]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - security/selinux/hooks.c
9f6da154cc82cd0ec3e118cfe6a6fb03ae8c254c
[linux-2.6-omap-h63xx.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 4
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /* Allocate and free functions for each kind of security blob. */
160
161 static int task_alloc_security(struct task_struct *task)
162 {
163         struct task_security_struct *tsec;
164
165         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
166         if (!tsec)
167                 return -ENOMEM;
168
169         tsec->osid = tsec->sid = SECINITSID_UNLABELED;
170         task->security = tsec;
171
172         return 0;
173 }
174
175 static void task_free_security(struct task_struct *task)
176 {
177         struct task_security_struct *tsec = task->security;
178         task->security = NULL;
179         kfree(tsec);
180 }
181
182 static int inode_alloc_security(struct inode *inode)
183 {
184         struct task_security_struct *tsec = current->security;
185         struct inode_security_struct *isec;
186
187         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
188         if (!isec)
189                 return -ENOMEM;
190
191         mutex_init(&isec->lock);
192         INIT_LIST_HEAD(&isec->list);
193         isec->inode = inode;
194         isec->sid = SECINITSID_UNLABELED;
195         isec->sclass = SECCLASS_FILE;
196         isec->task_sid = tsec->sid;
197         inode->i_security = isec;
198
199         return 0;
200 }
201
202 static void inode_free_security(struct inode *inode)
203 {
204         struct inode_security_struct *isec = inode->i_security;
205         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
206
207         spin_lock(&sbsec->isec_lock);
208         if (!list_empty(&isec->list))
209                 list_del_init(&isec->list);
210         spin_unlock(&sbsec->isec_lock);
211
212         inode->i_security = NULL;
213         kmem_cache_free(sel_inode_cache, isec);
214 }
215
216 static int file_alloc_security(struct file *file)
217 {
218         struct task_security_struct *tsec = current->security;
219         struct file_security_struct *fsec;
220
221         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
222         if (!fsec)
223                 return -ENOMEM;
224
225         fsec->sid = tsec->sid;
226         fsec->fown_sid = tsec->sid;
227         file->f_security = fsec;
228
229         return 0;
230 }
231
232 static void file_free_security(struct file *file)
233 {
234         struct file_security_struct *fsec = file->f_security;
235         file->f_security = NULL;
236         kfree(fsec);
237 }
238
239 static int superblock_alloc_security(struct super_block *sb)
240 {
241         struct superblock_security_struct *sbsec;
242
243         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
244         if (!sbsec)
245                 return -ENOMEM;
246
247         mutex_init(&sbsec->lock);
248         INIT_LIST_HEAD(&sbsec->list);
249         INIT_LIST_HEAD(&sbsec->isec_head);
250         spin_lock_init(&sbsec->isec_lock);
251         sbsec->sb = sb;
252         sbsec->sid = SECINITSID_UNLABELED;
253         sbsec->def_sid = SECINITSID_FILE;
254         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
255         sb->s_security = sbsec;
256
257         return 0;
258 }
259
260 static void superblock_free_security(struct super_block *sb)
261 {
262         struct superblock_security_struct *sbsec = sb->s_security;
263
264         spin_lock(&sb_security_lock);
265         if (!list_empty(&sbsec->list))
266                 list_del_init(&sbsec->list);
267         spin_unlock(&sb_security_lock);
268
269         sb->s_security = NULL;
270         kfree(sbsec);
271 }
272
273 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
274 {
275         struct sk_security_struct *ssec;
276
277         ssec = kzalloc(sizeof(*ssec), priority);
278         if (!ssec)
279                 return -ENOMEM;
280
281         ssec->peer_sid = SECINITSID_UNLABELED;
282         ssec->sid = SECINITSID_UNLABELED;
283         sk->sk_security = ssec;
284
285         selinux_netlbl_sk_security_reset(ssec, family);
286
287         return 0;
288 }
289
290 static void sk_free_security(struct sock *sk)
291 {
292         struct sk_security_struct *ssec = sk->sk_security;
293
294         sk->sk_security = NULL;
295         selinux_netlbl_sk_security_free(ssec);
296         kfree(ssec);
297 }
298
299 /* The security server must be initialized before
300    any labeling or access decisions can be provided. */
301 extern int ss_initialized;
302
303 /* The file system's label must be initialized prior to use. */
304
305 static char *labeling_behaviors[6] = {
306         "uses xattr",
307         "uses transition SIDs",
308         "uses task SIDs",
309         "uses genfs_contexts",
310         "not configured for labeling",
311         "uses mountpoint labeling",
312 };
313
314 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
315
316 static inline int inode_doinit(struct inode *inode)
317 {
318         return inode_doinit_with_dentry(inode, NULL);
319 }
320
321 enum {
322         Opt_error = -1,
323         Opt_context = 1,
324         Opt_fscontext = 2,
325         Opt_defcontext = 3,
326         Opt_rootcontext = 4,
327 };
328
329 static const match_table_t tokens = {
330         {Opt_context, CONTEXT_STR "%s"},
331         {Opt_fscontext, FSCONTEXT_STR "%s"},
332         {Opt_defcontext, DEFCONTEXT_STR "%s"},
333         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
334         {Opt_error, NULL},
335 };
336
337 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
338
339 static int may_context_mount_sb_relabel(u32 sid,
340                         struct superblock_security_struct *sbsec,
341                         struct task_security_struct *tsec)
342 {
343         int rc;
344
345         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346                           FILESYSTEM__RELABELFROM, NULL);
347         if (rc)
348                 return rc;
349
350         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
351                           FILESYSTEM__RELABELTO, NULL);
352         return rc;
353 }
354
355 static int may_context_mount_inode_relabel(u32 sid,
356                         struct superblock_security_struct *sbsec,
357                         struct task_security_struct *tsec)
358 {
359         int rc;
360         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
361                           FILESYSTEM__RELABELFROM, NULL);
362         if (rc)
363                 return rc;
364
365         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
366                           FILESYSTEM__ASSOCIATE, NULL);
367         return rc;
368 }
369
370 static int sb_finish_set_opts(struct super_block *sb)
371 {
372         struct superblock_security_struct *sbsec = sb->s_security;
373         struct dentry *root = sb->s_root;
374         struct inode *root_inode = root->d_inode;
375         int rc = 0;
376
377         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
378                 /* Make sure that the xattr handler exists and that no
379                    error other than -ENODATA is returned by getxattr on
380                    the root directory.  -ENODATA is ok, as this may be
381                    the first boot of the SELinux kernel before we have
382                    assigned xattr values to the filesystem. */
383                 if (!root_inode->i_op->getxattr) {
384                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
385                                "xattr support\n", sb->s_id, sb->s_type->name);
386                         rc = -EOPNOTSUPP;
387                         goto out;
388                 }
389                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
390                 if (rc < 0 && rc != -ENODATA) {
391                         if (rc == -EOPNOTSUPP)
392                                 printk(KERN_WARNING "SELinux: (dev %s, type "
393                                        "%s) has no security xattr handler\n",
394                                        sb->s_id, sb->s_type->name);
395                         else
396                                 printk(KERN_WARNING "SELinux: (dev %s, type "
397                                        "%s) getxattr errno %d\n", sb->s_id,
398                                        sb->s_type->name, -rc);
399                         goto out;
400                 }
401         }
402
403         sbsec->initialized = 1;
404
405         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
406                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
407                        sb->s_id, sb->s_type->name);
408         else
409                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
410                        sb->s_id, sb->s_type->name,
411                        labeling_behaviors[sbsec->behavior-1]);
412
413         /* Initialize the root inode. */
414         rc = inode_doinit_with_dentry(root_inode, root);
415
416         /* Initialize any other inodes associated with the superblock, e.g.
417            inodes created prior to initial policy load or inodes created
418            during get_sb by a pseudo filesystem that directly
419            populates itself. */
420         spin_lock(&sbsec->isec_lock);
421 next_inode:
422         if (!list_empty(&sbsec->isec_head)) {
423                 struct inode_security_struct *isec =
424                                 list_entry(sbsec->isec_head.next,
425                                            struct inode_security_struct, list);
426                 struct inode *inode = isec->inode;
427                 spin_unlock(&sbsec->isec_lock);
428                 inode = igrab(inode);
429                 if (inode) {
430                         if (!IS_PRIVATE(inode))
431                                 inode_doinit(inode);
432                         iput(inode);
433                 }
434                 spin_lock(&sbsec->isec_lock);
435                 list_del_init(&isec->list);
436                 goto next_inode;
437         }
438         spin_unlock(&sbsec->isec_lock);
439 out:
440         return rc;
441 }
442
443 /*
444  * This function should allow an FS to ask what it's mount security
445  * options were so it can use those later for submounts, displaying
446  * mount options, or whatever.
447  */
448 static int selinux_get_mnt_opts(const struct super_block *sb,
449                                 struct security_mnt_opts *opts)
450 {
451         int rc = 0, i;
452         struct superblock_security_struct *sbsec = sb->s_security;
453         char *context = NULL;
454         u32 len;
455         char tmp;
456
457         security_init_mnt_opts(opts);
458
459         if (!sbsec->initialized)
460                 return -EINVAL;
461
462         if (!ss_initialized)
463                 return -EINVAL;
464
465         /*
466          * if we ever use sbsec flags for anything other than tracking mount
467          * settings this is going to need a mask
468          */
469         tmp = sbsec->flags;
470         /* count the number of mount options for this sb */
471         for (i = 0; i < 8; i++) {
472                 if (tmp & 0x01)
473                         opts->num_mnt_opts++;
474                 tmp >>= 1;
475         }
476
477         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
478         if (!opts->mnt_opts) {
479                 rc = -ENOMEM;
480                 goto out_free;
481         }
482
483         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
484         if (!opts->mnt_opts_flags) {
485                 rc = -ENOMEM;
486                 goto out_free;
487         }
488
489         i = 0;
490         if (sbsec->flags & FSCONTEXT_MNT) {
491                 rc = security_sid_to_context(sbsec->sid, &context, &len);
492                 if (rc)
493                         goto out_free;
494                 opts->mnt_opts[i] = context;
495                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
496         }
497         if (sbsec->flags & CONTEXT_MNT) {
498                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
499                 if (rc)
500                         goto out_free;
501                 opts->mnt_opts[i] = context;
502                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
503         }
504         if (sbsec->flags & DEFCONTEXT_MNT) {
505                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
506                 if (rc)
507                         goto out_free;
508                 opts->mnt_opts[i] = context;
509                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
510         }
511         if (sbsec->flags & ROOTCONTEXT_MNT) {
512                 struct inode *root = sbsec->sb->s_root->d_inode;
513                 struct inode_security_struct *isec = root->i_security;
514
515                 rc = security_sid_to_context(isec->sid, &context, &len);
516                 if (rc)
517                         goto out_free;
518                 opts->mnt_opts[i] = context;
519                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
520         }
521
522         BUG_ON(i != opts->num_mnt_opts);
523
524         return 0;
525
526 out_free:
527         security_free_mnt_opts(opts);
528         return rc;
529 }
530
531 static int bad_option(struct superblock_security_struct *sbsec, char flag,
532                       u32 old_sid, u32 new_sid)
533 {
534         /* check if the old mount command had the same options */
535         if (sbsec->initialized)
536                 if (!(sbsec->flags & flag) ||
537                     (old_sid != new_sid))
538                         return 1;
539
540         /* check if we were passed the same options twice,
541          * aka someone passed context=a,context=b
542          */
543         if (!sbsec->initialized)
544                 if (sbsec->flags & flag)
545                         return 1;
546         return 0;
547 }
548
549 /*
550  * Allow filesystems with binary mount data to explicitly set mount point
551  * labeling information.
552  */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554                                 struct security_mnt_opts *opts)
555 {
556         int rc = 0, i;
557         struct task_security_struct *tsec = current->security;
558         struct superblock_security_struct *sbsec = sb->s_security;
559         const char *name = sb->s_type->name;
560         struct inode *inode = sbsec->sb->s_root->d_inode;
561         struct inode_security_struct *root_isec = inode->i_security;
562         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563         u32 defcontext_sid = 0;
564         char **mount_options = opts->mnt_opts;
565         int *flags = opts->mnt_opts_flags;
566         int num_opts = opts->num_mnt_opts;
567
568         mutex_lock(&sbsec->lock);
569
570         if (!ss_initialized) {
571                 if (!num_opts) {
572                         /* Defer initialization until selinux_complete_init,
573                            after the initial policy is loaded and the security
574                            server is ready to handle calls. */
575                         spin_lock(&sb_security_lock);
576                         if (list_empty(&sbsec->list))
577                                 list_add(&sbsec->list, &superblock_security_head);
578                         spin_unlock(&sb_security_lock);
579                         goto out;
580                 }
581                 rc = -EINVAL;
582                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
583                         "before the security server is initialized\n");
584                 goto out;
585         }
586
587         /*
588          * Binary mount data FS will come through this function twice.  Once
589          * from an explicit call and once from the generic calls from the vfs.
590          * Since the generic VFS calls will not contain any security mount data
591          * we need to skip the double mount verification.
592          *
593          * This does open a hole in which we will not notice if the first
594          * mount using this sb set explict options and a second mount using
595          * this sb does not set any security options.  (The first options
596          * will be used for both mounts)
597          */
598         if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
599             && (num_opts == 0))
600                 goto out;
601
602         /*
603          * parse the mount options, check if they are valid sids.
604          * also check if someone is trying to mount the same sb more
605          * than once with different security options.
606          */
607         for (i = 0; i < num_opts; i++) {
608                 u32 sid;
609                 rc = security_context_to_sid(mount_options[i],
610                                              strlen(mount_options[i]), &sid);
611                 if (rc) {
612                         printk(KERN_WARNING "SELinux: security_context_to_sid"
613                                "(%s) failed for (dev %s, type %s) errno=%d\n",
614                                mount_options[i], sb->s_id, name, rc);
615                         goto out;
616                 }
617                 switch (flags[i]) {
618                 case FSCONTEXT_MNT:
619                         fscontext_sid = sid;
620
621                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
622                                         fscontext_sid))
623                                 goto out_double_mount;
624
625                         sbsec->flags |= FSCONTEXT_MNT;
626                         break;
627                 case CONTEXT_MNT:
628                         context_sid = sid;
629
630                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
631                                         context_sid))
632                                 goto out_double_mount;
633
634                         sbsec->flags |= CONTEXT_MNT;
635                         break;
636                 case ROOTCONTEXT_MNT:
637                         rootcontext_sid = sid;
638
639                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
640                                         rootcontext_sid))
641                                 goto out_double_mount;
642
643                         sbsec->flags |= ROOTCONTEXT_MNT;
644
645                         break;
646                 case DEFCONTEXT_MNT:
647                         defcontext_sid = sid;
648
649                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
650                                         defcontext_sid))
651                                 goto out_double_mount;
652
653                         sbsec->flags |= DEFCONTEXT_MNT;
654
655                         break;
656                 default:
657                         rc = -EINVAL;
658                         goto out;
659                 }
660         }
661
662         if (sbsec->initialized) {
663                 /* previously mounted with options, but not on this attempt? */
664                 if (sbsec->flags && !num_opts)
665                         goto out_double_mount;
666                 rc = 0;
667                 goto out;
668         }
669
670         if (strcmp(sb->s_type->name, "proc") == 0)
671                 sbsec->proc = 1;
672
673         /* Determine the labeling behavior to use for this filesystem type. */
674         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
675         if (rc) {
676                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
677                        __func__, sb->s_type->name, rc);
678                 goto out;
679         }
680
681         /* sets the context of the superblock for the fs being mounted. */
682         if (fscontext_sid) {
683
684                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
685                 if (rc)
686                         goto out;
687
688                 sbsec->sid = fscontext_sid;
689         }
690
691         /*
692          * Switch to using mount point labeling behavior.
693          * sets the label used on all file below the mountpoint, and will set
694          * the superblock context if not already set.
695          */
696         if (context_sid) {
697                 if (!fscontext_sid) {
698                         rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
699                         if (rc)
700                                 goto out;
701                         sbsec->sid = context_sid;
702                 } else {
703                         rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
704                         if (rc)
705                                 goto out;
706                 }
707                 if (!rootcontext_sid)
708                         rootcontext_sid = context_sid;
709
710                 sbsec->mntpoint_sid = context_sid;
711                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712         }
713
714         if (rootcontext_sid) {
715                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
716                 if (rc)
717                         goto out;
718
719                 root_isec->sid = rootcontext_sid;
720                 root_isec->initialized = 1;
721         }
722
723         if (defcontext_sid) {
724                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
725                         rc = -EINVAL;
726                         printk(KERN_WARNING "SELinux: defcontext option is "
727                                "invalid for this filesystem type\n");
728                         goto out;
729                 }
730
731                 if (defcontext_sid != sbsec->def_sid) {
732                         rc = may_context_mount_inode_relabel(defcontext_sid,
733                                                              sbsec, tsec);
734                         if (rc)
735                                 goto out;
736                 }
737
738                 sbsec->def_sid = defcontext_sid;
739         }
740
741         rc = sb_finish_set_opts(sb);
742 out:
743         mutex_unlock(&sbsec->lock);
744         return rc;
745 out_double_mount:
746         rc = -EINVAL;
747         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
748                "security settings for (dev %s, type %s)\n", sb->s_id, name);
749         goto out;
750 }
751
752 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
753                                         struct super_block *newsb)
754 {
755         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
756         struct superblock_security_struct *newsbsec = newsb->s_security;
757
758         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
759         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
760         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
761
762         /*
763          * if the parent was able to be mounted it clearly had no special lsm
764          * mount options.  thus we can safely put this sb on the list and deal
765          * with it later
766          */
767         if (!ss_initialized) {
768                 spin_lock(&sb_security_lock);
769                 if (list_empty(&newsbsec->list))
770                         list_add(&newsbsec->list, &superblock_security_head);
771                 spin_unlock(&sb_security_lock);
772                 return;
773         }
774
775         /* how can we clone if the old one wasn't set up?? */
776         BUG_ON(!oldsbsec->initialized);
777
778         /* if fs is reusing a sb, just let its options stand... */
779         if (newsbsec->initialized)
780                 return;
781
782         mutex_lock(&newsbsec->lock);
783
784         newsbsec->flags = oldsbsec->flags;
785
786         newsbsec->sid = oldsbsec->sid;
787         newsbsec->def_sid = oldsbsec->def_sid;
788         newsbsec->behavior = oldsbsec->behavior;
789
790         if (set_context) {
791                 u32 sid = oldsbsec->mntpoint_sid;
792
793                 if (!set_fscontext)
794                         newsbsec->sid = sid;
795                 if (!set_rootcontext) {
796                         struct inode *newinode = newsb->s_root->d_inode;
797                         struct inode_security_struct *newisec = newinode->i_security;
798                         newisec->sid = sid;
799                 }
800                 newsbsec->mntpoint_sid = sid;
801         }
802         if (set_rootcontext) {
803                 const struct inode *oldinode = oldsb->s_root->d_inode;
804                 const struct inode_security_struct *oldisec = oldinode->i_security;
805                 struct inode *newinode = newsb->s_root->d_inode;
806                 struct inode_security_struct *newisec = newinode->i_security;
807
808                 newisec->sid = oldisec->sid;
809         }
810
811         sb_finish_set_opts(newsb);
812         mutex_unlock(&newsbsec->lock);
813 }
814
815 static int selinux_parse_opts_str(char *options,
816                                   struct security_mnt_opts *opts)
817 {
818         char *p;
819         char *context = NULL, *defcontext = NULL;
820         char *fscontext = NULL, *rootcontext = NULL;
821         int rc, num_mnt_opts = 0;
822
823         opts->num_mnt_opts = 0;
824
825         /* Standard string-based options. */
826         while ((p = strsep(&options, "|")) != NULL) {
827                 int token;
828                 substring_t args[MAX_OPT_ARGS];
829
830                 if (!*p)
831                         continue;
832
833                 token = match_token(p, tokens, args);
834
835                 switch (token) {
836                 case Opt_context:
837                         if (context || defcontext) {
838                                 rc = -EINVAL;
839                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
840                                 goto out_err;
841                         }
842                         context = match_strdup(&args[0]);
843                         if (!context) {
844                                 rc = -ENOMEM;
845                                 goto out_err;
846                         }
847                         break;
848
849                 case Opt_fscontext:
850                         if (fscontext) {
851                                 rc = -EINVAL;
852                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
853                                 goto out_err;
854                         }
855                         fscontext = match_strdup(&args[0]);
856                         if (!fscontext) {
857                                 rc = -ENOMEM;
858                                 goto out_err;
859                         }
860                         break;
861
862                 case Opt_rootcontext:
863                         if (rootcontext) {
864                                 rc = -EINVAL;
865                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
866                                 goto out_err;
867                         }
868                         rootcontext = match_strdup(&args[0]);
869                         if (!rootcontext) {
870                                 rc = -ENOMEM;
871                                 goto out_err;
872                         }
873                         break;
874
875                 case Opt_defcontext:
876                         if (context || defcontext) {
877                                 rc = -EINVAL;
878                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
879                                 goto out_err;
880                         }
881                         defcontext = match_strdup(&args[0]);
882                         if (!defcontext) {
883                                 rc = -ENOMEM;
884                                 goto out_err;
885                         }
886                         break;
887
888                 default:
889                         rc = -EINVAL;
890                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
891                         goto out_err;
892
893                 }
894         }
895
896         rc = -ENOMEM;
897         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
898         if (!opts->mnt_opts)
899                 goto out_err;
900
901         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
902         if (!opts->mnt_opts_flags) {
903                 kfree(opts->mnt_opts);
904                 goto out_err;
905         }
906
907         if (fscontext) {
908                 opts->mnt_opts[num_mnt_opts] = fscontext;
909                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
910         }
911         if (context) {
912                 opts->mnt_opts[num_mnt_opts] = context;
913                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
914         }
915         if (rootcontext) {
916                 opts->mnt_opts[num_mnt_opts] = rootcontext;
917                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
918         }
919         if (defcontext) {
920                 opts->mnt_opts[num_mnt_opts] = defcontext;
921                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
922         }
923
924         opts->num_mnt_opts = num_mnt_opts;
925         return 0;
926
927 out_err:
928         kfree(context);
929         kfree(defcontext);
930         kfree(fscontext);
931         kfree(rootcontext);
932         return rc;
933 }
934 /*
935  * string mount options parsing and call set the sbsec
936  */
937 static int superblock_doinit(struct super_block *sb, void *data)
938 {
939         int rc = 0;
940         char *options = data;
941         struct security_mnt_opts opts;
942
943         security_init_mnt_opts(&opts);
944
945         if (!data)
946                 goto out;
947
948         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
949
950         rc = selinux_parse_opts_str(options, &opts);
951         if (rc)
952                 goto out_err;
953
954 out:
955         rc = selinux_set_mnt_opts(sb, &opts);
956
957 out_err:
958         security_free_mnt_opts(&opts);
959         return rc;
960 }
961
962 static void selinux_write_opts(struct seq_file *m,
963                                struct security_mnt_opts *opts)
964 {
965         int i;
966         char *prefix;
967
968         for (i = 0; i < opts->num_mnt_opts; i++) {
969                 char *has_comma = strchr(opts->mnt_opts[i], ',');
970
971                 switch (opts->mnt_opts_flags[i]) {
972                 case CONTEXT_MNT:
973                         prefix = CONTEXT_STR;
974                         break;
975                 case FSCONTEXT_MNT:
976                         prefix = FSCONTEXT_STR;
977                         break;
978                 case ROOTCONTEXT_MNT:
979                         prefix = ROOTCONTEXT_STR;
980                         break;
981                 case DEFCONTEXT_MNT:
982                         prefix = DEFCONTEXT_STR;
983                         break;
984                 default:
985                         BUG();
986                 };
987                 /* we need a comma before each option */
988                 seq_putc(m, ',');
989                 seq_puts(m, prefix);
990                 if (has_comma)
991                         seq_putc(m, '\"');
992                 seq_puts(m, opts->mnt_opts[i]);
993                 if (has_comma)
994                         seq_putc(m, '\"');
995         }
996 }
997
998 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
999 {
1000         struct security_mnt_opts opts;
1001         int rc;
1002
1003         rc = selinux_get_mnt_opts(sb, &opts);
1004         if (rc) {
1005                 /* before policy load we may get EINVAL, don't show anything */
1006                 if (rc == -EINVAL)
1007                         rc = 0;
1008                 return rc;
1009         }
1010
1011         selinux_write_opts(m, &opts);
1012
1013         security_free_mnt_opts(&opts);
1014
1015         return rc;
1016 }
1017
1018 static inline u16 inode_mode_to_security_class(umode_t mode)
1019 {
1020         switch (mode & S_IFMT) {
1021         case S_IFSOCK:
1022                 return SECCLASS_SOCK_FILE;
1023         case S_IFLNK:
1024                 return SECCLASS_LNK_FILE;
1025         case S_IFREG:
1026                 return SECCLASS_FILE;
1027         case S_IFBLK:
1028                 return SECCLASS_BLK_FILE;
1029         case S_IFDIR:
1030                 return SECCLASS_DIR;
1031         case S_IFCHR:
1032                 return SECCLASS_CHR_FILE;
1033         case S_IFIFO:
1034                 return SECCLASS_FIFO_FILE;
1035
1036         }
1037
1038         return SECCLASS_FILE;
1039 }
1040
1041 static inline int default_protocol_stream(int protocol)
1042 {
1043         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1044 }
1045
1046 static inline int default_protocol_dgram(int protocol)
1047 {
1048         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1049 }
1050
1051 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1052 {
1053         switch (family) {
1054         case PF_UNIX:
1055                 switch (type) {
1056                 case SOCK_STREAM:
1057                 case SOCK_SEQPACKET:
1058                         return SECCLASS_UNIX_STREAM_SOCKET;
1059                 case SOCK_DGRAM:
1060                         return SECCLASS_UNIX_DGRAM_SOCKET;
1061                 }
1062                 break;
1063         case PF_INET:
1064         case PF_INET6:
1065                 switch (type) {
1066                 case SOCK_STREAM:
1067                         if (default_protocol_stream(protocol))
1068                                 return SECCLASS_TCP_SOCKET;
1069                         else
1070                                 return SECCLASS_RAWIP_SOCKET;
1071                 case SOCK_DGRAM:
1072                         if (default_protocol_dgram(protocol))
1073                                 return SECCLASS_UDP_SOCKET;
1074                         else
1075                                 return SECCLASS_RAWIP_SOCKET;
1076                 case SOCK_DCCP:
1077                         return SECCLASS_DCCP_SOCKET;
1078                 default:
1079                         return SECCLASS_RAWIP_SOCKET;
1080                 }
1081                 break;
1082         case PF_NETLINK:
1083                 switch (protocol) {
1084                 case NETLINK_ROUTE:
1085                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1086                 case NETLINK_FIREWALL:
1087                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1088                 case NETLINK_INET_DIAG:
1089                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1090                 case NETLINK_NFLOG:
1091                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1092                 case NETLINK_XFRM:
1093                         return SECCLASS_NETLINK_XFRM_SOCKET;
1094                 case NETLINK_SELINUX:
1095                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1096                 case NETLINK_AUDIT:
1097                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1098                 case NETLINK_IP6_FW:
1099                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1100                 case NETLINK_DNRTMSG:
1101                         return SECCLASS_NETLINK_DNRT_SOCKET;
1102                 case NETLINK_KOBJECT_UEVENT:
1103                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1104                 default:
1105                         return SECCLASS_NETLINK_SOCKET;
1106                 }
1107         case PF_PACKET:
1108                 return SECCLASS_PACKET_SOCKET;
1109         case PF_KEY:
1110                 return SECCLASS_KEY_SOCKET;
1111         case PF_APPLETALK:
1112                 return SECCLASS_APPLETALK_SOCKET;
1113         }
1114
1115         return SECCLASS_SOCKET;
1116 }
1117
1118 #ifdef CONFIG_PROC_FS
1119 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1120                                 u16 tclass,
1121                                 u32 *sid)
1122 {
1123         int buflen, rc;
1124         char *buffer, *path, *end;
1125
1126         buffer = (char *)__get_free_page(GFP_KERNEL);
1127         if (!buffer)
1128                 return -ENOMEM;
1129
1130         buflen = PAGE_SIZE;
1131         end = buffer+buflen;
1132         *--end = '\0';
1133         buflen--;
1134         path = end-1;
1135         *path = '/';
1136         while (de && de != de->parent) {
1137                 buflen -= de->namelen + 1;
1138                 if (buflen < 0)
1139                         break;
1140                 end -= de->namelen;
1141                 memcpy(end, de->name, de->namelen);
1142                 *--end = '/';
1143                 path = end;
1144                 de = de->parent;
1145         }
1146         rc = security_genfs_sid("proc", path, tclass, sid);
1147         free_page((unsigned long)buffer);
1148         return rc;
1149 }
1150 #else
1151 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1152                                 u16 tclass,
1153                                 u32 *sid)
1154 {
1155         return -EINVAL;
1156 }
1157 #endif
1158
1159 /* The inode's security attributes must be initialized before first use. */
1160 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1161 {
1162         struct superblock_security_struct *sbsec = NULL;
1163         struct inode_security_struct *isec = inode->i_security;
1164         u32 sid;
1165         struct dentry *dentry;
1166 #define INITCONTEXTLEN 255
1167         char *context = NULL;
1168         unsigned len = 0;
1169         int rc = 0;
1170
1171         if (isec->initialized)
1172                 goto out;
1173
1174         mutex_lock(&isec->lock);
1175         if (isec->initialized)
1176                 goto out_unlock;
1177
1178         sbsec = inode->i_sb->s_security;
1179         if (!sbsec->initialized) {
1180                 /* Defer initialization until selinux_complete_init,
1181                    after the initial policy is loaded and the security
1182                    server is ready to handle calls. */
1183                 spin_lock(&sbsec->isec_lock);
1184                 if (list_empty(&isec->list))
1185                         list_add(&isec->list, &sbsec->isec_head);
1186                 spin_unlock(&sbsec->isec_lock);
1187                 goto out_unlock;
1188         }
1189
1190         switch (sbsec->behavior) {
1191         case SECURITY_FS_USE_XATTR:
1192                 if (!inode->i_op->getxattr) {
1193                         isec->sid = sbsec->def_sid;
1194                         break;
1195                 }
1196
1197                 /* Need a dentry, since the xattr API requires one.
1198                    Life would be simpler if we could just pass the inode. */
1199                 if (opt_dentry) {
1200                         /* Called from d_instantiate or d_splice_alias. */
1201                         dentry = dget(opt_dentry);
1202                 } else {
1203                         /* Called from selinux_complete_init, try to find a dentry. */
1204                         dentry = d_find_alias(inode);
1205                 }
1206                 if (!dentry) {
1207                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1208                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1209                                inode->i_ino);
1210                         goto out_unlock;
1211                 }
1212
1213                 len = INITCONTEXTLEN;
1214                 context = kmalloc(len, GFP_NOFS);
1215                 if (!context) {
1216                         rc = -ENOMEM;
1217                         dput(dentry);
1218                         goto out_unlock;
1219                 }
1220                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1221                                            context, len);
1222                 if (rc == -ERANGE) {
1223                         /* Need a larger buffer.  Query for the right size. */
1224                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1225                                                    NULL, 0);
1226                         if (rc < 0) {
1227                                 dput(dentry);
1228                                 goto out_unlock;
1229                         }
1230                         kfree(context);
1231                         len = rc;
1232                         context = kmalloc(len, GFP_NOFS);
1233                         if (!context) {
1234                                 rc = -ENOMEM;
1235                                 dput(dentry);
1236                                 goto out_unlock;
1237                         }
1238                         rc = inode->i_op->getxattr(dentry,
1239                                                    XATTR_NAME_SELINUX,
1240                                                    context, len);
1241                 }
1242                 dput(dentry);
1243                 if (rc < 0) {
1244                         if (rc != -ENODATA) {
1245                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1246                                        "%d for dev=%s ino=%ld\n", __func__,
1247                                        -rc, inode->i_sb->s_id, inode->i_ino);
1248                                 kfree(context);
1249                                 goto out_unlock;
1250                         }
1251                         /* Map ENODATA to the default file SID */
1252                         sid = sbsec->def_sid;
1253                         rc = 0;
1254                 } else {
1255                         rc = security_context_to_sid_default(context, rc, &sid,
1256                                                              sbsec->def_sid,
1257                                                              GFP_NOFS);
1258                         if (rc) {
1259                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1260                                        "returned %d for dev=%s ino=%ld\n",
1261                                        __func__, context, -rc,
1262                                        inode->i_sb->s_id, inode->i_ino);
1263                                 kfree(context);
1264                                 /* Leave with the unlabeled SID */
1265                                 rc = 0;
1266                                 break;
1267                         }
1268                 }
1269                 kfree(context);
1270                 isec->sid = sid;
1271                 break;
1272         case SECURITY_FS_USE_TASK:
1273                 isec->sid = isec->task_sid;
1274                 break;
1275         case SECURITY_FS_USE_TRANS:
1276                 /* Default to the fs SID. */
1277                 isec->sid = sbsec->sid;
1278
1279                 /* Try to obtain a transition SID. */
1280                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1281                 rc = security_transition_sid(isec->task_sid,
1282                                              sbsec->sid,
1283                                              isec->sclass,
1284                                              &sid);
1285                 if (rc)
1286                         goto out_unlock;
1287                 isec->sid = sid;
1288                 break;
1289         case SECURITY_FS_USE_MNTPOINT:
1290                 isec->sid = sbsec->mntpoint_sid;
1291                 break;
1292         default:
1293                 /* Default to the fs superblock SID. */
1294                 isec->sid = sbsec->sid;
1295
1296                 if (sbsec->proc && !S_ISLNK(inode->i_mode)) {
1297                         struct proc_inode *proci = PROC_I(inode);
1298                         if (proci->pde) {
1299                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1300                                 rc = selinux_proc_get_sid(proci->pde,
1301                                                           isec->sclass,
1302                                                           &sid);
1303                                 if (rc)
1304                                         goto out_unlock;
1305                                 isec->sid = sid;
1306                         }
1307                 }
1308                 break;
1309         }
1310
1311         isec->initialized = 1;
1312
1313 out_unlock:
1314         mutex_unlock(&isec->lock);
1315 out:
1316         if (isec->sclass == SECCLASS_FILE)
1317                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1318         return rc;
1319 }
1320
1321 /* Convert a Linux signal to an access vector. */
1322 static inline u32 signal_to_av(int sig)
1323 {
1324         u32 perm = 0;
1325
1326         switch (sig) {
1327         case SIGCHLD:
1328                 /* Commonly granted from child to parent. */
1329                 perm = PROCESS__SIGCHLD;
1330                 break;
1331         case SIGKILL:
1332                 /* Cannot be caught or ignored */
1333                 perm = PROCESS__SIGKILL;
1334                 break;
1335         case SIGSTOP:
1336                 /* Cannot be caught or ignored */
1337                 perm = PROCESS__SIGSTOP;
1338                 break;
1339         default:
1340                 /* All other signals. */
1341                 perm = PROCESS__SIGNAL;
1342                 break;
1343         }
1344
1345         return perm;
1346 }
1347
1348 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1349    fork check, ptrace check, etc. */
1350 static int task_has_perm(struct task_struct *tsk1,
1351                          struct task_struct *tsk2,
1352                          u32 perms)
1353 {
1354         struct task_security_struct *tsec1, *tsec2;
1355
1356         tsec1 = tsk1->security;
1357         tsec2 = tsk2->security;
1358         return avc_has_perm(tsec1->sid, tsec2->sid,
1359                             SECCLASS_PROCESS, perms, NULL);
1360 }
1361
1362 #if CAP_LAST_CAP > 63
1363 #error Fix SELinux to handle capabilities > 63.
1364 #endif
1365
1366 /* Check whether a task is allowed to use a capability. */
1367 static int task_has_capability(struct task_struct *tsk,
1368                                int cap, int audit)
1369 {
1370         struct task_security_struct *tsec;
1371         struct avc_audit_data ad;
1372         struct av_decision avd;
1373         u16 sclass;
1374         u32 av = CAP_TO_MASK(cap);
1375         int rc;
1376
1377         tsec = tsk->security;
1378
1379         AVC_AUDIT_DATA_INIT(&ad, CAP);
1380         ad.tsk = tsk;
1381         ad.u.cap = cap;
1382
1383         switch (CAP_TO_INDEX(cap)) {
1384         case 0:
1385                 sclass = SECCLASS_CAPABILITY;
1386                 break;
1387         case 1:
1388                 sclass = SECCLASS_CAPABILITY2;
1389                 break;
1390         default:
1391                 printk(KERN_ERR
1392                        "SELinux:  out of range capability %d\n", cap);
1393                 BUG();
1394         }
1395
1396         rc = avc_has_perm_noaudit(tsec->sid, tsec->sid, sclass, av, 0, &avd);
1397         if (audit == SECURITY_CAP_AUDIT)
1398                 avc_audit(tsec->sid, tsec->sid, sclass, av, &avd, rc, &ad);
1399         return rc;
1400 }
1401
1402 /* Check whether a task is allowed to use a system operation. */
1403 static int task_has_system(struct task_struct *tsk,
1404                            u32 perms)
1405 {
1406         struct task_security_struct *tsec;
1407
1408         tsec = tsk->security;
1409
1410         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1411                             SECCLASS_SYSTEM, perms, NULL);
1412 }
1413
1414 /* Check whether a task has a particular permission to an inode.
1415    The 'adp' parameter is optional and allows other audit
1416    data to be passed (e.g. the dentry). */
1417 static int inode_has_perm(struct task_struct *tsk,
1418                           struct inode *inode,
1419                           u32 perms,
1420                           struct avc_audit_data *adp)
1421 {
1422         struct task_security_struct *tsec;
1423         struct inode_security_struct *isec;
1424         struct avc_audit_data ad;
1425
1426         if (unlikely(IS_PRIVATE(inode)))
1427                 return 0;
1428
1429         tsec = tsk->security;
1430         isec = inode->i_security;
1431
1432         if (!adp) {
1433                 adp = &ad;
1434                 AVC_AUDIT_DATA_INIT(&ad, FS);
1435                 ad.u.fs.inode = inode;
1436         }
1437
1438         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1439 }
1440
1441 /* Same as inode_has_perm, but pass explicit audit data containing
1442    the dentry to help the auditing code to more easily generate the
1443    pathname if needed. */
1444 static inline int dentry_has_perm(struct task_struct *tsk,
1445                                   struct vfsmount *mnt,
1446                                   struct dentry *dentry,
1447                                   u32 av)
1448 {
1449         struct inode *inode = dentry->d_inode;
1450         struct avc_audit_data ad;
1451         AVC_AUDIT_DATA_INIT(&ad, FS);
1452         ad.u.fs.path.mnt = mnt;
1453         ad.u.fs.path.dentry = dentry;
1454         return inode_has_perm(tsk, inode, av, &ad);
1455 }
1456
1457 /* Check whether a task can use an open file descriptor to
1458    access an inode in a given way.  Check access to the
1459    descriptor itself, and then use dentry_has_perm to
1460    check a particular permission to the file.
1461    Access to the descriptor is implicitly granted if it
1462    has the same SID as the process.  If av is zero, then
1463    access to the file is not checked, e.g. for cases
1464    where only the descriptor is affected like seek. */
1465 static int file_has_perm(struct task_struct *tsk,
1466                                 struct file *file,
1467                                 u32 av)
1468 {
1469         struct task_security_struct *tsec = tsk->security;
1470         struct file_security_struct *fsec = file->f_security;
1471         struct inode *inode = file->f_path.dentry->d_inode;
1472         struct avc_audit_data ad;
1473         int rc;
1474
1475         AVC_AUDIT_DATA_INIT(&ad, FS);
1476         ad.u.fs.path = file->f_path;
1477
1478         if (tsec->sid != fsec->sid) {
1479                 rc = avc_has_perm(tsec->sid, fsec->sid,
1480                                   SECCLASS_FD,
1481                                   FD__USE,
1482                                   &ad);
1483                 if (rc)
1484                         return rc;
1485         }
1486
1487         /* av is zero if only checking access to the descriptor. */
1488         if (av)
1489                 return inode_has_perm(tsk, inode, av, &ad);
1490
1491         return 0;
1492 }
1493
1494 /* Check whether a task can create a file. */
1495 static int may_create(struct inode *dir,
1496                       struct dentry *dentry,
1497                       u16 tclass)
1498 {
1499         struct task_security_struct *tsec;
1500         struct inode_security_struct *dsec;
1501         struct superblock_security_struct *sbsec;
1502         u32 newsid;
1503         struct avc_audit_data ad;
1504         int rc;
1505
1506         tsec = current->security;
1507         dsec = dir->i_security;
1508         sbsec = dir->i_sb->s_security;
1509
1510         AVC_AUDIT_DATA_INIT(&ad, FS);
1511         ad.u.fs.path.dentry = dentry;
1512
1513         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1514                           DIR__ADD_NAME | DIR__SEARCH,
1515                           &ad);
1516         if (rc)
1517                 return rc;
1518
1519         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1520                 newsid = tsec->create_sid;
1521         } else {
1522                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1523                                              &newsid);
1524                 if (rc)
1525                         return rc;
1526         }
1527
1528         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1529         if (rc)
1530                 return rc;
1531
1532         return avc_has_perm(newsid, sbsec->sid,
1533                             SECCLASS_FILESYSTEM,
1534                             FILESYSTEM__ASSOCIATE, &ad);
1535 }
1536
1537 /* Check whether a task can create a key. */
1538 static int may_create_key(u32 ksid,
1539                           struct task_struct *ctx)
1540 {
1541         struct task_security_struct *tsec;
1542
1543         tsec = ctx->security;
1544
1545         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1546 }
1547
1548 #define MAY_LINK        0
1549 #define MAY_UNLINK      1
1550 #define MAY_RMDIR       2
1551
1552 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1553 static int may_link(struct inode *dir,
1554                     struct dentry *dentry,
1555                     int kind)
1556
1557 {
1558         struct task_security_struct *tsec;
1559         struct inode_security_struct *dsec, *isec;
1560         struct avc_audit_data ad;
1561         u32 av;
1562         int rc;
1563
1564         tsec = current->security;
1565         dsec = dir->i_security;
1566         isec = dentry->d_inode->i_security;
1567
1568         AVC_AUDIT_DATA_INIT(&ad, FS);
1569         ad.u.fs.path.dentry = dentry;
1570
1571         av = DIR__SEARCH;
1572         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1573         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1574         if (rc)
1575                 return rc;
1576
1577         switch (kind) {
1578         case MAY_LINK:
1579                 av = FILE__LINK;
1580                 break;
1581         case MAY_UNLINK:
1582                 av = FILE__UNLINK;
1583                 break;
1584         case MAY_RMDIR:
1585                 av = DIR__RMDIR;
1586                 break;
1587         default:
1588                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1589                         __func__, kind);
1590                 return 0;
1591         }
1592
1593         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1594         return rc;
1595 }
1596
1597 static inline int may_rename(struct inode *old_dir,
1598                              struct dentry *old_dentry,
1599                              struct inode *new_dir,
1600                              struct dentry *new_dentry)
1601 {
1602         struct task_security_struct *tsec;
1603         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1604         struct avc_audit_data ad;
1605         u32 av;
1606         int old_is_dir, new_is_dir;
1607         int rc;
1608
1609         tsec = current->security;
1610         old_dsec = old_dir->i_security;
1611         old_isec = old_dentry->d_inode->i_security;
1612         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1613         new_dsec = new_dir->i_security;
1614
1615         AVC_AUDIT_DATA_INIT(&ad, FS);
1616
1617         ad.u.fs.path.dentry = old_dentry;
1618         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1619                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1620         if (rc)
1621                 return rc;
1622         rc = avc_has_perm(tsec->sid, old_isec->sid,
1623                           old_isec->sclass, FILE__RENAME, &ad);
1624         if (rc)
1625                 return rc;
1626         if (old_is_dir && new_dir != old_dir) {
1627                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1628                                   old_isec->sclass, DIR__REPARENT, &ad);
1629                 if (rc)
1630                         return rc;
1631         }
1632
1633         ad.u.fs.path.dentry = new_dentry;
1634         av = DIR__ADD_NAME | DIR__SEARCH;
1635         if (new_dentry->d_inode)
1636                 av |= DIR__REMOVE_NAME;
1637         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1638         if (rc)
1639                 return rc;
1640         if (new_dentry->d_inode) {
1641                 new_isec = new_dentry->d_inode->i_security;
1642                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1643                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1644                                   new_isec->sclass,
1645                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1646                 if (rc)
1647                         return rc;
1648         }
1649
1650         return 0;
1651 }
1652
1653 /* Check whether a task can perform a filesystem operation. */
1654 static int superblock_has_perm(struct task_struct *tsk,
1655                                struct super_block *sb,
1656                                u32 perms,
1657                                struct avc_audit_data *ad)
1658 {
1659         struct task_security_struct *tsec;
1660         struct superblock_security_struct *sbsec;
1661
1662         tsec = tsk->security;
1663         sbsec = sb->s_security;
1664         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1665                             perms, ad);
1666 }
1667
1668 /* Convert a Linux mode and permission mask to an access vector. */
1669 static inline u32 file_mask_to_av(int mode, int mask)
1670 {
1671         u32 av = 0;
1672
1673         if ((mode & S_IFMT) != S_IFDIR) {
1674                 if (mask & MAY_EXEC)
1675                         av |= FILE__EXECUTE;
1676                 if (mask & MAY_READ)
1677                         av |= FILE__READ;
1678
1679                 if (mask & MAY_APPEND)
1680                         av |= FILE__APPEND;
1681                 else if (mask & MAY_WRITE)
1682                         av |= FILE__WRITE;
1683
1684         } else {
1685                 if (mask & MAY_EXEC)
1686                         av |= DIR__SEARCH;
1687                 if (mask & MAY_WRITE)
1688                         av |= DIR__WRITE;
1689                 if (mask & MAY_READ)
1690                         av |= DIR__READ;
1691         }
1692
1693         return av;
1694 }
1695
1696 /* Convert a Linux file to an access vector. */
1697 static inline u32 file_to_av(struct file *file)
1698 {
1699         u32 av = 0;
1700
1701         if (file->f_mode & FMODE_READ)
1702                 av |= FILE__READ;
1703         if (file->f_mode & FMODE_WRITE) {
1704                 if (file->f_flags & O_APPEND)
1705                         av |= FILE__APPEND;
1706                 else
1707                         av |= FILE__WRITE;
1708         }
1709         if (!av) {
1710                 /*
1711                  * Special file opened with flags 3 for ioctl-only use.
1712                  */
1713                 av = FILE__IOCTL;
1714         }
1715
1716         return av;
1717 }
1718
1719 /*
1720  * Convert a file to an access vector and include the correct open
1721  * open permission.
1722  */
1723 static inline u32 open_file_to_av(struct file *file)
1724 {
1725         u32 av = file_to_av(file);
1726
1727         if (selinux_policycap_openperm) {
1728                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1729                 /*
1730                  * lnk files and socks do not really have an 'open'
1731                  */
1732                 if (S_ISREG(mode))
1733                         av |= FILE__OPEN;
1734                 else if (S_ISCHR(mode))
1735                         av |= CHR_FILE__OPEN;
1736                 else if (S_ISBLK(mode))
1737                         av |= BLK_FILE__OPEN;
1738                 else if (S_ISFIFO(mode))
1739                         av |= FIFO_FILE__OPEN;
1740                 else if (S_ISDIR(mode))
1741                         av |= DIR__OPEN;
1742                 else
1743                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1744                                 "unknown mode:%o\n", __func__, mode);
1745         }
1746         return av;
1747 }
1748
1749 /* Hook functions begin here. */
1750
1751 static int selinux_ptrace_may_access(struct task_struct *child,
1752                                      unsigned int mode)
1753 {
1754         int rc;
1755
1756         rc = secondary_ops->ptrace_may_access(child, mode);
1757         if (rc)
1758                 return rc;
1759
1760         if (mode == PTRACE_MODE_READ) {
1761                 struct task_security_struct *tsec = current->security;
1762                 struct task_security_struct *csec = child->security;
1763                 return avc_has_perm(tsec->sid, csec->sid,
1764                                     SECCLASS_FILE, FILE__READ, NULL);
1765         }
1766
1767         return task_has_perm(current, child, PROCESS__PTRACE);
1768 }
1769
1770 static int selinux_ptrace_traceme(struct task_struct *parent)
1771 {
1772         int rc;
1773
1774         rc = secondary_ops->ptrace_traceme(parent);
1775         if (rc)
1776                 return rc;
1777
1778         return task_has_perm(parent, current, PROCESS__PTRACE);
1779 }
1780
1781 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1782                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1783 {
1784         int error;
1785
1786         error = task_has_perm(current, target, PROCESS__GETCAP);
1787         if (error)
1788                 return error;
1789
1790         return secondary_ops->capget(target, effective, inheritable, permitted);
1791 }
1792
1793 static int selinux_capset_check(const kernel_cap_t *effective,
1794                                 const kernel_cap_t *inheritable,
1795                                 const kernel_cap_t *permitted)
1796 {
1797         int error;
1798
1799         error = secondary_ops->capset_check(effective, inheritable, permitted);
1800         if (error)
1801                 return error;
1802
1803         return task_has_perm(current, current, PROCESS__SETCAP);
1804 }
1805
1806 static void selinux_capset_set(const kernel_cap_t *effective,
1807                                const kernel_cap_t *inheritable,
1808                                const kernel_cap_t *permitted)
1809 {
1810         secondary_ops->capset_set(effective, inheritable, permitted);
1811 }
1812
1813 static int selinux_capable(struct task_struct *tsk, int cap, int audit)
1814 {
1815         int rc;
1816
1817         rc = secondary_ops->capable(tsk, cap, audit);
1818         if (rc)
1819                 return rc;
1820
1821         return task_has_capability(tsk, cap, audit);
1822 }
1823
1824 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1825 {
1826         int buflen, rc;
1827         char *buffer, *path, *end;
1828
1829         rc = -ENOMEM;
1830         buffer = (char *)__get_free_page(GFP_KERNEL);
1831         if (!buffer)
1832                 goto out;
1833
1834         buflen = PAGE_SIZE;
1835         end = buffer+buflen;
1836         *--end = '\0';
1837         buflen--;
1838         path = end-1;
1839         *path = '/';
1840         while (table) {
1841                 const char *name = table->procname;
1842                 size_t namelen = strlen(name);
1843                 buflen -= namelen + 1;
1844                 if (buflen < 0)
1845                         goto out_free;
1846                 end -= namelen;
1847                 memcpy(end, name, namelen);
1848                 *--end = '/';
1849                 path = end;
1850                 table = table->parent;
1851         }
1852         buflen -= 4;
1853         if (buflen < 0)
1854                 goto out_free;
1855         end -= 4;
1856         memcpy(end, "/sys", 4);
1857         path = end;
1858         rc = security_genfs_sid("proc", path, tclass, sid);
1859 out_free:
1860         free_page((unsigned long)buffer);
1861 out:
1862         return rc;
1863 }
1864
1865 static int selinux_sysctl(ctl_table *table, int op)
1866 {
1867         int error = 0;
1868         u32 av;
1869         struct task_security_struct *tsec;
1870         u32 tsid;
1871         int rc;
1872
1873         rc = secondary_ops->sysctl(table, op);
1874         if (rc)
1875                 return rc;
1876
1877         tsec = current->security;
1878
1879         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1880                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1881         if (rc) {
1882                 /* Default to the well-defined sysctl SID. */
1883                 tsid = SECINITSID_SYSCTL;
1884         }
1885
1886         /* The op values are "defined" in sysctl.c, thereby creating
1887          * a bad coupling between this module and sysctl.c */
1888         if (op == 001) {
1889                 error = avc_has_perm(tsec->sid, tsid,
1890                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1891         } else {
1892                 av = 0;
1893                 if (op & 004)
1894                         av |= FILE__READ;
1895                 if (op & 002)
1896                         av |= FILE__WRITE;
1897                 if (av)
1898                         error = avc_has_perm(tsec->sid, tsid,
1899                                              SECCLASS_FILE, av, NULL);
1900         }
1901
1902         return error;
1903 }
1904
1905 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1906 {
1907         int rc = 0;
1908
1909         if (!sb)
1910                 return 0;
1911
1912         switch (cmds) {
1913         case Q_SYNC:
1914         case Q_QUOTAON:
1915         case Q_QUOTAOFF:
1916         case Q_SETINFO:
1917         case Q_SETQUOTA:
1918                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1919                                          NULL);
1920                 break;
1921         case Q_GETFMT:
1922         case Q_GETINFO:
1923         case Q_GETQUOTA:
1924                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1925                                          NULL);
1926                 break;
1927         default:
1928                 rc = 0;  /* let the kernel handle invalid cmds */
1929                 break;
1930         }
1931         return rc;
1932 }
1933
1934 static int selinux_quota_on(struct dentry *dentry)
1935 {
1936         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1937 }
1938
1939 static int selinux_syslog(int type)
1940 {
1941         int rc;
1942
1943         rc = secondary_ops->syslog(type);
1944         if (rc)
1945                 return rc;
1946
1947         switch (type) {
1948         case 3:         /* Read last kernel messages */
1949         case 10:        /* Return size of the log buffer */
1950                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1951                 break;
1952         case 6:         /* Disable logging to console */
1953         case 7:         /* Enable logging to console */
1954         case 8:         /* Set level of messages printed to console */
1955                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1956                 break;
1957         case 0:         /* Close log */
1958         case 1:         /* Open log */
1959         case 2:         /* Read from log */
1960         case 4:         /* Read/clear last kernel messages */
1961         case 5:         /* Clear ring buffer */
1962         default:
1963                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1964                 break;
1965         }
1966         return rc;
1967 }
1968
1969 /*
1970  * Check that a process has enough memory to allocate a new virtual
1971  * mapping. 0 means there is enough memory for the allocation to
1972  * succeed and -ENOMEM implies there is not.
1973  *
1974  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1975  * if the capability is granted, but __vm_enough_memory requires 1 if
1976  * the capability is granted.
1977  *
1978  * Do not audit the selinux permission check, as this is applied to all
1979  * processes that allocate mappings.
1980  */
1981 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1982 {
1983         int rc, cap_sys_admin = 0;
1984
1985         rc = selinux_capable(current, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT);
1986         if (rc == 0)
1987                 cap_sys_admin = 1;
1988
1989         return __vm_enough_memory(mm, pages, cap_sys_admin);
1990 }
1991
1992 /* binprm security operations */
1993
1994 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1995 {
1996         struct bprm_security_struct *bsec;
1997
1998         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1999         if (!bsec)
2000                 return -ENOMEM;
2001
2002         bsec->sid = SECINITSID_UNLABELED;
2003         bsec->set = 0;
2004
2005         bprm->security = bsec;
2006         return 0;
2007 }
2008
2009 static int selinux_bprm_set_security(struct linux_binprm *bprm)
2010 {
2011         struct task_security_struct *tsec;
2012         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2013         struct inode_security_struct *isec;
2014         struct bprm_security_struct *bsec;
2015         u32 newsid;
2016         struct avc_audit_data ad;
2017         int rc;
2018
2019         rc = secondary_ops->bprm_set_security(bprm);
2020         if (rc)
2021                 return rc;
2022
2023         bsec = bprm->security;
2024
2025         if (bsec->set)
2026                 return 0;
2027
2028         tsec = current->security;
2029         isec = inode->i_security;
2030
2031         /* Default to the current task SID. */
2032         bsec->sid = tsec->sid;
2033
2034         /* Reset fs, key, and sock SIDs on execve. */
2035         tsec->create_sid = 0;
2036         tsec->keycreate_sid = 0;
2037         tsec->sockcreate_sid = 0;
2038
2039         if (tsec->exec_sid) {
2040                 newsid = tsec->exec_sid;
2041                 /* Reset exec SID on execve. */
2042                 tsec->exec_sid = 0;
2043         } else {
2044                 /* Check for a default transition on this program. */
2045                 rc = security_transition_sid(tsec->sid, isec->sid,
2046                                              SECCLASS_PROCESS, &newsid);
2047                 if (rc)
2048                         return rc;
2049         }
2050
2051         AVC_AUDIT_DATA_INIT(&ad, FS);
2052         ad.u.fs.path = bprm->file->f_path;
2053
2054         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2055                 newsid = tsec->sid;
2056
2057         if (tsec->sid == newsid) {
2058                 rc = avc_has_perm(tsec->sid, isec->sid,
2059                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2060                 if (rc)
2061                         return rc;
2062         } else {
2063                 /* Check permissions for the transition. */
2064                 rc = avc_has_perm(tsec->sid, newsid,
2065                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2066                 if (rc)
2067                         return rc;
2068
2069                 rc = avc_has_perm(newsid, isec->sid,
2070                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2071                 if (rc)
2072                         return rc;
2073
2074                 /* Clear any possibly unsafe personality bits on exec: */
2075                 current->personality &= ~PER_CLEAR_ON_SETID;
2076
2077                 /* Set the security field to the new SID. */
2078                 bsec->sid = newsid;
2079         }
2080
2081         bsec->set = 1;
2082         return 0;
2083 }
2084
2085 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2086 {
2087         return secondary_ops->bprm_check_security(bprm);
2088 }
2089
2090
2091 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2092 {
2093         struct task_security_struct *tsec = current->security;
2094         int atsecure = 0;
2095
2096         if (tsec->osid != tsec->sid) {
2097                 /* Enable secure mode for SIDs transitions unless
2098                    the noatsecure permission is granted between
2099                    the two SIDs, i.e. ahp returns 0. */
2100                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2101                                          SECCLASS_PROCESS,
2102                                          PROCESS__NOATSECURE, NULL);
2103         }
2104
2105         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2106 }
2107
2108 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2109 {
2110         kfree(bprm->security);
2111         bprm->security = NULL;
2112 }
2113
2114 extern struct vfsmount *selinuxfs_mount;
2115 extern struct dentry *selinux_null;
2116
2117 /* Derived from fs/exec.c:flush_old_files. */
2118 static inline void flush_unauthorized_files(struct files_struct *files)
2119 {
2120         struct avc_audit_data ad;
2121         struct file *file, *devnull = NULL;
2122         struct tty_struct *tty;
2123         struct fdtable *fdt;
2124         long j = -1;
2125         int drop_tty = 0;
2126
2127         tty = get_current_tty();
2128         if (tty) {
2129                 file_list_lock();
2130                 if (!list_empty(&tty->tty_files)) {
2131                         struct inode *inode;
2132
2133                         /* Revalidate access to controlling tty.
2134                            Use inode_has_perm on the tty inode directly rather
2135                            than using file_has_perm, as this particular open
2136                            file may belong to another process and we are only
2137                            interested in the inode-based check here. */
2138                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2139                         inode = file->f_path.dentry->d_inode;
2140                         if (inode_has_perm(current, inode,
2141                                            FILE__READ | FILE__WRITE, NULL)) {
2142                                 drop_tty = 1;
2143                         }
2144                 }
2145                 file_list_unlock();
2146                 tty_kref_put(tty);
2147         }
2148         /* Reset controlling tty. */
2149         if (drop_tty)
2150                 no_tty();
2151
2152         /* Revalidate access to inherited open files. */
2153
2154         AVC_AUDIT_DATA_INIT(&ad, FS);
2155
2156         spin_lock(&files->file_lock);
2157         for (;;) {
2158                 unsigned long set, i;
2159                 int fd;
2160
2161                 j++;
2162                 i = j * __NFDBITS;
2163                 fdt = files_fdtable(files);
2164                 if (i >= fdt->max_fds)
2165                         break;
2166                 set = fdt->open_fds->fds_bits[j];
2167                 if (!set)
2168                         continue;
2169                 spin_unlock(&files->file_lock);
2170                 for ( ; set ; i++, set >>= 1) {
2171                         if (set & 1) {
2172                                 file = fget(i);
2173                                 if (!file)
2174                                         continue;
2175                                 if (file_has_perm(current,
2176                                                   file,
2177                                                   file_to_av(file))) {
2178                                         sys_close(i);
2179                                         fd = get_unused_fd();
2180                                         if (fd != i) {
2181                                                 if (fd >= 0)
2182                                                         put_unused_fd(fd);
2183                                                 fput(file);
2184                                                 continue;
2185                                         }
2186                                         if (devnull) {
2187                                                 get_file(devnull);
2188                                         } else {
2189                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2190                                                 if (IS_ERR(devnull)) {
2191                                                         devnull = NULL;
2192                                                         put_unused_fd(fd);
2193                                                         fput(file);
2194                                                         continue;
2195                                                 }
2196                                         }
2197                                         fd_install(fd, devnull);
2198                                 }
2199                                 fput(file);
2200                         }
2201                 }
2202                 spin_lock(&files->file_lock);
2203
2204         }
2205         spin_unlock(&files->file_lock);
2206 }
2207
2208 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2209 {
2210         struct task_security_struct *tsec;
2211         struct bprm_security_struct *bsec;
2212         u32 sid;
2213         int rc;
2214
2215         secondary_ops->bprm_apply_creds(bprm, unsafe);
2216
2217         tsec = current->security;
2218
2219         bsec = bprm->security;
2220         sid = bsec->sid;
2221
2222         tsec->osid = tsec->sid;
2223         bsec->unsafe = 0;
2224         if (tsec->sid != sid) {
2225                 /* Check for shared state.  If not ok, leave SID
2226                    unchanged and kill. */
2227                 if (unsafe & LSM_UNSAFE_SHARE) {
2228                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2229                                         PROCESS__SHARE, NULL);
2230                         if (rc) {
2231                                 bsec->unsafe = 1;
2232                                 return;
2233                         }
2234                 }
2235
2236                 /* Check for ptracing, and update the task SID if ok.
2237                    Otherwise, leave SID unchanged and kill. */
2238                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2239                         struct task_struct *tracer;
2240                         struct task_security_struct *sec;
2241                         u32 ptsid = 0;
2242
2243                         rcu_read_lock();
2244                         tracer = tracehook_tracer_task(current);
2245                         if (likely(tracer != NULL)) {
2246                                 sec = tracer->security;
2247                                 ptsid = sec->sid;
2248                         }
2249                         rcu_read_unlock();
2250
2251                         if (ptsid != 0) {
2252                                 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2253                                                   PROCESS__PTRACE, NULL);
2254                                 if (rc) {
2255                                         bsec->unsafe = 1;
2256                                         return;
2257                                 }
2258                         }
2259                 }
2260                 tsec->sid = sid;
2261         }
2262 }
2263
2264 /*
2265  * called after apply_creds without the task lock held
2266  */
2267 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2268 {
2269         struct task_security_struct *tsec;
2270         struct rlimit *rlim, *initrlim;
2271         struct itimerval itimer;
2272         struct bprm_security_struct *bsec;
2273         struct sighand_struct *psig;
2274         int rc, i;
2275         unsigned long flags;
2276
2277         tsec = current->security;
2278         bsec = bprm->security;
2279
2280         if (bsec->unsafe) {
2281                 force_sig_specific(SIGKILL, current);
2282                 return;
2283         }
2284         if (tsec->osid == tsec->sid)
2285                 return;
2286
2287         /* Close files for which the new task SID is not authorized. */
2288         flush_unauthorized_files(current->files);
2289
2290         /* Check whether the new SID can inherit signal state
2291            from the old SID.  If not, clear itimers to avoid
2292            subsequent signal generation and flush and unblock
2293            signals. This must occur _after_ the task SID has
2294           been updated so that any kill done after the flush
2295           will be checked against the new SID. */
2296         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2297                           PROCESS__SIGINH, NULL);
2298         if (rc) {
2299                 memset(&itimer, 0, sizeof itimer);
2300                 for (i = 0; i < 3; i++)
2301                         do_setitimer(i, &itimer, NULL);
2302                 flush_signals(current);
2303                 spin_lock_irq(&current->sighand->siglock);
2304                 flush_signal_handlers(current, 1);
2305                 sigemptyset(&current->blocked);
2306                 recalc_sigpending();
2307                 spin_unlock_irq(&current->sighand->siglock);
2308         }
2309
2310         /* Always clear parent death signal on SID transitions. */
2311         current->pdeath_signal = 0;
2312
2313         /* Check whether the new SID can inherit resource limits
2314            from the old SID.  If not, reset all soft limits to
2315            the lower of the current task's hard limit and the init
2316            task's soft limit.  Note that the setting of hard limits
2317            (even to lower them) can be controlled by the setrlimit
2318            check. The inclusion of the init task's soft limit into
2319            the computation is to avoid resetting soft limits higher
2320            than the default soft limit for cases where the default
2321            is lower than the hard limit, e.g. RLIMIT_CORE or
2322            RLIMIT_STACK.*/
2323         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2324                           PROCESS__RLIMITINH, NULL);
2325         if (rc) {
2326                 for (i = 0; i < RLIM_NLIMITS; i++) {
2327                         rlim = current->signal->rlim + i;
2328                         initrlim = init_task.signal->rlim+i;
2329                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2330                 }
2331                 update_rlimit_cpu(rlim->rlim_cur);
2332         }
2333
2334         /* Wake up the parent if it is waiting so that it can
2335            recheck wait permission to the new task SID. */
2336         read_lock_irq(&tasklist_lock);
2337         psig = current->parent->sighand;
2338         spin_lock_irqsave(&psig->siglock, flags);
2339         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2340         spin_unlock_irqrestore(&psig->siglock, flags);
2341         read_unlock_irq(&tasklist_lock);
2342 }
2343
2344 /* superblock security operations */
2345
2346 static int selinux_sb_alloc_security(struct super_block *sb)
2347 {
2348         return superblock_alloc_security(sb);
2349 }
2350
2351 static void selinux_sb_free_security(struct super_block *sb)
2352 {
2353         superblock_free_security(sb);
2354 }
2355
2356 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2357 {
2358         if (plen > olen)
2359                 return 0;
2360
2361         return !memcmp(prefix, option, plen);
2362 }
2363
2364 static inline int selinux_option(char *option, int len)
2365 {
2366         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2367                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2368                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2369                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2370 }
2371
2372 static inline void take_option(char **to, char *from, int *first, int len)
2373 {
2374         if (!*first) {
2375                 **to = ',';
2376                 *to += 1;
2377         } else
2378                 *first = 0;
2379         memcpy(*to, from, len);
2380         *to += len;
2381 }
2382
2383 static inline void take_selinux_option(char **to, char *from, int *first,
2384                                        int len)
2385 {
2386         int current_size = 0;
2387
2388         if (!*first) {
2389                 **to = '|';
2390                 *to += 1;
2391         } else
2392                 *first = 0;
2393
2394         while (current_size < len) {
2395                 if (*from != '"') {
2396                         **to = *from;
2397                         *to += 1;
2398                 }
2399                 from += 1;
2400                 current_size += 1;
2401         }
2402 }
2403
2404 static int selinux_sb_copy_data(char *orig, char *copy)
2405 {
2406         int fnosec, fsec, rc = 0;
2407         char *in_save, *in_curr, *in_end;
2408         char *sec_curr, *nosec_save, *nosec;
2409         int open_quote = 0;
2410
2411         in_curr = orig;
2412         sec_curr = copy;
2413
2414         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2415         if (!nosec) {
2416                 rc = -ENOMEM;
2417                 goto out;
2418         }
2419
2420         nosec_save = nosec;
2421         fnosec = fsec = 1;
2422         in_save = in_end = orig;
2423
2424         do {
2425                 if (*in_end == '"')
2426                         open_quote = !open_quote;
2427                 if ((*in_end == ',' && open_quote == 0) ||
2428                                 *in_end == '\0') {
2429                         int len = in_end - in_curr;
2430
2431                         if (selinux_option(in_curr, len))
2432                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2433                         else
2434                                 take_option(&nosec, in_curr, &fnosec, len);
2435
2436                         in_curr = in_end + 1;
2437                 }
2438         } while (*in_end++);
2439
2440         strcpy(in_save, nosec_save);
2441         free_page((unsigned long)nosec_save);
2442 out:
2443         return rc;
2444 }
2445
2446 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2447 {
2448         struct avc_audit_data ad;
2449         int rc;
2450
2451         rc = superblock_doinit(sb, data);
2452         if (rc)
2453                 return rc;
2454
2455         AVC_AUDIT_DATA_INIT(&ad, FS);
2456         ad.u.fs.path.dentry = sb->s_root;
2457         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2458 }
2459
2460 static int selinux_sb_statfs(struct dentry *dentry)
2461 {
2462         struct avc_audit_data ad;
2463
2464         AVC_AUDIT_DATA_INIT(&ad, FS);
2465         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2466         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2467 }
2468
2469 static int selinux_mount(char *dev_name,
2470                          struct path *path,
2471                          char *type,
2472                          unsigned long flags,
2473                          void *data)
2474 {
2475         int rc;
2476
2477         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2478         if (rc)
2479                 return rc;
2480
2481         if (flags & MS_REMOUNT)
2482                 return superblock_has_perm(current, path->mnt->mnt_sb,
2483                                            FILESYSTEM__REMOUNT, NULL);
2484         else
2485                 return dentry_has_perm(current, path->mnt, path->dentry,
2486                                        FILE__MOUNTON);
2487 }
2488
2489 static int selinux_umount(struct vfsmount *mnt, int flags)
2490 {
2491         int rc;
2492
2493         rc = secondary_ops->sb_umount(mnt, flags);
2494         if (rc)
2495                 return rc;
2496
2497         return superblock_has_perm(current, mnt->mnt_sb,
2498                                    FILESYSTEM__UNMOUNT, NULL);
2499 }
2500
2501 /* inode security operations */
2502
2503 static int selinux_inode_alloc_security(struct inode *inode)
2504 {
2505         return inode_alloc_security(inode);
2506 }
2507
2508 static void selinux_inode_free_security(struct inode *inode)
2509 {
2510         inode_free_security(inode);
2511 }
2512
2513 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2514                                        char **name, void **value,
2515                                        size_t *len)
2516 {
2517         struct task_security_struct *tsec;
2518         struct inode_security_struct *dsec;
2519         struct superblock_security_struct *sbsec;
2520         u32 newsid, clen;
2521         int rc;
2522         char *namep = NULL, *context;
2523
2524         tsec = current->security;
2525         dsec = dir->i_security;
2526         sbsec = dir->i_sb->s_security;
2527
2528         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2529                 newsid = tsec->create_sid;
2530         } else {
2531                 rc = security_transition_sid(tsec->sid, dsec->sid,
2532                                              inode_mode_to_security_class(inode->i_mode),
2533                                              &newsid);
2534                 if (rc) {
2535                         printk(KERN_WARNING "%s:  "
2536                                "security_transition_sid failed, rc=%d (dev=%s "
2537                                "ino=%ld)\n",
2538                                __func__,
2539                                -rc, inode->i_sb->s_id, inode->i_ino);
2540                         return rc;
2541                 }
2542         }
2543
2544         /* Possibly defer initialization to selinux_complete_init. */
2545         if (sbsec->initialized) {
2546                 struct inode_security_struct *isec = inode->i_security;
2547                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2548                 isec->sid = newsid;
2549                 isec->initialized = 1;
2550         }
2551
2552         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2553                 return -EOPNOTSUPP;
2554
2555         if (name) {
2556                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2557                 if (!namep)
2558                         return -ENOMEM;
2559                 *name = namep;
2560         }
2561
2562         if (value && len) {
2563                 rc = security_sid_to_context_force(newsid, &context, &clen);
2564                 if (rc) {
2565                         kfree(namep);
2566                         return rc;
2567                 }
2568                 *value = context;
2569                 *len = clen;
2570         }
2571
2572         return 0;
2573 }
2574
2575 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2576 {
2577         return may_create(dir, dentry, SECCLASS_FILE);
2578 }
2579
2580 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2581 {
2582         int rc;
2583
2584         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2585         if (rc)
2586                 return rc;
2587         return may_link(dir, old_dentry, MAY_LINK);
2588 }
2589
2590 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2591 {
2592         int rc;
2593
2594         rc = secondary_ops->inode_unlink(dir, dentry);
2595         if (rc)
2596                 return rc;
2597         return may_link(dir, dentry, MAY_UNLINK);
2598 }
2599
2600 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2601 {
2602         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2603 }
2604
2605 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2606 {
2607         return may_create(dir, dentry, SECCLASS_DIR);
2608 }
2609
2610 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2611 {
2612         return may_link(dir, dentry, MAY_RMDIR);
2613 }
2614
2615 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2616 {
2617         int rc;
2618
2619         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2620         if (rc)
2621                 return rc;
2622
2623         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2624 }
2625
2626 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2627                                 struct inode *new_inode, struct dentry *new_dentry)
2628 {
2629         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2630 }
2631
2632 static int selinux_inode_readlink(struct dentry *dentry)
2633 {
2634         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2635 }
2636
2637 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2638 {
2639         int rc;
2640
2641         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2642         if (rc)
2643                 return rc;
2644         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2645 }
2646
2647 static int selinux_inode_permission(struct inode *inode, int mask)
2648 {
2649         int rc;
2650
2651         rc = secondary_ops->inode_permission(inode, mask);
2652         if (rc)
2653                 return rc;
2654
2655         if (!mask) {
2656                 /* No permission to check.  Existence test. */
2657                 return 0;
2658         }
2659
2660         return inode_has_perm(current, inode,
2661                               file_mask_to_av(inode->i_mode, mask), NULL);
2662 }
2663
2664 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2665 {
2666         int rc;
2667
2668         rc = secondary_ops->inode_setattr(dentry, iattr);
2669         if (rc)
2670                 return rc;
2671
2672         if (iattr->ia_valid & ATTR_FORCE)
2673                 return 0;
2674
2675         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2676                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2677                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2678
2679         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2680 }
2681
2682 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2683 {
2684         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2685 }
2686
2687 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2688 {
2689         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2690                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2691                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2692                         if (!capable(CAP_SETFCAP))
2693                                 return -EPERM;
2694                 } else if (!capable(CAP_SYS_ADMIN)) {
2695                         /* A different attribute in the security namespace.
2696                            Restrict to administrator. */
2697                         return -EPERM;
2698                 }
2699         }
2700
2701         /* Not an attribute we recognize, so just check the
2702            ordinary setattr permission. */
2703         return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2704 }
2705
2706 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2707                                   const void *value, size_t size, int flags)
2708 {
2709         struct task_security_struct *tsec = current->security;
2710         struct inode *inode = dentry->d_inode;
2711         struct inode_security_struct *isec = inode->i_security;
2712         struct superblock_security_struct *sbsec;
2713         struct avc_audit_data ad;
2714         u32 newsid;
2715         int rc = 0;
2716
2717         if (strcmp(name, XATTR_NAME_SELINUX))
2718                 return selinux_inode_setotherxattr(dentry, name);
2719
2720         sbsec = inode->i_sb->s_security;
2721         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2722                 return -EOPNOTSUPP;
2723
2724         if (!is_owner_or_cap(inode))
2725                 return -EPERM;
2726
2727         AVC_AUDIT_DATA_INIT(&ad, FS);
2728         ad.u.fs.path.dentry = dentry;
2729
2730         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2731                           FILE__RELABELFROM, &ad);
2732         if (rc)
2733                 return rc;
2734
2735         rc = security_context_to_sid(value, size, &newsid);
2736         if (rc == -EINVAL) {
2737                 if (!capable(CAP_MAC_ADMIN))
2738                         return rc;
2739                 rc = security_context_to_sid_force(value, size, &newsid);
2740         }
2741         if (rc)
2742                 return rc;
2743
2744         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2745                           FILE__RELABELTO, &ad);
2746         if (rc)
2747                 return rc;
2748
2749         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2750                                           isec->sclass);
2751         if (rc)
2752                 return rc;
2753
2754         return avc_has_perm(newsid,
2755                             sbsec->sid,
2756                             SECCLASS_FILESYSTEM,
2757                             FILESYSTEM__ASSOCIATE,
2758                             &ad);
2759 }
2760
2761 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2762                                         const void *value, size_t size,
2763                                         int flags)
2764 {
2765         struct inode *inode = dentry->d_inode;
2766         struct inode_security_struct *isec = inode->i_security;
2767         u32 newsid;
2768         int rc;
2769
2770         if (strcmp(name, XATTR_NAME_SELINUX)) {
2771                 /* Not an attribute we recognize, so nothing to do. */
2772                 return;
2773         }
2774
2775         rc = security_context_to_sid_force(value, size, &newsid);
2776         if (rc) {
2777                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2778                        "for (%s, %lu), rc=%d\n",
2779                        inode->i_sb->s_id, inode->i_ino, -rc);
2780                 return;
2781         }
2782
2783         isec->sid = newsid;
2784         return;
2785 }
2786
2787 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2788 {
2789         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2790 }
2791
2792 static int selinux_inode_listxattr(struct dentry *dentry)
2793 {
2794         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2795 }
2796
2797 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2798 {
2799         if (strcmp(name, XATTR_NAME_SELINUX))
2800                 return selinux_inode_setotherxattr(dentry, name);
2801
2802         /* No one is allowed to remove a SELinux security label.
2803            You can change the label, but all data must be labeled. */
2804         return -EACCES;
2805 }
2806
2807 /*
2808  * Copy the inode security context value to the user.
2809  *
2810  * Permission check is handled by selinux_inode_getxattr hook.
2811  */
2812 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2813 {
2814         u32 size;
2815         int error;
2816         char *context = NULL;
2817         struct inode_security_struct *isec = inode->i_security;
2818
2819         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2820                 return -EOPNOTSUPP;
2821
2822         /*
2823          * If the caller has CAP_MAC_ADMIN, then get the raw context
2824          * value even if it is not defined by current policy; otherwise,
2825          * use the in-core value under current policy.
2826          * Use the non-auditing forms of the permission checks since
2827          * getxattr may be called by unprivileged processes commonly
2828          * and lack of permission just means that we fall back to the
2829          * in-core context value, not a denial.
2830          */
2831         error = selinux_capable(current, CAP_MAC_ADMIN, SECURITY_CAP_NOAUDIT);
2832         if (!error)
2833                 error = security_sid_to_context_force(isec->sid, &context,
2834                                                       &size);
2835         else
2836                 error = security_sid_to_context(isec->sid, &context, &size);
2837         if (error)
2838                 return error;
2839         error = size;
2840         if (alloc) {
2841                 *buffer = context;
2842                 goto out_nofree;
2843         }
2844         kfree(context);
2845 out_nofree:
2846         return error;
2847 }
2848
2849 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2850                                      const void *value, size_t size, int flags)
2851 {
2852         struct inode_security_struct *isec = inode->i_security;
2853         u32 newsid;
2854         int rc;
2855
2856         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2857                 return -EOPNOTSUPP;
2858
2859         if (!value || !size)
2860                 return -EACCES;
2861
2862         rc = security_context_to_sid((void *)value, size, &newsid);
2863         if (rc)
2864                 return rc;
2865
2866         isec->sid = newsid;
2867         return 0;
2868 }
2869
2870 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2871 {
2872         const int len = sizeof(XATTR_NAME_SELINUX);
2873         if (buffer && len <= buffer_size)
2874                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2875         return len;
2876 }
2877
2878 static int selinux_inode_need_killpriv(struct dentry *dentry)
2879 {
2880         return secondary_ops->inode_need_killpriv(dentry);
2881 }
2882
2883 static int selinux_inode_killpriv(struct dentry *dentry)
2884 {
2885         return secondary_ops->inode_killpriv(dentry);
2886 }
2887
2888 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2889 {
2890         struct inode_security_struct *isec = inode->i_security;
2891         *secid = isec->sid;
2892 }
2893
2894 /* file security operations */
2895
2896 static int selinux_revalidate_file_permission(struct file *file, int mask)
2897 {
2898         int rc;
2899         struct inode *inode = file->f_path.dentry->d_inode;
2900
2901         if (!mask) {
2902                 /* No permission to check.  Existence test. */
2903                 return 0;
2904         }
2905
2906         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2907         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2908                 mask |= MAY_APPEND;
2909
2910         rc = file_has_perm(current, file,
2911                            file_mask_to_av(inode->i_mode, mask));
2912         if (rc)
2913                 return rc;
2914
2915         return selinux_netlbl_inode_permission(inode, mask);
2916 }
2917
2918 static int selinux_file_permission(struct file *file, int mask)
2919 {
2920         struct inode *inode = file->f_path.dentry->d_inode;
2921         struct task_security_struct *tsec = current->security;
2922         struct file_security_struct *fsec = file->f_security;
2923         struct inode_security_struct *isec = inode->i_security;
2924
2925         if (!mask) {
2926                 /* No permission to check.  Existence test. */
2927                 return 0;
2928         }
2929
2930         if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2931             && fsec->pseqno == avc_policy_seqno())
2932                 return selinux_netlbl_inode_permission(inode, mask);
2933
2934         return selinux_revalidate_file_permission(file, mask);
2935 }
2936
2937 static int selinux_file_alloc_security(struct file *file)
2938 {
2939         return file_alloc_security(file);
2940 }
2941
2942 static void selinux_file_free_security(struct file *file)
2943 {
2944         file_free_security(file);
2945 }
2946
2947 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2948                               unsigned long arg)
2949 {
2950         u32 av = 0;
2951
2952         if (_IOC_DIR(cmd) & _IOC_WRITE)
2953                 av |= FILE__WRITE;
2954         if (_IOC_DIR(cmd) & _IOC_READ)
2955                 av |= FILE__READ;
2956         if (!av)
2957                 av = FILE__IOCTL;
2958
2959         return file_has_perm(current, file, av);
2960 }
2961
2962 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2963 {
2964 #ifndef CONFIG_PPC32
2965         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2966                 /*
2967                  * We are making executable an anonymous mapping or a
2968                  * private file mapping that will also be writable.
2969                  * This has an additional check.
2970                  */
2971                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2972                 if (rc)
2973                         return rc;
2974         }
2975 #endif
2976
2977         if (file) {
2978                 /* read access is always possible with a mapping */
2979                 u32 av = FILE__READ;
2980
2981                 /* write access only matters if the mapping is shared */
2982                 if (shared && (prot & PROT_WRITE))
2983                         av |= FILE__WRITE;
2984
2985                 if (prot & PROT_EXEC)
2986                         av |= FILE__EXECUTE;
2987
2988                 return file_has_perm(current, file, av);
2989         }
2990         return 0;
2991 }
2992
2993 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2994                              unsigned long prot, unsigned long flags,
2995                              unsigned long addr, unsigned long addr_only)
2996 {
2997         int rc = 0;
2998         u32 sid = ((struct task_security_struct *)(current->security))->sid;
2999
3000         if (addr < mmap_min_addr)
3001                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3002                                   MEMPROTECT__MMAP_ZERO, NULL);
3003         if (rc || addr_only)
3004                 return rc;
3005
3006         if (selinux_checkreqprot)
3007                 prot = reqprot;
3008
3009         return file_map_prot_check(file, prot,
3010                                    (flags & MAP_TYPE) == MAP_SHARED);
3011 }
3012
3013 static int selinux_file_mprotect(struct vm_area_struct *vma,
3014                                  unsigned long reqprot,
3015                                  unsigned long prot)
3016 {
3017         int rc;
3018
3019         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3020         if (rc)
3021                 return rc;
3022
3023         if (selinux_checkreqprot)
3024                 prot = reqprot;
3025
3026 #ifndef CONFIG_PPC32
3027         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3028                 rc = 0;
3029                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3030                     vma->vm_end <= vma->vm_mm->brk) {
3031                         rc = task_has_perm(current, current,
3032                                            PROCESS__EXECHEAP);
3033                 } else if (!vma->vm_file &&
3034                            vma->vm_start <= vma->vm_mm->start_stack &&
3035                            vma->vm_end >= vma->vm_mm->start_stack) {
3036                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
3037                 } else if (vma->vm_file && vma->anon_vma) {
3038                         /*
3039                          * We are making executable a file mapping that has
3040                          * had some COW done. Since pages might have been
3041                          * written, check ability to execute the possibly
3042                          * modified content.  This typically should only
3043                          * occur for text relocations.
3044                          */
3045                         rc = file_has_perm(current, vma->vm_file,
3046                                            FILE__EXECMOD);
3047                 }
3048                 if (rc)
3049                         return rc;
3050         }
3051 #endif
3052
3053         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3054 }
3055
3056 static int selinux_file_lock(struct file *file, unsigned int cmd)
3057 {
3058         return file_has_perm(current, file, FILE__LOCK);
3059 }
3060
3061 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3062                               unsigned long arg)
3063 {
3064         int err = 0;
3065
3066         switch (cmd) {
3067         case F_SETFL:
3068                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3069                         err = -EINVAL;
3070                         break;
3071                 }
3072
3073                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3074                         err = file_has_perm(current, file, FILE__WRITE);
3075                         break;
3076                 }
3077                 /* fall through */
3078         case F_SETOWN:
3079         case F_SETSIG:
3080         case F_GETFL:
3081         case F_GETOWN:
3082         case F_GETSIG:
3083                 /* Just check FD__USE permission */
3084                 err = file_has_perm(current, file, 0);
3085                 break;
3086         case F_GETLK:
3087         case F_SETLK:
3088         case F_SETLKW:
3089 #if BITS_PER_LONG == 32
3090         case F_GETLK64:
3091         case F_SETLK64:
3092         case F_SETLKW64:
3093 #endif
3094                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3095                         err = -EINVAL;
3096                         break;
3097                 }
3098                 err = file_has_perm(current, file, FILE__LOCK);
3099                 break;
3100         }
3101
3102         return err;
3103 }
3104
3105 static int selinux_file_set_fowner(struct file *file)
3106 {
3107         struct task_security_struct *tsec;
3108         struct file_security_struct *fsec;
3109
3110         tsec = current->security;
3111         fsec = file->f_security;
3112         fsec->fown_sid = tsec->sid;
3113
3114         return 0;
3115 }
3116
3117 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3118                                        struct fown_struct *fown, int signum)
3119 {
3120         struct file *file;
3121         u32 perm;
3122         struct task_security_struct *tsec;
3123         struct file_security_struct *fsec;
3124
3125         /* struct fown_struct is never outside the context of a struct file */
3126         file = container_of(fown, struct file, f_owner);
3127
3128         tsec = tsk->security;
3129         fsec = file->f_security;
3130
3131         if (!signum)
3132                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3133         else
3134                 perm = signal_to_av(signum);
3135
3136         return avc_has_perm(fsec->fown_sid, tsec->sid,
3137                             SECCLASS_PROCESS, perm, NULL);
3138 }
3139
3140 static int selinux_file_receive(struct file *file)
3141 {
3142         return file_has_perm(current, file, file_to_av(file));
3143 }
3144
3145 static int selinux_dentry_open(struct file *file)
3146 {
3147         struct file_security_struct *fsec;
3148         struct inode *inode;
3149         struct inode_security_struct *isec;
3150         inode = file->f_path.dentry->d_inode;
3151         fsec = file->f_security;
3152         isec = inode->i_security;
3153         /*
3154          * Save inode label and policy sequence number
3155          * at open-time so that selinux_file_permission
3156          * can determine whether revalidation is necessary.
3157          * Task label is already saved in the file security
3158          * struct as its SID.
3159          */
3160         fsec->isid = isec->sid;
3161         fsec->pseqno = avc_policy_seqno();
3162         /*
3163          * Since the inode label or policy seqno may have changed
3164          * between the selinux_inode_permission check and the saving
3165          * of state above, recheck that access is still permitted.
3166          * Otherwise, access might never be revalidated against the
3167          * new inode label or new policy.
3168          * This check is not redundant - do not remove.
3169          */
3170         return inode_has_perm(current, inode, open_file_to_av(file), NULL);
3171 }
3172
3173 /* task security operations */
3174
3175 static int selinux_task_create(unsigned long clone_flags)
3176 {
3177         int rc;
3178
3179         rc = secondary_ops->task_create(clone_flags);
3180         if (rc)
3181                 return rc;
3182
3183         return task_has_perm(current, current, PROCESS__FORK);
3184 }
3185
3186 static int selinux_task_alloc_security(struct task_struct *tsk)
3187 {
3188         struct task_security_struct *tsec1, *tsec2;
3189         int rc;
3190
3191         tsec1 = current->security;
3192
3193         rc = task_alloc_security(tsk);
3194         if (rc)
3195                 return rc;
3196         tsec2 = tsk->security;
3197
3198         tsec2->osid = tsec1->osid;
3199         tsec2->sid = tsec1->sid;
3200
3201         /* Retain the exec, fs, key, and sock SIDs across fork */
3202         tsec2->exec_sid = tsec1->exec_sid;
3203         tsec2->create_sid = tsec1->create_sid;
3204         tsec2->keycreate_sid = tsec1->keycreate_sid;
3205         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3206
3207         return 0;
3208 }
3209
3210 static void selinux_task_free_security(struct task_struct *tsk)
3211 {
3212         task_free_security(tsk);
3213 }
3214
3215 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3216 {
3217         /* Since setuid only affects the current process, and
3218            since the SELinux controls are not based on the Linux
3219            identity attributes, SELinux does not need to control
3220            this operation.  However, SELinux does control the use
3221            of the CAP_SETUID and CAP_SETGID capabilities using the
3222            capable hook. */
3223         return 0;
3224 }
3225
3226 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3227 {
3228         return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3229 }
3230
3231 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3232 {
3233         /* See the comment for setuid above. */
3234         return 0;
3235 }
3236
3237 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3238 {
3239         return task_has_perm(current, p, PROCESS__SETPGID);
3240 }
3241
3242 static int selinux_task_getpgid(struct task_struct *p)
3243 {
3244         return task_has_perm(current, p, PROCESS__GETPGID);
3245 }
3246
3247 static int selinux_task_getsid(struct task_struct *p)
3248 {
3249         return task_has_perm(current, p, PROCESS__GETSESSION);
3250 }
3251
3252 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3253 {
3254         struct task_security_struct *tsec = p->security;
3255         *secid = tsec->sid;
3256 }
3257
3258 static int selinux_task_setgroups(struct group_info *group_info)
3259 {
3260         /* See the comment for setuid above. */
3261         return 0;
3262 }
3263
3264 static int selinux_task_setnice(struct task_struct *p, int nice)
3265 {
3266         int rc;
3267
3268         rc = secondary_ops->task_setnice(p, nice);
3269         if (rc)
3270                 return rc;
3271
3272         return task_has_perm(current, p, PROCESS__SETSCHED);
3273 }
3274
3275 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3276 {
3277         int rc;
3278
3279         rc = secondary_ops->task_setioprio(p, ioprio);
3280         if (rc)
3281                 return rc;
3282
3283         return task_has_perm(current, p, PROCESS__SETSCHED);
3284 }
3285
3286 static int selinux_task_getioprio(struct task_struct *p)
3287 {
3288         return task_has_perm(current, p, PROCESS__GETSCHED);
3289 }
3290
3291 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3292 {
3293         struct rlimit *old_rlim = current->signal->rlim + resource;
3294         int rc;
3295
3296         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3297         if (rc)
3298                 return rc;
3299
3300         /* Control the ability to change the hard limit (whether
3301            lowering or raising it), so that the hard limit can
3302            later be used as a safe reset point for the soft limit
3303            upon context transitions. See selinux_bprm_apply_creds. */
3304         if (old_rlim->rlim_max != new_rlim->rlim_max)
3305                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3306
3307         return 0;
3308 }
3309
3310 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3311 {
3312         int rc;
3313
3314         rc = secondary_ops->task_setscheduler(p, policy, lp);
3315         if (rc)
3316                 return rc;
3317
3318         return task_has_perm(current, p, PROCESS__SETSCHED);
3319 }
3320
3321 static int selinux_task_getscheduler(struct task_struct *p)
3322 {
3323         return task_has_perm(current, p, PROCESS__GETSCHED);
3324 }
3325
3326 static int selinux_task_movememory(struct task_struct *p)
3327 {
3328         return task_has_perm(current, p, PROCESS__SETSCHED);
3329 }
3330
3331 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3332                                 int sig, u32 secid)
3333 {
3334         u32 perm;
3335         int rc;
3336         struct task_security_struct *tsec;
3337
3338         rc = secondary_ops->task_kill(p, info, sig, secid);
3339         if (rc)
3340                 return rc;
3341
3342         if (!sig)
3343                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3344         else
3345                 perm = signal_to_av(sig);
3346         tsec = p->security;
3347         if (secid)
3348                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3349         else
3350                 rc = task_has_perm(current, p, perm);
3351         return rc;
3352 }
3353
3354 static int selinux_task_prctl(int option,
3355                               unsigned long arg2,
3356                               unsigned long arg3,
3357                               unsigned long arg4,
3358                               unsigned long arg5,
3359                               long *rc_p)
3360 {
3361         /* The current prctl operations do not appear to require
3362            any SELinux controls since they merely observe or modify
3363            the state of the current process. */
3364         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3365 }
3366
3367 static int selinux_task_wait(struct task_struct *p)
3368 {
3369         return task_has_perm(p, current, PROCESS__SIGCHLD);
3370 }
3371
3372 static void selinux_task_reparent_to_init(struct task_struct *p)
3373 {
3374         struct task_security_struct *tsec;
3375
3376         secondary_ops->task_reparent_to_init(p);
3377
3378         tsec = p->security;
3379         tsec->osid = tsec->sid;
3380         tsec->sid = SECINITSID_KERNEL;
3381         return;
3382 }
3383
3384 static void selinux_task_to_inode(struct task_struct *p,
3385                                   struct inode *inode)
3386 {
3387         struct task_security_struct *tsec = p->security;
3388         struct inode_security_struct *isec = inode->i_security;
3389
3390         isec->sid = tsec->sid;
3391         isec->initialized = 1;
3392         return;
3393 }
3394
3395 /* Returns error only if unable to parse addresses */
3396 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3397                         struct avc_audit_data *ad, u8 *proto)
3398 {
3399         int offset, ihlen, ret = -EINVAL;
3400         struct iphdr _iph, *ih;
3401
3402         offset = skb_network_offset(skb);
3403         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3404         if (ih == NULL)
3405                 goto out;
3406
3407         ihlen = ih->ihl * 4;
3408         if (ihlen < sizeof(_iph))
3409                 goto out;
3410
3411         ad->u.net.v4info.saddr = ih->saddr;
3412         ad->u.net.v4info.daddr = ih->daddr;
3413         ret = 0;
3414
3415         if (proto)
3416                 *proto = ih->protocol;
3417
3418         switch (ih->protocol) {
3419         case IPPROTO_TCP: {
3420                 struct tcphdr _tcph, *th;
3421
3422                 if (ntohs(ih->frag_off) & IP_OFFSET)
3423                         break;
3424
3425                 offset += ihlen;
3426                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3427                 if (th == NULL)
3428                         break;
3429
3430                 ad->u.net.sport = th->source;
3431                 ad->u.net.dport = th->dest;
3432                 break;
3433         }
3434
3435         case IPPROTO_UDP: {
3436                 struct udphdr _udph, *uh;
3437
3438                 if (ntohs(ih->frag_off) & IP_OFFSET)
3439                         break;
3440
3441                 offset += ihlen;
3442                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3443                 if (uh == NULL)
3444                         break;
3445
3446                 ad->u.net.sport = uh->source;
3447                 ad->u.net.dport = uh->dest;
3448                 break;
3449         }
3450
3451         case IPPROTO_DCCP: {
3452                 struct dccp_hdr _dccph, *dh;
3453
3454                 if (ntohs(ih->frag_off) & IP_OFFSET)
3455                         break;
3456
3457                 offset += ihlen;
3458                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3459                 if (dh == NULL)
3460                         break;
3461
3462                 ad->u.net.sport = dh->dccph_sport;
3463                 ad->u.net.dport = dh->dccph_dport;
3464                 break;
3465         }
3466
3467         default:
3468                 break;
3469         }
3470 out:
3471         return ret;
3472 }
3473
3474 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3475
3476 /* Returns error only if unable to parse addresses */
3477 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3478                         struct avc_audit_data *ad, u8 *proto)
3479 {
3480         u8 nexthdr;
3481         int ret = -EINVAL, offset;
3482         struct ipv6hdr _ipv6h, *ip6;
3483
3484         offset = skb_network_offset(skb);
3485         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3486         if (ip6 == NULL)
3487                 goto out;
3488
3489         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3490         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3491         ret = 0;
3492
3493         nexthdr = ip6->nexthdr;
3494         offset += sizeof(_ipv6h);
3495         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3496         if (offset < 0)
3497                 goto out;
3498
3499         if (proto)
3500                 *proto = nexthdr;
3501
3502         switch (nexthdr) {
3503         case IPPROTO_TCP: {
3504                 struct tcphdr _tcph, *th;
3505
3506                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3507                 if (th == NULL)
3508                         break;
3509
3510                 ad->u.net.sport = th->source;
3511                 ad->u.net.dport = th->dest;
3512                 break;
3513         }
3514
3515         case IPPROTO_UDP: {
3516                 struct udphdr _udph, *uh;
3517
3518                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3519                 if (uh == NULL)
3520                         break;
3521
3522                 ad->u.net.sport = uh->source;
3523                 ad->u.net.dport = uh->dest;
3524                 break;
3525         }
3526
3527         case IPPROTO_DCCP: {
3528                 struct dccp_hdr _dccph, *dh;
3529
3530                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3531                 if (dh == NULL)
3532                         break;
3533
3534                 ad->u.net.sport = dh->dccph_sport;
3535                 ad->u.net.dport = dh->dccph_dport;
3536                 break;
3537         }
3538
3539         /* includes fragments */
3540         default:
3541                 break;
3542         }
3543 out:
3544         return ret;
3545 }
3546
3547 #endif /* IPV6 */
3548
3549 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3550                              char **_addrp, int src, u8 *proto)
3551 {
3552         char *addrp;
3553         int ret;
3554
3555         switch (ad->u.net.family) {
3556         case PF_INET:
3557                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3558                 if (ret)
3559                         goto parse_error;
3560                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3561                                        &ad->u.net.v4info.daddr);
3562                 goto okay;
3563
3564 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3565         case PF_INET6:
3566                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3567                 if (ret)
3568                         goto parse_error;
3569                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3570                                        &ad->u.net.v6info.daddr);
3571                 goto okay;
3572 #endif  /* IPV6 */
3573         default:
3574                 addrp = NULL;
3575                 goto okay;
3576         }
3577
3578 parse_error:
3579         printk(KERN_WARNING
3580                "SELinux: failure in selinux_parse_skb(),"
3581                " unable to parse packet\n");
3582         return ret;
3583
3584 okay:
3585         if (_addrp)
3586                 *_addrp = addrp;
3587         return 0;
3588 }
3589
3590 /**
3591  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3592  * @skb: the packet
3593  * @family: protocol family
3594  * @sid: the packet's peer label SID
3595  *
3596  * Description:
3597  * Check the various different forms of network peer labeling and determine
3598  * the peer label/SID for the packet; most of the magic actually occurs in
3599  * the security server function security_net_peersid_cmp().  The function
3600  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3601  * or -EACCES if @sid is invalid due to inconsistencies with the different
3602  * peer labels.
3603  *
3604  */
3605 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3606 {
3607         int err;
3608         u32 xfrm_sid;
3609         u32 nlbl_sid;
3610         u32 nlbl_type;
3611
3612         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3613         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3614
3615         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3616         if (unlikely(err)) {
3617                 printk(KERN_WARNING
3618                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3619                        " unable to determine packet's peer label\n");
3620                 return -EACCES;
3621         }
3622
3623         return 0;
3624 }
3625
3626 /* socket security operations */
3627 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3628                            u32 perms)
3629 {
3630         struct inode_security_struct *isec;
3631         struct task_security_struct *tsec;
3632         struct avc_audit_data ad;
3633         int err = 0;
3634
3635         tsec = task->security;
3636         isec = SOCK_INODE(sock)->i_security;
3637
3638         if (isec->sid == SECINITSID_KERNEL)
3639                 goto out;
3640
3641         AVC_AUDIT_DATA_INIT(&ad, NET);
3642         ad.u.net.sk = sock->sk;
3643         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3644
3645 out:
3646         return err;
3647 }
3648
3649 static int selinux_socket_create(int family, int type,
3650                                  int protocol, int kern)
3651 {
3652         int err = 0;
3653         struct task_security_struct *tsec;
3654         u32 newsid;
3655
3656         if (kern)
3657                 goto out;
3658
3659         tsec = current->security;
3660         newsid = tsec->sockcreate_sid ? : tsec->sid;
3661         err = avc_has_perm(tsec->sid, newsid,
3662                            socket_type_to_security_class(family, type,
3663                            protocol), SOCKET__CREATE, NULL);
3664
3665 out:
3666         return err;
3667 }
3668
3669 static int selinux_socket_post_create(struct socket *sock, int family,
3670                                       int type, int protocol, int kern)
3671 {
3672         int err = 0;
3673         struct inode_security_struct *isec;
3674         struct task_security_struct *tsec;
3675         struct sk_security_struct *sksec;
3676         u32 newsid;
3677
3678         isec = SOCK_INODE(sock)->i_security;
3679
3680         tsec = current->security;
3681         newsid = tsec->sockcreate_sid ? : tsec->sid;
3682         isec->sclass = socket_type_to_security_class(family, type, protocol);
3683         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3684         isec->initialized = 1;
3685
3686         if (sock->sk) {
3687                 sksec = sock->sk->sk_security;
3688                 sksec->sid = isec->sid;
3689                 sksec->sclass = isec->sclass;
3690                 err = selinux_netlbl_socket_post_create(sock);
3691         }
3692
3693         return err;
3694 }
3695
3696 /* Range of port numbers used to automatically bind.
3697    Need to determine whether we should perform a name_bind
3698    permission check between the socket and the port number. */
3699
3700 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3701 {
3702         u16 family;
3703         int err;
3704
3705         err = socket_has_perm(current, sock, SOCKET__BIND);
3706         if (err)
3707                 goto out;
3708
3709         /*
3710          * If PF_INET or PF_INET6, check name_bind permission for the port.
3711          * Multiple address binding for SCTP is not supported yet: we just
3712          * check the first address now.
3713          */
3714         family = sock->sk->sk_family;
3715         if (family == PF_INET || family == PF_INET6) {
3716                 char *addrp;
3717                 struct inode_security_struct *isec;
3718                 struct task_security_struct *tsec;
3719                 struct avc_audit_data ad;
3720                 struct sockaddr_in *addr4 = NULL;
3721                 struct sockaddr_in6 *addr6 = NULL;
3722                 unsigned short snum;
3723                 struct sock *sk = sock->sk;
3724                 u32 sid, node_perm;
3725
3726                 tsec = current->security;
3727                 isec = SOCK_INODE(sock)->i_security;
3728
3729                 if (family == PF_INET) {
3730                         addr4 = (struct sockaddr_in *)address;
3731                         snum = ntohs(addr4->sin_port);
3732                         addrp = (char *)&addr4->sin_addr.s_addr;
3733                 } else {
3734                         addr6 = (struct sockaddr_in6 *)address;
3735                         snum = ntohs(addr6->sin6_port);
3736                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3737                 }
3738
3739                 if (snum) {
3740                         int low, high;
3741
3742                         inet_get_local_port_range(&low, &high);
3743
3744                         if (snum < max(PROT_SOCK, low) || snum > high) {
3745                                 err = sel_netport_sid(sk->sk_protocol,
3746                                                       snum, &sid);
3747                                 if (err)
3748                                         goto out;
3749                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3750                                 ad.u.net.sport = htons(snum);
3751                                 ad.u.net.family = family;
3752                                 err = avc_has_perm(isec->sid, sid,
3753                                                    isec->sclass,
3754                                                    SOCKET__NAME_BIND, &ad);
3755                                 if (err)
3756                                         goto out;
3757                         }
3758                 }
3759
3760                 switch (isec->sclass) {
3761                 case SECCLASS_TCP_SOCKET:
3762                         node_perm = TCP_SOCKET__NODE_BIND;
3763                         break;
3764
3765                 case SECCLASS_UDP_SOCKET:
3766                         node_perm = UDP_SOCKET__NODE_BIND;
3767                         break;
3768
3769                 case SECCLASS_DCCP_SOCKET:
3770                         node_perm = DCCP_SOCKET__NODE_BIND;
3771                         break;
3772
3773                 default:
3774                         node_perm = RAWIP_SOCKET__NODE_BIND;
3775                         break;
3776                 }
3777
3778                 err = sel_netnode_sid(addrp, family, &sid);
3779                 if (err)
3780                         goto out;
3781
3782                 AVC_AUDIT_DATA_INIT(&ad, NET);
3783                 ad.u.net.sport = htons(snum);
3784                 ad.u.net.family = family;
3785
3786                 if (family == PF_INET)
3787                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3788                 else
3789                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3790
3791                 err = avc_has_perm(isec->sid, sid,
3792                                    isec->sclass, node_perm, &ad);
3793                 if (err)
3794                         goto out;
3795         }
3796 out:
3797         return err;
3798 }
3799
3800 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3801 {
3802         struct sock *sk = sock->sk;
3803         struct inode_security_struct *isec;
3804         int err;
3805
3806         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3807         if (err)
3808                 return err;
3809
3810         /*
3811          * If a TCP or DCCP socket, check name_connect permission for the port.
3812          */
3813         isec = SOCK_INODE(sock)->i_security;
3814         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3815             isec->sclass == SECCLASS_DCCP_SOCKET) {
3816                 struct avc_audit_data ad;
3817                 struct sockaddr_in *addr4 = NULL;
3818                 struct sockaddr_in6 *addr6 = NULL;
3819                 unsigned short snum;
3820                 u32 sid, perm;
3821
3822                 if (sk->sk_family == PF_INET) {
3823                         addr4 = (struct sockaddr_in *)address;
3824                         if (addrlen < sizeof(struct sockaddr_in))
3825                                 return -EINVAL;
3826                         snum = ntohs(addr4->sin_port);
3827                 } else {
3828                         addr6 = (struct sockaddr_in6 *)address;
3829                         if (addrlen < SIN6_LEN_RFC2133)
3830                                 return -EINVAL;
3831                         snum = ntohs(addr6->sin6_port);
3832                 }
3833
3834                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3835                 if (err)
3836                         goto out;
3837
3838                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3839                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3840
3841                 AVC_AUDIT_DATA_INIT(&ad, NET);
3842                 ad.u.net.dport = htons(snum);
3843                 ad.u.net.family = sk->sk_family;
3844                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3845                 if (err)
3846                         goto out;
3847         }
3848
3849         err = selinux_netlbl_socket_connect(sk, address);
3850
3851 out:
3852         return err;
3853 }
3854
3855 static int selinux_socket_listen(struct socket *sock, int backlog)
3856 {
3857         return socket_has_perm(current, sock, SOCKET__LISTEN);
3858 }
3859
3860 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3861 {
3862         int err;
3863         struct inode_security_struct *isec;
3864         struct inode_security_struct *newisec;
3865
3866         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3867         if (err)
3868                 return err;
3869
3870         newisec = SOCK_INODE(newsock)->i_security;
3871
3872         isec = SOCK_INODE(sock)->i_security;
3873         newisec->sclass = isec->sclass;
3874         newisec->sid = isec->sid;
3875         newisec->initialized = 1;
3876
3877         return 0;
3878 }
3879
3880 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3881                                   int size)
3882 {
3883         int rc;
3884
3885         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3886         if (rc)
3887                 return rc;
3888
3889         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3890 }
3891
3892 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3893                                   int size, int flags)
3894 {
3895         return socket_has_perm(current, sock, SOCKET__READ);
3896 }
3897
3898 static int selinux_socket_getsockname(struct socket *sock)
3899 {
3900         return socket_has_perm(current, sock, SOCKET__GETATTR);
3901 }
3902
3903 static int selinux_socket_getpeername(struct socket *sock)
3904 {
3905         return socket_has_perm(current, sock, SOCKET__GETATTR);
3906 }
3907
3908 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3909 {
3910         int err;
3911
3912         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3913         if (err)
3914                 return err;
3915
3916         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3917 }
3918
3919 static int selinux_socket_getsockopt(struct socket *sock, int level,
3920                                      int optname)
3921 {
3922         return socket_has_perm(current, sock, SOCKET__GETOPT);
3923 }
3924
3925 static int selinux_socket_shutdown(struct socket *sock, int how)
3926 {
3927         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3928 }
3929
3930 static int selinux_socket_unix_stream_connect(struct socket *sock,
3931                                               struct socket *other,
3932                                               struct sock *newsk)
3933 {
3934         struct sk_security_struct *ssec;
3935         struct inode_security_struct *isec;
3936         struct inode_security_struct *other_isec;
3937         struct avc_audit_data ad;
3938         int err;
3939
3940         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3941         if (err)
3942                 return err;
3943
3944         isec = SOCK_INODE(sock)->i_security;
3945         other_isec = SOCK_INODE(other)->i_security;
3946
3947         AVC_AUDIT_DATA_INIT(&ad, NET);
3948         ad.u.net.sk = other->sk;
3949
3950         err = avc_has_perm(isec->sid, other_isec->sid,
3951                            isec->sclass,
3952                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3953         if (err)
3954                 return err;
3955
3956         /* connecting socket */
3957         ssec = sock->sk->sk_security;
3958         ssec->peer_sid = other_isec->sid;
3959
3960         /* server child socket */
3961         ssec = newsk->sk_security;
3962         ssec->peer_sid = isec->sid;
3963         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3964
3965         return err;
3966 }
3967
3968 static int selinux_socket_unix_may_send(struct socket *sock,
3969                                         struct socket *other)
3970 {
3971         struct inode_security_struct *isec;
3972         struct inode_security_struct *other_isec;
3973         struct avc_audit_data ad;
3974         int err;
3975
3976         isec = SOCK_INODE(sock)->i_security;
3977         other_isec = SOCK_INODE(other)->i_security;
3978
3979         AVC_AUDIT_DATA_INIT(&ad, NET);
3980         ad.u.net.sk = other->sk;
3981
3982         err = avc_has_perm(isec->sid, other_isec->sid,
3983                            isec->sclass, SOCKET__SENDTO, &ad);
3984         if (err)
3985                 return err;
3986
3987         return 0;
3988 }
3989
3990 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3991                                     u32 peer_sid,
3992                                     struct avc_audit_data *ad)
3993 {
3994         int err;
3995         u32 if_sid;
3996         u32 node_sid;
3997
3998         err = sel_netif_sid(ifindex, &if_sid);
3999         if (err)
4000                 return err;
4001         err = avc_has_perm(peer_sid, if_sid,
4002                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4003         if (err)
4004                 return err;
4005
4006         err = sel_netnode_sid(addrp, family, &node_sid);
4007         if (err)
4008                 return err;
4009         return avc_has_perm(peer_sid, node_sid,
4010                             SECCLASS_NODE, NODE__RECVFROM, ad);
4011 }
4012
4013 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4014                                                 struct sk_buff *skb,
4015                                                 struct avc_audit_data *ad,
4016                                                 u16 family,
4017                                                 char *addrp)
4018 {
4019         int err;
4020         struct sk_security_struct *sksec = sk->sk_security;
4021         u16 sk_class;
4022         u32 netif_perm, node_perm, recv_perm;
4023         u32 port_sid, node_sid, if_sid, sk_sid;
4024
4025         sk_sid = sksec->sid;
4026         sk_class = sksec->sclass;
4027
4028         switch (sk_class) {
4029         case SECCLASS_UDP_SOCKET:
4030                 netif_perm = NETIF__UDP_RECV;
4031                 node_perm = NODE__UDP_RECV;
4032                 recv_perm = UDP_SOCKET__RECV_MSG;
4033                 break;
4034         case SECCLASS_TCP_SOCKET:
4035                 netif_perm = NETIF__TCP_RECV;
4036                 node_perm = NODE__TCP_RECV;
4037                 recv_perm = TCP_SOCKET__RECV_MSG;
4038                 break;
4039         case SECCLASS_DCCP_SOCKET:
4040                 netif_perm = NETIF__DCCP_RECV;
4041                 node_perm = NODE__DCCP_RECV;
4042                 recv_perm = DCCP_SOCKET__RECV_MSG;
4043                 break;
4044         default:
4045                 netif_perm = NETIF__RAWIP_RECV;
4046                 node_perm = NODE__RAWIP_RECV;
4047                 recv_perm = 0;
4048                 break;
4049         }
4050
4051         err = sel_netif_sid(skb->iif, &if_sid);
4052         if (err)
4053                 return err;
4054         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4055         if (err)
4056                 return err;
4057
4058         err = sel_netnode_sid(addrp, family, &node_sid);
4059         if (err)
4060                 return err;
4061         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4062         if (err)
4063                 return err;
4064
4065         if (!recv_perm)
4066                 return 0;
4067         err = sel_netport_sid(sk->sk_protocol,
4068                               ntohs(ad->u.net.sport), &port_sid);
4069         if (unlikely(err)) {
4070                 printk(KERN_WARNING
4071                        "SELinux: failure in"
4072                        " selinux_sock_rcv_skb_iptables_compat(),"
4073                        " network port label not found\n");
4074                 return err;
4075         }
4076         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4077 }
4078
4079 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4080                                        u16 family)
4081 {
4082         int err;
4083         struct sk_security_struct *sksec = sk->sk_security;
4084         u32 peer_sid;
4085         u32 sk_sid = sksec->sid;
4086         struct avc_audit_data ad;
4087         char *addrp;
4088
4089         AVC_AUDIT_DATA_INIT(&ad, NET);
4090         ad.u.net.netif = skb->iif;
4091         ad.u.net.family = family;
4092         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4093         if (err)
4094                 return err;
4095
4096         if (selinux_compat_net)
4097                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4098                                                            family, addrp);
4099         else
4100                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4101                                    PACKET__RECV, &ad);
4102         if (err)
4103                 return err;
4104
4105         if (selinux_policycap_netpeer) {
4106                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4107                 if (err)
4108                         return err;
4109                 err = avc_has_perm(sk_sid, peer_sid,
4110                                    SECCLASS_PEER, PEER__RECV, &ad);
4111                 if (err)
4112                         selinux_netlbl_err(skb, err, 0);
4113         } else {
4114                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4115                 if (err)
4116                         return err;
4117                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4118         }
4119
4120         return err;
4121 }
4122
4123 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4124 {
4125         int err;
4126         struct sk_security_struct *sksec = sk->sk_security;
4127         u16 family = sk->sk_family;
4128         u32 sk_sid = sksec->sid;
4129         struct avc_audit_data ad;
4130         char *addrp;
4131         u8 secmark_active;
4132         u8 peerlbl_active;
4133
4134         if (family != PF_INET && family != PF_INET6)
4135                 return 0;
4136
4137         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4138         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4139                 family = PF_INET;
4140
4141         /* If any sort of compatibility mode is enabled then handoff processing
4142          * to the selinux_sock_rcv_skb_compat() function to deal with the
4143          * special handling.  We do this in an attempt to keep this function
4144          * as fast and as clean as possible. */
4145         if (selinux_compat_net || !selinux_policycap_netpeer)
4146                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4147
4148         secmark_active = selinux_secmark_enabled();
4149         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4150         if (!secmark_active && !peerlbl_active)
4151                 return 0;
4152
4153         AVC_AUDIT_DATA_INIT(&ad, NET);
4154         ad.u.net.netif = skb->iif;
4155         ad.u.net.family = family;
4156         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4157         if (err)
4158                 return err;
4159
4160         if (peerlbl_active) {
4161                 u32 peer_sid;
4162
4163                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4164                 if (err)
4165                         return err;
4166                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4167                                                peer_sid, &ad);
4168                 if (err) {
4169                         selinux_netlbl_err(skb, err, 0);
4170                         return err;
4171                 }
4172                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4173                                    PEER__RECV, &ad);
4174                 if (err)
4175                         selinux_netlbl_err(skb, err, 0);
4176         }
4177
4178         if (secmark_active) {
4179                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4180                                    PACKET__RECV, &ad);
4181                 if (err)
4182                         return err;
4183         }
4184
4185         return err;
4186 }
4187
4188 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4189                                             int __user *optlen, unsigned len)
4190 {
4191         int err = 0;
4192         char *scontext;
4193         u32 scontext_len;
4194         struct sk_security_struct *ssec;
4195         struct inode_security_struct *isec;
4196         u32 peer_sid = SECSID_NULL;
4197
4198         isec = SOCK_INODE(sock)->i_security;
4199
4200         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4201             isec->sclass == SECCLASS_TCP_SOCKET) {
4202                 ssec = sock->sk->sk_security;
4203                 peer_sid = ssec->peer_sid;
4204         }
4205         if (peer_sid == SECSID_NULL) {
4206                 err = -ENOPROTOOPT;
4207                 goto out;
4208         }
4209
4210         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4211
4212         if (err)
4213                 goto out;
4214
4215         if (scontext_len > len) {
4216                 err = -ERANGE;
4217                 goto out_len;
4218         }
4219
4220         if (copy_to_user(optval, scontext, scontext_len))
4221                 err = -EFAULT;
4222
4223 out_len:
4224         if (put_user(scontext_len, optlen))
4225                 err = -EFAULT;
4226
4227         kfree(scontext);
4228 out:
4229         return err;
4230 }
4231
4232 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4233 {
4234         u32 peer_secid = SECSID_NULL;
4235         u16 family;
4236
4237         if (skb && skb->protocol == htons(ETH_P_IP))
4238                 family = PF_INET;
4239         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4240                 family = PF_INET6;
4241         else if (sock)
4242                 family = sock->sk->sk_family;
4243         else
4244                 goto out;
4245
4246         if (sock && family == PF_UNIX)
4247                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4248         else if (skb)
4249                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4250
4251 out:
4252         *secid = peer_secid;
4253         if (peer_secid == SECSID_NULL)
4254                 return -EINVAL;
4255         return 0;
4256 }
4257
4258 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4259 {
4260         return sk_alloc_security(sk, family, priority);
4261 }
4262
4263 static void selinux_sk_free_security(struct sock *sk)
4264 {
4265         sk_free_security(sk);
4266 }
4267
4268 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4269 {
4270         struct sk_security_struct *ssec = sk->sk_security;
4271         struct sk_security_struct *newssec = newsk->sk_security;
4272
4273         newssec->sid = ssec->sid;
4274         newssec->peer_sid = ssec->peer_sid;
4275         newssec->sclass = ssec->sclass;
4276
4277         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4278 }
4279
4280 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4281 {
4282         if (!sk)
4283                 *secid = SECINITSID_ANY_SOCKET;
4284         else {
4285                 struct sk_security_struct *sksec = sk->sk_security;
4286
4287                 *secid = sksec->sid;
4288         }
4289 }
4290
4291 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4292 {
4293         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4294         struct sk_security_struct *sksec = sk->sk_security;
4295
4296         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4297             sk->sk_family == PF_UNIX)
4298                 isec->sid = sksec->sid;
4299         sksec->sclass = isec->sclass;
4300 }
4301
4302 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4303                                      struct request_sock *req)
4304 {
4305         struct sk_security_struct *sksec = sk->sk_security;
4306         int err;
4307         u16 family = sk->sk_family;
4308         u32 newsid;
4309         u32 peersid;
4310
4311         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4312         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4313                 family = PF_INET;
4314
4315         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4316         if (err)
4317                 return err;
4318         if (peersid == SECSID_NULL) {
4319                 req->secid = sksec->sid;
4320                 req->peer_secid = SECSID_NULL;
4321                 return 0;
4322         }
4323
4324         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4325         if (err)
4326                 return err;
4327
4328         req->secid = newsid;
4329         req->peer_secid = peersid;
4330         return 0;
4331 }
4332
4333 static void selinux_inet_csk_clone(struct sock *newsk,
4334                                    const struct request_sock *req)
4335 {
4336         struct sk_security_struct *newsksec = newsk->sk_security;
4337
4338         newsksec->sid = req->secid;
4339         newsksec->peer_sid = req->peer_secid;
4340         /* NOTE: Ideally, we should also get the isec->sid for the
4341            new socket in sync, but we don't have the isec available yet.
4342            So we will wait until sock_graft to do it, by which
4343            time it will have been created and available. */
4344
4345         /* We don't need to take any sort of lock here as we are the only
4346          * thread with access to newsksec */
4347         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4348 }
4349
4350 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4351 {
4352         u16 family = sk->sk_family;
4353         struct sk_security_struct *sksec = sk->sk_security;
4354
4355         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4356         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4357                 family = PF_INET;
4358
4359         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4360
4361         selinux_netlbl_inet_conn_established(sk, family);
4362 }
4363
4364 static void selinux_req_classify_flow(const struct request_sock *req,
4365                                       struct flowi *fl)
4366 {
4367         fl->secid = req->secid;
4368 }
4369
4370 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4371 {
4372         int err = 0;
4373         u32 perm;
4374         struct nlmsghdr *nlh;
4375         struct socket *sock = sk->sk_socket;
4376         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4377
4378         if (skb->len < NLMSG_SPACE(0)) {
4379                 err = -EINVAL;
4380                 goto out;
4381         }
4382         nlh = nlmsg_hdr(skb);
4383
4384         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4385         if (err) {
4386                 if (err == -EINVAL) {
4387                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4388                                   "SELinux:  unrecognized netlink message"
4389                                   " type=%hu for sclass=%hu\n",
4390                                   nlh->nlmsg_type, isec->sclass);
4391                         if (!selinux_enforcing || security_get_allow_unknown())
4392                                 err = 0;
4393                 }
4394
4395                 /* Ignore */
4396                 if (err == -ENOENT)
4397                         err = 0;
4398                 goto out;
4399         }
4400
4401         err = socket_has_perm(current, sock, perm);
4402 out:
4403         return err;
4404 }
4405
4406 #ifdef CONFIG_NETFILTER
4407
4408 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4409                                        u16 family)
4410 {
4411         int err;
4412         char *addrp;
4413         u32 peer_sid;
4414         struct avc_audit_data ad;
4415         u8 secmark_active;
4416         u8 netlbl_active;
4417         u8 peerlbl_active;
4418
4419         if (!selinux_policycap_netpeer)
4420                 return NF_ACCEPT;
4421
4422         secmark_active = selinux_secmark_enabled();
4423         netlbl_active = netlbl_enabled();
4424         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4425         if (!secmark_active && !peerlbl_active)
4426                 return NF_ACCEPT;
4427
4428         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4429                 return NF_DROP;
4430
4431         AVC_AUDIT_DATA_INIT(&ad, NET);
4432         ad.u.net.netif = ifindex;
4433         ad.u.net.family = family;
4434         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4435                 return NF_DROP;
4436
4437         if (peerlbl_active) {
4438                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4439                                                peer_sid, &ad);
4440                 if (err) {
4441                         selinux_netlbl_err(skb, err, 1);
4442                         return NF_DROP;
4443                 }
4444         }
4445
4446         if (secmark_active)
4447                 if (avc_has_perm(peer_sid, skb->secmark,
4448                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4449                         return NF_DROP;
4450
4451         if (netlbl_active)
4452                 /* we do this in the FORWARD path and not the POST_ROUTING
4453                  * path because we want to make sure we apply the necessary
4454                  * labeling before IPsec is applied so we can leverage AH
4455                  * protection */
4456                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4457                         return NF_DROP;
4458
4459         return NF_ACCEPT;
4460 }
4461
4462 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4463                                          struct sk_buff *skb,
4464                                          const struct net_device *in,
4465                                          const struct net_device *out,
4466                                          int (*okfn)(struct sk_buff *))
4467 {
4468         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4469 }
4470
4471 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4472 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4473                                          struct sk_buff *skb,
4474                                          const struct net_device *in,
4475                                          const struct net_device *out,
4476                                          int (*okfn)(struct sk_buff *))
4477 {
4478         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4479 }
4480 #endif  /* IPV6 */
4481
4482 static unsigned int selinux_ip_output(struct sk_buff *skb,
4483                                       u16 family)
4484 {
4485         u32 sid;
4486
4487         if (!netlbl_enabled())
4488                 return NF_ACCEPT;
4489
4490         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4491          * because we want to make sure we apply the necessary labeling
4492          * before IPsec is applied so we can leverage AH protection */
4493         if (skb->sk) {
4494                 struct sk_security_struct *sksec = skb->sk->sk_security;
4495                 sid = sksec->sid;
4496         } else
4497                 sid = SECINITSID_KERNEL;
4498         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4499                 return NF_DROP;
4500
4501         return NF_ACCEPT;
4502 }
4503
4504 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4505                                         struct sk_buff *skb,
4506                                         const struct net_device *in,
4507                                         const struct net_device *out,
4508                                         int (*okfn)(struct sk_buff *))
4509 {
4510         return selinux_ip_output(skb, PF_INET);
4511 }
4512
4513 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4514                                                 int ifindex,
4515                                                 struct avc_audit_data *ad,
4516                                                 u16 family, char *addrp)
4517 {
4518         int err;
4519         struct sk_security_struct *sksec = sk->sk_security;
4520         u16 sk_class;
4521         u32 netif_perm, node_perm, send_perm;
4522         u32 port_sid, node_sid, if_sid, sk_sid;
4523
4524         sk_sid = sksec->sid;
4525         sk_class = sksec->sclass;
4526
4527         switch (sk_class) {
4528         case SECCLASS_UDP_SOCKET:
4529                 netif_perm = NETIF__UDP_SEND;
4530                 node_perm = NODE__UDP_SEND;
4531                 send_perm = UDP_SOCKET__SEND_MSG;
4532                 break;
4533         case SECCLASS_TCP_SOCKET:
4534                 netif_perm = NETIF__TCP_SEND;
4535                 node_perm = NODE__TCP_SEND;
4536                 send_perm = TCP_SOCKET__SEND_MSG;
4537                 break;
4538         case SECCLASS_DCCP_SOCKET:
4539                 netif_perm = NETIF__DCCP_SEND;
4540                 node_perm = NODE__DCCP_SEND;
4541                 send_perm = DCCP_SOCKET__SEND_MSG;
4542                 break;
4543         default:
4544                 netif_perm = NETIF__RAWIP_SEND;
4545                 node_perm = NODE__RAWIP_SEND;
4546                 send_perm = 0;
4547                 break;
4548         }
4549
4550         err = sel_netif_sid(ifindex, &if_sid);
4551         if (err)
4552                 return err;
4553         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4554                 return err;
4555
4556         err = sel_netnode_sid(addrp, family, &node_sid);
4557         if (err)
4558                 return err;
4559         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4560         if (err)
4561                 return err;
4562
4563         if (send_perm != 0)
4564                 return 0;
4565
4566         err = sel_netport_sid(sk->sk_protocol,
4567                               ntohs(ad->u.net.dport), &port_sid);
4568         if (unlikely(err)) {
4569                 printk(KERN_WARNING
4570                        "SELinux: failure in"
4571                        " selinux_ip_postroute_iptables_compat(),"
4572                        " network port label not found\n");
4573                 return err;
4574         }
4575         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4576 }
4577
4578 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4579                                                 int ifindex,
4580                                                 u16 family)
4581 {
4582         struct sock *sk = skb->sk;
4583         struct sk_security_struct *sksec;
4584         struct avc_audit_data ad;
4585         char *addrp;
4586         u8 proto;
4587
4588         if (sk == NULL)
4589                 return NF_ACCEPT;
4590         sksec = sk->sk_security;
4591
4592         AVC_AUDIT_DATA_INIT(&ad, NET);
4593         ad.u.net.netif = ifindex;
4594         ad.u.net.family = family;
4595         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4596                 return NF_DROP;
4597
4598         if (selinux_compat_net) {
4599                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4600                                                          &ad, family, addrp))
4601                         return NF_DROP;
4602         } else {
4603                 if (avc_has_perm(sksec->sid, skb->secmark,
4604                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4605                         return NF_DROP;
4606         }
4607
4608         if (selinux_policycap_netpeer)
4609                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4610                         return NF_DROP;
4611
4612         return NF_ACCEPT;
4613 }
4614
4615 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4616                                          u16 family)
4617 {
4618         u32 secmark_perm;
4619         u32 peer_sid;
4620         struct sock *sk;
4621         struct avc_audit_data ad;
4622         char *addrp;
4623         u8 secmark_active;
4624         u8 peerlbl_active;
4625
4626         /* If any sort of compatibility mode is enabled then handoff processing
4627          * to the selinux_ip_postroute_compat() function to deal with the
4628          * special handling.  We do this in an attempt to keep this function
4629          * as fast and as clean as possible. */
4630         if (selinux_compat_net || !selinux_policycap_netpeer)
4631                 return selinux_ip_postroute_compat(skb, ifindex, family);
4632
4633         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4634          * packet transformation so allow the packet to pass without any checks
4635          * since we'll have another chance to perform access control checks
4636          * when the packet is on it's final way out.
4637          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4638          *       is NULL, in this case go ahead and apply access control. */
4639         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4640                 return NF_ACCEPT;
4641
4642         secmark_active = selinux_secmark_enabled();
4643         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4644         if (!secmark_active && !peerlbl_active)
4645                 return NF_ACCEPT;
4646
4647         /* if the packet is being forwarded then get the peer label from the
4648          * packet itself; otherwise check to see if it is from a local
4649          * application or the kernel, if from an application get the peer label
4650          * from the sending socket, otherwise use the kernel's sid */
4651         sk = skb->sk;
4652         if (sk == NULL) {
4653                 switch (family) {
4654                 case PF_INET:
4655                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4656                                 secmark_perm = PACKET__FORWARD_OUT;
4657                         else
4658                                 secmark_perm = PACKET__SEND;
4659                         break;
4660                 case PF_INET6:
4661                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4662                                 secmark_perm = PACKET__FORWARD_OUT;
4663                         else
4664                                 secmark_perm = PACKET__SEND;
4665                         break;
4666                 default:
4667                         return NF_DROP;
4668                 }
4669                 if (secmark_perm == PACKET__FORWARD_OUT) {
4670                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4671                                 return NF_DROP;
4672                 } else
4673                         peer_sid = SECINITSID_KERNEL;
4674         } else {
4675                 struct sk_security_struct *sksec = sk->sk_security;
4676                 peer_sid = sksec->sid;
4677                 secmark_perm = PACKET__SEND;
4678         }
4679
4680         AVC_AUDIT_DATA_INIT(&ad, NET);
4681         ad.u.net.netif = ifindex;
4682         ad.u.net.family = family;
4683         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4684                 return NF_DROP;
4685
4686         if (secmark_active)
4687                 if (avc_has_perm(peer_sid, skb->secmark,
4688                                  SECCLASS_PACKET, secmark_perm, &ad))
4689                         return NF_DROP;
4690
4691         if (peerlbl_active) {
4692                 u32 if_sid;
4693                 u32 node_sid;
4694
4695                 if (sel_netif_sid(ifindex, &if_sid))
4696                         return NF_DROP;
4697                 if (avc_has_perm(peer_sid, if_sid,
4698                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4699                         return NF_DROP;
4700
4701                 if (sel_netnode_sid(addrp, family, &node_sid))
4702                         return NF_DROP;
4703                 if (avc_has_perm(peer_sid, node_sid,
4704                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4705                         return NF_DROP;
4706         }
4707
4708         return NF_ACCEPT;
4709 }
4710
4711 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4712                                            struct sk_buff *skb,
4713                                            const struct net_device *in,
4714                                            const struct net_device *out,
4715                                            int (*okfn)(struct sk_buff *))
4716 {
4717         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4718 }
4719
4720 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4721 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4722                                            struct sk_buff *skb,
4723                                            const struct net_device *in,
4724                                            const struct net_device *out,
4725                                            int (*okfn)(struct sk_buff *))
4726 {
4727         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4728 }
4729 #endif  /* IPV6 */
4730
4731 #endif  /* CONFIG_NETFILTER */
4732
4733 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4734 {
4735         int err;
4736
4737         err = secondary_ops->netlink_send(sk, skb);
4738         if (err)
4739                 return err;
4740
4741         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4742                 err = selinux_nlmsg_perm(sk, skb);
4743
4744         return err;
4745 }
4746
4747 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4748 {
4749         int err;
4750         struct avc_audit_data ad;
4751
4752         err = secondary_ops->netlink_recv(skb, capability);
4753         if (err)
4754                 return err;
4755
4756         AVC_AUDIT_DATA_INIT(&ad, CAP);
4757         ad.u.cap = capability;
4758
4759         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4760                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4761 }
4762
4763 static int ipc_alloc_security(struct task_struct *task,
4764                               struct kern_ipc_perm *perm,
4765                               u16 sclass)
4766 {
4767         struct task_security_struct *tsec = task->security;
4768         struct ipc_security_struct *isec;
4769
4770         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4771         if (!isec)
4772                 return -ENOMEM;
4773
4774         isec->sclass = sclass;
4775         isec->sid = tsec->sid;
4776         perm->security = isec;
4777
4778         return 0;
4779 }
4780
4781 static void ipc_free_security(struct kern_ipc_perm *perm)
4782 {
4783         struct ipc_security_struct *isec = perm->security;
4784         perm->security = NULL;
4785         kfree(isec);
4786 }
4787
4788 static int msg_msg_alloc_security(struct msg_msg *msg)
4789 {
4790         struct msg_security_struct *msec;
4791
4792         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4793         if (!msec)
4794                 return -ENOMEM;
4795
4796         msec->sid = SECINITSID_UNLABELED;
4797         msg->security = msec;
4798
4799         return 0;
4800 }
4801
4802 static void msg_msg_free_security(struct msg_msg *msg)
4803 {
4804         struct msg_security_struct *msec = msg->security;
4805
4806         msg->security = NULL;
4807         kfree(msec);
4808 }
4809
4810 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4811                         u32 perms)
4812 {
4813         struct task_security_struct *tsec;
4814         struct ipc_security_struct *isec;
4815         struct avc_audit_data ad;
4816
4817         tsec = current->security;
4818         isec = ipc_perms->security;
4819
4820         AVC_AUDIT_DATA_INIT(&ad, IPC);
4821         ad.u.ipc_id = ipc_perms->key;
4822
4823         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4824 }
4825
4826 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4827 {
4828         return msg_msg_alloc_security(msg);
4829 }
4830
4831 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4832 {
4833         msg_msg_free_security(msg);
4834 }
4835
4836 /* message queue security operations */
4837 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4838 {
4839         struct task_security_struct *tsec;
4840         struct ipc_security_struct *isec;
4841         struct avc_audit_data ad;
4842         int rc;
4843
4844         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4845         if (rc)
4846                 return rc;
4847
4848         tsec = current->security;
4849         isec = msq->q_perm.security;
4850
4851         AVC_AUDIT_DATA_INIT(&ad, IPC);
4852         ad.u.ipc_id = msq->q_perm.key;
4853
4854         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4855                           MSGQ__CREATE, &ad);
4856         if (rc) {
4857                 ipc_free_security(&msq->q_perm);
4858                 return rc;
4859         }
4860         return 0;
4861 }
4862
4863 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4864 {
4865         ipc_free_security(&msq->q_perm);
4866 }
4867
4868 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4869 {
4870         struct task_security_struct *tsec;
4871         struct ipc_security_struct *isec;
4872         struct avc_audit_data ad;
4873
4874         tsec = current->security;
4875         isec = msq->q_perm.security;
4876
4877         AVC_AUDIT_DATA_INIT(&ad, IPC);
4878         ad.u.ipc_id = msq->q_perm.key;
4879
4880         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4881                             MSGQ__ASSOCIATE, &ad);
4882 }
4883
4884 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4885 {
4886         int err;
4887         int perms;
4888
4889         switch (cmd) {
4890         case IPC_INFO:
4891         case MSG_INFO:
4892                 /* No specific object, just general system-wide information. */
4893                 return task_has_system(current, SYSTEM__IPC_INFO);
4894         case IPC_STAT:
4895         case MSG_STAT:
4896                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4897                 break;
4898         case IPC_SET:
4899                 perms = MSGQ__SETATTR;
4900                 break;
4901         case IPC_RMID:
4902                 perms = MSGQ__DESTROY;
4903                 break;
4904         default:
4905                 return 0;
4906         }
4907
4908         err = ipc_has_perm(&msq->q_perm, perms);
4909         return err;
4910 }
4911
4912 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4913 {
4914         struct task_security_struct *tsec;
4915         struct ipc_security_struct *isec;
4916         struct msg_security_struct *msec;
4917         struct avc_audit_data ad;
4918         int rc;
4919
4920         tsec = current->security;
4921         isec = msq->q_perm.security;
4922         msec = msg->security;
4923
4924         /*
4925          * First time through, need to assign label to the message
4926          */
4927         if (msec->sid == SECINITSID_UNLABELED) {
4928                 /*
4929                  * Compute new sid based on current process and
4930                  * message queue this message will be stored in
4931                  */
4932                 rc = security_transition_sid(tsec->sid,
4933                                              isec->sid,
4934                                              SECCLASS_MSG,
4935                                              &msec->sid);
4936                 if (rc)
4937                         return rc;
4938         }
4939
4940         AVC_AUDIT_DATA_INIT(&ad, IPC);
4941         ad.u.ipc_id = msq->q_perm.key;
4942
4943         /* Can this process write to the queue? */
4944         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4945                           MSGQ__WRITE, &ad);
4946         if (!rc)
4947                 /* Can this process send the message */
4948                 rc = avc_has_perm(tsec->sid, msec->sid,
4949                                   SECCLASS_MSG, MSG__SEND, &ad);
4950         if (!rc)
4951                 /* Can the message be put in the queue? */
4952                 rc = avc_has_perm(msec->sid, isec->sid,
4953                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4954
4955         return rc;
4956 }
4957
4958 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4959                                     struct task_struct *target,
4960                                     long type, int mode)
4961 {
4962         struct task_security_struct *tsec;
4963         struct ipc_security_struct *isec;
4964         struct msg_security_struct *msec;
4965         struct avc_audit_data ad;
4966         int rc;
4967
4968         tsec = target->security;
4969         isec = msq->q_perm.security;
4970         msec = msg->security;
4971
4972         AVC_AUDIT_DATA_INIT(&ad, IPC);
4973         ad.u.ipc_id = msq->q_perm.key;
4974
4975         rc = avc_has_perm(tsec->sid, isec->sid,
4976                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4977         if (!rc)
4978                 rc = avc_has_perm(tsec->sid, msec->sid,
4979                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4980         return rc;
4981 }
4982
4983 /* Shared Memory security operations */
4984 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4985 {
4986         struct task_security_struct *tsec;
4987         struct ipc_security_struct *isec;
4988         struct avc_audit_data ad;
4989         int rc;
4990
4991         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4992         if (rc)
4993                 return rc;
4994
4995         tsec = current->security;
4996         isec = shp->shm_perm.security;
4997
4998         AVC_AUDIT_DATA_INIT(&ad, IPC);
4999         ad.u.ipc_id = shp->shm_perm.key;
5000
5001         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5002                           SHM__CREATE, &ad);
5003         if (rc) {
5004                 ipc_free_security(&shp->shm_perm);
5005                 return rc;
5006         }
5007         return 0;
5008 }
5009
5010 static void selinux_shm_free_security(struct shmid_kernel *shp)
5011 {
5012         ipc_free_security(&shp->shm_perm);
5013 }
5014
5015 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5016 {
5017         struct task_security_struct *tsec;
5018         struct ipc_security_struct *isec;
5019         struct avc_audit_data ad;
5020
5021         tsec = current->security;
5022         isec = shp->shm_perm.security;
5023
5024         AVC_AUDIT_DATA_INIT(&ad, IPC);
5025         ad.u.ipc_id = shp->shm_perm.key;
5026
5027         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5028                             SHM__ASSOCIATE, &ad);
5029 }
5030
5031 /* Note, at this point, shp is locked down */
5032 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5033 {
5034         int perms;
5035         int err;
5036
5037         switch (cmd) {
5038         case IPC_INFO:
5039         case SHM_INFO:
5040                 /* No specific object, just general system-wide information. */
5041                 return task_has_system(current, SYSTEM__IPC_INFO);
5042         case IPC_STAT:
5043         case SHM_STAT:
5044                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5045                 break;
5046         case IPC_SET:
5047                 perms = SHM__SETATTR;
5048                 break;
5049         case SHM_LOCK:
5050         case SHM_UNLOCK:
5051                 perms = SHM__LOCK;
5052                 break;
5053         case IPC_RMID:
5054                 perms = SHM__DESTROY;
5055                 break;
5056         default:
5057                 return 0;
5058         }
5059
5060         err = ipc_has_perm(&shp->shm_perm, perms);
5061         return err;
5062 }
5063
5064 static int selinux_shm_shmat(struct shmid_kernel *shp,
5065                              char __user *shmaddr, int shmflg)
5066 {
5067         u32 perms;
5068         int rc;
5069
5070         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5071         if (rc)
5072                 return rc;
5073
5074         if (shmflg & SHM_RDONLY)
5075                 perms = SHM__READ;
5076         else
5077                 perms = SHM__READ | SHM__WRITE;
5078
5079         return ipc_has_perm(&shp->shm_perm, perms);
5080 }
5081
5082 /* Semaphore security operations */
5083 static int selinux_sem_alloc_security(struct sem_array *sma)
5084 {
5085         struct task_security_struct *tsec;
5086         struct ipc_security_struct *isec;
5087         struct avc_audit_data ad;
5088         int rc;
5089
5090         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5091         if (rc)
5092                 return rc;
5093
5094         tsec = current->security;
5095         isec = sma->sem_perm.security;
5096
5097         AVC_AUDIT_DATA_INIT(&ad, IPC);
5098         ad.u.ipc_id = sma->sem_perm.key;
5099
5100         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5101                           SEM__CREATE, &ad);
5102         if (rc) {
5103                 ipc_free_security(&sma->sem_perm);
5104                 return rc;
5105         }
5106         return 0;
5107 }
5108
5109 static void selinux_sem_free_security(struct sem_array *sma)
5110 {
5111         ipc_free_security(&sma->sem_perm);
5112 }
5113
5114 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5115 {
5116         struct task_security_struct *tsec;
5117         struct ipc_security_struct *isec;
5118         struct avc_audit_data ad;
5119
5120         tsec = current->security;
5121         isec = sma->sem_perm.security;
5122
5123         AVC_AUDIT_DATA_INIT(&ad, IPC);
5124         ad.u.ipc_id = sma->sem_perm.key;
5125
5126         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5127                             SEM__ASSOCIATE, &ad);
5128 }
5129
5130 /* Note, at this point, sma is locked down */
5131 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5132 {
5133         int err;
5134         u32 perms;
5135
5136         switch (cmd) {
5137         case IPC_INFO:
5138         case SEM_INFO:
5139                 /* No specific object, just general system-wide information. */
5140                 return task_has_system(current, SYSTEM__IPC_INFO);
5141         case GETPID:
5142         case GETNCNT:
5143         case GETZCNT:
5144                 perms = SEM__GETATTR;
5145                 break;
5146         case GETVAL:
5147         case GETALL:
5148                 perms = SEM__READ;
5149                 break;
5150         case SETVAL:
5151         case SETALL:
5152                 perms = SEM__WRITE;
5153                 break;
5154         case IPC_RMID:
5155                 perms = SEM__DESTROY;
5156                 break;
5157         case IPC_SET:
5158                 perms = SEM__SETATTR;
5159                 break;
5160         case IPC_STAT:
5161         case SEM_STAT:
5162                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5163                 break;
5164         default:
5165                 return 0;
5166         }
5167
5168         err = ipc_has_perm(&sma->sem_perm, perms);
5169         return err;
5170 }
5171
5172 static int selinux_sem_semop(struct sem_array *sma,
5173                              struct sembuf *sops, unsigned nsops, int alter)
5174 {
5175         u32 perms;
5176
5177         if (alter)
5178                 perms = SEM__READ | SEM__WRITE;
5179         else
5180                 perms = SEM__READ;
5181
5182         return ipc_has_perm(&sma->sem_perm, perms);
5183 }
5184
5185 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5186 {
5187         u32 av = 0;
5188
5189         av = 0;
5190         if (flag & S_IRUGO)
5191                 av |= IPC__UNIX_READ;
5192         if (flag & S_IWUGO)
5193                 av |= IPC__UNIX_WRITE;
5194
5195         if (av == 0)
5196                 return 0;
5197
5198         return ipc_has_perm(ipcp, av);
5199 }
5200
5201 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5202 {
5203         struct ipc_security_struct *isec = ipcp->security;
5204         *secid = isec->sid;
5205 }
5206
5207 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5208 {
5209         if (inode)
5210                 inode_doinit_with_dentry(inode, dentry);
5211 }
5212
5213 static int selinux_getprocattr(struct task_struct *p,
5214                                char *name, char **value)
5215 {
5216         struct task_security_struct *tsec;
5217         u32 sid;
5218         int error;
5219         unsigned len;
5220
5221         if (current != p) {
5222                 error = task_has_perm(current, p, PROCESS__GETATTR);
5223                 if (error)
5224                         return error;
5225         }
5226
5227         tsec = p->security;
5228
5229         if (!strcmp(name, "current"))
5230                 sid = tsec->sid;
5231         else if (!strcmp(name, "prev"))
5232                 sid = tsec->osid;
5233         else if (!strcmp(name, "exec"))
5234                 sid = tsec->exec_sid;
5235         else if (!strcmp(name, "fscreate"))
5236                 sid = tsec->create_sid;
5237         else if (!strcmp(name, "keycreate"))
5238                 sid = tsec->keycreate_sid;
5239         else if (!strcmp(name, "sockcreate"))
5240                 sid = tsec->sockcreate_sid;
5241         else
5242                 return -EINVAL;
5243
5244         if (!sid)
5245                 return 0;
5246
5247         error = security_sid_to_context(sid, value, &len);
5248         if (error)
5249                 return error;
5250         return len;
5251 }
5252
5253 static int selinux_setprocattr(struct task_struct *p,
5254                                char *name, void *value, size_t size)
5255 {
5256         struct task_security_struct *tsec;
5257         struct task_struct *tracer;
5258         u32 sid = 0;
5259         int error;
5260         char *str = value;
5261
5262         if (current != p) {
5263                 /* SELinux only allows a process to change its own
5264                    security attributes. */
5265                 return -EACCES;
5266         }
5267
5268         /*
5269          * Basic control over ability to set these attributes at all.
5270          * current == p, but we'll pass them separately in case the
5271          * above restriction is ever removed.
5272          */
5273         if (!strcmp(name, "exec"))
5274                 error = task_has_perm(current, p, PROCESS__SETEXEC);
5275         else if (!strcmp(name, "fscreate"))
5276                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5277         else if (!strcmp(name, "keycreate"))
5278                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5279         else if (!strcmp(name, "sockcreate"))
5280                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5281         else if (!strcmp(name, "current"))
5282                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5283         else
5284                 error = -EINVAL;
5285         if (error)
5286                 return error;
5287
5288         /* Obtain a SID for the context, if one was specified. */
5289         if (size && str[1] && str[1] != '\n') {
5290                 if (str[size-1] == '\n') {
5291                         str[size-1] = 0;
5292                         size--;
5293                 }
5294                 error = security_context_to_sid(value, size, &sid);
5295                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5296                         if (!capable(CAP_MAC_ADMIN))
5297                                 return error;
5298                         error = security_context_to_sid_force(value, size,
5299                                                               &sid);
5300                 }
5301                 if (error)
5302                         return error;
5303         }
5304
5305         /* Permission checking based on the specified context is
5306            performed during the actual operation (execve,
5307            open/mkdir/...), when we know the full context of the
5308            operation.  See selinux_bprm_set_security for the execve
5309            checks and may_create for the file creation checks. The
5310            operation will then fail if the context is not permitted. */
5311         tsec = p->security;
5312         if (!strcmp(name, "exec"))
5313                 tsec->exec_sid = sid;
5314         else if (!strcmp(name, "fscreate"))
5315                 tsec->create_sid = sid;
5316         else if (!strcmp(name, "keycreate")) {
5317                 error = may_create_key(sid, p);
5318                 if (error)
5319                         return error;
5320                 tsec->keycreate_sid = sid;
5321         } else if (!strcmp(name, "sockcreate"))
5322                 tsec->sockcreate_sid = sid;
5323         else if (!strcmp(name, "current")) {
5324                 struct av_decision avd;
5325
5326                 if (sid == 0)
5327                         return -EINVAL;
5328                 /*
5329                  * SELinux allows to change context in the following case only.
5330                  *  - Single threaded processes.
5331                  *  - Multi threaded processes intend to change its context into
5332                  *    more restricted domain (defined by TYPEBOUNDS statement).
5333                  */
5334                 if (atomic_read(&p->mm->mm_users) != 1) {
5335                         struct task_struct *g, *t;
5336                         struct mm_struct *mm = p->mm;
5337                         read_lock(&tasklist_lock);
5338                         do_each_thread(g, t) {
5339                                 if (t->mm == mm && t != p) {
5340                                         read_unlock(&tasklist_lock);
5341                                         error = security_bounded_transition(tsec->sid, sid);
5342                                         if (!error)
5343                                                 goto boundary_ok;
5344
5345                                         return error;
5346                                 }
5347                         } while_each_thread(g, t);
5348                         read_unlock(&tasklist_lock);
5349                 }
5350 boundary_ok:
5351
5352                 /* Check permissions for the transition. */
5353                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5354                                      PROCESS__DYNTRANSITION, NULL);
5355                 if (error)
5356                         return error;
5357
5358                 /* Check for ptracing, and update the task SID if ok.
5359                    Otherwise, leave SID unchanged and fail. */
5360                 task_lock(p);
5361                 rcu_read_lock();
5362                 tracer = tracehook_tracer_task(p);
5363                 if (tracer != NULL) {
5364                         struct task_security_struct *ptsec = tracer->security;
5365                         u32 ptsid = ptsec->sid;
5366                         rcu_read_unlock();
5367                         error = avc_has_perm_noaudit(ptsid, sid,
5368                                                      SECCLASS_PROCESS,
5369                                                      PROCESS__PTRACE, 0, &avd);
5370                         if (!error)
5371                                 tsec->sid = sid;
5372                         task_unlock(p);
5373                         avc_audit(ptsid, sid, SECCLASS_PROCESS,
5374                                   PROCESS__PTRACE, &avd, error, NULL);
5375                         if (error)
5376                                 return error;
5377                 } else {
5378                         rcu_read_unlock();
5379                         tsec->sid = sid;
5380                         task_unlock(p);
5381                 }
5382         } else
5383                 return -EINVAL;
5384
5385         return size;
5386 }
5387
5388 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5389 {
5390         return security_sid_to_context(secid, secdata, seclen);
5391 }
5392
5393 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5394 {
5395         return security_context_to_sid(secdata, seclen, secid);
5396 }
5397
5398 static void selinux_release_secctx(char *secdata, u32 seclen)
5399 {
5400         kfree(secdata);
5401 }
5402
5403 #ifdef CONFIG_KEYS
5404
5405 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5406                              unsigned long flags)
5407 {
5408         struct task_security_struct *tsec = tsk->security;
5409         struct key_security_struct *ksec;
5410
5411         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5412         if (!ksec)
5413                 return -ENOMEM;
5414
5415         if (tsec->keycreate_sid)
5416                 ksec->sid = tsec->keycreate_sid;
5417         else
5418                 ksec->sid = tsec->sid;
5419         k->security = ksec;
5420
5421         return 0;
5422 }
5423
5424 static void selinux_key_free(struct key *k)
5425 {
5426         struct key_security_struct *ksec = k->security;
5427
5428         k->security = NULL;
5429         kfree(ksec);
5430 }
5431
5432 static int selinux_key_permission(key_ref_t key_ref,
5433                             struct task_struct *ctx,
5434                             key_perm_t perm)
5435 {
5436         struct key *key;
5437         struct task_security_struct *tsec;
5438         struct key_security_struct *ksec;
5439
5440         key = key_ref_to_ptr(key_ref);
5441
5442         tsec = ctx->security;
5443         ksec = key->security;
5444
5445         /* if no specific permissions are requested, we skip the
5446            permission check. No serious, additional covert channels
5447            appear to be created. */
5448         if (perm == 0)
5449                 return 0;
5450
5451         return avc_has_perm(tsec->sid, ksec->sid,
5452                             SECCLASS_KEY, perm, NULL);
5453 }
5454
5455 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5456 {
5457         struct key_security_struct *ksec = key->security;
5458         char *context = NULL;
5459         unsigned len;
5460         int rc;
5461
5462         rc = security_sid_to_context(ksec->sid, &context, &len);
5463         if (!rc)
5464                 rc = len;
5465         *_buffer = context;
5466         return rc;
5467 }
5468
5469 #endif
5470
5471 static struct security_operations selinux_ops = {
5472         .name =                         "selinux",
5473
5474         .ptrace_may_access =            selinux_ptrace_may_access,
5475         .ptrace_traceme =               selinux_ptrace_traceme,
5476         .capget =                       selinux_capget,
5477         .capset_check =                 selinux_capset_check,
5478         .capset_set =                   selinux_capset_set,
5479         .sysctl =                       selinux_sysctl,
5480         .capable =                      selinux_capable,
5481         .quotactl =                     selinux_quotactl,
5482         .quota_on =                     selinux_quota_on,
5483         .syslog =                       selinux_syslog,
5484         .vm_enough_memory =             selinux_vm_enough_memory,
5485
5486         .netlink_send =                 selinux_netlink_send,
5487         .netlink_recv =                 selinux_netlink_recv,
5488
5489         .bprm_alloc_security =          selinux_bprm_alloc_security,
5490         .bprm_free_security =           selinux_bprm_free_security,
5491         .bprm_apply_creds =             selinux_bprm_apply_creds,
5492         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
5493         .bprm_set_security =            selinux_bprm_set_security,
5494         .bprm_check_security =          selinux_bprm_check_security,
5495         .bprm_secureexec =              selinux_bprm_secureexec,
5496
5497         .sb_alloc_security =            selinux_sb_alloc_security,
5498         .sb_free_security =             selinux_sb_free_security,
5499         .sb_copy_data =                 selinux_sb_copy_data,
5500         .sb_kern_mount =                selinux_sb_kern_mount,
5501         .sb_show_options =              selinux_sb_show_options,
5502         .sb_statfs =                    selinux_sb_statfs,
5503         .sb_mount =                     selinux_mount,
5504         .sb_umount =                    selinux_umount,
5505         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5506         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5507         .sb_parse_opts_str =            selinux_parse_opts_str,
5508
5509
5510         .inode_alloc_security =         selinux_inode_alloc_security,
5511         .inode_free_security =          selinux_inode_free_security,
5512         .inode_init_security =          selinux_inode_init_security,
5513         .inode_create =                 selinux_inode_create,
5514         .inode_link =                   selinux_inode_link,
5515         .inode_unlink =                 selinux_inode_unlink,
5516         .inode_symlink =                selinux_inode_symlink,
5517         .inode_mkdir =                  selinux_inode_mkdir,
5518         .inode_rmdir =                  selinux_inode_rmdir,
5519         .inode_mknod =                  selinux_inode_mknod,
5520         .inode_rename =                 selinux_inode_rename,
5521         .inode_readlink =               selinux_inode_readlink,
5522         .inode_follow_link =            selinux_inode_follow_link,
5523         .inode_permission =             selinux_inode_permission,
5524         .inode_setattr =                selinux_inode_setattr,
5525         .inode_getattr =                selinux_inode_getattr,
5526         .inode_setxattr =               selinux_inode_setxattr,
5527         .inode_post_setxattr =          selinux_inode_post_setxattr,
5528         .inode_getxattr =               selinux_inode_getxattr,
5529         .inode_listxattr =              selinux_inode_listxattr,
5530         .inode_removexattr =            selinux_inode_removexattr,
5531         .inode_getsecurity =            selinux_inode_getsecurity,
5532         .inode_setsecurity =            selinux_inode_setsecurity,
5533         .inode_listsecurity =           selinux_inode_listsecurity,
5534         .inode_need_killpriv =          selinux_inode_need_killpriv,
5535         .inode_killpriv =               selinux_inode_killpriv,
5536         .inode_getsecid =               selinux_inode_getsecid,
5537
5538         .file_permission =              selinux_file_permission,
5539         .file_alloc_security =          selinux_file_alloc_security,
5540         .file_free_security =           selinux_file_free_security,
5541         .file_ioctl =                   selinux_file_ioctl,
5542         .file_mmap =                    selinux_file_mmap,
5543         .file_mprotect =                selinux_file_mprotect,
5544         .file_lock =                    selinux_file_lock,
5545         .file_fcntl =                   selinux_file_fcntl,
5546         .file_set_fowner =              selinux_file_set_fowner,
5547         .file_send_sigiotask =          selinux_file_send_sigiotask,
5548         .file_receive =                 selinux_file_receive,
5549
5550         .dentry_open =                  selinux_dentry_open,
5551
5552         .task_create =                  selinux_task_create,
5553         .task_alloc_security =          selinux_task_alloc_security,
5554         .task_free_security =           selinux_task_free_security,
5555         .task_setuid =                  selinux_task_setuid,
5556         .task_post_setuid =             selinux_task_post_setuid,
5557         .task_setgid =                  selinux_task_setgid,
5558         .task_setpgid =                 selinux_task_setpgid,
5559         .task_getpgid =                 selinux_task_getpgid,
5560         .task_getsid =                  selinux_task_getsid,
5561         .task_getsecid =                selinux_task_getsecid,
5562         .task_setgroups =               selinux_task_setgroups,
5563         .task_setnice =                 selinux_task_setnice,
5564         .task_setioprio =               selinux_task_setioprio,
5565         .task_getioprio =               selinux_task_getioprio,
5566         .task_setrlimit =               selinux_task_setrlimit,
5567         .task_setscheduler =            selinux_task_setscheduler,
5568         .task_getscheduler =            selinux_task_getscheduler,
5569         .task_movememory =              selinux_task_movememory,
5570         .task_kill =                    selinux_task_kill,
5571         .task_wait =                    selinux_task_wait,
5572         .task_prctl =                   selinux_task_prctl,
5573         .task_reparent_to_init =        selinux_task_reparent_to_init,
5574         .task_to_inode =                selinux_task_to_inode,
5575
5576         .ipc_permission =               selinux_ipc_permission,
5577         .ipc_getsecid =                 selinux_ipc_getsecid,
5578
5579         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5580         .msg_msg_free_security =        selinux_msg_msg_free_security,
5581
5582         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5583         .msg_queue_free_security =      selinux_msg_queue_free_security,
5584         .msg_queue_associate =          selinux_msg_queue_associate,
5585         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5586         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5587         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5588
5589         .shm_alloc_security =           selinux_shm_alloc_security,
5590         .shm_free_security =            selinux_shm_free_security,
5591         .shm_associate =                selinux_shm_associate,
5592         .shm_shmctl =                   selinux_shm_shmctl,
5593         .shm_shmat =                    selinux_shm_shmat,
5594
5595         .sem_alloc_security =           selinux_sem_alloc_security,
5596         .sem_free_security =            selinux_sem_free_security,
5597         .sem_associate =                selinux_sem_associate,
5598         .sem_semctl =                   selinux_sem_semctl,
5599         .sem_semop =                    selinux_sem_semop,
5600
5601         .d_instantiate =                selinux_d_instantiate,
5602
5603         .getprocattr =                  selinux_getprocattr,
5604         .setprocattr =                  selinux_setprocattr,
5605
5606         .secid_to_secctx =              selinux_secid_to_secctx,
5607         .secctx_to_secid =              selinux_secctx_to_secid,
5608         .release_secctx =               selinux_release_secctx,
5609
5610         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5611         .unix_may_send =                selinux_socket_unix_may_send,
5612
5613         .socket_create =                selinux_socket_create,
5614         .socket_post_create =           selinux_socket_post_create,
5615         .socket_bind =                  selinux_socket_bind,
5616         .socket_connect =               selinux_socket_connect,
5617         .socket_listen =                selinux_socket_listen,
5618         .socket_accept =                selinux_socket_accept,
5619         .socket_sendmsg =               selinux_socket_sendmsg,
5620         .socket_recvmsg =               selinux_socket_recvmsg,
5621         .socket_getsockname =           selinux_socket_getsockname,
5622         .socket_getpeername =           selinux_socket_getpeername,
5623         .socket_getsockopt =            selinux_socket_getsockopt,
5624         .socket_setsockopt =            selinux_socket_setsockopt,
5625         .socket_shutdown =              selinux_socket_shutdown,
5626         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5627         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5628         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5629         .sk_alloc_security =            selinux_sk_alloc_security,
5630         .sk_free_security =             selinux_sk_free_security,
5631         .sk_clone_security =            selinux_sk_clone_security,
5632         .sk_getsecid =                  selinux_sk_getsecid,
5633         .sock_graft =                   selinux_sock_graft,
5634         .inet_conn_request =            selinux_inet_conn_request,
5635         .inet_csk_clone =               selinux_inet_csk_clone,
5636         .inet_conn_established =        selinux_inet_conn_established,
5637         .req_classify_flow =            selinux_req_classify_flow,
5638
5639 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5640         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5641         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5642         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5643         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5644         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5645         .xfrm_state_free_security =     selinux_xfrm_state_free,
5646         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5647         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5648         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5649         .xfrm_decode_session =          selinux_xfrm_decode_session,
5650 #endif
5651
5652 #ifdef CONFIG_KEYS
5653         .key_alloc =                    selinux_key_alloc,
5654         .key_free =                     selinux_key_free,
5655         .key_permission =               selinux_key_permission,
5656         .key_getsecurity =              selinux_key_getsecurity,
5657 #endif
5658
5659 #ifdef CONFIG_AUDIT
5660         .audit_rule_init =              selinux_audit_rule_init,
5661         .audit_rule_known =             selinux_audit_rule_known,
5662         .audit_rule_match =             selinux_audit_rule_match,
5663         .audit_rule_free =              selinux_audit_rule_free,
5664 #endif
5665 };
5666
5667 static __init int selinux_init(void)
5668 {
5669         struct task_security_struct *tsec;
5670
5671         if (!security_module_enable(&selinux_ops)) {
5672                 selinux_enabled = 0;
5673                 return 0;
5674         }
5675
5676         if (!selinux_enabled) {
5677                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5678                 return 0;
5679         }
5680
5681         printk(KERN_INFO "SELinux:  Initializing.\n");
5682
5683         /* Set the security state for the initial task. */
5684         if (task_alloc_security(current))
5685                 panic("SELinux:  Failed to initialize initial task.\n");
5686         tsec = current->security;
5687         tsec->osid = tsec->sid = SECINITSID_KERNEL;
5688
5689         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5690                                             sizeof(struct inode_security_struct),
5691                                             0, SLAB_PANIC, NULL);
5692         avc_init();
5693
5694         secondary_ops = security_ops;
5695         if (!secondary_ops)
5696                 panic("SELinux: No initial security operations\n");
5697         if (register_security(&selinux_ops))
5698                 panic("SELinux: Unable to register with kernel.\n");
5699
5700         if (selinux_enforcing)
5701                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5702         else
5703                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5704
5705         return 0;
5706 }
5707
5708 void selinux_complete_init(void)
5709 {
5710         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5711
5712         /* Set up any superblocks initialized prior to the policy load. */
5713         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5714         spin_lock(&sb_lock);
5715         spin_lock(&sb_security_lock);
5716 next_sb:
5717         if (!list_empty(&superblock_security_head)) {
5718                 struct superblock_security_struct *sbsec =
5719                                 list_entry(superblock_security_head.next,
5720                                            struct superblock_security_struct,
5721                                            list);
5722                 struct super_block *sb = sbsec->sb;
5723                 sb->s_count++;
5724                 spin_unlock(&sb_security_lock);
5725                 spin_unlock(&sb_lock);
5726                 down_read(&sb->s_umount);
5727                 if (sb->s_root)
5728                         superblock_doinit(sb, NULL);
5729                 drop_super(sb);
5730                 spin_lock(&sb_lock);
5731                 spin_lock(&sb_security_lock);
5732                 list_del_init(&sbsec->list);
5733                 goto next_sb;
5734         }
5735         spin_unlock(&sb_security_lock);
5736         spin_unlock(&sb_lock);
5737 }
5738
5739 /* SELinux requires early initialization in order to label
5740    all processes and objects when they are created. */
5741 security_initcall(selinux_init);
5742
5743 #if defined(CONFIG_NETFILTER)
5744
5745 static struct nf_hook_ops selinux_ipv4_ops[] = {
5746         {
5747                 .hook =         selinux_ipv4_postroute,
5748                 .owner =        THIS_MODULE,
5749                 .pf =           PF_INET,
5750                 .hooknum =      NF_INET_POST_ROUTING,
5751                 .priority =     NF_IP_PRI_SELINUX_LAST,
5752         },
5753         {
5754                 .hook =         selinux_ipv4_forward,
5755                 .owner =        THIS_MODULE,
5756                 .pf =           PF_INET,
5757                 .hooknum =      NF_INET_FORWARD,
5758                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5759         },
5760         {
5761                 .hook =         selinux_ipv4_output,
5762                 .owner =        THIS_MODULE,
5763                 .pf =           PF_INET,
5764                 .hooknum =      NF_INET_LOCAL_OUT,
5765                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5766         }
5767 };
5768
5769 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5770
5771 static struct nf_hook_ops selinux_ipv6_ops[] = {
5772         {
5773                 .hook =         selinux_ipv6_postroute,
5774                 .owner =        THIS_MODULE,
5775                 .pf =           PF_INET6,
5776                 .hooknum =      NF_INET_POST_ROUTING,
5777                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5778         },
5779         {
5780                 .hook =         selinux_ipv6_forward,
5781                 .owner =        THIS_MODULE,
5782                 .pf =           PF_INET6,
5783                 .hooknum =      NF_INET_FORWARD,
5784                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5785         }
5786 };
5787
5788 #endif  /* IPV6 */
5789
5790 static int __init selinux_nf_ip_init(void)
5791 {
5792         int err = 0;
5793
5794         if (!selinux_enabled)
5795                 goto out;
5796
5797         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5798
5799         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5800         if (err)
5801                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5802
5803 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5804         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5805         if (err)
5806                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5807 #endif  /* IPV6 */
5808
5809 out:
5810         return err;
5811 }
5812
5813 __initcall(selinux_nf_ip_init);
5814
5815 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5816 static void selinux_nf_ip_exit(void)
5817 {
5818         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5819
5820         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5821 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5822         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5823 #endif  /* IPV6 */
5824 }
5825 #endif
5826
5827 #else /* CONFIG_NETFILTER */
5828
5829 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5830 #define selinux_nf_ip_exit()
5831 #endif
5832
5833 #endif /* CONFIG_NETFILTER */
5834
5835 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5836 static int selinux_disabled;
5837
5838 int selinux_disable(void)
5839 {
5840         extern void exit_sel_fs(void);
5841
5842         if (ss_initialized) {
5843                 /* Not permitted after initial policy load. */
5844                 return -EINVAL;
5845         }
5846
5847         if (selinux_disabled) {
5848                 /* Only do this once. */
5849                 return -EINVAL;
5850         }
5851
5852         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5853
5854         selinux_disabled = 1;
5855         selinux_enabled = 0;
5856
5857         /* Reset security_ops to the secondary module, dummy or capability. */
5858         security_ops = secondary_ops;
5859
5860         /* Unregister netfilter hooks. */
5861         selinux_nf_ip_exit();
5862
5863         /* Unregister selinuxfs. */
5864         exit_sel_fs();
5865
5866         return 0;
5867 }
5868 #endif