0;
1503 }
1504
1505 static void
1506 deactivate_bchannel(struct bchannel *bch)
1507 {
1508         struct hfc_pci  *hc = bch->hw;
1509         u_long          flags;
1510
1511         spin_lock_irqsave(&hc->lock, flags);
1512         if (test_and_clear_bit(FLG_TX_NEXT, &bch->Flags)) {
1513                 dev_kfree_skb(bch->next_skb);
1514                 bch->next_skb = NULL;
1515         }
1516         if (bch->tx_skb) {
1517                 dev_kfree_skb(bch->tx_skb);
1518                 bch->tx_skb = NULL;
1519         }
1520         bch->tx_idx = 0;
1521         if (bch->rx_skb) {
1522                 dev_kfree_skb(bch->rx_skb);
1523                 bch->rx_skb = NULL;
1524         }
1525         mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1526         test_and_clear_bit(FLG_ACTIVE, &bch->Flags);
1527         test_and_clear_bit(FLG_TX_BUSY, &bch->Flags);
1528         spin_unlock_irqrestore(&hc->lock, flags);
1529 }
1530
1531 /*
1532  * Layer 1 B-channel hardware access
1533  */
1534 static int
1535 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1536 {
1537         int     ret = 0;
1538
1539         switch (cq->op) {
1540         case MISDN_CTRL_GETOP:
1541                 cq->op = MISDN_CTRL_FILL_EMPTY;
1542                 break;
1543         case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
1544                 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
1545                 if (debug & DEBUG_HW_OPEN)
1546                         printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
1547                                 "off=%d)\n", __func__, bch->nr, !!cq->p1);
1548                 break;
1549         default:
1550                 printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
1551                 ret = -EINVAL;
1552                 break;
1553         }
1554         return ret;
1555 }
1556 static int
1557 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1558 {
1559         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1560         struct hfc_pci  *hc = bch->hw;
1561         int             ret = -EINVAL;
1562         u_long          flags;
1563
1564         if (bch->debug & DEBUG_HW)
1565                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1566         switch (cmd) {
1567         case HW_TESTRX_RAW:
1568                 spin_lock_irqsave(&hc->lock, flags);
1569                 ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1570                 spin_unlock_irqrestore(&hc->lock, flags);
1571                 break;
1572         case HW_TESTRX_HDLC:
1573                 spin_lock_irqsave(&hc->lock, flags);
1574                 ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1575                 spin_unlock_irqrestore(&hc->lock, flags);
1576                 break;
1577         case HW_TESTRX_OFF:
1578                 spin_lock_irqsave(&hc->lock, flags);
1579                 mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1580                 spin_unlock_irqrestore(&hc->lock, flags);
1581                 ret = 0;
1582                 break;
1583         case CLOSE_CHANNEL:
1584                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1585                 if (test_bit(FLG_ACTIVE, &bch->Flags))
1586                         deactivate_bchannel(bch);
1587                 ch->protocol = ISDN_P_NONE;
1588                 ch->peer = NULL;
1589                 module_put(THIS_MODULE);
1590                 ret = 0;
1591                 break;
1592         case CONTROL_CHANNEL:
1593                 ret = channel_bctrl(bch, arg);
1594                 break;
1595         default:
1596                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1597                         __func__, cmd);
1598         }
1599         return ret;
1600 }
1601
1602 /*
1603  * Layer2 -> Layer 1 Dchannel data
1604  */
1605 static int
1606 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1607 {
1608         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
1609         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
1610         struct hfc_pci          *hc = dch->hw;
1611         int                     ret = -EINVAL;
1612         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
1613         unsigned int            id;
1614         u_long                  flags;
1615
1616         switch (hh->prim) {
1617         case PH_DATA_REQ:
1618                 spin_lock_irqsave(&hc->lock, flags);
1619                 ret = dchannel_senddata(dch, skb);
1620                 if (ret > 0) { /* direct TX */
1621                         id = hh->id; /* skb can be freed */
1622                         hfcpci_fill_dfifo(dch->hw);
1623                         ret = 0;
1624                         spin_unlock_irqrestore(&hc->lock, flags);
1625                         queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1626                 } else
1627                         spin_unlock_irqrestore(&hc->lock, flags);
1628                 return ret;
1629         case PH_ACTIVATE_REQ:
1630                 spin_lock_irqsave(&hc->lock, flags);
1631                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1632                         ret = 0;
1633                         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1634                                 hc->hw.mst_m |= HFCPCI_MASTER;
1635                         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1636                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1637                                 spin_unlock_irqrestore(&hc->lock, flags);
1638                                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1639                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1640                                 break;
1641                         }
1642                         test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1643                         Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1644                             HFCPCI_DO_ACTION | 1);
1645                 } else
1646                         ret = l1_event(dch->l1, hh->prim);
1647                 spin_unlock_irqrestore(&hc->lock, flags);
1648                 break;
1649         case PH_DEACTIVATE_REQ:
1650                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1651                 spin_lock_irqsave(&hc->lock, flags);
1652                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1653                         /* prepare deactivation */
1654                         Write_hfc(hc, HFCPCI_STATES, 0x40);
1655                         skb_queue_purge(&dch->squeue);
1656                         if (dch->tx_skb) {
1657                                 dev_kfree_skb(dch->tx_skb);
1658                                 dch->tx_skb = NULL;
1659                         }
1660                         dch->tx_idx = 0;
1661                         if (dch->rx_skb) {
1662                                 dev_kfree_skb(dch->rx_skb);
1663                                 dch->rx_skb = NULL;
1664                         }
1665                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1666                         if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1667                                 del_timer(&dch->timer);
1668 #ifdef FIXME
1669                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1670                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1671 #endif
1672                         hc->hw.mst_m &= ~HFCPCI_MASTER;
1673                         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1674                         ret = 0;
1675                 } else {
1676                         ret = l1_event(dch->l1, hh->prim);
1677                 }
1678                 spin_unlock_irqrestore(&hc->lock, flags);
1679                 break;
1680         }
1681         if (!ret)
1682                 dev_kfree_skb(skb);
1683         return ret;
1684 }
1685
1686 /*
1687  * Layer2 -> Layer 1 Bchannel data
1688  */
1689 static int
1690 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1691 {
1692         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
1693         struct hfc_pci          *hc = bch->hw;
1694         int                     ret = -EINVAL;
1695         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
1696         unsigned int            id;
1697         u_long                  flags;
1698
1699         switch (hh->prim) {
1700         case PH_DATA_REQ:
1701                 spin_lock_irqsave(&hc->lock, flags);
1702                 ret = bchannel_senddata(bch, skb);
1703                 if (ret > 0) { /* direct TX */
1704                         id = hh->id; /* skb can be freed */
1705                         hfcpci_fill_fifo(bch);
1706                         ret = 0;
1707                         spin_unlock_irqrestore(&hc->lock, flags);
1708                         if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1709                                 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1710                 } else
1711                         spin_unlock_irqrestore(&hc->lock, flags);
1712                 return ret;
1713         case PH_ACTIVATE_REQ:
1714                 spin_lock_irqsave(&hc->lock, flags);
1715                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1716                         ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1717                 else
1718                         ret = 0;
1719                 spin_unlock_irqrestore(&hc->lock, flags);
1720                 if (!ret)
1721                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1722                                 NULL, GFP_KERNEL);
1723                 break;
1724         case PH_DEACTIVATE_REQ:
1725                 deactivate_bchannel(bch);
1726                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1727                         NULL, GFP_KERNEL);
1728                 ret = 0;
1729                 break;
1730         }
1731         if (!ret)
1732                 dev_kfree_skb(skb);
1733         return ret;
1734 }
1735
1736 /*
1737  * called for card init message
1738  */
1739
1740 static void
1741 inithfcpci(struct hfc_pci *hc)
1742 {
1743         printk(KERN_DEBUG "inithfcpci: entered\n");
1744         hc->dch.timer.function = (void *) hfcpci_dbusy_timer;
1745         hc->dch.timer.data = (long) &hc->dch;
1746         init_timer(&hc->dch.timer);
1747         hc->chanlimit = 2;
1748         mode_hfcpci(&hc->bch[0], 1, -1);
1749         mode_hfcpci(&hc->bch[1], 2, -1);
1750 }
1751
1752
1753 static int
1754 init_card(struct hfc_pci *hc)
1755 {
1756         int     cnt = 3;
1757         u_long  flags;
1758
1759         printk(KERN_DEBUG "init_card: entered\n");
1760
1761
1762         spin_lock_irqsave(&hc->lock, flags);
1763         disable_hwirq(hc);
1764         spin_unlock_irqrestore(&hc->lock, flags);
1765         if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1766                 printk(KERN_WARNING
1767                     "mISDN: couldn't get interrupt %d\n", hc->irq);
1768                 return -EIO;
1769         }
1770         spin_lock_irqsave(&hc->lock, flags);
1771         reset_hfcpci(hc);
1772         while (cnt) {
1773                 inithfcpci(hc);
1774                 /*
1775                  * Finally enable IRQ output
1776                  * this is only allowed, if an IRQ routine is allready
1777                  * established for this HFC, so don't do that earlier
1778                  */
1779                 enable_hwirq(hc);
1780                 spin_unlock_irqrestore(&hc->lock, flags);
1781                 /* Timeout 80ms */
1782                 current->state = TASK_UNINTERRUPTIBLE;
1783                 schedule_timeout((80*HZ)/1000);
1784                 printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1785                         hc->irq, hc->irqcnt);
1786                 /* now switch timer interrupt off */
1787                 spin_lock_irqsave(&hc->lock, flags);
1788                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1789                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1790                 /* reinit mode reg */
1791                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1792                 if (!hc->irqcnt) {
1793                         printk(KERN_WARNING
1794                             "HFC PCI: IRQ(%d) getting no interrupts "
1795                             "during init %d\n", hc->irq, 4 - cnt);
1796                         if (cnt == 1) {
1797                                 spin_unlock_irqrestore(&hc->lock, flags);
1798                                 return -EIO;
1799                         } else {
1800                                 reset_hfcpci(hc);
1801                                 cnt--;
1802                         }
1803                 } else {
1804                         spin_unlock_irqrestore(&hc->lock, flags);
1805                         hc->initdone = 1;
1806                         return 0;
1807                 }
1808         }
1809         disable_hwirq(hc);
1810         spin_unlock_irqrestore(&hc->lock, flags);
1811         free_irq(hc->irq, hc);
1812         return -EIO;
1813 }
1814
1815 static int
1816 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1817 {
1818         int     ret = 0;
1819         u_char  slot;
1820
1821         switch (cq->op) {
1822         case MISDN_CTRL_GETOP:
1823                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1824                     MISDN_CTRL_DISCONNECT;
1825                 break;
1826         case MISDN_CTRL_LOOP:
1827                 /* channel 0 disabled loop */
1828                 if (cq->channel < 0 || cq->channel > 2) {
1829                         ret = -EINVAL;
1830                         break;
1831                 }
1832                 if (cq->channel & 1) {
1833                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1834                                 slot = 0xC0;
1835                         else
1836                                 slot = 0x80;
1837                         printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1838                             __func__, slot);
1839                         Write_hfc(hc, HFCPCI_B1_SSL, slot);
1840                         Write_hfc(hc, HFCPCI_B1_RSL, slot);
1841                         hc->hw.conn = (hc->hw.conn & ~7) | 6;
1842                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1843                 }
1844                 if (cq->channel & 2) {
1845                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1846                                 slot = 0xC1;
1847                         else
1848                                 slot = 0x81;
1849                         printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1850                             __func__, slot);
1851                         Write_hfc(hc, HFCPCI_B2_SSL, slot);
1852                         Write_hfc(hc, HFCPCI_B2_RSL, slot);
1853                         hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1854                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1855                 }
1856                 if (cq->channel & 3)
1857                         hc->hw.trm |= 0x80;     /* enable IOM-loop */
1858                 else {
1859                         hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1860                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1861                         hc->hw.trm &= 0x7f;     /* disable IOM-loop */
1862                 }
1863                 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1864                 break;
1865         case MISDN_CTRL_CONNECT:
1866                 if (cq->channel == cq->p1) {
1867                         ret = -EINVAL;
1868                         break;
1869                 }
1870                 if (cq->channel < 1 || cq->channel > 2 ||
1871                     cq->p1 < 1 || cq->p1 > 2) {
1872                         ret = -EINVAL;
1873                         break;
1874                 }
1875                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1876                         slot = 0xC0;
1877                 else
1878                         slot = 0x80;
1879                 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1880                     __func__, slot);
1881                 Write_hfc(hc, HFCPCI_B1_SSL, slot);
1882                 Write_hfc(hc, HFCPCI_B2_RSL, slot);
1883                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1884                         slot = 0xC1;
1885                 else
1886                         slot = 0x81;
1887                 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1888                     __func__, slot);
1889                 Write_hfc(hc, HFCPCI_B2_SSL, slot);
1890                 Write_hfc(hc, HFCPCI_B1_RSL, slot);
1891                 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1892                 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1893                 hc->hw.trm |= 0x80;
1894                 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1895                 break;
1896         case MISDN_CTRL_DISCONNECT:
1897                 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1898                 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1899                 hc->hw.trm &= 0x7f;     /* disable IOM-loop */
1900                 break;
1901         default:
1902                 printk(KERN_WARNING "%s: unknown Op %x\n",
1903                     __func__, cq->op);
1904                 ret = -EINVAL;
1905                 break;
1906         }
1907         return ret;
1908 }
1909
1910 static int
1911 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1912     struct channel_req *rq)
1913 {
1914         int err = 0;
1915
1916         if (debug & DEBUG_HW_OPEN)
1917                 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1918                     hc->dch.dev.id, __builtin_return_address(0));
1919         if (rq->protocol == ISDN_P_NONE)
1920                 return -EINVAL;
1921         if (rq->adr.channel == 1) {
1922                 /* TODO: E-Channel */
1923                 return -EINVAL;
1924         }
1925         if (!hc->initdone) {
1926                 if (rq->protocol == ISDN_P_TE_S0) {
1927                         err = create_l1(&hc->dch, hfc_l1callback);
1928                         if (err)
1929                                 return err;
1930                 }
1931                 hc->hw.protocol = rq->protocol;
1932                 ch->protocol = rq->protocol;
1933                 err = init_card(hc);
1934                 if (err)
1935                         return err;
1936         } else {
1937                 if (rq->protocol != ch->protocol) {
1938                         if (hc->hw.protocol == ISDN_P_TE_S0)
1939                                 l1_event(hc->dch.l1, CLOSE_CHANNEL);
1940                         hc->hw.protocol = rq->protocol;
1941                         ch->protocol = rq->protocol;
1942                         hfcpci_setmode(hc);
1943                 }
1944         }
1945
1946         if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1947             ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1948                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1949                     0, NULL, GFP_KERNEL);
1950         }
1951         rq->ch = ch;
1952         if (!try_module_get(THIS_MODULE))
1953                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1954         return 0;
1955 }
1956
1957 static int
1958 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1959 {
1960         struct bchannel         *bch;
1961
1962         if (rq->adr.channel > 2)
1963                 return -EINVAL;
1964         if (rq->protocol == ISDN_P_NONE)
1965                 return -EINVAL;
1966         bch = &hc->bch[rq->adr.channel - 1];
1967         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1968                 return -EBUSY; /* b-channel can be only open once */
1969         test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
1970         bch->ch.protocol = rq->protocol;
1971         rq->ch = &bch->ch; /* TODO: E-channel */
1972         if (!try_module_get(THIS_MODULE))
1973                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1974         return 0;
1975 }
1976
1977 /*
1978  * device control function
1979  */
1980 static int
1981 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1982 {
1983         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
1984         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
1985         struct hfc_pci          *hc = dch->hw;
1986         struct channel_req      *rq;
1987         int                     err = 0;
1988
1989         if (dch->debug & DEBUG_HW)
1990                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
1991                     __func__, cmd, arg);
1992         switch (cmd) {
1993         case OPEN_CHANNEL:
1994                 rq = arg;
1995                 if ((rq->protocol == ISDN_P_TE_S0) ||
1996                     (rq->protocol == ISDN_P_NT_S0))
1997                         err = open_dchannel(hc, ch, rq);
1998                 else
1999                         err = open_bchannel(hc, rq);
2000                 break;
2001         case CLOSE_CHANNEL:
2002                 if (debug & DEBUG_HW_OPEN)
2003                         printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
2004                             __func__, hc->dch.dev.id,
2005                             __builtin_return_address(0));
2006                 module_put(THIS_MODULE);
2007                 break;
2008         case CONTROL_CHANNEL:
2009                 err = channel_ctrl(hc, arg);
2010                 break;
2011         default:
2012                 if (dch->debug & DEBUG_HW)
2013                         printk(KERN_DEBUG "%s: unknown command %x\n",
2014                             __func__, cmd);
2015                 return -EINVAL;
2016         }
2017         return err;
2018 }
2019
2020 static int
2021 setup_hw(struct hfc_pci *hc)
2022 {
2023         void    *buffer;
2024
2025         printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
2026         hc->hw.cirm = 0;
2027         hc->dch.state = 0;
2028         pci_set_master(hc->pdev);
2029         if (!hc->irq) {
2030                 printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2031                 return 1;
2032         }
2033         hc->hw.pci_io = (char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2034
2035         if (!hc->hw.pci_io) {
2036                 printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2037                 return 1;
2038         }
2039         /* Allocate memory for FIFOS */
2040         /* the memory needs to be on a 32k boundary within the first 4G */
2041         pci_set_dma_mask(hc->pdev, 0xFFFF8000);
2042         buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
2043         /* We silently assume the address is okay if nonzero */
2044         if (!buffer) {
2045                 printk(KERN_WARNING
2046                     "HFC-PCI: Error allocating memory for FIFO!\n");
2047                 return 1;
2048         }
2049         hc->hw.fifos = buffer;
2050         pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2051         hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2052         printk(KERN_INFO
2053                 "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n",
2054                 (u_long) hc->hw.pci_io, (u_long) hc->hw.fifos,
2055                 (u_long) hc->hw.dmahandle, hc->irq, HZ);
2056         /* enable memory mapped ports, disable busmaster */
2057         pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2058         hc->hw.int_m2 = 0;
2059         disable_hwirq(hc);
2060         hc->hw.int_m1 = 0;
2061         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2062         /* At this point the needed PCI config is done */
2063         /* fifos are still not enabled */
2064         hc->hw.timer.function = (void *) hfcpci_Timer;
2065         hc->hw.timer.data = (long) hc;
2066         init_timer(&hc->hw.timer);
2067         /* default PCM master */
2068         test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2069         return 0;
2070 }
2071
2072 static void
2073 release_card(struct hfc_pci *hc) {
2074         u_long  flags;
2075
2076         spin_lock_irqsave(&hc->lock, flags);
2077         hc->hw.int_m2 = 0; /* interrupt output off ! */
2078         disable_hwirq(hc);
2079         mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2080         mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2081         if (hc->dch.timer.function != NULL) {
2082                 del_timer(&hc->dch.timer);
2083                 hc->dch.timer.function = NULL;
2084         }
2085         spin_unlock_irqrestore(&hc->lock, flags);
2086         if (hc->hw.protocol == ISDN_P_TE_S0)
2087                 l1_event(hc->dch.l1, CLOSE_CHANNEL);
2088         if (hc->initdone)
2089                 free_irq(hc->irq, hc);
2090         release_io_hfcpci(hc); /* must release after free_irq! */
2091         mISDN_unregister_device(&hc->dch.dev);
2092         mISDN_freebchannel(&hc->bch[1]);
2093         mISDN_freebchannel(&hc->bch[0]);
2094         mISDN_freedchannel(&hc->dch);
2095         pci_set_drvdata(hc->pdev, NULL);
2096         kfree(hc);
2097 }
2098
2099 static int
2100 setup_card(struct hfc_pci *card)
2101 {
2102         int             err = -EINVAL;
2103         u_int           i;
2104         char            name[MISDN_MAX_IDLEN];
2105
2106         card->dch.debug = debug;
2107         spin_lock_init(&card->lock);
2108         mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2109         card->dch.hw = card;
2110         card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2111         card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2112             (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2113         card->dch.dev.D.send = hfcpci_l2l1D;
2114         card->dch.dev.D.ctrl = hfc_dctrl;
2115         card->dch.dev.nrbchan = 2;
2116         for (i = 0; i < 2; i++) {
2117                 card->bch[i].nr = i + 1;
2118                 set_channelmap(i + 1, card->dch.dev.channelmap);
2119                 card->bch[i].debug = debug;
2120                 mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM);
2121                 card->bch[i].hw = card;
2122                 card->bch[i].ch.send = hfcpci_l2l1B;
2123                 card->bch[i].ch.ctrl = hfc_bctrl;
2124                 card->bch[i].ch.nr = i + 1;
2125                 list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2126         }
2127         err = setup_hw(card);
2128         if (err)
2129                 goto error;
2130         snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2131         err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2132         if (err)
2133                 goto error;
2134         HFC_cnt++;
2135         printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2136         return 0;
2137 error:
2138         mISDN_freebchannel(&card->bch[1]);
2139         mISDN_freebchannel(&card->bch[0]);
2140         mISDN_freedchannel(&card->dch);
2141         kfree(card);
2142         return err;
2143 }
2144
2145 /* private data in the PCI devices list */
2146 struct _hfc_map {
2147         u_int   subtype;
2148         u_int   flag;
2149         char    *name;
2150 };
2151
2152 static const struct _hfc_map hfc_map[] =
2153 {
2154         {HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2155         {HFC_CCD_B000, 0, "Billion B000"},
2156         {HFC_CCD_B006, 0, "Billion B006"},
2157         {HFC_CCD_B007, 0, "Billion B007"},
2158         {HFC_CCD_B008, 0, "Billion B008"},
2159         {HFC_CCD_B009, 0, "Billion B009"},
2160         {HFC_CCD_B00A, 0, "Billion B00A"},
2161         {HFC_CCD_B00B, 0, "Billion B00B"},
2162         {HFC_CCD_B00C, 0, "Billion B00C"},
2163         {HFC_CCD_B100, 0, "Seyeon B100"},
2164         {HFC_CCD_B700, 0, "Primux II S0 B700"},
2165         {HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2166         {HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2167         {HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2168         {HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2169         {HFC_BERKOM_A1T, 0, "German telekom A1T"},
2170         {HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2171         {HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2172         {HFC_DIGI_DF_M_IOM2_E, 0,
2173             "Digi International DataFire Micro V IOM2 (Europe)"},
2174         {HFC_DIGI_DF_M_E, 0,
2175             "Digi International DataFire Micro V (Europe)"},
2176         {HFC_DIGI_DF_M_IOM2_A, 0,
2177             "Digi International DataFire Micro V IOM2 (North America)"},
2178         {HFC_DIGI_DF_M_A, 0,
2179             "Digi International DataFire Micro V (North America)"},
2180         {HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2181         {},
2182 };
2183
2184 static struct pci_device_id hfc_ids[] =
2185 {
2186         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_2BD0,
2187                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[0]},
2188         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B000,
2189                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[1]},
2190         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B006,
2191                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[2]},
2192         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B007,
2193                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[3]},
2194         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B008,
2195                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[4]},
2196         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B009,
2197                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[5]},
2198         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00A,
2199                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[6]},
2200         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00B,
2201                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[7]},
2202         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00C,
2203                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[8]},
2204         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B100,
2205                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[9]},
2206         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B700,
2207                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[10]},
2208         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B701,
2209                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[11]},
2210         {PCI_VENDOR_ID_ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1,
2211                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[12]},
2212         {PCI_VENDOR_ID_ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675,
2213                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[13]},
2214         {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT,
2215                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[14]},
2216         {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_A1T,
2217                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[15]},
2218         {PCI_VENDOR_ID_ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575,
2219                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[16]},
2220         {PCI_VENDOR_ID_ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0,
2221                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[17]},
2222         {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E,
2223                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[18]},
2224         {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_E,
2225                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[19]},
2226         {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A,
2227                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[20]},
2228         {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_A,
2229                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[21]},
2230         {PCI_VENDOR_ID_SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2,
2231                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[22]},
2232         {},
2233 };
2234
2235 static int __devinit
2236 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2237 {
2238         int             err = -ENOMEM;
2239         struct hfc_pci  *card;
2240         struct _hfc_map *m = (struct _hfc_map *)ent->driver_data;
2241
2242         card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC);
2243         if (!card) {
2244                 printk(KERN_ERR "No kmem for HFC card\n");
2245                 return err;
2246         }
2247         card->pdev = pdev;
2248         card->subtype = m->subtype;
2249         err = pci_enable_device(pdev);
2250         if (err) {
2251                 kfree(card);
2252                 return err;
2253         }
2254
2255         printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2256                m->name, pci_name(pdev));
2257
2258         card->irq = pdev->irq;
2259         pci_set_drvdata(pdev, card);
2260         err = setup_card(card);
2261         if (err)
2262                 pci_set_drvdata(pdev, NULL);
2263         return err;
2264 }
2265
2266 static void __devexit
2267 hfc_remove_pci(struct pci_dev *pdev)
2268 {
2269         struct hfc_pci  *card = pci_get_drvdata(pdev);
2270
2271         if (card)
2272                 release_card(card);
2273         else
2274                 if (debug)
2275                         printk(KERN_WARNING "%s: drvdata already removed\n",
2276                             __func__);
2277 }
2278
2279
2280 static struct pci_driver hfc_driver = {
2281         .name = "hfcpci",
2282         .probe = hfc_probe,
2283         .remove = __devexit_p(hfc_remove_pci),
2284         .id_table = hfc_ids,
2285 };
2286
2287 static int
2288 _hfcpci_softirq(struct device *dev, void *arg)
2289 {
2290         struct hfc_pci  *hc = dev_get_drvdata(dev);
2291         struct bchannel *bch;
2292         if (hc == NULL)
2293                 return 0;
2294
2295         if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2296                 spin_lock(&hc->lock);
2297                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2298                 if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2299                         main_rec_hfcpci(bch);
2300                         tx_birq(bch);
2301                 }
2302                 bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2303                 if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2304                         main_rec_hfcpci(bch);
2305                         tx_birq(bch);
2306                 }
2307                 spin_unlock(&hc->lock);
2308         }
2309         return 0;
2310 }
2311
2312 static void
2313 hfcpci_softirq(void *arg)
2314 {
2315         (void) driver_for_each_device(&hfc_driver.driver, NULL, arg,
2316                                         _hfcpci_softirq);
2317
2318         /* if next event would be in the past ... */
2319         if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2320                 hfc_jiffies = jiffies + 1;
2321         else
2322                 hfc_jiffies += tics;
2323         hfc_tl.expires = hfc_jiffies;
2324         add_timer(&hfc_tl);
2325 }
2326
2327 static int __init
2328 HFC_init(void)
2329 {
2330         int             err;
2331
2332         if (!poll)
2333                 poll = HFCPCI_BTRANS_THRESHOLD;
2334
2335         if (poll != HFCPCI_BTRANS_THRESHOLD) {
2336                 tics = (poll * HZ) / 8000;
2337                 if (tics < 1)
2338                         tics = 1;
2339                 poll = (tics * 8000) / HZ;
2340                 if (poll > 256 || poll < 8) {
2341                         printk(KERN_ERR "%s: Wrong poll value %d not in range "
2342                                 "of 8..256.\n", __func__, poll);
2343                         err = -EINVAL;
2344                         return err;
2345                 }
2346         }
2347         if (poll != HFCPCI_BTRANS_THRESHOLD) {
2348                 printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2349                         __func__, poll);
2350                 hfc_tl.function = (void *)hfcpci_softirq;
2351                 hfc_tl.data = 0;
2352                 init_timer(&hfc_tl);
2353                 hfc_tl.expires = jiffies + tics;
2354                 hfc_jiffies = hfc_tl.expires;
2355                 add_timer(&hfc_tl);
2356         } else
2357                 tics = 0; /* indicate the use of controller's timer */
2358
2359         err = pci_register_driver(&hfc_driver);
2360         if (err) {
2361                 if (timer_pending(&hfc_tl))
2362                         del_timer(&hfc_tl);
2363         }
2364
2365         return err;
2366 }
2367
2368 static void __exit
2369 HFC_cleanup(void)
2370 {
2371         if (timer_pending(&hfc_tl))
2372                 del_timer(&hfc_tl);
2373
2374         pci_unregister_driver(&hfc_driver);
2375 }
2376
2377 module_init(HFC_init);
2378 module_exit(HFC_cleanup);