]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/input/keyboard/lm8323.c
lm8323 pwm fixes
[linux-2.6-omap-h63xx.git] / drivers / input / keyboard / lm8323.c
1 /*
2  * drivers/i2c/chips/lm8323.c
3  *
4  * Copyright (C) 2007 Nokia Corporation
5  *
6  * Written by Daniel Stone <daniel.stone@nokia.com>
7  *            Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation (version 2 of the License only).
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21  */
22
23 #include <linux/module.h>
24 #include <linux/i2c.h>
25 #include <linux/interrupt.h>
26 #include <linux/sched.h>
27 #include <linux/mutex.h>
28 #include <linux/delay.h>
29 #include <linux/input.h>
30 #include <linux/leds.h>
31 #include <linux/i2c/lm8323.h>
32
33 #include <asm/mach-types.h>
34 #include <asm/mach/irq.h>
35
36 #ifdef VERBOSE
37 #define debug dev_dbg
38 #else
39 #define debug(...)
40 #endif
41
42 /* Commands to send to the chip. */
43 #define LM8323_CMD_READ_ID              0x80 /* Read chip ID. */
44 #define LM8323_CMD_WRITE_CFG            0x81 /* Set configuration item. */
45 #define LM8323_CMD_READ_INT             0x82 /* Get interrupt status. */
46 #define LM8323_CMD_RESET                0x83 /* Reset, same as external one */
47 #define LM8323_CMD_WRITE_PORT_SEL       0x85 /* Set GPIO in/out. */
48 #define LM8323_CMD_WRITE_PORT_STATE     0x86 /* Set GPIO pullup. */
49 #define LM8323_CMD_READ_PORT_SEL        0x87 /* Get GPIO in/out. */
50 #define LM8323_CMD_READ_PORT_STATE      0x88 /* Get GPIO pullup. */
51 #define LM8323_CMD_READ_FIFO            0x89 /* Read byte from FIFO. */
52 #define LM8323_CMD_RPT_READ_FIFO        0x8a /* Read FIFO (no increment). */
53 #define LM8323_CMD_SET_ACTIVE           0x8b /* Set active time. */
54 #define LM8323_CMD_READ_ERR             0x8c /* Get error status. */
55 #define LM8323_CMD_READ_ROTATOR         0x8e /* Read rotator status. */
56 #define LM8323_CMD_SET_DEBOUNCE         0x8f /* Set debouncing time. */
57 #define LM8323_CMD_SET_KEY_SIZE         0x90 /* Set keypad size. */
58 #define LM8323_CMD_READ_KEY_SIZE        0x91 /* Get keypad size. */
59 #define LM8323_CMD_READ_CFG             0x92 /* Get configuration item. */
60 #define LM8323_CMD_WRITE_CLOCK          0x93 /* Set clock config. */
61 #define LM8323_CMD_READ_CLOCK           0x94 /* Get clock config. */
62 #define LM8323_CMD_PWM_WRITE            0x95 /* Write PWM script. */
63 #define LM8323_CMD_START_PWM            0x96 /* Start PWM engine. */
64 #define LM8323_CMD_STOP_PWM             0x97 /* Stop PWM engine. */
65
66 /* Interrupt status. */
67 #define INT_KEYPAD                      0x01 /* Key event. */
68 #define INT_ROTATOR                     0x02 /* Rotator event. */
69 #define INT_ERROR                       0x08 /* Error: use CMD_READ_ERR. */
70 #define INT_NOINIT                      0x10 /* Lost configuration. */
71 #define INT_PWM1                        0x20 /* PWM1 stopped. */
72 #define INT_PWM2                        0x40 /* PWM2 stopped. */
73 #define INT_PWM3                        0x80 /* PWM3 stopped. */
74
75 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
76 #define ERR_BADPAR                      0x01 /* Bad parameter. */
77 #define ERR_CMDUNK                      0x02 /* Unknown command. */
78 #define ERR_KEYOVR                      0x04 /* Too many keys pressed. */
79 #define ERR_FIFOOVER                    0x40 /* FIFO overflow. */
80
81 /* Configuration keys (CMD_{WRITE,READ}_CFG). */
82 #define CFG_MUX1SEL                     0x01 /* Select MUX1_OUT input. */
83 #define CFG_MUX1EN                      0x02 /* Enable MUX1_OUT. */
84 #define CFG_MUX2SEL                     0x04 /* Select MUX2_OUT input. */
85 #define CFG_MUX2EN                      0x08 /* Enable MUX2_OUT. */
86 #define CFG_PSIZE                       0x20 /* Package size (must be 0). */
87 #define CFG_ROTEN                       0x40 /* Enable rotator. */
88
89 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */
90 #define CLK_RCPWM_INTERNAL              0x00
91 #define CLK_RCPWM_EXTERNAL              0x03
92 #define CLK_SLOWCLKEN                   0x08 /* Enable 32.768kHz clock. */
93 #define CLK_SLOWCLKOUT                  0x40 /* Enable slow pulse output. */
94
95 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
96 #define LM8323_I2C_ADDR00               (0x84 >> 1)     /* 1000 010x */
97 #define LM8323_I2C_ADDR01               (0x86 >> 1)     /* 1000 011x */
98 #define LM8323_I2C_ADDR10               (0x88 >> 1)     /* 1000 100x */
99 #define LM8323_I2C_ADDR11               (0x8A >> 1)     /* 1000 101x */
100
101 /* Key event fifo length */
102 #define LM8323_FIFO_LEN                 15
103
104 /* Commands for PWM engine; feed in with PWM_WRITE. */
105 /* Load ramp counter from duty cycle field (range 0 - 0xff). */
106 #define PWM_SET(v)                      (0x4000 | ((v) & 0xff))
107 /* Go to start of script. */
108 #define PWM_GOTOSTART                   0x0000
109 /*
110  * Stop engine (generates interrupt).  If reset is 1, clear the program
111  * counter, else leave it.
112  */
113 #define PWM_END(reset)                  (0xc000 | (!!(reset) << 11))
114 /*
115  * Ramp.  If s is 1, divide clock by 512, else divide clock by 16.
116  * Take t clock scales (up to 63) per step, for n steps (up to 126).
117  * If u is set, ramp up, else ramp down.
118  */
119 #define PWM_RAMP(s, t, n, u)            ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
120                                          ((n) & 0x7f) | ((u) ? 0 : 0x80))
121 /*
122  * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
123  * If cnt is zero, execute until PWM_END is encountered.
124  */
125 #define PWM_LOOP(cnt, pos)              (0xa000 | (((cnt) & 0x3f) << 7) | \
126                                          ((pos) & 0x3f))
127 /*
128  * Wait for trigger.  Argument is a mask of channels, shifted by the channel
129  * number, e.g. 0xa for channels 3 and 1.  Note that channels are numbered
130  * from 1, not 0.
131  */
132 #define PWM_WAIT_TRIG(chans)            (0xe000 | (((chans) & 0x7) << 6))
133 /* Send trigger.  Argument is same as PWM_WAIT_TRIG. */
134 #define PWM_SEND_TRIG(chans)            (0xe000 | ((chans) & 0x7))
135
136 #define DRIVER_NAME  "lm8323"
137
138 struct lm8323_pwm {
139         int                     id;
140         int                     enabled;
141         int                     fade_time;
142         int                     brightness;
143         int                     desired_brightness;
144         int                     running;
145         struct mutex            lock;
146         struct work_struct      work;
147         struct led_classdev     cdev;
148 };
149
150 struct lm8323_chip {
151         struct mutex            lock;
152         struct i2c_client       *client;
153         struct work_struct      work;
154         struct input_dev        *idev;
155         unsigned                kp_enabled : 1;
156         unsigned                pm_suspend : 1;
157         unsigned                keys_down;
158         char                    phys[32];
159         s16                     keymap[LM8323_KEYMAP_SIZE];
160         int                     size_x;
161         int                     size_y;
162         int                     debounce_time;
163         int                     active_time;
164         struct lm8323_pwm       pwm1;
165         struct lm8323_pwm       pwm2;
166         struct lm8323_pwm       pwm3;
167 };
168
169 #define client_to_lm8323(c)     container_of(c, struct lm8323_chip, client)
170 #define dev_to_lm8323(d)        container_of(d, struct lm8323_chip, client->dev)
171 #define work_to_lm8323(w)       container_of(w, struct lm8323_chip, work)
172 #define cdev_to_pwm(c)          container_of(c, struct lm8323_pwm, cdev)
173 #define work_to_pwm(w)          container_of(w, struct lm8323_pwm, work)
174
175 static struct lm8323_chip *pwm_to_lm8323(struct lm8323_pwm *pwm)
176 {
177         switch (pwm->id) {
178         case 1:
179                 return container_of(pwm, struct lm8323_chip, pwm1);
180         case 2:
181                 return container_of(pwm, struct lm8323_chip, pwm2);
182         case 3:
183                 return container_of(pwm, struct lm8323_chip, pwm3);
184         default:
185                 return NULL;
186         }
187 }
188
189 static struct lm8323_platform_data *lm8323_pdata;
190
191
192 #define LM8323_MAX_DATA 8
193
194 /*
195  * To write, we just access the chip's address in write mode, and dump the
196  * command and data out on the bus.  The command byte and data are taken as
197  * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
198  */
199 static int lm8323_write(struct lm8323_chip *lm, int len, ...)
200 {
201         int ret, i;
202         va_list ap;
203         u8 data[LM8323_MAX_DATA];
204
205         va_start(ap, len);
206
207         if (unlikely(len > LM8323_MAX_DATA)) {
208                 dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
209                 va_end(ap);
210                 return 0;
211         }
212
213         for (i = 0; i < len; i++)
214                 data[i] = va_arg(ap, int);
215
216         va_end(ap);
217
218         /*
219          * If the host is asleep while we send the data, we can get a NACK
220          * back while it wakes up, so try again, once.
221          */
222         ret = i2c_master_send(lm->client, data, len);
223         if (unlikely(ret == -EREMOTEIO))
224                 ret = i2c_master_send(lm->client, data, len);
225         if (unlikely(ret != len))
226                 dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
227                         len, ret);
228
229         return ret;
230 }
231
232 /*
233  * To read, we first send the command byte to the chip and end the transaction,
234  * then access the chip in read mode, at which point it will send the data.
235  */
236 static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
237 {
238         int ret;
239
240         /*
241          * If the host is asleep while we send the byte, we can get a NACK
242          * back while it wakes up, so try again, once.
243          */
244         ret = i2c_master_send(lm->client, &cmd, 1);
245         if (unlikely(ret == -EREMOTEIO))
246                 ret = i2c_master_send(lm->client, &cmd, 1);
247         if (unlikely(ret != 1)) {
248                 dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
249                         cmd);
250                 return 0;
251         }
252
253         ret = i2c_master_recv(lm->client, buf, len);
254         if (unlikely(ret != len))
255                 dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
256                         len, ret);
257
258         return ret;
259 }
260
261 /*
262  * Set the chip active time (idle time before it enters halt).
263  */
264 static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
265 {
266         lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
267 }
268
269 /*
270  * The signals are AT-style: the low 7 bits are the keycode, and the top
271  * bit indicates the state (1 for down, 0 for up).
272  */
273 static inline u8 lm8323_whichkey(u8 event)
274 {
275         return event & 0x7f;
276 }
277
278 static inline int lm8323_ispress(u8 event)
279 {
280         return (event & 0x80) ? 1 : 0;
281 }
282
283 static void process_keys(struct lm8323_chip *lm)
284 {
285         u8 event;
286         u8 key_fifo[LM8323_FIFO_LEN + 1];
287         int old_keys_down = lm->keys_down;
288         int ret;
289         int i = 0;
290
291         /*
292          * Read all key events from the FIFO at once. Next READ_FIFO clears the
293          * FIFO even if we didn't read all events previously.
294          */
295         ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
296
297         if (ret < 0) {
298                 dev_err(&lm->client->dev, "Failed reading fifo \n");
299                 return;
300         }
301         key_fifo[ret] = 0;
302
303         while ((event = key_fifo[i])) {
304                 u8 key = lm8323_whichkey(event);
305                 int isdown = lm8323_ispress(event);
306                 s16 keycode = lm->keymap[key];
307
308                 if (likely(keycode > 0)) {
309                         debug(&lm->client->dev, "key 0x%02x %s\n", key,
310                               isdown ? "down" : "up");
311                         if (likely(lm->kp_enabled)) {
312                                 input_report_key(lm->idev, keycode, isdown);
313                                 input_sync(lm->idev);
314                         }
315                         if (isdown)
316                                 lm->keys_down++;
317                         else
318                                 lm->keys_down--;
319                 } else {
320                         dev_err(&lm->client->dev, "keycode 0x%02x not mapped "
321                                 "to any key\n", key);
322                 }
323                 i++;
324         }
325
326         /*
327          * Errata: We need to ensure that the chip never enters halt mode
328          * during a keypress, so set active time to 0.  When it's released,
329          * we can enter halt again, so set the active time back to normal.
330          */
331         if (!old_keys_down && lm->keys_down)
332                 lm8323_set_active_time(lm, 0);
333         if (old_keys_down && !lm->keys_down)
334                 lm8323_set_active_time(lm, lm->active_time);
335 }
336
337 static void lm8323_process_error(struct lm8323_chip *lm)
338 {
339         u8 error;
340
341         if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
342                 if (error & ERR_FIFOOVER)
343                         debug(&lm->client->dev, "fifo overflow!\n");
344                 if (error & ERR_KEYOVR)
345                         debug(&lm->client->dev, "more than two keys pressed\n");
346                 if (error & ERR_CMDUNK)
347                         debug(&lm->client->dev, "unknown command submitted\n");
348                 if (error & ERR_BADPAR)
349                         debug(&lm->client->dev, "bad command parameter\n");
350         }
351 }
352
353 static void lm8323_reset(struct lm8323_chip *lm)
354 {
355         /* The docs say we must pass 0xAA as the data byte. */
356         lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
357 }
358
359 static int lm8323_configure(struct lm8323_chip *lm)
360 {
361         int keysize = (lm->size_x << 4) | lm->size_y;
362         int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
363         int debounce = lm->debounce_time >> 2;
364         int active = lm->active_time >> 2;
365
366         /*
367          * Active time must be greater than the debounce time: if it's
368          * a close-run thing, give ourselves a 12ms buffer.
369          */
370         if (debounce >= active)
371                 active = debounce + 3;
372
373         lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
374         lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
375         lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
376         lm8323_set_active_time(lm, lm->active_time);
377         lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
378         lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
379         lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
380
381         /*
382          * Not much we can do about errors at this point, so just hope
383          * for the best.
384          */
385
386         return 0;
387 }
388
389 static void pwm_done(struct lm8323_pwm *pwm)
390 {
391         mutex_lock(&pwm->lock);
392         pwm->running = 0;
393         if (pwm->desired_brightness != pwm->brightness)
394                 schedule_work(&pwm->work);
395         mutex_unlock(&pwm->lock);
396 }
397
398 /*
399  * Bottom half: handle the interrupt by posting key events, or dealing with
400  * errors appropriately.
401  */
402 static void lm8323_work(struct work_struct *work)
403 {
404         struct lm8323_chip *lm = work_to_lm8323(work);
405         u8 ints;
406
407         mutex_lock(&lm->lock);
408
409         while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
410                 if (likely(ints & INT_KEYPAD))
411                         process_keys(lm);
412                 if (ints & INT_ROTATOR) {
413                         /* We don't currently support the rotator. */
414                         debug(&lm->client->dev, "rotator fired\n");
415                 }
416                 if (ints & INT_ERROR) {
417                         debug(&lm->client->dev, "error!\n");
418                         lm8323_process_error(lm);
419                 }
420                 if (ints & INT_NOINIT) {
421                         dev_err(&lm->client->dev, "chip lost config; "
422                                                   "reinitialising\n");
423                         lm8323_configure(lm);
424                 }
425                 if (ints & INT_PWM1) {
426                         debug(&lm->client->dev, "pwm1 engine completed\n");
427                         pwm_done(&lm->pwm1);
428                 }
429                 if (ints & INT_PWM2) {
430                         debug(&lm->client->dev, "pwm2 engine completed\n");
431                         pwm_done(&lm->pwm2);
432                 }
433                 if (ints & INT_PWM3) {
434                         debug(&lm->client->dev, "pwm3 engine completed\n");
435                         pwm_done(&lm->pwm3);
436                 }
437         }
438
439         mutex_unlock(&lm->lock);
440 }
441
442 /*
443  * We cannot use I2C in interrupt context, so we just schedule work.
444  */
445 static irqreturn_t lm8323_irq(int irq, void *data)
446 {
447         struct lm8323_chip *lm = data;
448
449         schedule_work(&lm->work);
450
451         return IRQ_HANDLED;
452 }
453
454 /*
455  * Read the chip ID.
456  */
457 static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
458 {
459         int bytes;
460
461         bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
462         if (unlikely(bytes != 2))
463                 return -EIO;
464
465         return 0;
466 }
467
468 static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
469 {
470         struct lm8323_chip *lm = pwm_to_lm8323(pwm);
471
472         lm8323_write(lm, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
473                      (cmd & 0xff00) >> 8, cmd & 0x00ff);
474 }
475
476 /*
477  * Write a script into a given PWM engine, concluding with PWM_END.
478  * If 'kill' is nonzero, the engine will be shut down at the end
479  * of the script, producing a zero output. Otherwise the engine
480  * will be kept running at the final PWM level indefinitely.
481  */
482 static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
483                              int len, const u16 *cmds)
484 {
485         struct lm8323_chip *lm = pwm_to_lm8323(pwm);
486         int i;
487
488         for (i = 0; i < len; i++)
489                 lm8323_write_pwm_one(pwm, i, cmds[i]);
490
491         lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
492         lm8323_write(lm, 2, LM8323_CMD_START_PWM, pwm->id);
493         pwm->running = 1;
494 }
495
496 static void lm8323_pwm_work(struct work_struct *work)
497 {
498         struct lm8323_pwm *pwm = work_to_pwm(work);
499         int div512, perstep, steps, hz, up, kill;
500         u16 pwm_cmds[3];
501         int num_cmds = 0;
502
503         mutex_lock(&pwm->lock);
504
505         /*
506          * Do nothing if we're already at the requested level,
507          * or previous setting is not yet complete. In the latter
508          * case we will be called again when the previous PWM script
509          * finishes.
510          */
511         if (pwm->running || pwm->desired_brightness == pwm->brightness) {
512                 mutex_unlock(&pwm->lock);
513                 return;
514         }
515
516         kill = (pwm->desired_brightness == 0);
517         up = (pwm->desired_brightness > pwm->brightness);
518         steps = abs(pwm->desired_brightness - pwm->brightness);
519
520         /*
521          * Convert time (in ms) into a divisor (512 or 16 on a refclk of
522          * 32768Hz), and number of ticks per step.
523          */
524         if ((pwm->fade_time / steps) > (32768 / 512)) {
525                 div512 = 1;
526                 hz = 32768 / 512;
527         }
528         else {
529                 div512 = 0;
530                 hz = 32768 / 16;
531         }
532
533         perstep = (hz * pwm->fade_time) / (steps * 1000);
534
535         if (perstep == 0)
536                 perstep = 1;
537         else if (perstep > 63)
538                 perstep = 63;
539
540         while (steps) {
541                 int s;
542
543                 s = min(126, steps);
544                 pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
545                 steps -= s;
546         }
547
548         lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
549
550         pwm->brightness = pwm->desired_brightness;
551         mutex_unlock(&pwm->lock);
552 }
553
554 static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
555                                       enum led_brightness brightness)
556 {
557         struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
558         struct lm8323_chip *lm = pwm_to_lm8323(pwm);
559
560         mutex_lock(&pwm->lock);
561         pwm->desired_brightness = brightness;
562         mutex_unlock(&pwm->lock);
563
564         if (in_interrupt()) {
565                 schedule_work(&pwm->work);
566         } else {
567                 /*
568                  * Schedule PWM work as usual unless we are going into suspend
569                  */
570                 mutex_lock(&lm->lock);
571                 if (likely(!lm->pm_suspend))
572                         schedule_work(&pwm->work);
573                 else
574                         lm8323_pwm_work(&pwm->work);
575                 mutex_unlock(&lm->lock);
576         }
577 }
578
579 static ssize_t lm8323_pwm_show_time(struct device *dev,
580                 struct device_attribute *attr, char *buf)
581 {
582         struct led_classdev *led_cdev = dev_get_drvdata(dev);
583         struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
584
585         return sprintf(buf, "%d\n", pwm->fade_time);
586 }
587
588 static ssize_t lm8323_pwm_store_time(struct device *dev,
589                 struct device_attribute *attr, const char *buf, size_t len)
590 {
591         struct led_classdev *led_cdev = dev_get_drvdata(dev);
592         struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
593         int ret;
594         int time;
595
596         ret = sscanf(buf, "%d", &time);
597         /* Numbers only, please. */
598         if (ret)
599                 return -EINVAL;
600
601         pwm->fade_time = time;
602
603         return strlen(buf);
604 }
605 static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
606
607 static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
608                     const char *name)
609 {
610         struct lm8323_pwm *pwm = NULL;
611
612         BUG_ON(id > 3);
613
614         switch (id) {
615         case 1:
616                 pwm = &lm->pwm1;
617                 break;
618         case 2:
619                 pwm = &lm->pwm2;
620                 break;
621         case 3:
622                 pwm = &lm->pwm3;
623                 break;
624         }
625
626         pwm->id = id;
627         pwm->fade_time = 0;
628         pwm->brightness = 0;
629         pwm->desired_brightness = 0;
630         pwm->running = 0;
631         mutex_init(&pwm->lock);
632         if (name) {
633                 pwm->cdev.name = name;
634                 pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
635                 if (led_classdev_register(dev, &pwm->cdev) < 0) {
636                         dev_err(dev, "couldn't register PWM %d\n", id);
637                         return -1;
638                 }
639                 if (device_create_file(pwm->cdev.dev,
640                                              &dev_attr_time) < 0) {
641                         dev_err(dev, "couldn't register time attribute\n");
642                         led_classdev_unregister(&pwm->cdev);
643                         return -1;
644                 }
645                 INIT_WORK(&pwm->work, lm8323_pwm_work);
646                 pwm->enabled = 1;
647         } else {
648                 pwm->enabled = 0;
649         }
650
651         return 0;
652 }
653
654 static struct i2c_driver lm8323_i2c_driver;
655
656 static ssize_t lm8323_show_disable(struct device *dev,
657                                    struct device_attribute *attr, char *buf)
658 {
659         struct lm8323_chip *lm = dev_get_drvdata(dev);
660
661         return sprintf(buf, "%u\n", !lm->kp_enabled);
662 }
663
664 static ssize_t lm8323_set_disable(struct device *dev,
665                                   struct device_attribute *attr,
666                                   const char *buf, size_t count)
667 {
668         struct lm8323_chip *lm = dev_get_drvdata(dev);
669         int ret;
670         int i;
671
672         i = sscanf(buf, "%d", &ret);
673
674         mutex_lock(&lm->lock);
675         lm->kp_enabled = !i;
676         mutex_unlock(&lm->lock);
677
678         return count;
679 }
680 static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
681
682 static int lm8323_probe(struct i2c_client *client,
683                                         const struct i2c_device_id *id)
684 {
685         struct input_dev *idev;
686         struct lm8323_chip *lm;
687         int i, err = 0;
688         unsigned long tmo;
689         u8 data[2];
690
691         lm = kzalloc(sizeof *lm, GFP_KERNEL);
692         if (!lm)
693                 return -ENOMEM;
694
695         i2c_set_clientdata(client, lm);
696         lm->client = client;
697         lm8323_pdata = client->dev.platform_data;
698         if (!lm8323_pdata)
699                 return -EINVAL; /* ? */
700
701         lm->size_x = lm8323_pdata->size_x;
702         if (lm->size_x == 0) {
703                 lm->size_x = 8;
704         } else if (lm->size_x > 8) {
705                 dev_err(&client->dev, "invalid x size %d specified\n",
706                                 lm->size_x);
707                 lm->size_x = 8;
708         }
709
710         lm->size_y = lm8323_pdata->size_y;
711         if (lm->size_y == 0) {
712                 lm->size_y = 12;
713         } else if (lm->size_y > 12) {
714                 dev_err(&client->dev, "invalid y size %d specified\n",
715                                 lm->size_y);
716                 lm->size_x = 12;
717         }
718
719         debug(&c->dev, "Keypad size: %d x %d\n", lm->size_x, lm->size_y);
720
721         lm->debounce_time = lm8323_pdata->debounce_time;
722         if (lm->debounce_time == 0) /* Default. */
723                 lm->debounce_time = 12;
724         else if (lm->debounce_time == -1) /* Disable debounce. */
725                 lm->debounce_time = 0;
726
727         lm->active_time = lm8323_pdata->active_time;
728         if (lm->active_time == 0) /* Default. */
729                 lm->active_time = 500;
730         else if (lm->active_time == -1) /* Disable sleep. */
731                 lm->active_time = 0;
732
733         lm8323_reset(lm);
734
735         /* Nothing's set up to service the IRQ yet, so just spin for max.
736          * 100ms until we can configure. */
737         tmo = jiffies + msecs_to_jiffies(100);
738         while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
739                 if (data[0] & INT_NOINIT)
740                         break;
741
742                 if (time_after(jiffies, tmo)) {
743                         dev_err(&client->dev,
744                                         "timeout waiting for initialisation\n");
745                         break;
746                 }
747
748                 msleep(1);
749         }
750         lm8323_configure(lm);
751
752         /* If a true probe check the device */
753         if (lm8323_read_id(lm, data) != 0) {
754                 dev_err(&client->dev, "device not found\n");
755                 err = -ENODEV;
756                 goto fail2;
757         }
758
759         if (init_pwm(lm, 1, &client->dev, lm8323_pdata->pwm1_name) < 0)
760                 goto fail3;
761         if (init_pwm(lm, 2, &client->dev, lm8323_pdata->pwm2_name) < 0)
762                 goto fail4;
763         if (init_pwm(lm, 3, &client->dev, lm8323_pdata->pwm3_name) < 0)
764                 goto fail5;
765
766         mutex_init(&lm->lock);
767         INIT_WORK(&lm->work, lm8323_work);
768
769         err = request_irq(client->irq, lm8323_irq,
770                           IRQF_TRIGGER_FALLING | IRQF_DISABLED |
771                           IRQF_SAMPLE_RANDOM, DRIVER_NAME, lm);
772         if (err) {
773                 dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
774                 goto fail6;
775         }
776
777         set_irq_wake(client->irq, 1);
778
779         lm->kp_enabled = 1;
780         err = device_create_file(&client->dev, &dev_attr_disable_kp);
781         if (err < 0)
782                 goto fail7;
783
784         idev = input_allocate_device();
785         if (idev == NULL) {
786                 err = -ENOMEM;
787                 goto fail8;
788         }
789
790         if (lm8323_pdata->name)
791                 idev->name = lm8323_pdata->name;
792         else
793                 idev->name = "LM8323 keypad";
794         snprintf(lm->phys, sizeof(lm->phys), "%s/input-kp", client->dev.bus_id);
795         idev->phys = lm->phys;
796
797         lm->keys_down = 0;
798         idev->evbit[0] = BIT(EV_KEY);
799         for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
800                 if (lm8323_pdata->keymap[i] > 0)
801                         set_bit(lm8323_pdata->keymap[i], idev->keybit);
802
803                 lm->keymap[i] = lm8323_pdata->keymap[i];
804         }
805
806         if (lm8323_pdata->repeat)
807                 set_bit(EV_REP, idev->evbit);
808
809         lm->idev = idev;
810         err = input_register_device(idev);
811         if (err) {
812                 dev_dbg(&client->dev, "error registering input device\n");
813                 goto fail8;
814         }
815
816         return 0;
817
818 fail8:
819         device_remove_file(&client->dev, &dev_attr_disable_kp);
820 fail7:
821         free_irq(client->irq, lm);
822 fail6:
823         if (lm->pwm3.enabled)
824                 led_classdev_unregister(&lm->pwm3.cdev);
825 fail5:
826         if (lm->pwm2.enabled)
827                 led_classdev_unregister(&lm->pwm2.cdev);
828 fail4:
829         if (lm->pwm1.enabled)
830                 led_classdev_unregister(&lm->pwm1.cdev);
831 fail3:
832 fail2:
833         kfree(lm);
834         return err;
835 }
836
837 static int lm8323_remove(struct i2c_client *client)
838 {
839         struct lm8323_chip *lm = i2c_get_clientdata(client);
840
841         free_irq(client->irq, lm);
842         cancel_work_sync(&lm->work);
843         input_unregister_device(lm->idev);
844         device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
845         if (lm->pwm3.enabled)
846                 led_classdev_unregister(&lm->pwm3.cdev);
847         if (lm->pwm2.enabled)
848                 led_classdev_unregister(&lm->pwm2.cdev);
849         if (lm->pwm1.enabled)
850                 led_classdev_unregister(&lm->pwm1.cdev);
851         kfree(lm);
852
853         return 0;
854 }
855
856 /*
857  * We don't need to explicitly suspend the chip, as it already switches off
858  * when there's no activity.
859  */
860 static int lm8323_suspend(struct i2c_client *client, pm_message_t mesg)
861 {
862         struct lm8323_chip *lm = i2c_get_clientdata(client);
863
864         set_irq_wake(client->irq, 0);
865         disable_irq(client->irq);
866
867         mutex_lock(&lm->lock);
868         lm->pm_suspend = 1;
869         mutex_unlock(&lm->lock);
870
871         if (lm->pwm1.enabled)
872                 led_classdev_suspend(&lm->pwm1.cdev);
873         if (lm->pwm2.enabled)
874                 led_classdev_suspend(&lm->pwm2.cdev);
875         if (lm->pwm3.enabled)
876                 led_classdev_suspend(&lm->pwm3.cdev);
877
878         return 0;
879 }
880
881 static int lm8323_resume(struct i2c_client *client)
882 {
883         struct lm8323_chip *lm = i2c_get_clientdata(client);
884
885         mutex_lock(&lm->lock);
886         lm->pm_suspend = 0;
887         mutex_unlock(&lm->lock);
888
889         if (lm->pwm1.enabled)
890                 led_classdev_resume(&lm->pwm1.cdev);
891         if (lm->pwm2.enabled)
892                 led_classdev_resume(&lm->pwm2.cdev);
893         if (lm->pwm3.enabled)
894                 led_classdev_resume(&lm->pwm3.cdev);
895
896         enable_irq(client->irq);
897         set_irq_wake(client->irq, 1);
898
899         return 0;
900 }
901
902 static const struct i2c_device_id lm8323_id[] = {
903         { DRIVER_NAME, 0 },
904         { }
905 };
906
907 static struct i2c_driver lm8323_i2c_driver = {
908         .driver = {
909                 .name    = DRIVER_NAME,
910         },
911         .probe          = lm8323_probe,
912         .remove         = __devexit_p(lm8323_remove),
913         .suspend        = lm8323_suspend,
914         .resume         = lm8323_resume,
915         .id_table       = lm8323_id,
916 };
917 MODULE_DEVICE_TABLE(i2c, lm8323_id);
918
919 static int __init lm8323_init(void)
920 {
921         return i2c_add_driver(&lm8323_i2c_driver);
922 }
923
924 static void __exit lm8323_exit(void)
925 {
926         i2c_del_driver(&lm8323_i2c_driver);
927 }
928
929 MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>, Daniel Stone");
930 MODULE_DESCRIPTION("LM8323 keypad driver");
931 MODULE_LICENSE("GPL");
932
933 module_init(lm8323_init);
934 module_exit(lm8323_exit);