/* * linux/arch/arm/mach-omap2/clock.c * * Copyright (C) 2005-2008 Texas Instruments, Inc. * Copyright (C) 2004-2008 Nokia Corporation * * Contacts: * Richard Woodruff * Paul Walmsley * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sdrc.h" #include "clock.h" #include "prm.h" #include "prm-regbits-24xx.h" #include "cm.h" #include "cm-regbits-24xx.h" #include "cm-regbits-34xx.h" #define MAX_CLOCK_ENABLE_WAIT 100000 /* DPLL rate rounding: minimum DPLL multiplier, divider values */ #define DPLL_MIN_MULTIPLIER 1 #define DPLL_MIN_DIVIDER 1 /* Possible error results from _dpll_test_mult */ #define DPLL_MULT_UNDERFLOW (1 << 0) /* * Scale factor to mitigate roundoff errors in DPLL rate rounding. * The higher the scale factor, the greater the risk of arithmetic overflow, * but the closer the rounded rate to the target rate. DPLL_SCALE_FACTOR * must be a power of DPLL_SCALE_BASE. */ #define DPLL_SCALE_FACTOR 64 #define DPLL_SCALE_BASE 2 #define DPLL_ROUNDING_VAL ((DPLL_SCALE_BASE / 2) * \ (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE)) /* Some OMAP2xxx CM_CLKSEL_PLL.ST_CORE_CLK bits - for omap2_get_dpll_rate() */ #define ST_CORE_CLK_REF 0x1 #define ST_CORE_CLK_32K 0x3 /* Bitmask to isolate the register type of clk.enable_reg */ #define PRCM_REGTYPE_MASK 0xf0 /* various CM register type options */ #define CM_FCLKEN_REGTYPE 0x00 #define CM_ICLKEN_REGTYPE 0x10 #define CM_IDLEST_REGTYPE 0x20 u8 cpu_mask; /*------------------------------------------------------------------------- * OMAP2/3 specific clock functions *-------------------------------------------------------------------------*/ /* * _omap2_clk_read_reg - read a clock register * @clk: struct clk * * * Given a struct clk *, returns the value of the clock's register. */ static u32 _omap2_clk_read_reg(u16 reg_offset, struct clk *clk) { if (clk->prcm_mod & CLK_REG_IN_SCM) return omap_ctrl_readl(reg_offset); else if (clk->prcm_mod & CLK_REG_IN_PRM) return prm_read_mod_reg(clk->prcm_mod & PRCM_MOD_ADDR_MASK, reg_offset); else return cm_read_mod_reg(clk->prcm_mod, reg_offset); } /* * _omap2_clk_write_reg - write a clock's register * @v: value to write to the clock's enable_reg * @clk: struct clk * * * Given a register value @v and struct clk * @clk, writes the value of @v to * the clock's enable register. No return value. */ static void _omap2_clk_write_reg(u32 v, u16 reg_offset, struct clk *clk) { if (clk->prcm_mod & CLK_REG_IN_SCM) omap_ctrl_writel(v, reg_offset); else if (clk->prcm_mod & CLK_REG_IN_PRM) prm_write_mod_reg(v, clk->prcm_mod & PRCM_MOD_ADDR_MASK, reg_offset); else cm_write_mod_reg(v, clk->prcm_mod, reg_offset); } /** * omap2_init_clk_clkdm - look up a clockdomain name, store pointer in clk * @clk: OMAP clock struct ptr to use * * Convert a clockdomain name stored in a struct clk 'clk' into a * clockdomain pointer, and save it into the struct clk. Intended to be * called during clk_register(). No return value. */ void omap2_init_clk_clkdm(struct clk *clk) { struct clockdomain *clkdm; if (!clk->clkdm.name) { pr_err("clock: %s: missing clockdomain", clk->name); return; } clkdm = clkdm_lookup(clk->clkdm.name); if (clkdm) { pr_debug("clock: associated clk %s to clkdm %s\n", clk->name, clk->clkdm.name); clk->clkdm.ptr = clkdm; } else { pr_err("clock: %s: could not associate to clkdm %s\n", clk->name, clk->clkdm.name); } } /** * omap2_init_clksel_parent - set a clksel clk's parent field from the hardware * @clk: OMAP clock struct ptr to use * * Given a pointer to a source-selectable struct clk, read the hardware * register and determine what its parent is currently set to. Update the * clk->parent field with the appropriate clk ptr. */ void omap2_init_clksel_parent(struct clk *clk) { const struct clksel *clks; const struct clksel_rate *clkr; u32 r, found = 0; if (!clk->clksel) return; r = _omap2_clk_read_reg(clk->clksel_reg, clk); r &= clk->clksel_mask; r >>= __ffs(clk->clksel_mask); for (clks = clk->clksel; clks->parent && !found; clks++) { for (clkr = clks->rates; clkr->div && !found; clkr++) { if ((clkr->flags & cpu_mask) && (clkr->val == r)) { if (clk->parent != clks->parent) { pr_debug("clock: inited %s parent " "to %s (was %s)\n", clk->name, clks->parent->name, ((clk->parent) ? clk->parent->name : "NULL")); clk->parent = clks->parent; }; found = 1; } } } if (!found) printk(KERN_ERR "clock: init parent: could not find " "regval %0x for clock %s\n", r, clk->name); return; } /** * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate * @clk: struct clk * of a DPLL * * DPLLs can be locked or bypassed - basically, enabled or disabled. * When locked, the DPLL output depends on the M and N values. When * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock * or sys_clk. Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk. * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0 * if the clock @clk is not a DPLL. */ u32 omap2_get_dpll_rate(struct clk *clk) { long long dpll_clk; u32 dpll_mult, dpll_div, v; struct dpll_data *dd; dd = clk->dpll_data; if (!dd) return 0; /* Return bypass rate if DPLL is bypassed */ v = cm_read_mod_reg(clk->prcm_mod, dd->idlest_reg); v &= dd->idlest_mask; v >>= __ffs(dd->idlest_mask); if (cpu_is_omap24xx()) { if (v == ST_CORE_CLK_REF) return clk->parent->rate; /* sys_clk */ else if (v == ST_CORE_CLK_32K) return 32768; } else if (cpu_is_omap34xx()) { if (!v) return dd->bypass_clk->rate; } v = cm_read_mod_reg(clk->prcm_mod, dd->mult_div1_reg); dpll_mult = v & dd->mult_mask; dpll_mult >>= __ffs(dd->mult_mask); dpll_div = v & dd->div1_mask; dpll_div >>= __ffs(dd->div1_mask); dpll_clk = (long long)clk->parent->rate * dpll_mult; do_div(dpll_clk, dpll_div + 1); return dpll_clk; } /* * Used for clocks that have the same value as the parent clock, * divided by some factor */ void omap2_fixed_divisor_recalc(struct clk *clk) { WARN_ON(!clk->fixed_div); clk->rate = clk->parent->rate / clk->fixed_div; if (clk->flags & RATE_PROPAGATES) propagate_rate(clk); } /** * omap2_wait_clock_ready - wait for clock to enable * @prcm_mod: CM submodule offset from CM_BASE (e.g., "MPU_MOD") * @reg_index: offset of CM register address from prcm_mod * @mask: value to mask against to determine if the clock is active * @name: name of the clock (for printk) * * Returns 1 if the clock enabled in time, or 0 if it failed to enable * in roughly MAX_CLOCK_ENABLE_WAIT microseconds. */ int omap2_wait_clock_ready(s16 prcm_mod, u16 reg_index, u32 mask, const char *name) { int i = 0, ena = 0; /* * 24xx uses 0 to indicate not ready, and 1 to indicate ready. * 34xx reverses this, just to keep us on our toes */ if (cpu_mask & (RATE_IN_242X | RATE_IN_243X)) ena = mask; else if (cpu_mask & RATE_IN_343X) ena = 0; /* Wait for lock */ while (((cm_read_mod_reg(prcm_mod, reg_index) & mask) != ena) && (i++ < MAX_CLOCK_ENABLE_WAIT)) { udelay(1); } if (i < MAX_CLOCK_ENABLE_WAIT) pr_debug("Clock %s stable after %d loops\n", name, i); else printk(KERN_ERR "Clock %s didn't enable in %d tries\n", name, MAX_CLOCK_ENABLE_WAIT); return (i < MAX_CLOCK_ENABLE_WAIT) ? 1 : 0; }; /* * omap2_clk_wait_ready - wait for a OMAP module to come out of target idle * @clk: struct clk * recently enabled to indicate the module to test * * Wait for an OMAP module with a target idle state bit to come out of * idle once both its interface clock and primary functional clock are * both enabled. Any register read or write to the device before it * returns from idle will cause an abort. Not all modules have target * idle state bits (for example, DSS and CAM on OMAP24xx); so we don't * wait for those. No return value. * * We don't need special code here for INVERT_ENABLE for the time * being since INVERT_ENABLE only applies to clocks enabled by * CM_CLKEN_PLL. * * REVISIT: This function is misnamed: it should be something like * "omap2_module_wait_ready", and in the long-term, it does not belong * in the clock framework. It also shouldn't be doing register * arithmetic to determine the companion clock. */ static void omap2_clk_wait_ready(struct clk *clk) { u16 other_reg, idlest_reg; u32 other_bit; if (!(clk->flags & WAIT_READY)) return; /* If we are enabling an iclk, also test the fclk; and vice versa */ other_bit = 1 << clk->enable_bit; other_reg = clk->enable_reg & ~PRCM_REGTYPE_MASK; if (clk->enable_reg & CM_ICLKEN_REGTYPE) other_reg |= CM_FCLKEN_REGTYPE; else other_reg |= CM_ICLKEN_REGTYPE; /* Ensure functional and interface clocks are running. */ if (!(cm_read_mod_reg(clk->prcm_mod, other_reg) & other_bit)) return; idlest_reg = other_reg & ~PRCM_REGTYPE_MASK; idlest_reg |= CM_IDLEST_REGTYPE; omap2_wait_clock_ready(clk->prcm_mod, idlest_reg, 1 << clk->idlest_bit, clk->name); } /* Enables clock without considering parent dependencies or use count * REVISIT: Maybe change this to use clk->enable like on omap1? */ static int _omap2_clk_enable(struct clk *clk) { u32 v; if (clk->flags & (ALWAYS_ENABLED | PARENT_CONTROLS_CLOCK)) return 0; if (clk->enable) return clk->enable(clk); v = _omap2_clk_read_reg(clk->enable_reg, clk); if (clk->flags & INVERT_ENABLE) v &= ~(1 << clk->enable_bit); else v |= (1 << clk->enable_bit); _omap2_clk_write_reg(v, clk->enable_reg, clk); wmb(); omap2_clk_wait_ready(clk); return 0; } /* Disables clock without considering parent dependencies or use count */ static void _omap2_clk_disable(struct clk *clk) { u32 v; if (clk->flags & (ALWAYS_ENABLED | PARENT_CONTROLS_CLOCK)) return; if (clk->disable) { clk->disable(clk); return; } v = _omap2_clk_read_reg(clk->enable_reg, clk); if (clk->flags & INVERT_ENABLE) v |= (1 << clk->enable_bit); else v &= ~(1 << clk->enable_bit); _omap2_clk_write_reg(v, clk->enable_reg, clk); wmb(); } void omap2_clk_disable(struct clk *clk) { if (clk->usecount > 0 && !(--clk->usecount)) { _omap2_clk_disable(clk); if (clk->parent) omap2_clk_disable(clk->parent); if (clk->clkdm.ptr) omap2_clkdm_clk_disable(clk->clkdm.ptr, clk); } } int omap2_clk_enable(struct clk *clk) { int ret = 0; if (clk->usecount++ == 0) { if (clk->parent) ret = omap2_clk_enable(clk->parent); if (ret != 0) { clk->usecount--; return ret; } if (clk->clkdm.ptr) omap2_clkdm_clk_enable(clk->clkdm.ptr, clk); ret = _omap2_clk_enable(clk); if (ret != 0) { if (clk->clkdm.ptr) omap2_clkdm_clk_disable(clk->clkdm.ptr, clk); if (clk->parent) { omap2_clk_disable(clk->parent); clk->usecount--; } } } return ret; } /* * Used for clocks that are part of CLKSEL_xyz governed clocks. * REVISIT: Maybe change to use clk->enable() functions like on omap1? */ void omap2_clksel_recalc(struct clk *clk) { u32 div = 0; pr_debug("clock: recalc'ing clksel clk %s\n", clk->name); div = omap2_clksel_get_divisor(clk); if (div == 0) return; if (clk->rate == (clk->parent->rate / div)) return; clk->rate = clk->parent->rate / div; pr_debug("clock: new clock rate is %ld (div %d)\n", clk->rate, div); if (clk->flags & RATE_PROPAGATES) propagate_rate(clk); } /** * omap2_get_clksel_by_parent - return clksel struct for a given clk & parent * @clk: OMAP struct clk ptr to inspect * @src_clk: OMAP struct clk ptr of the parent clk to search for * * Scan the struct clksel array associated with the clock to find * the element associated with the supplied parent clock address. * Returns a pointer to the struct clksel on success or NULL on error. */ static const struct clksel *omap2_get_clksel_by_parent(struct clk *clk, struct clk *src_clk) { const struct clksel *clks; if (!clk->clksel) return NULL; for (clks = clk->clksel; clks->parent; clks++) { if (clks->parent == src_clk) break; /* Found the requested parent */ } if (!clks->parent) { printk(KERN_ERR "clock: Could not find parent clock %s in " "clksel array of clock %s\n", src_clk->name, clk->name); return NULL; } return clks; } /** * omap2_clksel_round_rate_div - find divisor for the given clock and rate * @clk: OMAP struct clk to use * @target_rate: desired clock rate * @new_div: ptr to where we should store the divisor * * Finds 'best' divider value in an array based on the source and target * rates. The divider array must be sorted with smallest divider first. * Note that this will not work for clocks which are part of CONFIG_PARTICIPANT, * they are only settable as part of virtual_prcm set. * * Returns the rounded clock rate or returns 0xffffffff on error. */ u32 omap2_clksel_round_rate_div(struct clk *clk, unsigned long target_rate, u32 *new_div) { unsigned long test_rate; const struct clksel *clks; const struct clksel_rate *clkr; u32 last_div = 0; printk(KERN_INFO "clock: clksel_round_rate_div: %s target_rate %ld\n", clk->name, target_rate); *new_div = 1; clks = omap2_get_clksel_by_parent(clk, clk->parent); if (!clks) return ~0; for (clkr = clks->rates; clkr->div; clkr++) { if (!(clkr->flags & cpu_mask)) continue; /* Sanity check */ if (clkr->div <= last_div) printk(KERN_ERR "clock: clksel_rate table not sorted " "for clock %s", clk->name); last_div = clkr->div; test_rate = clk->parent->rate / clkr->div; if (test_rate <= target_rate) break; /* found it */ } if (!clkr->div) { printk(KERN_ERR "clock: Could not find divisor for target " "rate %ld for clock %s parent %s\n", target_rate, clk->name, clk->parent->name); return ~0; } *new_div = clkr->div; printk(KERN_INFO "clock: new_div = %d, new_rate = %ld\n", *new_div, (clk->parent->rate / clkr->div)); return (clk->parent->rate / clkr->div); } /** * omap2_clksel_round_rate - find rounded rate for the given clock and rate * @clk: OMAP struct clk to use * @target_rate: desired clock rate * * Compatibility wrapper for OMAP clock framework * Finds best target rate based on the source clock and possible dividers. * rates. The divider array must be sorted with smallest divider first. * Note that this will not work for clocks which are part of CONFIG_PARTICIPANT, * they are only settable as part of virtual_prcm set. * * Returns the rounded clock rate or returns 0xffffffff on error. */ long omap2_clksel_round_rate(struct clk *clk, unsigned long target_rate) { u32 new_div; return omap2_clksel_round_rate_div(clk, target_rate, &new_div); } /* Given a clock and a rate apply a clock specific rounding function */ long omap2_clk_round_rate(struct clk *clk, unsigned long rate) { if (clk->round_rate != NULL) return clk->round_rate(clk, rate); if (clk->flags & RATE_FIXED) printk(KERN_ERR "clock: generic omap2_clk_round_rate called " "on fixed-rate clock %s\n", clk->name); return clk->rate; } /** * omap2_clksel_to_divisor() - turn clksel field value into integer divider * @clk: OMAP struct clk to use * @field_val: register field value to find * * Given a struct clk of a rate-selectable clksel clock, and a register field * value to search for, find the corresponding clock divisor. The register * field value should be pre-masked and shifted down so the LSB is at bit 0 * before calling. Returns 0 on error */ u32 omap2_clksel_to_divisor(struct clk *clk, u32 field_val) { const struct clksel *clks; const struct clksel_rate *clkr; clks = omap2_get_clksel_by_parent(clk, clk->parent); if (!clks) return 0; for (clkr = clks->rates; clkr->div; clkr++) { if ((clkr->flags & cpu_mask) && (clkr->val == field_val)) break; } if (!clkr->div) { printk(KERN_ERR "clock: Could not find fieldval %d for " "clock %s parent %s\n", field_val, clk->name, clk->parent->name); return 0; } return clkr->div; } /** * omap2_divisor_to_clksel() - turn clksel integer divisor into a field value * @clk: OMAP struct clk to use * @div: integer divisor to search for * * Given a struct clk of a rate-selectable clksel clock, and a clock divisor, * find the corresponding register field value. The return register value is * the value before left-shifting. Returns 0xffffffff on error */ u32 omap2_divisor_to_clksel(struct clk *clk, u32 div) { const struct clksel *clks; const struct clksel_rate *clkr; /* should never happen */ WARN_ON(div == 0); clks = omap2_get_clksel_by_parent(clk, clk->parent); if (!clks) return 0; for (clkr = clks->rates; clkr->div; clkr++) { if ((clkr->flags & cpu_mask) && (clkr->div == div)) break; } if (!clkr->div) { printk(KERN_ERR "clock: Could not find divisor %d for " "clock %s parent %s\n", div, clk->name, clk->parent->name); return 0; } return clkr->val; } /** * omap2_clksel_get_divisor - get current divider applied to parent clock. * @clk: OMAP struct clk to use. * * Returns the integer divisor upon success or 0 on error. */ u32 omap2_clksel_get_divisor(struct clk *clk) { u32 v; if (!clk->clksel_mask) return 0; v = _omap2_clk_read_reg(clk->clksel_reg, clk); v &= clk->clksel_mask; v >>= __ffs(clk->clksel_mask); return omap2_clksel_to_divisor(clk, v); } int omap2_clksel_set_rate(struct clk *clk, unsigned long rate) { u32 v, field_val, validrate, new_div = 0; if (!clk->clksel_mask) return -EINVAL; validrate = omap2_clksel_round_rate_div(clk, rate, &new_div); if (validrate != rate) return -EINVAL; field_val = omap2_divisor_to_clksel(clk, new_div); if (field_val == ~0) return -EINVAL; v = _omap2_clk_read_reg(clk->clksel_reg, clk); v &= ~clk->clksel_mask; v |= field_val << __ffs(clk->clksel_mask); _omap2_clk_write_reg(v, clk->clksel_reg, clk); wmb(); clk->rate = clk->parent->rate / new_div; if (clk->flags & DELAYED_APP && cpu_is_omap24xx()) { prm_write_mod_reg(OMAP24XX_VALID_CONFIG, OMAP24XX_GR_MOD, OMAP24XX_PRCM_CLKCFG_CTRL_OFFSET); wmb(); } return 0; } /* Set the clock rate for a clock source */ int omap2_clk_set_rate(struct clk *clk, unsigned long rate) { int ret = -EINVAL; pr_debug("clock: set_rate for clock %s to rate %ld\n", clk->name, rate); /* CONFIG_PARTICIPANT clocks are changed only in sets via the rate table mechanism, driven by mpu_speed */ if (clk->flags & CONFIG_PARTICIPANT) return -EINVAL; /* dpll_ck, core_ck, virt_prcm_set; plus all clksel clocks */ if (clk->set_rate != NULL) ret = clk->set_rate(clk, rate); if (ret == 0 && (clk->flags & RATE_PROPAGATES)) propagate_rate(clk); return ret; } /* * Converts encoded control register address into a full address * On error, the return value (parent_div) will be 0. */ static u32 _omap2_clksel_get_src_field(struct clk *src_clk, struct clk *clk, u32 *field_val) { const struct clksel *clks; const struct clksel_rate *clkr; clks = omap2_get_clksel_by_parent(clk, src_clk); if (!clks) return 0; for (clkr = clks->rates; clkr->div; clkr++) { if (clkr->flags & (cpu_mask | DEFAULT_RATE)) break; /* Found the default rate for this platform */ } if (!clkr->div) { printk(KERN_ERR "clock: Could not find default rate for " "clock %s parent %s\n", clk->name, src_clk->parent->name); return 0; } /* Should never happen. Add a clksel mask to the struct clk. */ WARN_ON(clk->clksel_mask == 0); *field_val = clkr->val; return clkr->div; } int omap2_clk_set_parent(struct clk *clk, struct clk *new_parent) { u32 field_val, v, parent_div; if (clk->flags & CONFIG_PARTICIPANT) return -EINVAL; if (!clk->clksel) return -EINVAL; parent_div = _omap2_clksel_get_src_field(new_parent, clk, &field_val); if (!parent_div) return -EINVAL; if (clk->usecount > 0) _omap2_clk_disable(clk); /* Set new source value (previous dividers if any in effect) */ v = _omap2_clk_read_reg(clk->clksel_reg, clk); v &= ~clk->clksel_mask; v |= field_val << __ffs(clk->clksel_mask); _omap2_clk_write_reg(v, clk->clksel_reg, clk); wmb(); if (clk->flags & DELAYED_APP && cpu_is_omap24xx()) { prm_write_mod_reg(OMAP24XX_VALID_CONFIG, OMAP24XX_GR_MOD, OMAP24XX_PRCM_CLKCFG_CTRL_OFFSET); wmb(); } if (clk->usecount > 0) _omap2_clk_enable(clk); clk->parent = new_parent; /* CLKSEL clocks follow their parents' rates, divided by a divisor */ clk->rate = new_parent->rate; if (parent_div > 0) clk->rate /= parent_div; pr_debug("clock: set parent of %s to %s (new rate %ld)\n", clk->name, clk->parent->name, clk->rate); if (clk->flags & RATE_PROPAGATES) propagate_rate(clk); return 0; } /* DPLL rate rounding code */ /** * omap2_dpll_set_rate_tolerance: set the error tolerance during rate rounding * @clk: struct clk * of the DPLL * @tolerance: maximum rate error tolerance * * Set the maximum DPLL rate error tolerance for the rate rounding * algorithm. The rate tolerance is an attempt to balance DPLL power * saving (the least divider value "n") vs. rate fidelity (the least * difference between the desired DPLL target rate and the rounded * rate out of the algorithm). So, increasing the tolerance is likely * to decrease DPLL power consumption and increase DPLL rate error. * Returns -EINVAL if provided a null clock ptr or a clk that is not a * DPLL; or 0 upon success. */ int omap2_dpll_set_rate_tolerance(struct clk *clk, unsigned int tolerance) { if (!clk || !clk->dpll_data) return -EINVAL; clk->dpll_data->rate_tolerance = tolerance; return 0; } static unsigned long _dpll_compute_new_rate(unsigned long parent_rate, unsigned int m, unsigned int n) { unsigned long long num; num = (unsigned long long)parent_rate * m; do_div(num, n); return num; } /* * _dpll_test_mult - test a DPLL multiplier value * @m: pointer to the DPLL m (multiplier) value under test * @n: current DPLL n (divider) value under test * @new_rate: pointer to storage for the resulting rounded rate * @target_rate: the desired DPLL rate * @parent_rate: the DPLL's parent clock rate * * This code tests a DPLL multiplier value, ensuring that the * resulting rate will not be higher than the target_rate, and that * the multiplier value itself is valid for the DPLL. Initially, the * integer pointed to by the m argument should be prescaled by * multiplying by DPLL_SCALE_FACTOR. The code will replace this with * a non-scaled m upon return. This non-scaled m will result in a * new_rate as close as possible to target_rate (but not greater than * target_rate) given the current (parent_rate, n, prescaled m) * triple. Returns DPLL_MULT_UNDERFLOW in the event that the * non-scaled m attempted to underflow, which can allow the calling * function to bail out early; or 0 upon success. */ static int _dpll_test_mult(int *m, int n, unsigned long *new_rate, unsigned long target_rate, unsigned long parent_rate) { int flags = 0, carry = 0; /* Unscale m and round if necessary */ if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL) carry = 1; *m = (*m / DPLL_SCALE_FACTOR) + carry; /* * The new rate must be <= the target rate to avoid programming * a rate that is impossible for the hardware to handle */ *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); if (*new_rate > target_rate) { (*m)--; *new_rate = 0; } /* Guard against m underflow */ if (*m < DPLL_MIN_MULTIPLIER) { *m = DPLL_MIN_MULTIPLIER; *new_rate = 0; flags = DPLL_MULT_UNDERFLOW; } if (*new_rate == 0) *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); return flags; } /** * omap2_dpll_round_rate - round a target rate for an OMAP DPLL * @clk: struct clk * for a DPLL * @target_rate: desired DPLL clock rate * * Given a DPLL, a desired target rate, and a rate tolerance, round * the target rate to a possible, programmable rate for this DPLL. * Rate tolerance is assumed to be set by the caller before this * function is called. Attempts to select the minimum possible n * within the tolerance to reduce power consumption. Stores the * computed (m, n) in the DPLL's dpll_data structure so set_rate() * will not need to call this (expensive) function again. Returns ~0 * if the target rate cannot be rounded, either because the rate is * too low or because the rate tolerance is set too tightly; or the * rounded rate upon success. */ long omap2_dpll_round_rate(struct clk *clk, unsigned long target_rate) { int m, n, r, e, scaled_max_m; unsigned long scaled_rt_rp, new_rate; int min_e = -1, min_e_m = -1, min_e_n = -1; if (!clk || !clk->dpll_data) return ~0; pr_debug("clock: starting DPLL round_rate for clock %s, target rate " "%ld\n", clk->name, target_rate); scaled_rt_rp = target_rate / (clk->parent->rate / DPLL_SCALE_FACTOR); scaled_max_m = clk->dpll_data->max_multiplier * DPLL_SCALE_FACTOR; clk->dpll_data->last_rounded_rate = 0; for (n = clk->dpll_data->max_divider; n >= DPLL_MIN_DIVIDER; n--) { /* Compute the scaled DPLL multiplier, based on the divider */ m = scaled_rt_rp * n; /* * Since we're counting n down, a m overflow means we can * can immediately skip to the next n */ if (m > scaled_max_m) continue; r = _dpll_test_mult(&m, n, &new_rate, target_rate, clk->parent->rate); e = target_rate - new_rate; pr_debug("clock: n = %d: m = %d: rate error is %d " "(new_rate = %ld)\n", n, m, e, new_rate); if (min_e == -1 || min_e >= (int)(abs(e) - clk->dpll_data->rate_tolerance)) { min_e = e; min_e_m = m; min_e_n = n; pr_debug("clock: found new least error %d\n", min_e); } /* * Since we're counting n down, a m underflow means we * can bail out completely (since as n decreases in * the next iteration, there's no way that m can * increase beyond the current m) */ if (r & DPLL_MULT_UNDERFLOW) break; } if (min_e < 0) { pr_debug("clock: error: target rate or tolerance too low\n"); return ~0; } clk->dpll_data->last_rounded_m = min_e_m; clk->dpll_data->last_rounded_n = min_e_n; clk->dpll_data->last_rounded_rate = _dpll_compute_new_rate(clk->parent->rate, min_e_m, min_e_n); pr_debug("clock: final least error: e = %d, m = %d, n = %d\n", min_e, min_e_m, min_e_n); pr_debug("clock: final rate: %ld (target rate: %ld)\n", clk->dpll_data->last_rounded_rate, target_rate); return clk->dpll_data->last_rounded_rate; } /*------------------------------------------------------------------------- * Omap2 clock reset and init functions *-------------------------------------------------------------------------*/ #ifdef CONFIG_OMAP_RESET_CLOCKS void omap2_clk_disable_unused(struct clk *clk) { u32 regval32, v; v = (clk->flags & INVERT_ENABLE) ? (1 << clk->enable_bit) : 0; regval32 = _omap2_clk_read_reg(clk->enable_reg, clk); if ((regval32 & (1 << clk->enable_bit)) == v) return; printk(KERN_INFO "Disabling unused clock \"%s\"\n", clk->name); _omap2_clk_disable(clk); } #endif