/* * linux/arch/arm/mach-omap2/board-n800-flash.c * * Copyright (C) 2006 Nokia Corporation * Author: Juha Yrjola * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include static struct mtd_partition n800_partitions[8]; static int n800_onenand_setup(void __iomem *, int freq); static struct omap_onenand_platform_data n800_onenand_data = { .cs = 0, .gpio_irq = 26, .parts = n800_partitions, .nr_parts = 0, /* filled later */ .onenand_setup = n800_onenand_setup, }; static struct platform_device n800_onenand_device = { .name = "omap2-onenand", .id = -1, .dev = { .platform_data = &n800_onenand_data, }, }; static unsigned short omap2_onenand_readw(void __iomem *addr) { return readw(addr); } static void omap2_onenand_writew(unsigned short value, void __iomem *addr) { writew(value, addr); } static int omap2_onenand_set_sync_mode(int cs, void __iomem *onenand_base, int freq) { struct gpmc_timings t; int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_avdp, t_wpl, t_wea; int tick_ns, div, fclk_offset_ns, fclk_offset, gpmc_clk_ns, latency; int err; u32 reg; again: switch (freq) { case 83: min_gpmc_clk_period = 12; /* 83 MHz */ t_ces = 5; t_avds = 5; t_avdh = 6; t_avdp = 12; t_wpl = 40; t_wea = 15; break; case 66: min_gpmc_clk_period = 15; /* 66 MHz */ t_ces = 6; t_avds = 5; t_avdh = 6; t_avdp = 12; t_wpl = 40; t_wea = 15; break; default: min_gpmc_clk_period = 18; /* 54 MHz */ t_ces = 7; t_avds = 7; t_avdh = 7; t_avdp = 12; t_wpl = 40; t_wea = 15; break; } tick_ns = gpmc_ticks_to_ns(1); div = gpmc_cs_calc_divider(cs, min_gpmc_clk_period); gpmc_clk_ns = gpmc_ticks_to_ns(div); if (gpmc_clk_ns >= 25) /* 40 MHz*/ latency = 3; else latency = 4; if (div == 1) { reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2); reg |= (1 << 7); gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg); reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3); reg |= (1 << 7); gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg); reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4); reg |= (1 << 7); reg |= (1 << 23); gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg); } else { reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2); reg &= ~(1 << 7); gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg); reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3); reg &= ~(1 << 7); gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg); reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4); reg &= ~(1 << 7); reg &= ~(1 << 23); gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg); } /* Set syncronous read timings */ memset(&t, 0, sizeof(t)); t.sync_clk = min_gpmc_clk_period; t.cs_on = 0; t.adv_on = 0; fclk_offset_ns = gpmc_round_ns_to_ticks(max_t(int, t_ces, t_avds)); fclk_offset = gpmc_ns_to_ticks(fclk_offset_ns); t.page_burst_access = gpmc_clk_ns; /* Read */ t.adv_rd_off = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_avdh)); t.oe_on = t.adv_rd_off; t.access = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div); t.oe_off = t.access + gpmc_round_ns_to_ticks(1); t.cs_rd_off = t.oe_off; t.rd_cycle = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div + div); /* Write */ t.adv_wr_off = t.adv_on + gpmc_round_ns_to_ticks(t_avdp); t.we_on = t.adv_wr_off + gpmc_round_ns_to_ticks(t_avdh); t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl); t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(1); t.wr_cycle = t.we_off + gpmc_round_ns_to_ticks(t_wea); /* Configure GPMC for synchronous read */ gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, GPMC_CONFIG1_WRAPBURST_SUPP | GPMC_CONFIG1_READMULTIPLE_SUPP | GPMC_CONFIG1_READTYPE_SYNC | GPMC_CONFIG1_CLKACTIVATIONTIME(fclk_offset) | GPMC_CONFIG1_PAGE_LEN(2) | GPMC_CONFIG1_WAIT_READ_MON | GPMC_CONFIG1_WAIT_PIN_SEL(0) | GPMC_CONFIG1_DEVICESIZE_16 | GPMC_CONFIG1_DEVICETYPE_NOR | GPMC_CONFIG1_MUXADDDATA); err = gpmc_cs_set_timings(cs, &t); if (err) return err; if (!freq) { /* Very first call freq is not known */ reg = omap2_onenand_readw(onenand_base + ONENAND_REG_VERSION_ID); switch ((reg >> 4) & 0xf) { case 0: freq = 40; break; case 1: freq = 54; break; case 2: freq = 66; break; case 3: freq = 83; break; } if (freq && freq != 54) goto again; } /* Configure OneNAND for sync read */ reg = omap2_onenand_readw(onenand_base + ONENAND_REG_SYS_CFG1); reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9)); reg |= (latency << ONENAND_SYS_CFG1_BRL_SHIFT) | ONENAND_SYS_CFG1_SYNC_READ | ONENAND_SYS_CFG1_BL_16; omap2_onenand_writew(reg, onenand_base + ONENAND_REG_SYS_CFG1); return 0; } static int n800_onenand_setup(void __iomem *onenand_base, int freq) { struct omap_onenand_platform_data *datap = &n800_onenand_data; struct device *dev = &n800_onenand_device.dev; /* Set sync timings in GPMC */ if (omap2_onenand_set_sync_mode(datap->cs, onenand_base, freq) < 0) { dev_err(dev, "Unable to set synchronous mode\n"); return -EINVAL; } return 0; } void __init n800_flash_init(void) { const struct omap_partition_config *part; int i = 0; while ((part = omap_get_nr_config(OMAP_TAG_PARTITION, struct omap_partition_config, i)) != NULL) { struct mtd_partition *mpart; mpart = n800_partitions + i; mpart->name = (char *) part->name; mpart->size = part->size; mpart->offset = part->offset; mpart->mask_flags = part->mask_flags; i++; if (i == ARRAY_SIZE(n800_partitions)) { printk(KERN_ERR "Too many partitions supplied\n"); return; } } n800_onenand_data.nr_parts = i; if (platform_device_register(&n800_onenand_device) < 0) { printk(KERN_ERR "Unable to register OneNAND device\n"); return; } }