]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/s390/kernel/topology.c
632b13e100538704758cea2eebd75c6cfdc15bf7
[linux-2.6-omap-h63xx.git] / arch / s390 / kernel / topology.c
1 /*
2  *    Copyright IBM Corp. 2007
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/mm.h>
8 #include <linux/init.h>
9 #include <linux/device.h>
10 #include <linux/bootmem.h>
11 #include <linux/sched.h>
12 #include <linux/workqueue.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <asm/delay.h>
16 #include <asm/s390_ext.h>
17 #include <asm/sysinfo.h>
18
19 #define CPU_BITS 64
20 #define NR_MAG 6
21
22 #define PTF_HORIZONTAL  (0UL)
23 #define PTF_VERTICAL    (1UL)
24 #define PTF_CHECK       (2UL)
25
26 struct tl_cpu {
27         unsigned char reserved0[4];
28         unsigned char :6;
29         unsigned char pp:2;
30         unsigned char reserved1;
31         unsigned short origin;
32         unsigned long mask[CPU_BITS / BITS_PER_LONG];
33 };
34
35 struct tl_container {
36         unsigned char reserved[8];
37 };
38
39 union tl_entry {
40         unsigned char nl;
41         struct tl_cpu cpu;
42         struct tl_container container;
43 };
44
45 struct tl_info {
46         unsigned char reserved0[2];
47         unsigned short length;
48         unsigned char mag[NR_MAG];
49         unsigned char reserved1;
50         unsigned char mnest;
51         unsigned char reserved2[4];
52         union tl_entry tle[0];
53 };
54
55 struct core_info {
56         struct core_info *next;
57         cpumask_t mask;
58 };
59
60 static void topology_work_fn(struct work_struct *work);
61 static struct tl_info *tl_info;
62 static struct core_info core_info;
63 static int machine_has_topology;
64 static int machine_has_topology_irq;
65 static struct timer_list topology_timer;
66 static void set_topology_timer(void);
67 static DECLARE_WORK(topology_work, topology_work_fn);
68
69 cpumask_t cpu_core_map[NR_CPUS];
70
71 cpumask_t cpu_coregroup_map(unsigned int cpu)
72 {
73         struct core_info *core = &core_info;
74         cpumask_t mask;
75
76         cpus_clear(mask);
77         if (!machine_has_topology)
78                 return cpu_present_map;
79         mutex_lock(&smp_cpu_state_mutex);
80         while (core) {
81                 if (cpu_isset(cpu, core->mask)) {
82                         mask = core->mask;
83                         break;
84                 }
85                 core = core->next;
86         }
87         mutex_unlock(&smp_cpu_state_mutex);
88         if (cpus_empty(mask))
89                 mask = cpumask_of_cpu(cpu);
90         return mask;
91 }
92
93 static void add_cpus_to_core(struct tl_cpu *tl_cpu, struct core_info *core)
94 {
95         unsigned int cpu;
96
97         for (cpu = find_first_bit(&tl_cpu->mask[0], CPU_BITS);
98              cpu < CPU_BITS;
99              cpu = find_next_bit(&tl_cpu->mask[0], CPU_BITS, cpu + 1))
100         {
101                 unsigned int rcpu, lcpu;
102
103                 rcpu = CPU_BITS - 1 - cpu + tl_cpu->origin;
104                 for_each_present_cpu(lcpu) {
105                         if (__cpu_logical_map[lcpu] == rcpu) {
106                                 cpu_set(lcpu, core->mask);
107                                 smp_cpu_polarization[lcpu] = tl_cpu->pp;
108                         }
109                 }
110         }
111 }
112
113 static void clear_cores(void)
114 {
115         struct core_info *core = &core_info;
116
117         while (core) {
118                 cpus_clear(core->mask);
119                 core = core->next;
120         }
121 }
122
123 static union tl_entry *next_tle(union tl_entry *tle)
124 {
125         if (tle->nl)
126                 return (union tl_entry *)((struct tl_container *)tle + 1);
127         else
128                 return (union tl_entry *)((struct tl_cpu *)tle + 1);
129 }
130
131 static void tl_to_cores(struct tl_info *info)
132 {
133         union tl_entry *tle, *end;
134         struct core_info *core = &core_info;
135
136         mutex_lock(&smp_cpu_state_mutex);
137         clear_cores();
138         tle = info->tle;
139         end = (union tl_entry *)((unsigned long)info + info->length);
140         while (tle < end) {
141                 switch (tle->nl) {
142                 case 5:
143                 case 4:
144                 case 3:
145                 case 2:
146                         break;
147                 case 1:
148                         core = core->next;
149                         break;
150                 case 0:
151                         add_cpus_to_core(&tle->cpu, core);
152                         break;
153                 default:
154                         clear_cores();
155                         machine_has_topology = 0;
156                         return;
157                 }
158                 tle = next_tle(tle);
159         }
160         mutex_unlock(&smp_cpu_state_mutex);
161 }
162
163 static void topology_update_polarization_simple(void)
164 {
165         int cpu;
166
167         mutex_lock(&smp_cpu_state_mutex);
168         for_each_present_cpu(cpu)
169                 smp_cpu_polarization[cpu] = POLARIZATION_HRZ;
170         mutex_unlock(&smp_cpu_state_mutex);
171 }
172
173 static int ptf(unsigned long fc)
174 {
175         int rc;
176
177         asm volatile(
178                 "       .insn   rre,0xb9a20000,%1,%1\n"
179                 "       ipm     %0\n"
180                 "       srl     %0,28\n"
181                 : "=d" (rc)
182                 : "d" (fc)  : "cc");
183         return rc;
184 }
185
186 int topology_set_cpu_management(int fc)
187 {
188         int cpu;
189         int rc;
190
191         if (!machine_has_topology)
192                 return -EOPNOTSUPP;
193         if (fc)
194                 rc = ptf(PTF_VERTICAL);
195         else
196                 rc = ptf(PTF_HORIZONTAL);
197         if (rc)
198                 return -EBUSY;
199         for_each_present_cpu(cpu)
200                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
201         return rc;
202 }
203
204 static void update_cpu_core_map(void)
205 {
206         int cpu;
207
208         for_each_present_cpu(cpu)
209                 cpu_core_map[cpu] = cpu_coregroup_map(cpu);
210 }
211
212 void arch_update_cpu_topology(void)
213 {
214         struct tl_info *info = tl_info;
215         struct sys_device *sysdev;
216         int cpu;
217
218         if (!machine_has_topology) {
219                 update_cpu_core_map();
220                 topology_update_polarization_simple();
221                 return;
222         }
223         stsi(info, 15, 1, 2);
224         tl_to_cores(info);
225         update_cpu_core_map();
226         for_each_online_cpu(cpu) {
227                 sysdev = get_cpu_sysdev(cpu);
228                 kobject_uevent(&sysdev->kobj, KOBJ_CHANGE);
229         }
230 }
231
232 static void topology_work_fn(struct work_struct *work)
233 {
234         arch_reinit_sched_domains();
235 }
236
237 void topology_schedule_update(void)
238 {
239         schedule_work(&topology_work);
240 }
241
242 static void topology_timer_fn(unsigned long ignored)
243 {
244         if (ptf(PTF_CHECK))
245                 topology_schedule_update();
246         set_topology_timer();
247 }
248
249 static void set_topology_timer(void)
250 {
251         topology_timer.function = topology_timer_fn;
252         topology_timer.data = 0;
253         topology_timer.expires = jiffies + 60 * HZ;
254         add_timer(&topology_timer);
255 }
256
257 static void topology_interrupt(__u16 code)
258 {
259         schedule_work(&topology_work);
260 }
261
262 static int __init init_topology_update(void)
263 {
264         int rc;
265
266         rc = 0;
267         if (!machine_has_topology) {
268                 topology_update_polarization_simple();
269                 goto out;
270         }
271         init_timer_deferrable(&topology_timer);
272         if (machine_has_topology_irq) {
273                 rc = register_external_interrupt(0x2005, topology_interrupt);
274                 if (rc)
275                         goto out;
276                 ctl_set_bit(0, 8);
277         }
278         else
279                 set_topology_timer();
280 out:
281         update_cpu_core_map();
282         return rc;
283 }
284 __initcall(init_topology_update);
285
286 void __init s390_init_cpu_topology(void)
287 {
288         unsigned long long facility_bits;
289         struct tl_info *info;
290         struct core_info *core;
291         int nr_cores;
292         int i;
293
294         if (stfle(&facility_bits, 1) <= 0)
295                 return;
296         if (!(facility_bits & (1ULL << 52)) || !(facility_bits & (1ULL << 61)))
297                 return;
298         machine_has_topology = 1;
299
300         if (facility_bits & (1ULL << 51))
301                 machine_has_topology_irq = 1;
302
303         tl_info = alloc_bootmem_pages(PAGE_SIZE);
304         info = tl_info;
305         stsi(info, 15, 1, 2);
306
307         nr_cores = info->mag[NR_MAG - 2];
308         for (i = 0; i < info->mnest - 2; i++)
309                 nr_cores *= info->mag[NR_MAG - 3 - i];
310
311         printk(KERN_INFO "CPU topology:");
312         for (i = 0; i < NR_MAG; i++)
313                 printk(" %d", info->mag[i]);
314         printk(" / %d\n", info->mnest);
315
316         core = &core_info;
317         for (i = 0; i < nr_cores; i++) {
318                 core->next = alloc_bootmem(sizeof(struct core_info));
319                 core = core->next;
320                 if (!core)
321                         goto error;
322         }
323         return;
324 error:
325         machine_has_topology = 0;
326         machine_has_topology_irq = 0;
327 }