/* * This file is part of hci_h4p bluetooth driver * * Copyright (C) 2005, 2006 Nokia Corporation. * * Contact: Ville Tervo * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hci_h4p.h" #define PM_TIMEOUT 200 /* This should be used in function that cannot release clocks */ static void hci_h4p_set_clk(struct hci_h4p_info *info, int *clock, int enable) { unsigned long flags; spin_lock_irqsave(&info->clocks_lock, flags); if (enable && !*clock) { NBT_DBG_POWER("Enabling %p\n", clock); clk_enable(info->uart_fclk); #ifdef CONFIG_ARCH_OMAP2 if (cpu_is_omap24xx()) { clk_enable(info->uart_iclk); omap2_block_sleep(); } #endif } if (!enable && *clock) { NBT_DBG_POWER("Disabling %p\n", clock); clk_disable(info->uart_fclk); #ifdef CONFIG_ARCH_OMAP2 if (cpu_is_omap24xx()) { clk_disable(info->uart_iclk); omap2_allow_sleep(); } #endif } *clock = enable; spin_unlock_irqrestore(&info->clocks_lock, flags); } /* Power management functions */ static void hci_h4p_disable_tx(struct hci_h4p_info *info) { NBT_DBG_POWER("\n"); if (!info->pm_enabled) return; mod_timer(&info->tx_pm_timer, jiffies + msecs_to_jiffies(PM_TIMEOUT)); } static void hci_h4p_enable_tx(struct hci_h4p_info *info) { NBT_DBG_POWER("\n"); if (!info->pm_enabled) return; del_timer_sync(&info->tx_pm_timer); if (info->tx_pm_enabled) { info->tx_pm_enabled = 0; hci_h4p_set_clk(info, &info->tx_clocks_en, 1); gpio_set_value(info->bt_wakeup_gpio, 1); } } static void hci_h4p_tx_pm_timer(unsigned long data) { struct hci_h4p_info *info; NBT_DBG_POWER("\n"); info = (struct hci_h4p_info *)data; if (hci_h4p_inb(info, UART_LSR) & UART_LSR_TEMT) { gpio_set_value(info->bt_wakeup_gpio, 0); hci_h4p_set_clk(info, &info->tx_clocks_en, 0); info->tx_pm_enabled = 1; } else { mod_timer(&info->tx_pm_timer, jiffies + msecs_to_jiffies(PM_TIMEOUT)); } } static void hci_h4p_disable_rx(struct hci_h4p_info *info) { if (!info->pm_enabled) return; mod_timer(&info->rx_pm_timer, jiffies + msecs_to_jiffies(PM_TIMEOUT)); } static void hci_h4p_enable_rx(struct hci_h4p_info *info) { unsigned long flags; if (!info->pm_enabled) return; del_timer_sync(&info->rx_pm_timer); spin_lock_irqsave(&info->lock, flags); if (info->rx_pm_enabled) { hci_h4p_set_clk(info, &info->rx_clocks_en, 1); hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) | UART_IER_RDI); __hci_h4p_set_auto_ctsrts(info, 1, UART_EFR_RTS); info->rx_pm_enabled = 0; } spin_unlock_irqrestore(&info->lock, flags); } static void hci_h4p_rx_pm_timer(unsigned long data) { unsigned long flags; struct hci_h4p_info *info = (struct hci_h4p_info *)data; spin_lock_irqsave(&info->lock, flags); if (!(hci_h4p_inb(info, UART_LSR) & UART_LSR_DR)) { __hci_h4p_set_auto_ctsrts(info, 0, UART_EFR_RTS); hci_h4p_set_rts(info, 0); hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) & ~UART_IER_RDI); hci_h4p_set_clk(info, &info->rx_clocks_en, 0); info->rx_pm_enabled = 1; } else { mod_timer(&info->rx_pm_timer, jiffies + msecs_to_jiffies(PM_TIMEOUT)); } spin_unlock_irqrestore(&info->lock, flags); } /* Negotiation functions */ int hci_h4p_send_alive_packet(struct hci_h4p_info *info) { NBT_DBG("Sending alive packet\n"); if (!info->alive_cmd_skb) return -EINVAL; /* Keep reference to buffer so we can reuse it */ info->alive_cmd_skb = skb_get(info->alive_cmd_skb); skb_queue_tail(&info->txq, info->alive_cmd_skb); tasklet_schedule(&info->tx_task); NBT_DBG("Alive packet sent\n"); return 0; } static void hci_h4p_alive_packet(struct hci_h4p_info *info, struct sk_buff *skb) { NBT_DBG("Received alive packet\n"); if (skb->data[1] == 0xCC) { complete(&info->init_completion); } kfree_skb(skb); } static int hci_h4p_send_negotiation(struct hci_h4p_info *info, struct sk_buff *skb) { NBT_DBG("Sending negotiation..\n"); hci_h4p_change_speed(info, INIT_SPEED); info->init_error = 0; init_completion(&info->init_completion); skb_queue_tail(&info->txq, skb); tasklet_schedule(&info->tx_task); if (!wait_for_completion_interruptible_timeout(&info->init_completion, msecs_to_jiffies(1000))) return -ETIMEDOUT; NBT_DBG("Negotiation sent\n"); return info->init_error; } static void hci_h4p_negotiation_packet(struct hci_h4p_info *info, struct sk_buff *skb) { int err = 0; if (skb->data[1] == 0x20) { /* Change to operational settings */ hci_h4p_set_rts(info, 0); err = hci_h4p_wait_for_cts(info, 0, 100); if (err < 0) goto neg_ret; hci_h4p_change_speed(info, MAX_BAUD_RATE); err = hci_h4p_wait_for_cts(info, 1, 100); if (err < 0) goto neg_ret; hci_h4p_set_auto_ctsrts(info, 1, UART_EFR_CTS | UART_EFR_RTS); err = hci_h4p_send_alive_packet(info); if (err < 0) goto neg_ret; } else { dev_err(info->dev, "Could not negotiate hci_h4p settings\n"); err = -EINVAL; goto neg_ret; } kfree_skb(skb); return; neg_ret: info->init_error = err; complete(&info->init_completion); kfree_skb(skb); } /* H4 packet handling functions */ static int hci_h4p_get_hdr_len(struct hci_h4p_info *info, u8 pkt_type) { long retval; switch (pkt_type) { case H4_EVT_PKT: retval = HCI_EVENT_HDR_SIZE; break; case H4_ACL_PKT: retval = HCI_ACL_HDR_SIZE; break; case H4_SCO_PKT: retval = HCI_SCO_HDR_SIZE; break; case H4_NEG_PKT: retval = 11; break; case H4_ALIVE_PKT: retval = 3; break; default: dev_err(info->dev, "Unknown H4 packet type 0x%.2x\n", pkt_type); retval = -1; break; } return retval; } static unsigned int hci_h4p_get_data_len(struct hci_h4p_info *info, struct sk_buff *skb) { long retval = -1; struct hci_event_hdr *evt_hdr; struct hci_acl_hdr *acl_hdr; struct hci_sco_hdr *sco_hdr; switch (bt_cb(skb)->pkt_type) { case H4_EVT_PKT: evt_hdr = (struct hci_event_hdr *)skb->data; retval = evt_hdr->plen; break; case H4_ACL_PKT: acl_hdr = (struct hci_acl_hdr *)skb->data; retval = le16_to_cpu(acl_hdr->dlen); break; case H4_SCO_PKT: sco_hdr = (struct hci_sco_hdr *)skb->data; retval = sco_hdr->dlen; break; case H4_NEG_PKT: retval = 0; break; case H4_ALIVE_PKT: retval = 0; break; } return retval; } static inline void hci_h4p_recv_frame(struct hci_h4p_info *info, struct sk_buff *skb) { if (unlikely(!test_bit(HCI_RUNNING, &info->hdev->flags))) { NBT_DBG("fw_event\n"); hci_h4p_parse_fw_event(info, skb); } else { hci_recv_frame(skb); NBT_DBG("Frame sent to upper layer\n"); } } static void hci_h4p_rx_tasklet(unsigned long data) { u8 byte; unsigned long flags; struct hci_h4p_info *info = (struct hci_h4p_info *)data; NBT_DBG("tasklet woke up\n"); NBT_DBG_TRANSFER("rx_tasklet woke up\ndata "); while (hci_h4p_inb(info, UART_LSR) & UART_LSR_DR) { byte = hci_h4p_inb(info, UART_RX); if (info->garbage_bytes) { info->garbage_bytes--; continue; } if (info->rx_skb == NULL) { info->rx_skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE, GFP_ATOMIC | GFP_DMA); if (!info->rx_skb) { dev_err(info->dev, "Can't allocate memory for new packet\n"); goto finish_task; } info->rx_state = WAIT_FOR_PKT_TYPE; info->rx_skb->dev = (void *)info->hdev; } info->hdev->stat.byte_rx++; NBT_DBG_TRANSFER_NF("0x%.2x ", byte); switch (info->rx_state) { case WAIT_FOR_PKT_TYPE: bt_cb(info->rx_skb)->pkt_type = byte; info->rx_count = hci_h4p_get_hdr_len(info, byte); if (info->rx_count < 0) { info->hdev->stat.err_rx++; kfree_skb(info->rx_skb); info->rx_skb = NULL; } else { info->rx_state = WAIT_FOR_HEADER; } break; case WAIT_FOR_HEADER: info->rx_count--; *skb_put(info->rx_skb, 1) = byte; if (info->rx_count == 0) { info->rx_count = hci_h4p_get_data_len(info, info->rx_skb); if (info->rx_count > skb_tailroom(info->rx_skb)) { dev_err(info->dev, "Frame is %ld bytes too long.\n", info->rx_count - skb_tailroom(info->rx_skb)); kfree_skb(info->rx_skb); info->rx_skb = NULL; info->garbage_bytes = info->rx_count - skb_tailroom(info->rx_skb); break; } info->rx_state = WAIT_FOR_DATA; if (bt_cb(info->rx_skb)->pkt_type == H4_NEG_PKT) { hci_h4p_negotiation_packet(info, info->rx_skb); info->rx_skb = NULL; info->rx_state = WAIT_FOR_PKT_TYPE; goto finish_task; } if (bt_cb(info->rx_skb)->pkt_type == H4_ALIVE_PKT) { hci_h4p_alive_packet(info, info->rx_skb); info->rx_skb = NULL; info->rx_state = WAIT_FOR_PKT_TYPE; goto finish_task; } } break; case WAIT_FOR_DATA: info->rx_count--; *skb_put(info->rx_skb, 1) = byte; if (info->rx_count == 0) { /* H4+ devices should allways send word aligned packets */ if (!(info->rx_skb->len % 2)) { info->garbage_bytes++; } hci_h4p_recv_frame(info, info->rx_skb); info->rx_skb = NULL; } break; default: WARN_ON(1); break; } } finish_task: spin_lock_irqsave(&info->lock, flags); hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) | UART_IER_RDI); spin_unlock_irqrestore(&info->lock, flags); NBT_DBG_TRANSFER_NF("\n"); NBT_DBG("rx_ended\n"); } static void hci_h4p_tx_tasklet(unsigned long data) { unsigned int sent = 0; unsigned long flags; struct sk_buff *skb; struct hci_h4p_info *info = (struct hci_h4p_info *)data; NBT_DBG("tasklet woke up\n"); NBT_DBG_TRANSFER("tx_tasklet woke up\n data "); skb = skb_dequeue(&info->txq); if (!skb) { /* No data in buffer */ NBT_DBG("skb ready\n"); hci_h4p_disable_tx(info); return; } /* Copy data to tx fifo */ while (!(hci_h4p_inb(info, UART_OMAP_SSR) & UART_OMAP_SSR_TXFULL) && (sent < skb->len)) { NBT_DBG_TRANSFER_NF("0x%.2x ", skb->data[sent]); hci_h4p_outb(info, UART_TX, skb->data[sent]); sent++; } info->hdev->stat.byte_tx += sent; NBT_DBG_TRANSFER_NF("\n"); if (skb->len == sent) { kfree_skb(skb); } else { skb_pull(skb, sent); skb_queue_head(&info->txq, skb); } spin_lock_irqsave(&info->lock, flags); hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) | UART_IER_THRI); spin_unlock_irqrestore(&info->lock, flags); } static irqreturn_t hci_h4p_interrupt(int irq, void *data) { struct hci_h4p_info *info = (struct hci_h4p_info *)data; u8 iir, msr; int ret; unsigned long flags; ret = IRQ_NONE; iir = hci_h4p_inb(info, UART_IIR); if (iir & UART_IIR_NO_INT) { dev_err(info->dev, "Interrupt but no reason irq 0x%.2x\n", iir); return IRQ_HANDLED; } NBT_DBG("In interrupt handler iir 0x%.2x\n", iir); iir &= UART_IIR_ID; if (iir == UART_IIR_MSI) { msr = hci_h4p_inb(info, UART_MSR); ret = IRQ_HANDLED; } if (iir == UART_IIR_RLSI) { hci_h4p_inb(info, UART_RX); hci_h4p_inb(info, UART_LSR); ret = IRQ_HANDLED; } if (iir == UART_IIR_RDI) { spin_lock_irqsave(&info->lock, flags); hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) & ~UART_IER_RDI); spin_unlock_irqrestore(&info->lock, flags); tasklet_schedule(&info->rx_task); ret = IRQ_HANDLED; } if (iir == UART_IIR_THRI) { spin_lock_irqsave(&info->lock, flags); hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) & ~UART_IER_THRI); spin_unlock_irqrestore(&info->lock, flags); tasklet_schedule(&info->tx_task); ret = IRQ_HANDLED; } return ret; } static irqreturn_t hci_h4p_wakeup_interrupt(int irq, void *dev_inst) { struct hci_h4p_info *info = dev_inst; int should_wakeup; struct hci_dev *hdev; if (!info->hdev) return IRQ_HANDLED; hdev = info->hdev; if (!test_bit(HCI_RUNNING, &hdev->flags)) return IRQ_HANDLED; should_wakeup = gpio_get_value(info->host_wakeup_gpio); NBT_DBG_POWER("gpio interrupt %d\n", should_wakeup); if (should_wakeup) { hci_h4p_enable_rx(info); } else { hci_h4p_disable_rx(info); } return IRQ_HANDLED; } static int hci_h4p_reset(struct hci_h4p_info *info) { int err; hci_h4p_init_uart(info); hci_h4p_set_rts(info, 0); gpio_set_value(info->reset_gpio, 0); msleep(100); gpio_set_value(info->bt_wakeup_gpio, 1); gpio_set_value(info->reset_gpio, 1); msleep(100); err = hci_h4p_wait_for_cts(info, 1, 10); if (err < 0) { dev_err(info->dev, "No cts from bt chip\n"); return err; } hci_h4p_set_rts(info, 1); return 0; } /* hci callback functions */ static int hci_h4p_hci_flush(struct hci_dev *hdev) { struct hci_h4p_info *info; info = hdev->driver_data; skb_queue_purge(&info->txq); return 0; } static int hci_h4p_hci_open(struct hci_dev *hdev) { struct hci_h4p_info *info; int err; struct sk_buff *neg_cmd_skb; struct sk_buff_head fw_queue; info = hdev->driver_data; if (test_bit(HCI_RUNNING, &hdev->flags)) return 0; skb_queue_head_init(&fw_queue); err = hci_h4p_read_fw(info, &fw_queue); if (err < 0) { dev_err(info->dev, "Cannot read firmware\n"); return err; } neg_cmd_skb = skb_dequeue(&fw_queue); if (!neg_cmd_skb) { err = -EPROTO; goto err_clean; } info->alive_cmd_skb = skb_dequeue(&fw_queue); if (!info->alive_cmd_skb) { err = -EPROTO; goto err_clean; } hci_h4p_set_clk(info, &info->tx_clocks_en, 1); hci_h4p_set_clk(info, &info->rx_clocks_en, 1); tasklet_enable(&info->tx_task); tasklet_enable(&info->rx_task); info->rx_state = WAIT_FOR_PKT_TYPE; info->rx_count = 0; info->garbage_bytes = 0; info->rx_skb = NULL; info->pm_enabled = 0; init_completion(&info->fw_completion); err = hci_h4p_reset(info); if (err < 0) goto err_clean; err = hci_h4p_send_negotiation(info, neg_cmd_skb); neg_cmd_skb = NULL; if (err < 0) goto err_clean; err = hci_h4p_send_fw(info, &fw_queue); if (err < 0) { dev_err(info->dev, "Sending firmware failed.\n"); goto err_clean; } kfree_skb(info->alive_cmd_skb); info->alive_cmd_skb = NULL; info->pm_enabled = 1; info->tx_pm_enabled = 1; info->rx_pm_enabled = 0; set_bit(HCI_RUNNING, &hdev->flags); NBT_DBG("hci up and running\n"); return 0; err_clean: hci_h4p_hci_flush(hdev); tasklet_disable(&info->tx_task); tasklet_disable(&info->rx_task); hci_h4p_reset_uart(info); hci_h4p_set_clk(info, &info->tx_clocks_en, 0); hci_h4p_set_clk(info, &info->rx_clocks_en, 0); gpio_set_value(info->reset_gpio, 0); gpio_set_value(info->bt_wakeup_gpio, 0); skb_queue_purge(&fw_queue); kfree_skb(neg_cmd_skb); neg_cmd_skb = NULL; kfree_skb(info->alive_cmd_skb); info->alive_cmd_skb = NULL; kfree_skb(info->rx_skb); return err; } static int hci_h4p_hci_close(struct hci_dev *hdev) { struct hci_h4p_info *info = hdev->driver_data; if (!test_and_clear_bit(HCI_RUNNING, &hdev->flags)) return 0; hci_h4p_hci_flush(hdev); del_timer_sync(&info->tx_pm_timer); del_timer_sync(&info->rx_pm_timer); tasklet_disable(&info->tx_task); tasklet_disable(&info->rx_task); hci_h4p_set_clk(info, &info->tx_clocks_en, 1); hci_h4p_set_clk(info, &info->rx_clocks_en, 1); hci_h4p_reset_uart(info); hci_h4p_set_clk(info, &info->tx_clocks_en, 0); hci_h4p_set_clk(info, &info->rx_clocks_en, 0); gpio_set_value(info->reset_gpio, 0); gpio_set_value(info->bt_wakeup_gpio, 0); kfree_skb(info->rx_skb); return 0; } static void hci_h4p_hci_destruct(struct hci_dev *hdev) { } static int hci_h4p_hci_send_frame(struct sk_buff *skb) { struct hci_h4p_info *info; struct hci_dev *hdev = (struct hci_dev *)skb->dev; int err = 0; if (!hdev) { printk(KERN_WARNING "hci_h4p: Frame for unknown device\n"); return -ENODEV; } NBT_DBG("dev %p, skb %p\n", hdev, skb); info = hdev->driver_data; if (!test_bit(HCI_RUNNING, &hdev->flags)) { dev_warn(info->dev, "Frame for non-running device\n"); return -EIO; } switch (bt_cb(skb)->pkt_type) { case HCI_COMMAND_PKT: hdev->stat.cmd_tx++; break; case HCI_ACLDATA_PKT: hdev->stat.acl_tx++; break; case HCI_SCODATA_PKT: hdev->stat.sco_tx++; break; } /* Push frame type to skb */ *skb_push(skb, 1) = (bt_cb(skb)->pkt_type); /* We should allways send word aligned data to h4+ devices */ if (skb->len % 2) { err = skb_pad(skb, 1); } if (err) return err; hci_h4p_enable_tx(info); skb_queue_tail(&info->txq, skb); tasklet_schedule(&info->tx_task); return 0; } static int hci_h4p_hci_ioctl(struct hci_dev *hdev, unsigned int cmd, unsigned long arg) { return -ENOIOCTLCMD; } static int hci_h4p_register_hdev(struct hci_h4p_info *info) { struct hci_dev *hdev; /* Initialize and register HCI device */ hdev = hci_alloc_dev(); if (!hdev) { dev_err(info->dev, "Can't allocate memory for device\n"); return -ENOMEM; } info->hdev = hdev; hdev->type = HCI_UART; hdev->driver_data = info; hdev->open = hci_h4p_hci_open; hdev->close = hci_h4p_hci_close; hdev->flush = hci_h4p_hci_flush; hdev->send = hci_h4p_hci_send_frame; hdev->destruct = hci_h4p_hci_destruct; hdev->ioctl = hci_h4p_hci_ioctl; hdev->owner = THIS_MODULE; if (hci_register_dev(hdev) < 0) { dev_err(info->dev, "hci_h4p: Can't register HCI device %s.\n", hdev->name); return -ENODEV; } return 0; } static int hci_h4p_probe(struct platform_device *pdev) { struct omap_bluetooth_config *bt_config; struct hci_h4p_info *info; int irq, err; dev_info(&pdev->dev, "Registering HCI H4P device\n"); info = kzalloc(sizeof(struct hci_h4p_info), GFP_KERNEL); if (!info) return -ENOMEM; info->dev = &pdev->dev; info->pm_enabled = 0; info->tx_pm_enabled = 0; info->rx_pm_enabled = 0; info->garbage_bytes = 0; info->tx_clocks_en = 0; info->rx_clocks_en = 0; tasklet_init(&info->tx_task, hci_h4p_tx_tasklet, (unsigned long)info); tasklet_init(&info->rx_task, hci_h4p_rx_tasklet, (unsigned long)info); /* hci_h4p_hci_open assumes that tasklet is disabled in startup */ tasklet_disable(&info->tx_task); tasklet_disable(&info->rx_task); spin_lock_init(&info->lock); spin_lock_init(&info->clocks_lock); skb_queue_head_init(&info->txq); init_timer(&info->tx_pm_timer); info->tx_pm_timer.function = hci_h4p_tx_pm_timer; info->tx_pm_timer.data = (unsigned long)info; init_timer(&info->rx_pm_timer); info->rx_pm_timer.function = hci_h4p_rx_pm_timer; info->rx_pm_timer.data = (unsigned long)info; if (pdev->dev.platform_data == NULL) { dev_err(&pdev->dev, "Could not get Bluetooth config data\n"); return -ENODATA; } bt_config = pdev->dev.platform_data; info->chip_type = bt_config->chip_type; info->bt_wakeup_gpio = bt_config->bt_wakeup_gpio; info->host_wakeup_gpio = bt_config->host_wakeup_gpio; info->reset_gpio = bt_config->reset_gpio; info->bt_sysclk = bt_config->bt_sysclk; NBT_DBG("RESET gpio: %d\n", info->reset_gpio); NBT_DBG("BTWU gpio: %d\n", info->bt_wakeup_gpio); NBT_DBG("HOSTWU gpio: %d\n", info->host_wakeup_gpio); NBT_DBG("Uart: %d\n", bt_config->bt_uart); NBT_DBG("sysclk: %d\n", info->bt_sysclk); err = gpio_request(info->reset_gpio, "BT reset"); if (err < 0) { dev_err(&pdev->dev, "Cannot get GPIO line %d\n", info->reset_gpio); kfree(info); goto cleanup; } err = gpio_request(info->bt_wakeup_gpio, "BT wakeup"); if (err < 0) { dev_err(info->dev, "Cannot get GPIO line 0x%d", info->bt_wakeup_gpio); gpio_free(info->reset_gpio); kfree(info); goto cleanup; } err = gpio_request(info->host_wakeup_gpio, "BT host wakeup"); if (err < 0) { dev_err(info->dev, "Cannot get GPIO line %d", info->host_wakeup_gpio); gpio_free(info->reset_gpio); gpio_free(info->bt_wakeup_gpio); kfree(info); goto cleanup; } gpio_direction_output(info->reset_gpio, 0); gpio_direction_output(info->bt_wakeup_gpio, 0); gpio_direction_input(info->host_wakeup_gpio); switch (bt_config->bt_uart) { case 1: if (cpu_is_omap16xx()) { irq = INT_UART1; info->uart_fclk = clk_get(NULL, "uart1_ck"); } else if (cpu_is_omap24xx()) { irq = INT_24XX_UART1_IRQ; info->uart_iclk = clk_get(NULL, "uart1_ick"); info->uart_fclk = clk_get(NULL, "uart1_fck"); } /* FIXME: Use platform_get_resource for the port */ info->uart_base = ioremap(OMAP_UART1_BASE, 0x16); if (!info->uart_base) goto cleanup; break; case 2: if (cpu_is_omap16xx()) { irq = INT_UART2; info->uart_fclk = clk_get(NULL, "uart2_ck"); } else { irq = INT_24XX_UART2_IRQ; info->uart_iclk = clk_get(NULL, "uart2_ick"); info->uart_fclk = clk_get(NULL, "uart2_fck"); } /* FIXME: Use platform_get_resource for the port */ info->uart_base = ioremap(OMAP_UART2_BASE, 0x16); if (!info->uart_base) goto cleanup; break; case 3: if (cpu_is_omap16xx()) { irq = INT_UART3; info->uart_fclk = clk_get(NULL, "uart3_ck"); } else { irq = INT_24XX_UART3_IRQ; info->uart_iclk = clk_get(NULL, "uart3_ick"); info->uart_fclk = clk_get(NULL, "uart3_fck"); } /* FIXME: Use platform_get_resource for the port */ info->uart_base = ioremap(OMAP_UART3_BASE, 0x16); if (!info->uart_base) goto cleanup; break; default: dev_err(info->dev, "No uart defined\n"); goto cleanup; } info->irq = irq; err = request_irq(irq, hci_h4p_interrupt, 0, "hci_h4p", (void *)info); if (err < 0) { dev_err(info->dev, "hci_h4p: unable to get IRQ %d\n", irq); goto cleanup; } err = request_irq(gpio_to_irq(info->host_wakeup_gpio), hci_h4p_wakeup_interrupt, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING, "hci_h4p_wkup", (void *)info); if (err < 0) { dev_err(info->dev, "hci_h4p: unable to get wakeup IRQ %d\n", gpio_to_irq(info->host_wakeup_gpio)); free_irq(irq, (void *)info); goto cleanup; } hci_h4p_set_clk(info, &info->tx_clocks_en, 1); hci_h4p_set_auto_ctsrts(info, 0, UART_EFR_CTS | UART_EFR_RTS); err = hci_h4p_init_uart(info); if (err < 0) goto cleanup_irq; err = hci_h4p_reset(info); if (err < 0) goto cleanup_irq; err = hci_h4p_wait_for_cts(info, 1, 10); if (err < 0) goto cleanup_irq; hci_h4p_set_clk(info, &info->tx_clocks_en, 0); platform_set_drvdata(pdev, info); err = hci_h4p_sysfs_create_files(info->dev); if (err < 0) goto cleanup_irq; if (hci_h4p_register_hdev(info) < 0) { dev_err(info->dev, "failed to register hci_h4p hci device\n"); goto cleanup_irq; } gpio_set_value(info->reset_gpio, 0); return 0; cleanup_irq: free_irq(irq, (void *)info); free_irq(gpio_to_irq(info->host_wakeup_gpio), (void *)info); cleanup: gpio_set_value(info->reset_gpio, 0); gpio_free(info->reset_gpio); gpio_free(info->bt_wakeup_gpio); gpio_free(info->host_wakeup_gpio); kfree(info); return err; } static int hci_h4p_remove(struct platform_device *dev) { struct hci_h4p_info *info; info = platform_get_drvdata(dev); hci_h4p_hci_close(info->hdev); free_irq(gpio_to_irq(info->host_wakeup_gpio), (void *) info); hci_free_dev(info->hdev); gpio_free(info->reset_gpio); gpio_free(info->bt_wakeup_gpio); gpio_free(info->host_wakeup_gpio); free_irq(info->irq, (void *) info); kfree(info); return 0; } static struct platform_driver hci_h4p_driver = { .probe = hci_h4p_probe, .remove = hci_h4p_remove, .driver = { .name = "hci_h4p", }, }; static int __init hci_h4p_init(void) { int err = 0; /* Register the driver with LDM */ err = platform_driver_register(&hci_h4p_driver); if (err < 0) printk(KERN_WARNING "failed to register hci_h4p driver\n"); return err; } static void __exit hci_h4p_exit(void) { platform_driver_unregister(&hci_h4p_driver); } module_init(hci_h4p_init); module_exit(hci_h4p_exit); MODULE_DESCRIPTION("h4 driver with nokia extensions"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ville Tervo");