* Further notes from the original documentation:
  *
  * 11 April '97.  Started multi-threading - markhe
- *     The global cache-chain is protected by the semaphore 'cache_chain_sem'.
+ *     The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  *     The sem is only needed when accessing/extending the cache-chain, which
  *     can never happen inside an interrupt (kmem_cache_create(),
  *     kmem_cache_shrink() and kmem_cache_reap()).
 #include       <linux/rcupdate.h>
 #include       <linux/string.h>
 #include       <linux/nodemask.h>
+#include       <linux/mutex.h>
 
 #include       <asm/uaccess.h>
 #include       <asm/cacheflush.h>
 };
 
 /* Guard access to the cache-chain. */
-static struct semaphore cache_chain_sem;
+static DEFINE_MUTEX(cache_chain_mutex);
 static struct list_head cache_chain;
 
 /*
 
        switch (action) {
        case CPU_UP_PREPARE:
-               down(&cache_chain_sem);
+               mutex_lock(&cache_chain_mutex);
                /* we need to do this right in the beginning since
                 * alloc_arraycache's are going to use this list.
                 * kmalloc_node allows us to add the slab to the right
                                l3->shared = nc;
                        }
                }
-               up(&cache_chain_sem);
+               mutex_unlock(&cache_chain_mutex);
                break;
        case CPU_ONLINE:
                start_cpu_timer(cpu);
        case CPU_DEAD:
                /* fall thru */
        case CPU_UP_CANCELED:
-               down(&cache_chain_sem);
+               mutex_lock(&cache_chain_mutex);
 
                list_for_each_entry(cachep, &cache_chain, next) {
                        struct array_cache *nc;
                        spin_unlock_irq(&cachep->spinlock);
                        kfree(nc);
                }
-               up(&cache_chain_sem);
+               mutex_unlock(&cache_chain_mutex);
                break;
 #endif
        }
        return NOTIFY_OK;
       bad:
-       up(&cache_chain_sem);
+       mutex_unlock(&cache_chain_mutex);
        return NOTIFY_BAD;
 }
 
         */
 
        /* 1) create the cache_cache */
-       init_MUTEX(&cache_chain_sem);
        INIT_LIST_HEAD(&cache_chain);
        list_add(&cache_cache.next, &cache_chain);
        cache_cache.colour_off = cache_line_size();
        /* 6) resize the head arrays to their final sizes */
        {
                kmem_cache_t *cachep;
-               down(&cache_chain_sem);
+               mutex_lock(&cache_chain_mutex);
                list_for_each_entry(cachep, &cache_chain, next)
                    enable_cpucache(cachep);
-               up(&cache_chain_sem);
+               mutex_unlock(&cache_chain_mutex);
        }
 
        /* Done! */
                BUG();
        }
 
-       down(&cache_chain_sem);
+       mutex_lock(&cache_chain_mutex);
 
        list_for_each(p, &cache_chain) {
                kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
        if (!cachep && (flags & SLAB_PANIC))
                panic("kmem_cache_create(): failed to create slab `%s'\n",
                      name);
-       up(&cache_chain_sem);
+       mutex_unlock(&cache_chain_mutex);
        return cachep;
 }
 EXPORT_SYMBOL(kmem_cache_create);
        lock_cpu_hotplug();
 
        /* Find the cache in the chain of caches. */
-       down(&cache_chain_sem);
+       mutex_lock(&cache_chain_mutex);
        /*
         * the chain is never empty, cache_cache is never destroyed
         */
        list_del(&cachep->next);
-       up(&cache_chain_sem);
+       mutex_unlock(&cache_chain_mutex);
 
        if (__cache_shrink(cachep)) {
                slab_error(cachep, "Can't free all objects");
-               down(&cache_chain_sem);
+               mutex_lock(&cache_chain_mutex);
                list_add(&cachep->next, &cache_chain);
-               up(&cache_chain_sem);
+               mutex_unlock(&cache_chain_mutex);
                unlock_cpu_hotplug();
                return 1;
        }
  * - clear the per-cpu caches for this CPU.
  * - return freeable pages to the main free memory pool.
  *
- * If we cannot acquire the cache chain semaphore then just give up - we'll
+ * If we cannot acquire the cache chain mutex then just give up - we'll
  * try again on the next iteration.
  */
 static void cache_reap(void *unused)
        struct list_head *walk;
        struct kmem_list3 *l3;
 
-       if (down_trylock(&cache_chain_sem)) {
+       if (!mutex_trylock(&cache_chain_mutex)) {
                /* Give up. Setup the next iteration. */
                schedule_delayed_work(&__get_cpu_var(reap_work),
                                      REAPTIMEOUT_CPUC);
                cond_resched();
        }
        check_irq_on();
-       up(&cache_chain_sem);
+       mutex_unlock(&cache_chain_mutex);
        drain_remote_pages();
        /* Setup the next iteration */
        schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
        loff_t n = *pos;
        struct list_head *p;
 
-       down(&cache_chain_sem);
+       mutex_lock(&cache_chain_mutex);
        if (!n)
                print_slabinfo_header(m);
        p = cache_chain.next;
 
 static void s_stop(struct seq_file *m, void *p)
 {
-       up(&cache_chain_sem);
+       mutex_unlock(&cache_chain_mutex);
 }
 
 static int s_show(struct seq_file *m, void *p)
                return -EINVAL;
 
        /* Find the cache in the chain of caches. */
-       down(&cache_chain_sem);
+       mutex_lock(&cache_chain_mutex);
        res = -EINVAL;
        list_for_each(p, &cache_chain) {
                kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
                        break;
                }
        }
-       up(&cache_chain_sem);
+       mutex_unlock(&cache_chain_mutex);
        if (res >= 0)
                res = count;
        return res;
 
 #include <linux/rmap.h>
 #include <linux/security.h>
 #include <linux/backing-dev.h>
+#include <linux/mutex.h>
 #include <linux/capability.h>
 #include <linux/syscalls.h>
 
 
 struct swap_info_struct swap_info[MAX_SWAPFILES];
 
-static DECLARE_MUTEX(swapon_sem);
+static DEFINE_MUTEX(swapon_mutex);
 
 /*
  * We need this because the bdev->unplug_fn can sleep and we cannot
  * hold swap_lock while calling the unplug_fn. And swap_lock
- * cannot be turned into a semaphore.
+ * cannot be turned into a mutex.
  */
 static DECLARE_RWSEM(swap_unplug_sem);
 
        up_write(&swap_unplug_sem);
 
        destroy_swap_extents(p);
-       down(&swapon_sem);
+       mutex_lock(&swapon_mutex);
        spin_lock(&swap_lock);
        drain_mmlist();
 
        p->swap_map = NULL;
        p->flags = 0;
        spin_unlock(&swap_lock);
-       up(&swapon_sem);
+       mutex_unlock(&swapon_mutex);
        vfree(swap_map);
        inode = mapping->host;
        if (S_ISBLK(inode->i_mode)) {
        int i;
        loff_t l = *pos;
 
-       down(&swapon_sem);
+       mutex_lock(&swapon_mutex);
 
        for (i = 0; i < nr_swapfiles; i++, ptr++) {
                if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
 
 static void swap_stop(struct seq_file *swap, void *v)
 {
-       up(&swapon_sem);
+       mutex_unlock(&swapon_mutex);
 }
 
 static int swap_show(struct seq_file *swap, void *v)
                goto bad_swap;
        }
 
-       down(&swapon_sem);
+       mutex_lock(&swapon_mutex);
        spin_lock(&swap_lock);
        p->flags = SWP_ACTIVE;
        nr_swap_pages += nr_good_pages;
                swap_info[prev].next = p - swap_info;
        }
        spin_unlock(&swap_lock);
-       up(&swapon_sem);
+       mutex_unlock(&swapon_mutex);
        error = 0;
        goto out;
 bad_swap: