static kern_memdesc_t *kern_memmap;
 
+#define efi_md_size(md)        (md->num_pages << EFI_PAGE_SHIFT)
+
+static inline u64
+kmd_end(kern_memdesc_t *kmd)
+{
+       return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
+}
+
+static inline u64
+efi_md_end(efi_memory_desc_t *md)
+{
+       return (md->phys_addr + efi_md_size(md));
+}
+
+static inline int
+efi_wb(efi_memory_desc_t *md)
+{
+       return (md->attribute & EFI_MEMORY_WB);
+}
+
+static inline int
+efi_uc(efi_memory_desc_t *md)
+{
+       return (md->attribute & EFI_MEMORY_UC);
+}
+
 static void
 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 {
        return 0;
 }
 
-u32
-efi_mem_type (unsigned long phys_addr)
+static efi_memory_desc_t *
+efi_memory_descriptor (unsigned long phys_addr)
 {
        void *efi_map_start, *efi_map_end, *p;
        efi_memory_desc_t *md;
                md = p;
 
                if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
-                        return md->type;
+                        return md;
        }
        return 0;
 }
 
-u64
-efi_mem_attributes (unsigned long phys_addr)
+static int
+efi_memmap_has_mmio (void)
 {
        void *efi_map_start, *efi_map_end, *p;
        efi_memory_desc_t *md;
        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
                md = p;
 
-               if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
-                       return md->attribute;
+               if (md->type == EFI_MEMORY_MAPPED_IO)
+                       return 1;
        }
        return 0;
 }
+
+u32
+efi_mem_type (unsigned long phys_addr)
+{
+       efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
+
+       if (md)
+               return md->type;
+       return 0;
+}
+
+u64
+efi_mem_attributes (unsigned long phys_addr)
+{
+       efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
+
+       if (md)
+               return md->attribute;
+       return 0;
+}
 EXPORT_SYMBOL(efi_mem_attributes);
 
+/*
+ * Determines whether the memory at phys_addr supports the desired
+ * attribute (WB, UC, etc).  If this returns 1, the caller can safely
+ * access *size bytes at phys_addr with the specified attribute.
+ */
+static int
+efi_mem_attribute_range (unsigned long phys_addr, unsigned long *size, u64 attr)
+{
+       efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
+       unsigned long md_end;
+
+       if (!md || (md->attribute & attr) != attr)
+               return 0;
+
+       do {
+               md_end = efi_md_end(md);
+               if (phys_addr + *size <= md_end)
+                       return 1;
+
+               md = efi_memory_descriptor(md_end);
+               if (!md || (md->attribute & attr) != attr) {
+                       *size = md_end - phys_addr;
+                       return 1;
+               }
+       } while (md);
+       return 0;
+}
+
+/*
+ * For /dev/mem, we only allow read & write system calls to access
+ * write-back memory, because read & write don't allow the user to
+ * control access size.
+ */
 int
 valid_phys_addr_range (unsigned long phys_addr, unsigned long *size)
 {
-       void *efi_map_start, *efi_map_end, *p;
-       efi_memory_desc_t *md;
-       u64 efi_desc_size;
+       return efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB);
+}
 
-       efi_map_start = __va(ia64_boot_param->efi_memmap);
-       efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
-       efi_desc_size = ia64_boot_param->efi_memdesc_size;
+/*
+ * We allow mmap of anything in the EFI memory map that supports
+ * either write-back or uncacheable access.  For uncacheable regions,
+ * the supported access sizes are system-dependent, and the user is
+ * responsible for using the correct size.
+ *
+ * Note that this doesn't currently allow access to hot-added memory,
+ * because that doesn't appear in the boot-time EFI memory map.
+ */
+int
+valid_mmap_phys_addr_range (unsigned long phys_addr, unsigned long *size)
+{
+       if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB))
+               return 1;
 
-       for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
-               md = p;
+       if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_UC))
+               return 1;
 
-               if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) {
-                       if (!(md->attribute & EFI_MEMORY_WB))
-                               return 0;
+       /*
+        * Some firmware doesn't report MMIO regions in the EFI memory map.
+        * The Intel BigSur (a.k.a. HP i2000) has this problem.  In this
+        * case, we can't use the EFI memory map to validate mmap requests.
+        */
+       if (!efi_memmap_has_mmio())
+               return 1;
 
-                       if (*size > md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr)
-                               *size = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr;
-                       return 1;
-               }
-       }
        return 0;
 }
 
        return 0;
 }
 
-#define efi_md_size(md)        (md->num_pages << EFI_PAGE_SHIFT)
-
-static inline u64
-kmd_end(kern_memdesc_t *kmd)
-{
-       return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
-}
-
-static inline u64
-efi_md_end(efi_memory_desc_t *md)
-{
-       return (md->phys_addr + efi_md_size(md));
-}
-
-static inline int
-efi_wb(efi_memory_desc_t *md)
-{
-       return (md->attribute & EFI_MEMORY_WB);
-}
-
-static inline int
-efi_uc(efi_memory_desc_t *md)
-{
-       return (md->attribute & EFI_MEMORY_UC);
-}
-
 /*
  * Look for the first granule aligned memory descriptor memory
  * that is big enough to hold EFI memory map. Make sure this