]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blobdiff - drivers/mtd/nand/omap2.c
Extra omap code in linux-omap tree
[linux-2.6-omap-h63xx.git] / drivers / mtd / nand / omap2.c
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c
new file mode 100644 (file)
index 0000000..516da8f
--- /dev/null
@@ -0,0 +1,755 @@
+/*
+ * drivers/mtd/nand/omap2.c
+ *
+ * Copyright (c) 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
+ * Copyright (c) 2004 Micron Technology Inc.
+ * Copyright (c) 2004 David Brownell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/delay.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/io.h>
+
+#include <asm/dma.h>
+
+#include <mach/gpmc.h>
+#include <mach/nand.h>
+
+#define GPMC_IRQ_STATUS                0x18
+#define GPMC_ECC_CONFIG                0x1F4
+#define GPMC_ECC_CONTROL       0x1F8
+#define GPMC_ECC_SIZE_CONFIG   0x1FC
+#define GPMC_ECC1_RESULT       0x200
+
+#define        DRIVER_NAME     "omap2-nand"
+#define        NAND_IO_SIZE    SZ_4K
+
+#define        NAND_WP_ON      1
+#define        NAND_WP_OFF     0
+#define NAND_WP_BIT    0x00000010
+#define WR_RD_PIN_MONITORING   0x00600000
+
+#define        GPMC_BUF_FULL   0x00000001
+#define        GPMC_BUF_EMPTY  0x00000000
+
+#define NAND_Ecc_P1e           (1 << 0)
+#define NAND_Ecc_P2e           (1 << 1)
+#define NAND_Ecc_P4e           (1 << 2)
+#define NAND_Ecc_P8e           (1 << 3)
+#define NAND_Ecc_P16e          (1 << 4)
+#define NAND_Ecc_P32e          (1 << 5)
+#define NAND_Ecc_P64e          (1 << 6)
+#define NAND_Ecc_P128e         (1 << 7)
+#define NAND_Ecc_P256e         (1 << 8)
+#define NAND_Ecc_P512e         (1 << 9)
+#define NAND_Ecc_P1024e                (1 << 10)
+#define NAND_Ecc_P2048e                (1 << 11)
+
+#define NAND_Ecc_P1o           (1 << 16)
+#define NAND_Ecc_P2o           (1 << 17)
+#define NAND_Ecc_P4o           (1 << 18)
+#define NAND_Ecc_P8o           (1 << 19)
+#define NAND_Ecc_P16o          (1 << 20)
+#define NAND_Ecc_P32o          (1 << 21)
+#define NAND_Ecc_P64o          (1 << 22)
+#define NAND_Ecc_P128o         (1 << 23)
+#define NAND_Ecc_P256o         (1 << 24)
+#define NAND_Ecc_P512o         (1 << 25)
+#define NAND_Ecc_P1024o                (1 << 26)
+#define NAND_Ecc_P2048o                (1 << 27)
+
+#define TF(value)      (value ? 1 : 0)
+
+#define P2048e(a)      (TF(a & NAND_Ecc_P2048e)        << 0)
+#define P2048o(a)      (TF(a & NAND_Ecc_P2048o)        << 1)
+#define P1e(a)         (TF(a & NAND_Ecc_P1e)           << 2)
+#define P1o(a)         (TF(a & NAND_Ecc_P1o)           << 3)
+#define P2e(a)         (TF(a & NAND_Ecc_P2e)           << 4)
+#define P2o(a)         (TF(a & NAND_Ecc_P2o)           << 5)
+#define P4e(a)         (TF(a & NAND_Ecc_P4e)           << 6)
+#define P4o(a)         (TF(a & NAND_Ecc_P4o)           << 7)
+
+#define P8e(a)         (TF(a & NAND_Ecc_P8e)           << 0)
+#define P8o(a)         (TF(a & NAND_Ecc_P8o)           << 1)
+#define P16e(a)                (TF(a & NAND_Ecc_P16e)          << 2)
+#define P16o(a)                (TF(a & NAND_Ecc_P16o)          << 3)
+#define P32e(a)                (TF(a & NAND_Ecc_P32e)          << 4)
+#define P32o(a)                (TF(a & NAND_Ecc_P32o)          << 5)
+#define P64e(a)                (TF(a & NAND_Ecc_P64e)          << 6)
+#define P64o(a)                (TF(a & NAND_Ecc_P64o)          << 7)
+
+#define P128e(a)       (TF(a & NAND_Ecc_P128e)         << 0)
+#define P128o(a)       (TF(a & NAND_Ecc_P128o)         << 1)
+#define P256e(a)       (TF(a & NAND_Ecc_P256e)         << 2)
+#define P256o(a)       (TF(a & NAND_Ecc_P256o)         << 3)
+#define P512e(a)       (TF(a & NAND_Ecc_P512e)         << 4)
+#define P512o(a)       (TF(a & NAND_Ecc_P512o)         << 5)
+#define P1024e(a)      (TF(a & NAND_Ecc_P1024e)        << 6)
+#define P1024o(a)      (TF(a & NAND_Ecc_P1024o)        << 7)
+
+#define P8e_s(a)       (TF(a & NAND_Ecc_P8e)           << 0)
+#define P8o_s(a)       (TF(a & NAND_Ecc_P8o)           << 1)
+#define P16e_s(a)      (TF(a & NAND_Ecc_P16e)          << 2)
+#define P16o_s(a)      (TF(a & NAND_Ecc_P16o)          << 3)
+#define P1e_s(a)       (TF(a & NAND_Ecc_P1e)           << 4)
+#define P1o_s(a)       (TF(a & NAND_Ecc_P1o)           << 5)
+#define P2e_s(a)       (TF(a & NAND_Ecc_P2e)           << 6)
+#define P2o_s(a)       (TF(a & NAND_Ecc_P2o)           << 7)
+
+#define P4e_s(a)       (TF(a & NAND_Ecc_P4e)           << 0)
+#define P4o_s(a)       (TF(a & NAND_Ecc_P4o)           << 1)
+
+#ifdef CONFIG_MTD_PARTITIONS
+static const char *part_probes[] = { "cmdlinepart", NULL };
+#endif
+
+struct omap_nand_info {
+       struct nand_hw_control          controller;
+       struct omap_nand_platform_data  *pdata;
+       struct mtd_info                 mtd;
+       struct mtd_partition            *parts;
+       struct nand_chip                nand;
+       struct platform_device          *pdev;
+
+       int                             gpmc_cs;
+       unsigned long                   phys_base;
+       void __iomem                    *gpmc_cs_baseaddr;
+       void __iomem                    *gpmc_baseaddr;
+};
+
+/*
+ * omap_nand_wp - This function enable or disable the Write Protect feature on
+ * NAND device
+ * @mtd: MTD device structure
+ * @mode: WP ON/OFF
+ */
+static void omap_nand_wp(struct mtd_info *mtd, int mode)
+{
+       struct omap_nand_info *info = container_of(mtd,
+                                               struct omap_nand_info, mtd);
+
+       unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG);
+
+       if (mode)
+               config &= ~(NAND_WP_BIT);       /* WP is ON */
+       else
+               config |= (NAND_WP_BIT);        /* WP is OFF */
+
+       __raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG));
+}
+
+/*
+ * hardware specific access to control-lines
+ * NOTE: boards may use different bits for these!!
+ *
+ * ctrl:
+ * NAND_NCE: bit 0 - don't care
+ * NAND_CLE: bit 1 -> Command Latch
+ * NAND_ALE: bit 2 -> Address Latch
+ */
+static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+       struct omap_nand_info *info = container_of(mtd,
+                                       struct omap_nand_info, mtd);
+       switch (ctrl) {
+       case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
+               info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
+                                               GPMC_CS_NAND_COMMAND;
+               info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
+                                               GPMC_CS_NAND_DATA;
+               break;
+
+       case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
+               info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
+                                               GPMC_CS_NAND_ADDRESS;
+               info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
+                                               GPMC_CS_NAND_DATA;
+               break;
+
+       case NAND_CTRL_CHANGE | NAND_NCE:
+               info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
+                                               GPMC_CS_NAND_DATA;
+               info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
+                                               GPMC_CS_NAND_DATA;
+               break;
+       }
+
+       if (cmd != NAND_CMD_NONE)
+               __raw_writeb(cmd, info->nand.IO_ADDR_W);
+}
+
+/*
+ * omap_read_buf16 - read data from NAND controller into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+       struct nand_chip *nand = mtd->priv;
+
+       __raw_readsw(nand->IO_ADDR_R, buf, len / 2);
+}
+
+/*
+ * omap_write_buf16 - write buffer to NAND controller
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
+{
+       struct omap_nand_info *info = container_of(mtd,
+                                               struct omap_nand_info, mtd);
+       u16 *p = (u16 *) buf;
+
+       /* FIXME try bursts of writesw() or DMA ... */
+       len >>= 1;
+
+       while (len--) {
+               writew(*p++, info->nand.IO_ADDR_W);
+
+               while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr +
+                                               GPMC_STATUS) & GPMC_BUF_FULL));
+       }
+}
+/*
+ * omap_verify_buf - Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ */
+static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
+{
+       struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+                                                       mtd);
+       u16 *p = (u16 *) buf;
+
+       len >>= 1;
+
+       while (len--) {
+
+               if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
+                       return -EFAULT;
+       }
+
+       return 0;
+}
+
+#ifdef CONFIG_MTD_NAND_OMAP_HWECC
+/*
+ * omap_hwecc_init-Initialize the Hardware ECC for NAND flash in GPMC controller
+ * @mtd: MTD device structure
+ */
+static void omap_hwecc_init(struct mtd_info *mtd)
+{
+       struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+                                                       mtd);
+       register struct nand_chip *chip = mtd->priv;
+       unsigned long val = 0x0;
+
+       /* Read from ECC Control Register */
+       val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+       /* Clear all ECC | Enable Reg1 */
+       val = ((0x00000001<<8) | 0x00000001);
+       __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+
+       /* Read from ECC Size Config Register */
+       val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
+       /* ECCSIZE1=512 | Select eccResultsize[0-3] */
+       val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F));
+       __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
+}
+
+/*
+ * gen_true_ecc - This function will generate true ECC value, which can be used
+ * when correcting data read from NAND flash memory core
+ * @ecc_buf: buffer to store ecc code
+ */
+static void gen_true_ecc(u8 *ecc_buf)
+{
+       u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
+               ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
+
+       ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
+                       P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
+       ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
+                       P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
+       ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
+                       P1e(tmp) | P2048o(tmp) | P2048e(tmp));
+}
+
+/*
+ * omap_compare_ecc - This function compares two ECC's and indicates if there
+ * is an error. If the error can be corrected it will be corrected to the
+ * buffer
+ * @ecc_data1:  ecc code from nand spare area
+ * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
+ * @page_data:  page data
+ */
+static int omap_compare_ecc(u8 *ecc_data1,     /* read from NAND memory */
+                           u8 *ecc_data2,      /* read from register */
+                           u8 *page_data)
+{
+       uint    i;
+       u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
+       u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
+       u8      ecc_bit[24];
+       u8      ecc_sum = 0;
+       u8      find_bit = 0;
+       uint    find_byte = 0;
+       int     isEccFF;
+
+       isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
+
+       gen_true_ecc(ecc_data1);
+       gen_true_ecc(ecc_data2);
+
+       for (i = 0; i <= 2; i++) {
+               *(ecc_data1 + i) = ~(*(ecc_data1 + i));
+               *(ecc_data2 + i) = ~(*(ecc_data2 + i));
+       }
+
+       for (i = 0; i < 8; i++) {
+               tmp0_bit[i]     = *ecc_data1 % 2;
+               *ecc_data1      = *ecc_data1 / 2;
+       }
+
+       for (i = 0; i < 8; i++) {
+               tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
+               *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
+       }
+
+       for (i = 0; i < 8; i++) {
+               tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
+               *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
+       }
+
+       for (i = 0; i < 8; i++) {
+               comp0_bit[i]     = *ecc_data2 % 2;
+               *ecc_data2       = *ecc_data2 / 2;
+       }
+
+       for (i = 0; i < 8; i++) {
+               comp1_bit[i]     = *(ecc_data2 + 1) % 2;
+               *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
+       }
+
+       for (i = 0; i < 8; i++) {
+               comp2_bit[i]     = *(ecc_data2 + 2) % 2;
+               *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
+       }
+
+       for (i = 0; i < 6; i++)
+               ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
+
+       for (i = 0; i < 8; i++)
+               ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
+
+       for (i = 0; i < 8; i++)
+               ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
+
+       ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
+       ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
+
+       for (i = 0; i < 24; i++)
+               ecc_sum += ecc_bit[i];
+
+       switch (ecc_sum) {
+       case 0:
+               /* Not reached because this function is not called if
+                *  ECC values are equal
+                */
+               return 0;
+
+       case 1:
+               /* Uncorrectable error */
+               DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
+               return -1;
+
+       case 11:
+               /* UN-Correctable error */
+               DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
+               return -1;
+
+       case 12:
+               /* Correctable error */
+               find_byte = (ecc_bit[23] << 8) +
+                           (ecc_bit[21] << 7) +
+                           (ecc_bit[19] << 6) +
+                           (ecc_bit[17] << 5) +
+                           (ecc_bit[15] << 4) +
+                           (ecc_bit[13] << 3) +
+                           (ecc_bit[11] << 2) +
+                           (ecc_bit[9]  << 1) +
+                           ecc_bit[7];
+
+               find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
+
+               DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
+                               "offset: %d, bit: %d\n", find_byte, find_bit);
+
+               page_data[find_byte] ^= (1 << find_bit);
+
+               return 0;
+       default:
+               if (isEccFF) {
+                       if (ecc_data2[0] == 0 &&
+                           ecc_data2[1] == 0 &&
+                           ecc_data2[2] == 0)
+                               return 0;
+               }
+               DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
+               return -1;
+       }
+}
+
+/*
+ * omap_correct_data - Compares the ecc read from nand spare area with ECC
+ * registers values and corrects one bit error if it has occured
+ * @mtd: MTD device structure
+ * @dat: page data
+ * @read_ecc: ecc read from nand flash
+ * @calc_ecc: ecc read from ECC registers
+ */
+static int omap_correct_data(struct mtd_info *mtd, u_char * dat,
+                               u_char * read_ecc, u_char * calc_ecc)
+{
+       struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+                                                       mtd);
+       int blockCnt = 0, i = 0, ret = 0;
+
+       /* Ex NAND_ECC_HW12_2048 */
+       if ((info->nand.ecc.mode == NAND_ECC_HW) &&
+                       (info->nand.ecc.size  == 2048))
+               blockCnt = 4;
+       else
+               blockCnt = 1;
+
+       for (i = 0; i < blockCnt; i++) {
+               if (memcmp(read_ecc, calc_ecc, 3) != 0) {
+                       ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
+                       if (ret < 0) return ret;
+               }
+               read_ecc += 3;
+               calc_ecc += 3;
+               dat      += 512;
+       }
+       return 0;
+}
+
+/*
+ * omap_calcuate_ecc - Generate non-inverted ECC bytes.
+ * Using noninverted ECC can be considered ugly since writing a blank
+ * page ie. padding will clear the ECC bytes. This is no problem as long
+ * nobody is trying to write data on the seemingly unused page. Reading
+ * an erased page will produce an ECC mismatch between generated and read
+ * ECC bytes that has to be dealt with separately.
+ * @mtd: MTD device structure
+ * @dat: The pointer to data on which ecc is computed
+ * @ecc_code: The ecc_code buffer
+ */
+static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+                               u_char *ecc_code)
+{
+       struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+                                                       mtd);
+       unsigned long val = 0x0;
+       unsigned long reg;
+
+       /* Start Reading from HW ECC1_Result = 0x200 */
+       reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT);
+       val = __raw_readl(reg);
+       *ecc_code++ = val;          /* P128e, ..., P1e */
+       *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
+       /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
+       *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
+       reg += 4;
+
+       return 0;
+}
+
+/*
+ * omap_enable_hwecc - This function enables the hardware ecc functionality
+ * @mtd: MTD device structure
+ * @mode: Read/Write mode
+ */
+static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+       struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+                                                       mtd);
+       register struct nand_chip *chip = mtd->priv;
+       unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
+       unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG);
+
+       switch (mode) {
+       case NAND_ECC_READ    :
+               __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+               /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
+               val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
+               break;
+       case NAND_ECC_READSYN :
+                __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+               /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
+               val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
+               break;
+       case NAND_ECC_WRITE   :
+               __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+               /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
+               val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
+               break;
+       default:
+               DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n",
+                                       mode);
+               break;
+       }
+
+       __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG);
+}
+#endif
+
+/*
+ * omap_wait - Wait function is called during Program and erase
+ * operations and the way it is called from MTD layer, we should wait
+ * till the NAND chip is ready after the programming/erase operation
+ * has completed.
+ * @mtd: MTD device structure
+ * @chip: NAND Chip structure
+ */
+static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+       register struct nand_chip *this = mtd->priv;
+       struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+                                                       mtd);
+       int status = 0;
+
+       this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr +
+                                               GPMC_CS_NAND_COMMAND;
+       this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA;
+
+       while (!(status & 0x40)) {
+                __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W);
+               status = __raw_readb(this->IO_ADDR_R);
+       }
+       return status;
+}
+
+/*
+ * omap_dev_ready - calls the platform specific dev_ready function
+ * @mtd: MTD device structure
+ */
+static int omap_dev_ready(struct mtd_info *mtd)
+{
+       struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+                                                       mtd);
+       unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS);
+
+       if ((val & 0x100) == 0x100) {
+               /* Clear IRQ Interrupt */
+               val |= 0x100;
+               val &= ~(0x0);
+               __raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS);
+       } else {
+               unsigned int cnt = 0;
+               while (cnt++ < 0x1FF) {
+                       if  ((val & 0x100) == 0x100)
+                               return 0;
+                       val = __raw_readl(info->gpmc_baseaddr +
+                                                       GPMC_IRQ_STATUS);
+               }
+       }
+
+       return 1;
+}
+
+static int __devinit omap_nand_probe(struct platform_device *pdev)
+{
+       struct omap_nand_info           *info;
+       struct omap_nand_platform_data  *pdata;
+       int                             err;
+       unsigned long                   val;
+
+
+       pdata = pdev->dev.platform_data;
+       if (pdata == NULL) {
+               dev_err(&pdev->dev, "platform data missing\n");
+               return -ENODEV;
+       }
+
+       info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
+       if (!info) return -ENOMEM;
+
+       platform_set_drvdata(pdev, info);
+
+       spin_lock_init(&info->controller.lock);
+       init_waitqueue_head(&info->controller.wq);
+
+       info->pdev = pdev;
+
+       info->gpmc_cs           = pdata->cs;
+       info->gpmc_baseaddr     = pdata->gpmc_baseaddr;
+       info->gpmc_cs_baseaddr  = pdata->gpmc_cs_baseaddr;
+
+       info->mtd.priv          = &info->nand;
+       info->mtd.name          = dev_name(&pdev->dev);
+       info->mtd.owner         = THIS_MODULE;
+
+       err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base);
+       if (err < 0) {
+               dev_err(&pdev->dev, "Cannot request GPMC CS\n");
+               goto out_free_info;
+       }
+
+       /* Enable RD PIN Monitoring Reg */
+       if (pdata->dev_ready) {
+               val  = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1);
+               val |= WR_RD_PIN_MONITORING;
+               gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val);
+       }
+
+       val  = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7);
+       val &= ~(0xf << 8);
+       val |=  (0xc & 0xf) << 8;
+       gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val);
+
+       /* NAND write protect off */
+       omap_nand_wp(&info->mtd, NAND_WP_OFF);
+
+       if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
+                               pdev->dev.driver->name)) {
+               err = -EBUSY;
+               goto out_free_cs;
+       }
+
+       info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
+       if (!info->nand.IO_ADDR_R) {
+               err = -ENOMEM;
+               goto out_release_mem_region;
+       }
+       info->nand.controller = &info->controller;
+
+       info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
+       info->nand.cmd_ctrl  = omap_hwcontrol;
+
+       /* REVISIT:  only supports 16-bit NAND flash */
+
+       info->nand.read_buf   = omap_read_buf16;
+       info->nand.write_buf  = omap_write_buf16;
+       info->nand.verify_buf = omap_verify_buf;
+
+       /*
+       * If RDY/BSY line is connected to OMAP then use the omap ready funcrtion
+       * and the generic nand_wait function which reads the status register
+       * after monitoring the RDY/BSY line.Otherwise use a standard chip delay
+       * which is slightly more than tR (AC Timing) of the NAND device and read
+       * status register until you get a failure or success
+       */
+       if (pdata->dev_ready) {
+               info->nand.dev_ready = omap_dev_ready;
+               info->nand.chip_delay = 0;
+       } else {
+               info->nand.waitfunc = omap_wait;
+               info->nand.chip_delay = 50;
+       }
+
+       info->nand.options  |= NAND_SKIP_BBTSCAN;
+       if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000)
+                                                               == 0x1000)
+               info->nand.options  |= NAND_BUSWIDTH_16;
+
+#ifdef CONFIG_MTD_NAND_OMAP_HWECC
+       info->nand.ecc.bytes            = 3;
+       info->nand.ecc.size             = 512;
+       info->nand.ecc.calculate        = omap_calculate_ecc;
+       info->nand.ecc.hwctl            = omap_enable_hwecc;
+       info->nand.ecc.correct          = omap_correct_data;
+       info->nand.ecc.mode             = NAND_ECC_HW;
+
+       /* init HW ECC */
+       omap_hwecc_init(&info->mtd);
+#else
+       info->nand.ecc.mode = NAND_ECC_SOFT;
+#endif
+
+       /* DIP switches on some boards change between 8 and 16 bit
+        * bus widths for flash.  Try the other width if the first try fails.
+        */
+       if (nand_scan(&info->mtd, 1)) {
+               info->nand.options ^= NAND_BUSWIDTH_16;
+               if (nand_scan(&info->mtd, 1)) {
+                       err = -ENXIO;
+                       goto out_release_mem_region;
+               }
+       }
+
+#ifdef CONFIG_MTD_PARTITIONS
+       err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
+       if (err > 0)
+               add_mtd_partitions(&info->mtd, info->parts, err);
+       else if (pdata->parts)
+               add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
+       else
+#endif
+               add_mtd_device(&info->mtd);
+
+       platform_set_drvdata(pdev, &info->mtd);
+
+       return 0;
+
+out_release_mem_region:
+       release_mem_region(info->phys_base, NAND_IO_SIZE);
+out_free_cs:
+       gpmc_cs_free(info->gpmc_cs);
+out_free_info:
+       kfree(info);
+
+       return err;
+}
+
+static int omap_nand_remove(struct platform_device *pdev)
+{
+       struct mtd_info *mtd = platform_get_drvdata(pdev);
+       struct omap_nand_info *info = mtd->priv;
+
+       platform_set_drvdata(pdev, NULL);
+       /* Release NAND device, its internal structures and partitions */
+       nand_release(&info->mtd);
+       iounmap(info->nand.IO_ADDR_R);
+       kfree(&info->mtd);
+       return 0;
+}
+
+static struct platform_driver omap_nand_driver = {
+       .probe          = omap_nand_probe,
+       .remove         = omap_nand_remove,
+       .driver         = {
+               .name   = DRIVER_NAME,
+               .owner  = THIS_MODULE,
+       },
+};
+MODULE_ALIAS(DRIVER_NAME);
+
+static int __init omap_nand_init(void)
+{
+       printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);
+       return platform_driver_register(&omap_nand_driver);
+}
+
+static void __exit omap_nand_exit(void)
+{
+       platform_driver_unregister(&omap_nand_driver);
+}
+
+module_init(omap_nand_init);
+module_exit(omap_nand_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");