#define IFE_E_PHY_ID         0x02A80330
 #define IFE_PLUS_E_PHY_ID    0x02A80320
 #define IFE_C_E_PHY_ID       0x02A80310
+#define BME1000_E_PHY_ID     0x01410CB0
+#define BME1000_E_PHY_ID_R2  0x01410CB1
 
 /* M88E1000 Specific Registers */
 #define M88E1000_PHY_SPEC_CTRL     0x10  /* PHY Specific Control Register */
 #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK  0x0E00
 #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X    0x0800
 
+/* BME1000 PHY Specific Control Register */
+#define BME1000_PSCR_ENABLE_DOWNSHIFT   0x0800 /* 1 = enable downshift */
+
+
+#define PHY_PAGE_SHIFT 5
+#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
+                           ((reg) & MAX_PHY_REG_ADDRESS))
+
 /*
  * Bits...
  * 15-5: page
 
                /* arrays of page information for packet split */
                struct e1000_ps_page *ps_pages;
        };
-
+       struct page *page;
 };
 
 struct e1000_ring {
 #define FLAG_HAS_CTRLEXT_ON_LOAD          (1 << 5)
 #define FLAG_HAS_SWSM_ON_LOAD             (1 << 6)
 #define FLAG_HAS_JUMBO_FRAMES             (1 << 7)
+#define FLAG_IS_ICH                       (1 << 9)
 #define FLAG_HAS_SMART_POWER_DOWN         (1 << 11)
 #define FLAG_IS_QUAD_PORT_A               (1 << 12)
 #define FLAG_IS_QUAD_PORT                 (1 << 13)
                                                 bool state);
 extern void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
 extern void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
+extern void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw);
 
 extern s32 e1000e_check_for_copper_link(struct e1000_hw *hw);
 extern s32 e1000e_check_for_fiber_link(struct e1000_hw *hw);
 extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
 extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
 extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id);
+extern s32 e1000e_determine_phy_address(struct e1000_hw *hw);
+extern s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
+extern s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
 extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
 extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
 extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
 
        /* restore previous status */
        ew32(STATUS, before);
 
-       if ((mac->type != e1000_ich8lan) &&
-           (mac->type != e1000_ich9lan)) {
+       if (!(adapter->flags & FLAG_IS_ICH)) {
                REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
                REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
                REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
 
        REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
 
-       before = (((mac->type == e1000_ich8lan) ||
-                  (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
+       before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
        REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
        REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
 
        REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
        REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
-       if ((mac->type != e1000_ich8lan) &&
-           (mac->type != e1000_ich9lan))
+       if (!(adapter->flags & FLAG_IS_ICH))
                REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
        REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
        REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
 
        /* Test each interrupt */
        for (i = 0; i < 10; i++) {
-
-               if (((adapter->hw.mac.type == e1000_ich8lan) ||
-                    (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
+               if ((adapter->flags & FLAG_IS_ICH) && (i == 8))
                        continue;
 
                /* Interrupt to test */
        struct e1000_hw *hw = &adapter->hw;
        u32 ctrl_reg = 0;
        u32 stat_reg = 0;
+       u16 phy_reg = 0;
 
        hw->mac.autoneg = 0;
 
                             E1000_CTRL_SPD_100 |/* Force Speed to 100 */
                             E1000_CTRL_FD);     /* Force Duplex to FULL */
                break;
+       case e1000_phy_bm:
+               /* Set Default MAC Interface speed to 1GB */
+               e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
+               phy_reg &= ~0x0007;
+               phy_reg |= 0x006;
+               e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
+               /* Assert SW reset for above settings to take effect */
+               e1000e_commit_phy(hw);
+               mdelay(1);
+               /* Force Full Duplex */
+               e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
+               e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
+               /* Set Link Up (in force link) */
+               e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
+               e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
+               /* Force Link */
+               e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
+               e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
+               /* Set Early Link Enable */
+               e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
+               e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
+               /* fall through */
        default:
                /* force 1000, set loopback */
                e1e_wphy(hw, PHY_CONTROL, 0x4140);
                             E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
                             E1000_CTRL_FD);     /* Force Duplex to FULL */
 
-               if ((adapter->hw.mac.type == e1000_ich8lan) ||
-                   (adapter->hw.mac.type == e1000_ich9lan))
+               if (adapter->flags & FLAG_IS_ICH)
                        ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
        }
 
 
 #define IGP01E1000_PHY_LINK_HEALTH     0x13 /* PHY Link Health */
 #define IGP02E1000_PHY_POWER_MGMT      0x19 /* Power Management */
 #define IGP01E1000_PHY_PAGE_SELECT     0x1F /* Page Select */
+#define BM_PHY_PAGE_SELECT             22   /* Page Select for BM */
+#define IGP_PAGE_SHIFT                 5
+#define PHY_REG_MASK                   0x1F
+
+#define BM_WUC_PAGE                    800
+#define BM_WUC_ADDRESS_OPCODE          0x11
+#define BM_WUC_DATA_OPCODE             0x12
+#define BM_WUC_ENABLE_PAGE             769
+#define BM_WUC_ENABLE_REG              17
+#define BM_WUC_ENABLE_BIT              (1 << 2)
+#define BM_WUC_HOST_WU_BIT             (1 << 4)
+
+#define BM_WUC PHY_REG(BM_WUC_PAGE, 1)
+#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
+#define BM_WUS PHY_REG(BM_WUC_PAGE, 3)
 
 #define IGP01E1000_PHY_PCS_INIT_REG    0x00B4
 #define IGP01E1000_PHY_POLARITY_MASK   0x0078
 #define E1000_DEV_ID_ICH8_IFE_G                        0x10C5
 #define E1000_DEV_ID_ICH8_IGP_M                        0x104D
 #define E1000_DEV_ID_ICH9_IGP_AMT              0x10BD
+#define E1000_DEV_ID_ICH9_IGP_M_AMT            0x10F5
+#define E1000_DEV_ID_ICH9_IGP_M                        0x10BF
+#define E1000_DEV_ID_ICH9_IGP_M_V              0x10CB
 #define E1000_DEV_ID_ICH9_IGP_C                        0x294C
 #define E1000_DEV_ID_ICH9_IFE                  0x10C0
 #define E1000_DEV_ID_ICH9_IFE_GT               0x10C3
 #define E1000_DEV_ID_ICH9_IFE_G                        0x10C2
+#define E1000_DEV_ID_ICH10_R_BM_LM             0x10CC
+#define E1000_DEV_ID_ICH10_R_BM_LF             0x10CD
+#define E1000_DEV_ID_ICH10_R_BM_V              0x10CE
 
 #define E1000_FUNC_1 1
 
        e1000_phy_gg82563,
        e1000_phy_igp_3,
        e1000_phy_ife,
+       e1000_phy_bm,
 };
 
 enum e1000_bus_width {
 
  * 82566DM Gigabit Network Connection
  * 82566MC Gigabit Network Connection
  * 82566MM Gigabit Network Connection
+ * 82567LM Gigabit Network Connection
+ * 82567LF Gigabit Network Connection
+ * 82567LM-2 Gigabit Network Connection
+ * 82567LF-2 Gigabit Network Connection
+ * 82567V-2 Gigabit Network Connection
+ * 82562GT-3 10/100 Network Connection
  */
 
 #include <linux/netdevice.h>
        phy->addr                       = 1;
        phy->reset_delay_us             = 100;
 
+       /*
+        * We may need to do this twice - once for IGP and if that fails,
+        * we'll set BM func pointers and try again
+        */
+       ret_val = e1000e_determine_phy_address(hw);
+       if (ret_val) {
+               hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
+               hw->phy.ops.read_phy_reg  = e1000e_read_phy_reg_bm;
+               ret_val = e1000e_determine_phy_address(hw);
+               if (ret_val)
+                       return ret_val;
+       }
+
        phy->id = 0;
        while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
               (i++ < 100)) {
                phy->type = e1000_phy_ife;
                phy->autoneg_mask = E1000_ALL_NOT_GIG;
                break;
+       case BME1000_E_PHY_ID:
+               phy->type = e1000_phy_bm;
+               phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+               hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
+               hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
+               hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
+               break;
        default:
                return -E1000_ERR_PHY;
                break;
                return e1000_get_phy_info_ife_ich8lan(hw);
                break;
        case e1000_phy_igp_3:
+       case e1000_phy_bm:
                return e1000e_get_phy_info_igp(hw);
                break;
        default:
        s32 ret_val = 0;
        u16 data;
 
-       if (phy->type != e1000_phy_igp_3)
+       if (phy->type == e1000_phy_ife)
                return ret_val;
 
        phy_ctrl = er32(PHY_CTRL);
                ret_val = e1000e_copper_link_setup_igp(hw);
                if (ret_val)
                        return ret_val;
+       } else if (hw->phy.type == e1000_phy_bm) {
+               ret_val = e1000e_copper_link_setup_m88(hw);
+               if (ret_val)
+                       return ret_val;
        }
 
+       if (hw->phy.type == e1000_phy_ife) {
+               ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
+               if (ret_val)
+                       return ret_val;
+
+               reg_data &= ~IFE_PMC_AUTO_MDIX;
+
+               switch (hw->phy.mdix) {
+               case 1:
+                       reg_data &= ~IFE_PMC_FORCE_MDIX;
+                       break;
+               case 2:
+                       reg_data |= IFE_PMC_FORCE_MDIX;
+                       break;
+               case 0:
+               default:
+                       reg_data |= IFE_PMC_AUTO_MDIX;
+                       break;
+               }
+               ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
+               if (ret_val)
+                       return ret_val;
+       }
        return e1000e_setup_copper_link(hw);
 }
 
                                       reg_data);
 }
 
+/**
+ *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
+ *  @hw: pointer to the HW structure
+ *
+ *  During S0 to Sx transition, it is possible the link remains at gig
+ *  instead of negotiating to a lower speed.  Before going to Sx, set
+ *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
+ *  to a lower speed.
+ *
+ *  Should only be called for ICH9 devices.
+ **/
+void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
+{
+       u32 phy_ctrl;
+
+       if (hw->mac.type == e1000_ich9lan) {
+               phy_ctrl = er32(PHY_CTRL);
+               phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
+                           E1000_PHY_CTRL_GBE_DISABLE;
+               ew32(PHY_CTRL, phy_ctrl);
+       }
+
+       return;
+}
+
 /**
  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
  *  @hw: pointer to the HW structure
 struct e1000_info e1000_ich8_info = {
        .mac                    = e1000_ich8lan,
        .flags                  = FLAG_HAS_WOL
+                                 | FLAG_IS_ICH
                                  | FLAG_RX_CSUM_ENABLED
                                  | FLAG_HAS_CTRLEXT_ON_LOAD
                                  | FLAG_HAS_AMT
 struct e1000_info e1000_ich9_info = {
        .mac                    = e1000_ich9lan,
        .flags                  = FLAG_HAS_JUMBO_FRAMES
+                                 | FLAG_IS_ICH
                                  | FLAG_HAS_WOL
                                  | FLAG_RX_CSUM_ENABLED
                                  | FLAG_HAS_CTRLEXT_ON_LOAD
 
 #include <linux/if_vlan.h>
 #include <linux/cpu.h>
 #include <linux/smp.h>
+#include <linux/pm_qos_params.h>
 
 #include "e1000.h"
 
-#define DRV_VERSION "0.2.1"
+#define DRV_VERSION "0.3.3.3-k2"
 char e1000e_driver_name[] = "e1000e";
 const char e1000e_driver_version[] = DRV_VERSION;
 
        }
 }
 
+/**
+ * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
+ * @adapter: address of board private structure
+ * @rx_ring: pointer to receive ring structure
+ * @cleaned_count: number of buffers to allocate this pass
+ **/
+
+static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
+                                         int cleaned_count)
+{
+       struct net_device *netdev = adapter->netdev;
+       struct pci_dev *pdev = adapter->pdev;
+       struct e1000_rx_desc *rx_desc;
+       struct e1000_ring *rx_ring = adapter->rx_ring;
+       struct e1000_buffer *buffer_info;
+       struct sk_buff *skb;
+       unsigned int i;
+       unsigned int bufsz = 256 -
+                            16 /* for skb_reserve */ -
+                            NET_IP_ALIGN;
+
+       i = rx_ring->next_to_use;
+       buffer_info = &rx_ring->buffer_info[i];
+
+       while (cleaned_count--) {
+               skb = buffer_info->skb;
+               if (skb) {
+                       skb_trim(skb, 0);
+                       goto check_page;
+               }
+
+               skb = netdev_alloc_skb(netdev, bufsz);
+               if (unlikely(!skb)) {
+                       /* Better luck next round */
+                       adapter->alloc_rx_buff_failed++;
+                       break;
+               }
+
+               /* Make buffer alignment 2 beyond a 16 byte boundary
+                * this will result in a 16 byte aligned IP header after
+                * the 14 byte MAC header is removed
+                */
+               skb_reserve(skb, NET_IP_ALIGN);
+
+               buffer_info->skb = skb;
+check_page:
+               /* allocate a new page if necessary */
+               if (!buffer_info->page) {
+                       buffer_info->page = alloc_page(GFP_ATOMIC);
+                       if (unlikely(!buffer_info->page)) {
+                               adapter->alloc_rx_buff_failed++;
+                               break;
+                       }
+               }
+
+               if (!buffer_info->dma)
+                       buffer_info->dma = pci_map_page(pdev,
+                                                       buffer_info->page, 0,
+                                                       PAGE_SIZE,
+                                                       PCI_DMA_FROMDEVICE);
+
+               rx_desc = E1000_RX_DESC(*rx_ring, i);
+               rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+               if (unlikely(++i == rx_ring->count))
+                       i = 0;
+               buffer_info = &rx_ring->buffer_info[i];
+       }
+
+       if (likely(rx_ring->next_to_use != i)) {
+               rx_ring->next_to_use = i;
+               if (unlikely(i-- == 0))
+                       i = (rx_ring->count - 1);
+
+               /* Force memory writes to complete before letting h/w
+                * know there are new descriptors to fetch.  (Only
+                * applicable for weak-ordered memory model archs,
+                * such as IA-64). */
+               wmb();
+               writel(i, adapter->hw.hw_addr + rx_ring->tail);
+       }
+}
+
 /**
  * e1000_clean_rx_irq - Send received data up the network stack; legacy
  * @adapter: board private structure
        return cleaned;
 }
 
+/**
+ * e1000_consume_page - helper function
+ **/
+static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
+                               u16 length)
+{
+       bi->page = NULL;
+       skb->len += length;
+       skb->data_len += length;
+       skb->truesize += length;
+}
+
+/**
+ * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
+ * @adapter: board private structure
+ *
+ * the return value indicates whether actual cleaning was done, there
+ * is no guarantee that everything was cleaned
+ **/
+
+static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
+                                     int *work_done, int work_to_do)
+{
+       struct net_device *netdev = adapter->netdev;
+       struct pci_dev *pdev = adapter->pdev;
+       struct e1000_ring *rx_ring = adapter->rx_ring;
+       struct e1000_rx_desc *rx_desc, *next_rxd;
+       struct e1000_buffer *buffer_info, *next_buffer;
+       u32 length;
+       unsigned int i;
+       int cleaned_count = 0;
+       bool cleaned = false;
+       unsigned int total_rx_bytes=0, total_rx_packets=0;
+
+       i = rx_ring->next_to_clean;
+       rx_desc = E1000_RX_DESC(*rx_ring, i);
+       buffer_info = &rx_ring->buffer_info[i];
+
+       while (rx_desc->status & E1000_RXD_STAT_DD) {
+               struct sk_buff *skb;
+               u8 status;
+
+               if (*work_done >= work_to_do)
+                       break;
+               (*work_done)++;
+
+               status = rx_desc->status;
+               skb = buffer_info->skb;
+               buffer_info->skb = NULL;
+
+               ++i;
+               if (i == rx_ring->count)
+                       i = 0;
+               next_rxd = E1000_RX_DESC(*rx_ring, i);
+               prefetch(next_rxd);
+
+               next_buffer = &rx_ring->buffer_info[i];
+
+               cleaned = true;
+               cleaned_count++;
+               pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
+                              PCI_DMA_FROMDEVICE);
+               buffer_info->dma = 0;
+
+               length = le16_to_cpu(rx_desc->length);
+
+               /* errors is only valid for DD + EOP descriptors */
+               if (unlikely((status & E1000_RXD_STAT_EOP) &&
+                   (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
+                               /* recycle both page and skb */
+                               buffer_info->skb = skb;
+                               /* an error means any chain goes out the window
+                                * too */
+                               if (rx_ring->rx_skb_top)
+                                       dev_kfree_skb(rx_ring->rx_skb_top);
+                               rx_ring->rx_skb_top = NULL;
+                               goto next_desc;
+               }
+
+#define rxtop rx_ring->rx_skb_top
+               if (!(status & E1000_RXD_STAT_EOP)) {
+                       /* this descriptor is only the beginning (or middle) */
+                       if (!rxtop) {
+                               /* this is the beginning of a chain */
+                               rxtop = skb;
+                               skb_fill_page_desc(rxtop, 0, buffer_info->page,
+                                                  0, length);
+                       } else {
+                               /* this is the middle of a chain */
+                               skb_fill_page_desc(rxtop,
+                                   skb_shinfo(rxtop)->nr_frags,
+                                   buffer_info->page, 0, length);
+                               /* re-use the skb, only consumed the page */
+                               buffer_info->skb = skb;
+                       }
+                       e1000_consume_page(buffer_info, rxtop, length);
+                       goto next_desc;
+               } else {
+                       if (rxtop) {
+                               /* end of the chain */
+                               skb_fill_page_desc(rxtop,
+                                   skb_shinfo(rxtop)->nr_frags,
+                                   buffer_info->page, 0, length);
+                               /* re-use the current skb, we only consumed the
+                                * page */
+                               buffer_info->skb = skb;
+                               skb = rxtop;
+                               rxtop = NULL;
+                               e1000_consume_page(buffer_info, skb, length);
+                       } else {
+                               /* no chain, got EOP, this buf is the packet
+                                * copybreak to save the put_page/alloc_page */
+                               if (length <= copybreak &&
+                                   skb_tailroom(skb) >= length) {
+                                       u8 *vaddr;
+                                       vaddr = kmap_atomic(buffer_info->page,
+                                                          KM_SKB_DATA_SOFTIRQ);
+                                       memcpy(skb_tail_pointer(skb), vaddr,
+                                              length);
+                                       kunmap_atomic(vaddr,
+                                                     KM_SKB_DATA_SOFTIRQ);
+                                       /* re-use the page, so don't erase
+                                        * buffer_info->page */
+                                       skb_put(skb, length);
+                               } else {
+                                       skb_fill_page_desc(skb, 0,
+                                                          buffer_info->page, 0,
+                                                          length);
+                                       e1000_consume_page(buffer_info, skb,
+                                                          length);
+                               }
+                       }
+               }
+
+               /* Receive Checksum Offload XXX recompute due to CRC strip? */
+               e1000_rx_checksum(adapter,
+                                 (u32)(status) |
+                                 ((u32)(rx_desc->errors) << 24),
+                                 le16_to_cpu(rx_desc->csum), skb);
+
+               /* probably a little skewed due to removing CRC */
+               total_rx_bytes += skb->len;
+               total_rx_packets++;
+
+               /* eth type trans needs skb->data to point to something */
+               if (!pskb_may_pull(skb, ETH_HLEN)) {
+                       ndev_err(netdev, "pskb_may_pull failed.\n");
+                       dev_kfree_skb(skb);
+                       goto next_desc;
+               }
+
+               e1000_receive_skb(adapter, netdev, skb, status,
+                                 rx_desc->special);
+
+next_desc:
+               rx_desc->status = 0;
+
+               /* return some buffers to hardware, one at a time is too slow */
+               if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
+                       adapter->alloc_rx_buf(adapter, cleaned_count);
+                       cleaned_count = 0;
+               }
+
+               /* use prefetched values */
+               rx_desc = next_rxd;
+               buffer_info = next_buffer;
+       }
+       rx_ring->next_to_clean = i;
+
+       cleaned_count = e1000_desc_unused(rx_ring);
+       if (cleaned_count)
+               adapter->alloc_rx_buf(adapter, cleaned_count);
+
+       adapter->total_rx_bytes += total_rx_bytes;
+       adapter->total_rx_packets += total_rx_packets;
+       adapter->net_stats.rx_bytes += total_rx_bytes;
+       adapter->net_stats.rx_packets += total_rx_packets;
+       return cleaned;
+}
+
 /**
  * e1000_clean_rx_ring - Free Rx Buffers per Queue
  * @adapter: board private structure
                                pci_unmap_single(pdev, buffer_info->dma,
                                                 adapter->rx_buffer_len,
                                                 PCI_DMA_FROMDEVICE);
+                       else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
+                               pci_unmap_page(pdev, buffer_info->dma,
+                                              PAGE_SIZE,
+                                              PCI_DMA_FROMDEVICE);
                        else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
                                pci_unmap_single(pdev, buffer_info->dma,
                                                 adapter->rx_ps_bsize0,
                        buffer_info->dma = 0;
                }
 
+               if (buffer_info->page) {
+                       put_page(buffer_info->page);
+                       buffer_info->page = NULL;
+               }
+
                if (buffer_info->skb) {
                        dev_kfree_skb(buffer_info->skb);
                        buffer_info->skb = NULL;
         * a lot of memory, since we allocate 3 pages at all times
         * per packet.
         */
-       adapter->rx_ps_pages = 0;
        pages = PAGE_USE_COUNT(adapter->netdev->mtu);
-       if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
+       if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
+           (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
                adapter->rx_ps_pages = pages;
+       else
+               adapter->rx_ps_pages = 0;
 
        if (adapter->rx_ps_pages) {
                /* Configure extra packet-split registers */
                        sizeof(union e1000_rx_desc_packet_split);
                adapter->clean_rx = e1000_clean_rx_irq_ps;
                adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
+       } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
+               rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
+               adapter->clean_rx = e1000_clean_jumbo_rx_irq;
+               adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
        } else {
-               rdlen = rx_ring->count *
-                       sizeof(struct e1000_rx_desc);
+               rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
                adapter->clean_rx = e1000_clean_rx_irq;
                adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
        }
         * units), e.g. using jumbo frames when setting to E1000_ERT_2048
         */
        if ((adapter->flags & FLAG_HAS_ERT) &&
-           (adapter->netdev->mtu > ETH_DATA_LEN))
-               ew32(ERT, E1000_ERT_2048);
+           (adapter->netdev->mtu > ETH_DATA_LEN)) {
+               u32 rxdctl = er32(RXDCTL(0));
+               ew32(RXDCTL(0), rxdctl | 0x3);
+               ew32(ERT, E1000_ERT_2048 | (1 << 13));
+               /*
+                * With jumbo frames and early-receive enabled, excessive
+                * C4->C2 latencies result in dropped transactions.
+                */
+               pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
+                                         e1000e_driver_name, 55);
+       } else {
+               pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
+                                         e1000e_driver_name,
+                                         PM_QOS_DEFAULT_VALUE);
+       }
 
        /* Enable Receives */
        ew32(RCTL, rctl);
 
        /* Allow time for pending master requests to run */
        mac->ops.reset_hw(hw);
+
+       /*
+        * For parts with AMT enabled, let the firmware know
+        * that the network interface is in control
+        */
+       if ((adapter->flags & FLAG_HAS_AMT) && e1000e_check_mng_mode(hw))
+               e1000_get_hw_control(adapter);
+
        ew32(WUC, 0);
 
        if (mac->ops.init_hw(hw))
         * means we reserve 2 more, this pushes us to allocate from the next
         * larger slab size.
         * i.e. RXBUFFER_2048 --> size-4096 slab
+        * However with the new *_jumbo_rx* routines, jumbo receives will use
+        * fragmented skbs
         */
 
        if (max_frame <= 256)
                        ew32(CTRL_EXT, ctrl_ext);
                }
 
+               if (adapter->flags & FLAG_IS_ICH)
+                       e1000e_disable_gig_wol_ich8lan(&adapter->hw);
+
                /* Allow time for pending master requests to run */
                e1000e_disable_pcie_master(&adapter->hw);
 
        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
+       { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
+       { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
+       { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
+
+       { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
+       { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
+       { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
 
        { }     /* terminate list */
 };
        printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
               e1000e_driver_name);
        ret = pci_register_driver(&e1000_driver);
-
+       pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
+                              PM_QOS_DEFAULT_VALUE);
+                               
        return ret;
 }
 module_init(e1000_init_module);
 static void __exit e1000_exit_module(void)
 {
        pci_unregister_driver(&e1000_driver);
+       pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
 }
 module_exit(e1000_exit_module);
 
 
 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
+static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
+static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+                                         u16 *data, bool read);
 
 /* Cable length tables */
 static const u16 e1000_m88_cable_length_table[] =
        if (phy->disable_polarity_correction == 1)
                phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 
+       /* Enable downshift on BM (disabled by default) */
+       if (phy->type == e1000_phy_bm)
+               phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
+
        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
        if (ret_val)
                return ret_val;
        case IFE_C_E_PHY_ID:
                phy_type = e1000_phy_ife;
                break;
+       case BME1000_E_PHY_ID:
+       case BME1000_E_PHY_ID_R2:
+               phy_type = e1000_phy_bm;
+               break;
        default:
                phy_type = e1000_phy_unknown;
                break;
        return phy_type;
 }
 
+/**
+ *  e1000e_determine_phy_address - Determines PHY address.
+ *  @hw: pointer to the HW structure
+ *
+ *  This uses a trial and error method to loop through possible PHY
+ *  addresses. It tests each by reading the PHY ID registers and
+ *  checking for a match.
+ **/
+s32 e1000e_determine_phy_address(struct e1000_hw *hw)
+{
+       s32 ret_val = -E1000_ERR_PHY_TYPE;
+       u32 phy_addr= 0;
+       u32 i = 0;
+       enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+       do {
+               for (phy_addr = 0; phy_addr < 4; phy_addr++) {
+                       hw->phy.addr = phy_addr;
+                       e1000e_get_phy_id(hw);
+                       phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
+
+                       /* 
+                        * If phy_type is valid, break - we found our
+                        * PHY address
+                        */
+                       if (phy_type  != e1000_phy_unknown) {
+                               ret_val = 0;
+                               break;
+                       }
+               }
+               i++;
+       } while ((ret_val != 0) && (i < 100));
+
+       return ret_val;
+}
+
+/**
+ *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
+ *  @page: page to access
+ *
+ *  Returns the phy address for the page requested.
+ **/
+static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
+{
+       u32 phy_addr = 2;
+
+       if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
+               phy_addr = 1;
+
+       return phy_addr;
+}
+
+/**
+ *  e1000e_write_phy_reg_bm - Write BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       s32 ret_val;
+       u32 page_select = 0;
+       u32 page = offset >> IGP_PAGE_SHIFT;
+       u32 page_shift = 0;
+
+       /* Page 800 works differently than the rest so it has its own func */
+       if (page == BM_WUC_PAGE) {
+               ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+                                                        false);
+               goto out;
+       }
+
+       ret_val = hw->phy.ops.acquire_phy(hw);
+       if (ret_val)
+               goto out;
+
+       hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+       if (offset > MAX_PHY_MULTI_PAGE_REG) {
+               /*
+                * Page select is register 31 for phy address 1 and 22 for
+                * phy address 2 and 3. Page select is shifted only for
+                * phy address 1.
+                */
+               if (hw->phy.addr == 1) {
+                       page_shift = IGP_PAGE_SHIFT;
+                       page_select = IGP01E1000_PHY_PAGE_SELECT;
+               } else {
+                       page_shift = 0;
+                       page_select = BM_PHY_PAGE_SELECT;
+               }
+
+               /* Page is shifted left, PHY expects (page x 32) */
+               ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
+                                                   (page << page_shift));
+               if (ret_val) {
+                       hw->phy.ops.release_phy(hw);
+                       goto out;
+               }
+       }
+
+       ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+                                           data);
+
+       hw->phy.ops.release_phy(hw);
+
+out:
+       return ret_val;
+}
+
+/**
+ *  e1000e_read_phy_reg_bm - Read BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       s32 ret_val;
+       u32 page_select = 0;
+       u32 page = offset >> IGP_PAGE_SHIFT;
+       u32 page_shift = 0;
+
+       /* Page 800 works differently than the rest so it has its own func */
+       if (page == BM_WUC_PAGE) {
+               ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+                                                        true);
+               goto out;
+       }
+
+       ret_val = hw->phy.ops.acquire_phy(hw);
+       if (ret_val)
+               goto out;
+
+       hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+       if (offset > MAX_PHY_MULTI_PAGE_REG) {
+               /*
+                * Page select is register 31 for phy address 1 and 22 for
+                * phy address 2 and 3. Page select is shifted only for
+                * phy address 1.
+                */
+               if (hw->phy.addr == 1) {
+                       page_shift = IGP_PAGE_SHIFT;
+                       page_select = IGP01E1000_PHY_PAGE_SELECT;
+               } else {
+                       page_shift = 0;
+                       page_select = BM_PHY_PAGE_SELECT;
+               }
+
+               /* Page is shifted left, PHY expects (page x 32) */
+               ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
+                                                   (page << page_shift));
+               if (ret_val) {
+                       hw->phy.ops.release_phy(hw);
+                       goto out;
+               }
+       }
+
+       ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+                                          data);
+       hw->phy.ops.release_phy(hw);
+
+out:
+       return ret_val;
+}
+
+/**
+ *  e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read or written
+ *  @data: pointer to the data to read or write
+ *  @read: determines if operation is read or write
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting. Note that procedure to read the wakeup
+ *  registers are different. It works as such:
+ *  1) Set page 769, register 17, bit 2 = 1
+ *  2) Set page to 800 for host (801 if we were manageability)
+ *  3) Write the address using the address opcode (0x11)
+ *  4) Read or write the data using the data opcode (0x12)
+ *  5) Restore 769_17.2 to its original value
+ **/
+static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+                                         u16 *data, bool read)
+{
+       s32 ret_val;
+       u16 reg = ((u16)offset) & PHY_REG_MASK;
+       u16 phy_reg = 0;
+       u8  phy_acquired = 1;
+
+
+       ret_val = hw->phy.ops.acquire_phy(hw);
+       if (ret_val) {
+               phy_acquired = 0;
+               goto out;
+       }
+
+       /* All operations in this function are phy address 1 */
+       hw->phy.addr = 1;
+
+       /* Set page 769 */
+       e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+                                 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+
+       ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
+       if (ret_val)
+               goto out;
+
+       /* First clear bit 4 to avoid a power state change */
+       phy_reg &= ~(BM_WUC_HOST_WU_BIT);
+       ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+       if (ret_val)
+               goto out;
+
+       /* Write bit 2 = 1, and clear bit 4 to 769_17 */
+       ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
+                                           phy_reg | BM_WUC_ENABLE_BIT);
+       if (ret_val)
+               goto out;
+
+       /* Select page 800 */
+       ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+                                           (BM_WUC_PAGE << IGP_PAGE_SHIFT));
+
+       /* Write the page 800 offset value using opcode 0x11 */
+       ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
+       if (ret_val)
+               goto out;
+
+       if (read) {
+               /* Read the page 800 value using opcode 0x12 */
+               ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+                                                  data);
+       } else {
+               /* Read the page 800 value using opcode 0x12 */
+               ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+                                                   *data);
+       }
+
+       if (ret_val)
+               goto out;
+
+       /*
+        * Restore 769_17.2 to its original value
+        * Set page 769
+        */
+       e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+                                 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+
+       /* Clear 769_17.2 */
+       ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+
+out:
+       if (phy_acquired == 1)
+               hw->phy.ops.release_phy(hw);
+       return ret_val;
+}
+
 /**
  *  e1000e_commit_phy - Soft PHY reset
  *  @hw: pointer to the HW structure