]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blobdiff - kernel/time/ntp.c
hrtimer: convert kernel/* to the new hrtimer apis
[linux-2.6-omap-h63xx.git] / kernel / time / ntp.c
index c6ae0c249891ba81e831d2433c173ce18706a340..4c8d85421d24b84429be27e096611ad86a3e686d 100644 (file)
@@ -16,6 +16,7 @@
 #include <linux/hrtimer.h>
 #include <linux/capability.h>
 #include <linux/math64.h>
+#include <linux/clocksource.h>
 #include <asm/timex.h>
 
 /*
  */
 unsigned long tick_usec = TICK_USEC;           /* USER_HZ period (usec) */
 unsigned long tick_nsec;                       /* ACTHZ period (nsec) */
-static u64 tick_length, tick_length_base;
+u64 tick_length;
+static u64 tick_length_base;
+
+static struct hrtimer leap_timer;
 
 #define MAX_TICKADJ            500             /* microsecs */
 #define MAX_TICKADJ_SCALED     (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
-                                 TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
+                                 NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
 
 /*
  * phase-lock loop variables
@@ -35,6 +39,7 @@ static u64 tick_length, tick_length_base;
 /* TIME_ERROR prevents overwriting the CMOS clock */
 static int time_state = TIME_OK;       /* clock synchronization status */
 int time_status = STA_UNSYNC;          /* clock status bits            */
+static long time_tai;                  /* TAI offset (s)               */
 static s64 time_offset;                        /* time adjustment (ns)         */
 static long time_constant = 2;         /* pll time constant            */
 long time_maxerror = NTP_PHASE_LIMIT;  /* maximum error (us)           */
@@ -47,13 +52,13 @@ static long ntp_tick_adj;
 static void ntp_update_frequency(void)
 {
        u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
-                               << TICK_LENGTH_SHIFT;
-       second_length += (s64)ntp_tick_adj << TICK_LENGTH_SHIFT;
+                               << NTP_SCALE_SHIFT;
+       second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT;
        second_length += time_freq;
 
        tick_length_base = second_length;
 
-       tick_nsec = div_u64(second_length, HZ) >> TICK_LENGTH_SHIFT;
+       tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
        tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ);
 }
 
@@ -65,16 +70,15 @@ static void ntp_update_offset(long offset)
        if (!(time_status & STA_PLL))
                return;
 
-       time_offset = offset;
        if (!(time_status & STA_NANO))
-               time_offset *= NSEC_PER_USEC;
+               offset *= NSEC_PER_USEC;
 
        /*
         * Scale the phase adjustment and
         * clamp to the operating range.
         */
-       time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC);
-       time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC);
+       offset = min(offset, MAXPHASE);
+       offset = max(offset, -MAXPHASE);
 
        /*
         * Select how the frequency is to be controlled
@@ -85,19 +89,19 @@ static void ntp_update_offset(long offset)
        mtemp = xtime.tv_sec - time_reftime;
        time_reftime = xtime.tv_sec;
 
-       freq_adj = time_offset * mtemp;
-       freq_adj <<= TICK_LENGTH_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant);
+       freq_adj = (s64)offset * mtemp;
+       freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant);
        time_status &= ~STA_MODE;
        if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
-               freq_adj += div_s64(time_offset << (TICK_LENGTH_SHIFT - SHIFT_FLL),
+               freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL),
                                    mtemp);
                time_status |= STA_MODE;
        }
        freq_adj += time_freq;
        freq_adj = min(freq_adj, MAXFREQ_SCALED);
        time_freq = max(freq_adj, -MAXFREQ_SCALED);
-       time_offset = div_s64(time_offset, NTP_INTERVAL_FREQ);
-       time_offset <<= SHIFT_UPDATE;
+
+       time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
 }
 
 /**
@@ -119,62 +123,69 @@ void ntp_clear(void)
 }
 
 /*
- * this routine handles the overflow of the microsecond field
- *
- * The tricky bits of code to handle the accurate clock support
- * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
- * They were originally developed for SUN and DEC kernels.
- * All the kudos should go to Dave for this stuff.
+ * Leap second processing. If in leap-insert state at the end of the
+ * day, the system clock is set back one second; if in leap-delete
+ * state, the system clock is set ahead one second.
  */
-void second_overflow(void)
+static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
 {
-       long time_adj;
+       enum hrtimer_restart res = HRTIMER_NORESTART;
 
-       /* Bump the maxerror field */
-       time_maxerror += MAXFREQ / NSEC_PER_USEC;
-       if (time_maxerror > NTP_PHASE_LIMIT) {
-               time_maxerror = NTP_PHASE_LIMIT;
-               time_status |= STA_UNSYNC;
-       }
+       write_seqlock_irq(&xtime_lock);
 
-       /*
-        * Leap second processing. If in leap-insert state at the end of the
-        * day, the system clock is set back one second; if in leap-delete
-        * state, the system clock is set ahead one second. The microtime()
-        * routine or external clock driver will insure that reported time is
-        * always monotonic. The ugly divides should be replaced.
-        */
        switch (time_state) {
        case TIME_OK:
-               if (time_status & STA_INS)
-                       time_state = TIME_INS;
-               else if (time_status & STA_DEL)
-                       time_state = TIME_DEL;
                break;
        case TIME_INS:
-               if (xtime.tv_sec % 86400 == 0) {
-                       xtime.tv_sec--;
-                       wall_to_monotonic.tv_sec++;
-                       time_state = TIME_OOP;
-                       printk(KERN_NOTICE "Clock: inserting leap second "
-                                       "23:59:60 UTC\n");
-               }
+               xtime.tv_sec--;
+               wall_to_monotonic.tv_sec++;
+               time_state = TIME_OOP;
+               printk(KERN_NOTICE "Clock: "
+                      "inserting leap second 23:59:60 UTC\n");
+               hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
+               res = HRTIMER_RESTART;
                break;
        case TIME_DEL:
-               if ((xtime.tv_sec + 1) % 86400 == 0) {
-                       xtime.tv_sec++;
-                       wall_to_monotonic.tv_sec--;
-                       time_state = TIME_WAIT;
-                       printk(KERN_NOTICE "Clock: deleting leap second "
-                                       "23:59:59 UTC\n");
-               }
+               xtime.tv_sec++;
+               time_tai--;
+               wall_to_monotonic.tv_sec--;
+               time_state = TIME_WAIT;
+               printk(KERN_NOTICE "Clock: "
+                      "deleting leap second 23:59:59 UTC\n");
                break;
        case TIME_OOP:
+               time_tai++;
                time_state = TIME_WAIT;
-               break;
+               /* fall through */
        case TIME_WAIT:
                if (!(time_status & (STA_INS | STA_DEL)))
                        time_state = TIME_OK;
+               break;
+       }
+       update_vsyscall(&xtime, clock);
+
+       write_sequnlock_irq(&xtime_lock);
+
+       return res;
+}
+
+/*
+ * this routine handles the overflow of the microsecond field
+ *
+ * The tricky bits of code to handle the accurate clock support
+ * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
+ * They were originally developed for SUN and DEC kernels.
+ * All the kudos should go to Dave for this stuff.
+ */
+void second_overflow(void)
+{
+       s64 time_adj;
+
+       /* Bump the maxerror field */
+       time_maxerror += MAXFREQ / NSEC_PER_USEC;
+       if (time_maxerror > NTP_PHASE_LIMIT) {
+               time_maxerror = NTP_PHASE_LIMIT;
+               time_status |= STA_UNSYNC;
        }
 
        /*
@@ -184,7 +195,7 @@ void second_overflow(void)
        tick_length = tick_length_base;
        time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
        time_offset -= time_adj;
-       tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
+       tick_length += time_adj;
 
        if (unlikely(time_adjust)) {
                if (time_adjust > MAX_TICKADJ) {
@@ -195,25 +206,12 @@ void second_overflow(void)
                        tick_length -= MAX_TICKADJ_SCALED;
                } else {
                        tick_length += (s64)(time_adjust * NSEC_PER_USEC /
-                                       NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT;
+                                       NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT;
                        time_adjust = 0;
                }
        }
 }
 
-/*
- * Return how long ticks are at the moment, that is, how much time
- * update_wall_time_one_tick will add to xtime next time we call it
- * (assuming no calls to do_adjtimex in the meantime).
- * The return value is in fixed-point nanoseconds shifted by the
- * specified number of bits to the right of the binary point.
- * This function has no side-effects.
- */
-u64 current_tick_length(void)
-{
-       return tick_length;
-}
-
 #ifdef CONFIG_GENERIC_CMOS_UPDATE
 
 /* Disable the cmos update - used by virtualization and embedded */
@@ -278,7 +276,7 @@ static inline void notify_cmos_timer(void) { }
 int do_adjtimex(struct timex *txc)
 {
        struct timespec ts;
-       long save_adjust;
+       long save_adjust, sec;
        int result;
 
        /* In order to modify anything, you gotta be super-user! */
@@ -299,6 +297,10 @@ int do_adjtimex(struct timex *txc)
                    txc->tick > 1100000/USER_HZ)
                        return -EINVAL;
 
+       if (time_state != TIME_OK && txc->modes & ADJ_STATUS)
+               hrtimer_cancel(&leap_timer);
+       getnstimeofday(&ts);
+
        write_seqlock_irq(&xtime_lock);
 
        /* Save for later - semantics of adjtime is to return old value */
@@ -315,6 +317,34 @@ int do_adjtimex(struct timex *txc)
                        /* only set allowed bits */
                        time_status &= STA_RONLY;
                        time_status |= txc->status & ~STA_RONLY;
+
+                       switch (time_state) {
+                       case TIME_OK:
+                       start_timer:
+                               sec = ts.tv_sec;
+                               if (time_status & STA_INS) {
+                                       time_state = TIME_INS;
+                                       sec += 86400 - sec % 86400;
+                                       hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
+                               } else if (time_status & STA_DEL) {
+                                       time_state = TIME_DEL;
+                                       sec += 86400 - (sec + 1) % 86400;
+                                       hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
+                               }
+                               break;
+                       case TIME_INS:
+                       case TIME_DEL:
+                               time_state = TIME_OK;
+                               goto start_timer;
+                               break;
+                       case TIME_WAIT:
+                               if (!(time_status & (STA_INS | STA_DEL)))
+                                       time_state = TIME_OK;
+                               break;
+                       case TIME_OOP:
+                               hrtimer_restart(&leap_timer);
+                               break;
+                       }
                }
 
                if (txc->modes & ADJ_NANO)
@@ -341,6 +371,9 @@ int do_adjtimex(struct timex *txc)
                        time_constant = max(time_constant, 0l);
                }
 
+               if (txc->modes & ADJ_TAI && txc->constant > 0)
+                       time_tai = txc->constant;
+
                if (txc->modes & ADJ_OFFSET) {
                        if (txc->modes == ADJ_OFFSET_SINGLESHOT)
                                /* adjtime() is independent from ntp_adjtime() */
@@ -363,14 +396,14 @@ int do_adjtimex(struct timex *txc)
            (txc->modes == ADJ_OFFSET_SS_READ))
                txc->offset = save_adjust;
        else {
-               txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) *
-                               NTP_INTERVAL_FREQ;
+               txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
+                                         NTP_SCALE_SHIFT);
                if (!(time_status & STA_NANO))
                        txc->offset /= NSEC_PER_USEC;
        }
        txc->freq          = shift_right((s32)(time_freq >> PPM_SCALE_INV_SHIFT) *
                                         (s64)PPM_SCALE_INV,
-                                        TICK_LENGTH_SHIFT);
+                                        NTP_SCALE_SHIFT);
        txc->maxerror      = time_maxerror;
        txc->esterror      = time_esterror;
        txc->status        = time_status;
@@ -378,6 +411,7 @@ int do_adjtimex(struct timex *txc)
        txc->precision     = 1;
        txc->tolerance     = MAXFREQ_SCALED / PPM_SCALE;
        txc->tick          = tick_usec;
+       txc->tai           = time_tai;
 
        /* PPS is not implemented, so these are zero */
        txc->ppsfreq       = 0;
@@ -390,7 +424,6 @@ int do_adjtimex(struct timex *txc)
        txc->stbcnt        = 0;
        write_sequnlock_irq(&xtime_lock);
 
-       getnstimeofday(&ts);
        txc->time.tv_sec = ts.tv_sec;
        txc->time.tv_usec = ts.tv_nsec;
        if (!(time_status & STA_NANO))
@@ -408,3 +441,10 @@ static int __init ntp_tick_adj_setup(char *str)
 }
 
 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
+
+void __init ntp_init(void)
+{
+       ntp_clear();
+       hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
+       leap_timer.function = ntp_leap_second;
+}