]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - security/selinux/hooks.c
7e90c9e58657a9313186d5b7450901bb07337e10
[linux-2.6-omap-h63xx.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /*
160  * initialise the security for the init task
161  */
162 static void cred_init_security(void)
163 {
164         struct cred *cred = (struct cred *) current->real_cred;
165         struct task_security_struct *tsec;
166
167         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
168         if (!tsec)
169                 panic("SELinux:  Failed to initialize initial task.\n");
170
171         tsec->osid = tsec->sid = SECINITSID_KERNEL;
172         cred->security = tsec;
173 }
174
175 /*
176  * get the security ID of a set of credentials
177  */
178 static inline u32 cred_sid(const struct cred *cred)
179 {
180         const struct task_security_struct *tsec;
181
182         tsec = cred->security;
183         return tsec->sid;
184 }
185
186 /*
187  * get the objective security ID of a task
188  */
189 static inline u32 task_sid(const struct task_struct *task)
190 {
191         u32 sid;
192
193         rcu_read_lock();
194         sid = cred_sid(__task_cred(task));
195         rcu_read_unlock();
196         return sid;
197 }
198
199 /*
200  * get the subjective security ID of the current task
201  */
202 static inline u32 current_sid(void)
203 {
204         const struct task_security_struct *tsec = current_cred()->security;
205
206         return tsec->sid;
207 }
208
209 /* Allocate and free functions for each kind of security blob. */
210
211 static int inode_alloc_security(struct inode *inode)
212 {
213         struct inode_security_struct *isec;
214         u32 sid = current_sid();
215
216         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
217         if (!isec)
218                 return -ENOMEM;
219
220         mutex_init(&isec->lock);
221         INIT_LIST_HEAD(&isec->list);
222         isec->inode = inode;
223         isec->sid = SECINITSID_UNLABELED;
224         isec->sclass = SECCLASS_FILE;
225         isec->task_sid = sid;
226         inode->i_security = isec;
227
228         return 0;
229 }
230
231 static void inode_free_security(struct inode *inode)
232 {
233         struct inode_security_struct *isec = inode->i_security;
234         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
235
236         spin_lock(&sbsec->isec_lock);
237         if (!list_empty(&isec->list))
238                 list_del_init(&isec->list);
239         spin_unlock(&sbsec->isec_lock);
240
241         inode->i_security = NULL;
242         kmem_cache_free(sel_inode_cache, isec);
243 }
244
245 static int file_alloc_security(struct file *file)
246 {
247         struct file_security_struct *fsec;
248         u32 sid = current_sid();
249
250         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
251         if (!fsec)
252                 return -ENOMEM;
253
254         fsec->sid = sid;
255         fsec->fown_sid = sid;
256         file->f_security = fsec;
257
258         return 0;
259 }
260
261 static void file_free_security(struct file *file)
262 {
263         struct file_security_struct *fsec = file->f_security;
264         file->f_security = NULL;
265         kfree(fsec);
266 }
267
268 static int superblock_alloc_security(struct super_block *sb)
269 {
270         struct superblock_security_struct *sbsec;
271
272         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
273         if (!sbsec)
274                 return -ENOMEM;
275
276         mutex_init(&sbsec->lock);
277         INIT_LIST_HEAD(&sbsec->list);
278         INIT_LIST_HEAD(&sbsec->isec_head);
279         spin_lock_init(&sbsec->isec_lock);
280         sbsec->sb = sb;
281         sbsec->sid = SECINITSID_UNLABELED;
282         sbsec->def_sid = SECINITSID_FILE;
283         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
284         sb->s_security = sbsec;
285
286         return 0;
287 }
288
289 static void superblock_free_security(struct super_block *sb)
290 {
291         struct superblock_security_struct *sbsec = sb->s_security;
292
293         spin_lock(&sb_security_lock);
294         if (!list_empty(&sbsec->list))
295                 list_del_init(&sbsec->list);
296         spin_unlock(&sb_security_lock);
297
298         sb->s_security = NULL;
299         kfree(sbsec);
300 }
301
302 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
303 {
304         struct sk_security_struct *ssec;
305
306         ssec = kzalloc(sizeof(*ssec), priority);
307         if (!ssec)
308                 return -ENOMEM;
309
310         ssec->peer_sid = SECINITSID_UNLABELED;
311         ssec->sid = SECINITSID_UNLABELED;
312         sk->sk_security = ssec;
313
314         selinux_netlbl_sk_security_reset(ssec, family);
315
316         return 0;
317 }
318
319 static void sk_free_security(struct sock *sk)
320 {
321         struct sk_security_struct *ssec = sk->sk_security;
322
323         sk->sk_security = NULL;
324         selinux_netlbl_sk_security_free(ssec);
325         kfree(ssec);
326 }
327
328 /* The security server must be initialized before
329    any labeling or access decisions can be provided. */
330 extern int ss_initialized;
331
332 /* The file system's label must be initialized prior to use. */
333
334 static char *labeling_behaviors[6] = {
335         "uses xattr",
336         "uses transition SIDs",
337         "uses task SIDs",
338         "uses genfs_contexts",
339         "not configured for labeling",
340         "uses mountpoint labeling",
341 };
342
343 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
344
345 static inline int inode_doinit(struct inode *inode)
346 {
347         return inode_doinit_with_dentry(inode, NULL);
348 }
349
350 enum {
351         Opt_error = -1,
352         Opt_context = 1,
353         Opt_fscontext = 2,
354         Opt_defcontext = 3,
355         Opt_rootcontext = 4,
356         Opt_labelsupport = 5,
357 };
358
359 static const match_table_t tokens = {
360         {Opt_context, CONTEXT_STR "%s"},
361         {Opt_fscontext, FSCONTEXT_STR "%s"},
362         {Opt_defcontext, DEFCONTEXT_STR "%s"},
363         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
364         {Opt_labelsupport, LABELSUPP_STR},
365         {Opt_error, NULL},
366 };
367
368 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
369
370 static int may_context_mount_sb_relabel(u32 sid,
371                         struct superblock_security_struct *sbsec,
372                         const struct cred *cred)
373 {
374         const struct task_security_struct *tsec = cred->security;
375         int rc;
376
377         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
378                           FILESYSTEM__RELABELFROM, NULL);
379         if (rc)
380                 return rc;
381
382         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
383                           FILESYSTEM__RELABELTO, NULL);
384         return rc;
385 }
386
387 static int may_context_mount_inode_relabel(u32 sid,
388                         struct superblock_security_struct *sbsec,
389                         const struct cred *cred)
390 {
391         const struct task_security_struct *tsec = cred->security;
392         int rc;
393         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
394                           FILESYSTEM__RELABELFROM, NULL);
395         if (rc)
396                 return rc;
397
398         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
399                           FILESYSTEM__ASSOCIATE, NULL);
400         return rc;
401 }
402
403 static int sb_finish_set_opts(struct super_block *sb)
404 {
405         struct superblock_security_struct *sbsec = sb->s_security;
406         struct dentry *root = sb->s_root;
407         struct inode *root_inode = root->d_inode;
408         int rc = 0;
409
410         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
411                 /* Make sure that the xattr handler exists and that no
412                    error other than -ENODATA is returned by getxattr on
413                    the root directory.  -ENODATA is ok, as this may be
414                    the first boot of the SELinux kernel before we have
415                    assigned xattr values to the filesystem. */
416                 if (!root_inode->i_op->getxattr) {
417                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
418                                "xattr support\n", sb->s_id, sb->s_type->name);
419                         rc = -EOPNOTSUPP;
420                         goto out;
421                 }
422                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
423                 if (rc < 0 && rc != -ENODATA) {
424                         if (rc == -EOPNOTSUPP)
425                                 printk(KERN_WARNING "SELinux: (dev %s, type "
426                                        "%s) has no security xattr handler\n",
427                                        sb->s_id, sb->s_type->name);
428                         else
429                                 printk(KERN_WARNING "SELinux: (dev %s, type "
430                                        "%s) getxattr errno %d\n", sb->s_id,
431                                        sb->s_type->name, -rc);
432                         goto out;
433                 }
434         }
435
436         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
437
438         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
439                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
440                        sb->s_id, sb->s_type->name);
441         else
442                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
443                        sb->s_id, sb->s_type->name,
444                        labeling_behaviors[sbsec->behavior-1]);
445
446         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
447             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
448             sbsec->behavior == SECURITY_FS_USE_NONE ||
449             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
450                 sbsec->flags &= ~SE_SBLABELSUPP;
451
452         /* Initialize the root inode. */
453         rc = inode_doinit_with_dentry(root_inode, root);
454
455         /* Initialize any other inodes associated with the superblock, e.g.
456            inodes created prior to initial policy load or inodes created
457            during get_sb by a pseudo filesystem that directly
458            populates itself. */
459         spin_lock(&sbsec->isec_lock);
460 next_inode:
461         if (!list_empty(&sbsec->isec_head)) {
462                 struct inode_security_struct *isec =
463                                 list_entry(sbsec->isec_head.next,
464                                            struct inode_security_struct, list);
465                 struct inode *inode = isec->inode;
466                 spin_unlock(&sbsec->isec_lock);
467                 inode = igrab(inode);
468                 if (inode) {
469                         if (!IS_PRIVATE(inode))
470                                 inode_doinit(inode);
471                         iput(inode);
472                 }
473                 spin_lock(&sbsec->isec_lock);
474                 list_del_init(&isec->list);
475                 goto next_inode;
476         }
477         spin_unlock(&sbsec->isec_lock);
478 out:
479         return rc;
480 }
481
482 /*
483  * This function should allow an FS to ask what it's mount security
484  * options were so it can use those later for submounts, displaying
485  * mount options, or whatever.
486  */
487 static int selinux_get_mnt_opts(const struct super_block *sb,
488                                 struct security_mnt_opts *opts)
489 {
490         int rc = 0, i;
491         struct superblock_security_struct *sbsec = sb->s_security;
492         char *context = NULL;
493         u32 len;
494         char tmp;
495
496         security_init_mnt_opts(opts);
497
498         if (!(sbsec->flags & SE_SBINITIALIZED))
499                 return -EINVAL;
500
501         if (!ss_initialized)
502                 return -EINVAL;
503
504         tmp = sbsec->flags & SE_MNTMASK;
505         /* count the number of mount options for this sb */
506         for (i = 0; i < 8; i++) {
507                 if (tmp & 0x01)
508                         opts->num_mnt_opts++;
509                 tmp >>= 1;
510         }
511         /* Check if the Label support flag is set */
512         if (sbsec->flags & SE_SBLABELSUPP)
513                 opts->num_mnt_opts++;
514
515         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
516         if (!opts->mnt_opts) {
517                 rc = -ENOMEM;
518                 goto out_free;
519         }
520
521         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
522         if (!opts->mnt_opts_flags) {
523                 rc = -ENOMEM;
524                 goto out_free;
525         }
526
527         i = 0;
528         if (sbsec->flags & FSCONTEXT_MNT) {
529                 rc = security_sid_to_context(sbsec->sid, &context, &len);
530                 if (rc)
531                         goto out_free;
532                 opts->mnt_opts[i] = context;
533                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
534         }
535         if (sbsec->flags & CONTEXT_MNT) {
536                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
537                 if (rc)
538                         goto out_free;
539                 opts->mnt_opts[i] = context;
540                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
541         }
542         if (sbsec->flags & DEFCONTEXT_MNT) {
543                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
544                 if (rc)
545                         goto out_free;
546                 opts->mnt_opts[i] = context;
547                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
548         }
549         if (sbsec->flags & ROOTCONTEXT_MNT) {
550                 struct inode *root = sbsec->sb->s_root->d_inode;
551                 struct inode_security_struct *isec = root->i_security;
552
553                 rc = security_sid_to_context(isec->sid, &context, &len);
554                 if (rc)
555                         goto out_free;
556                 opts->mnt_opts[i] = context;
557                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
558         }
559         if (sbsec->flags & SE_SBLABELSUPP) {
560                 opts->mnt_opts[i] = NULL;
561                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
562         }
563
564         BUG_ON(i != opts->num_mnt_opts);
565
566         return 0;
567
568 out_free:
569         security_free_mnt_opts(opts);
570         return rc;
571 }
572
573 static int bad_option(struct superblock_security_struct *sbsec, char flag,
574                       u32 old_sid, u32 new_sid)
575 {
576         char mnt_flags = sbsec->flags & SE_MNTMASK;
577
578         /* check if the old mount command had the same options */
579         if (sbsec->flags & SE_SBINITIALIZED)
580                 if (!(sbsec->flags & flag) ||
581                     (old_sid != new_sid))
582                         return 1;
583
584         /* check if we were passed the same options twice,
585          * aka someone passed context=a,context=b
586          */
587         if (!(sbsec->flags & SE_SBINITIALIZED))
588                 if (mnt_flags & flag)
589                         return 1;
590         return 0;
591 }
592
593 /*
594  * Allow filesystems with binary mount data to explicitly set mount point
595  * labeling information.
596  */
597 static int selinux_set_mnt_opts(struct super_block *sb,
598                                 struct security_mnt_opts *opts)
599 {
600         const struct cred *cred = current_cred();
601         int rc = 0, i;
602         struct superblock_security_struct *sbsec = sb->s_security;
603         const char *name = sb->s_type->name;
604         struct inode *inode = sbsec->sb->s_root->d_inode;
605         struct inode_security_struct *root_isec = inode->i_security;
606         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
607         u32 defcontext_sid = 0;
608         char **mount_options = opts->mnt_opts;
609         int *flags = opts->mnt_opts_flags;
610         int num_opts = opts->num_mnt_opts;
611
612         mutex_lock(&sbsec->lock);
613
614         if (!ss_initialized) {
615                 if (!num_opts) {
616                         /* Defer initialization until selinux_complete_init,
617                            after the initial policy is loaded and the security
618                            server is ready to handle calls. */
619                         spin_lock(&sb_security_lock);
620                         if (list_empty(&sbsec->list))
621                                 list_add(&sbsec->list, &superblock_security_head);
622                         spin_unlock(&sb_security_lock);
623                         goto out;
624                 }
625                 rc = -EINVAL;
626                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
627                         "before the security server is initialized\n");
628                 goto out;
629         }
630
631         /*
632          * Binary mount data FS will come through this function twice.  Once
633          * from an explicit call and once from the generic calls from the vfs.
634          * Since the generic VFS calls will not contain any security mount data
635          * we need to skip the double mount verification.
636          *
637          * This does open a hole in which we will not notice if the first
638          * mount using this sb set explict options and a second mount using
639          * this sb does not set any security options.  (The first options
640          * will be used for both mounts)
641          */
642         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
643             && (num_opts == 0))
644                 goto out;
645
646         /*
647          * parse the mount options, check if they are valid sids.
648          * also check if someone is trying to mount the same sb more
649          * than once with different security options.
650          */
651         for (i = 0; i < num_opts; i++) {
652                 u32 sid;
653
654                 if (flags[i] == SE_SBLABELSUPP)
655                         continue;
656                 rc = security_context_to_sid(mount_options[i],
657                                              strlen(mount_options[i]), &sid);
658                 if (rc) {
659                         printk(KERN_WARNING "SELinux: security_context_to_sid"
660                                "(%s) failed for (dev %s, type %s) errno=%d\n",
661                                mount_options[i], sb->s_id, name, rc);
662                         goto out;
663                 }
664                 switch (flags[i]) {
665                 case FSCONTEXT_MNT:
666                         fscontext_sid = sid;
667
668                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
669                                         fscontext_sid))
670                                 goto out_double_mount;
671
672                         sbsec->flags |= FSCONTEXT_MNT;
673                         break;
674                 case CONTEXT_MNT:
675                         context_sid = sid;
676
677                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
678                                         context_sid))
679                                 goto out_double_mount;
680
681                         sbsec->flags |= CONTEXT_MNT;
682                         break;
683                 case ROOTCONTEXT_MNT:
684                         rootcontext_sid = sid;
685
686                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
687                                         rootcontext_sid))
688                                 goto out_double_mount;
689
690                         sbsec->flags |= ROOTCONTEXT_MNT;
691
692                         break;
693                 case DEFCONTEXT_MNT:
694                         defcontext_sid = sid;
695
696                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
697                                         defcontext_sid))
698                                 goto out_double_mount;
699
700                         sbsec->flags |= DEFCONTEXT_MNT;
701
702                         break;
703                 default:
704                         rc = -EINVAL;
705                         goto out;
706                 }
707         }
708
709         if (sbsec->flags & SE_SBINITIALIZED) {
710                 /* previously mounted with options, but not on this attempt? */
711                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
712                         goto out_double_mount;
713                 rc = 0;
714                 goto out;
715         }
716
717         if (strcmp(sb->s_type->name, "proc") == 0)
718                 sbsec->flags |= SE_SBPROC;
719
720         /* Determine the labeling behavior to use for this filesystem type. */
721         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
722         if (rc) {
723                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
724                        __func__, sb->s_type->name, rc);
725                 goto out;
726         }
727
728         /* sets the context of the superblock for the fs being mounted. */
729         if (fscontext_sid) {
730                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
731                 if (rc)
732                         goto out;
733
734                 sbsec->sid = fscontext_sid;
735         }
736
737         /*
738          * Switch to using mount point labeling behavior.
739          * sets the label used on all file below the mountpoint, and will set
740          * the superblock context if not already set.
741          */
742         if (context_sid) {
743                 if (!fscontext_sid) {
744                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
745                                                           cred);
746                         if (rc)
747                                 goto out;
748                         sbsec->sid = context_sid;
749                 } else {
750                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
751                                                              cred);
752                         if (rc)
753                                 goto out;
754                 }
755                 if (!rootcontext_sid)
756                         rootcontext_sid = context_sid;
757
758                 sbsec->mntpoint_sid = context_sid;
759                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
760         }
761
762         if (rootcontext_sid) {
763                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
764                                                      cred);
765                 if (rc)
766                         goto out;
767
768                 root_isec->sid = rootcontext_sid;
769                 root_isec->initialized = 1;
770         }
771
772         if (defcontext_sid) {
773                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
774                         rc = -EINVAL;
775                         printk(KERN_WARNING "SELinux: defcontext option is "
776                                "invalid for this filesystem type\n");
777                         goto out;
778                 }
779
780                 if (defcontext_sid != sbsec->def_sid) {
781                         rc = may_context_mount_inode_relabel(defcontext_sid,
782                                                              sbsec, cred);
783                         if (rc)
784                                 goto out;
785                 }
786
787                 sbsec->def_sid = defcontext_sid;
788         }
789
790         rc = sb_finish_set_opts(sb);
791 out:
792         mutex_unlock(&sbsec->lock);
793         return rc;
794 out_double_mount:
795         rc = -EINVAL;
796         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
797                "security settings for (dev %s, type %s)\n", sb->s_id, name);
798         goto out;
799 }
800
801 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
802                                         struct super_block *newsb)
803 {
804         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
805         struct superblock_security_struct *newsbsec = newsb->s_security;
806
807         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
808         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
809         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
810
811         /*
812          * if the parent was able to be mounted it clearly had no special lsm
813          * mount options.  thus we can safely put this sb on the list and deal
814          * with it later
815          */
816         if (!ss_initialized) {
817                 spin_lock(&sb_security_lock);
818                 if (list_empty(&newsbsec->list))
819                         list_add(&newsbsec->list, &superblock_security_head);
820                 spin_unlock(&sb_security_lock);
821                 return;
822         }
823
824         /* how can we clone if the old one wasn't set up?? */
825         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
826
827         /* if fs is reusing a sb, just let its options stand... */
828         if (newsbsec->flags & SE_SBINITIALIZED)
829                 return;
830
831         mutex_lock(&newsbsec->lock);
832
833         newsbsec->flags = oldsbsec->flags;
834
835         newsbsec->sid = oldsbsec->sid;
836         newsbsec->def_sid = oldsbsec->def_sid;
837         newsbsec->behavior = oldsbsec->behavior;
838
839         if (set_context) {
840                 u32 sid = oldsbsec->mntpoint_sid;
841
842                 if (!set_fscontext)
843                         newsbsec->sid = sid;
844                 if (!set_rootcontext) {
845                         struct inode *newinode = newsb->s_root->d_inode;
846                         struct inode_security_struct *newisec = newinode->i_security;
847                         newisec->sid = sid;
848                 }
849                 newsbsec->mntpoint_sid = sid;
850         }
851         if (set_rootcontext) {
852                 const struct inode *oldinode = oldsb->s_root->d_inode;
853                 const struct inode_security_struct *oldisec = oldinode->i_security;
854                 struct inode *newinode = newsb->s_root->d_inode;
855                 struct inode_security_struct *newisec = newinode->i_security;
856
857                 newisec->sid = oldisec->sid;
858         }
859
860         sb_finish_set_opts(newsb);
861         mutex_unlock(&newsbsec->lock);
862 }
863
864 static int selinux_parse_opts_str(char *options,
865                                   struct security_mnt_opts *opts)
866 {
867         char *p;
868         char *context = NULL, *defcontext = NULL;
869         char *fscontext = NULL, *rootcontext = NULL;
870         int rc, num_mnt_opts = 0;
871
872         opts->num_mnt_opts = 0;
873
874         /* Standard string-based options. */
875         while ((p = strsep(&options, "|")) != NULL) {
876                 int token;
877                 substring_t args[MAX_OPT_ARGS];
878
879                 if (!*p)
880                         continue;
881
882                 token = match_token(p, tokens, args);
883
884                 switch (token) {
885                 case Opt_context:
886                         if (context || defcontext) {
887                                 rc = -EINVAL;
888                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
889                                 goto out_err;
890                         }
891                         context = match_strdup(&args[0]);
892                         if (!context) {
893                                 rc = -ENOMEM;
894                                 goto out_err;
895                         }
896                         break;
897
898                 case Opt_fscontext:
899                         if (fscontext) {
900                                 rc = -EINVAL;
901                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
902                                 goto out_err;
903                         }
904                         fscontext = match_strdup(&args[0]);
905                         if (!fscontext) {
906                                 rc = -ENOMEM;
907                                 goto out_err;
908                         }
909                         break;
910
911                 case Opt_rootcontext:
912                         if (rootcontext) {
913                                 rc = -EINVAL;
914                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
915                                 goto out_err;
916                         }
917                         rootcontext = match_strdup(&args[0]);
918                         if (!rootcontext) {
919                                 rc = -ENOMEM;
920                                 goto out_err;
921                         }
922                         break;
923
924                 case Opt_defcontext:
925                         if (context || defcontext) {
926                                 rc = -EINVAL;
927                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
928                                 goto out_err;
929                         }
930                         defcontext = match_strdup(&args[0]);
931                         if (!defcontext) {
932                                 rc = -ENOMEM;
933                                 goto out_err;
934                         }
935                         break;
936                 case Opt_labelsupport:
937                         break;
938                 default:
939                         rc = -EINVAL;
940                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
941                         goto out_err;
942
943                 }
944         }
945
946         rc = -ENOMEM;
947         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
948         if (!opts->mnt_opts)
949                 goto out_err;
950
951         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
952         if (!opts->mnt_opts_flags) {
953                 kfree(opts->mnt_opts);
954                 goto out_err;
955         }
956
957         if (fscontext) {
958                 opts->mnt_opts[num_mnt_opts] = fscontext;
959                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
960         }
961         if (context) {
962                 opts->mnt_opts[num_mnt_opts] = context;
963                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
964         }
965         if (rootcontext) {
966                 opts->mnt_opts[num_mnt_opts] = rootcontext;
967                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
968         }
969         if (defcontext) {
970                 opts->mnt_opts[num_mnt_opts] = defcontext;
971                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
972         }
973
974         opts->num_mnt_opts = num_mnt_opts;
975         return 0;
976
977 out_err:
978         kfree(context);
979         kfree(defcontext);
980         kfree(fscontext);
981         kfree(rootcontext);
982         return rc;
983 }
984 /*
985  * string mount options parsing and call set the sbsec
986  */
987 static int superblock_doinit(struct super_block *sb, void *data)
988 {
989         int rc = 0;
990         char *options = data;
991         struct security_mnt_opts opts;
992
993         security_init_mnt_opts(&opts);
994
995         if (!data)
996                 goto out;
997
998         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
999
1000         rc = selinux_parse_opts_str(options, &opts);
1001         if (rc)
1002                 goto out_err;
1003
1004 out:
1005         rc = selinux_set_mnt_opts(sb, &opts);
1006
1007 out_err:
1008         security_free_mnt_opts(&opts);
1009         return rc;
1010 }
1011
1012 static void selinux_write_opts(struct seq_file *m,
1013                                struct security_mnt_opts *opts)
1014 {
1015         int i;
1016         char *prefix;
1017
1018         for (i = 0; i < opts->num_mnt_opts; i++) {
1019                 char *has_comma;
1020
1021                 if (opts->mnt_opts[i])
1022                         has_comma = strchr(opts->mnt_opts[i], ',');
1023                 else
1024                         has_comma = NULL;
1025
1026                 switch (opts->mnt_opts_flags[i]) {
1027                 case CONTEXT_MNT:
1028                         prefix = CONTEXT_STR;
1029                         break;
1030                 case FSCONTEXT_MNT:
1031                         prefix = FSCONTEXT_STR;
1032                         break;
1033                 case ROOTCONTEXT_MNT:
1034                         prefix = ROOTCONTEXT_STR;
1035                         break;
1036                 case DEFCONTEXT_MNT:
1037                         prefix = DEFCONTEXT_STR;
1038                         break;
1039                 case SE_SBLABELSUPP:
1040                         seq_putc(m, ',');
1041                         seq_puts(m, LABELSUPP_STR);
1042                         continue;
1043                 default:
1044                         BUG();
1045                 };
1046                 /* we need a comma before each option */
1047                 seq_putc(m, ',');
1048                 seq_puts(m, prefix);
1049                 if (has_comma)
1050                         seq_putc(m, '\"');
1051                 seq_puts(m, opts->mnt_opts[i]);
1052                 if (has_comma)
1053                         seq_putc(m, '\"');
1054         }
1055 }
1056
1057 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1058 {
1059         struct security_mnt_opts opts;
1060         int rc;
1061
1062         rc = selinux_get_mnt_opts(sb, &opts);
1063         if (rc) {
1064                 /* before policy load we may get EINVAL, don't show anything */
1065                 if (rc == -EINVAL)
1066                         rc = 0;
1067                 return rc;
1068         }
1069
1070         selinux_write_opts(m, &opts);
1071
1072         security_free_mnt_opts(&opts);
1073
1074         return rc;
1075 }
1076
1077 static inline u16 inode_mode_to_security_class(umode_t mode)
1078 {
1079         switch (mode & S_IFMT) {
1080         case S_IFSOCK:
1081                 return SECCLASS_SOCK_FILE;
1082         case S_IFLNK:
1083                 return SECCLASS_LNK_FILE;
1084         case S_IFREG:
1085                 return SECCLASS_FILE;
1086         case S_IFBLK:
1087                 return SECCLASS_BLK_FILE;
1088         case S_IFDIR:
1089                 return SECCLASS_DIR;
1090         case S_IFCHR:
1091                 return SECCLASS_CHR_FILE;
1092         case S_IFIFO:
1093                 return SECCLASS_FIFO_FILE;
1094
1095         }
1096
1097         return SECCLASS_FILE;
1098 }
1099
1100 static inline int default_protocol_stream(int protocol)
1101 {
1102         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1103 }
1104
1105 static inline int default_protocol_dgram(int protocol)
1106 {
1107         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1108 }
1109
1110 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1111 {
1112         switch (family) {
1113         case PF_UNIX:
1114                 switch (type) {
1115                 case SOCK_STREAM:
1116                 case SOCK_SEQPACKET:
1117                         return SECCLASS_UNIX_STREAM_SOCKET;
1118                 case SOCK_DGRAM:
1119                         return SECCLASS_UNIX_DGRAM_SOCKET;
1120                 }
1121                 break;
1122         case PF_INET:
1123         case PF_INET6:
1124                 switch (type) {
1125                 case SOCK_STREAM:
1126                         if (default_protocol_stream(protocol))
1127                                 return SECCLASS_TCP_SOCKET;
1128                         else
1129                                 return SECCLASS_RAWIP_SOCKET;
1130                 case SOCK_DGRAM:
1131                         if (default_protocol_dgram(protocol))
1132                                 return SECCLASS_UDP_SOCKET;
1133                         else
1134                                 return SECCLASS_RAWIP_SOCKET;
1135                 case SOCK_DCCP:
1136                         return SECCLASS_DCCP_SOCKET;
1137                 default:
1138                         return SECCLASS_RAWIP_SOCKET;
1139                 }
1140                 break;
1141         case PF_NETLINK:
1142                 switch (protocol) {
1143                 case NETLINK_ROUTE:
1144                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1145                 case NETLINK_FIREWALL:
1146                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1147                 case NETLINK_INET_DIAG:
1148                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1149                 case NETLINK_NFLOG:
1150                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1151                 case NETLINK_XFRM:
1152                         return SECCLASS_NETLINK_XFRM_SOCKET;
1153                 case NETLINK_SELINUX:
1154                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1155                 case NETLINK_AUDIT:
1156                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1157                 case NETLINK_IP6_FW:
1158                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1159                 case NETLINK_DNRTMSG:
1160                         return SECCLASS_NETLINK_DNRT_SOCKET;
1161                 case NETLINK_KOBJECT_UEVENT:
1162                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1163                 default:
1164                         return SECCLASS_NETLINK_SOCKET;
1165                 }
1166         case PF_PACKET:
1167                 return SECCLASS_PACKET_SOCKET;
1168         case PF_KEY:
1169                 return SECCLASS_KEY_SOCKET;
1170         case PF_APPLETALK:
1171                 return SECCLASS_APPLETALK_SOCKET;
1172         }
1173
1174         return SECCLASS_SOCKET;
1175 }
1176
1177 #ifdef CONFIG_PROC_FS
1178 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1179                                 u16 tclass,
1180                                 u32 *sid)
1181 {
1182         int buflen, rc;
1183         char *buffer, *path, *end;
1184
1185         buffer = (char *)__get_free_page(GFP_KERNEL);
1186         if (!buffer)
1187                 return -ENOMEM;
1188
1189         buflen = PAGE_SIZE;
1190         end = buffer+buflen;
1191         *--end = '\0';
1192         buflen--;
1193         path = end-1;
1194         *path = '/';
1195         while (de && de != de->parent) {
1196                 buflen -= de->namelen + 1;
1197                 if (buflen < 0)
1198                         break;
1199                 end -= de->namelen;
1200                 memcpy(end, de->name, de->namelen);
1201                 *--end = '/';
1202                 path = end;
1203                 de = de->parent;
1204         }
1205         rc = security_genfs_sid("proc", path, tclass, sid);
1206         free_page((unsigned long)buffer);
1207         return rc;
1208 }
1209 #else
1210 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1211                                 u16 tclass,
1212                                 u32 *sid)
1213 {
1214         return -EINVAL;
1215 }
1216 #endif
1217
1218 /* The inode's security attributes must be initialized before first use. */
1219 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1220 {
1221         struct superblock_security_struct *sbsec = NULL;
1222         struct inode_security_struct *isec = inode->i_security;
1223         u32 sid;
1224         struct dentry *dentry;
1225 #define INITCONTEXTLEN 255
1226         char *context = NULL;
1227         unsigned len = 0;
1228         int rc = 0;
1229
1230         if (isec->initialized)
1231                 goto out;
1232
1233         mutex_lock(&isec->lock);
1234         if (isec->initialized)
1235                 goto out_unlock;
1236
1237         sbsec = inode->i_sb->s_security;
1238         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1239                 /* Defer initialization until selinux_complete_init,
1240                    after the initial policy is loaded and the security
1241                    server is ready to handle calls. */
1242                 spin_lock(&sbsec->isec_lock);
1243                 if (list_empty(&isec->list))
1244                         list_add(&isec->list, &sbsec->isec_head);
1245                 spin_unlock(&sbsec->isec_lock);
1246                 goto out_unlock;
1247         }
1248
1249         switch (sbsec->behavior) {
1250         case SECURITY_FS_USE_XATTR:
1251                 if (!inode->i_op->getxattr) {
1252                         isec->sid = sbsec->def_sid;
1253                         break;
1254                 }
1255
1256                 /* Need a dentry, since the xattr API requires one.
1257                    Life would be simpler if we could just pass the inode. */
1258                 if (opt_dentry) {
1259                         /* Called from d_instantiate or d_splice_alias. */
1260                         dentry = dget(opt_dentry);
1261                 } else {
1262                         /* Called from selinux_complete_init, try to find a dentry. */
1263                         dentry = d_find_alias(inode);
1264                 }
1265                 if (!dentry) {
1266                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1267                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1268                                inode->i_ino);
1269                         goto out_unlock;
1270                 }
1271
1272                 len = INITCONTEXTLEN;
1273                 context = kmalloc(len, GFP_NOFS);
1274                 if (!context) {
1275                         rc = -ENOMEM;
1276                         dput(dentry);
1277                         goto out_unlock;
1278                 }
1279                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1280                                            context, len);
1281                 if (rc == -ERANGE) {
1282                         /* Need a larger buffer.  Query for the right size. */
1283                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1284                                                    NULL, 0);
1285                         if (rc < 0) {
1286                                 dput(dentry);
1287                                 goto out_unlock;
1288                         }
1289                         kfree(context);
1290                         len = rc;
1291                         context = kmalloc(len, GFP_NOFS);
1292                         if (!context) {
1293                                 rc = -ENOMEM;
1294                                 dput(dentry);
1295                                 goto out_unlock;
1296                         }
1297                         rc = inode->i_op->getxattr(dentry,
1298                                                    XATTR_NAME_SELINUX,
1299                                                    context, len);
1300                 }
1301                 dput(dentry);
1302                 if (rc < 0) {
1303                         if (rc != -ENODATA) {
1304                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1305                                        "%d for dev=%s ino=%ld\n", __func__,
1306                                        -rc, inode->i_sb->s_id, inode->i_ino);
1307                                 kfree(context);
1308                                 goto out_unlock;
1309                         }
1310                         /* Map ENODATA to the default file SID */
1311                         sid = sbsec->def_sid;
1312                         rc = 0;
1313                 } else {
1314                         rc = security_context_to_sid_default(context, rc, &sid,
1315                                                              sbsec->def_sid,
1316                                                              GFP_NOFS);
1317                         if (rc) {
1318                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1319                                        "returned %d for dev=%s ino=%ld\n",
1320                                        __func__, context, -rc,
1321                                        inode->i_sb->s_id, inode->i_ino);
1322                                 kfree(context);
1323                                 /* Leave with the unlabeled SID */
1324                                 rc = 0;
1325                                 break;
1326                         }
1327                 }
1328                 kfree(context);
1329                 isec->sid = sid;
1330                 break;
1331         case SECURITY_FS_USE_TASK:
1332                 isec->sid = isec->task_sid;
1333                 break;
1334         case SECURITY_FS_USE_TRANS:
1335                 /* Default to the fs SID. */
1336                 isec->sid = sbsec->sid;
1337
1338                 /* Try to obtain a transition SID. */
1339                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1340                 rc = security_transition_sid(isec->task_sid,
1341                                              sbsec->sid,
1342                                              isec->sclass,
1343                                              &sid);
1344                 if (rc)
1345                         goto out_unlock;
1346                 isec->sid = sid;
1347                 break;
1348         case SECURITY_FS_USE_MNTPOINT:
1349                 isec->sid = sbsec->mntpoint_sid;
1350                 break;
1351         default:
1352                 /* Default to the fs superblock SID. */
1353                 isec->sid = sbsec->sid;
1354
1355                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1356                         struct proc_inode *proci = PROC_I(inode);
1357                         if (proci->pde) {
1358                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1359                                 rc = selinux_proc_get_sid(proci->pde,
1360                                                           isec->sclass,
1361                                                           &sid);
1362                                 if (rc)
1363                                         goto out_unlock;
1364                                 isec->sid = sid;
1365                         }
1366                 }
1367                 break;
1368         }
1369
1370         isec->initialized = 1;
1371
1372 out_unlock:
1373         mutex_unlock(&isec->lock);
1374 out:
1375         if (isec->sclass == SECCLASS_FILE)
1376                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1377         return rc;
1378 }
1379
1380 /* Convert a Linux signal to an access vector. */
1381 static inline u32 signal_to_av(int sig)
1382 {
1383         u32 perm = 0;
1384
1385         switch (sig) {
1386         case SIGCHLD:
1387                 /* Commonly granted from child to parent. */
1388                 perm = PROCESS__SIGCHLD;
1389                 break;
1390         case SIGKILL:
1391                 /* Cannot be caught or ignored */
1392                 perm = PROCESS__SIGKILL;
1393                 break;
1394         case SIGSTOP:
1395                 /* Cannot be caught or ignored */
1396                 perm = PROCESS__SIGSTOP;
1397                 break;
1398         default:
1399                 /* All other signals. */
1400                 perm = PROCESS__SIGNAL;
1401                 break;
1402         }
1403
1404         return perm;
1405 }
1406
1407 /*
1408  * Check permission between a pair of credentials
1409  * fork check, ptrace check, etc.
1410  */
1411 static int cred_has_perm(const struct cred *actor,
1412                          const struct cred *target,
1413                          u32 perms)
1414 {
1415         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1416
1417         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1418 }
1419
1420 /*
1421  * Check permission between a pair of tasks, e.g. signal checks,
1422  * fork check, ptrace check, etc.
1423  * tsk1 is the actor and tsk2 is the target
1424  * - this uses the default subjective creds of tsk1
1425  */
1426 static int task_has_perm(const struct task_struct *tsk1,
1427                          const struct task_struct *tsk2,
1428                          u32 perms)
1429 {
1430         const struct task_security_struct *__tsec1, *__tsec2;
1431         u32 sid1, sid2;
1432
1433         rcu_read_lock();
1434         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1435         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1436         rcu_read_unlock();
1437         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1438 }
1439
1440 /*
1441  * Check permission between current and another task, e.g. signal checks,
1442  * fork check, ptrace check, etc.
1443  * current is the actor and tsk2 is the target
1444  * - this uses current's subjective creds
1445  */
1446 static int current_has_perm(const struct task_struct *tsk,
1447                             u32 perms)
1448 {
1449         u32 sid, tsid;
1450
1451         sid = current_sid();
1452         tsid = task_sid(tsk);
1453         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1454 }
1455
1456 #if CAP_LAST_CAP > 63
1457 #error Fix SELinux to handle capabilities > 63.
1458 #endif
1459
1460 /* Check whether a task is allowed to use a capability. */
1461 static int task_has_capability(struct task_struct *tsk,
1462                                const struct cred *cred,
1463                                int cap, int audit)
1464 {
1465         struct avc_audit_data ad;
1466         struct av_decision avd;
1467         u16 sclass;
1468         u32 sid = cred_sid(cred);
1469         u32 av = CAP_TO_MASK(cap);
1470         int rc;
1471
1472         AVC_AUDIT_DATA_INIT(&ad, CAP);
1473         ad.tsk = tsk;
1474         ad.u.cap = cap;
1475
1476         switch (CAP_TO_INDEX(cap)) {
1477         case 0:
1478                 sclass = SECCLASS_CAPABILITY;
1479                 break;
1480         case 1:
1481                 sclass = SECCLASS_CAPABILITY2;
1482                 break;
1483         default:
1484                 printk(KERN_ERR
1485                        "SELinux:  out of range capability %d\n", cap);
1486                 BUG();
1487         }
1488
1489         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1490         if (audit == SECURITY_CAP_AUDIT)
1491                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1492         return rc;
1493 }
1494
1495 /* Check whether a task is allowed to use a system operation. */
1496 static int task_has_system(struct task_struct *tsk,
1497                            u32 perms)
1498 {
1499         u32 sid = task_sid(tsk);
1500
1501         return avc_has_perm(sid, SECINITSID_KERNEL,
1502                             SECCLASS_SYSTEM, perms, NULL);
1503 }
1504
1505 /* Check whether a task has a particular permission to an inode.
1506    The 'adp' parameter is optional and allows other audit
1507    data to be passed (e.g. the dentry). */
1508 static int inode_has_perm(const struct cred *cred,
1509                           struct inode *inode,
1510                           u32 perms,
1511                           struct avc_audit_data *adp)
1512 {
1513         struct inode_security_struct *isec;
1514         struct avc_audit_data ad;
1515         u32 sid;
1516
1517         if (unlikely(IS_PRIVATE(inode)))
1518                 return 0;
1519
1520         sid = cred_sid(cred);
1521         isec = inode->i_security;
1522
1523         if (!adp) {
1524                 adp = &ad;
1525                 AVC_AUDIT_DATA_INIT(&ad, FS);
1526                 ad.u.fs.inode = inode;
1527         }
1528
1529         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1530 }
1531
1532 /* Same as inode_has_perm, but pass explicit audit data containing
1533    the dentry to help the auditing code to more easily generate the
1534    pathname if needed. */
1535 static inline int dentry_has_perm(const struct cred *cred,
1536                                   struct vfsmount *mnt,
1537                                   struct dentry *dentry,
1538                                   u32 av)
1539 {
1540         struct inode *inode = dentry->d_inode;
1541         struct avc_audit_data ad;
1542
1543         AVC_AUDIT_DATA_INIT(&ad, FS);
1544         ad.u.fs.path.mnt = mnt;
1545         ad.u.fs.path.dentry = dentry;
1546         return inode_has_perm(cred, inode, av, &ad);
1547 }
1548
1549 /* Check whether a task can use an open file descriptor to
1550    access an inode in a given way.  Check access to the
1551    descriptor itself, and then use dentry_has_perm to
1552    check a particular permission to the file.
1553    Access to the descriptor is implicitly granted if it
1554    has the same SID as the process.  If av is zero, then
1555    access to the file is not checked, e.g. for cases
1556    where only the descriptor is affected like seek. */
1557 static int file_has_perm(const struct cred *cred,
1558                          struct file *file,
1559                          u32 av)
1560 {
1561         struct file_security_struct *fsec = file->f_security;
1562         struct inode *inode = file->f_path.dentry->d_inode;
1563         struct avc_audit_data ad;
1564         u32 sid = cred_sid(cred);
1565         int rc;
1566
1567         AVC_AUDIT_DATA_INIT(&ad, FS);
1568         ad.u.fs.path = file->f_path;
1569
1570         if (sid != fsec->sid) {
1571                 rc = avc_has_perm(sid, fsec->sid,
1572                                   SECCLASS_FD,
1573                                   FD__USE,
1574                                   &ad);
1575                 if (rc)
1576                         goto out;
1577         }
1578
1579         /* av is zero if only checking access to the descriptor. */
1580         rc = 0;
1581         if (av)
1582                 rc = inode_has_perm(cred, inode, av, &ad);
1583
1584 out:
1585         return rc;
1586 }
1587
1588 /* Check whether a task can create a file. */
1589 static int may_create(struct inode *dir,
1590                       struct dentry *dentry,
1591                       u16 tclass)
1592 {
1593         const struct cred *cred = current_cred();
1594         const struct task_security_struct *tsec = cred->security;
1595         struct inode_security_struct *dsec;
1596         struct superblock_security_struct *sbsec;
1597         u32 sid, newsid;
1598         struct avc_audit_data ad;
1599         int rc;
1600
1601         dsec = dir->i_security;
1602         sbsec = dir->i_sb->s_security;
1603
1604         sid = tsec->sid;
1605         newsid = tsec->create_sid;
1606
1607         AVC_AUDIT_DATA_INIT(&ad, FS);
1608         ad.u.fs.path.dentry = dentry;
1609
1610         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1611                           DIR__ADD_NAME | DIR__SEARCH,
1612                           &ad);
1613         if (rc)
1614                 return rc;
1615
1616         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1617                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1618                 if (rc)
1619                         return rc;
1620         }
1621
1622         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1623         if (rc)
1624                 return rc;
1625
1626         return avc_has_perm(newsid, sbsec->sid,
1627                             SECCLASS_FILESYSTEM,
1628                             FILESYSTEM__ASSOCIATE, &ad);
1629 }
1630
1631 /* Check whether a task can create a key. */
1632 static int may_create_key(u32 ksid,
1633                           struct task_struct *ctx)
1634 {
1635         u32 sid = task_sid(ctx);
1636
1637         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1638 }
1639
1640 #define MAY_LINK        0
1641 #define MAY_UNLINK      1
1642 #define MAY_RMDIR       2
1643
1644 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1645 static int may_link(struct inode *dir,
1646                     struct dentry *dentry,
1647                     int kind)
1648
1649 {
1650         struct inode_security_struct *dsec, *isec;
1651         struct avc_audit_data ad;
1652         u32 sid = current_sid();
1653         u32 av;
1654         int rc;
1655
1656         dsec = dir->i_security;
1657         isec = dentry->d_inode->i_security;
1658
1659         AVC_AUDIT_DATA_INIT(&ad, FS);
1660         ad.u.fs.path.dentry = dentry;
1661
1662         av = DIR__SEARCH;
1663         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1664         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1665         if (rc)
1666                 return rc;
1667
1668         switch (kind) {
1669         case MAY_LINK:
1670                 av = FILE__LINK;
1671                 break;
1672         case MAY_UNLINK:
1673                 av = FILE__UNLINK;
1674                 break;
1675         case MAY_RMDIR:
1676                 av = DIR__RMDIR;
1677                 break;
1678         default:
1679                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1680                         __func__, kind);
1681                 return 0;
1682         }
1683
1684         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1685         return rc;
1686 }
1687
1688 static inline int may_rename(struct inode *old_dir,
1689                              struct dentry *old_dentry,
1690                              struct inode *new_dir,
1691                              struct dentry *new_dentry)
1692 {
1693         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1694         struct avc_audit_data ad;
1695         u32 sid = current_sid();
1696         u32 av;
1697         int old_is_dir, new_is_dir;
1698         int rc;
1699
1700         old_dsec = old_dir->i_security;
1701         old_isec = old_dentry->d_inode->i_security;
1702         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1703         new_dsec = new_dir->i_security;
1704
1705         AVC_AUDIT_DATA_INIT(&ad, FS);
1706
1707         ad.u.fs.path.dentry = old_dentry;
1708         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1709                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1710         if (rc)
1711                 return rc;
1712         rc = avc_has_perm(sid, old_isec->sid,
1713                           old_isec->sclass, FILE__RENAME, &ad);
1714         if (rc)
1715                 return rc;
1716         if (old_is_dir && new_dir != old_dir) {
1717                 rc = avc_has_perm(sid, old_isec->sid,
1718                                   old_isec->sclass, DIR__REPARENT, &ad);
1719                 if (rc)
1720                         return rc;
1721         }
1722
1723         ad.u.fs.path.dentry = new_dentry;
1724         av = DIR__ADD_NAME | DIR__SEARCH;
1725         if (new_dentry->d_inode)
1726                 av |= DIR__REMOVE_NAME;
1727         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1728         if (rc)
1729                 return rc;
1730         if (new_dentry->d_inode) {
1731                 new_isec = new_dentry->d_inode->i_security;
1732                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1733                 rc = avc_has_perm(sid, new_isec->sid,
1734                                   new_isec->sclass,
1735                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1736                 if (rc)
1737                         return rc;
1738         }
1739
1740         return 0;
1741 }
1742
1743 /* Check whether a task can perform a filesystem operation. */
1744 static int superblock_has_perm(const struct cred *cred,
1745                                struct super_block *sb,
1746                                u32 perms,
1747                                struct avc_audit_data *ad)
1748 {
1749         struct superblock_security_struct *sbsec;
1750         u32 sid = cred_sid(cred);
1751
1752         sbsec = sb->s_security;
1753         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1754 }
1755
1756 /* Convert a Linux mode and permission mask to an access vector. */
1757 static inline u32 file_mask_to_av(int mode, int mask)
1758 {
1759         u32 av = 0;
1760
1761         if ((mode & S_IFMT) != S_IFDIR) {
1762                 if (mask & MAY_EXEC)
1763                         av |= FILE__EXECUTE;
1764                 if (mask & MAY_READ)
1765                         av |= FILE__READ;
1766
1767                 if (mask & MAY_APPEND)
1768                         av |= FILE__APPEND;
1769                 else if (mask & MAY_WRITE)
1770                         av |= FILE__WRITE;
1771
1772         } else {
1773                 if (mask & MAY_EXEC)
1774                         av |= DIR__SEARCH;
1775                 if (mask & MAY_WRITE)
1776                         av |= DIR__WRITE;
1777                 if (mask & MAY_READ)
1778                         av |= DIR__READ;
1779         }
1780
1781         return av;
1782 }
1783
1784 /* Convert a Linux file to an access vector. */
1785 static inline u32 file_to_av(struct file *file)
1786 {
1787         u32 av = 0;
1788
1789         if (file->f_mode & FMODE_READ)
1790                 av |= FILE__READ;
1791         if (file->f_mode & FMODE_WRITE) {
1792                 if (file->f_flags & O_APPEND)
1793                         av |= FILE__APPEND;
1794                 else
1795                         av |= FILE__WRITE;
1796         }
1797         if (!av) {
1798                 /*
1799                  * Special file opened with flags 3 for ioctl-only use.
1800                  */
1801                 av = FILE__IOCTL;
1802         }
1803
1804         return av;
1805 }
1806
1807 /*
1808  * Convert a file to an access vector and include the correct open
1809  * open permission.
1810  */
1811 static inline u32 open_file_to_av(struct file *file)
1812 {
1813         u32 av = file_to_av(file);
1814
1815         if (selinux_policycap_openperm) {
1816                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1817                 /*
1818                  * lnk files and socks do not really have an 'open'
1819                  */
1820                 if (S_ISREG(mode))
1821                         av |= FILE__OPEN;
1822                 else if (S_ISCHR(mode))
1823                         av |= CHR_FILE__OPEN;
1824                 else if (S_ISBLK(mode))
1825                         av |= BLK_FILE__OPEN;
1826                 else if (S_ISFIFO(mode))
1827                         av |= FIFO_FILE__OPEN;
1828                 else if (S_ISDIR(mode))
1829                         av |= DIR__OPEN;
1830                 else
1831                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1832                                 "unknown mode:%o\n", __func__, mode);
1833         }
1834         return av;
1835 }
1836
1837 /* Hook functions begin here. */
1838
1839 static int selinux_ptrace_may_access(struct task_struct *child,
1840                                      unsigned int mode)
1841 {
1842         int rc;
1843
1844         rc = secondary_ops->ptrace_may_access(child, mode);
1845         if (rc)
1846                 return rc;
1847
1848         if (mode == PTRACE_MODE_READ) {
1849                 u32 sid = current_sid();
1850                 u32 csid = task_sid(child);
1851                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1852         }
1853
1854         return current_has_perm(child, PROCESS__PTRACE);
1855 }
1856
1857 static int selinux_ptrace_traceme(struct task_struct *parent)
1858 {
1859         int rc;
1860
1861         rc = secondary_ops->ptrace_traceme(parent);
1862         if (rc)
1863                 return rc;
1864
1865         return task_has_perm(parent, current, PROCESS__PTRACE);
1866 }
1867
1868 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1869                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1870 {
1871         int error;
1872
1873         error = current_has_perm(target, PROCESS__GETCAP);
1874         if (error)
1875                 return error;
1876
1877         return secondary_ops->capget(target, effective, inheritable, permitted);
1878 }
1879
1880 static int selinux_capset(struct cred *new, const struct cred *old,
1881                           const kernel_cap_t *effective,
1882                           const kernel_cap_t *inheritable,
1883                           const kernel_cap_t *permitted)
1884 {
1885         int error;
1886
1887         error = secondary_ops->capset(new, old,
1888                                       effective, inheritable, permitted);
1889         if (error)
1890                 return error;
1891
1892         return cred_has_perm(old, new, PROCESS__SETCAP);
1893 }
1894
1895 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1896                            int cap, int audit)
1897 {
1898         int rc;
1899
1900         rc = secondary_ops->capable(tsk, cred, cap, audit);
1901         if (rc)
1902                 return rc;
1903
1904         return task_has_capability(tsk, cred, cap, audit);
1905 }
1906
1907 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1908 {
1909         int buflen, rc;
1910         char *buffer, *path, *end;
1911
1912         rc = -ENOMEM;
1913         buffer = (char *)__get_free_page(GFP_KERNEL);
1914         if (!buffer)
1915                 goto out;
1916
1917         buflen = PAGE_SIZE;
1918         end = buffer+buflen;
1919         *--end = '\0';
1920         buflen--;
1921         path = end-1;
1922         *path = '/';
1923         while (table) {
1924                 const char *name = table->procname;
1925                 size_t namelen = strlen(name);
1926                 buflen -= namelen + 1;
1927                 if (buflen < 0)
1928                         goto out_free;
1929                 end -= namelen;
1930                 memcpy(end, name, namelen);
1931                 *--end = '/';
1932                 path = end;
1933                 table = table->parent;
1934         }
1935         buflen -= 4;
1936         if (buflen < 0)
1937                 goto out_free;
1938         end -= 4;
1939         memcpy(end, "/sys", 4);
1940         path = end;
1941         rc = security_genfs_sid("proc", path, tclass, sid);
1942 out_free:
1943         free_page((unsigned long)buffer);
1944 out:
1945         return rc;
1946 }
1947
1948 static int selinux_sysctl(ctl_table *table, int op)
1949 {
1950         int error = 0;
1951         u32 av;
1952         u32 tsid, sid;
1953         int rc;
1954
1955         rc = secondary_ops->sysctl(table, op);
1956         if (rc)
1957                 return rc;
1958
1959         sid = current_sid();
1960
1961         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1962                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1963         if (rc) {
1964                 /* Default to the well-defined sysctl SID. */
1965                 tsid = SECINITSID_SYSCTL;
1966         }
1967
1968         /* The op values are "defined" in sysctl.c, thereby creating
1969          * a bad coupling between this module and sysctl.c */
1970         if (op == 001) {
1971                 error = avc_has_perm(sid, tsid,
1972                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1973         } else {
1974                 av = 0;
1975                 if (op & 004)
1976                         av |= FILE__READ;
1977                 if (op & 002)
1978                         av |= FILE__WRITE;
1979                 if (av)
1980                         error = avc_has_perm(sid, tsid,
1981                                              SECCLASS_FILE, av, NULL);
1982         }
1983
1984         return error;
1985 }
1986
1987 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1988 {
1989         const struct cred *cred = current_cred();
1990         int rc = 0;
1991
1992         if (!sb)
1993                 return 0;
1994
1995         switch (cmds) {
1996         case Q_SYNC:
1997         case Q_QUOTAON:
1998         case Q_QUOTAOFF:
1999         case Q_SETINFO:
2000         case Q_SETQUOTA:
2001                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2002                 break;
2003         case Q_GETFMT:
2004         case Q_GETINFO:
2005         case Q_GETQUOTA:
2006                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2007                 break;
2008         default:
2009                 rc = 0;  /* let the kernel handle invalid cmds */
2010                 break;
2011         }
2012         return rc;
2013 }
2014
2015 static int selinux_quota_on(struct dentry *dentry)
2016 {
2017         const struct cred *cred = current_cred();
2018
2019         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2020 }
2021
2022 static int selinux_syslog(int type)
2023 {
2024         int rc;
2025
2026         rc = secondary_ops->syslog(type);
2027         if (rc)
2028                 return rc;
2029
2030         switch (type) {
2031         case 3:         /* Read last kernel messages */
2032         case 10:        /* Return size of the log buffer */
2033                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2034                 break;
2035         case 6:         /* Disable logging to console */
2036         case 7:         /* Enable logging to console */
2037         case 8:         /* Set level of messages printed to console */
2038                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2039                 break;
2040         case 0:         /* Close log */
2041         case 1:         /* Open log */
2042         case 2:         /* Read from log */
2043         case 4:         /* Read/clear last kernel messages */
2044         case 5:         /* Clear ring buffer */
2045         default:
2046                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2047                 break;
2048         }
2049         return rc;
2050 }
2051
2052 /*
2053  * Check that a process has enough memory to allocate a new virtual
2054  * mapping. 0 means there is enough memory for the allocation to
2055  * succeed and -ENOMEM implies there is not.
2056  *
2057  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
2058  * if the capability is granted, but __vm_enough_memory requires 1 if
2059  * the capability is granted.
2060  *
2061  * Do not audit the selinux permission check, as this is applied to all
2062  * processes that allocate mappings.
2063  */
2064 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2065 {
2066         int rc, cap_sys_admin = 0;
2067
2068         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2069                              SECURITY_CAP_NOAUDIT);
2070         if (rc == 0)
2071                 cap_sys_admin = 1;
2072
2073         return __vm_enough_memory(mm, pages, cap_sys_admin);
2074 }
2075
2076 /* binprm security operations */
2077
2078 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2079 {
2080         const struct task_security_struct *old_tsec;
2081         struct task_security_struct *new_tsec;
2082         struct inode_security_struct *isec;
2083         struct avc_audit_data ad;
2084         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2085         int rc;
2086
2087         rc = secondary_ops->bprm_set_creds(bprm);
2088         if (rc)
2089                 return rc;
2090
2091         /* SELinux context only depends on initial program or script and not
2092          * the script interpreter */
2093         if (bprm->cred_prepared)
2094                 return 0;
2095
2096         old_tsec = current_security();
2097         new_tsec = bprm->cred->security;
2098         isec = inode->i_security;
2099
2100         /* Default to the current task SID. */
2101         new_tsec->sid = old_tsec->sid;
2102         new_tsec->osid = old_tsec->sid;
2103
2104         /* Reset fs, key, and sock SIDs on execve. */
2105         new_tsec->create_sid = 0;
2106         new_tsec->keycreate_sid = 0;
2107         new_tsec->sockcreate_sid = 0;
2108
2109         if (old_tsec->exec_sid) {
2110                 new_tsec->sid = old_tsec->exec_sid;
2111                 /* Reset exec SID on execve. */
2112                 new_tsec->exec_sid = 0;
2113         } else {
2114                 /* Check for a default transition on this program. */
2115                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2116                                              SECCLASS_PROCESS, &new_tsec->sid);
2117                 if (rc)
2118                         return rc;
2119         }
2120
2121         AVC_AUDIT_DATA_INIT(&ad, FS);
2122         ad.u.fs.path = bprm->file->f_path;
2123
2124         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2125                 new_tsec->sid = old_tsec->sid;
2126
2127         if (new_tsec->sid == old_tsec->sid) {
2128                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2129                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2130                 if (rc)
2131                         return rc;
2132         } else {
2133                 /* Check permissions for the transition. */
2134                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2135                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2136                 if (rc)
2137                         return rc;
2138
2139                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2140                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2141                 if (rc)
2142                         return rc;
2143
2144                 /* Check for shared state */
2145                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2146                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2147                                           SECCLASS_PROCESS, PROCESS__SHARE,
2148                                           NULL);
2149                         if (rc)
2150                                 return -EPERM;
2151                 }
2152
2153                 /* Make sure that anyone attempting to ptrace over a task that
2154                  * changes its SID has the appropriate permit */
2155                 if (bprm->unsafe &
2156                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2157                         struct task_struct *tracer;
2158                         struct task_security_struct *sec;
2159                         u32 ptsid = 0;
2160
2161                         rcu_read_lock();
2162                         tracer = tracehook_tracer_task(current);
2163                         if (likely(tracer != NULL)) {
2164                                 sec = __task_cred(tracer)->security;
2165                                 ptsid = sec->sid;
2166                         }
2167                         rcu_read_unlock();
2168
2169                         if (ptsid != 0) {
2170                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2171                                                   SECCLASS_PROCESS,
2172                                                   PROCESS__PTRACE, NULL);
2173                                 if (rc)
2174                                         return -EPERM;
2175                         }
2176                 }
2177
2178                 /* Clear any possibly unsafe personality bits on exec: */
2179                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2180         }
2181
2182         return 0;
2183 }
2184
2185 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2186 {
2187         const struct cred *cred = current_cred();
2188         const struct task_security_struct *tsec = cred->security;
2189         u32 sid, osid;
2190         int atsecure = 0;
2191
2192         sid = tsec->sid;
2193         osid = tsec->osid;
2194
2195         if (osid != sid) {
2196                 /* Enable secure mode for SIDs transitions unless
2197                    the noatsecure permission is granted between
2198                    the two SIDs, i.e. ahp returns 0. */
2199                 atsecure = avc_has_perm(osid, sid,
2200                                         SECCLASS_PROCESS,
2201                                         PROCESS__NOATSECURE, NULL);
2202         }
2203
2204         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2205 }
2206
2207 extern struct vfsmount *selinuxfs_mount;
2208 extern struct dentry *selinux_null;
2209
2210 /* Derived from fs/exec.c:flush_old_files. */
2211 static inline void flush_unauthorized_files(const struct cred *cred,
2212                                             struct files_struct *files)
2213 {
2214         struct avc_audit_data ad;
2215         struct file *file, *devnull = NULL;
2216         struct tty_struct *tty;
2217         struct fdtable *fdt;
2218         long j = -1;
2219         int drop_tty = 0;
2220
2221         tty = get_current_tty();
2222         if (tty) {
2223                 file_list_lock();
2224                 if (!list_empty(&tty->tty_files)) {
2225                         struct inode *inode;
2226
2227                         /* Revalidate access to controlling tty.
2228                            Use inode_has_perm on the tty inode directly rather
2229                            than using file_has_perm, as this particular open
2230                            file may belong to another process and we are only
2231                            interested in the inode-based check here. */
2232                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2233                         inode = file->f_path.dentry->d_inode;
2234                         if (inode_has_perm(cred, inode,
2235                                            FILE__READ | FILE__WRITE, NULL)) {
2236                                 drop_tty = 1;
2237                         }
2238                 }
2239                 file_list_unlock();
2240                 tty_kref_put(tty);
2241         }
2242         /* Reset controlling tty. */
2243         if (drop_tty)
2244                 no_tty();
2245
2246         /* Revalidate access to inherited open files. */
2247
2248         AVC_AUDIT_DATA_INIT(&ad, FS);
2249
2250         spin_lock(&files->file_lock);
2251         for (;;) {
2252                 unsigned long set, i;
2253                 int fd;
2254
2255                 j++;
2256                 i = j * __NFDBITS;
2257                 fdt = files_fdtable(files);
2258                 if (i >= fdt->max_fds)
2259                         break;
2260                 set = fdt->open_fds->fds_bits[j];
2261                 if (!set)
2262                         continue;
2263                 spin_unlock(&files->file_lock);
2264                 for ( ; set ; i++, set >>= 1) {
2265                         if (set & 1) {
2266                                 file = fget(i);
2267                                 if (!file)
2268                                         continue;
2269                                 if (file_has_perm(cred,
2270                                                   file,
2271                                                   file_to_av(file))) {
2272                                         sys_close(i);
2273                                         fd = get_unused_fd();
2274                                         if (fd != i) {
2275                                                 if (fd >= 0)
2276                                                         put_unused_fd(fd);
2277                                                 fput(file);
2278                                                 continue;
2279                                         }
2280                                         if (devnull) {
2281                                                 get_file(devnull);
2282                                         } else {
2283                                                 devnull = dentry_open(
2284                                                         dget(selinux_null),
2285                                                         mntget(selinuxfs_mount),
2286                                                         O_RDWR, cred);
2287                                                 if (IS_ERR(devnull)) {
2288                                                         devnull = NULL;
2289                                                         put_unused_fd(fd);
2290                                                         fput(file);
2291                                                         continue;
2292                                                 }
2293                                         }
2294                                         fd_install(fd, devnull);
2295                                 }
2296                                 fput(file);
2297                         }
2298                 }
2299                 spin_lock(&files->file_lock);
2300
2301         }
2302         spin_unlock(&files->file_lock);
2303 }
2304
2305 /*
2306  * Prepare a process for imminent new credential changes due to exec
2307  */
2308 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2309 {
2310         struct task_security_struct *new_tsec;
2311         struct rlimit *rlim, *initrlim;
2312         int rc, i;
2313
2314         new_tsec = bprm->cred->security;
2315         if (new_tsec->sid == new_tsec->osid)
2316                 return;
2317
2318         /* Close files for which the new task SID is not authorized. */
2319         flush_unauthorized_files(bprm->cred, current->files);
2320
2321         /* Always clear parent death signal on SID transitions. */
2322         current->pdeath_signal = 0;
2323
2324         /* Check whether the new SID can inherit resource limits from the old
2325          * SID.  If not, reset all soft limits to the lower of the current
2326          * task's hard limit and the init task's soft limit.
2327          *
2328          * Note that the setting of hard limits (even to lower them) can be
2329          * controlled by the setrlimit check.  The inclusion of the init task's
2330          * soft limit into the computation is to avoid resetting soft limits
2331          * higher than the default soft limit for cases where the default is
2332          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2333          */
2334         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2335                           PROCESS__RLIMITINH, NULL);
2336         if (rc) {
2337                 for (i = 0; i < RLIM_NLIMITS; i++) {
2338                         rlim = current->signal->rlim + i;
2339                         initrlim = init_task.signal->rlim + i;
2340                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2341                 }
2342                 update_rlimit_cpu(rlim->rlim_cur);
2343         }
2344 }
2345
2346 /*
2347  * Clean up the process immediately after the installation of new credentials
2348  * due to exec
2349  */
2350 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2351 {
2352         const struct task_security_struct *tsec = current_security();
2353         struct itimerval itimer;
2354         struct sighand_struct *psig;
2355         u32 osid, sid;
2356         int rc, i;
2357         unsigned long flags;
2358
2359         osid = tsec->osid;
2360         sid = tsec->sid;
2361
2362         if (sid == osid)
2363                 return;
2364
2365         /* Check whether the new SID can inherit signal state from the old SID.
2366          * If not, clear itimers to avoid subsequent signal generation and
2367          * flush and unblock signals.
2368          *
2369          * This must occur _after_ the task SID has been updated so that any
2370          * kill done after the flush will be checked against the new SID.
2371          */
2372         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2373         if (rc) {
2374                 memset(&itimer, 0, sizeof itimer);
2375                 for (i = 0; i < 3; i++)
2376                         do_setitimer(i, &itimer, NULL);
2377                 flush_signals(current);
2378                 spin_lock_irq(&current->sighand->siglock);
2379                 flush_signal_handlers(current, 1);
2380                 sigemptyset(&current->blocked);
2381                 recalc_sigpending();
2382                 spin_unlock_irq(&current->sighand->siglock);
2383         }
2384
2385         /* Wake up the parent if it is waiting so that it can recheck
2386          * wait permission to the new task SID. */
2387         read_lock_irq(&tasklist_lock);
2388         psig = current->parent->sighand;
2389         spin_lock_irqsave(&psig->siglock, flags);
2390         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2391         spin_unlock_irqrestore(&psig->siglock, flags);
2392         read_unlock_irq(&tasklist_lock);
2393 }
2394
2395 /* superblock security operations */
2396
2397 static int selinux_sb_alloc_security(struct super_block *sb)
2398 {
2399         return superblock_alloc_security(sb);
2400 }
2401
2402 static void selinux_sb_free_security(struct super_block *sb)
2403 {
2404         superblock_free_security(sb);
2405 }
2406
2407 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2408 {
2409         if (plen > olen)
2410                 return 0;
2411
2412         return !memcmp(prefix, option, plen);
2413 }
2414
2415 static inline int selinux_option(char *option, int len)
2416 {
2417         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2418                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2419                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2420                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2421                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2422 }
2423
2424 static inline void take_option(char **to, char *from, int *first, int len)
2425 {
2426         if (!*first) {
2427                 **to = ',';
2428                 *to += 1;
2429         } else
2430                 *first = 0;
2431         memcpy(*to, from, len);
2432         *to += len;
2433 }
2434
2435 static inline void take_selinux_option(char **to, char *from, int *first,
2436                                        int len)
2437 {
2438         int current_size = 0;
2439
2440         if (!*first) {
2441                 **to = '|';
2442                 *to += 1;
2443         } else
2444                 *first = 0;
2445
2446         while (current_size < len) {
2447                 if (*from != '"') {
2448                         **to = *from;
2449                         *to += 1;
2450                 }
2451                 from += 1;
2452                 current_size += 1;
2453         }
2454 }
2455
2456 static int selinux_sb_copy_data(char *orig, char *copy)
2457 {
2458         int fnosec, fsec, rc = 0;
2459         char *in_save, *in_curr, *in_end;
2460         char *sec_curr, *nosec_save, *nosec;
2461         int open_quote = 0;
2462
2463         in_curr = orig;
2464         sec_curr = copy;
2465
2466         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2467         if (!nosec) {
2468                 rc = -ENOMEM;
2469                 goto out;
2470         }
2471
2472         nosec_save = nosec;
2473         fnosec = fsec = 1;
2474         in_save = in_end = orig;
2475
2476         do {
2477                 if (*in_end == '"')
2478                         open_quote = !open_quote;
2479                 if ((*in_end == ',' && open_quote == 0) ||
2480                                 *in_end == '\0') {
2481                         int len = in_end - in_curr;
2482
2483                         if (selinux_option(in_curr, len))
2484                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2485                         else
2486                                 take_option(&nosec, in_curr, &fnosec, len);
2487
2488                         in_curr = in_end + 1;
2489                 }
2490         } while (*in_end++);
2491
2492         strcpy(in_save, nosec_save);
2493         free_page((unsigned long)nosec_save);
2494 out:
2495         return rc;
2496 }
2497
2498 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2499 {
2500         const struct cred *cred = current_cred();
2501         struct avc_audit_data ad;
2502         int rc;
2503
2504         rc = superblock_doinit(sb, data);
2505         if (rc)
2506                 return rc;
2507
2508         /* Allow all mounts performed by the kernel */
2509         if (flags & MS_KERNMOUNT)
2510                 return 0;
2511
2512         AVC_AUDIT_DATA_INIT(&ad, FS);
2513         ad.u.fs.path.dentry = sb->s_root;
2514         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2515 }
2516
2517 static int selinux_sb_statfs(struct dentry *dentry)
2518 {
2519         const struct cred *cred = current_cred();
2520         struct avc_audit_data ad;
2521
2522         AVC_AUDIT_DATA_INIT(&ad, FS);
2523         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2524         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2525 }
2526
2527 static int selinux_mount(char *dev_name,
2528                          struct path *path,
2529                          char *type,
2530                          unsigned long flags,
2531                          void *data)
2532 {
2533         const struct cred *cred = current_cred();
2534
2535         if (flags & MS_REMOUNT)
2536                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2537                                            FILESYSTEM__REMOUNT, NULL);
2538         else
2539                 return dentry_has_perm(cred, path->mnt, path->dentry,
2540                                        FILE__MOUNTON);
2541 }
2542
2543 static int selinux_umount(struct vfsmount *mnt, int flags)
2544 {
2545         const struct cred *cred = current_cred();
2546
2547         return superblock_has_perm(cred, mnt->mnt_sb,
2548                                    FILESYSTEM__UNMOUNT, NULL);
2549 }
2550
2551 /* inode security operations */
2552
2553 static int selinux_inode_alloc_security(struct inode *inode)
2554 {
2555         return inode_alloc_security(inode);
2556 }
2557
2558 static void selinux_inode_free_security(struct inode *inode)
2559 {
2560         inode_free_security(inode);
2561 }
2562
2563 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2564                                        char **name, void **value,
2565                                        size_t *len)
2566 {
2567         const struct cred *cred = current_cred();
2568         const struct task_security_struct *tsec = cred->security;
2569         struct inode_security_struct *dsec;
2570         struct superblock_security_struct *sbsec;
2571         u32 sid, newsid, clen;
2572         int rc;
2573         char *namep = NULL, *context;
2574
2575         dsec = dir->i_security;
2576         sbsec = dir->i_sb->s_security;
2577
2578         sid = tsec->sid;
2579         newsid = tsec->create_sid;
2580
2581         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2582                 rc = security_transition_sid(sid, dsec->sid,
2583                                              inode_mode_to_security_class(inode->i_mode),
2584                                              &newsid);
2585                 if (rc) {
2586                         printk(KERN_WARNING "%s:  "
2587                                "security_transition_sid failed, rc=%d (dev=%s "
2588                                "ino=%ld)\n",
2589                                __func__,
2590                                -rc, inode->i_sb->s_id, inode->i_ino);
2591                         return rc;
2592                 }
2593         }
2594
2595         /* Possibly defer initialization to selinux_complete_init. */
2596         if (sbsec->flags & SE_SBINITIALIZED) {
2597                 struct inode_security_struct *isec = inode->i_security;
2598                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2599                 isec->sid = newsid;
2600                 isec->initialized = 1;
2601         }
2602
2603         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2604                 return -EOPNOTSUPP;
2605
2606         if (name) {
2607                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2608                 if (!namep)
2609                         return -ENOMEM;
2610                 *name = namep;
2611         }
2612
2613         if (value && len) {
2614                 rc = security_sid_to_context_force(newsid, &context, &clen);
2615                 if (rc) {
2616                         kfree(namep);
2617                         return rc;
2618                 }
2619                 *value = context;
2620                 *len = clen;
2621         }
2622
2623         return 0;
2624 }
2625
2626 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2627 {
2628         return may_create(dir, dentry, SECCLASS_FILE);
2629 }
2630
2631 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2632 {
2633         return may_link(dir, old_dentry, MAY_LINK);
2634 }
2635
2636 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2637 {
2638         return may_link(dir, dentry, MAY_UNLINK);
2639 }
2640
2641 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2642 {
2643         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2644 }
2645
2646 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2647 {
2648         return may_create(dir, dentry, SECCLASS_DIR);
2649 }
2650
2651 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2652 {
2653         return may_link(dir, dentry, MAY_RMDIR);
2654 }
2655
2656 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2657 {
2658         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2659 }
2660
2661 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2662                                 struct inode *new_inode, struct dentry *new_dentry)
2663 {
2664         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2665 }
2666
2667 static int selinux_inode_readlink(struct dentry *dentry)
2668 {
2669         const struct cred *cred = current_cred();
2670
2671         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2672 }
2673
2674 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2675 {
2676         const struct cred *cred = current_cred();
2677
2678         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2679 }
2680
2681 static int selinux_inode_permission(struct inode *inode, int mask)
2682 {
2683         const struct cred *cred = current_cred();
2684
2685         if (!mask) {
2686                 /* No permission to check.  Existence test. */
2687                 return 0;
2688         }
2689
2690         return inode_has_perm(cred, inode,
2691                               file_mask_to_av(inode->i_mode, mask), NULL);
2692 }
2693
2694 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2695 {
2696         const struct cred *cred = current_cred();
2697         int rc;
2698
2699         rc = secondary_ops->inode_setattr(dentry, iattr);
2700         if (rc)
2701                 return rc;
2702
2703         if (iattr->ia_valid & ATTR_FORCE)
2704                 return 0;
2705
2706         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2707                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2708                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2709
2710         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2711 }
2712
2713 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2714 {
2715         const struct cred *cred = current_cred();
2716
2717         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2718 }
2719
2720 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2721 {
2722         const struct cred *cred = current_cred();
2723
2724         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2725                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2726                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2727                         if (!capable(CAP_SETFCAP))
2728                                 return -EPERM;
2729                 } else if (!capable(CAP_SYS_ADMIN)) {
2730                         /* A different attribute in the security namespace.
2731                            Restrict to administrator. */
2732                         return -EPERM;
2733                 }
2734         }
2735
2736         /* Not an attribute we recognize, so just check the
2737            ordinary setattr permission. */
2738         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2739 }
2740
2741 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2742                                   const void *value, size_t size, int flags)
2743 {
2744         struct inode *inode = dentry->d_inode;
2745         struct inode_security_struct *isec = inode->i_security;
2746         struct superblock_security_struct *sbsec;
2747         struct avc_audit_data ad;
2748         u32 newsid, sid = current_sid();
2749         int rc = 0;
2750
2751         if (strcmp(name, XATTR_NAME_SELINUX))
2752                 return selinux_inode_setotherxattr(dentry, name);
2753
2754         sbsec = inode->i_sb->s_security;
2755         if (!(sbsec->flags & SE_SBLABELSUPP))
2756                 return -EOPNOTSUPP;
2757
2758         if (!is_owner_or_cap(inode))
2759                 return -EPERM;
2760
2761         AVC_AUDIT_DATA_INIT(&ad, FS);
2762         ad.u.fs.path.dentry = dentry;
2763
2764         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2765                           FILE__RELABELFROM, &ad);
2766         if (rc)
2767                 return rc;
2768
2769         rc = security_context_to_sid(value, size, &newsid);
2770         if (rc == -EINVAL) {
2771                 if (!capable(CAP_MAC_ADMIN))
2772                         return rc;
2773                 rc = security_context_to_sid_force(value, size, &newsid);
2774         }
2775         if (rc)
2776                 return rc;
2777
2778         rc = avc_has_perm(sid, newsid, isec->sclass,
2779                           FILE__RELABELTO, &ad);
2780         if (rc)
2781                 return rc;
2782
2783         rc = security_validate_transition(isec->sid, newsid, sid,
2784                                           isec->sclass);
2785         if (rc)
2786                 return rc;
2787
2788         return avc_has_perm(newsid,
2789                             sbsec->sid,
2790                             SECCLASS_FILESYSTEM,
2791                             FILESYSTEM__ASSOCIATE,
2792                             &ad);
2793 }
2794
2795 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2796                                         const void *value, size_t size,
2797                                         int flags)
2798 {
2799         struct inode *inode = dentry->d_inode;
2800         struct inode_security_struct *isec = inode->i_security;
2801         u32 newsid;
2802         int rc;
2803
2804         if (strcmp(name, XATTR_NAME_SELINUX)) {
2805                 /* Not an attribute we recognize, so nothing to do. */
2806                 return;
2807         }
2808
2809         rc = security_context_to_sid_force(value, size, &newsid);
2810         if (rc) {
2811                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2812                        "for (%s, %lu), rc=%d\n",
2813                        inode->i_sb->s_id, inode->i_ino, -rc);
2814                 return;
2815         }
2816
2817         isec->sid = newsid;
2818         return;
2819 }
2820
2821 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2822 {
2823         const struct cred *cred = current_cred();
2824
2825         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2826 }
2827
2828 static int selinux_inode_listxattr(struct dentry *dentry)
2829 {
2830         const struct cred *cred = current_cred();
2831
2832         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2833 }
2834
2835 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2836 {
2837         if (strcmp(name, XATTR_NAME_SELINUX))
2838                 return selinux_inode_setotherxattr(dentry, name);
2839
2840         /* No one is allowed to remove a SELinux security label.
2841            You can change the label, but all data must be labeled. */
2842         return -EACCES;
2843 }
2844
2845 /*
2846  * Copy the inode security context value to the user.
2847  *
2848  * Permission check is handled by selinux_inode_getxattr hook.
2849  */
2850 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2851 {
2852         u32 size;
2853         int error;
2854         char *context = NULL;
2855         struct inode_security_struct *isec = inode->i_security;
2856
2857         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2858                 return -EOPNOTSUPP;
2859
2860         /*
2861          * If the caller has CAP_MAC_ADMIN, then get the raw context
2862          * value even if it is not defined by current policy; otherwise,
2863          * use the in-core value under current policy.
2864          * Use the non-auditing forms of the permission checks since
2865          * getxattr may be called by unprivileged processes commonly
2866          * and lack of permission just means that we fall back to the
2867          * in-core context value, not a denial.
2868          */
2869         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2870                                 SECURITY_CAP_NOAUDIT);
2871         if (!error)
2872                 error = security_sid_to_context_force(isec->sid, &context,
2873                                                       &size);
2874         else
2875                 error = security_sid_to_context(isec->sid, &context, &size);
2876         if (error)
2877                 return error;
2878         error = size;
2879         if (alloc) {
2880                 *buffer = context;
2881                 goto out_nofree;
2882         }
2883         kfree(context);
2884 out_nofree:
2885         return error;
2886 }
2887
2888 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2889                                      const void *value, size_t size, int flags)
2890 {
2891         struct inode_security_struct *isec = inode->i_security;
2892         u32 newsid;
2893         int rc;
2894
2895         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2896                 return -EOPNOTSUPP;
2897
2898         if (!value || !size)
2899                 return -EACCES;
2900
2901         rc = security_context_to_sid((void *)value, size, &newsid);
2902         if (rc)
2903                 return rc;
2904
2905         isec->sid = newsid;
2906         return 0;
2907 }
2908
2909 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2910 {
2911         const int len = sizeof(XATTR_NAME_SELINUX);
2912         if (buffer && len <= buffer_size)
2913                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2914         return len;
2915 }
2916
2917 static int selinux_inode_need_killpriv(struct dentry *dentry)
2918 {
2919         return secondary_ops->inode_need_killpriv(dentry);
2920 }
2921
2922 static int selinux_inode_killpriv(struct dentry *dentry)
2923 {
2924         return secondary_ops->inode_killpriv(dentry);
2925 }
2926
2927 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2928 {
2929         struct inode_security_struct *isec = inode->i_security;
2930         *secid = isec->sid;
2931 }
2932
2933 /* file security operations */
2934
2935 static int selinux_revalidate_file_permission(struct file *file, int mask)
2936 {
2937         const struct cred *cred = current_cred();
2938         int rc;
2939         struct inode *inode = file->f_path.dentry->d_inode;
2940
2941         if (!mask) {
2942                 /* No permission to check.  Existence test. */
2943                 return 0;
2944         }
2945
2946         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2947         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2948                 mask |= MAY_APPEND;
2949
2950         rc = file_has_perm(cred, file,
2951                            file_mask_to_av(inode->i_mode, mask));
2952         if (rc)
2953                 return rc;
2954
2955         return selinux_netlbl_inode_permission(inode, mask);
2956 }
2957
2958 static int selinux_file_permission(struct file *file, int mask)
2959 {
2960         struct inode *inode = file->f_path.dentry->d_inode;
2961         struct file_security_struct *fsec = file->f_security;
2962         struct inode_security_struct *isec = inode->i_security;
2963         u32 sid = current_sid();
2964
2965         if (!mask) {
2966                 /* No permission to check.  Existence test. */
2967                 return 0;
2968         }
2969
2970         if (sid == fsec->sid && fsec->isid == isec->sid
2971             && fsec->pseqno == avc_policy_seqno())
2972                 return selinux_netlbl_inode_permission(inode, mask);
2973
2974         return selinux_revalidate_file_permission(file, mask);
2975 }
2976
2977 static int selinux_file_alloc_security(struct file *file)
2978 {
2979         return file_alloc_security(file);
2980 }
2981
2982 static void selinux_file_free_security(struct file *file)
2983 {
2984         file_free_security(file);
2985 }
2986
2987 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2988                               unsigned long arg)
2989 {
2990         const struct cred *cred = current_cred();
2991         u32 av = 0;
2992
2993         if (_IOC_DIR(cmd) & _IOC_WRITE)
2994                 av |= FILE__WRITE;
2995         if (_IOC_DIR(cmd) & _IOC_READ)
2996                 av |= FILE__READ;
2997         if (!av)
2998                 av = FILE__IOCTL;
2999
3000         return file_has_perm(cred, file, av);
3001 }
3002
3003 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3004 {
3005         const struct cred *cred = current_cred();
3006         int rc = 0;
3007
3008 #ifndef CONFIG_PPC32
3009         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3010                 /*
3011                  * We are making executable an anonymous mapping or a
3012                  * private file mapping that will also be writable.
3013                  * This has an additional check.
3014                  */
3015                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3016                 if (rc)
3017                         goto error;
3018         }
3019 #endif
3020
3021         if (file) {
3022                 /* read access is always possible with a mapping */
3023                 u32 av = FILE__READ;
3024
3025                 /* write access only matters if the mapping is shared */
3026                 if (shared && (prot & PROT_WRITE))
3027                         av |= FILE__WRITE;
3028
3029                 if (prot & PROT_EXEC)
3030                         av |= FILE__EXECUTE;
3031
3032                 return file_has_perm(cred, file, av);
3033         }
3034
3035 error:
3036         return rc;
3037 }
3038
3039 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3040                              unsigned long prot, unsigned long flags,
3041                              unsigned long addr, unsigned long addr_only)
3042 {
3043         int rc = 0;
3044         u32 sid = current_sid();
3045
3046         if (addr < mmap_min_addr)
3047                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3048                                   MEMPROTECT__MMAP_ZERO, NULL);
3049         if (rc || addr_only)
3050                 return rc;
3051
3052         if (selinux_checkreqprot)
3053                 prot = reqprot;
3054
3055         return file_map_prot_check(file, prot,
3056                                    (flags & MAP_TYPE) == MAP_SHARED);
3057 }
3058
3059 static int selinux_file_mprotect(struct vm_area_struct *vma,
3060                                  unsigned long reqprot,
3061                                  unsigned long prot)
3062 {
3063         const struct cred *cred = current_cred();
3064         int rc;
3065
3066         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3067         if (rc)
3068                 return rc;
3069
3070         if (selinux_checkreqprot)
3071                 prot = reqprot;
3072
3073 #ifndef CONFIG_PPC32
3074         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3075                 rc = 0;
3076                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3077                     vma->vm_end <= vma->vm_mm->brk) {
3078                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3079                 } else if (!vma->vm_file &&
3080                            vma->vm_start <= vma->vm_mm->start_stack &&
3081                            vma->vm_end >= vma->vm_mm->start_stack) {
3082                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3083                 } else if (vma->vm_file && vma->anon_vma) {
3084                         /*
3085                          * We are making executable a file mapping that has
3086                          * had some COW done. Since pages might have been
3087                          * written, check ability to execute the possibly
3088                          * modified content.  This typically should only
3089                          * occur for text relocations.
3090                          */
3091                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3092                 }
3093                 if (rc)
3094                         return rc;
3095         }
3096 #endif
3097
3098         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3099 }
3100
3101 static int selinux_file_lock(struct file *file, unsigned int cmd)
3102 {
3103         const struct cred *cred = current_cred();
3104
3105         return file_has_perm(cred, file, FILE__LOCK);
3106 }
3107
3108 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3109                               unsigned long arg)
3110 {
3111         const struct cred *cred = current_cred();
3112         int err = 0;
3113
3114         switch (cmd) {
3115         case F_SETFL:
3116                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3117                         err = -EINVAL;
3118                         break;
3119                 }
3120
3121                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3122                         err = file_has_perm(cred, file, FILE__WRITE);
3123                         break;
3124                 }
3125                 /* fall through */
3126         case F_SETOWN:
3127         case F_SETSIG:
3128         case F_GETFL:
3129         case F_GETOWN:
3130         case F_GETSIG:
3131                 /* Just check FD__USE permission */
3132                 err = file_has_perm(cred, file, 0);
3133                 break;
3134         case F_GETLK:
3135         case F_SETLK:
3136         case F_SETLKW:
3137 #if BITS_PER_LONG == 32
3138         case F_GETLK64:
3139         case F_SETLK64:
3140         case F_SETLKW64:
3141 #endif
3142                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3143                         err = -EINVAL;
3144                         break;
3145                 }
3146                 err = file_has_perm(cred, file, FILE__LOCK);
3147                 break;
3148         }
3149
3150         return err;
3151 }
3152
3153 static int selinux_file_set_fowner(struct file *file)
3154 {
3155         struct file_security_struct *fsec;
3156
3157         fsec = file->f_security;
3158         fsec->fown_sid = current_sid();
3159
3160         return 0;
3161 }
3162
3163 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3164                                        struct fown_struct *fown, int signum)
3165 {
3166         struct file *file;
3167         u32 sid = current_sid();
3168         u32 perm;
3169         struct file_security_struct *fsec;
3170
3171         /* struct fown_struct is never outside the context of a struct file */
3172         file = container_of(fown, struct file, f_owner);
3173
3174         fsec = file->f_security;
3175
3176         if (!signum)
3177                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3178         else
3179                 perm = signal_to_av(signum);
3180
3181         return avc_has_perm(fsec->fown_sid, sid,
3182                             SECCLASS_PROCESS, perm, NULL);
3183 }
3184
3185 static int selinux_file_receive(struct file *file)
3186 {
3187         const struct cred *cred = current_cred();
3188
3189         return file_has_perm(cred, file, file_to_av(file));
3190 }
3191
3192 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3193 {
3194         struct file_security_struct *fsec;
3195         struct inode *inode;
3196         struct inode_security_struct *isec;
3197
3198         inode = file->f_path.dentry->d_inode;
3199         fsec = file->f_security;
3200         isec = inode->i_security;
3201         /*
3202          * Save inode label and policy sequence number
3203          * at open-time so that selinux_file_permission
3204          * can determine whether revalidation is necessary.
3205          * Task label is already saved in the file security
3206          * struct as its SID.
3207          */
3208         fsec->isid = isec->sid;
3209         fsec->pseqno = avc_policy_seqno();
3210         /*
3211          * Since the inode label or policy seqno may have changed
3212          * between the selinux_inode_permission check and the saving
3213          * of state above, recheck that access is still permitted.
3214          * Otherwise, access might never be revalidated against the
3215          * new inode label or new policy.
3216          * This check is not redundant - do not remove.
3217          */
3218         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3219 }
3220
3221 /* task security operations */
3222
3223 static int selinux_task_create(unsigned long clone_flags)
3224 {
3225         int rc;
3226
3227         rc = secondary_ops->task_create(clone_flags);
3228         if (rc)
3229                 return rc;
3230
3231         return current_has_perm(current, PROCESS__FORK);
3232 }
3233
3234 /*
3235  * detach and free the LSM part of a set of credentials
3236  */
3237 static void selinux_cred_free(struct cred *cred)
3238 {
3239         struct task_security_struct *tsec = cred->security;
3240         cred->security = NULL;
3241         kfree(tsec);
3242 }
3243
3244 /*
3245  * prepare a new set of credentials for modification
3246  */
3247 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3248                                 gfp_t gfp)
3249 {
3250         const struct task_security_struct *old_tsec;
3251         struct task_security_struct *tsec;
3252
3253         old_tsec = old->security;
3254
3255         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3256         if (!tsec)
3257                 return -ENOMEM;
3258
3259         new->security = tsec;
3260         return 0;
3261 }
3262
3263 /*
3264  * commit new credentials
3265  */
3266 static void selinux_cred_commit(struct cred *new, const struct cred *old)
3267 {
3268         secondary_ops->cred_commit(new, old);
3269 }
3270
3271 /*
3272  * set the security data for a kernel service
3273  * - all the creation contexts are set to unlabelled
3274  */
3275 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3276 {
3277         struct task_security_struct *tsec = new->security;
3278         u32 sid = current_sid();
3279         int ret;
3280
3281         ret = avc_has_perm(sid, secid,
3282                            SECCLASS_KERNEL_SERVICE,
3283                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3284                            NULL);
3285         if (ret == 0) {
3286                 tsec->sid = secid;
3287                 tsec->create_sid = 0;
3288                 tsec->keycreate_sid = 0;
3289                 tsec->sockcreate_sid = 0;
3290         }
3291         return ret;
3292 }
3293
3294 /*
3295  * set the file creation context in a security record to the same as the
3296  * objective context of the specified inode
3297  */
3298 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3299 {
3300         struct inode_security_struct *isec = inode->i_security;
3301         struct task_security_struct *tsec = new->security;
3302         u32 sid = current_sid();
3303         int ret;
3304
3305         ret = avc_has_perm(sid, isec->sid,
3306                            SECCLASS_KERNEL_SERVICE,
3307                            KERNEL_SERVICE__CREATE_FILES_AS,
3308                            NULL);
3309
3310         if (ret == 0)
3311                 tsec->create_sid = isec->sid;
3312         return 0;
3313 }
3314
3315 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3316 {
3317         /* Since setuid only affects the current process, and
3318            since the SELinux controls are not based on the Linux
3319            identity attributes, SELinux does not need to control
3320            this operation.  However, SELinux does control the use
3321            of the CAP_SETUID and CAP_SETGID capabilities using the
3322            capable hook. */
3323         return 0;
3324 }
3325
3326 static int selinux_task_fix_setuid(struct cred *new, const struct cred *old,
3327                                    int flags)
3328 {
3329         return secondary_ops->task_fix_setuid(new, old, flags);
3330 }
3331
3332 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3333 {
3334         /* See the comment for setuid above. */
3335         return 0;
3336 }
3337
3338 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3339 {
3340         return current_has_perm(p, PROCESS__SETPGID);
3341 }
3342
3343 static int selinux_task_getpgid(struct task_struct *p)
3344 {
3345         return current_has_perm(p, PROCESS__GETPGID);
3346 }
3347
3348 static int selinux_task_getsid(struct task_struct *p)
3349 {
3350         return current_has_perm(p, PROCESS__GETSESSION);
3351 }
3352
3353 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3354 {
3355         *secid = task_sid(p);
3356 }
3357
3358 static int selinux_task_setgroups(struct group_info *group_info)
3359 {
3360         /* See the comment for setuid above. */
3361         return 0;
3362 }
3363
3364 static int selinux_task_setnice(struct task_struct *p, int nice)
3365 {
3366         int rc;
3367
3368         rc = secondary_ops->task_setnice(p, nice);
3369         if (rc)
3370                 return rc;
3371
3372         return current_has_perm(p, PROCESS__SETSCHED);
3373 }
3374
3375 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3376 {
3377         int rc;
3378
3379         rc = secondary_ops->task_setioprio(p, ioprio);
3380         if (rc)
3381                 return rc;
3382
3383         return current_has_perm(p, PROCESS__SETSCHED);
3384 }
3385
3386 static int selinux_task_getioprio(struct task_struct *p)
3387 {
3388         return current_has_perm(p, PROCESS__GETSCHED);
3389 }
3390
3391 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3392 {
3393         struct rlimit *old_rlim = current->signal->rlim + resource;
3394         int rc;
3395
3396         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3397         if (rc)
3398                 return rc;
3399
3400         /* Control the ability to change the hard limit (whether
3401            lowering or raising it), so that the hard limit can
3402            later be used as a safe reset point for the soft limit
3403            upon context transitions.  See selinux_bprm_committing_creds. */
3404         if (old_rlim->rlim_max != new_rlim->rlim_max)
3405                 return current_has_perm(current, PROCESS__SETRLIMIT);
3406
3407         return 0;
3408 }
3409
3410 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3411 {
3412         int rc;
3413
3414         rc = secondary_ops->task_setscheduler(p, policy, lp);
3415         if (rc)
3416                 return rc;
3417
3418         return current_has_perm(p, PROCESS__SETSCHED);
3419 }
3420
3421 static int selinux_task_getscheduler(struct task_struct *p)
3422 {
3423         return current_has_perm(p, PROCESS__GETSCHED);
3424 }
3425
3426 static int selinux_task_movememory(struct task_struct *p)
3427 {
3428         return current_has_perm(p, PROCESS__SETSCHED);
3429 }
3430
3431 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3432                                 int sig, u32 secid)
3433 {
3434         u32 perm;
3435         int rc;
3436
3437         rc = secondary_ops->task_kill(p, info, sig, secid);
3438         if (rc)
3439                 return rc;
3440
3441         if (!sig)
3442                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3443         else
3444                 perm = signal_to_av(sig);
3445         if (secid)
3446                 rc = avc_has_perm(secid, task_sid(p),
3447                                   SECCLASS_PROCESS, perm, NULL);
3448         else
3449                 rc = current_has_perm(p, perm);
3450         return rc;
3451 }
3452
3453 static int selinux_task_prctl(int option,
3454                               unsigned long arg2,
3455                               unsigned long arg3,
3456                               unsigned long arg4,
3457                               unsigned long arg5)
3458 {
3459         /* The current prctl operations do not appear to require
3460            any SELinux controls since they merely observe or modify
3461            the state of the current process. */
3462         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5);
3463 }
3464
3465 static int selinux_task_wait(struct task_struct *p)
3466 {
3467         return task_has_perm(p, current, PROCESS__SIGCHLD);
3468 }
3469
3470 static void selinux_task_to_inode(struct task_struct *p,
3471                                   struct inode *inode)
3472 {
3473         struct inode_security_struct *isec = inode->i_security;
3474         u32 sid = task_sid(p);
3475
3476         isec->sid = sid;
3477         isec->initialized = 1;
3478 }
3479
3480 /* Returns error only if unable to parse addresses */
3481 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3482                         struct avc_audit_data *ad, u8 *proto)
3483 {
3484         int offset, ihlen, ret = -EINVAL;
3485         struct iphdr _iph, *ih;
3486
3487         offset = skb_network_offset(skb);
3488         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3489         if (ih == NULL)
3490                 goto out;
3491
3492         ihlen = ih->ihl * 4;
3493         if (ihlen < sizeof(_iph))
3494                 goto out;
3495
3496         ad->u.net.v4info.saddr = ih->saddr;
3497         ad->u.net.v4info.daddr = ih->daddr;
3498         ret = 0;
3499
3500         if (proto)
3501                 *proto = ih->protocol;
3502
3503         switch (ih->protocol) {
3504         case IPPROTO_TCP: {
3505                 struct tcphdr _tcph, *th;
3506
3507                 if (ntohs(ih->frag_off) & IP_OFFSET)
3508                         break;
3509
3510                 offset += ihlen;
3511                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3512                 if (th == NULL)
3513                         break;
3514
3515                 ad->u.net.sport = th->source;
3516                 ad->u.net.dport = th->dest;
3517                 break;
3518         }
3519
3520         case IPPROTO_UDP: {
3521                 struct udphdr _udph, *uh;
3522
3523                 if (ntohs(ih->frag_off) & IP_OFFSET)
3524                         break;
3525
3526                 offset += ihlen;
3527                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3528                 if (uh == NULL)
3529                         break;
3530
3531                 ad->u.net.sport = uh->source;
3532                 ad->u.net.dport = uh->dest;
3533                 break;
3534         }
3535
3536         case IPPROTO_DCCP: {
3537                 struct dccp_hdr _dccph, *dh;
3538
3539                 if (ntohs(ih->frag_off) & IP_OFFSET)
3540                         break;
3541
3542                 offset += ihlen;
3543                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3544                 if (dh == NULL)
3545                         break;
3546
3547                 ad->u.net.sport = dh->dccph_sport;
3548                 ad->u.net.dport = dh->dccph_dport;
3549                 break;
3550         }
3551
3552         default:
3553                 break;
3554         }
3555 out:
3556         return ret;
3557 }
3558
3559 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3560
3561 /* Returns error only if unable to parse addresses */
3562 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3563                         struct avc_audit_data *ad, u8 *proto)
3564 {
3565         u8 nexthdr;
3566         int ret = -EINVAL, offset;
3567         struct ipv6hdr _ipv6h, *ip6;
3568
3569         offset = skb_network_offset(skb);
3570         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3571         if (ip6 == NULL)
3572                 goto out;
3573
3574         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3575         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3576         ret = 0;
3577
3578         nexthdr = ip6->nexthdr;
3579         offset += sizeof(_ipv6h);
3580         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3581         if (offset < 0)
3582                 goto out;
3583
3584         if (proto)
3585                 *proto = nexthdr;
3586
3587         switch (nexthdr) {
3588         case IPPROTO_TCP: {
3589                 struct tcphdr _tcph, *th;
3590
3591                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3592                 if (th == NULL)
3593                         break;
3594
3595                 ad->u.net.sport = th->source;
3596                 ad->u.net.dport = th->dest;
3597                 break;
3598         }
3599
3600         case IPPROTO_UDP: {
3601                 struct udphdr _udph, *uh;
3602
3603                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3604                 if (uh == NULL)
3605                         break;
3606
3607                 ad->u.net.sport = uh->source;
3608                 ad->u.net.dport = uh->dest;
3609                 break;
3610         }
3611
3612         case IPPROTO_DCCP: {
3613                 struct dccp_hdr _dccph, *dh;
3614
3615                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3616                 if (dh == NULL)
3617                         break;
3618
3619                 ad->u.net.sport = dh->dccph_sport;
3620                 ad->u.net.dport = dh->dccph_dport;
3621                 break;
3622         }
3623
3624         /* includes fragments */
3625         default:
3626                 break;
3627         }
3628 out:
3629         return ret;
3630 }
3631
3632 #endif /* IPV6 */
3633
3634 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3635                              char **_addrp, int src, u8 *proto)
3636 {
3637         char *addrp;
3638         int ret;
3639
3640         switch (ad->u.net.family) {
3641         case PF_INET:
3642                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3643                 if (ret)
3644                         goto parse_error;
3645                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3646                                        &ad->u.net.v4info.daddr);
3647                 goto okay;
3648
3649 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3650         case PF_INET6:
3651                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3652                 if (ret)
3653                         goto parse_error;
3654                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3655                                        &ad->u.net.v6info.daddr);
3656                 goto okay;
3657 #endif  /* IPV6 */
3658         default:
3659                 addrp = NULL;
3660                 goto okay;
3661         }
3662
3663 parse_error:
3664         printk(KERN_WARNING
3665                "SELinux: failure in selinux_parse_skb(),"
3666                " unable to parse packet\n");
3667         return ret;
3668
3669 okay:
3670         if (_addrp)
3671                 *_addrp = addrp;
3672         return 0;
3673 }
3674
3675 /**
3676  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3677  * @skb: the packet
3678  * @family: protocol family
3679  * @sid: the packet's peer label SID
3680  *
3681  * Description:
3682  * Check the various different forms of network peer labeling and determine
3683  * the peer label/SID for the packet; most of the magic actually occurs in
3684  * the security server function security_net_peersid_cmp().  The function
3685  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3686  * or -EACCES if @sid is invalid due to inconsistencies with the different
3687  * peer labels.
3688  *
3689  */
3690 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3691 {
3692         int err;
3693         u32 xfrm_sid;
3694         u32 nlbl_sid;
3695         u32 nlbl_type;
3696
3697         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3698         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3699
3700         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3701         if (unlikely(err)) {
3702                 printk(KERN_WARNING
3703                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3704                        " unable to determine packet's peer label\n");
3705                 return -EACCES;
3706         }
3707
3708         return 0;
3709 }
3710
3711 /* socket security operations */
3712 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3713                            u32 perms)
3714 {
3715         struct inode_security_struct *isec;
3716         struct avc_audit_data ad;
3717         u32 sid;
3718         int err = 0;
3719
3720         isec = SOCK_INODE(sock)->i_security;
3721
3722         if (isec->sid == SECINITSID_KERNEL)
3723                 goto out;
3724         sid = task_sid(task);
3725
3726         AVC_AUDIT_DATA_INIT(&ad, NET);
3727         ad.u.net.sk = sock->sk;
3728         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3729
3730 out:
3731         return err;
3732 }
3733
3734 static int selinux_socket_create(int family, int type,
3735                                  int protocol, int kern)
3736 {
3737         const struct cred *cred = current_cred();
3738         const struct task_security_struct *tsec = cred->security;
3739         u32 sid, newsid;
3740         u16 secclass;
3741         int err = 0;
3742
3743         if (kern)
3744                 goto out;
3745
3746         sid = tsec->sid;
3747         newsid = tsec->sockcreate_sid ?: sid;
3748
3749         secclass = socket_type_to_security_class(family, type, protocol);
3750         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3751
3752 out:
3753         return err;
3754 }
3755
3756 static int selinux_socket_post_create(struct socket *sock, int family,
3757                                       int type, int protocol, int kern)
3758 {
3759         const struct cred *cred = current_cred();
3760         const struct task_security_struct *tsec = cred->security;
3761         struct inode_security_struct *isec;
3762         struct sk_security_struct *sksec;
3763         u32 sid, newsid;
3764         int err = 0;
3765
3766         sid = tsec->sid;
3767         newsid = tsec->sockcreate_sid;
3768
3769         isec = SOCK_INODE(sock)->i_security;
3770
3771         if (kern)
3772                 isec->sid = SECINITSID_KERNEL;
3773         else if (newsid)
3774                 isec->sid = newsid;
3775         else
3776                 isec->sid = sid;
3777
3778         isec->sclass = socket_type_to_security_class(family, type, protocol);
3779         isec->initialized = 1;
3780
3781         if (sock->sk) {
3782                 sksec = sock->sk->sk_security;
3783                 sksec->sid = isec->sid;
3784                 sksec->sclass = isec->sclass;
3785                 err = selinux_netlbl_socket_post_create(sock);
3786         }
3787
3788         return err;
3789 }
3790
3791 /* Range of port numbers used to automatically bind.
3792    Need to determine whether we should perform a name_bind
3793    permission check between the socket and the port number. */
3794
3795 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3796 {
3797         u16 family;
3798         int err;
3799
3800         err = socket_has_perm(current, sock, SOCKET__BIND);
3801         if (err)
3802                 goto out;
3803
3804         /*
3805          * If PF_INET or PF_INET6, check name_bind permission for the port.
3806          * Multiple address binding for SCTP is not supported yet: we just
3807          * check the first address now.
3808          */
3809         family = sock->sk->sk_family;
3810         if (family == PF_INET || family == PF_INET6) {
3811                 char *addrp;
3812                 struct inode_security_struct *isec;
3813                 struct avc_audit_data ad;
3814                 struct sockaddr_in *addr4 = NULL;
3815                 struct sockaddr_in6 *addr6 = NULL;
3816                 unsigned short snum;
3817                 struct sock *sk = sock->sk;
3818                 u32 sid, node_perm;
3819
3820                 isec = SOCK_INODE(sock)->i_security;
3821
3822                 if (family == PF_INET) {
3823                         addr4 = (struct sockaddr_in *)address;
3824                         snum = ntohs(addr4->sin_port);
3825                         addrp = (char *)&addr4->sin_addr.s_addr;
3826                 } else {
3827                         addr6 = (struct sockaddr_in6 *)address;
3828                         snum = ntohs(addr6->sin6_port);
3829                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3830                 }
3831
3832                 if (snum) {
3833                         int low, high;
3834
3835                         inet_get_local_port_range(&low, &high);
3836
3837                         if (snum < max(PROT_SOCK, low) || snum > high) {
3838                                 err = sel_netport_sid(sk->sk_protocol,
3839                                                       snum, &sid);
3840                                 if (err)
3841                                         goto out;
3842                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3843                                 ad.u.net.sport = htons(snum);
3844                                 ad.u.net.family = family;
3845                                 err = avc_has_perm(isec->sid, sid,
3846                                                    isec->sclass,
3847                                                    SOCKET__NAME_BIND, &ad);
3848                                 if (err)
3849                                         goto out;
3850                         }
3851                 }
3852
3853                 switch (isec->sclass) {
3854                 case SECCLASS_TCP_SOCKET:
3855                         node_perm = TCP_SOCKET__NODE_BIND;
3856                         break;
3857
3858                 case SECCLASS_UDP_SOCKET:
3859                         node_perm = UDP_SOCKET__NODE_BIND;
3860                         break;
3861
3862                 case SECCLASS_DCCP_SOCKET:
3863                         node_perm = DCCP_SOCKET__NODE_BIND;
3864                         break;
3865
3866                 default:
3867                         node_perm = RAWIP_SOCKET__NODE_BIND;
3868                         break;
3869                 }
3870
3871                 err = sel_netnode_sid(addrp, family, &sid);
3872                 if (err)
3873                         goto out;
3874
3875                 AVC_AUDIT_DATA_INIT(&ad, NET);
3876                 ad.u.net.sport = htons(snum);
3877                 ad.u.net.family = family;
3878
3879                 if (family == PF_INET)
3880                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3881                 else
3882                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3883
3884                 err = avc_has_perm(isec->sid, sid,
3885                                    isec->sclass, node_perm, &ad);
3886                 if (err)
3887                         goto out;
3888         }
3889 out:
3890         return err;
3891 }
3892
3893 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3894 {
3895         struct sock *sk = sock->sk;
3896         struct inode_security_struct *isec;
3897         int err;
3898
3899         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3900         if (err)
3901                 return err;
3902
3903         /*
3904          * If a TCP or DCCP socket, check name_connect permission for the port.
3905          */
3906         isec = SOCK_INODE(sock)->i_security;
3907         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3908             isec->sclass == SECCLASS_DCCP_SOCKET) {
3909                 struct avc_audit_data ad;
3910                 struct sockaddr_in *addr4 = NULL;
3911                 struct sockaddr_in6 *addr6 = NULL;
3912                 unsigned short snum;
3913                 u32 sid, perm;
3914
3915                 if (sk->sk_family == PF_INET) {
3916                         addr4 = (struct sockaddr_in *)address;
3917                         if (addrlen < sizeof(struct sockaddr_in))
3918                                 return -EINVAL;
3919                         snum = ntohs(addr4->sin_port);
3920                 } else {
3921                         addr6 = (struct sockaddr_in6 *)address;
3922                         if (addrlen < SIN6_LEN_RFC2133)
3923                                 return -EINVAL;
3924                         snum = ntohs(addr6->sin6_port);
3925                 }
3926
3927                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3928                 if (err)
3929                         goto out;
3930
3931                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3932                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3933
3934                 AVC_AUDIT_DATA_INIT(&ad, NET);
3935                 ad.u.net.dport = htons(snum);
3936                 ad.u.net.family = sk->sk_family;
3937                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3938                 if (err)
3939                         goto out;
3940         }
3941
3942         err = selinux_netlbl_socket_connect(sk, address);
3943
3944 out:
3945         return err;
3946 }
3947
3948 static int selinux_socket_listen(struct socket *sock, int backlog)
3949 {
3950         return socket_has_perm(current, sock, SOCKET__LISTEN);
3951 }
3952
3953 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3954 {
3955         int err;
3956         struct inode_security_struct *isec;
3957         struct inode_security_struct *newisec;
3958
3959         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3960         if (err)
3961                 return err;
3962
3963         newisec = SOCK_INODE(newsock)->i_security;
3964
3965         isec = SOCK_INODE(sock)->i_security;
3966         newisec->sclass = isec->sclass;
3967         newisec->sid = isec->sid;
3968         newisec->initialized = 1;
3969
3970         return 0;
3971 }
3972
3973 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3974                                   int size)
3975 {
3976         int rc;
3977
3978         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3979         if (rc)
3980                 return rc;
3981
3982         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3983 }
3984
3985 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3986                                   int size, int flags)
3987 {
3988         return socket_has_perm(current, sock, SOCKET__READ);
3989 }
3990
3991 static int selinux_socket_getsockname(struct socket *sock)
3992 {
3993         return socket_has_perm(current, sock, SOCKET__GETATTR);
3994 }
3995
3996 static int selinux_socket_getpeername(struct socket *sock)
3997 {
3998         return socket_has_perm(current, sock, SOCKET__GETATTR);
3999 }
4000
4001 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4002 {
4003         int err;
4004
4005         err = socket_has_perm(current, sock, SOCKET__SETOPT);
4006         if (err)
4007                 return err;
4008
4009         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4010 }
4011
4012 static int selinux_socket_getsockopt(struct socket *sock, int level,
4013                                      int optname)
4014 {
4015         return socket_has_perm(current, sock, SOCKET__GETOPT);
4016 }
4017
4018 static int selinux_socket_shutdown(struct socket *sock, int how)
4019 {
4020         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
4021 }
4022
4023 static int selinux_socket_unix_stream_connect(struct socket *sock,
4024                                               struct socket *other,
4025                                               struct sock *newsk)
4026 {
4027         struct sk_security_struct *ssec;
4028         struct inode_security_struct *isec;
4029         struct inode_security_struct *other_isec;
4030         struct avc_audit_data ad;
4031         int err;
4032
4033         err = secondary_ops->unix_stream_connect(sock, other, newsk);
4034         if (err)
4035                 return err;
4036
4037         isec = SOCK_INODE(sock)->i_security;
4038         other_isec = SOCK_INODE(other)->i_security;
4039
4040         AVC_AUDIT_DATA_INIT(&ad, NET);
4041         ad.u.net.sk = other->sk;
4042
4043         err = avc_has_perm(isec->sid, other_isec->sid,
4044                            isec->sclass,
4045                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4046         if (err)
4047                 return err;
4048
4049         /* connecting socket */
4050         ssec = sock->sk->sk_security;
4051         ssec->peer_sid = other_isec->sid;
4052
4053         /* server child socket */
4054         ssec = newsk->sk_security;
4055         ssec->peer_sid = isec->sid;
4056         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4057
4058         return err;
4059 }
4060
4061 static int selinux_socket_unix_may_send(struct socket *sock,
4062                                         struct socket *other)
4063 {
4064         struct inode_security_struct *isec;
4065         struct inode_security_struct *other_isec;
4066         struct avc_audit_data ad;
4067         int err;
4068
4069         isec = SOCK_INODE(sock)->i_security;
4070         other_isec = SOCK_INODE(other)->i_security;
4071
4072         AVC_AUDIT_DATA_INIT(&ad, NET);
4073         ad.u.net.sk = other->sk;
4074
4075         err = avc_has_perm(isec->sid, other_isec->sid,
4076                            isec->sclass, SOCKET__SENDTO, &ad);
4077         if (err)
4078                 return err;
4079
4080         return 0;
4081 }
4082
4083 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4084                                     u32 peer_sid,
4085                                     struct avc_audit_data *ad)
4086 {
4087         int err;
4088         u32 if_sid;
4089         u32 node_sid;
4090
4091         err = sel_netif_sid(ifindex, &if_sid);
4092         if (err)
4093                 return err;
4094         err = avc_has_perm(peer_sid, if_sid,
4095                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4096         if (err)
4097                 return err;
4098
4099         err = sel_netnode_sid(addrp, family, &node_sid);
4100         if (err)
4101                 return err;
4102         return avc_has_perm(peer_sid, node_sid,
4103                             SECCLASS_NODE, NODE__RECVFROM, ad);
4104 }
4105
4106 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4107                                                 struct sk_buff *skb,
4108                                                 struct avc_audit_data *ad,
4109                                                 u16 family,
4110                                                 char *addrp)
4111 {
4112         int err;
4113         struct sk_security_struct *sksec = sk->sk_security;
4114         u16 sk_class;
4115         u32 netif_perm, node_perm, recv_perm;
4116         u32 port_sid, node_sid, if_sid, sk_sid;
4117
4118         sk_sid = sksec->sid;
4119         sk_class = sksec->sclass;
4120
4121         switch (sk_class) {
4122         case SECCLASS_UDP_SOCKET:
4123                 netif_perm = NETIF__UDP_RECV;
4124                 node_perm = NODE__UDP_RECV;
4125                 recv_perm = UDP_SOCKET__RECV_MSG;
4126                 break;
4127         case SECCLASS_TCP_SOCKET:
4128                 netif_perm = NETIF__TCP_RECV;
4129                 node_perm = NODE__TCP_RECV;
4130                 recv_perm = TCP_SOCKET__RECV_MSG;
4131                 break;
4132         case SECCLASS_DCCP_SOCKET:
4133                 netif_perm = NETIF__DCCP_RECV;
4134                 node_perm = NODE__DCCP_RECV;
4135                 recv_perm = DCCP_SOCKET__RECV_MSG;
4136                 break;
4137         default:
4138                 netif_perm = NETIF__RAWIP_RECV;
4139                 node_perm = NODE__RAWIP_RECV;
4140                 recv_perm = 0;
4141                 break;
4142         }
4143
4144         err = sel_netif_sid(skb->iif, &if_sid);
4145         if (err)
4146                 return err;
4147         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4148         if (err)
4149                 return err;
4150
4151         err = sel_netnode_sid(addrp, family, &node_sid);
4152         if (err)
4153                 return err;
4154         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4155         if (err)
4156                 return err;
4157
4158         if (!recv_perm)
4159                 return 0;
4160         err = sel_netport_sid(sk->sk_protocol,
4161                               ntohs(ad->u.net.sport), &port_sid);
4162         if (unlikely(err)) {
4163                 printk(KERN_WARNING
4164                        "SELinux: failure in"
4165                        " selinux_sock_rcv_skb_iptables_compat(),"
4166                        " network port label not found\n");
4167                 return err;
4168         }
4169         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4170 }
4171
4172 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4173                                        u16 family)
4174 {
4175         int err = 0;
4176         struct sk_security_struct *sksec = sk->sk_security;
4177         u32 peer_sid;
4178         u32 sk_sid = sksec->sid;
4179         struct avc_audit_data ad;
4180         char *addrp;
4181
4182         AVC_AUDIT_DATA_INIT(&ad, NET);
4183         ad.u.net.netif = skb->iif;
4184         ad.u.net.family = family;
4185         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4186         if (err)
4187                 return err;
4188
4189         if (selinux_compat_net)
4190                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4191                                                            family, addrp);
4192         else if (selinux_secmark_enabled())
4193                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4194                                    PACKET__RECV, &ad);
4195         if (err)
4196                 return err;
4197
4198         if (selinux_policycap_netpeer) {
4199                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4200                 if (err)
4201                         return err;
4202                 err = avc_has_perm(sk_sid, peer_sid,
4203                                    SECCLASS_PEER, PEER__RECV, &ad);
4204                 if (err)
4205                         selinux_netlbl_err(skb, err, 0);
4206         } else {
4207                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4208                 if (err)
4209                         return err;
4210                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4211         }
4212
4213         return err;
4214 }
4215
4216 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4217 {
4218         int err;
4219         struct sk_security_struct *sksec = sk->sk_security;
4220         u16 family = sk->sk_family;
4221         u32 sk_sid = sksec->sid;
4222         struct avc_audit_data ad;
4223         char *addrp;
4224         u8 secmark_active;
4225         u8 peerlbl_active;
4226
4227         if (family != PF_INET && family != PF_INET6)
4228                 return 0;
4229
4230         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4231         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4232                 family = PF_INET;
4233
4234         /* If any sort of compatibility mode is enabled then handoff processing
4235          * to the selinux_sock_rcv_skb_compat() function to deal with the
4236          * special handling.  We do this in an attempt to keep this function
4237          * as fast and as clean as possible. */
4238         if (selinux_compat_net || !selinux_policycap_netpeer)
4239                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4240
4241         secmark_active = selinux_secmark_enabled();
4242         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4243         if (!secmark_active && !peerlbl_active)
4244                 return 0;
4245
4246         AVC_AUDIT_DATA_INIT(&ad, NET);
4247         ad.u.net.netif = skb->iif;
4248         ad.u.net.family = family;
4249         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4250         if (err)
4251                 return err;
4252
4253         if (peerlbl_active) {
4254                 u32 peer_sid;
4255
4256                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4257                 if (err)
4258                         return err;
4259                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4260                                                peer_sid, &ad);
4261                 if (err) {
4262                         selinux_netlbl_err(skb, err, 0);
4263                         return err;
4264                 }
4265                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4266                                    PEER__RECV, &ad);
4267                 if (err)
4268                         selinux_netlbl_err(skb, err, 0);
4269         }
4270
4271         if (secmark_active) {
4272                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4273                                    PACKET__RECV, &ad);
4274                 if (err)
4275                         return err;
4276         }
4277
4278         return err;
4279 }
4280
4281 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4282                                             int __user *optlen, unsigned len)
4283 {
4284         int err = 0;
4285         char *scontext;
4286         u32 scontext_len;
4287         struct sk_security_struct *ssec;
4288         struct inode_security_struct *isec;
4289         u32 peer_sid = SECSID_NULL;
4290
4291         isec = SOCK_INODE(sock)->i_security;
4292
4293         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4294             isec->sclass == SECCLASS_TCP_SOCKET) {
4295                 ssec = sock->sk->sk_security;
4296                 peer_sid = ssec->peer_sid;
4297         }
4298         if (peer_sid == SECSID_NULL) {
4299                 err = -ENOPROTOOPT;
4300                 goto out;
4301         }
4302
4303         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4304
4305         if (err)
4306                 goto out;
4307
4308         if (scontext_len > len) {
4309                 err = -ERANGE;
4310                 goto out_len;
4311         }
4312
4313         if (copy_to_user(optval, scontext, scontext_len))
4314                 err = -EFAULT;
4315
4316 out_len:
4317         if (put_user(scontext_len, optlen))
4318                 err = -EFAULT;
4319
4320         kfree(scontext);
4321 out:
4322         return err;
4323 }
4324
4325 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4326 {
4327         u32 peer_secid = SECSID_NULL;
4328         u16 family;
4329
4330         if (skb && skb->protocol == htons(ETH_P_IP))
4331                 family = PF_INET;
4332         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4333                 family = PF_INET6;
4334         else if (sock)
4335                 family = sock->sk->sk_family;
4336         else
4337                 goto out;
4338
4339         if (sock && family == PF_UNIX)
4340                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4341         else if (skb)
4342                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4343
4344 out:
4345         *secid = peer_secid;
4346         if (peer_secid == SECSID_NULL)
4347                 return -EINVAL;
4348         return 0;
4349 }
4350
4351 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4352 {
4353         return sk_alloc_security(sk, family, priority);
4354 }
4355
4356 static void selinux_sk_free_security(struct sock *sk)
4357 {
4358         sk_free_security(sk);
4359 }
4360
4361 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4362 {
4363         struct sk_security_struct *ssec = sk->sk_security;
4364         struct sk_security_struct *newssec = newsk->sk_security;
4365
4366         newssec->sid = ssec->sid;
4367         newssec->peer_sid = ssec->peer_sid;
4368         newssec->sclass = ssec->sclass;
4369
4370         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4371 }
4372
4373 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4374 {
4375         if (!sk)
4376                 *secid = SECINITSID_ANY_SOCKET;
4377         else {
4378                 struct sk_security_struct *sksec = sk->sk_security;
4379
4380                 *secid = sksec->sid;
4381         }
4382 }
4383
4384 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4385 {
4386         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4387         struct sk_security_struct *sksec = sk->sk_security;
4388
4389         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4390             sk->sk_family == PF_UNIX)
4391                 isec->sid = sksec->sid;
4392         sksec->sclass = isec->sclass;
4393 }
4394
4395 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4396                                      struct request_sock *req)
4397 {
4398         struct sk_security_struct *sksec = sk->sk_security;
4399         int err;
4400         u16 family = sk->sk_family;
4401         u32 newsid;
4402         u32 peersid;
4403
4404         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4405         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4406                 family = PF_INET;
4407
4408         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4409         if (err)
4410                 return err;
4411         if (peersid == SECSID_NULL) {
4412                 req->secid = sksec->sid;
4413                 req->peer_secid = SECSID_NULL;
4414                 return 0;
4415         }
4416
4417         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4418         if (err)
4419                 return err;
4420
4421         req->secid = newsid;
4422         req->peer_secid = peersid;
4423         return 0;
4424 }
4425
4426 static void selinux_inet_csk_clone(struct sock *newsk,
4427                                    const struct request_sock *req)
4428 {
4429         struct sk_security_struct *newsksec = newsk->sk_security;
4430
4431         newsksec->sid = req->secid;
4432         newsksec->peer_sid = req->peer_secid;
4433         /* NOTE: Ideally, we should also get the isec->sid for the
4434            new socket in sync, but we don't have the isec available yet.
4435            So we will wait until sock_graft to do it, by which
4436            time it will have been created and available. */
4437
4438         /* We don't need to take any sort of lock here as we are the only
4439          * thread with access to newsksec */
4440         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4441 }
4442
4443 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4444 {
4445         u16 family = sk->sk_family;
4446         struct sk_security_struct *sksec = sk->sk_security;
4447
4448         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4449         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4450                 family = PF_INET;
4451
4452         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4453
4454         selinux_netlbl_inet_conn_established(sk, family);
4455 }
4456
4457 static void selinux_req_classify_flow(const struct request_sock *req,
4458                                       struct flowi *fl)
4459 {
4460         fl->secid = req->secid;
4461 }
4462
4463 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4464 {
4465         int err = 0;
4466         u32 perm;
4467         struct nlmsghdr *nlh;
4468         struct socket *sock = sk->sk_socket;
4469         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4470
4471         if (skb->len < NLMSG_SPACE(0)) {
4472                 err = -EINVAL;
4473                 goto out;
4474         }
4475         nlh = nlmsg_hdr(skb);
4476
4477         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4478         if (err) {
4479                 if (err == -EINVAL) {
4480                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4481                                   "SELinux:  unrecognized netlink message"
4482                                   " type=%hu for sclass=%hu\n",
4483                                   nlh->nlmsg_type, isec->sclass);
4484                         if (!selinux_enforcing || security_get_allow_unknown())
4485                                 err = 0;
4486                 }
4487
4488                 /* Ignore */
4489                 if (err == -ENOENT)
4490                         err = 0;
4491                 goto out;
4492         }
4493
4494         err = socket_has_perm(current, sock, perm);
4495 out:
4496         return err;
4497 }
4498
4499 #ifdef CONFIG_NETFILTER
4500
4501 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4502                                        u16 family)
4503 {
4504         int err;
4505         char *addrp;
4506         u32 peer_sid;
4507         struct avc_audit_data ad;
4508         u8 secmark_active;
4509         u8 netlbl_active;
4510         u8 peerlbl_active;
4511
4512         if (!selinux_policycap_netpeer)
4513                 return NF_ACCEPT;
4514
4515         secmark_active = selinux_secmark_enabled();
4516         netlbl_active = netlbl_enabled();
4517         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4518         if (!secmark_active && !peerlbl_active)
4519                 return NF_ACCEPT;
4520
4521         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4522                 return NF_DROP;
4523
4524         AVC_AUDIT_DATA_INIT(&ad, NET);
4525         ad.u.net.netif = ifindex;
4526         ad.u.net.family = family;
4527         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4528                 return NF_DROP;
4529
4530         if (peerlbl_active) {
4531                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4532                                                peer_sid, &ad);
4533                 if (err) {
4534                         selinux_netlbl_err(skb, err, 1);
4535                         return NF_DROP;
4536                 }
4537         }
4538
4539         if (secmark_active)
4540                 if (avc_has_perm(peer_sid, skb->secmark,
4541                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4542                         return NF_DROP;
4543
4544         if (netlbl_active)
4545                 /* we do this in the FORWARD path and not the POST_ROUTING
4546                  * path because we want to make sure we apply the necessary
4547                  * labeling before IPsec is applied so we can leverage AH
4548                  * protection */
4549                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4550                         return NF_DROP;
4551
4552         return NF_ACCEPT;
4553 }
4554
4555 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4556                                          struct sk_buff *skb,
4557                                          const struct net_device *in,
4558                                          const struct net_device *out,
4559                                          int (*okfn)(struct sk_buff *))
4560 {
4561         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4562 }
4563
4564 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4565 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4566                                          struct sk_buff *skb,
4567                                          const struct net_device *in,
4568                                          const struct net_device *out,
4569                                          int (*okfn)(struct sk_buff *))
4570 {
4571         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4572 }
4573 #endif  /* IPV6 */
4574
4575 static unsigned int selinux_ip_output(struct sk_buff *skb,
4576                                       u16 family)
4577 {
4578         u32 sid;
4579
4580         if (!netlbl_enabled())
4581                 return NF_ACCEPT;
4582
4583         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4584          * because we want to make sure we apply the necessary labeling
4585          * before IPsec is applied so we can leverage AH protection */
4586         if (skb->sk) {
4587                 struct sk_security_struct *sksec = skb->sk->sk_security;
4588                 sid = sksec->sid;
4589         } else
4590                 sid = SECINITSID_KERNEL;
4591         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4592                 return NF_DROP;
4593
4594         return NF_ACCEPT;
4595 }
4596
4597 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4598                                         struct sk_buff *skb,
4599                                         const struct net_device *in,
4600                                         const struct net_device *out,
4601                                         int (*okfn)(struct sk_buff *))
4602 {
4603         return selinux_ip_output(skb, PF_INET);
4604 }
4605
4606 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4607                                                 int ifindex,
4608                                                 struct avc_audit_data *ad,
4609                                                 u16 family, char *addrp)
4610 {
4611         int err;
4612         struct sk_security_struct *sksec = sk->sk_security;
4613         u16 sk_class;
4614         u32 netif_perm, node_perm, send_perm;
4615         u32 port_sid, node_sid, if_sid, sk_sid;
4616
4617         sk_sid = sksec->sid;
4618         sk_class = sksec->sclass;
4619
4620         switch (sk_class) {
4621         case SECCLASS_UDP_SOCKET:
4622                 netif_perm = NETIF__UDP_SEND;
4623                 node_perm = NODE__UDP_SEND;
4624                 send_perm = UDP_SOCKET__SEND_MSG;
4625                 break;
4626         case SECCLASS_TCP_SOCKET:
4627                 netif_perm = NETIF__TCP_SEND;
4628                 node_perm = NODE__TCP_SEND;
4629                 send_perm = TCP_SOCKET__SEND_MSG;
4630                 break;
4631         case SECCLASS_DCCP_SOCKET:
4632                 netif_perm = NETIF__DCCP_SEND;
4633                 node_perm = NODE__DCCP_SEND;
4634                 send_perm = DCCP_SOCKET__SEND_MSG;
4635                 break;
4636         default:
4637                 netif_perm = NETIF__RAWIP_SEND;
4638                 node_perm = NODE__RAWIP_SEND;
4639                 send_perm = 0;
4640                 break;
4641         }
4642
4643         err = sel_netif_sid(ifindex, &if_sid);
4644         if (err)
4645                 return err;
4646         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4647                 return err;
4648
4649         err = sel_netnode_sid(addrp, family, &node_sid);
4650         if (err)
4651                 return err;
4652         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4653         if (err)
4654                 return err;
4655
4656         if (send_perm != 0)
4657                 return 0;
4658
4659         err = sel_netport_sid(sk->sk_protocol,
4660                               ntohs(ad->u.net.dport), &port_sid);
4661         if (unlikely(err)) {
4662                 printk(KERN_WARNING
4663                        "SELinux: failure in"
4664                        " selinux_ip_postroute_iptables_compat(),"
4665                        " network port label not found\n");
4666                 return err;
4667         }
4668         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4669 }
4670
4671 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4672                                                 int ifindex,
4673                                                 u16 family)
4674 {
4675         struct sock *sk = skb->sk;
4676         struct sk_security_struct *sksec;
4677         struct avc_audit_data ad;
4678         char *addrp;
4679         u8 proto;
4680
4681         if (sk == NULL)
4682                 return NF_ACCEPT;
4683         sksec = sk->sk_security;
4684
4685         AVC_AUDIT_DATA_INIT(&ad, NET);
4686         ad.u.net.netif = ifindex;
4687         ad.u.net.family = family;
4688         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4689                 return NF_DROP;
4690
4691         if (selinux_compat_net) {
4692                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4693                                                          &ad, family, addrp))
4694                         return NF_DROP;
4695         } else if (selinux_secmark_enabled()) {
4696                 if (avc_has_perm(sksec->sid, skb->secmark,
4697                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4698                         return NF_DROP;
4699         }
4700
4701         if (selinux_policycap_netpeer)
4702                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4703                         return NF_DROP;
4704
4705         return NF_ACCEPT;
4706 }
4707
4708 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4709                                          u16 family)
4710 {
4711         u32 secmark_perm;
4712         u32 peer_sid;
4713         struct sock *sk;
4714         struct avc_audit_data ad;
4715         char *addrp;
4716         u8 secmark_active;
4717         u8 peerlbl_active;
4718
4719         /* If any sort of compatibility mode is enabled then handoff processing
4720          * to the selinux_ip_postroute_compat() function to deal with the
4721          * special handling.  We do this in an attempt to keep this function
4722          * as fast and as clean as possible. */
4723         if (selinux_compat_net || !selinux_policycap_netpeer)
4724                 return selinux_ip_postroute_compat(skb, ifindex, family);
4725 #ifdef CONFIG_XFRM
4726         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4727          * packet transformation so allow the packet to pass without any checks
4728          * since we'll have another chance to perform access control checks
4729          * when the packet is on it's final way out.
4730          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4731          *       is NULL, in this case go ahead and apply access control. */
4732         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4733                 return NF_ACCEPT;
4734 #endif
4735         secmark_active = selinux_secmark_enabled();
4736         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4737         if (!secmark_active && !peerlbl_active)
4738                 return NF_ACCEPT;
4739
4740         /* if the packet is being forwarded then get the peer label from the
4741          * packet itself; otherwise check to see if it is from a local
4742          * application or the kernel, if from an application get the peer label
4743          * from the sending socket, otherwise use the kernel's sid */
4744         sk = skb->sk;
4745         if (sk == NULL) {
4746                 switch (family) {
4747                 case PF_INET:
4748                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4749                                 secmark_perm = PACKET__FORWARD_OUT;
4750                         else
4751                                 secmark_perm = PACKET__SEND;
4752                         break;
4753                 case PF_INET6:
4754                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4755                                 secmark_perm = PACKET__FORWARD_OUT;
4756                         else
4757                                 secmark_perm = PACKET__SEND;
4758                         break;
4759                 default:
4760                         return NF_DROP;
4761                 }
4762                 if (secmark_perm == PACKET__FORWARD_OUT) {
4763                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4764                                 return NF_DROP;
4765                 } else
4766                         peer_sid = SECINITSID_KERNEL;
4767         } else {
4768                 struct sk_security_struct *sksec = sk->sk_security;
4769                 peer_sid = sksec->sid;
4770                 secmark_perm = PACKET__SEND;
4771         }
4772
4773         AVC_AUDIT_DATA_INIT(&ad, NET);
4774         ad.u.net.netif = ifindex;
4775         ad.u.net.family = family;
4776         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4777                 return NF_DROP;
4778
4779         if (secmark_active)
4780                 if (avc_has_perm(peer_sid, skb->secmark,
4781                                  SECCLASS_PACKET, secmark_perm, &ad))
4782                         return NF_DROP;
4783
4784         if (peerlbl_active) {
4785                 u32 if_sid;
4786                 u32 node_sid;
4787
4788                 if (sel_netif_sid(ifindex, &if_sid))
4789                         return NF_DROP;
4790                 if (avc_has_perm(peer_sid, if_sid,
4791                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4792                         return NF_DROP;
4793
4794                 if (sel_netnode_sid(addrp, family, &node_sid))
4795                         return NF_DROP;
4796                 if (avc_has_perm(peer_sid, node_sid,
4797                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4798                         return NF_DROP;
4799         }
4800
4801         return NF_ACCEPT;
4802 }
4803
4804 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4805                                            struct sk_buff *skb,
4806                                            const struct net_device *in,
4807                                            const struct net_device *out,
4808                                            int (*okfn)(struct sk_buff *))
4809 {
4810         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4811 }
4812
4813 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4814 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4815                                            struct sk_buff *skb,
4816                                            const struct net_device *in,
4817                                            const struct net_device *out,
4818                                            int (*okfn)(struct sk_buff *))
4819 {
4820         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4821 }
4822 #endif  /* IPV6 */
4823
4824 #endif  /* CONFIG_NETFILTER */
4825
4826 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4827 {
4828         int err;
4829
4830         err = secondary_ops->netlink_send(sk, skb);
4831         if (err)
4832                 return err;
4833
4834         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4835                 err = selinux_nlmsg_perm(sk, skb);
4836
4837         return err;
4838 }
4839
4840 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4841 {
4842         int err;
4843         struct avc_audit_data ad;
4844
4845         err = secondary_ops->netlink_recv(skb, capability);
4846         if (err)
4847                 return err;
4848
4849         AVC_AUDIT_DATA_INIT(&ad, CAP);
4850         ad.u.cap = capability;
4851
4852         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4853                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4854 }
4855
4856 static int ipc_alloc_security(struct task_struct *task,
4857                               struct kern_ipc_perm *perm,
4858                               u16 sclass)
4859 {
4860         struct ipc_security_struct *isec;
4861         u32 sid;
4862
4863         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4864         if (!isec)
4865                 return -ENOMEM;
4866
4867         sid = task_sid(task);
4868         isec->sclass = sclass;
4869         isec->sid = sid;
4870         perm->security = isec;
4871
4872         return 0;
4873 }
4874
4875 static void ipc_free_security(struct kern_ipc_perm *perm)
4876 {
4877         struct ipc_security_struct *isec = perm->security;
4878         perm->security = NULL;
4879         kfree(isec);
4880 }
4881
4882 static int msg_msg_alloc_security(struct msg_msg *msg)
4883 {
4884         struct msg_security_struct *msec;
4885
4886         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4887         if (!msec)
4888                 return -ENOMEM;
4889
4890         msec->sid = SECINITSID_UNLABELED;
4891         msg->security = msec;
4892
4893         return 0;
4894 }
4895
4896 static void msg_msg_free_security(struct msg_msg *msg)
4897 {
4898         struct msg_security_struct *msec = msg->security;
4899
4900         msg->security = NULL;
4901         kfree(msec);
4902 }
4903
4904 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4905                         u32 perms)
4906 {
4907         struct ipc_security_struct *isec;
4908         struct avc_audit_data ad;
4909         u32 sid = current_sid();
4910
4911         isec = ipc_perms->security;
4912
4913         AVC_AUDIT_DATA_INIT(&ad, IPC);
4914         ad.u.ipc_id = ipc_perms->key;
4915
4916         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4917 }
4918
4919 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4920 {
4921         return msg_msg_alloc_security(msg);
4922 }
4923
4924 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4925 {
4926         msg_msg_free_security(msg);
4927 }
4928
4929 /* message queue security operations */
4930 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4931 {
4932         struct ipc_security_struct *isec;
4933         struct avc_audit_data ad;
4934         u32 sid = current_sid();
4935         int rc;
4936
4937         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4938         if (rc)
4939                 return rc;
4940
4941         isec = msq->q_perm.security;
4942
4943         AVC_AUDIT_DATA_INIT(&ad, IPC);
4944         ad.u.ipc_id = msq->q_perm.key;
4945
4946         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4947                           MSGQ__CREATE, &ad);
4948         if (rc) {
4949                 ipc_free_security(&msq->q_perm);
4950                 return rc;
4951         }
4952         return 0;
4953 }
4954
4955 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4956 {
4957         ipc_free_security(&msq->q_perm);
4958 }
4959
4960 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4961 {
4962         struct ipc_security_struct *isec;
4963         struct avc_audit_data ad;
4964         u32 sid = current_sid();
4965
4966         isec = msq->q_perm.security;
4967
4968         AVC_AUDIT_DATA_INIT(&ad, IPC);
4969         ad.u.ipc_id = msq->q_perm.key;
4970
4971         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4972                             MSGQ__ASSOCIATE, &ad);
4973 }
4974
4975 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4976 {
4977         int err;
4978         int perms;
4979
4980         switch (cmd) {
4981         case IPC_INFO:
4982         case MSG_INFO:
4983                 /* No specific object, just general system-wide information. */
4984                 return task_has_system(current, SYSTEM__IPC_INFO);
4985         case IPC_STAT:
4986         case MSG_STAT:
4987                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4988                 break;
4989         case IPC_SET:
4990                 perms = MSGQ__SETATTR;
4991                 break;
4992         case IPC_RMID:
4993                 perms = MSGQ__DESTROY;
4994                 break;
4995         default:
4996                 return 0;
4997         }
4998
4999         err = ipc_has_perm(&msq->q_perm, perms);
5000         return err;
5001 }
5002
5003 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5004 {
5005         struct ipc_security_struct *isec;
5006         struct msg_security_struct *msec;
5007         struct avc_audit_data ad;
5008         u32 sid = current_sid();
5009         int rc;
5010
5011         isec = msq->q_perm.security;
5012         msec = msg->security;
5013
5014         /*
5015          * First time through, need to assign label to the message
5016          */
5017         if (msec->sid == SECINITSID_UNLABELED) {
5018                 /*
5019                  * Compute new sid based on current process and
5020                  * message queue this message will be stored in
5021                  */
5022                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5023                                              &msec->sid);
5024                 if (rc)
5025                         return rc;
5026         }
5027
5028         AVC_AUDIT_DATA_INIT(&ad, IPC);
5029         ad.u.ipc_id = msq->q_perm.key;
5030
5031         /* Can this process write to the queue? */
5032         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5033                           MSGQ__WRITE, &ad);
5034         if (!rc)
5035                 /* Can this process send the message */
5036                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5037                                   MSG__SEND, &ad);
5038         if (!rc)
5039                 /* Can the message be put in the queue? */
5040                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5041                                   MSGQ__ENQUEUE, &ad);
5042
5043         return rc;
5044 }
5045
5046 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5047                                     struct task_struct *target,
5048                                     long type, int mode)
5049 {
5050         struct ipc_security_struct *isec;
5051         struct msg_security_struct *msec;
5052         struct avc_audit_data ad;
5053         u32 sid = task_sid(target);
5054         int rc;
5055
5056         isec = msq->q_perm.security;
5057         msec = msg->security;
5058
5059         AVC_AUDIT_DATA_INIT(&ad, IPC);
5060         ad.u.ipc_id = msq->q_perm.key;
5061
5062         rc = avc_has_perm(sid, isec->sid,
5063                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5064         if (!rc)
5065                 rc = avc_has_perm(sid, msec->sid,
5066                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5067         return rc;
5068 }
5069
5070 /* Shared Memory security operations */
5071 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5072 {
5073         struct ipc_security_struct *isec;
5074         struct avc_audit_data ad;
5075         u32 sid = current_sid();
5076         int rc;
5077
5078         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5079         if (rc)
5080                 return rc;
5081
5082         isec = shp->shm_perm.security;
5083
5084         AVC_AUDIT_DATA_INIT(&ad, IPC);
5085         ad.u.ipc_id = shp->shm_perm.key;
5086
5087         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5088                           SHM__CREATE, &ad);
5089         if (rc) {
5090                 ipc_free_security(&shp->shm_perm);
5091                 return rc;
5092         }
5093         return 0;
5094 }
5095
5096 static void selinux_shm_free_security(struct shmid_kernel *shp)
5097 {
5098         ipc_free_security(&shp->shm_perm);
5099 }
5100
5101 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5102 {
5103         struct ipc_security_struct *isec;
5104         struct avc_audit_data ad;
5105         u32 sid = current_sid();
5106
5107         isec = shp->shm_perm.security;
5108
5109         AVC_AUDIT_DATA_INIT(&ad, IPC);
5110         ad.u.ipc_id = shp->shm_perm.key;
5111
5112         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5113                             SHM__ASSOCIATE, &ad);
5114 }
5115
5116 /* Note, at this point, shp is locked down */
5117 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5118 {
5119         int perms;
5120         int err;
5121
5122         switch (cmd) {
5123         case IPC_INFO:
5124         case SHM_INFO:
5125                 /* No specific object, just general system-wide information. */
5126                 return task_has_system(current, SYSTEM__IPC_INFO);
5127         case IPC_STAT:
5128         case SHM_STAT:
5129                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5130                 break;
5131         case IPC_SET:
5132                 perms = SHM__SETATTR;
5133                 break;
5134         case SHM_LOCK:
5135         case SHM_UNLOCK:
5136                 perms = SHM__LOCK;
5137                 break;
5138         case IPC_RMID:
5139                 perms = SHM__DESTROY;
5140                 break;
5141         default:
5142                 return 0;
5143         }
5144
5145         err = ipc_has_perm(&shp->shm_perm, perms);
5146         return err;
5147 }
5148
5149 static int selinux_shm_shmat(struct shmid_kernel *shp,
5150                              char __user *shmaddr, int shmflg)
5151 {
5152         u32 perms;
5153         int rc;
5154
5155         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5156         if (rc)
5157                 return rc;
5158
5159         if (shmflg & SHM_RDONLY)
5160                 perms = SHM__READ;
5161         else
5162                 perms = SHM__READ | SHM__WRITE;
5163
5164         return ipc_has_perm(&shp->shm_perm, perms);
5165 }
5166
5167 /* Semaphore security operations */
5168 static int selinux_sem_alloc_security(struct sem_array *sma)
5169 {
5170         struct ipc_security_struct *isec;
5171         struct avc_audit_data ad;
5172         u32 sid = current_sid();
5173         int rc;
5174
5175         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5176         if (rc)
5177                 return rc;
5178
5179         isec = sma->sem_perm.security;
5180
5181         AVC_AUDIT_DATA_INIT(&ad, IPC);
5182         ad.u.ipc_id = sma->sem_perm.key;
5183
5184         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5185                           SEM__CREATE, &ad);
5186         if (rc) {
5187                 ipc_free_security(&sma->sem_perm);
5188                 return rc;
5189         }
5190         return 0;
5191 }
5192
5193 static void selinux_sem_free_security(struct sem_array *sma)
5194 {
5195         ipc_free_security(&sma->sem_perm);
5196 }
5197
5198 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5199 {
5200         struct ipc_security_struct *isec;
5201         struct avc_audit_data ad;
5202         u32 sid = current_sid();
5203
5204         isec = sma->sem_perm.security;
5205
5206         AVC_AUDIT_DATA_INIT(&ad, IPC);
5207         ad.u.ipc_id = sma->sem_perm.key;
5208
5209         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5210                             SEM__ASSOCIATE, &ad);
5211 }
5212
5213 /* Note, at this point, sma is locked down */
5214 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5215 {
5216         int err;
5217         u32 perms;
5218
5219         switch (cmd) {
5220         case IPC_INFO:
5221         case SEM_INFO:
5222                 /* No specific object, just general system-wide information. */
5223                 return task_has_system(current, SYSTEM__IPC_INFO);
5224         case GETPID:
5225         case GETNCNT:
5226         case GETZCNT:
5227                 perms = SEM__GETATTR;
5228                 break;
5229         case GETVAL:
5230         case GETALL:
5231                 perms = SEM__READ;
5232                 break;
5233         case SETVAL:
5234         case SETALL:
5235                 perms = SEM__WRITE;
5236                 break;
5237         case IPC_RMID:
5238                 perms = SEM__DESTROY;
5239                 break;
5240         case IPC_SET:
5241                 perms = SEM__SETATTR;
5242                 break;
5243         case IPC_STAT:
5244         case SEM_STAT:
5245                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5246                 break;
5247         default:
5248                 return 0;
5249         }
5250
5251         err = ipc_has_perm(&sma->sem_perm, perms);
5252         return err;
5253 }
5254
5255 static int selinux_sem_semop(struct sem_array *sma,
5256                              struct sembuf *sops, unsigned nsops, int alter)
5257 {
5258         u32 perms;
5259
5260         if (alter)
5261                 perms = SEM__READ | SEM__WRITE;
5262         else
5263                 perms = SEM__READ;
5264
5265         return ipc_has_perm(&sma->sem_perm, perms);
5266 }
5267
5268 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5269 {
5270         u32 av = 0;
5271
5272         av = 0;
5273         if (flag & S_IRUGO)
5274                 av |= IPC__UNIX_READ;
5275         if (flag & S_IWUGO)
5276                 av |= IPC__UNIX_WRITE;
5277
5278         if (av == 0)
5279                 return 0;
5280
5281         return ipc_has_perm(ipcp, av);
5282 }
5283
5284 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5285 {
5286         struct ipc_security_struct *isec = ipcp->security;
5287         *secid = isec->sid;
5288 }
5289
5290 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5291 {
5292         if (inode)
5293                 inode_doinit_with_dentry(inode, dentry);
5294 }
5295
5296 static int selinux_getprocattr(struct task_struct *p,
5297                                char *name, char **value)
5298 {
5299         const struct task_security_struct *__tsec;
5300         u32 sid;
5301         int error;
5302         unsigned len;
5303
5304         if (current != p) {
5305                 error = current_has_perm(p, PROCESS__GETATTR);
5306                 if (error)
5307                         return error;
5308         }
5309
5310         rcu_read_lock();
5311         __tsec = __task_cred(p)->security;
5312
5313         if (!strcmp(name, "current"))
5314                 sid = __tsec->sid;
5315         else if (!strcmp(name, "prev"))
5316                 sid = __tsec->osid;
5317         else if (!strcmp(name, "exec"))
5318                 sid = __tsec->exec_sid;
5319         else if (!strcmp(name, "fscreate"))
5320                 sid = __tsec->create_sid;
5321         else if (!strcmp(name, "keycreate"))
5322                 sid = __tsec->keycreate_sid;
5323         else if (!strcmp(name, "sockcreate"))
5324                 sid = __tsec->sockcreate_sid;
5325         else
5326                 goto invalid;
5327         rcu_read_unlock();
5328
5329         if (!sid)
5330                 return 0;
5331
5332         error = security_sid_to_context(sid, value, &len);
5333         if (error)
5334                 return error;
5335         return len;
5336
5337 invalid:
5338         rcu_read_unlock();
5339         return -EINVAL;
5340 }
5341
5342 static int selinux_setprocattr(struct task_struct *p,
5343                                char *name, void *value, size_t size)
5344 {
5345         struct task_security_struct *tsec;
5346         struct task_struct *tracer;
5347         struct cred *new;
5348         u32 sid = 0, ptsid;
5349         int error;
5350         char *str = value;
5351
5352         if (current != p) {
5353                 /* SELinux only allows a process to change its own
5354                    security attributes. */
5355                 return -EACCES;
5356         }
5357
5358         /*
5359          * Basic control over ability to set these attributes at all.
5360          * current == p, but we'll pass them separately in case the
5361          * above restriction is ever removed.
5362          */
5363         if (!strcmp(name, "exec"))
5364                 error = current_has_perm(p, PROCESS__SETEXEC);
5365         else if (!strcmp(name, "fscreate"))
5366                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5367         else if (!strcmp(name, "keycreate"))
5368                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5369         else if (!strcmp(name, "sockcreate"))
5370                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5371         else if (!strcmp(name, "current"))
5372                 error = current_has_perm(p, PROCESS__SETCURRENT);
5373         else
5374                 error = -EINVAL;
5375         if (error)
5376                 return error;
5377
5378         /* Obtain a SID for the context, if one was specified. */
5379         if (size && str[1] && str[1] != '\n') {
5380                 if (str[size-1] == '\n') {
5381                         str[size-1] = 0;
5382                         size--;
5383                 }
5384                 error = security_context_to_sid(value, size, &sid);
5385                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5386                         if (!capable(CAP_MAC_ADMIN))
5387                                 return error;
5388                         error = security_context_to_sid_force(value, size,
5389                                                               &sid);
5390                 }
5391                 if (error)
5392                         return error;
5393         }
5394
5395         new = prepare_creds();
5396         if (!new)
5397                 return -ENOMEM;
5398
5399         /* Permission checking based on the specified context is
5400            performed during the actual operation (execve,
5401            open/mkdir/...), when we know the full context of the
5402            operation.  See selinux_bprm_set_creds for the execve
5403            checks and may_create for the file creation checks. The
5404            operation will then fail if the context is not permitted. */
5405         tsec = new->security;
5406         if (!strcmp(name, "exec")) {
5407                 tsec->exec_sid = sid;
5408         } else if (!strcmp(name, "fscreate")) {
5409                 tsec->create_sid = sid;
5410         } else if (!strcmp(name, "keycreate")) {
5411                 error = may_create_key(sid, p);
5412                 if (error)
5413                         goto abort_change;
5414                 tsec->keycreate_sid = sid;
5415         } else if (!strcmp(name, "sockcreate")) {
5416                 tsec->sockcreate_sid = sid;
5417         } else if (!strcmp(name, "current")) {
5418                 error = -EINVAL;
5419                 if (sid == 0)
5420                         goto abort_change;
5421
5422                 /* Only allow single threaded processes to change context */
5423                 error = -EPERM;
5424                 if (!is_single_threaded(p)) {
5425                         error = security_bounded_transition(tsec->sid, sid);
5426                         if (error)
5427                                 goto abort_change;
5428                 }
5429
5430                 /* Check permissions for the transition. */
5431                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5432                                      PROCESS__DYNTRANSITION, NULL);
5433                 if (error)
5434                         goto abort_change;
5435
5436                 /* Check for ptracing, and update the task SID if ok.
5437                    Otherwise, leave SID unchanged and fail. */
5438                 ptsid = 0;
5439                 task_lock(p);
5440                 tracer = tracehook_tracer_task(p);
5441                 if (tracer)
5442                         ptsid = task_sid(tracer);
5443                 task_unlock(p);
5444
5445                 if (tracer) {
5446                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5447                                              PROCESS__PTRACE, NULL);
5448                         if (error)
5449                                 goto abort_change;
5450                 }
5451
5452                 tsec->sid = sid;
5453         } else {
5454                 error = -EINVAL;
5455                 goto abort_change;
5456         }
5457
5458         commit_creds(new);
5459         return size;
5460
5461 abort_change:
5462         abort_creds(new);
5463         return error;
5464 }
5465
5466 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5467 {
5468         return security_sid_to_context(secid, secdata, seclen);
5469 }
5470
5471 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5472 {
5473         return security_context_to_sid(secdata, seclen, secid);
5474 }
5475
5476 static void selinux_release_secctx(char *secdata, u32 seclen)
5477 {
5478         kfree(secdata);
5479 }
5480
5481 #ifdef CONFIG_KEYS
5482
5483 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5484                              unsigned long flags)
5485 {
5486         const struct task_security_struct *tsec;
5487         struct key_security_struct *ksec;
5488
5489         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5490         if (!ksec)
5491                 return -ENOMEM;
5492
5493         tsec = cred->security;
5494         if (tsec->keycreate_sid)
5495                 ksec->sid = tsec->keycreate_sid;
5496         else
5497                 ksec->sid = tsec->sid;
5498
5499         k->security = ksec;
5500         return 0;
5501 }
5502
5503 static void selinux_key_free(struct key *k)
5504 {
5505         struct key_security_struct *ksec = k->security;
5506
5507         k->security = NULL;
5508         kfree(ksec);
5509 }
5510
5511 static int selinux_key_permission(key_ref_t key_ref,
5512                                   const struct cred *cred,
5513                                   key_perm_t perm)
5514 {
5515         struct key *key;
5516         struct key_security_struct *ksec;
5517         u32 sid;
5518
5519         /* if no specific permissions are requested, we skip the
5520            permission check. No serious, additional covert channels
5521            appear to be created. */
5522         if (perm == 0)
5523                 return 0;
5524
5525         sid = cred_sid(cred);
5526
5527         key = key_ref_to_ptr(key_ref);
5528         ksec = key->security;
5529
5530         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5531 }
5532
5533 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5534 {
5535         struct key_security_struct *ksec = key->security;
5536         char *context = NULL;
5537         unsigned len;
5538         int rc;
5539
5540         rc = security_sid_to_context(ksec->sid, &context, &len);
5541         if (!rc)
5542                 rc = len;
5543         *_buffer = context;
5544         return rc;
5545 }
5546
5547 #endif
5548
5549 static struct security_operations selinux_ops = {
5550         .name =                         "selinux",
5551
5552         .ptrace_may_access =            selinux_ptrace_may_access,
5553         .ptrace_traceme =               selinux_ptrace_traceme,
5554         .capget =                       selinux_capget,
5555         .capset =                       selinux_capset,
5556         .sysctl =                       selinux_sysctl,
5557         .capable =                      selinux_capable,
5558         .quotactl =                     selinux_quotactl,
5559         .quota_on =                     selinux_quota_on,
5560         .syslog =                       selinux_syslog,
5561         .vm_enough_memory =             selinux_vm_enough_memory,
5562
5563         .netlink_send =                 selinux_netlink_send,
5564         .netlink_recv =                 selinux_netlink_recv,
5565
5566         .bprm_set_creds =               selinux_bprm_set_creds,
5567         .bprm_committing_creds =        selinux_bprm_committing_creds,
5568         .bprm_committed_creds =         selinux_bprm_committed_creds,
5569         .bprm_secureexec =              selinux_bprm_secureexec,
5570
5571         .sb_alloc_security =            selinux_sb_alloc_security,
5572         .sb_free_security =             selinux_sb_free_security,
5573         .sb_copy_data =                 selinux_sb_copy_data,
5574         .sb_kern_mount =                selinux_sb_kern_mount,
5575         .sb_show_options =              selinux_sb_show_options,
5576         .sb_statfs =                    selinux_sb_statfs,
5577         .sb_mount =                     selinux_mount,
5578         .sb_umount =                    selinux_umount,
5579         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5580         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5581         .sb_parse_opts_str =            selinux_parse_opts_str,
5582
5583
5584         .inode_alloc_security =         selinux_inode_alloc_security,
5585         .inode_free_security =          selinux_inode_free_security,
5586         .inode_init_security =          selinux_inode_init_security,
5587         .inode_create =                 selinux_inode_create,
5588         .inode_link =                   selinux_inode_link,
5589         .inode_unlink =                 selinux_inode_unlink,
5590         .inode_symlink =                selinux_inode_symlink,
5591         .inode_mkdir =                  selinux_inode_mkdir,
5592         .inode_rmdir =                  selinux_inode_rmdir,
5593         .inode_mknod =                  selinux_inode_mknod,
5594         .inode_rename =                 selinux_inode_rename,
5595         .inode_readlink =               selinux_inode_readlink,
5596         .inode_follow_link =            selinux_inode_follow_link,
5597         .inode_permission =             selinux_inode_permission,
5598         .inode_setattr =                selinux_inode_setattr,
5599         .inode_getattr =                selinux_inode_getattr,
5600         .inode_setxattr =               selinux_inode_setxattr,
5601         .inode_post_setxattr =          selinux_inode_post_setxattr,
5602         .inode_getxattr =               selinux_inode_getxattr,
5603         .inode_listxattr =              selinux_inode_listxattr,
5604         .inode_removexattr =            selinux_inode_removexattr,
5605         .inode_getsecurity =            selinux_inode_getsecurity,
5606         .inode_setsecurity =            selinux_inode_setsecurity,
5607         .inode_listsecurity =           selinux_inode_listsecurity,
5608         .inode_need_killpriv =          selinux_inode_need_killpriv,
5609         .inode_killpriv =               selinux_inode_killpriv,
5610         .inode_getsecid =               selinux_inode_getsecid,
5611
5612         .file_permission =              selinux_file_permission,
5613         .file_alloc_security =          selinux_file_alloc_security,
5614         .file_free_security =           selinux_file_free_security,
5615         .file_ioctl =                   selinux_file_ioctl,
5616         .file_mmap =                    selinux_file_mmap,
5617         .file_mprotect =                selinux_file_mprotect,
5618         .file_lock =                    selinux_file_lock,
5619         .file_fcntl =                   selinux_file_fcntl,
5620         .file_set_fowner =              selinux_file_set_fowner,
5621         .file_send_sigiotask =          selinux_file_send_sigiotask,
5622         .file_receive =                 selinux_file_receive,
5623
5624         .dentry_open =                  selinux_dentry_open,
5625
5626         .task_create =                  selinux_task_create,
5627         .cred_free =                    selinux_cred_free,
5628         .cred_prepare =                 selinux_cred_prepare,
5629         .cred_commit =                  selinux_cred_commit,
5630         .kernel_act_as =                selinux_kernel_act_as,
5631         .kernel_create_files_as =       selinux_kernel_create_files_as,
5632         .task_setuid =                  selinux_task_setuid,
5633         .task_fix_setuid =              selinux_task_fix_setuid,
5634         .task_setgid =                  selinux_task_setgid,
5635         .task_setpgid =                 selinux_task_setpgid,
5636         .task_getpgid =                 selinux_task_getpgid,
5637         .task_getsid =                  selinux_task_getsid,
5638         .task_getsecid =                selinux_task_getsecid,
5639         .task_setgroups =               selinux_task_setgroups,
5640         .task_setnice =                 selinux_task_setnice,
5641         .task_setioprio =               selinux_task_setioprio,
5642         .task_getioprio =               selinux_task_getioprio,
5643         .task_setrlimit =               selinux_task_setrlimit,
5644         .task_setscheduler =            selinux_task_setscheduler,
5645         .task_getscheduler =            selinux_task_getscheduler,
5646         .task_movememory =              selinux_task_movememory,
5647         .task_kill =                    selinux_task_kill,
5648         .task_wait =                    selinux_task_wait,
5649         .task_prctl =                   selinux_task_prctl,
5650         .task_to_inode =                selinux_task_to_inode,
5651
5652         .ipc_permission =               selinux_ipc_permission,
5653         .ipc_getsecid =                 selinux_ipc_getsecid,
5654
5655         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5656         .msg_msg_free_security =        selinux_msg_msg_free_security,
5657
5658         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5659         .msg_queue_free_security =      selinux_msg_queue_free_security,
5660         .msg_queue_associate =          selinux_msg_queue_associate,
5661         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5662         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5663         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5664
5665         .shm_alloc_security =           selinux_shm_alloc_security,
5666         .shm_free_security =            selinux_shm_free_security,
5667         .shm_associate =                selinux_shm_associate,
5668         .shm_shmctl =                   selinux_shm_shmctl,
5669         .shm_shmat =                    selinux_shm_shmat,
5670
5671         .sem_alloc_security =           selinux_sem_alloc_security,
5672         .sem_free_security =            selinux_sem_free_security,
5673         .sem_associate =                selinux_sem_associate,
5674         .sem_semctl =                   selinux_sem_semctl,
5675         .sem_semop =                    selinux_sem_semop,
5676
5677         .d_instantiate =                selinux_d_instantiate,
5678
5679         .getprocattr =                  selinux_getprocattr,
5680         .setprocattr =                  selinux_setprocattr,
5681
5682         .secid_to_secctx =              selinux_secid_to_secctx,
5683         .secctx_to_secid =              selinux_secctx_to_secid,
5684         .release_secctx =               selinux_release_secctx,
5685
5686         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5687         .unix_may_send =                selinux_socket_unix_may_send,
5688
5689         .socket_create =                selinux_socket_create,
5690         .socket_post_create =           selinux_socket_post_create,
5691         .socket_bind =                  selinux_socket_bind,
5692         .socket_connect =               selinux_socket_connect,
5693         .socket_listen =                selinux_socket_listen,
5694         .socket_accept =                selinux_socket_accept,
5695         .socket_sendmsg =               selinux_socket_sendmsg,
5696         .socket_recvmsg =               selinux_socket_recvmsg,
5697         .socket_getsockname =           selinux_socket_getsockname,
5698         .socket_getpeername =           selinux_socket_getpeername,
5699         .socket_getsockopt =            selinux_socket_getsockopt,
5700         .socket_setsockopt =            selinux_socket_setsockopt,
5701         .socket_shutdown =              selinux_socket_shutdown,
5702         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5703         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5704         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5705         .sk_alloc_security =            selinux_sk_alloc_security,
5706         .sk_free_security =             selinux_sk_free_security,
5707         .sk_clone_security =            selinux_sk_clone_security,
5708         .sk_getsecid =                  selinux_sk_getsecid,
5709         .sock_graft =                   selinux_sock_graft,
5710         .inet_conn_request =            selinux_inet_conn_request,
5711         .inet_csk_clone =               selinux_inet_csk_clone,
5712         .inet_conn_established =        selinux_inet_conn_established,
5713         .req_classify_flow =            selinux_req_classify_flow,
5714
5715 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5716         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5717         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5718         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5719         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5720         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5721         .xfrm_state_free_security =     selinux_xfrm_state_free,
5722         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5723         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5724         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5725         .xfrm_decode_session =          selinux_xfrm_decode_session,
5726 #endif
5727
5728 #ifdef CONFIG_KEYS
5729         .key_alloc =                    selinux_key_alloc,
5730         .key_free =                     selinux_key_free,
5731         .key_permission =               selinux_key_permission,
5732         .key_getsecurity =              selinux_key_getsecurity,
5733 #endif
5734
5735 #ifdef CONFIG_AUDIT
5736         .audit_rule_init =              selinux_audit_rule_init,
5737         .audit_rule_known =             selinux_audit_rule_known,
5738         .audit_rule_match =             selinux_audit_rule_match,
5739         .audit_rule_free =              selinux_audit_rule_free,
5740 #endif
5741 };
5742
5743 static __init int selinux_init(void)
5744 {
5745         if (!security_module_enable(&selinux_ops)) {
5746                 selinux_enabled = 0;
5747                 return 0;
5748         }
5749
5750         if (!selinux_enabled) {
5751                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5752                 return 0;
5753         }
5754
5755         printk(KERN_INFO "SELinux:  Initializing.\n");
5756
5757         /* Set the security state for the initial task. */
5758         cred_init_security();
5759
5760         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5761                                             sizeof(struct inode_security_struct),
5762                                             0, SLAB_PANIC, NULL);
5763         avc_init();
5764
5765         secondary_ops = security_ops;
5766         if (!secondary_ops)
5767                 panic("SELinux: No initial security operations\n");
5768         if (register_security(&selinux_ops))
5769                 panic("SELinux: Unable to register with kernel.\n");
5770
5771         if (selinux_enforcing)
5772                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5773         else
5774                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5775
5776         return 0;
5777 }
5778
5779 void selinux_complete_init(void)
5780 {
5781         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5782
5783         /* Set up any superblocks initialized prior to the policy load. */
5784         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5785         spin_lock(&sb_lock);
5786         spin_lock(&sb_security_lock);
5787 next_sb:
5788         if (!list_empty(&superblock_security_head)) {
5789                 struct superblock_security_struct *sbsec =
5790                                 list_entry(superblock_security_head.next,
5791                                            struct superblock_security_struct,
5792                                            list);
5793                 struct super_block *sb = sbsec->sb;
5794                 sb->s_count++;
5795                 spin_unlock(&sb_security_lock);
5796                 spin_unlock(&sb_lock);
5797                 down_read(&sb->s_umount);
5798                 if (sb->s_root)
5799                         superblock_doinit(sb, NULL);
5800                 drop_super(sb);
5801                 spin_lock(&sb_lock);
5802                 spin_lock(&sb_security_lock);
5803                 list_del_init(&sbsec->list);
5804                 goto next_sb;
5805         }
5806         spin_unlock(&sb_security_lock);
5807         spin_unlock(&sb_lock);
5808 }
5809
5810 /* SELinux requires early initialization in order to label
5811    all processes and objects when they are created. */
5812 security_initcall(selinux_init);
5813
5814 #if defined(CONFIG_NETFILTER)
5815
5816 static struct nf_hook_ops selinux_ipv4_ops[] = {
5817         {
5818                 .hook =         selinux_ipv4_postroute,
5819                 .owner =        THIS_MODULE,
5820                 .pf =           PF_INET,
5821                 .hooknum =      NF_INET_POST_ROUTING,
5822                 .priority =     NF_IP_PRI_SELINUX_LAST,
5823         },
5824         {
5825                 .hook =         selinux_ipv4_forward,
5826                 .owner =        THIS_MODULE,
5827                 .pf =           PF_INET,
5828                 .hooknum =      NF_INET_FORWARD,
5829                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5830         },
5831         {
5832                 .hook =         selinux_ipv4_output,
5833                 .owner =        THIS_MODULE,
5834                 .pf =           PF_INET,
5835                 .hooknum =      NF_INET_LOCAL_OUT,
5836                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5837         }
5838 };
5839
5840 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5841
5842 static struct nf_hook_ops selinux_ipv6_ops[] = {
5843         {
5844                 .hook =         selinux_ipv6_postroute,
5845                 .owner =        THIS_MODULE,
5846                 .pf =           PF_INET6,
5847                 .hooknum =      NF_INET_POST_ROUTING,
5848                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5849         },
5850         {
5851                 .hook =         selinux_ipv6_forward,
5852                 .owner =        THIS_MODULE,
5853                 .pf =           PF_INET6,
5854                 .hooknum =      NF_INET_FORWARD,
5855                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5856         }
5857 };
5858
5859 #endif  /* IPV6 */
5860
5861 static int __init selinux_nf_ip_init(void)
5862 {
5863         int err = 0;
5864
5865         if (!selinux_enabled)
5866                 goto out;
5867
5868         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5869
5870         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5871         if (err)
5872                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5873
5874 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5875         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5876         if (err)
5877                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5878 #endif  /* IPV6 */
5879
5880 out:
5881         return err;
5882 }
5883
5884 __initcall(selinux_nf_ip_init);
5885
5886 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5887 static void selinux_nf_ip_exit(void)
5888 {
5889         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5890
5891         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5892 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5893         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5894 #endif  /* IPV6 */
5895 }
5896 #endif
5897
5898 #else /* CONFIG_NETFILTER */
5899
5900 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5901 #define selinux_nf_ip_exit()
5902 #endif
5903
5904 #endif /* CONFIG_NETFILTER */
5905
5906 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5907 static int selinux_disabled;
5908
5909 int selinux_disable(void)
5910 {
5911         extern void exit_sel_fs(void);
5912
5913         if (ss_initialized) {
5914                 /* Not permitted after initial policy load. */
5915                 return -EINVAL;
5916         }
5917
5918         if (selinux_disabled) {
5919                 /* Only do this once. */
5920                 return -EINVAL;
5921         }
5922
5923         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5924
5925         selinux_disabled = 1;
5926         selinux_enabled = 0;
5927
5928         /* Reset security_ops to the secondary module, dummy or capability. */
5929         security_ops = secondary_ops;
5930
5931         /* Unregister netfilter hooks. */
5932         selinux_nf_ip_exit();
5933
5934         /* Unregister selinuxfs. */
5935         exit_sel_fs();
5936
5937         return 0;
5938 }
5939 #endif