]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blobdiff - include/asm-arm/div64.h
Merge mainline v2.6.27-rc2 tree into linux-omap tree
[linux-2.6-omap-h63xx.git] / include / asm-arm / div64.h
diff --git a/include/asm-arm/div64.h b/include/asm-arm/div64.h
deleted file mode 100644 (file)
index 5001390..0000000
+++ /dev/null
@@ -1,227 +0,0 @@
-#ifndef __ASM_ARM_DIV64
-#define __ASM_ARM_DIV64
-
-#include <asm/system.h>
-#include <linux/types.h>
-
-/*
- * The semantics of do_div() are:
- *
- * uint32_t do_div(uint64_t *n, uint32_t base)
- * {
- *     uint32_t remainder = *n % base;
- *     *n = *n / base;
- *     return remainder;
- * }
- *
- * In other words, a 64-bit dividend with a 32-bit divisor producing
- * a 64-bit result and a 32-bit remainder.  To accomplish this optimally
- * we call a special __do_div64 helper with completely non standard
- * calling convention for arguments and results (beware).
- */
-
-#ifdef __ARMEB__
-#define __xh "r0"
-#define __xl "r1"
-#else
-#define __xl "r0"
-#define __xh "r1"
-#endif
-
-#define __do_div_asm(n, base)                                  \
-({                                                             \
-       register unsigned int __base      asm("r4") = base;     \
-       register unsigned long long __n   asm("r0") = n;        \
-       register unsigned long long __res asm("r2");            \
-       register unsigned int __rem       asm(__xh);            \
-       asm(    __asmeq("%0", __xh)                             \
-               __asmeq("%1", "r2")                             \
-               __asmeq("%2", "r0")                             \
-               __asmeq("%3", "r4")                             \
-               "bl     __do_div64"                             \
-               : "=r" (__rem), "=r" (__res)                    \
-               : "r" (__n), "r" (__base)                       \
-               : "ip", "lr", "cc");                            \
-       n = __res;                                              \
-       __rem;                                                  \
-})
-
-#if __GNUC__ < 4
-
-/*
- * gcc versions earlier than 4.0 are simply too problematic for the
- * optimized implementation below. First there is gcc PR 15089 that
- * tend to trig on more complex constructs, spurious .global __udivsi3
- * are inserted even if none of those symbols are referenced in the
- * generated code, and those gcc versions are not able to do constant
- * propagation on long long values anyway.
- */
-#define do_div(n, base) __do_div_asm(n, base)
-
-#elif __GNUC__ >= 4
-
-#include <asm/bug.h>
-
-/*
- * If the divisor happens to be constant, we determine the appropriate
- * inverse at compile time to turn the division into a few inline
- * multiplications instead which is much faster. And yet only if compiling
- * for ARMv4 or higher (we need umull/umlal) and if the gcc version is
- * sufficiently recent to perform proper long long constant propagation.
- * (It is unfortunate that gcc doesn't perform all this internally.)
- */
-#define do_div(n, base)                                                        \
-({                                                                     \
-       unsigned int __r, __b = (base);                                 \
-       if (!__builtin_constant_p(__b) || __b == 0 ||                   \
-           (__LINUX_ARM_ARCH__ < 4 && (__b & (__b - 1)) != 0)) {       \
-               /* non-constant divisor (or zero): slow path */         \
-               __r = __do_div_asm(n, __b);                             \
-       } else if ((__b & (__b - 1)) == 0) {                            \
-               /* Trivial: __b is constant and a power of 2 */         \
-               /* gcc does the right thing with this code.  */         \
-               __r = n;                                                \
-               __r &= (__b - 1);                                       \
-               n /= __b;                                               \
-       } else {                                                        \
-               /* Multiply by inverse of __b: n/b = n*(p/b)/p       */ \
-               /* We rely on the fact that most of this code gets   */ \
-               /* optimized away at compile time due to constant    */ \
-               /* propagation and only a couple inline assembly     */ \
-               /* instructions should remain. Better avoid any      */ \
-               /* code construct that might prevent that.           */ \
-               unsigned long long __res, __x, __t, __m, __n = n;       \
-               unsigned int __c, __p, __z = 0;                         \
-               /* preserve low part of n for reminder computation */   \
-               __r = __n;                                              \
-               /* determine number of bits to represent __b */         \
-               __p = 1 << __div64_fls(__b);                            \
-               /* compute __m = ((__p << 64) + __b - 1) / __b */       \
-               __m = (~0ULL / __b) * __p;                              \
-               __m += (((~0ULL % __b + 1) * __p) + __b - 1) / __b;     \
-               /* compute __res = __m*(~0ULL/__b*__b-1)/(__p << 64) */ \
-               __x = ~0ULL / __b * __b - 1;                            \
-               __res = (__m & 0xffffffff) * (__x & 0xffffffff);        \
-               __res >>= 32;                                           \
-               __res += (__m & 0xffffffff) * (__x >> 32);              \
-               __t = __res;                                            \
-               __res += (__x & 0xffffffff) * (__m >> 32);              \
-               __t = (__res < __t) ? (1ULL << 32) : 0;                 \
-               __res = (__res >> 32) + __t;                            \
-               __res += (__m >> 32) * (__x >> 32);                     \
-               __res /= __p;                                           \
-               /* Now sanitize and optimize what we've got. */         \
-               if (~0ULL % (__b / (__b & -__b)) == 0) {                \
-                       /* those cases can be simplified with: */       \
-                       __n /= (__b & -__b);                            \
-                       __m = ~0ULL / (__b / (__b & -__b));             \
-                       __p = 1;                                        \
-                       __c = 1;                                        \
-               } else if (__res != __x / __b) {                        \
-                       /* We can't get away without a correction    */ \
-                       /* to compensate for bit truncation errors.  */ \
-                       /* To avoid it we'd need an additional bit   */ \
-                       /* to represent __m which would overflow it. */ \
-                       /* Instead we do m=p/b and n/b=(n*m+m)/p.    */ \
-                       __c = 1;                                        \
-                       /* Compute __m = (__p << 64) / __b */           \
-                       __m = (~0ULL / __b) * __p;                      \
-                       __m += ((~0ULL % __b + 1) * __p) / __b;         \
-               } else {                                                \
-                       /* Reduce __m/__p, and try to clear bit 31   */ \
-                       /* of __m when possible otherwise that'll    */ \
-                       /* need extra overflow handling later.       */ \
-                       unsigned int __bits = -(__m & -__m);            \
-                       __bits |= __m >> 32;                            \
-                       __bits = (~__bits) << 1;                        \
-                       /* If __bits == 0 then setting bit 31 is     */ \
-                       /* unavoidable.  Simply apply the maximum    */ \
-                       /* possible reduction in that case.          */ \
-                       /* Otherwise the MSB of __bits indicates the */ \
-                       /* best reduction we should apply.           */ \
-                       if (!__bits) {                                  \
-                               __p /= (__m & -__m);                    \
-                               __m /= (__m & -__m);                    \
-                       } else {                                        \
-                               __p >>= __div64_fls(__bits);            \
-                               __m >>= __div64_fls(__bits);            \
-                       }                                               \
-                       /* No correction needed. */                     \
-                       __c = 0;                                        \
-               }                                                       \
-               /* Now we have a combination of 2 conditions:        */ \
-               /* 1) whether or not we need a correction (__c), and */ \
-               /* 2) whether or not there might be an overflow in   */ \
-               /*    the cross product (__m & ((1<<63) | (1<<31)))  */ \
-               /* Select the best insn combination to perform the   */ \
-               /* actual __m * __n / (__p << 64) operation.         */ \
-               if (!__c) {                                             \
-                       asm (   "umull  %Q0, %R0, %1, %Q2\n\t"          \
-                               "mov    %Q0, #0"                        \
-                               : "=&r" (__res)                         \
-                               : "r" (__m), "r" (__n)                  \
-                               : "cc" );                               \
-               } else if (!(__m & ((1ULL << 63) | (1ULL << 31)))) {    \
-                       __res = __m;                                    \
-                       asm (   "umlal  %Q0, %R0, %Q1, %Q2\n\t"         \
-                               "mov    %Q0, #0"                        \
-                               : "+r" (__res)                          \
-                               : "r" (__m), "r" (__n)                  \
-                               : "cc" );                               \
-               } else {                                                \
-                       asm (   "umull  %Q0, %R0, %Q1, %Q2\n\t"         \
-                               "cmn    %Q0, %Q1\n\t"                   \
-                               "adcs   %R0, %R0, %R1\n\t"              \
-                               "adc    %Q0, %3, #0"                    \
-                               : "=&r" (__res)                         \
-                               : "r" (__m), "r" (__n), "r" (__z)       \
-                               : "cc" );                               \
-               }                                                       \
-               if (!(__m & ((1ULL << 63) | (1ULL << 31)))) {           \
-                       asm (   "umlal  %R0, %Q0, %R1, %Q2\n\t"         \
-                               "umlal  %R0, %Q0, %Q1, %R2\n\t"         \
-                               "mov    %R0, #0\n\t"                    \
-                               "umlal  %Q0, %R0, %R1, %R2"             \
-                               : "+r" (__res)                          \
-                               : "r" (__m), "r" (__n)                  \
-                               : "cc" );                               \
-               } else {                                                \
-                       asm (   "umlal  %R0, %Q0, %R2, %Q3\n\t"         \
-                               "umlal  %R0, %1, %Q2, %R3\n\t"          \
-                               "mov    %R0, #0\n\t"                    \
-                               "adds   %Q0, %1, %Q0\n\t"               \
-                               "adc    %R0, %R0, #0\n\t"               \
-                               "umlal  %Q0, %R0, %R2, %R3"             \
-                               : "+r" (__res), "+r" (__z)              \
-                               : "r" (__m), "r" (__n)                  \
-                               : "cc" );                               \
-               }                                                       \
-               __res /= __p;                                           \
-               /* The reminder can be computed with 32-bit regs     */ \
-               /* only, and gcc is good at that.                    */ \
-               {                                                       \
-                       unsigned int __res0 = __res;                    \
-                       unsigned int __b0 = __b;                        \
-                       __r -= __res0 * __b0;                           \
-               }                                                       \
-               /* BUG_ON(__r >= __b || __res * __b + __r != n); */     \
-               n = __res;                                              \
-       }                                                               \
-       __r;                                                            \
-})
-
-/* our own fls implementation to make sure constant propagation is fine */
-#define __div64_fls(bits)                                              \
-({                                                                     \
-       unsigned int __left = (bits), __nr = 0;                         \
-       if (__left & 0xffff0000) __nr += 16, __left >>= 16;             \
-       if (__left & 0x0000ff00) __nr +=  8, __left >>=  8;             \
-       if (__left & 0x000000f0) __nr +=  4, __left >>=  4;             \
-       if (__left & 0x0000000c) __nr +=  2, __left >>=  2;             \
-       if (__left & 0x00000002) __nr +=  1;                            \
-       __nr;                                                           \
-})
-
-#endif
-
-#endif