]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blobdiff - drivers/staging/rt3070/common/md5.c
Merge branch 'omap-pool'
[linux-2.6-omap-h63xx.git] / drivers / staging / rt3070 / common / md5.c
diff --git a/drivers/staging/rt3070/common/md5.c b/drivers/staging/rt3070/common/md5.c
new file mode 100644 (file)
index 0000000..774776b
--- /dev/null
@@ -0,0 +1,1427 @@
+/*
+ *************************************************************************
+ * Ralink Tech Inc.
+ * 5F., No.36, Taiyuan St., Jhubei City,
+ * Hsinchu County 302,
+ * Taiwan, R.O.C.
+ *
+ * (c) Copyright 2002-2007, Ralink Technology, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify  *
+ * it under the terms of the GNU General Public License as published by  *
+ * the Free Software Foundation; either version 2 of the License, or     *
+ * (at your option) any later version.                                   *
+ *                                                                       *
+ * This program is distributed in the hope that it will be useful,       *
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
+ * GNU General Public License for more details.                          *
+ *                                                                       *
+ * You should have received a copy of the GNU General Public License     *
+ * along with this program; if not, write to the                         *
+ * Free Software Foundation, Inc.,                                       *
+ * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
+ *                                                                       *
+ *************************************************************************
+
+    Module Name:
+    md5.c
+
+       Abstract:
+
+       Revision History:
+       Who                     When                    What
+       --------        ----------              ----------------------------------------------
+       Name            Date                    Modification logs
+       jan                     10-28-03                Initial
+       Rita            11-23-04                Modify MD5 and SHA-1
+       Rita            10-14-05                Modify SHA-1 in big-endian platform
+ */
+#include "../rt_config.h"
+
+/**
+ * md5_mac:
+ * @key: pointer to    the     key     used for MAC generation
+ * @key_len: length    of the key in bytes
+ * @data: pointer to the data area for which the MAC is        generated
+ * @data_len: length of        the     data in bytes
+ * @mac: pointer to    the     buffer holding space for the MAC; the buffer should
+ * have        space for 128-bit (16 bytes) MD5 hash value
+ *
+ * md5_mac() determines        the     message authentication code     by using secure hash
+ * MD5(key | data |    key).
+ */
+void md5_mac(u8 *key, size_t key_len, u8 *data, size_t data_len, u8 *mac)
+{
+       MD5_CTX context;
+
+       MD5Init(&context);
+       MD5Update(&context,     key, key_len);
+       MD5Update(&context,     data, data_len);
+       MD5Update(&context,     key, key_len);
+       MD5Final(mac, &context);
+}
+
+/**
+ * hmac_md5:
+ * @key: pointer to    the     key     used for MAC generation
+ * @key_len: length    of the key in bytes
+ * @data: pointer to the data area for which the MAC is        generated
+ * @data_len: length of        the     data in bytes
+ * @mac: pointer to    the     buffer holding space for the MAC; the buffer should
+ * have        space for 128-bit (16 bytes) MD5 hash value
+ *
+ * hmac_md5() determines the message authentication    code using HMAC-MD5.
+ * This        implementation is based on the sample code presented in RFC     2104.
+ */
+void hmac_md5(u8 *key, size_t key_len, u8 *data, size_t data_len, u8 *mac)
+{
+       MD5_CTX context;
+    u8 k_ipad[65]; /* inner padding - key XORd with ipad */
+    u8 k_opad[65]; /* outer padding - key XORd with opad */
+    u8 tk[16];
+       int     i;
+
+       //assert(key != NULL && data != NULL && mac != NULL);
+
+       /* if key is longer     than 64 bytes reset     it to key =     MD5(key) */
+       if (key_len     > 64) {
+               MD5_CTX ttcontext;
+
+               MD5Init(&ttcontext);
+               MD5Update(&ttcontext, key, key_len);
+               MD5Final(tk, &ttcontext);
+               //key=(PUCHAR)ttcontext.buf;
+               key     = tk;
+               key_len = 16;
+       }
+
+       /* the HMAC_MD5 transform looks like:
+        *
+        * MD5(K XOR opad, MD5(K XOR ipad, text))
+        *
+        * where K is an n byte key
+        * ipad is the byte     0x36 repeated 64 times
+        * opad is the byte     0x5c repeated 64 times
+        * and text     is the data     being protected */
+
+       /* start out by storing key     in pads */
+       NdisZeroMemory(k_ipad, sizeof(k_ipad));
+       NdisZeroMemory(k_opad,  sizeof(k_opad));
+       //assert(key_len < sizeof(k_ipad));
+       NdisMoveMemory(k_ipad, key,     key_len);
+       NdisMoveMemory(k_opad, key,     key_len);
+
+       /* XOR key with ipad and opad values */
+       for     (i = 0; i <     64;     i++) {
+               k_ipad[i] ^= 0x36;
+               k_opad[i] ^= 0x5c;
+       }
+
+       /* perform inner MD5 */
+       MD5Init(&context);                                       /*     init context for 1st pass */
+       MD5Update(&context,     k_ipad, 64);     /*     start with inner pad */
+       MD5Update(&context,     data, data_len); /*     then text of datagram */
+       MD5Final(mac, &context);                         /*     finish up 1st pass */
+
+       /* perform outer MD5 */
+       MD5Init(&context);                                       /*     init context for 2nd pass */
+       MD5Update(&context,     k_opad, 64);     /*     start with outer pad */
+       MD5Update(&context,     mac, 16);                /*     then results of 1st     hash */
+       MD5Final(mac, &context);                         /*     finish up 2nd pass */
+}
+
+#ifndef RT_BIG_ENDIAN
+#define byteReverse(buf, len)   /* Nothing */
+#else
+void byteReverse(unsigned char *buf, unsigned longs);
+void byteReverse(unsigned char *buf, unsigned longs)
+{
+    do {
+        *(UINT32 *)buf = SWAP32(*(UINT32 *)buf);
+        buf += 4;
+    } while (--longs);
+}
+#endif
+
+
+/* ==========================  MD5 implementation =========================== */
+// four base functions for MD5
+#define MD5_F1(x, y, z) (((x) & (y)) | ((~x) & (z)))
+#define MD5_F2(x, y, z) (((x) & (z)) | ((y) & (~z)))
+#define MD5_F3(x, y, z) ((x) ^ (y) ^ (z))
+#define MD5_F4(x, y, z) ((y) ^ ((x) | (~z)))
+#define CYCLIC_LEFT_SHIFT(w, s) (((w) << (s)) | ((w) >> (32-(s))))
+
+#define        MD5Step(f, w, x, y,     z, data, t, s)  \
+       ( w     += f(x, y, z) + data + t,  w = (CYCLIC_LEFT_SHIFT(w, s)) & 0xffffffff, w +=     x )
+
+
+/*
+ *  Function Description:
+ *      Initiate MD5 Context satisfied in RFC 1321
+ *
+ *  Arguments:
+ *      pCtx        Pointer    to MD5 context
+ *
+ *  Return Value:
+ *      None
+ */
+VOID MD5Init(MD5_CTX *pCtx)
+{
+    pCtx->Buf[0]=0x67452301;
+    pCtx->Buf[1]=0xefcdab89;
+    pCtx->Buf[2]=0x98badcfe;
+    pCtx->Buf[3]=0x10325476;
+
+    pCtx->LenInBitCount[0]=0;
+    pCtx->LenInBitCount[1]=0;
+}
+
+
+/*
+ *  Function Description:
+ *      Update MD5 Context, allow of an arrary of octets as the next portion
+ *      of the message
+ *
+ *  Arguments:
+ *      pCtx           Pointer to MD5 context
+ *         pData       Pointer to input data
+ *      LenInBytes  The length of input data (unit: byte)
+ *
+ *  Return Value:
+ *      None
+ *
+ *  Note:
+ *      Called after MD5Init or MD5Update(itself)
+ */
+VOID MD5Update(MD5_CTX *pCtx, UCHAR *pData, UINT32 LenInBytes)
+{
+
+    UINT32 TfTimes;
+    UINT32 temp;
+       unsigned int i;
+
+    temp = pCtx->LenInBitCount[0];
+
+    pCtx->LenInBitCount[0] = (UINT32) (pCtx->LenInBitCount[0] + (LenInBytes << 3));
+
+    if (pCtx->LenInBitCount[0] < temp)
+        pCtx->LenInBitCount[1]++;   //carry in
+
+    pCtx->LenInBitCount[1] += LenInBytes >> 29;
+
+    // mod 64 bytes
+    temp = (temp >> 3) & 0x3f;
+
+    // process lacks of 64-byte data
+    if (temp)
+    {
+        UCHAR *pAds = (UCHAR *) pCtx->Input + temp;
+
+        if ((temp+LenInBytes) < 64)
+        {
+            NdisMoveMemory(pAds, (UCHAR *)pData, LenInBytes);
+            return;
+        }
+
+        NdisMoveMemory(pAds, (UCHAR *)pData, 64-temp);
+        byteReverse(pCtx->Input, 16);
+        MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input);
+
+        pData += 64-temp;
+        LenInBytes -= 64-temp;
+    } // end of if (temp)
+
+
+    TfTimes = (LenInBytes >> 6);
+
+    for (i=TfTimes; i>0; i--)
+    {
+        NdisMoveMemory(pCtx->Input, (UCHAR *)pData, 64);
+        byteReverse(pCtx->Input, 16);
+        MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input);
+        pData += 64;
+        LenInBytes -= 64;
+    } // end of for
+
+    // buffering lacks of 64-byte data
+    if(LenInBytes)
+        NdisMoveMemory(pCtx->Input, (UCHAR *)pData, LenInBytes);
+
+}
+
+
+/*
+ *  Function Description:
+ *      Append padding bits and length of original message in the tail
+ *      The message digest has to be completed in the end
+ *
+ *  Arguments:
+ *      Digest         Output of Digest-Message for MD5
+ *     pCtx        Pointer     to MD5 context
+ *
+ *  Return Value:
+ *      None
+ *
+ *  Note:
+ *      Called after MD5Update
+ */
+VOID MD5Final(UCHAR Digest[16], MD5_CTX *pCtx)
+{
+    UCHAR Remainder;
+    UCHAR PadLenInBytes;
+    UCHAR *pAppend=0;
+    unsigned int i;
+
+    Remainder = (UCHAR)((pCtx->LenInBitCount[0] >> 3) & 0x3f);
+
+    PadLenInBytes = (Remainder < 56) ? (56-Remainder) : (120-Remainder);
+
+    pAppend = (UCHAR *)pCtx->Input + Remainder;
+
+    // padding bits without crossing block(64-byte based) boundary
+    if (Remainder < 56)
+    {
+        *pAppend = 0x80;
+        PadLenInBytes --;
+
+        NdisZeroMemory((UCHAR *)pCtx->Input + Remainder+1, PadLenInBytes);
+
+               // add data-length field, from low to high
+               for (i=0; i<4; i++)
+        {
+               pCtx->Input[56+i] = (UCHAR)((pCtx->LenInBitCount[0] >> (i << 3)) & 0xff);
+               pCtx->Input[60+i] = (UCHAR)((pCtx->LenInBitCount[1] >> (i << 3)) & 0xff);
+       }
+
+        byteReverse(pCtx->Input, 16);
+        MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input);
+    } // end of if
+
+    // padding bits with crossing block(64-byte based) boundary
+    else
+    {
+        // the first block ===
+        *pAppend = 0x80;
+        PadLenInBytes --;
+
+        NdisZeroMemory((UCHAR *)pCtx->Input + Remainder+1, (64-Remainder-1));
+        PadLenInBytes -= (64 - Remainder - 1);
+
+        byteReverse(pCtx->Input, 16);
+        MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input);
+
+
+        // the second block ===
+        NdisZeroMemory((UCHAR *)pCtx->Input, PadLenInBytes);
+
+        // add data-length field
+        for (i=0; i<4; i++)
+        {
+               pCtx->Input[56+i] = (UCHAR)((pCtx->LenInBitCount[0] >> (i << 3)) & 0xff);
+               pCtx->Input[60+i] = (UCHAR)((pCtx->LenInBitCount[1] >> (i << 3)) & 0xff);
+       }
+
+        byteReverse(pCtx->Input, 16);
+        MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input);
+    } // end of else
+
+
+    NdisMoveMemory((UCHAR *)Digest, (UINT32 *)pCtx->Buf, 16); // output
+    byteReverse((UCHAR *)Digest, 4);
+    NdisZeroMemory(pCtx, sizeof(pCtx)); // memory free
+}
+
+
+/*
+ *  Function Description:
+ *      The central algorithm of MD5, consists of four rounds and sixteen
+ *     steps per round
+ *
+ *  Arguments:
+ *      Buf     Buffers of four states (output: 16 bytes)
+ *         Mes     Input data (input: 64 bytes)
+ *
+ *  Return Value:
+ *      None
+ *
+ *  Note:
+ *      Called by MD5Update or MD5Final
+ */
+VOID MD5Transform(UINT32 Buf[4], UINT32 Mes[16])
+{
+    UINT32 Reg[4], Temp;
+       unsigned int i;
+
+    static UCHAR LShiftVal[16] =
+    {
+        7, 12, 17, 22,
+               5, 9 , 14, 20,
+               4, 11, 16, 23,
+               6, 10, 15, 21,
+       };
+
+
+       // [equal to 4294967296*abs(sin(index))]
+    static UINT32 MD5Table[64] =
+       {
+               0xd76aa478,     0xe8c7b756,     0x242070db,     0xc1bdceee,
+               0xf57c0faf,     0x4787c62a,     0xa8304613, 0xfd469501,
+               0x698098d8,     0x8b44f7af,     0xffff5bb1,     0x895cd7be,
+       0x6b901122,     0xfd987193,     0xa679438e,     0x49b40821,
+
+       0xf61e2562,     0xc040b340,     0x265e5a51,     0xe9b6c7aa,
+       0xd62f105d,     0x02441453,     0xd8a1e681,     0xe7d3fbc8,
+       0x21e1cde6,     0xc33707d6,     0xf4d50d87,     0x455a14ed,
+       0xa9e3e905,     0xfcefa3f8,     0x676f02d9,     0x8d2a4c8a,
+
+       0xfffa3942,     0x8771f681,     0x6d9d6122,     0xfde5380c,
+       0xa4beea44,     0x4bdecfa9,     0xf6bb4b60,     0xbebfbc70,
+       0x289b7ec6,     0xeaa127fa,     0xd4ef3085,     0x04881d05,
+       0xd9d4d039,     0xe6db99e5,     0x1fa27cf8,     0xc4ac5665,
+
+       0xf4292244,     0x432aff97,     0xab9423a7,     0xfc93a039,
+               0x655b59c3,     0x8f0ccc92,     0xffeff47d,     0x85845dd1,
+       0x6fa87e4f,     0xfe2ce6e0,     0xa3014314,     0x4e0811a1,
+       0xf7537e82,     0xbd3af235,     0x2ad7d2bb,     0xeb86d391
+       };
+
+
+    for (i=0; i<4; i++)
+        Reg[i]=Buf[i];
+
+
+    // 64 steps in MD5 algorithm
+    for (i=0; i<16; i++)
+    {
+        MD5Step(MD5_F1, Reg[0], Reg[1], Reg[2], Reg[3], Mes[i],
+                MD5Table[i], LShiftVal[i & 0x3]);
+
+        // one-word right shift
+        Temp   = Reg[3];
+        Reg[3] = Reg[2];
+        Reg[2] = Reg[1];
+        Reg[1] = Reg[0];
+        Reg[0] = Temp;
+    }
+    for (i=16; i<32; i++)
+    {
+        MD5Step(MD5_F2, Reg[0], Reg[1], Reg[2], Reg[3], Mes[(5*(i & 0xf)+1) & 0xf],
+                MD5Table[i], LShiftVal[(0x1 << 2)+(i & 0x3)]);
+
+        // one-word right shift
+        Temp   = Reg[3];
+        Reg[3] = Reg[2];
+        Reg[2] = Reg[1];
+        Reg[1] = Reg[0];
+        Reg[0] = Temp;
+    }
+    for (i=32; i<48; i++)
+    {
+        MD5Step(MD5_F3, Reg[0], Reg[1], Reg[2], Reg[3], Mes[(3*(i & 0xf)+5) & 0xf],
+                MD5Table[i], LShiftVal[(0x1 << 3)+(i & 0x3)]);
+
+        // one-word right shift
+        Temp   = Reg[3];
+        Reg[3] = Reg[2];
+        Reg[2] = Reg[1];
+        Reg[1] = Reg[0];
+        Reg[0] = Temp;
+    }
+    for (i=48; i<64; i++)
+    {
+        MD5Step(MD5_F4, Reg[0], Reg[1], Reg[2], Reg[3], Mes[(7*(i & 0xf)) & 0xf],
+                MD5Table[i], LShiftVal[(0x3 << 2)+(i & 0x3)]);
+
+        // one-word right shift
+        Temp   = Reg[3];
+        Reg[3] = Reg[2];
+        Reg[2] = Reg[1];
+        Reg[1] = Reg[0];
+        Reg[0] = Temp;
+    }
+
+
+    // (temporary)output
+    for (i=0; i<4; i++)
+        Buf[i] += Reg[i];
+
+}
+
+
+
+/* =========================  SHA-1 implementation ========================== */
+// four base functions for SHA-1
+#define SHA1_F1(b, c, d)    (((b) & (c)) | ((~b) & (d)))
+#define SHA1_F2(b, c, d)    ((b) ^ (c) ^ (d))
+#define SHA1_F3(b, c, d)    (((b) & (c)) | ((b) & (d)) | ((c) & (d)))
+
+
+#define SHA1Step(f, a, b, c, d, e, w, k)    \
+    ( e        += ( f(b, c, d) + w + k + CYCLIC_LEFT_SHIFT(a, 5)) & 0xffffffff, \
+      b = CYCLIC_LEFT_SHIFT(b, 30) )
+
+//Initiate SHA-1 Context satisfied in RFC 3174
+VOID SHAInit(SHA_CTX *pCtx)
+{
+    pCtx->Buf[0]=0x67452301;
+    pCtx->Buf[1]=0xefcdab89;
+    pCtx->Buf[2]=0x98badcfe;
+    pCtx->Buf[3]=0x10325476;
+    pCtx->Buf[4]=0xc3d2e1f0;
+
+    pCtx->LenInBitCount[0]=0;
+    pCtx->LenInBitCount[1]=0;
+}
+
+/*
+ *  Function Description:
+ *      Update SHA-1 Context, allow of an arrary of octets as the next
+ *      portion of the message
+ *
+ *  Arguments:
+ *      pCtx           Pointer to SHA-1 context
+ *         pData       Pointer to input data
+ *      LenInBytes  The length of input data (unit: byte)
+ *
+ *  Return Value:
+ *      error       indicate more than pow(2,64) bits of data
+ *
+ *  Note:
+ *      Called after SHAInit or SHAUpdate(itself)
+ */
+UCHAR SHAUpdate(SHA_CTX *pCtx, UCHAR *pData, UINT32 LenInBytes)
+{
+    UINT32 TfTimes;
+    UINT32 temp1,temp2;
+       unsigned int i;
+       UCHAR err=1;
+
+    temp1 = pCtx->LenInBitCount[0];
+    temp2 = pCtx->LenInBitCount[1];
+
+    pCtx->LenInBitCount[0] = (UINT32) (pCtx->LenInBitCount[0] + (LenInBytes << 3));
+    if (pCtx->LenInBitCount[0] < temp1)
+        pCtx->LenInBitCount[1]++;   //carry in
+
+
+    pCtx->LenInBitCount[1] = (UINT32) (pCtx->LenInBitCount[1] +(LenInBytes >> 29));
+    if (pCtx->LenInBitCount[1] < temp2)
+        return (err);   //check total length of original data
+
+
+    // mod 64 bytes
+    temp1 = (temp1 >> 3) & 0x3f;
+
+    // process lacks of 64-byte data
+    if (temp1)
+    {
+        UCHAR *pAds = (UCHAR *) pCtx->Input + temp1;
+
+        if ((temp1+LenInBytes) < 64)
+        {
+            NdisMoveMemory(pAds, (UCHAR *)pData, LenInBytes);
+            return (0);
+        }
+
+        NdisMoveMemory(pAds, (UCHAR *)pData, 64-temp1);
+        byteReverse((UCHAR *)pCtx->Input, 16);
+
+        NdisZeroMemory((UCHAR *)pCtx->Input + 64, 16);
+        SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input);
+
+        pData += 64-temp1;
+        LenInBytes -= 64-temp1;
+    } // end of if (temp1)
+
+
+    TfTimes = (LenInBytes >> 6);
+
+    for (i=TfTimes; i>0; i--)
+    {
+        NdisMoveMemory(pCtx->Input, (UCHAR *)pData, 64);
+        byteReverse((UCHAR *)pCtx->Input, 16);
+
+        NdisZeroMemory((UCHAR *)pCtx->Input + 64, 16);
+        SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input);
+        pData += 64;
+        LenInBytes -= 64;
+    } // end of for
+
+    // buffering lacks of 64-byte data
+    if(LenInBytes)
+        NdisMoveMemory(pCtx->Input, (UCHAR *)pData, LenInBytes);
+
+       return (0);
+
+}
+
+// Append padding bits and length of original message in the tail
+// The message digest has to be completed in the end
+VOID SHAFinal(SHA_CTX *pCtx, UCHAR Digest[20])
+{
+    UCHAR Remainder;
+    UCHAR PadLenInBytes;
+    UCHAR *pAppend=0;
+    unsigned int i;
+
+    Remainder = (UCHAR)((pCtx->LenInBitCount[0] >> 3) & 0x3f);
+
+    pAppend = (UCHAR *)pCtx->Input + Remainder;
+
+    PadLenInBytes = (Remainder < 56) ? (56-Remainder) : (120-Remainder);
+
+    // padding bits without crossing block(64-byte based) boundary
+    if (Remainder < 56)
+    {
+        *pAppend = 0x80;
+        PadLenInBytes --;
+
+        NdisZeroMemory((UCHAR *)pCtx->Input + Remainder+1, PadLenInBytes);
+
+               // add data-length field, from high to low
+        for (i=0; i<4; i++)
+        {
+               pCtx->Input[56+i] = (UCHAR)((pCtx->LenInBitCount[1] >> ((3-i) << 3)) & 0xff);
+               pCtx->Input[60+i] = (UCHAR)((pCtx->LenInBitCount[0] >> ((3-i) << 3)) & 0xff);
+       }
+
+        byteReverse((UCHAR *)pCtx->Input, 16);
+        NdisZeroMemory((UCHAR *)pCtx->Input + 64, 14);
+        SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input);
+    } // end of if
+
+    // padding bits with crossing block(64-byte based) boundary
+    else
+    {
+        // the first block ===
+        *pAppend = 0x80;
+        PadLenInBytes --;
+
+        NdisZeroMemory((UCHAR *)pCtx->Input + Remainder+1, (64-Remainder-1));
+        PadLenInBytes -= (64 - Remainder - 1);
+
+        byteReverse((UCHAR *)pCtx->Input, 16);
+        NdisZeroMemory((UCHAR *)pCtx->Input + 64, 16);
+        SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input);
+
+
+        // the second block ===
+        NdisZeroMemory((UCHAR *)pCtx->Input, PadLenInBytes);
+
+               // add data-length field
+               for (i=0; i<4; i++)
+        {
+               pCtx->Input[56+i] = (UCHAR)((pCtx->LenInBitCount[1] >> ((3-i) << 3)) & 0xff);
+               pCtx->Input[60+i] = (UCHAR)((pCtx->LenInBitCount[0] >> ((3-i) << 3)) & 0xff);
+       }
+
+        byteReverse((UCHAR *)pCtx->Input, 16);
+        NdisZeroMemory((UCHAR *)pCtx->Input + 64, 16);
+        SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input);
+    } // end of else
+
+
+    //Output, bytereverse
+    for (i=0; i<20; i++)
+    {
+        Digest [i] = (UCHAR)(pCtx->Buf[i>>2] >> 8*(3-(i & 0x3)));
+    }
+
+    NdisZeroMemory(pCtx, sizeof(pCtx)); // memory free
+}
+
+
+// The central algorithm of SHA-1, consists of four rounds and
+// twenty steps per round
+VOID SHATransform(UINT32 Buf[5], UINT32 Mes[20])
+{
+    UINT32 Reg[5],Temp;
+       unsigned int i;
+    UINT32 W[80];
+
+    static UINT32 SHA1Table[4] = { 0x5a827999, 0x6ed9eba1,
+                                  0x8f1bbcdc, 0xca62c1d6 };
+
+    Reg[0]=Buf[0];
+       Reg[1]=Buf[1];
+       Reg[2]=Buf[2];
+       Reg[3]=Buf[3];
+       Reg[4]=Buf[4];
+
+    //the first octet of a word is stored in the 0th element, bytereverse
+       for(i = 0; i < 16; i++)
+    {
+       W[i]  = (Mes[i] >> 24) & 0xff;
+        W[i] |= (Mes[i] >> 8 ) & 0xff00;
+        W[i] |= (Mes[i] << 8 ) & 0xff0000;
+        W[i] |= (Mes[i] << 24) & 0xff000000;
+    }
+
+
+    for        (i = 0; i < 64; i++)
+           W[16+i] = CYCLIC_LEFT_SHIFT(W[i] ^ W[2+i] ^ W[8+i] ^ W[13+i], 1);
+
+
+    // 80 steps in SHA-1 algorithm
+    for (i=0; i<80; i++)
+    {
+        if (i<20)
+            SHA1Step(SHA1_F1, Reg[0], Reg[1], Reg[2], Reg[3], Reg[4],
+                     W[i], SHA1Table[0]);
+
+        else if (i>=20 && i<40)
+            SHA1Step(SHA1_F2, Reg[0], Reg[1], Reg[2], Reg[3], Reg[4],
+                     W[i], SHA1Table[1]);
+
+               else if (i>=40 && i<60)
+            SHA1Step(SHA1_F3, Reg[0], Reg[1], Reg[2], Reg[3], Reg[4],
+                      W[i], SHA1Table[2]);
+
+        else
+            SHA1Step(SHA1_F2, Reg[0], Reg[1], Reg[2], Reg[3], Reg[4],
+                     W[i], SHA1Table[3]);
+
+
+       // one-word right shift
+               Temp   = Reg[4];
+        Reg[4] = Reg[3];
+        Reg[3] = Reg[2];
+        Reg[2] = Reg[1];
+        Reg[1] = Reg[0];
+        Reg[0] = Temp;
+
+    } // end of for-loop
+
+
+    // (temporary)output
+    for (i=0; i<5; i++)
+        Buf[i] += Reg[i];
+
+}
+
+
+/* =========================  AES En/Decryption ========================== */
+
+/* forward S-box */
+static uint32 FSb[256] =
+{
+       0x63, 0x7C,     0x77, 0x7B,     0xF2, 0x6B,     0x6F, 0xC5,
+       0x30, 0x01,     0x67, 0x2B,     0xFE, 0xD7,     0xAB, 0x76,
+       0xCA, 0x82,     0xC9, 0x7D,     0xFA, 0x59,     0x47, 0xF0,
+       0xAD, 0xD4,     0xA2, 0xAF,     0x9C, 0xA4,     0x72, 0xC0,
+       0xB7, 0xFD,     0x93, 0x26,     0x36, 0x3F,     0xF7, 0xCC,
+       0x34, 0xA5,     0xE5, 0xF1,     0x71, 0xD8,     0x31, 0x15,
+       0x04, 0xC7,     0x23, 0xC3,     0x18, 0x96,     0x05, 0x9A,
+       0x07, 0x12,     0x80, 0xE2,     0xEB, 0x27,     0xB2, 0x75,
+       0x09, 0x83,     0x2C, 0x1A,     0x1B, 0x6E,     0x5A, 0xA0,
+       0x52, 0x3B,     0xD6, 0xB3,     0x29, 0xE3,     0x2F, 0x84,
+       0x53, 0xD1,     0x00, 0xED,     0x20, 0xFC,     0xB1, 0x5B,
+       0x6A, 0xCB,     0xBE, 0x39,     0x4A, 0x4C,     0x58, 0xCF,
+       0xD0, 0xEF,     0xAA, 0xFB,     0x43, 0x4D,     0x33, 0x85,
+       0x45, 0xF9,     0x02, 0x7F,     0x50, 0x3C,     0x9F, 0xA8,
+       0x51, 0xA3,     0x40, 0x8F,     0x92, 0x9D,     0x38, 0xF5,
+       0xBC, 0xB6,     0xDA, 0x21,     0x10, 0xFF,     0xF3, 0xD2,
+       0xCD, 0x0C,     0x13, 0xEC,     0x5F, 0x97,     0x44, 0x17,
+       0xC4, 0xA7,     0x7E, 0x3D,     0x64, 0x5D,     0x19, 0x73,
+       0x60, 0x81,     0x4F, 0xDC,     0x22, 0x2A,     0x90, 0x88,
+       0x46, 0xEE,     0xB8, 0x14,     0xDE, 0x5E,     0x0B, 0xDB,
+       0xE0, 0x32,     0x3A, 0x0A,     0x49, 0x06,     0x24, 0x5C,
+       0xC2, 0xD3,     0xAC, 0x62,     0x91, 0x95,     0xE4, 0x79,
+       0xE7, 0xC8,     0x37, 0x6D,     0x8D, 0xD5,     0x4E, 0xA9,
+       0x6C, 0x56,     0xF4, 0xEA,     0x65, 0x7A,     0xAE, 0x08,
+       0xBA, 0x78,     0x25, 0x2E,     0x1C, 0xA6,     0xB4, 0xC6,
+       0xE8, 0xDD,     0x74, 0x1F,     0x4B, 0xBD,     0x8B, 0x8A,
+       0x70, 0x3E,     0xB5, 0x66,     0x48, 0x03,     0xF6, 0x0E,
+       0x61, 0x35,     0x57, 0xB9,     0x86, 0xC1,     0x1D, 0x9E,
+       0xE1, 0xF8,     0x98, 0x11,     0x69, 0xD9,     0x8E, 0x94,
+       0x9B, 0x1E,     0x87, 0xE9,     0xCE, 0x55,     0x28, 0xDF,
+       0x8C, 0xA1,     0x89, 0x0D,     0xBF, 0xE6,     0x42, 0x68,
+       0x41, 0x99,     0x2D, 0x0F,     0xB0, 0x54,     0xBB, 0x16
+};
+
+/* forward table */
+#define        FT \
+\
+       V(C6,63,63,A5), V(F8,7C,7C,84), V(EE,77,77,99), V(F6,7B,7B,8D), \
+       V(FF,F2,F2,0D), V(D6,6B,6B,BD), V(DE,6F,6F,B1), V(91,C5,C5,54), \
+       V(60,30,30,50), V(02,01,01,03), V(CE,67,67,A9), V(56,2B,2B,7D), \
+       V(E7,FE,FE,19), V(B5,D7,D7,62), V(4D,AB,AB,E6), V(EC,76,76,9A), \
+       V(8F,CA,CA,45), V(1F,82,82,9D), V(89,C9,C9,40), V(FA,7D,7D,87), \
+       V(EF,FA,FA,15), V(B2,59,59,EB), V(8E,47,47,C9), V(FB,F0,F0,0B), \
+       V(41,AD,AD,EC), V(B3,D4,D4,67), V(5F,A2,A2,FD), V(45,AF,AF,EA), \
+       V(23,9C,9C,BF), V(53,A4,A4,F7), V(E4,72,72,96), V(9B,C0,C0,5B), \
+       V(75,B7,B7,C2), V(E1,FD,FD,1C), V(3D,93,93,AE), V(4C,26,26,6A), \
+       V(6C,36,36,5A), V(7E,3F,3F,41), V(F5,F7,F7,02), V(83,CC,CC,4F), \
+       V(68,34,34,5C), V(51,A5,A5,F4), V(D1,E5,E5,34), V(F9,F1,F1,08), \
+       V(E2,71,71,93), V(AB,D8,D8,73), V(62,31,31,53), V(2A,15,15,3F), \
+       V(08,04,04,0C), V(95,C7,C7,52), V(46,23,23,65), V(9D,C3,C3,5E), \
+       V(30,18,18,28), V(37,96,96,A1), V(0A,05,05,0F), V(2F,9A,9A,B5), \
+       V(0E,07,07,09), V(24,12,12,36), V(1B,80,80,9B), V(DF,E2,E2,3D), \
+       V(CD,EB,EB,26), V(4E,27,27,69), V(7F,B2,B2,CD), V(EA,75,75,9F), \
+       V(12,09,09,1B), V(1D,83,83,9E), V(58,2C,2C,74), V(34,1A,1A,2E), \
+       V(36,1B,1B,2D), V(DC,6E,6E,B2), V(B4,5A,5A,EE), V(5B,A0,A0,FB), \
+       V(A4,52,52,F6), V(76,3B,3B,4D), V(B7,D6,D6,61), V(7D,B3,B3,CE), \
+       V(52,29,29,7B), V(DD,E3,E3,3E), V(5E,2F,2F,71), V(13,84,84,97), \
+       V(A6,53,53,F5), V(B9,D1,D1,68), V(00,00,00,00), V(C1,ED,ED,2C), \
+       V(40,20,20,60), V(E3,FC,FC,1F), V(79,B1,B1,C8), V(B6,5B,5B,ED), \
+       V(D4,6A,6A,BE), V(8D,CB,CB,46), V(67,BE,BE,D9), V(72,39,39,4B), \
+       V(94,4A,4A,DE), V(98,4C,4C,D4), V(B0,58,58,E8), V(85,CF,CF,4A), \
+       V(BB,D0,D0,6B), V(C5,EF,EF,2A), V(4F,AA,AA,E5), V(ED,FB,FB,16), \
+       V(86,43,43,C5), V(9A,4D,4D,D7), V(66,33,33,55), V(11,85,85,94), \
+       V(8A,45,45,CF), V(E9,F9,F9,10), V(04,02,02,06), V(FE,7F,7F,81), \
+       V(A0,50,50,F0), V(78,3C,3C,44), V(25,9F,9F,BA), V(4B,A8,A8,E3), \
+       V(A2,51,51,F3), V(5D,A3,A3,FE), V(80,40,40,C0), V(05,8F,8F,8A), \
+       V(3F,92,92,AD), V(21,9D,9D,BC), V(70,38,38,48), V(F1,F5,F5,04), \
+       V(63,BC,BC,DF), V(77,B6,B6,C1), V(AF,DA,DA,75), V(42,21,21,63), \
+       V(20,10,10,30), V(E5,FF,FF,1A), V(FD,F3,F3,0E), V(BF,D2,D2,6D), \
+       V(81,CD,CD,4C), V(18,0C,0C,14), V(26,13,13,35), V(C3,EC,EC,2F), \
+       V(BE,5F,5F,E1), V(35,97,97,A2), V(88,44,44,CC), V(2E,17,17,39), \
+       V(93,C4,C4,57), V(55,A7,A7,F2), V(FC,7E,7E,82), V(7A,3D,3D,47), \
+       V(C8,64,64,AC), V(BA,5D,5D,E7), V(32,19,19,2B), V(E6,73,73,95), \
+       V(C0,60,60,A0), V(19,81,81,98), V(9E,4F,4F,D1), V(A3,DC,DC,7F), \
+       V(44,22,22,66), V(54,2A,2A,7E), V(3B,90,90,AB), V(0B,88,88,83), \
+       V(8C,46,46,CA), V(C7,EE,EE,29), V(6B,B8,B8,D3), V(28,14,14,3C), \
+       V(A7,DE,DE,79), V(BC,5E,5E,E2), V(16,0B,0B,1D), V(AD,DB,DB,76), \
+       V(DB,E0,E0,3B), V(64,32,32,56), V(74,3A,3A,4E), V(14,0A,0A,1E), \
+       V(92,49,49,DB), V(0C,06,06,0A), V(48,24,24,6C), V(B8,5C,5C,E4), \
+       V(9F,C2,C2,5D), V(BD,D3,D3,6E), V(43,AC,AC,EF), V(C4,62,62,A6), \
+       V(39,91,91,A8), V(31,95,95,A4), V(D3,E4,E4,37), V(F2,79,79,8B), \
+       V(D5,E7,E7,32), V(8B,C8,C8,43), V(6E,37,37,59), V(DA,6D,6D,B7), \
+       V(01,8D,8D,8C), V(B1,D5,D5,64), V(9C,4E,4E,D2), V(49,A9,A9,E0), \
+       V(D8,6C,6C,B4), V(AC,56,56,FA), V(F3,F4,F4,07), V(CF,EA,EA,25), \
+       V(CA,65,65,AF), V(F4,7A,7A,8E), V(47,AE,AE,E9), V(10,08,08,18), \
+       V(6F,BA,BA,D5), V(F0,78,78,88), V(4A,25,25,6F), V(5C,2E,2E,72), \
+       V(38,1C,1C,24), V(57,A6,A6,F1), V(73,B4,B4,C7), V(97,C6,C6,51), \
+       V(CB,E8,E8,23), V(A1,DD,DD,7C), V(E8,74,74,9C), V(3E,1F,1F,21), \
+       V(96,4B,4B,DD), V(61,BD,BD,DC), V(0D,8B,8B,86), V(0F,8A,8A,85), \
+       V(E0,70,70,90), V(7C,3E,3E,42), V(71,B5,B5,C4), V(CC,66,66,AA), \
+       V(90,48,48,D8), V(06,03,03,05), V(F7,F6,F6,01), V(1C,0E,0E,12), \
+       V(C2,61,61,A3), V(6A,35,35,5F), V(AE,57,57,F9), V(69,B9,B9,D0), \
+       V(17,86,86,91), V(99,C1,C1,58), V(3A,1D,1D,27), V(27,9E,9E,B9), \
+       V(D9,E1,E1,38), V(EB,F8,F8,13), V(2B,98,98,B3), V(22,11,11,33), \
+       V(D2,69,69,BB), V(A9,D9,D9,70), V(07,8E,8E,89), V(33,94,94,A7), \
+       V(2D,9B,9B,B6), V(3C,1E,1E,22), V(15,87,87,92), V(C9,E9,E9,20), \
+       V(87,CE,CE,49), V(AA,55,55,FF), V(50,28,28,78), V(A5,DF,DF,7A), \
+       V(03,8C,8C,8F), V(59,A1,A1,F8), V(09,89,89,80), V(1A,0D,0D,17), \
+       V(65,BF,BF,DA), V(D7,E6,E6,31), V(84,42,42,C6), V(D0,68,68,B8), \
+       V(82,41,41,C3), V(29,99,99,B0), V(5A,2D,2D,77), V(1E,0F,0F,11), \
+       V(7B,B0,B0,CB), V(A8,54,54,FC), V(6D,BB,BB,D6), V(2C,16,16,3A)
+
+#define        V(a,b,c,d) 0x##a##b##c##d
+static uint32 FT0[256] = { FT };
+#undef V
+
+#define        V(a,b,c,d) 0x##d##a##b##c
+static uint32 FT1[256] = { FT };
+#undef V
+
+#define        V(a,b,c,d) 0x##c##d##a##b
+static uint32 FT2[256] = { FT };
+#undef V
+
+#define        V(a,b,c,d) 0x##b##c##d##a
+static uint32 FT3[256] = { FT };
+#undef V
+
+#undef FT
+
+/* reverse S-box */
+
+static uint32 RSb[256] =
+{
+       0x52, 0x09,     0x6A, 0xD5,     0x30, 0x36,     0xA5, 0x38,
+       0xBF, 0x40,     0xA3, 0x9E,     0x81, 0xF3,     0xD7, 0xFB,
+       0x7C, 0xE3,     0x39, 0x82,     0x9B, 0x2F,     0xFF, 0x87,
+       0x34, 0x8E,     0x43, 0x44,     0xC4, 0xDE,     0xE9, 0xCB,
+       0x54, 0x7B,     0x94, 0x32,     0xA6, 0xC2,     0x23, 0x3D,
+       0xEE, 0x4C,     0x95, 0x0B,     0x42, 0xFA,     0xC3, 0x4E,
+       0x08, 0x2E,     0xA1, 0x66,     0x28, 0xD9,     0x24, 0xB2,
+       0x76, 0x5B,     0xA2, 0x49,     0x6D, 0x8B,     0xD1, 0x25,
+       0x72, 0xF8,     0xF6, 0x64,     0x86, 0x68,     0x98, 0x16,
+       0xD4, 0xA4,     0x5C, 0xCC,     0x5D, 0x65,     0xB6, 0x92,
+       0x6C, 0x70,     0x48, 0x50,     0xFD, 0xED,     0xB9, 0xDA,
+       0x5E, 0x15,     0x46, 0x57,     0xA7, 0x8D,     0x9D, 0x84,
+       0x90, 0xD8,     0xAB, 0x00,     0x8C, 0xBC,     0xD3, 0x0A,
+       0xF7, 0xE4,     0x58, 0x05,     0xB8, 0xB3,     0x45, 0x06,
+       0xD0, 0x2C,     0x1E, 0x8F,     0xCA, 0x3F,     0x0F, 0x02,
+       0xC1, 0xAF,     0xBD, 0x03,     0x01, 0x13,     0x8A, 0x6B,
+       0x3A, 0x91,     0x11, 0x41,     0x4F, 0x67,     0xDC, 0xEA,
+       0x97, 0xF2,     0xCF, 0xCE,     0xF0, 0xB4,     0xE6, 0x73,
+       0x96, 0xAC,     0x74, 0x22,     0xE7, 0xAD,     0x35, 0x85,
+       0xE2, 0xF9,     0x37, 0xE8,     0x1C, 0x75,     0xDF, 0x6E,
+       0x47, 0xF1,     0x1A, 0x71,     0x1D, 0x29,     0xC5, 0x89,
+       0x6F, 0xB7,     0x62, 0x0E,     0xAA, 0x18,     0xBE, 0x1B,
+       0xFC, 0x56,     0x3E, 0x4B,     0xC6, 0xD2,     0x79, 0x20,
+       0x9A, 0xDB,     0xC0, 0xFE,     0x78, 0xCD,     0x5A, 0xF4,
+       0x1F, 0xDD,     0xA8, 0x33,     0x88, 0x07,     0xC7, 0x31,
+       0xB1, 0x12,     0x10, 0x59,     0x27, 0x80,     0xEC, 0x5F,
+       0x60, 0x51,     0x7F, 0xA9,     0x19, 0xB5,     0x4A, 0x0D,
+       0x2D, 0xE5,     0x7A, 0x9F,     0x93, 0xC9,     0x9C, 0xEF,
+       0xA0, 0xE0,     0x3B, 0x4D,     0xAE, 0x2A,     0xF5, 0xB0,
+       0xC8, 0xEB,     0xBB, 0x3C,     0x83, 0x53,     0x99, 0x61,
+       0x17, 0x2B,     0x04, 0x7E,     0xBA, 0x77,     0xD6, 0x26,
+       0xE1, 0x69,     0x14, 0x63,     0x55, 0x21,     0x0C, 0x7D
+};
+
+/* reverse table */
+
+#define        RT \
+\
+       V(51,F4,A7,50), V(7E,41,65,53), V(1A,17,A4,C3), V(3A,27,5E,96), \
+       V(3B,AB,6B,CB), V(1F,9D,45,F1), V(AC,FA,58,AB), V(4B,E3,03,93), \
+       V(20,30,FA,55), V(AD,76,6D,F6), V(88,CC,76,91), V(F5,02,4C,25), \
+       V(4F,E5,D7,FC), V(C5,2A,CB,D7), V(26,35,44,80), V(B5,62,A3,8F), \
+       V(DE,B1,5A,49), V(25,BA,1B,67), V(45,EA,0E,98), V(5D,FE,C0,E1), \
+       V(C3,2F,75,02), V(81,4C,F0,12), V(8D,46,97,A3), V(6B,D3,F9,C6), \
+       V(03,8F,5F,E7), V(15,92,9C,95), V(BF,6D,7A,EB), V(95,52,59,DA), \
+       V(D4,BE,83,2D), V(58,74,21,D3), V(49,E0,69,29), V(8E,C9,C8,44), \
+       V(75,C2,89,6A), V(F4,8E,79,78), V(99,58,3E,6B), V(27,B9,71,DD), \
+       V(BE,E1,4F,B6), V(F0,88,AD,17), V(C9,20,AC,66), V(7D,CE,3A,B4), \
+       V(63,DF,4A,18), V(E5,1A,31,82), V(97,51,33,60), V(62,53,7F,45), \
+       V(B1,64,77,E0), V(BB,6B,AE,84), V(FE,81,A0,1C), V(F9,08,2B,94), \
+       V(70,48,68,58), V(8F,45,FD,19), V(94,DE,6C,87), V(52,7B,F8,B7), \
+       V(AB,73,D3,23), V(72,4B,02,E2), V(E3,1F,8F,57), V(66,55,AB,2A), \
+       V(B2,EB,28,07), V(2F,B5,C2,03), V(86,C5,7B,9A), V(D3,37,08,A5), \
+       V(30,28,87,F2), V(23,BF,A5,B2), V(02,03,6A,BA), V(ED,16,82,5C), \
+       V(8A,CF,1C,2B), V(A7,79,B4,92), V(F3,07,F2,F0), V(4E,69,E2,A1), \
+       V(65,DA,F4,CD), V(06,05,BE,D5), V(D1,34,62,1F), V(C4,A6,FE,8A), \
+       V(34,2E,53,9D), V(A2,F3,55,A0), V(05,8A,E1,32), V(A4,F6,EB,75), \
+       V(0B,83,EC,39), V(40,60,EF,AA), V(5E,71,9F,06), V(BD,6E,10,51), \
+       V(3E,21,8A,F9), V(96,DD,06,3D), V(DD,3E,05,AE), V(4D,E6,BD,46), \
+       V(91,54,8D,B5), V(71,C4,5D,05), V(04,06,D4,6F), V(60,50,15,FF), \
+       V(19,98,FB,24), V(D6,BD,E9,97), V(89,40,43,CC), V(67,D9,9E,77), \
+       V(B0,E8,42,BD), V(07,89,8B,88), V(E7,19,5B,38), V(79,C8,EE,DB), \
+       V(A1,7C,0A,47), V(7C,42,0F,E9), V(F8,84,1E,C9), V(00,00,00,00), \
+       V(09,80,86,83), V(32,2B,ED,48), V(1E,11,70,AC), V(6C,5A,72,4E), \
+       V(FD,0E,FF,FB), V(0F,85,38,56), V(3D,AE,D5,1E), V(36,2D,39,27), \
+       V(0A,0F,D9,64), V(68,5C,A6,21), V(9B,5B,54,D1), V(24,36,2E,3A), \
+       V(0C,0A,67,B1), V(93,57,E7,0F), V(B4,EE,96,D2), V(1B,9B,91,9E), \
+       V(80,C0,C5,4F), V(61,DC,20,A2), V(5A,77,4B,69), V(1C,12,1A,16), \
+       V(E2,93,BA,0A), V(C0,A0,2A,E5), V(3C,22,E0,43), V(12,1B,17,1D), \
+       V(0E,09,0D,0B), V(F2,8B,C7,AD), V(2D,B6,A8,B9), V(14,1E,A9,C8), \
+       V(57,F1,19,85), V(AF,75,07,4C), V(EE,99,DD,BB), V(A3,7F,60,FD), \
+       V(F7,01,26,9F), V(5C,72,F5,BC), V(44,66,3B,C5), V(5B,FB,7E,34), \
+       V(8B,43,29,76), V(CB,23,C6,DC), V(B6,ED,FC,68), V(B8,E4,F1,63), \
+       V(D7,31,DC,CA), V(42,63,85,10), V(13,97,22,40), V(84,C6,11,20), \
+       V(85,4A,24,7D), V(D2,BB,3D,F8), V(AE,F9,32,11), V(C7,29,A1,6D), \
+       V(1D,9E,2F,4B), V(DC,B2,30,F3), V(0D,86,52,EC), V(77,C1,E3,D0), \
+       V(2B,B3,16,6C), V(A9,70,B9,99), V(11,94,48,FA), V(47,E9,64,22), \
+       V(A8,FC,8C,C4), V(A0,F0,3F,1A), V(56,7D,2C,D8), V(22,33,90,EF), \
+       V(87,49,4E,C7), V(D9,38,D1,C1), V(8C,CA,A2,FE), V(98,D4,0B,36), \
+       V(A6,F5,81,CF), V(A5,7A,DE,28), V(DA,B7,8E,26), V(3F,AD,BF,A4), \
+       V(2C,3A,9D,E4), V(50,78,92,0D), V(6A,5F,CC,9B), V(54,7E,46,62), \
+       V(F6,8D,13,C2), V(90,D8,B8,E8), V(2E,39,F7,5E), V(82,C3,AF,F5), \
+       V(9F,5D,80,BE), V(69,D0,93,7C), V(6F,D5,2D,A9), V(CF,25,12,B3), \
+       V(C8,AC,99,3B), V(10,18,7D,A7), V(E8,9C,63,6E), V(DB,3B,BB,7B), \
+       V(CD,26,78,09), V(6E,59,18,F4), V(EC,9A,B7,01), V(83,4F,9A,A8), \
+       V(E6,95,6E,65), V(AA,FF,E6,7E), V(21,BC,CF,08), V(EF,15,E8,E6), \
+       V(BA,E7,9B,D9), V(4A,6F,36,CE), V(EA,9F,09,D4), V(29,B0,7C,D6), \
+       V(31,A4,B2,AF), V(2A,3F,23,31), V(C6,A5,94,30), V(35,A2,66,C0), \
+       V(74,4E,BC,37), V(FC,82,CA,A6), V(E0,90,D0,B0), V(33,A7,D8,15), \
+       V(F1,04,98,4A), V(41,EC,DA,F7), V(7F,CD,50,0E), V(17,91,F6,2F), \
+       V(76,4D,D6,8D), V(43,EF,B0,4D), V(CC,AA,4D,54), V(E4,96,04,DF), \
+       V(9E,D1,B5,E3), V(4C,6A,88,1B), V(C1,2C,1F,B8), V(46,65,51,7F), \
+       V(9D,5E,EA,04), V(01,8C,35,5D), V(FA,87,74,73), V(FB,0B,41,2E), \
+       V(B3,67,1D,5A), V(92,DB,D2,52), V(E9,10,56,33), V(6D,D6,47,13), \
+       V(9A,D7,61,8C), V(37,A1,0C,7A), V(59,F8,14,8E), V(EB,13,3C,89), \
+       V(CE,A9,27,EE), V(B7,61,C9,35), V(E1,1C,E5,ED), V(7A,47,B1,3C), \
+       V(9C,D2,DF,59), V(55,F2,73,3F), V(18,14,CE,79), V(73,C7,37,BF), \
+       V(53,F7,CD,EA), V(5F,FD,AA,5B), V(DF,3D,6F,14), V(78,44,DB,86), \
+       V(CA,AF,F3,81), V(B9,68,C4,3E), V(38,24,34,2C), V(C2,A3,40,5F), \
+       V(16,1D,C3,72), V(BC,E2,25,0C), V(28,3C,49,8B), V(FF,0D,95,41), \
+       V(39,A8,01,71), V(08,0C,B3,DE), V(D8,B4,E4,9C), V(64,56,C1,90), \
+       V(7B,CB,84,61), V(D5,32,B6,70), V(48,6C,5C,74), V(D0,B8,57,42)
+
+#define        V(a,b,c,d) 0x##a##b##c##d
+static uint32 RT0[256] = { RT };
+#undef V
+
+#define        V(a,b,c,d) 0x##d##a##b##c
+static uint32 RT1[256] = { RT };
+#undef V
+
+#define        V(a,b,c,d) 0x##c##d##a##b
+static uint32 RT2[256] = { RT };
+#undef V
+
+#define        V(a,b,c,d) 0x##b##c##d##a
+static uint32 RT3[256] = { RT };
+#undef V
+
+#undef RT
+
+/* round constants */
+
+static uint32 RCON[10] =
+{
+       0x01000000,     0x02000000,     0x04000000,     0x08000000,
+       0x10000000,     0x20000000,     0x40000000,     0x80000000,
+       0x1B000000,     0x36000000
+};
+
+/* key schedule        tables */
+
+static int KT_init = 1;
+
+static uint32 KT0[256];
+static uint32 KT1[256];
+static uint32 KT2[256];
+static uint32 KT3[256];
+
+/* platform-independant        32-bit integer manipulation     macros */
+
+#define        GET_UINT32(n,b,i)                                               \
+{                                                                                              \
+       (n)     = (     (uint32) (b)[(i)        ] << 24 )               \
+               | (     (uint32) (b)[(i) + 1] << 16     )               \
+               | (     (uint32) (b)[(i) + 2] <<  8     )               \
+               | (     (uint32) (b)[(i) + 3]           );              \
+}
+
+#define        PUT_UINT32(n,b,i)                                               \
+{                                                                                              \
+       (b)[(i)    ] = (uint8) ( (n) >> 24 );           \
+       (b)[(i) + 1] = (uint8) ( (n) >> 16 );           \
+       (b)[(i) + 2] = (uint8) ( (n) >>  8 );           \
+       (b)[(i) + 3] = (uint8) ( (n)       );           \
+}
+
+/* AES key scheduling routine */
+
+int    rtmp_aes_set_key( aes_context *ctx, uint8 *key, int nbits )
+{
+       int     i;
+       uint32 *RK,     *SK;
+
+       switch( nbits )
+       {
+               case 128: ctx->nr =     10;     break;
+               case 192: ctx->nr =     12;     break;
+               case 256: ctx->nr =     14;     break;
+               default : return( 1     );
+       }
+
+       RK = ctx->erk;
+
+       for( i = 0;     i <     (nbits >> 5); i++ )
+       {
+               GET_UINT32(     RK[i], key,     i *     4 );
+       }
+
+       /* setup encryption     round keys */
+
+       switch( nbits )
+       {
+       case 128:
+
+               for( i = 0;     i <     10;     i++, RK += 4 )
+               {
+                       RK[4]  = RK[0] ^ RCON[i] ^
+                                               ( FSb[ (uint8) ( RK[3] >> 16 ) ] <<     24 ) ^
+                                               ( FSb[ (uint8) ( RK[3] >>  8 ) ] <<     16 ) ^
+                                               ( FSb[ (uint8) ( RK[3]           ) ] <<  8 ) ^
+                                               ( FSb[ (uint8) ( RK[3] >> 24 ) ]           );
+
+                       RK[5]  = RK[1] ^ RK[4];
+                       RK[6]  = RK[2] ^ RK[5];
+                       RK[7]  = RK[3] ^ RK[6];
+               }
+               break;
+
+       case 192:
+
+               for( i = 0;     i <     8; i++, RK += 6 )
+               {
+                       RK[6]  = RK[0] ^ RCON[i] ^
+                                               ( FSb[ (uint8) ( RK[5] >> 16 ) ] <<     24 ) ^
+                                               ( FSb[ (uint8) ( RK[5] >>  8 ) ] <<     16 ) ^
+                                               ( FSb[ (uint8) ( RK[5]           ) ] <<  8 ) ^
+                                               ( FSb[ (uint8) ( RK[5] >> 24 ) ]           );
+
+                       RK[7]  = RK[1] ^ RK[6];
+                       RK[8]  = RK[2] ^ RK[7];
+                       RK[9]  = RK[3] ^ RK[8];
+                       RK[10] = RK[4] ^ RK[9];
+                       RK[11] = RK[5] ^ RK[10];
+               }
+               break;
+
+       case 256:
+
+               for( i = 0;     i <     7; i++, RK += 8 )
+               {
+                       RK[8]  = RK[0] ^ RCON[i] ^
+                                               ( FSb[ (uint8) ( RK[7] >> 16 ) ] <<     24 ) ^
+                                               ( FSb[ (uint8) ( RK[7] >>  8 ) ] <<     16 ) ^
+                                               ( FSb[ (uint8) ( RK[7]           ) ] <<  8 ) ^
+                                               ( FSb[ (uint8) ( RK[7] >> 24 ) ]           );
+
+                       RK[9]  = RK[1] ^ RK[8];
+                       RK[10] = RK[2] ^ RK[9];
+                       RK[11] = RK[3] ^ RK[10];
+
+                       RK[12] = RK[4] ^
+                                               ( FSb[ (uint8) ( RK[11] >> 24 ) ] << 24 ) ^
+                                               ( FSb[ (uint8) ( RK[11] >> 16 ) ] << 16 ) ^
+                                               ( FSb[ (uint8) ( RK[11] >>      8 )     ] <<  8 ) ^
+                                               ( FSb[ (uint8) ( RK[11]           )     ]               );
+
+                       RK[13] = RK[5] ^ RK[12];
+                       RK[14] = RK[6] ^ RK[13];
+                       RK[15] = RK[7] ^ RK[14];
+               }
+               break;
+       }
+
+       /* setup decryption     round keys */
+
+       if(     KT_init )
+       {
+               for( i = 0;     i <     256; i++ )
+               {
+                       KT0[i] = RT0[ FSb[i] ];
+                       KT1[i] = RT1[ FSb[i] ];
+                       KT2[i] = RT2[ FSb[i] ];
+                       KT3[i] = RT3[ FSb[i] ];
+               }
+
+               KT_init = 0;
+       }
+
+       SK = ctx->drk;
+
+       *SK++ = *RK++;
+       *SK++ = *RK++;
+       *SK++ = *RK++;
+       *SK++ = *RK++;
+
+       for( i = 1;     i <     ctx->nr; i++ )
+       {
+               RK -= 8;
+
+               *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^
+                               KT1[ (uint8) ( *RK >> 16 ) ] ^
+                               KT2[ (uint8) ( *RK >>  8 ) ] ^
+                               KT3[ (uint8) ( *RK               ) ]; RK++;
+
+               *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^
+                               KT1[ (uint8) ( *RK >> 16 ) ] ^
+                               KT2[ (uint8) ( *RK >>  8 ) ] ^
+                               KT3[ (uint8) ( *RK               ) ]; RK++;
+
+               *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^
+                               KT1[ (uint8) ( *RK >> 16 ) ] ^
+                               KT2[ (uint8) ( *RK >>  8 ) ] ^
+                               KT3[ (uint8) ( *RK               ) ]; RK++;
+
+               *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^
+                               KT1[ (uint8) ( *RK >> 16 ) ] ^
+                               KT2[ (uint8) ( *RK >>  8 ) ] ^
+                               KT3[ (uint8) ( *RK               ) ]; RK++;
+       }
+
+       RK -= 8;
+
+       *SK++ = *RK++;
+       *SK++ = *RK++;
+       *SK++ = *RK++;
+       *SK++ = *RK++;
+
+       return( 0 );
+}
+
+/* AES 128-bit block encryption        routine */
+
+void rtmp_aes_encrypt(aes_context *ctx, uint8 input[16],       uint8 output[16] )
+{
+       uint32 *RK,     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3;
+
+       RK = ctx->erk;
+       GET_UINT32(     X0,     input,  0 ); X0 ^= RK[0];
+       GET_UINT32(     X1,     input,  4 ); X1 ^= RK[1];
+       GET_UINT32(     X2,     input,  8 ); X2 ^= RK[2];
+       GET_UINT32(     X3,     input, 12 ); X3 ^= RK[3];
+
+#define        AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3)             \
+{                                                                                              \
+       RK += 4;                                                                        \
+                                                                                               \
+       X0 = RK[0] ^ FT0[ (uint8) (     Y0 >> 24 ) ] ^  \
+                                FT1[ (uint8) ( Y1 >> 16 ) ] ^  \
+                                FT2[ (uint8) ( Y2 >>  8 ) ] ^  \
+                                FT3[ (uint8) ( Y3               ) ];   \
+                                                                                               \
+       X1 = RK[1] ^ FT0[ (uint8) (     Y1 >> 24 ) ] ^  \
+                                FT1[ (uint8) ( Y2 >> 16 ) ] ^  \
+                                FT2[ (uint8) ( Y3 >>  8 ) ] ^  \
+                                FT3[ (uint8) ( Y0               ) ];   \
+                                                                                               \
+       X2 = RK[2] ^ FT0[ (uint8) (     Y2 >> 24 ) ] ^  \
+                                FT1[ (uint8) ( Y3 >> 16 ) ] ^  \
+                                FT2[ (uint8) ( Y0 >>  8 ) ] ^  \
+                                FT3[ (uint8) ( Y1               ) ];   \
+                                                                                               \
+       X3 = RK[3] ^ FT0[ (uint8) (     Y3 >> 24 ) ] ^  \
+                                FT1[ (uint8) ( Y0 >> 16 ) ] ^  \
+                                FT2[ (uint8) ( Y1 >>  8 ) ] ^  \
+                                FT3[ (uint8) ( Y2               ) ];   \
+}
+
+       AES_FROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );           /* round 1 */
+       AES_FROUND(     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3 );           /* round 2 */
+       AES_FROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );           /* round 3 */
+       AES_FROUND(     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3 );           /* round 4 */
+       AES_FROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );           /* round 5 */
+       AES_FROUND(     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3 );           /* round 6 */
+       AES_FROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );           /* round 7 */
+       AES_FROUND(     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3 );           /* round 8 */
+       AES_FROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );           /* round 9 */
+
+       if(     ctx->nr > 10 )
+       {
+               AES_FROUND(     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3 );   /* round 10     */
+               AES_FROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );   /* round 11     */
+       }
+
+       if(     ctx->nr > 12 )
+       {
+               AES_FROUND(     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3 );   /* round 12     */
+               AES_FROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );   /* round 13     */
+       }
+
+       /* last round */
+
+       RK += 4;
+
+       X0 = RK[0] ^ ( FSb[     (uint8) ( Y0 >> 24 ) ] << 24 ) ^
+                                ( FSb[ (uint8) ( Y1 >> 16 ) ] << 16 ) ^
+                                ( FSb[ (uint8) ( Y2 >>  8 ) ] <<  8 ) ^
+                                ( FSb[ (uint8) ( Y3       ) ]           );
+
+       X1 = RK[1] ^ ( FSb[     (uint8) ( Y1 >> 24 ) ] << 24 ) ^
+                                ( FSb[ (uint8) ( Y2 >> 16 ) ] << 16 ) ^
+                                ( FSb[ (uint8) ( Y3 >>  8 ) ] <<  8 ) ^
+                                ( FSb[ (uint8) ( Y0       ) ]           );
+
+       X2 = RK[2] ^ ( FSb[     (uint8) ( Y2 >> 24 ) ] << 24 ) ^
+                                ( FSb[ (uint8) ( Y3 >> 16 ) ] << 16 ) ^
+                                ( FSb[ (uint8) ( Y0 >>  8 ) ] <<  8 ) ^
+                                ( FSb[ (uint8) ( Y1       ) ]           );
+
+       X3 = RK[3] ^ ( FSb[     (uint8) ( Y3 >> 24 ) ] << 24 ) ^
+                                ( FSb[ (uint8) ( Y0 >> 16 ) ] << 16 ) ^
+                                ( FSb[ (uint8) ( Y1 >>  8 ) ] <<  8 ) ^
+                                ( FSb[ (uint8) ( Y2       ) ]           );
+
+       PUT_UINT32(     X0,     output,  0 );
+       PUT_UINT32(     X1,     output,  4 );
+       PUT_UINT32(     X2,     output,  8 );
+       PUT_UINT32(     X3,     output, 12 );
+}
+
+/* AES 128-bit block decryption        routine */
+
+void rtmp_aes_decrypt( aes_context *ctx,       uint8 input[16], uint8 output[16] )
+{
+       uint32 *RK,     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3;
+
+       RK = ctx->drk;
+
+       GET_UINT32(     X0,     input,  0 ); X0 ^= RK[0];
+       GET_UINT32(     X1,     input,  4 ); X1 ^= RK[1];
+       GET_UINT32(     X2,     input,  8 ); X2 ^= RK[2];
+       GET_UINT32(     X3,     input, 12 ); X3 ^= RK[3];
+
+#define        AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3)             \
+{                                                                                              \
+       RK += 4;                                                                        \
+                                                                                               \
+       X0 = RK[0] ^ RT0[ (uint8) (     Y0 >> 24 ) ] ^  \
+                                RT1[ (uint8) ( Y3 >> 16 ) ] ^  \
+                                RT2[ (uint8) ( Y2 >>  8 ) ] ^  \
+                                RT3[ (uint8) ( Y1               ) ];   \
+                                                                                               \
+       X1 = RK[1] ^ RT0[ (uint8) (     Y1 >> 24 ) ] ^  \
+                                RT1[ (uint8) ( Y0 >> 16 ) ] ^  \
+                                RT2[ (uint8) ( Y3 >>  8 ) ] ^  \
+                                RT3[ (uint8) ( Y2               ) ];   \
+                                                                                               \
+       X2 = RK[2] ^ RT0[ (uint8) (     Y2 >> 24 ) ] ^  \
+                                RT1[ (uint8) ( Y1 >> 16 ) ] ^  \
+                                RT2[ (uint8) ( Y0 >>  8 ) ] ^  \
+                                RT3[ (uint8) ( Y3               ) ];   \
+                                                                                               \
+       X3 = RK[3] ^ RT0[ (uint8) (     Y3 >> 24 ) ] ^  \
+                                RT1[ (uint8) ( Y2 >> 16 ) ] ^  \
+                                RT2[ (uint8) ( Y1 >>  8 ) ] ^  \
+                                RT3[ (uint8) ( Y0               ) ];   \
+}
+
+       AES_RROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );           /* round 1 */
+       AES_RROUND(     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3 );           /* round 2 */
+       AES_RROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );           /* round 3 */
+       AES_RROUND(     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3 );           /* round 4 */
+       AES_RROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );           /* round 5 */
+       AES_RROUND(     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3 );           /* round 6 */
+       AES_RROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );           /* round 7 */
+       AES_RROUND(     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3 );           /* round 8 */
+       AES_RROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );           /* round 9 */
+
+       if(     ctx->nr > 10 )
+       {
+               AES_RROUND(     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3 );   /* round 10     */
+               AES_RROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );   /* round 11     */
+       }
+
+       if(     ctx->nr > 12 )
+       {
+               AES_RROUND(     X0,     X1,     X2,     X3,     Y0,     Y1,     Y2,     Y3 );   /* round 12     */
+               AES_RROUND(     Y0,     Y1,     Y2,     Y3,     X0,     X1,     X2,     X3 );   /* round 13     */
+       }
+
+       /* last round */
+
+       RK += 4;
+
+       X0 = RK[0] ^ ( RSb[     (uint8) ( Y0 >> 24 ) ] << 24 ) ^
+                                ( RSb[ (uint8) ( Y3 >> 16 ) ] << 16 ) ^
+                                ( RSb[ (uint8) ( Y2 >>  8 ) ] <<  8 ) ^
+                                ( RSb[ (uint8) ( Y1       ) ]           );
+
+       X1 = RK[1] ^ ( RSb[     (uint8) ( Y1 >> 24 ) ] << 24 ) ^
+                                ( RSb[ (uint8) ( Y0 >> 16 ) ] << 16 ) ^
+                                ( RSb[ (uint8) ( Y3 >>  8 ) ] <<  8 ) ^
+                                ( RSb[ (uint8) ( Y2       ) ]           );
+
+       X2 = RK[2] ^ ( RSb[     (uint8) ( Y2 >> 24 ) ] << 24 ) ^
+                                ( RSb[ (uint8) ( Y1 >> 16 ) ] << 16 ) ^
+                                ( RSb[ (uint8) ( Y0 >>  8 ) ] <<  8 ) ^
+                                ( RSb[ (uint8) ( Y3       ) ]           );
+
+       X3 = RK[3] ^ ( RSb[     (uint8) ( Y3 >> 24 ) ] << 24 ) ^
+                                ( RSb[ (uint8) ( Y2 >> 16 ) ] << 16 ) ^
+                                ( RSb[ (uint8) ( Y1 >>  8 ) ] <<  8 ) ^
+                                ( RSb[ (uint8) ( Y0       ) ]           );
+
+       PUT_UINT32(     X0,     output,  0 );
+       PUT_UINT32(     X1,     output,  4 );
+       PUT_UINT32(     X2,     output,  8 );
+       PUT_UINT32(     X3,     output, 12 );
+}
+
+/*
+       ========================================================================
+
+       Routine Description:
+               SHA1 function
+
+       Arguments:
+
+       Return Value:
+
+       Note:
+
+       ========================================================================
+*/
+VOID   HMAC_SHA1(
+       IN      UCHAR   *text,
+       IN      UINT    text_len,
+       IN      UCHAR   *key,
+       IN      UINT    key_len,
+       IN      UCHAR   *digest)
+{
+       SHA_CTX context;
+       UCHAR   k_ipad[65]; /* inner padding - key XORd with ipad       */
+       UCHAR   k_opad[65]; /* outer padding - key XORd with opad       */
+       INT             i;
+
+       // if key is longer     than 64 bytes reset     it to key=SHA1(key)
+       if (key_len     > 64)
+       {
+               SHA_CTX          tctx;
+               SHAInit(&tctx);
+               SHAUpdate(&tctx, key, key_len);
+               SHAFinal(&tctx, key);
+               key_len = 20;
+       }
+       NdisZeroMemory(k_ipad, sizeof(k_ipad));
+       NdisZeroMemory(k_opad, sizeof(k_opad));
+       NdisMoveMemory(k_ipad, key,     key_len);
+       NdisMoveMemory(k_opad, key,     key_len);
+
+       // XOR key with ipad and opad values
+       for     (i = 0; i <     64;     i++)
+       {
+               k_ipad[i] ^= 0x36;
+               k_opad[i] ^= 0x5c;
+       }
+
+       // perform inner SHA1
+       SHAInit(&context);                                              /* init context for 1st pass */
+       SHAUpdate(&context,     k_ipad, 64);            /*      start with inner pad */
+       SHAUpdate(&context,     text, text_len);        /*      then text of datagram */
+       SHAFinal(&context, digest);                             /* finish up 1st pass */
+
+       //perform outer SHA1
+       SHAInit(&context);                                      /* init context for 2nd pass */
+       SHAUpdate(&context,     k_opad, 64);    /*      start with outer pad */
+       SHAUpdate(&context,     digest, 20);    /*      then results of 1st     hash */
+       SHAFinal(&context, digest);                     /* finish up 2nd pass */
+
+}
+
+/*
+* F(P, S, c, i) = U1 xor U2 xor ... Uc
+* U1 = PRF(P, S || Int(i))
+* U2 = PRF(P, U1)
+* Uc = PRF(P, Uc-1)
+*/
+
+void F(char *password, unsigned char *ssid, int ssidlength, int iterations, int count, unsigned char *output)
+{
+    unsigned char digest[36], digest1[SHA_DIGEST_LEN];
+    int i, j;
+
+    /* U1 = PRF(P, S || int(i)) */
+    memcpy(digest, ssid, ssidlength);
+    digest[ssidlength] = (unsigned char)((count>>24) & 0xff);
+    digest[ssidlength+1] = (unsigned char)((count>>16) & 0xff);
+    digest[ssidlength+2] = (unsigned char)((count>>8) & 0xff);
+    digest[ssidlength+3] = (unsigned char)(count & 0xff);
+    HMAC_SHA1(digest, ssidlength+4, (unsigned char*) password, (int) strlen(password), digest1); // for WPA update
+
+    /* output = U1 */
+    memcpy(output, digest1, SHA_DIGEST_LEN);
+
+    for (i = 1; i < iterations; i++)
+    {
+        /* Un = PRF(P, Un-1) */
+        HMAC_SHA1(digest1, SHA_DIGEST_LEN, (unsigned char*) password, (int) strlen(password), digest); // for WPA update
+        memcpy(digest1, digest, SHA_DIGEST_LEN);
+
+        /* output = output xor Un */
+        for (j = 0; j < SHA_DIGEST_LEN; j++)
+        {
+            output[j] ^= digest[j];
+        }
+    }
+}
+/*
+* password - ascii string up to 63 characters in length
+* ssid - octet string up to 32 octets
+* ssidlength - length of ssid in octets
+* output must be 40 octets in length and outputs 256 bits of key
+*/
+int PasswordHash(char *password, unsigned char *ssid, int ssidlength, unsigned char *output)
+{
+    if ((strlen(password) > 63) || (ssidlength > 32))
+        return 0;
+
+    F(password, ssid, ssidlength, 4096, 1, output);
+    F(password, ssid, ssidlength, 4096, 2, &output[SHA_DIGEST_LEN]);
+    return 1;
+}
+
+