/* * drivers/w1/masters/omap_hdq.c * * Copyright (C) 2007 Texas Instruments, Inc. * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. * */ #include #include #include #include #include #include #include #include #include #include "../w1.h" #include "../w1_int.h" #define MOD_NAME "OMAP_HDQ:" #define OMAP_HDQ_REVISION 0x00 #define OMAP_HDQ_TX_DATA 0x04 #define OMAP_HDQ_RX_DATA 0x08 #define OMAP_HDQ_CTRL_STATUS 0x0c #define OMAP_HDQ_CTRL_STATUS_INTERRUPTMASK (1<<6) #define OMAP_HDQ_CTRL_STATUS_CLOCKENABLE (1<<5) #define OMAP_HDQ_CTRL_STATUS_GO (1<<4) #define OMAP_HDQ_CTRL_STATUS_INITIALIZATION (1<<2) #define OMAP_HDQ_CTRL_STATUS_DIR (1<<1) #define OMAP_HDQ_CTRL_STATUS_MODE (1<<0) #define OMAP_HDQ_INT_STATUS 0x10 #define OMAP_HDQ_INT_STATUS_TXCOMPLETE (1<<2) #define OMAP_HDQ_INT_STATUS_RXCOMPLETE (1<<1) #define OMAP_HDQ_INT_STATUS_TIMEOUT (1<<0) #define OMAP_HDQ_SYSCONFIG 0x14 #define OMAP_HDQ_SYSCONFIG_SOFTRESET (1<<1) #define OMAP_HDQ_SYSCONFIG_AUTOIDLE (1<<0) #define OMAP_HDQ_SYSSTATUS 0x18 #define OMAP_HDQ_SYSSTATUS_RESETDONE (1<<0) #define OMAP_HDQ_FLAG_CLEAR 0 #define OMAP_HDQ_FLAG_SET 1 #define OMAP_HDQ_TIMEOUT (HZ/5) #define OMAP_HDQ_MAX_USER 4 DECLARE_WAIT_QUEUE_HEAD(hdq_wait_queue); int W1_ID; struct hdq_data { resource_size_t hdq_base; struct semaphore hdq_semlock; int hdq_usecount; struct clk *hdq_ick; struct clk *hdq_fck; u8 hdq_irqstatus; spinlock_t hdq_spinlock; }; static struct hdq_data *hdq_data; static int omap_hdq_get(void); static int omap_hdq_put(void); static int omap_hdq_break(void); static int __init omap_hdq_probe(struct platform_device *pdev); static int omap_hdq_remove(struct platform_device *pdev); static struct platform_driver omap_hdq_driver = { .probe = omap_hdq_probe, .remove = omap_hdq_remove, .suspend = NULL, .resume = NULL, .driver = { .name = "omap_hdq", }, }; static u8 omap_w1_read_byte(void *data); static void omap_w1_write_byte(void *data, u8 byte); static u8 omap_w1_reset_bus(void *data); static void omap_w1_search_bus(void *data, u8 search_type, w1_slave_found_callback slave_found); static struct w1_bus_master omap_w1_master = { .read_byte = omap_w1_read_byte, .write_byte = omap_w1_write_byte, .reset_bus = omap_w1_reset_bus, .search = omap_w1_search_bus, }; /* * HDQ register I/O routines */ static inline u8 hdq_reg_in(u32 offset) { return omap_readb(hdq_data->hdq_base + offset); } static inline u8 hdq_reg_out(u32 offset, u8 val) { omap_writeb(val, hdq_data->hdq_base + offset); return val; } static inline u8 hdq_reg_merge(u32 offset, u8 val, u8 mask) { u8 new_val = (omap_readb(hdq_data->hdq_base + offset) & ~mask) | (val & mask); omap_writeb(new_val, hdq_data->hdq_base + offset); return new_val; } /* * Wait for one or more bits in flag change. * HDQ_FLAG_SET: wait until any bit in the flag is set. * HDQ_FLAG_CLEAR: wait until all bits in the flag are cleared. * return 0 on success and -ETIMEDOUT in the case of timeout. */ static int hdq_wait_for_flag(u32 offset, u8 flag, u8 flag_set, u8 *status) { int ret = 0; unsigned long timeout = jiffies + OMAP_HDQ_TIMEOUT; if (flag_set == OMAP_HDQ_FLAG_CLEAR) { /* wait for the flag clear */ while (((*status = hdq_reg_in(offset)) & flag) && time_before(jiffies, timeout)) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(1); } if (unlikely(*status & flag)) ret = -ETIMEDOUT; } else if (flag_set == OMAP_HDQ_FLAG_SET) { /* wait for the flag set */ while (!((*status = hdq_reg_in(offset)) & flag) && time_before(jiffies, timeout)) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(1); } if (unlikely(!(*status & flag))) ret = -ETIMEDOUT; } else return -EINVAL; return ret; } /* * write out a byte and fill *status with HDQ_INT_STATUS */ static int hdq_write_byte(u8 val, u8 *status) { int ret; u8 tmp_status; unsigned long irqflags; *status = 0; spin_lock_irqsave(&hdq_data->hdq_spinlock, irqflags); /* clear interrupt flags via a dummy read */ hdq_reg_in(OMAP_HDQ_INT_STATUS); /* ISR loads it with new INT_STATUS */ hdq_data->hdq_irqstatus = 0; spin_unlock_irqrestore(&hdq_data->hdq_spinlock, irqflags); hdq_reg_out(OMAP_HDQ_TX_DATA, val); /* set the GO bit */ hdq_reg_merge(OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_GO, OMAP_HDQ_CTRL_STATUS_DIR | OMAP_HDQ_CTRL_STATUS_GO); /* wait for the TXCOMPLETE bit */ ret = wait_event_interruptible_timeout(hdq_wait_queue, hdq_data->hdq_irqstatus, OMAP_HDQ_TIMEOUT); if (unlikely(ret < 0)) { pr_debug("wait interrupted"); return -EINTR; } spin_lock_irqsave(&hdq_data->hdq_spinlock, irqflags); *status = hdq_data->hdq_irqstatus; spin_unlock_irqrestore(&hdq_data->hdq_spinlock, irqflags); /* check irqstatus */ if (!(*status & OMAP_HDQ_INT_STATUS_TXCOMPLETE)) { pr_debug("timeout waiting for TXCOMPLETE/RXCOMPLETE, %x", *status); return -ETIMEDOUT; } /* wait for the GO bit return to zero */ ret = hdq_wait_for_flag(OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_GO, OMAP_HDQ_FLAG_CLEAR, &tmp_status); if (ret) { pr_debug("timeout waiting GO bit return to zero, %x", tmp_status); return ret; } return ret; } /* * HDQ Interrupt service routine. */ static irqreturn_t hdq_isr(int irq, void *arg) { unsigned long irqflags; spin_lock_irqsave(&hdq_data->hdq_spinlock, irqflags); hdq_data->hdq_irqstatus = hdq_reg_in(OMAP_HDQ_INT_STATUS); spin_unlock_irqrestore(&hdq_data->hdq_spinlock, irqflags); pr_debug("hdq_isr: %x", hdq_data->hdq_irqstatus); if (hdq_data->hdq_irqstatus & (OMAP_HDQ_INT_STATUS_TXCOMPLETE | OMAP_HDQ_INT_STATUS_RXCOMPLETE | OMAP_HDQ_INT_STATUS_TIMEOUT)) { /* wake up sleeping process */ wake_up_interruptible(&hdq_wait_queue); } return IRQ_HANDLED; } /* * HDQ Mode: always return success. */ static u8 omap_w1_reset_bus(void *data) { return 0; } /* * W1 search callback function. */ static void omap_w1_search_bus(void *data, u8 search_type, w1_slave_found_callback slave_found) { u64 module_id, rn_le, cs, id; if (W1_ID) module_id = W1_ID; else module_id = 0x1; rn_le = cpu_to_le64(module_id); /* * HDQ might not obey truly the 1-wire spec. * So calculate CRC based on module parameter. */ cs = w1_calc_crc8((u8 *)&rn_le, 7); id = (cs << 56) | module_id; slave_found(data, id); } static int _omap_hdq_reset(void) { int ret; u8 tmp_status; hdq_reg_out(OMAP_HDQ_SYSCONFIG, OMAP_HDQ_SYSCONFIG_SOFTRESET); /* * Select HDQ mode & enable clocks. * It is observed that INT flags can't be cleared via a read and GO/INIT * won't return to zero if interrupt is disabled. So we always enable * interrupt. */ hdq_reg_out(OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_CLOCKENABLE | OMAP_HDQ_CTRL_STATUS_INTERRUPTMASK); /* wait for reset to complete */ ret = hdq_wait_for_flag(OMAP_HDQ_SYSSTATUS, OMAP_HDQ_SYSSTATUS_RESETDONE, OMAP_HDQ_FLAG_SET, &tmp_status); if (ret) pr_debug("timeout waiting HDQ reset, %x", tmp_status); else { hdq_reg_out(OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_CLOCKENABLE | OMAP_HDQ_CTRL_STATUS_INTERRUPTMASK); hdq_reg_out(OMAP_HDQ_SYSCONFIG, OMAP_HDQ_SYSCONFIG_AUTOIDLE); } return ret; } /* * Issue break pulse to the device. */ static int omap_hdq_break() { int ret; u8 tmp_status; unsigned long irqflags; ret = down_interruptible(&hdq_data->hdq_semlock); if (ret < 0) return -EINTR; if (!hdq_data->hdq_usecount) { up(&hdq_data->hdq_semlock); return -EINVAL; } spin_lock_irqsave(&hdq_data->hdq_spinlock, irqflags); /* clear interrupt flags via a dummy read */ hdq_reg_in(OMAP_HDQ_INT_STATUS); /* ISR loads it with new INT_STATUS */ hdq_data->hdq_irqstatus = 0; spin_unlock_irqrestore(&hdq_data->hdq_spinlock, irqflags); /* set the INIT and GO bit */ hdq_reg_merge(OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_INITIALIZATION | OMAP_HDQ_CTRL_STATUS_GO, OMAP_HDQ_CTRL_STATUS_DIR | OMAP_HDQ_CTRL_STATUS_INITIALIZATION | OMAP_HDQ_CTRL_STATUS_GO); /* wait for the TIMEOUT bit */ ret = wait_event_interruptible_timeout(hdq_wait_queue, hdq_data->hdq_irqstatus, OMAP_HDQ_TIMEOUT); if (unlikely(ret < 0)) { pr_debug("wait interrupted"); up(&hdq_data->hdq_semlock); return -EINTR; } spin_lock_irqsave(&hdq_data->hdq_spinlock, irqflags); tmp_status = hdq_data->hdq_irqstatus; spin_unlock_irqrestore(&hdq_data->hdq_spinlock, irqflags); /* check irqstatus */ if (!(tmp_status & OMAP_HDQ_INT_STATUS_TIMEOUT)) { pr_debug("timeout waiting for TIMEOUT, %x", tmp_status); up(&hdq_data->hdq_semlock); return -ETIMEDOUT; } /* * wait for both INIT and GO bits rerurn to zero. * zero wait time expected for interrupt mode. */ ret = hdq_wait_for_flag(OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_INITIALIZATION | OMAP_HDQ_CTRL_STATUS_GO, OMAP_HDQ_FLAG_CLEAR, &tmp_status); if (ret) pr_debug("timeout waiting INIT&GO bits return to zero, %x", tmp_status); up(&hdq_data->hdq_semlock); return ret; } static int hdq_read_byte(u8 *val) { int ret; u8 status; unsigned long irqflags; ret = down_interruptible(&hdq_data->hdq_semlock); if (ret < 0) return -EINTR; if (!hdq_data->hdq_usecount) { up(&hdq_data->hdq_semlock); return -EINVAL; } if (!(hdq_data->hdq_irqstatus & OMAP_HDQ_INT_STATUS_RXCOMPLETE)) { hdq_reg_merge(OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_DIR | OMAP_HDQ_CTRL_STATUS_GO, OMAP_HDQ_CTRL_STATUS_DIR | OMAP_HDQ_CTRL_STATUS_GO); /* * The RX comes immediately after TX. It * triggers another interrupt before we * sleep. So we have to wait for RXCOMPLETE bit. */ { unsigned long timeout = jiffies + OMAP_HDQ_TIMEOUT; while (!(hdq_data->hdq_irqstatus & OMAP_HDQ_INT_STATUS_RXCOMPLETE) && time_before(jiffies, timeout)) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(1); } } hdq_reg_merge(OMAP_HDQ_CTRL_STATUS, 0, OMAP_HDQ_CTRL_STATUS_DIR); spin_lock_irqsave(&hdq_data->hdq_spinlock, irqflags); status = hdq_data->hdq_irqstatus; spin_unlock_irqrestore(&hdq_data->hdq_spinlock, irqflags); /* check irqstatus */ if (!(status & OMAP_HDQ_INT_STATUS_RXCOMPLETE)) { pr_debug("timeout waiting for RXCOMPLETE, %x", status); up(&hdq_data->hdq_semlock); return -ETIMEDOUT; } } /* the data is ready. Read it in! */ *val = hdq_reg_in(OMAP_HDQ_RX_DATA); up(&hdq_data->hdq_semlock); return 0; } /* * Enable clocks and set the controller to HDQ mode. */ static int omap_hdq_get() { int ret = 0; ret = down_interruptible(&hdq_data->hdq_semlock); if (ret < 0) return -EINTR; if (OMAP_HDQ_MAX_USER == hdq_data->hdq_usecount) { pr_debug("attempt to exceed the max use count"); up(&hdq_data->hdq_semlock); ret = -EINVAL; } else { hdq_data->hdq_usecount++; try_module_get(THIS_MODULE); if (1 == hdq_data->hdq_usecount) { if (clk_enable(hdq_data->hdq_ick)) { pr_debug("Can not enable ick\n"); clk_put(hdq_data->hdq_ick); clk_put(hdq_data->hdq_fck); up(&hdq_data->hdq_semlock); return -ENODEV; } if (clk_enable(hdq_data->hdq_fck)) { pr_debug("Can not enable fck\n"); clk_put(hdq_data->hdq_ick); clk_put(hdq_data->hdq_fck); up(&hdq_data->hdq_semlock); return -ENODEV; } /* make sure HDQ is out of reset */ if (!(hdq_reg_in(OMAP_HDQ_SYSSTATUS) & OMAP_HDQ_SYSSTATUS_RESETDONE)) { ret = _omap_hdq_reset(); if (ret) /* back up the count */ hdq_data->hdq_usecount--; } else { /* select HDQ mode & enable clocks */ hdq_reg_out(OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_CLOCKENABLE | OMAP_HDQ_CTRL_STATUS_INTERRUPTMASK); hdq_reg_out(OMAP_HDQ_SYSCONFIG, OMAP_HDQ_SYSCONFIG_AUTOIDLE); hdq_reg_in(OMAP_HDQ_INT_STATUS); } } } up(&hdq_data->hdq_semlock); return ret; } /* * Disable clocks to the module. */ static int omap_hdq_put() { int ret = 0; ret = down_interruptible(&hdq_data->hdq_semlock); if (ret < 0) return -EINTR; if (0 == hdq_data->hdq_usecount) { pr_debug("attempt to decrement use count when it is zero"); ret = -EINVAL; } else { hdq_data->hdq_usecount--; module_put(THIS_MODULE); if (0 == hdq_data->hdq_usecount) { clk_disable(hdq_data->hdq_ick); clk_disable(hdq_data->hdq_fck); } } up(&hdq_data->hdq_semlock); return ret; } /* * Used to control the call to omap_hdq_get and omap_hdq_put. * HDQ Protocol: Write the CMD|REG_address first, followed by * the data wrire or read. */ static int init_trans; /* * Read a byte of data from the device. */ static u8 omap_w1_read_byte(void *data) { u8 val; int ret; ret = hdq_read_byte(&val); if (ret) return -1; /* Write followed by a read, release the module */ if (init_trans) { init_trans = 0; omap_hdq_put(); } return val; } /* * Write a byte of data to the device. */ static void omap_w1_write_byte(void *data, u8 byte) { u8 status; /* First write to initialize the transfer */ if (init_trans == 0) omap_hdq_get(); init_trans++; hdq_write_byte(byte, &status); pr_debug("Ctrl status %x\n", status); /* Second write, data transfered. Release the module */ if (init_trans > 1) { omap_hdq_put(); init_trans = 0; } return; } static int __init omap_hdq_probe(struct platform_device *pdev) { struct resource *res; int ret, irq; u8 rev; if (!pdev) return -ENODEV; hdq_data = kmalloc(sizeof(*hdq_data), GFP_KERNEL); if (!hdq_data) return -ENODEV; platform_set_drvdata(pdev, hdq_data); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { platform_set_drvdata(pdev, NULL); kfree(hdq_data); return -ENXIO; } hdq_data->hdq_base = res->start; /* get interface & functional clock objects */ hdq_data->hdq_ick = clk_get(&pdev->dev, "hdq_ick"); hdq_data->hdq_fck = clk_get(&pdev->dev, "hdq_fck"); if (IS_ERR(hdq_data->hdq_ick) || IS_ERR(hdq_data->hdq_fck)) { pr_debug("Can't get HDQ clock objects\n"); if (IS_ERR(hdq_data->hdq_ick)) { ret = PTR_ERR(hdq_data->hdq_ick); platform_set_drvdata(pdev, NULL); kfree(hdq_data); return ret; } if (IS_ERR(hdq_data->hdq_fck)) { ret = PTR_ERR(hdq_data->hdq_fck); platform_set_drvdata(pdev, NULL); kfree(hdq_data); return ret; } } hdq_data->hdq_usecount = 0; sema_init(&hdq_data->hdq_semlock, 1); if (clk_enable(hdq_data->hdq_ick)) { pr_debug("Can not enable ick\n"); clk_put(hdq_data->hdq_ick); clk_put(hdq_data->hdq_fck); platform_set_drvdata(pdev, NULL); kfree(hdq_data); return -ENODEV; } if (clk_enable(hdq_data->hdq_fck)) { pr_debug("Can not enable fck\n"); clk_disable(hdq_data->hdq_ick); clk_put(hdq_data->hdq_ick); clk_put(hdq_data->hdq_fck); platform_set_drvdata(pdev, NULL); kfree(hdq_data); return -ENODEV; } rev = hdq_reg_in(OMAP_HDQ_REVISION); pr_info("OMAP HDQ Hardware Revision %c.%c. Driver in %s mode.\n", (rev >> 4) + '0', (rev & 0x0f) + '0', "Interrupt"); spin_lock_init(&hdq_data->hdq_spinlock); omap_hdq_break(); irq = platform_get_irq(pdev, 0); if (irq < 0) { platform_set_drvdata(pdev, NULL); kfree(hdq_data); return -ENXIO; } if (request_irq(irq, hdq_isr, IRQF_DISABLED, "OMAP HDQ", &hdq_data->hdq_semlock)) { pr_debug("request_irq failed\n"); clk_disable(hdq_data->hdq_ick); clk_put(hdq_data->hdq_ick); clk_put(hdq_data->hdq_fck); platform_set_drvdata(pdev, NULL); kfree(hdq_data); return -ENODEV; } /* don't clock the HDQ until it is needed */ clk_disable(hdq_data->hdq_ick); clk_disable(hdq_data->hdq_fck); ret = w1_add_master_device(&omap_w1_master); if (ret) { pr_debug("Failure in registering w1 master\n"); clk_put(hdq_data->hdq_ick); clk_put(hdq_data->hdq_fck); platform_set_drvdata(pdev, NULL); kfree(hdq_data); return ret; } return 0; } static int omap_hdq_remove(struct platform_device *pdev) { down_interruptible(&hdq_data->hdq_semlock); if (0 != hdq_data->hdq_usecount) { pr_debug("removed when use count is not zero\n"); return -EBUSY; } up(&hdq_data->hdq_semlock); /* remove module dependency */ clk_put(hdq_data->hdq_ick); clk_put(hdq_data->hdq_fck); free_irq(INT_24XX_HDQ_IRQ, &hdq_data->hdq_semlock); platform_set_drvdata(pdev, NULL); kfree(hdq_data); return 0; } static int __init omap_hdq_init(void) { return platform_driver_register(&omap_hdq_driver); } static void __exit omap_hdq_exit(void) { platform_driver_unregister(&omap_hdq_driver); } module_init(omap_hdq_init); module_exit(omap_hdq_exit); module_param(W1_ID, int, S_IRUSR); MODULE_AUTHOR("Texas Instruments"); MODULE_DESCRIPTION("HDQ driver Library"); MODULE_LICENSE("GPL");