]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - security/selinux/hooks.c
SELinux: Fix a potentially uninitialised variable in SELinux hooks
[linux-2.6-omap-h63xx.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78
79 #include "avc.h"
80 #include "objsec.h"
81 #include "netif.h"
82 #include "netnode.h"
83 #include "netport.h"
84 #include "xfrm.h"
85 #include "netlabel.h"
86 #include "audit.h"
87
88 #define XATTR_SELINUX_SUFFIX "selinux"
89 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
90
91 #define NUM_SEL_MNT_OPTS 4
92
93 extern unsigned int policydb_loaded_version;
94 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
95 extern int selinux_compat_net;
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155         return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /* Allocate and free functions for each kind of security blob. */
159
160 static int task_alloc_security(struct task_struct *task)
161 {
162         struct task_security_struct *tsec;
163
164         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
165         if (!tsec)
166                 return -ENOMEM;
167
168         tsec->osid = tsec->sid = SECINITSID_UNLABELED;
169         task->security = tsec;
170
171         return 0;
172 }
173
174 static void task_free_security(struct task_struct *task)
175 {
176         struct task_security_struct *tsec = task->security;
177         task->security = NULL;
178         kfree(tsec);
179 }
180
181 static int inode_alloc_security(struct inode *inode)
182 {
183         struct task_security_struct *tsec = current->security;
184         struct inode_security_struct *isec;
185
186         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
187         if (!isec)
188                 return -ENOMEM;
189
190         mutex_init(&isec->lock);
191         INIT_LIST_HEAD(&isec->list);
192         isec->inode = inode;
193         isec->sid = SECINITSID_UNLABELED;
194         isec->sclass = SECCLASS_FILE;
195         isec->task_sid = tsec->sid;
196         inode->i_security = isec;
197
198         return 0;
199 }
200
201 static void inode_free_security(struct inode *inode)
202 {
203         struct inode_security_struct *isec = inode->i_security;
204         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
205
206         spin_lock(&sbsec->isec_lock);
207         if (!list_empty(&isec->list))
208                 list_del_init(&isec->list);
209         spin_unlock(&sbsec->isec_lock);
210
211         inode->i_security = NULL;
212         kmem_cache_free(sel_inode_cache, isec);
213 }
214
215 static int file_alloc_security(struct file *file)
216 {
217         struct task_security_struct *tsec = current->security;
218         struct file_security_struct *fsec;
219
220         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
221         if (!fsec)
222                 return -ENOMEM;
223
224         fsec->sid = tsec->sid;
225         fsec->fown_sid = tsec->sid;
226         file->f_security = fsec;
227
228         return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233         struct file_security_struct *fsec = file->f_security;
234         file->f_security = NULL;
235         kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240         struct superblock_security_struct *sbsec;
241
242         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243         if (!sbsec)
244                 return -ENOMEM;
245
246         mutex_init(&sbsec->lock);
247         INIT_LIST_HEAD(&sbsec->list);
248         INIT_LIST_HEAD(&sbsec->isec_head);
249         spin_lock_init(&sbsec->isec_lock);
250         sbsec->sb = sb;
251         sbsec->sid = SECINITSID_UNLABELED;
252         sbsec->def_sid = SECINITSID_FILE;
253         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254         sb->s_security = sbsec;
255
256         return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261         struct superblock_security_struct *sbsec = sb->s_security;
262
263         spin_lock(&sb_security_lock);
264         if (!list_empty(&sbsec->list))
265                 list_del_init(&sbsec->list);
266         spin_unlock(&sb_security_lock);
267
268         sb->s_security = NULL;
269         kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274         struct sk_security_struct *ssec;
275
276         ssec = kzalloc(sizeof(*ssec), priority);
277         if (!ssec)
278                 return -ENOMEM;
279
280         ssec->peer_sid = SECINITSID_UNLABELED;
281         ssec->sid = SECINITSID_UNLABELED;
282         sk->sk_security = ssec;
283
284         selinux_netlbl_sk_security_reset(ssec, family);
285
286         return 0;
287 }
288
289 static void sk_free_security(struct sock *sk)
290 {
291         struct sk_security_struct *ssec = sk->sk_security;
292
293         sk->sk_security = NULL;
294         kfree(ssec);
295 }
296
297 /* The security server must be initialized before
298    any labeling or access decisions can be provided. */
299 extern int ss_initialized;
300
301 /* The file system's label must be initialized prior to use. */
302
303 static char *labeling_behaviors[6] = {
304         "uses xattr",
305         "uses transition SIDs",
306         "uses task SIDs",
307         "uses genfs_contexts",
308         "not configured for labeling",
309         "uses mountpoint labeling",
310 };
311
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313
314 static inline int inode_doinit(struct inode *inode)
315 {
316         return inode_doinit_with_dentry(inode, NULL);
317 }
318
319 enum {
320         Opt_error = -1,
321         Opt_context = 1,
322         Opt_fscontext = 2,
323         Opt_defcontext = 3,
324         Opt_rootcontext = 4,
325 };
326
327 static match_table_t tokens = {
328         {Opt_context, CONTEXT_STR "%s"},
329         {Opt_fscontext, FSCONTEXT_STR "%s"},
330         {Opt_defcontext, DEFCONTEXT_STR "%s"},
331         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
332         {Opt_error, NULL},
333 };
334
335 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
336
337 static int may_context_mount_sb_relabel(u32 sid,
338                         struct superblock_security_struct *sbsec,
339                         struct task_security_struct *tsec)
340 {
341         int rc;
342
343         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
344                           FILESYSTEM__RELABELFROM, NULL);
345         if (rc)
346                 return rc;
347
348         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
349                           FILESYSTEM__RELABELTO, NULL);
350         return rc;
351 }
352
353 static int may_context_mount_inode_relabel(u32 sid,
354                         struct superblock_security_struct *sbsec,
355                         struct task_security_struct *tsec)
356 {
357         int rc;
358         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
359                           FILESYSTEM__RELABELFROM, NULL);
360         if (rc)
361                 return rc;
362
363         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
364                           FILESYSTEM__ASSOCIATE, NULL);
365         return rc;
366 }
367
368 static int sb_finish_set_opts(struct super_block *sb)
369 {
370         struct superblock_security_struct *sbsec = sb->s_security;
371         struct dentry *root = sb->s_root;
372         struct inode *root_inode = root->d_inode;
373         int rc = 0;
374
375         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
376                 /* Make sure that the xattr handler exists and that no
377                    error other than -ENODATA is returned by getxattr on
378                    the root directory.  -ENODATA is ok, as this may be
379                    the first boot of the SELinux kernel before we have
380                    assigned xattr values to the filesystem. */
381                 if (!root_inode->i_op->getxattr) {
382                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
383                                "xattr support\n", sb->s_id, sb->s_type->name);
384                         rc = -EOPNOTSUPP;
385                         goto out;
386                 }
387                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
388                 if (rc < 0 && rc != -ENODATA) {
389                         if (rc == -EOPNOTSUPP)
390                                 printk(KERN_WARNING "SELinux: (dev %s, type "
391                                        "%s) has no security xattr handler\n",
392                                        sb->s_id, sb->s_type->name);
393                         else
394                                 printk(KERN_WARNING "SELinux: (dev %s, type "
395                                        "%s) getxattr errno %d\n", sb->s_id,
396                                        sb->s_type->name, -rc);
397                         goto out;
398                 }
399         }
400
401         sbsec->initialized = 1;
402
403         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
404                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
405                        sb->s_id, sb->s_type->name);
406         else
407                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
408                        sb->s_id, sb->s_type->name,
409                        labeling_behaviors[sbsec->behavior-1]);
410
411         /* Initialize the root inode. */
412         rc = inode_doinit_with_dentry(root_inode, root);
413
414         /* Initialize any other inodes associated with the superblock, e.g.
415            inodes created prior to initial policy load or inodes created
416            during get_sb by a pseudo filesystem that directly
417            populates itself. */
418         spin_lock(&sbsec->isec_lock);
419 next_inode:
420         if (!list_empty(&sbsec->isec_head)) {
421                 struct inode_security_struct *isec =
422                                 list_entry(sbsec->isec_head.next,
423                                            struct inode_security_struct, list);
424                 struct inode *inode = isec->inode;
425                 spin_unlock(&sbsec->isec_lock);
426                 inode = igrab(inode);
427                 if (inode) {
428                         if (!IS_PRIVATE(inode))
429                                 inode_doinit(inode);
430                         iput(inode);
431                 }
432                 spin_lock(&sbsec->isec_lock);
433                 list_del_init(&isec->list);
434                 goto next_inode;
435         }
436         spin_unlock(&sbsec->isec_lock);
437 out:
438         return rc;
439 }
440
441 /*
442  * This function should allow an FS to ask what it's mount security
443  * options were so it can use those later for submounts, displaying
444  * mount options, or whatever.
445  */
446 static int selinux_get_mnt_opts(const struct super_block *sb,
447                                 struct security_mnt_opts *opts)
448 {
449         int rc = 0, i;
450         struct superblock_security_struct *sbsec = sb->s_security;
451         char *context = NULL;
452         u32 len;
453         char tmp;
454
455         security_init_mnt_opts(opts);
456
457         if (!sbsec->initialized)
458                 return -EINVAL;
459
460         if (!ss_initialized)
461                 return -EINVAL;
462
463         /*
464          * if we ever use sbsec flags for anything other than tracking mount
465          * settings this is going to need a mask
466          */
467         tmp = sbsec->flags;
468         /* count the number of mount options for this sb */
469         for (i = 0; i < 8; i++) {
470                 if (tmp & 0x01)
471                         opts->num_mnt_opts++;
472                 tmp >>= 1;
473         }
474
475         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
476         if (!opts->mnt_opts) {
477                 rc = -ENOMEM;
478                 goto out_free;
479         }
480
481         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
482         if (!opts->mnt_opts_flags) {
483                 rc = -ENOMEM;
484                 goto out_free;
485         }
486
487         i = 0;
488         if (sbsec->flags & FSCONTEXT_MNT) {
489                 rc = security_sid_to_context(sbsec->sid, &context, &len);
490                 if (rc)
491                         goto out_free;
492                 opts->mnt_opts[i] = context;
493                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
494         }
495         if (sbsec->flags & CONTEXT_MNT) {
496                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
497                 if (rc)
498                         goto out_free;
499                 opts->mnt_opts[i] = context;
500                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
501         }
502         if (sbsec->flags & DEFCONTEXT_MNT) {
503                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
504                 if (rc)
505                         goto out_free;
506                 opts->mnt_opts[i] = context;
507                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
508         }
509         if (sbsec->flags & ROOTCONTEXT_MNT) {
510                 struct inode *root = sbsec->sb->s_root->d_inode;
511                 struct inode_security_struct *isec = root->i_security;
512
513                 rc = security_sid_to_context(isec->sid, &context, &len);
514                 if (rc)
515                         goto out_free;
516                 opts->mnt_opts[i] = context;
517                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
518         }
519
520         BUG_ON(i != opts->num_mnt_opts);
521
522         return 0;
523
524 out_free:
525         security_free_mnt_opts(opts);
526         return rc;
527 }
528
529 static int bad_option(struct superblock_security_struct *sbsec, char flag,
530                       u32 old_sid, u32 new_sid)
531 {
532         /* check if the old mount command had the same options */
533         if (sbsec->initialized)
534                 if (!(sbsec->flags & flag) ||
535                     (old_sid != new_sid))
536                         return 1;
537
538         /* check if we were passed the same options twice,
539          * aka someone passed context=a,context=b
540          */
541         if (!sbsec->initialized)
542                 if (sbsec->flags & flag)
543                         return 1;
544         return 0;
545 }
546
547 /*
548  * Allow filesystems with binary mount data to explicitly set mount point
549  * labeling information.
550  */
551 static int selinux_set_mnt_opts(struct super_block *sb,
552                                 struct security_mnt_opts *opts)
553 {
554         int rc = 0, i;
555         struct task_security_struct *tsec = current->security;
556         struct superblock_security_struct *sbsec = sb->s_security;
557         const char *name = sb->s_type->name;
558         struct inode *inode = sbsec->sb->s_root->d_inode;
559         struct inode_security_struct *root_isec = inode->i_security;
560         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
561         u32 defcontext_sid = 0;
562         char **mount_options = opts->mnt_opts;
563         int *flags = opts->mnt_opts_flags;
564         int num_opts = opts->num_mnt_opts;
565
566         mutex_lock(&sbsec->lock);
567
568         if (!ss_initialized) {
569                 if (!num_opts) {
570                         /* Defer initialization until selinux_complete_init,
571                            after the initial policy is loaded and the security
572                            server is ready to handle calls. */
573                         spin_lock(&sb_security_lock);
574                         if (list_empty(&sbsec->list))
575                                 list_add(&sbsec->list, &superblock_security_head);
576                         spin_unlock(&sb_security_lock);
577                         goto out;
578                 }
579                 rc = -EINVAL;
580                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
581                         "before the security server is initialized\n");
582                 goto out;
583         }
584
585         /*
586          * Binary mount data FS will come through this function twice.  Once
587          * from an explicit call and once from the generic calls from the vfs.
588          * Since the generic VFS calls will not contain any security mount data
589          * we need to skip the double mount verification.
590          *
591          * This does open a hole in which we will not notice if the first
592          * mount using this sb set explict options and a second mount using
593          * this sb does not set any security options.  (The first options
594          * will be used for both mounts)
595          */
596         if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
597             && (num_opts == 0))
598                 goto out;
599
600         /*
601          * parse the mount options, check if they are valid sids.
602          * also check if someone is trying to mount the same sb more
603          * than once with different security options.
604          */
605         for (i = 0; i < num_opts; i++) {
606                 u32 sid;
607                 rc = security_context_to_sid(mount_options[i],
608                                              strlen(mount_options[i]), &sid);
609                 if (rc) {
610                         printk(KERN_WARNING "SELinux: security_context_to_sid"
611                                "(%s) failed for (dev %s, type %s) errno=%d\n",
612                                mount_options[i], sb->s_id, name, rc);
613                         goto out;
614                 }
615                 switch (flags[i]) {
616                 case FSCONTEXT_MNT:
617                         fscontext_sid = sid;
618
619                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
620                                         fscontext_sid))
621                                 goto out_double_mount;
622
623                         sbsec->flags |= FSCONTEXT_MNT;
624                         break;
625                 case CONTEXT_MNT:
626                         context_sid = sid;
627
628                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
629                                         context_sid))
630                                 goto out_double_mount;
631
632                         sbsec->flags |= CONTEXT_MNT;
633                         break;
634                 case ROOTCONTEXT_MNT:
635                         rootcontext_sid = sid;
636
637                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
638                                         rootcontext_sid))
639                                 goto out_double_mount;
640
641                         sbsec->flags |= ROOTCONTEXT_MNT;
642
643                         break;
644                 case DEFCONTEXT_MNT:
645                         defcontext_sid = sid;
646
647                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
648                                         defcontext_sid))
649                                 goto out_double_mount;
650
651                         sbsec->flags |= DEFCONTEXT_MNT;
652
653                         break;
654                 default:
655                         rc = -EINVAL;
656                         goto out;
657                 }
658         }
659
660         if (sbsec->initialized) {
661                 /* previously mounted with options, but not on this attempt? */
662                 if (sbsec->flags && !num_opts)
663                         goto out_double_mount;
664                 rc = 0;
665                 goto out;
666         }
667
668         if (strcmp(sb->s_type->name, "proc") == 0)
669                 sbsec->proc = 1;
670
671         /* Determine the labeling behavior to use for this filesystem type. */
672         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
673         if (rc) {
674                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
675                        __func__, sb->s_type->name, rc);
676                 goto out;
677         }
678
679         /* sets the context of the superblock for the fs being mounted. */
680         if (fscontext_sid) {
681
682                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
683                 if (rc)
684                         goto out;
685
686                 sbsec->sid = fscontext_sid;
687         }
688
689         /*
690          * Switch to using mount point labeling behavior.
691          * sets the label used on all file below the mountpoint, and will set
692          * the superblock context if not already set.
693          */
694         if (context_sid) {
695                 if (!fscontext_sid) {
696                         rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
697                         if (rc)
698                                 goto out;
699                         sbsec->sid = context_sid;
700                 } else {
701                         rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
702                         if (rc)
703                                 goto out;
704                 }
705                 if (!rootcontext_sid)
706                         rootcontext_sid = context_sid;
707
708                 sbsec->mntpoint_sid = context_sid;
709                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
710         }
711
712         if (rootcontext_sid) {
713                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
714                 if (rc)
715                         goto out;
716
717                 root_isec->sid = rootcontext_sid;
718                 root_isec->initialized = 1;
719         }
720
721         if (defcontext_sid) {
722                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
723                         rc = -EINVAL;
724                         printk(KERN_WARNING "SELinux: defcontext option is "
725                                "invalid for this filesystem type\n");
726                         goto out;
727                 }
728
729                 if (defcontext_sid != sbsec->def_sid) {
730                         rc = may_context_mount_inode_relabel(defcontext_sid,
731                                                              sbsec, tsec);
732                         if (rc)
733                                 goto out;
734                 }
735
736                 sbsec->def_sid = defcontext_sid;
737         }
738
739         rc = sb_finish_set_opts(sb);
740 out:
741         mutex_unlock(&sbsec->lock);
742         return rc;
743 out_double_mount:
744         rc = -EINVAL;
745         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
746                "security settings for (dev %s, type %s)\n", sb->s_id, name);
747         goto out;
748 }
749
750 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
751                                         struct super_block *newsb)
752 {
753         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
754         struct superblock_security_struct *newsbsec = newsb->s_security;
755
756         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
757         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
758         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
759
760         /*
761          * if the parent was able to be mounted it clearly had no special lsm
762          * mount options.  thus we can safely put this sb on the list and deal
763          * with it later
764          */
765         if (!ss_initialized) {
766                 spin_lock(&sb_security_lock);
767                 if (list_empty(&newsbsec->list))
768                         list_add(&newsbsec->list, &superblock_security_head);
769                 spin_unlock(&sb_security_lock);
770                 return;
771         }
772
773         /* how can we clone if the old one wasn't set up?? */
774         BUG_ON(!oldsbsec->initialized);
775
776         /* if fs is reusing a sb, just let its options stand... */
777         if (newsbsec->initialized)
778                 return;
779
780         mutex_lock(&newsbsec->lock);
781
782         newsbsec->flags = oldsbsec->flags;
783
784         newsbsec->sid = oldsbsec->sid;
785         newsbsec->def_sid = oldsbsec->def_sid;
786         newsbsec->behavior = oldsbsec->behavior;
787
788         if (set_context) {
789                 u32 sid = oldsbsec->mntpoint_sid;
790
791                 if (!set_fscontext)
792                         newsbsec->sid = sid;
793                 if (!set_rootcontext) {
794                         struct inode *newinode = newsb->s_root->d_inode;
795                         struct inode_security_struct *newisec = newinode->i_security;
796                         newisec->sid = sid;
797                 }
798                 newsbsec->mntpoint_sid = sid;
799         }
800         if (set_rootcontext) {
801                 const struct inode *oldinode = oldsb->s_root->d_inode;
802                 const struct inode_security_struct *oldisec = oldinode->i_security;
803                 struct inode *newinode = newsb->s_root->d_inode;
804                 struct inode_security_struct *newisec = newinode->i_security;
805
806                 newisec->sid = oldisec->sid;
807         }
808
809         sb_finish_set_opts(newsb);
810         mutex_unlock(&newsbsec->lock);
811 }
812
813 static int selinux_parse_opts_str(char *options,
814                                   struct security_mnt_opts *opts)
815 {
816         char *p;
817         char *context = NULL, *defcontext = NULL;
818         char *fscontext = NULL, *rootcontext = NULL;
819         int rc, num_mnt_opts = 0;
820
821         opts->num_mnt_opts = 0;
822
823         /* Standard string-based options. */
824         while ((p = strsep(&options, "|")) != NULL) {
825                 int token;
826                 substring_t args[MAX_OPT_ARGS];
827
828                 if (!*p)
829                         continue;
830
831                 token = match_token(p, tokens, args);
832
833                 switch (token) {
834                 case Opt_context:
835                         if (context || defcontext) {
836                                 rc = -EINVAL;
837                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
838                                 goto out_err;
839                         }
840                         context = match_strdup(&args[0]);
841                         if (!context) {
842                                 rc = -ENOMEM;
843                                 goto out_err;
844                         }
845                         break;
846
847                 case Opt_fscontext:
848                         if (fscontext) {
849                                 rc = -EINVAL;
850                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
851                                 goto out_err;
852                         }
853                         fscontext = match_strdup(&args[0]);
854                         if (!fscontext) {
855                                 rc = -ENOMEM;
856                                 goto out_err;
857                         }
858                         break;
859
860                 case Opt_rootcontext:
861                         if (rootcontext) {
862                                 rc = -EINVAL;
863                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
864                                 goto out_err;
865                         }
866                         rootcontext = match_strdup(&args[0]);
867                         if (!rootcontext) {
868                                 rc = -ENOMEM;
869                                 goto out_err;
870                         }
871                         break;
872
873                 case Opt_defcontext:
874                         if (context || defcontext) {
875                                 rc = -EINVAL;
876                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
877                                 goto out_err;
878                         }
879                         defcontext = match_strdup(&args[0]);
880                         if (!defcontext) {
881                                 rc = -ENOMEM;
882                                 goto out_err;
883                         }
884                         break;
885
886                 default:
887                         rc = -EINVAL;
888                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
889                         goto out_err;
890
891                 }
892         }
893
894         rc = -ENOMEM;
895         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
896         if (!opts->mnt_opts)
897                 goto out_err;
898
899         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
900         if (!opts->mnt_opts_flags) {
901                 kfree(opts->mnt_opts);
902                 goto out_err;
903         }
904
905         if (fscontext) {
906                 opts->mnt_opts[num_mnt_opts] = fscontext;
907                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
908         }
909         if (context) {
910                 opts->mnt_opts[num_mnt_opts] = context;
911                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
912         }
913         if (rootcontext) {
914                 opts->mnt_opts[num_mnt_opts] = rootcontext;
915                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
916         }
917         if (defcontext) {
918                 opts->mnt_opts[num_mnt_opts] = defcontext;
919                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
920         }
921
922         opts->num_mnt_opts = num_mnt_opts;
923         return 0;
924
925 out_err:
926         kfree(context);
927         kfree(defcontext);
928         kfree(fscontext);
929         kfree(rootcontext);
930         return rc;
931 }
932 /*
933  * string mount options parsing and call set the sbsec
934  */
935 static int superblock_doinit(struct super_block *sb, void *data)
936 {
937         int rc = 0;
938         char *options = data;
939         struct security_mnt_opts opts;
940
941         security_init_mnt_opts(&opts);
942
943         if (!data)
944                 goto out;
945
946         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
947
948         rc = selinux_parse_opts_str(options, &opts);
949         if (rc)
950                 goto out_err;
951
952 out:
953         rc = selinux_set_mnt_opts(sb, &opts);
954
955 out_err:
956         security_free_mnt_opts(&opts);
957         return rc;
958 }
959
960 static void selinux_write_opts(struct seq_file *m,
961                                struct security_mnt_opts *opts)
962 {
963         int i;
964         char *prefix;
965
966         for (i = 0; i < opts->num_mnt_opts; i++) {
967                 char *has_comma = strchr(opts->mnt_opts[i], ',');
968
969                 switch (opts->mnt_opts_flags[i]) {
970                 case CONTEXT_MNT:
971                         prefix = CONTEXT_STR;
972                         break;
973                 case FSCONTEXT_MNT:
974                         prefix = FSCONTEXT_STR;
975                         break;
976                 case ROOTCONTEXT_MNT:
977                         prefix = ROOTCONTEXT_STR;
978                         break;
979                 case DEFCONTEXT_MNT:
980                         prefix = DEFCONTEXT_STR;
981                         break;
982                 default:
983                         BUG();
984                 };
985                 /* we need a comma before each option */
986                 seq_putc(m, ',');
987                 seq_puts(m, prefix);
988                 if (has_comma)
989                         seq_putc(m, '\"');
990                 seq_puts(m, opts->mnt_opts[i]);
991                 if (has_comma)
992                         seq_putc(m, '\"');
993         }
994 }
995
996 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
997 {
998         struct security_mnt_opts opts;
999         int rc;
1000
1001         rc = selinux_get_mnt_opts(sb, &opts);
1002         if (rc) {
1003                 /* before policy load we may get EINVAL, don't show anything */
1004                 if (rc == -EINVAL)
1005                         rc = 0;
1006                 return rc;
1007         }
1008
1009         selinux_write_opts(m, &opts);
1010
1011         security_free_mnt_opts(&opts);
1012
1013         return rc;
1014 }
1015
1016 static inline u16 inode_mode_to_security_class(umode_t mode)
1017 {
1018         switch (mode & S_IFMT) {
1019         case S_IFSOCK:
1020                 return SECCLASS_SOCK_FILE;
1021         case S_IFLNK:
1022                 return SECCLASS_LNK_FILE;
1023         case S_IFREG:
1024                 return SECCLASS_FILE;
1025         case S_IFBLK:
1026                 return SECCLASS_BLK_FILE;
1027         case S_IFDIR:
1028                 return SECCLASS_DIR;
1029         case S_IFCHR:
1030                 return SECCLASS_CHR_FILE;
1031         case S_IFIFO:
1032                 return SECCLASS_FIFO_FILE;
1033
1034         }
1035
1036         return SECCLASS_FILE;
1037 }
1038
1039 static inline int default_protocol_stream(int protocol)
1040 {
1041         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1042 }
1043
1044 static inline int default_protocol_dgram(int protocol)
1045 {
1046         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1047 }
1048
1049 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1050 {
1051         switch (family) {
1052         case PF_UNIX:
1053                 switch (type) {
1054                 case SOCK_STREAM:
1055                 case SOCK_SEQPACKET:
1056                         return SECCLASS_UNIX_STREAM_SOCKET;
1057                 case SOCK_DGRAM:
1058                         return SECCLASS_UNIX_DGRAM_SOCKET;
1059                 }
1060                 break;
1061         case PF_INET:
1062         case PF_INET6:
1063                 switch (type) {
1064                 case SOCK_STREAM:
1065                         if (default_protocol_stream(protocol))
1066                                 return SECCLASS_TCP_SOCKET;
1067                         else
1068                                 return SECCLASS_RAWIP_SOCKET;
1069                 case SOCK_DGRAM:
1070                         if (default_protocol_dgram(protocol))
1071                                 return SECCLASS_UDP_SOCKET;
1072                         else
1073                                 return SECCLASS_RAWIP_SOCKET;
1074                 case SOCK_DCCP:
1075                         return SECCLASS_DCCP_SOCKET;
1076                 default:
1077                         return SECCLASS_RAWIP_SOCKET;
1078                 }
1079                 break;
1080         case PF_NETLINK:
1081                 switch (protocol) {
1082                 case NETLINK_ROUTE:
1083                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1084                 case NETLINK_FIREWALL:
1085                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1086                 case NETLINK_INET_DIAG:
1087                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1088                 case NETLINK_NFLOG:
1089                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1090                 case NETLINK_XFRM:
1091                         return SECCLASS_NETLINK_XFRM_SOCKET;
1092                 case NETLINK_SELINUX:
1093                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1094                 case NETLINK_AUDIT:
1095                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1096                 case NETLINK_IP6_FW:
1097                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1098                 case NETLINK_DNRTMSG:
1099                         return SECCLASS_NETLINK_DNRT_SOCKET;
1100                 case NETLINK_KOBJECT_UEVENT:
1101                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1102                 default:
1103                         return SECCLASS_NETLINK_SOCKET;
1104                 }
1105         case PF_PACKET:
1106                 return SECCLASS_PACKET_SOCKET;
1107         case PF_KEY:
1108                 return SECCLASS_KEY_SOCKET;
1109         case PF_APPLETALK:
1110                 return SECCLASS_APPLETALK_SOCKET;
1111         }
1112
1113         return SECCLASS_SOCKET;
1114 }
1115
1116 #ifdef CONFIG_PROC_FS
1117 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1118                                 u16 tclass,
1119                                 u32 *sid)
1120 {
1121         int buflen, rc;
1122         char *buffer, *path, *end;
1123
1124         buffer = (char *)__get_free_page(GFP_KERNEL);
1125         if (!buffer)
1126                 return -ENOMEM;
1127
1128         buflen = PAGE_SIZE;
1129         end = buffer+buflen;
1130         *--end = '\0';
1131         buflen--;
1132         path = end-1;
1133         *path = '/';
1134         while (de && de != de->parent) {
1135                 buflen -= de->namelen + 1;
1136                 if (buflen < 0)
1137                         break;
1138                 end -= de->namelen;
1139                 memcpy(end, de->name, de->namelen);
1140                 *--end = '/';
1141                 path = end;
1142                 de = de->parent;
1143         }
1144         rc = security_genfs_sid("proc", path, tclass, sid);
1145         free_page((unsigned long)buffer);
1146         return rc;
1147 }
1148 #else
1149 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1150                                 u16 tclass,
1151                                 u32 *sid)
1152 {
1153         return -EINVAL;
1154 }
1155 #endif
1156
1157 /* The inode's security attributes must be initialized before first use. */
1158 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1159 {
1160         struct superblock_security_struct *sbsec = NULL;
1161         struct inode_security_struct *isec = inode->i_security;
1162         u32 sid;
1163         struct dentry *dentry;
1164 #define INITCONTEXTLEN 255
1165         char *context = NULL;
1166         unsigned len = 0;
1167         int rc = 0;
1168
1169         if (isec->initialized)
1170                 goto out;
1171
1172         mutex_lock(&isec->lock);
1173         if (isec->initialized)
1174                 goto out_unlock;
1175
1176         sbsec = inode->i_sb->s_security;
1177         if (!sbsec->initialized) {
1178                 /* Defer initialization until selinux_complete_init,
1179                    after the initial policy is loaded and the security
1180                    server is ready to handle calls. */
1181                 spin_lock(&sbsec->isec_lock);
1182                 if (list_empty(&isec->list))
1183                         list_add(&isec->list, &sbsec->isec_head);
1184                 spin_unlock(&sbsec->isec_lock);
1185                 goto out_unlock;
1186         }
1187
1188         switch (sbsec->behavior) {
1189         case SECURITY_FS_USE_XATTR:
1190                 if (!inode->i_op->getxattr) {
1191                         isec->sid = sbsec->def_sid;
1192                         break;
1193                 }
1194
1195                 /* Need a dentry, since the xattr API requires one.
1196                    Life would be simpler if we could just pass the inode. */
1197                 if (opt_dentry) {
1198                         /* Called from d_instantiate or d_splice_alias. */
1199                         dentry = dget(opt_dentry);
1200                 } else {
1201                         /* Called from selinux_complete_init, try to find a dentry. */
1202                         dentry = d_find_alias(inode);
1203                 }
1204                 if (!dentry) {
1205                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1206                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1207                                inode->i_ino);
1208                         goto out_unlock;
1209                 }
1210
1211                 len = INITCONTEXTLEN;
1212                 context = kmalloc(len, GFP_NOFS);
1213                 if (!context) {
1214                         rc = -ENOMEM;
1215                         dput(dentry);
1216                         goto out_unlock;
1217                 }
1218                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1219                                            context, len);
1220                 if (rc == -ERANGE) {
1221                         /* Need a larger buffer.  Query for the right size. */
1222                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1223                                                    NULL, 0);
1224                         if (rc < 0) {
1225                                 dput(dentry);
1226                                 goto out_unlock;
1227                         }
1228                         kfree(context);
1229                         len = rc;
1230                         context = kmalloc(len, GFP_NOFS);
1231                         if (!context) {
1232                                 rc = -ENOMEM;
1233                                 dput(dentry);
1234                                 goto out_unlock;
1235                         }
1236                         rc = inode->i_op->getxattr(dentry,
1237                                                    XATTR_NAME_SELINUX,
1238                                                    context, len);
1239                 }
1240                 dput(dentry);
1241                 if (rc < 0) {
1242                         if (rc != -ENODATA) {
1243                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1244                                        "%d for dev=%s ino=%ld\n", __func__,
1245                                        -rc, inode->i_sb->s_id, inode->i_ino);
1246                                 kfree(context);
1247                                 goto out_unlock;
1248                         }
1249                         /* Map ENODATA to the default file SID */
1250                         sid = sbsec->def_sid;
1251                         rc = 0;
1252                 } else {
1253                         rc = security_context_to_sid_default(context, rc, &sid,
1254                                                              sbsec->def_sid,
1255                                                              GFP_NOFS);
1256                         if (rc) {
1257                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1258                                        "returned %d for dev=%s ino=%ld\n",
1259                                        __func__, context, -rc,
1260                                        inode->i_sb->s_id, inode->i_ino);
1261                                 kfree(context);
1262                                 /* Leave with the unlabeled SID */
1263                                 rc = 0;
1264                                 break;
1265                         }
1266                 }
1267                 kfree(context);
1268                 isec->sid = sid;
1269                 break;
1270         case SECURITY_FS_USE_TASK:
1271                 isec->sid = isec->task_sid;
1272                 break;
1273         case SECURITY_FS_USE_TRANS:
1274                 /* Default to the fs SID. */
1275                 isec->sid = sbsec->sid;
1276
1277                 /* Try to obtain a transition SID. */
1278                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1279                 rc = security_transition_sid(isec->task_sid,
1280                                              sbsec->sid,
1281                                              isec->sclass,
1282                                              &sid);
1283                 if (rc)
1284                         goto out_unlock;
1285                 isec->sid = sid;
1286                 break;
1287         case SECURITY_FS_USE_MNTPOINT:
1288                 isec->sid = sbsec->mntpoint_sid;
1289                 break;
1290         default:
1291                 /* Default to the fs superblock SID. */
1292                 isec->sid = sbsec->sid;
1293
1294                 if (sbsec->proc) {
1295                         struct proc_inode *proci = PROC_I(inode);
1296                         if (proci->pde) {
1297                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1298                                 rc = selinux_proc_get_sid(proci->pde,
1299                                                           isec->sclass,
1300                                                           &sid);
1301                                 if (rc)
1302                                         goto out_unlock;
1303                                 isec->sid = sid;
1304                         }
1305                 }
1306                 break;
1307         }
1308
1309         isec->initialized = 1;
1310
1311 out_unlock:
1312         mutex_unlock(&isec->lock);
1313 out:
1314         if (isec->sclass == SECCLASS_FILE)
1315                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1316         return rc;
1317 }
1318
1319 /* Convert a Linux signal to an access vector. */
1320 static inline u32 signal_to_av(int sig)
1321 {
1322         u32 perm = 0;
1323
1324         switch (sig) {
1325         case SIGCHLD:
1326                 /* Commonly granted from child to parent. */
1327                 perm = PROCESS__SIGCHLD;
1328                 break;
1329         case SIGKILL:
1330                 /* Cannot be caught or ignored */
1331                 perm = PROCESS__SIGKILL;
1332                 break;
1333         case SIGSTOP:
1334                 /* Cannot be caught or ignored */
1335                 perm = PROCESS__SIGSTOP;
1336                 break;
1337         default:
1338                 /* All other signals. */
1339                 perm = PROCESS__SIGNAL;
1340                 break;
1341         }
1342
1343         return perm;
1344 }
1345
1346 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1347    fork check, ptrace check, etc. */
1348 static int task_has_perm(struct task_struct *tsk1,
1349                          struct task_struct *tsk2,
1350                          u32 perms)
1351 {
1352         struct task_security_struct *tsec1, *tsec2;
1353
1354         tsec1 = tsk1->security;
1355         tsec2 = tsk2->security;
1356         return avc_has_perm(tsec1->sid, tsec2->sid,
1357                             SECCLASS_PROCESS, perms, NULL);
1358 }
1359
1360 #if CAP_LAST_CAP > 63
1361 #error Fix SELinux to handle capabilities > 63.
1362 #endif
1363
1364 /* Check whether a task is allowed to use a capability. */
1365 static int task_has_capability(struct task_struct *tsk,
1366                                int cap)
1367 {
1368         struct task_security_struct *tsec;
1369         struct avc_audit_data ad;
1370         u16 sclass;
1371         u32 av = CAP_TO_MASK(cap);
1372
1373         tsec = tsk->security;
1374
1375         AVC_AUDIT_DATA_INIT(&ad, CAP);
1376         ad.tsk = tsk;
1377         ad.u.cap = cap;
1378
1379         switch (CAP_TO_INDEX(cap)) {
1380         case 0:
1381                 sclass = SECCLASS_CAPABILITY;
1382                 break;
1383         case 1:
1384                 sclass = SECCLASS_CAPABILITY2;
1385                 break;
1386         default:
1387                 printk(KERN_ERR
1388                        "SELinux:  out of range capability %d\n", cap);
1389                 BUG();
1390         }
1391         return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1392 }
1393
1394 /* Check whether a task is allowed to use a system operation. */
1395 static int task_has_system(struct task_struct *tsk,
1396                            u32 perms)
1397 {
1398         struct task_security_struct *tsec;
1399
1400         tsec = tsk->security;
1401
1402         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1403                             SECCLASS_SYSTEM, perms, NULL);
1404 }
1405
1406 /* Check whether a task has a particular permission to an inode.
1407    The 'adp' parameter is optional and allows other audit
1408    data to be passed (e.g. the dentry). */
1409 static int inode_has_perm(struct task_struct *tsk,
1410                           struct inode *inode,
1411                           u32 perms,
1412                           struct avc_audit_data *adp)
1413 {
1414         struct task_security_struct *tsec;
1415         struct inode_security_struct *isec;
1416         struct avc_audit_data ad;
1417
1418         if (unlikely(IS_PRIVATE(inode)))
1419                 return 0;
1420
1421         tsec = tsk->security;
1422         isec = inode->i_security;
1423
1424         if (!adp) {
1425                 adp = &ad;
1426                 AVC_AUDIT_DATA_INIT(&ad, FS);
1427                 ad.u.fs.inode = inode;
1428         }
1429
1430         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1431 }
1432
1433 /* Same as inode_has_perm, but pass explicit audit data containing
1434    the dentry to help the auditing code to more easily generate the
1435    pathname if needed. */
1436 static inline int dentry_has_perm(struct task_struct *tsk,
1437                                   struct vfsmount *mnt,
1438                                   struct dentry *dentry,
1439                                   u32 av)
1440 {
1441         struct inode *inode = dentry->d_inode;
1442         struct avc_audit_data ad;
1443         AVC_AUDIT_DATA_INIT(&ad, FS);
1444         ad.u.fs.path.mnt = mnt;
1445         ad.u.fs.path.dentry = dentry;
1446         return inode_has_perm(tsk, inode, av, &ad);
1447 }
1448
1449 /* Check whether a task can use an open file descriptor to
1450    access an inode in a given way.  Check access to the
1451    descriptor itself, and then use dentry_has_perm to
1452    check a particular permission to the file.
1453    Access to the descriptor is implicitly granted if it
1454    has the same SID as the process.  If av is zero, then
1455    access to the file is not checked, e.g. for cases
1456    where only the descriptor is affected like seek. */
1457 static int file_has_perm(struct task_struct *tsk,
1458                                 struct file *file,
1459                                 u32 av)
1460 {
1461         struct task_security_struct *tsec = tsk->security;
1462         struct file_security_struct *fsec = file->f_security;
1463         struct inode *inode = file->f_path.dentry->d_inode;
1464         struct avc_audit_data ad;
1465         int rc;
1466
1467         AVC_AUDIT_DATA_INIT(&ad, FS);
1468         ad.u.fs.path = file->f_path;
1469
1470         if (tsec->sid != fsec->sid) {
1471                 rc = avc_has_perm(tsec->sid, fsec->sid,
1472                                   SECCLASS_FD,
1473                                   FD__USE,
1474                                   &ad);
1475                 if (rc)
1476                         return rc;
1477         }
1478
1479         /* av is zero if only checking access to the descriptor. */
1480         if (av)
1481                 return inode_has_perm(tsk, inode, av, &ad);
1482
1483         return 0;
1484 }
1485
1486 /* Check whether a task can create a file. */
1487 static int may_create(struct inode *dir,
1488                       struct dentry *dentry,
1489                       u16 tclass)
1490 {
1491         struct task_security_struct *tsec;
1492         struct inode_security_struct *dsec;
1493         struct superblock_security_struct *sbsec;
1494         u32 newsid;
1495         struct avc_audit_data ad;
1496         int rc;
1497
1498         tsec = current->security;
1499         dsec = dir->i_security;
1500         sbsec = dir->i_sb->s_security;
1501
1502         AVC_AUDIT_DATA_INIT(&ad, FS);
1503         ad.u.fs.path.dentry = dentry;
1504
1505         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1506                           DIR__ADD_NAME | DIR__SEARCH,
1507                           &ad);
1508         if (rc)
1509                 return rc;
1510
1511         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1512                 newsid = tsec->create_sid;
1513         } else {
1514                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1515                                              &newsid);
1516                 if (rc)
1517                         return rc;
1518         }
1519
1520         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1521         if (rc)
1522                 return rc;
1523
1524         return avc_has_perm(newsid, sbsec->sid,
1525                             SECCLASS_FILESYSTEM,
1526                             FILESYSTEM__ASSOCIATE, &ad);
1527 }
1528
1529 /* Check whether a task can create a key. */
1530 static int may_create_key(u32 ksid,
1531                           struct task_struct *ctx)
1532 {
1533         struct task_security_struct *tsec;
1534
1535         tsec = ctx->security;
1536
1537         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1538 }
1539
1540 #define MAY_LINK        0
1541 #define MAY_UNLINK      1
1542 #define MAY_RMDIR       2
1543
1544 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1545 static int may_link(struct inode *dir,
1546                     struct dentry *dentry,
1547                     int kind)
1548
1549 {
1550         struct task_security_struct *tsec;
1551         struct inode_security_struct *dsec, *isec;
1552         struct avc_audit_data ad;
1553         u32 av;
1554         int rc;
1555
1556         tsec = current->security;
1557         dsec = dir->i_security;
1558         isec = dentry->d_inode->i_security;
1559
1560         AVC_AUDIT_DATA_INIT(&ad, FS);
1561         ad.u.fs.path.dentry = dentry;
1562
1563         av = DIR__SEARCH;
1564         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1565         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1566         if (rc)
1567                 return rc;
1568
1569         switch (kind) {
1570         case MAY_LINK:
1571                 av = FILE__LINK;
1572                 break;
1573         case MAY_UNLINK:
1574                 av = FILE__UNLINK;
1575                 break;
1576         case MAY_RMDIR:
1577                 av = DIR__RMDIR;
1578                 break;
1579         default:
1580                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1581                         __func__, kind);
1582                 return 0;
1583         }
1584
1585         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1586         return rc;
1587 }
1588
1589 static inline int may_rename(struct inode *old_dir,
1590                              struct dentry *old_dentry,
1591                              struct inode *new_dir,
1592                              struct dentry *new_dentry)
1593 {
1594         struct task_security_struct *tsec;
1595         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1596         struct avc_audit_data ad;
1597         u32 av;
1598         int old_is_dir, new_is_dir;
1599         int rc;
1600
1601         tsec = current->security;
1602         old_dsec = old_dir->i_security;
1603         old_isec = old_dentry->d_inode->i_security;
1604         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1605         new_dsec = new_dir->i_security;
1606
1607         AVC_AUDIT_DATA_INIT(&ad, FS);
1608
1609         ad.u.fs.path.dentry = old_dentry;
1610         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1611                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1612         if (rc)
1613                 return rc;
1614         rc = avc_has_perm(tsec->sid, old_isec->sid,
1615                           old_isec->sclass, FILE__RENAME, &ad);
1616         if (rc)
1617                 return rc;
1618         if (old_is_dir && new_dir != old_dir) {
1619                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1620                                   old_isec->sclass, DIR__REPARENT, &ad);
1621                 if (rc)
1622                         return rc;
1623         }
1624
1625         ad.u.fs.path.dentry = new_dentry;
1626         av = DIR__ADD_NAME | DIR__SEARCH;
1627         if (new_dentry->d_inode)
1628                 av |= DIR__REMOVE_NAME;
1629         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1630         if (rc)
1631                 return rc;
1632         if (new_dentry->d_inode) {
1633                 new_isec = new_dentry->d_inode->i_security;
1634                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1635                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1636                                   new_isec->sclass,
1637                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1638                 if (rc)
1639                         return rc;
1640         }
1641
1642         return 0;
1643 }
1644
1645 /* Check whether a task can perform a filesystem operation. */
1646 static int superblock_has_perm(struct task_struct *tsk,
1647                                struct super_block *sb,
1648                                u32 perms,
1649                                struct avc_audit_data *ad)
1650 {
1651         struct task_security_struct *tsec;
1652         struct superblock_security_struct *sbsec;
1653
1654         tsec = tsk->security;
1655         sbsec = sb->s_security;
1656         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1657                             perms, ad);
1658 }
1659
1660 /* Convert a Linux mode and permission mask to an access vector. */
1661 static inline u32 file_mask_to_av(int mode, int mask)
1662 {
1663         u32 av = 0;
1664
1665         if ((mode & S_IFMT) != S_IFDIR) {
1666                 if (mask & MAY_EXEC)
1667                         av |= FILE__EXECUTE;
1668                 if (mask & MAY_READ)
1669                         av |= FILE__READ;
1670
1671                 if (mask & MAY_APPEND)
1672                         av |= FILE__APPEND;
1673                 else if (mask & MAY_WRITE)
1674                         av |= FILE__WRITE;
1675
1676         } else {
1677                 if (mask & MAY_EXEC)
1678                         av |= DIR__SEARCH;
1679                 if (mask & MAY_WRITE)
1680                         av |= DIR__WRITE;
1681                 if (mask & MAY_READ)
1682                         av |= DIR__READ;
1683         }
1684
1685         return av;
1686 }
1687
1688 /*
1689  * Convert a file mask to an access vector and include the correct open
1690  * open permission.
1691  */
1692 static inline u32 open_file_mask_to_av(int mode, int mask)
1693 {
1694         u32 av = file_mask_to_av(mode, mask);
1695
1696         if (selinux_policycap_openperm) {
1697                 /*
1698                  * lnk files and socks do not really have an 'open'
1699                  */
1700                 if (S_ISREG(mode))
1701                         av |= FILE__OPEN;
1702                 else if (S_ISCHR(mode))
1703                         av |= CHR_FILE__OPEN;
1704                 else if (S_ISBLK(mode))
1705                         av |= BLK_FILE__OPEN;
1706                 else if (S_ISFIFO(mode))
1707                         av |= FIFO_FILE__OPEN;
1708                 else if (S_ISDIR(mode))
1709                         av |= DIR__OPEN;
1710                 else
1711                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1712                                 "unknown mode:%x\n", __func__, mode);
1713         }
1714         return av;
1715 }
1716
1717 /* Convert a Linux file to an access vector. */
1718 static inline u32 file_to_av(struct file *file)
1719 {
1720         u32 av = 0;
1721
1722         if (file->f_mode & FMODE_READ)
1723                 av |= FILE__READ;
1724         if (file->f_mode & FMODE_WRITE) {
1725                 if (file->f_flags & O_APPEND)
1726                         av |= FILE__APPEND;
1727                 else
1728                         av |= FILE__WRITE;
1729         }
1730         if (!av) {
1731                 /*
1732                  * Special file opened with flags 3 for ioctl-only use.
1733                  */
1734                 av = FILE__IOCTL;
1735         }
1736
1737         return av;
1738 }
1739
1740 /* Hook functions begin here. */
1741
1742 static int selinux_ptrace(struct task_struct *parent,
1743                           struct task_struct *child,
1744                           unsigned int mode)
1745 {
1746         int rc;
1747
1748         rc = secondary_ops->ptrace(parent, child, mode);
1749         if (rc)
1750                 return rc;
1751
1752         if (mode == PTRACE_MODE_READ) {
1753                 struct task_security_struct *tsec = parent->security;
1754                 struct task_security_struct *csec = child->security;
1755                 return avc_has_perm(tsec->sid, csec->sid,
1756                                     SECCLASS_FILE, FILE__READ, NULL);
1757         }
1758
1759         return task_has_perm(parent, child, PROCESS__PTRACE);
1760 }
1761
1762 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1763                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1764 {
1765         int error;
1766
1767         error = task_has_perm(current, target, PROCESS__GETCAP);
1768         if (error)
1769                 return error;
1770
1771         return secondary_ops->capget(target, effective, inheritable, permitted);
1772 }
1773
1774 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1775                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1776 {
1777         int error;
1778
1779         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1780         if (error)
1781                 return error;
1782
1783         return task_has_perm(current, target, PROCESS__SETCAP);
1784 }
1785
1786 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1787                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1788 {
1789         secondary_ops->capset_set(target, effective, inheritable, permitted);
1790 }
1791
1792 static int selinux_capable(struct task_struct *tsk, int cap)
1793 {
1794         int rc;
1795
1796         rc = secondary_ops->capable(tsk, cap);
1797         if (rc)
1798                 return rc;
1799
1800         return task_has_capability(tsk, cap);
1801 }
1802
1803 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1804 {
1805         int buflen, rc;
1806         char *buffer, *path, *end;
1807
1808         rc = -ENOMEM;
1809         buffer = (char *)__get_free_page(GFP_KERNEL);
1810         if (!buffer)
1811                 goto out;
1812
1813         buflen = PAGE_SIZE;
1814         end = buffer+buflen;
1815         *--end = '\0';
1816         buflen--;
1817         path = end-1;
1818         *path = '/';
1819         while (table) {
1820                 const char *name = table->procname;
1821                 size_t namelen = strlen(name);
1822                 buflen -= namelen + 1;
1823                 if (buflen < 0)
1824                         goto out_free;
1825                 end -= namelen;
1826                 memcpy(end, name, namelen);
1827                 *--end = '/';
1828                 path = end;
1829                 table = table->parent;
1830         }
1831         buflen -= 4;
1832         if (buflen < 0)
1833                 goto out_free;
1834         end -= 4;
1835         memcpy(end, "/sys", 4);
1836         path = end;
1837         rc = security_genfs_sid("proc", path, tclass, sid);
1838 out_free:
1839         free_page((unsigned long)buffer);
1840 out:
1841         return rc;
1842 }
1843
1844 static int selinux_sysctl(ctl_table *table, int op)
1845 {
1846         int error = 0;
1847         u32 av;
1848         struct task_security_struct *tsec;
1849         u32 tsid;
1850         int rc;
1851
1852         rc = secondary_ops->sysctl(table, op);
1853         if (rc)
1854                 return rc;
1855
1856         tsec = current->security;
1857
1858         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1859                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1860         if (rc) {
1861                 /* Default to the well-defined sysctl SID. */
1862                 tsid = SECINITSID_SYSCTL;
1863         }
1864
1865         /* The op values are "defined" in sysctl.c, thereby creating
1866          * a bad coupling between this module and sysctl.c */
1867         if (op == 001) {
1868                 error = avc_has_perm(tsec->sid, tsid,
1869                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1870         } else {
1871                 av = 0;
1872                 if (op & 004)
1873                         av |= FILE__READ;
1874                 if (op & 002)
1875                         av |= FILE__WRITE;
1876                 if (av)
1877                         error = avc_has_perm(tsec->sid, tsid,
1878                                              SECCLASS_FILE, av, NULL);
1879         }
1880
1881         return error;
1882 }
1883
1884 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1885 {
1886         int rc = 0;
1887
1888         if (!sb)
1889                 return 0;
1890
1891         switch (cmds) {
1892         case Q_SYNC:
1893         case Q_QUOTAON:
1894         case Q_QUOTAOFF:
1895         case Q_SETINFO:
1896         case Q_SETQUOTA:
1897                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1898                                          NULL);
1899                 break;
1900         case Q_GETFMT:
1901         case Q_GETINFO:
1902         case Q_GETQUOTA:
1903                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1904                                          NULL);
1905                 break;
1906         default:
1907                 rc = 0;  /* let the kernel handle invalid cmds */
1908                 break;
1909         }
1910         return rc;
1911 }
1912
1913 static int selinux_quota_on(struct dentry *dentry)
1914 {
1915         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1916 }
1917
1918 static int selinux_syslog(int type)
1919 {
1920         int rc;
1921
1922         rc = secondary_ops->syslog(type);
1923         if (rc)
1924                 return rc;
1925
1926         switch (type) {
1927         case 3:         /* Read last kernel messages */
1928         case 10:        /* Return size of the log buffer */
1929                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1930                 break;
1931         case 6:         /* Disable logging to console */
1932         case 7:         /* Enable logging to console */
1933         case 8:         /* Set level of messages printed to console */
1934                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1935                 break;
1936         case 0:         /* Close log */
1937         case 1:         /* Open log */
1938         case 2:         /* Read from log */
1939         case 4:         /* Read/clear last kernel messages */
1940         case 5:         /* Clear ring buffer */
1941         default:
1942                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1943                 break;
1944         }
1945         return rc;
1946 }
1947
1948 /*
1949  * Check that a process has enough memory to allocate a new virtual
1950  * mapping. 0 means there is enough memory for the allocation to
1951  * succeed and -ENOMEM implies there is not.
1952  *
1953  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1954  * if the capability is granted, but __vm_enough_memory requires 1 if
1955  * the capability is granted.
1956  *
1957  * Do not audit the selinux permission check, as this is applied to all
1958  * processes that allocate mappings.
1959  */
1960 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1961 {
1962         int rc, cap_sys_admin = 0;
1963         struct task_security_struct *tsec = current->security;
1964
1965         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1966         if (rc == 0)
1967                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1968                                           SECCLASS_CAPABILITY,
1969                                           CAP_TO_MASK(CAP_SYS_ADMIN),
1970                                           0,
1971                                           NULL);
1972
1973         if (rc == 0)
1974                 cap_sys_admin = 1;
1975
1976         return __vm_enough_memory(mm, pages, cap_sys_admin);
1977 }
1978
1979 /* binprm security operations */
1980
1981 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1982 {
1983         struct bprm_security_struct *bsec;
1984
1985         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1986         if (!bsec)
1987                 return -ENOMEM;
1988
1989         bsec->sid = SECINITSID_UNLABELED;
1990         bsec->set = 0;
1991
1992         bprm->security = bsec;
1993         return 0;
1994 }
1995
1996 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1997 {
1998         struct task_security_struct *tsec;
1999         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2000         struct inode_security_struct *isec;
2001         struct bprm_security_struct *bsec;
2002         u32 newsid;
2003         struct avc_audit_data ad;
2004         int rc;
2005
2006         rc = secondary_ops->bprm_set_security(bprm);
2007         if (rc)
2008                 return rc;
2009
2010         bsec = bprm->security;
2011
2012         if (bsec->set)
2013                 return 0;
2014
2015         tsec = current->security;
2016         isec = inode->i_security;
2017
2018         /* Default to the current task SID. */
2019         bsec->sid = tsec->sid;
2020
2021         /* Reset fs, key, and sock SIDs on execve. */
2022         tsec->create_sid = 0;
2023         tsec->keycreate_sid = 0;
2024         tsec->sockcreate_sid = 0;
2025
2026         if (tsec->exec_sid) {
2027                 newsid = tsec->exec_sid;
2028                 /* Reset exec SID on execve. */
2029                 tsec->exec_sid = 0;
2030         } else {
2031                 /* Check for a default transition on this program. */
2032                 rc = security_transition_sid(tsec->sid, isec->sid,
2033                                              SECCLASS_PROCESS, &newsid);
2034                 if (rc)
2035                         return rc;
2036         }
2037
2038         AVC_AUDIT_DATA_INIT(&ad, FS);
2039         ad.u.fs.path = bprm->file->f_path;
2040
2041         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2042                 newsid = tsec->sid;
2043
2044         if (tsec->sid == newsid) {
2045                 rc = avc_has_perm(tsec->sid, isec->sid,
2046                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2047                 if (rc)
2048                         return rc;
2049         } else {
2050                 /* Check permissions for the transition. */
2051                 rc = avc_has_perm(tsec->sid, newsid,
2052                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2053                 if (rc)
2054                         return rc;
2055
2056                 rc = avc_has_perm(newsid, isec->sid,
2057                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2058                 if (rc)
2059                         return rc;
2060
2061                 /* Clear any possibly unsafe personality bits on exec: */
2062                 current->personality &= ~PER_CLEAR_ON_SETID;
2063
2064                 /* Set the security field to the new SID. */
2065                 bsec->sid = newsid;
2066         }
2067
2068         bsec->set = 1;
2069         return 0;
2070 }
2071
2072 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2073 {
2074         return secondary_ops->bprm_check_security(bprm);
2075 }
2076
2077
2078 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2079 {
2080         struct task_security_struct *tsec = current->security;
2081         int atsecure = 0;
2082
2083         if (tsec->osid != tsec->sid) {
2084                 /* Enable secure mode for SIDs transitions unless
2085                    the noatsecure permission is granted between
2086                    the two SIDs, i.e. ahp returns 0. */
2087                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2088                                          SECCLASS_PROCESS,
2089                                          PROCESS__NOATSECURE, NULL);
2090         }
2091
2092         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2093 }
2094
2095 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2096 {
2097         kfree(bprm->security);
2098         bprm->security = NULL;
2099 }
2100
2101 extern struct vfsmount *selinuxfs_mount;
2102 extern struct dentry *selinux_null;
2103
2104 /* Derived from fs/exec.c:flush_old_files. */
2105 static inline void flush_unauthorized_files(struct files_struct *files)
2106 {
2107         struct avc_audit_data ad;
2108         struct file *file, *devnull = NULL;
2109         struct tty_struct *tty;
2110         struct fdtable *fdt;
2111         long j = -1;
2112         int drop_tty = 0;
2113
2114         mutex_lock(&tty_mutex);
2115         tty = get_current_tty();
2116         if (tty) {
2117                 file_list_lock();
2118                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
2119                 if (file) {
2120                         /* Revalidate access to controlling tty.
2121                            Use inode_has_perm on the tty inode directly rather
2122                            than using file_has_perm, as this particular open
2123                            file may belong to another process and we are only
2124                            interested in the inode-based check here. */
2125                         struct inode *inode = file->f_path.dentry->d_inode;
2126                         if (inode_has_perm(current, inode,
2127                                            FILE__READ | FILE__WRITE, NULL)) {
2128                                 drop_tty = 1;
2129                         }
2130                 }
2131                 file_list_unlock();
2132         }
2133         mutex_unlock(&tty_mutex);
2134         /* Reset controlling tty. */
2135         if (drop_tty)
2136                 no_tty();
2137
2138         /* Revalidate access to inherited open files. */
2139
2140         AVC_AUDIT_DATA_INIT(&ad, FS);
2141
2142         spin_lock(&files->file_lock);
2143         for (;;) {
2144                 unsigned long set, i;
2145                 int fd;
2146
2147                 j++;
2148                 i = j * __NFDBITS;
2149                 fdt = files_fdtable(files);
2150                 if (i >= fdt->max_fds)
2151                         break;
2152                 set = fdt->open_fds->fds_bits[j];
2153                 if (!set)
2154                         continue;
2155                 spin_unlock(&files->file_lock);
2156                 for ( ; set ; i++, set >>= 1) {
2157                         if (set & 1) {
2158                                 file = fget(i);
2159                                 if (!file)
2160                                         continue;
2161                                 if (file_has_perm(current,
2162                                                   file,
2163                                                   file_to_av(file))) {
2164                                         sys_close(i);
2165                                         fd = get_unused_fd();
2166                                         if (fd != i) {
2167                                                 if (fd >= 0)
2168                                                         put_unused_fd(fd);
2169                                                 fput(file);
2170                                                 continue;
2171                                         }
2172                                         if (devnull) {
2173                                                 get_file(devnull);
2174                                         } else {
2175                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2176                                                 if (IS_ERR(devnull)) {
2177                                                         devnull = NULL;
2178                                                         put_unused_fd(fd);
2179                                                         fput(file);
2180                                                         continue;
2181                                                 }
2182                                         }
2183                                         fd_install(fd, devnull);
2184                                 }
2185                                 fput(file);
2186                         }
2187                 }
2188                 spin_lock(&files->file_lock);
2189
2190         }
2191         spin_unlock(&files->file_lock);
2192 }
2193
2194 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2195 {
2196         struct task_security_struct *tsec;
2197         struct bprm_security_struct *bsec;
2198         u32 sid;
2199         int rc;
2200
2201         secondary_ops->bprm_apply_creds(bprm, unsafe);
2202
2203         tsec = current->security;
2204
2205         bsec = bprm->security;
2206         sid = bsec->sid;
2207
2208         tsec->osid = tsec->sid;
2209         bsec->unsafe = 0;
2210         if (tsec->sid != sid) {
2211                 /* Check for shared state.  If not ok, leave SID
2212                    unchanged and kill. */
2213                 if (unsafe & LSM_UNSAFE_SHARE) {
2214                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2215                                         PROCESS__SHARE, NULL);
2216                         if (rc) {
2217                                 bsec->unsafe = 1;
2218                                 return;
2219                         }
2220                 }
2221
2222                 /* Check for ptracing, and update the task SID if ok.
2223                    Otherwise, leave SID unchanged and kill. */
2224                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2225                         struct task_struct *tracer;
2226                         struct task_security_struct *sec;
2227                         u32 ptsid = 0;
2228
2229                         rcu_read_lock();
2230                         tracer = tracehook_tracer_task(current);
2231                         if (likely(tracer != NULL)) {
2232                                 sec = tracer->security;
2233                                 ptsid = sec->sid;
2234                         }
2235                         rcu_read_unlock();
2236
2237                         if (ptsid != 0) {
2238                                 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2239                                                   PROCESS__PTRACE, NULL);
2240                                 if (rc) {
2241                                         bsec->unsafe = 1;
2242                                         return;
2243                                 }
2244                         }
2245                 }
2246                 tsec->sid = sid;
2247         }
2248 }
2249
2250 /*
2251  * called after apply_creds without the task lock held
2252  */
2253 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2254 {
2255         struct task_security_struct *tsec;
2256         struct rlimit *rlim, *initrlim;
2257         struct itimerval itimer;
2258         struct bprm_security_struct *bsec;
2259         int rc, i;
2260
2261         tsec = current->security;
2262         bsec = bprm->security;
2263
2264         if (bsec->unsafe) {
2265                 force_sig_specific(SIGKILL, current);
2266                 return;
2267         }
2268         if (tsec->osid == tsec->sid)
2269                 return;
2270
2271         /* Close files for which the new task SID is not authorized. */
2272         flush_unauthorized_files(current->files);
2273
2274         /* Check whether the new SID can inherit signal state
2275            from the old SID.  If not, clear itimers to avoid
2276            subsequent signal generation and flush and unblock
2277            signals. This must occur _after_ the task SID has
2278           been updated so that any kill done after the flush
2279           will be checked against the new SID. */
2280         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2281                           PROCESS__SIGINH, NULL);
2282         if (rc) {
2283                 memset(&itimer, 0, sizeof itimer);
2284                 for (i = 0; i < 3; i++)
2285                         do_setitimer(i, &itimer, NULL);
2286                 flush_signals(current);
2287                 spin_lock_irq(&current->sighand->siglock);
2288                 flush_signal_handlers(current, 1);
2289                 sigemptyset(&current->blocked);
2290                 recalc_sigpending();
2291                 spin_unlock_irq(&current->sighand->siglock);
2292         }
2293
2294         /* Always clear parent death signal on SID transitions. */
2295         current->pdeath_signal = 0;
2296
2297         /* Check whether the new SID can inherit resource limits
2298            from the old SID.  If not, reset all soft limits to
2299            the lower of the current task's hard limit and the init
2300            task's soft limit.  Note that the setting of hard limits
2301            (even to lower them) can be controlled by the setrlimit
2302            check. The inclusion of the init task's soft limit into
2303            the computation is to avoid resetting soft limits higher
2304            than the default soft limit for cases where the default
2305            is lower than the hard limit, e.g. RLIMIT_CORE or
2306            RLIMIT_STACK.*/
2307         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2308                           PROCESS__RLIMITINH, NULL);
2309         if (rc) {
2310                 for (i = 0; i < RLIM_NLIMITS; i++) {
2311                         rlim = current->signal->rlim + i;
2312                         initrlim = init_task.signal->rlim+i;
2313                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2314                 }
2315                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
2316                         /*
2317                          * This will cause RLIMIT_CPU calculations
2318                          * to be refigured.
2319                          */
2320                         current->it_prof_expires = jiffies_to_cputime(1);
2321                 }
2322         }
2323
2324         /* Wake up the parent if it is waiting so that it can
2325            recheck wait permission to the new task SID. */
2326         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2327 }
2328
2329 /* superblock security operations */
2330
2331 static int selinux_sb_alloc_security(struct super_block *sb)
2332 {
2333         return superblock_alloc_security(sb);
2334 }
2335
2336 static void selinux_sb_free_security(struct super_block *sb)
2337 {
2338         superblock_free_security(sb);
2339 }
2340
2341 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2342 {
2343         if (plen > olen)
2344                 return 0;
2345
2346         return !memcmp(prefix, option, plen);
2347 }
2348
2349 static inline int selinux_option(char *option, int len)
2350 {
2351         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2352                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2353                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2354                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2355 }
2356
2357 static inline void take_option(char **to, char *from, int *first, int len)
2358 {
2359         if (!*first) {
2360                 **to = ',';
2361                 *to += 1;
2362         } else
2363                 *first = 0;
2364         memcpy(*to, from, len);
2365         *to += len;
2366 }
2367
2368 static inline void take_selinux_option(char **to, char *from, int *first,
2369                                        int len)
2370 {
2371         int current_size = 0;
2372
2373         if (!*first) {
2374                 **to = '|';
2375                 *to += 1;
2376         } else
2377                 *first = 0;
2378
2379         while (current_size < len) {
2380                 if (*from != '"') {
2381                         **to = *from;
2382                         *to += 1;
2383                 }
2384                 from += 1;
2385                 current_size += 1;
2386         }
2387 }
2388
2389 static int selinux_sb_copy_data(char *orig, char *copy)
2390 {
2391         int fnosec, fsec, rc = 0;
2392         char *in_save, *in_curr, *in_end;
2393         char *sec_curr, *nosec_save, *nosec;
2394         int open_quote = 0;
2395
2396         in_curr = orig;
2397         sec_curr = copy;
2398
2399         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2400         if (!nosec) {
2401                 rc = -ENOMEM;
2402                 goto out;
2403         }
2404
2405         nosec_save = nosec;
2406         fnosec = fsec = 1;
2407         in_save = in_end = orig;
2408
2409         do {
2410                 if (*in_end == '"')
2411                         open_quote = !open_quote;
2412                 if ((*in_end == ',' && open_quote == 0) ||
2413                                 *in_end == '\0') {
2414                         int len = in_end - in_curr;
2415
2416                         if (selinux_option(in_curr, len))
2417                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2418                         else
2419                                 take_option(&nosec, in_curr, &fnosec, len);
2420
2421                         in_curr = in_end + 1;
2422                 }
2423         } while (*in_end++);
2424
2425         strcpy(in_save, nosec_save);
2426         free_page((unsigned long)nosec_save);
2427 out:
2428         return rc;
2429 }
2430
2431 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2432 {
2433         struct avc_audit_data ad;
2434         int rc;
2435
2436         rc = superblock_doinit(sb, data);
2437         if (rc)
2438                 return rc;
2439
2440         AVC_AUDIT_DATA_INIT(&ad, FS);
2441         ad.u.fs.path.dentry = sb->s_root;
2442         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2443 }
2444
2445 static int selinux_sb_statfs(struct dentry *dentry)
2446 {
2447         struct avc_audit_data ad;
2448
2449         AVC_AUDIT_DATA_INIT(&ad, FS);
2450         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2451         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2452 }
2453
2454 static int selinux_mount(char *dev_name,
2455                          struct path *path,
2456                          char *type,
2457                          unsigned long flags,
2458                          void *data)
2459 {
2460         int rc;
2461
2462         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2463         if (rc)
2464                 return rc;
2465
2466         if (flags & MS_REMOUNT)
2467                 return superblock_has_perm(current, path->mnt->mnt_sb,
2468                                            FILESYSTEM__REMOUNT, NULL);
2469         else
2470                 return dentry_has_perm(current, path->mnt, path->dentry,
2471                                        FILE__MOUNTON);
2472 }
2473
2474 static int selinux_umount(struct vfsmount *mnt, int flags)
2475 {
2476         int rc;
2477
2478         rc = secondary_ops->sb_umount(mnt, flags);
2479         if (rc)
2480                 return rc;
2481
2482         return superblock_has_perm(current, mnt->mnt_sb,
2483                                    FILESYSTEM__UNMOUNT, NULL);
2484 }
2485
2486 /* inode security operations */
2487
2488 static int selinux_inode_alloc_security(struct inode *inode)
2489 {
2490         return inode_alloc_security(inode);
2491 }
2492
2493 static void selinux_inode_free_security(struct inode *inode)
2494 {
2495         inode_free_security(inode);
2496 }
2497
2498 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2499                                        char **name, void **value,
2500                                        size_t *len)
2501 {
2502         struct task_security_struct *tsec;
2503         struct inode_security_struct *dsec;
2504         struct superblock_security_struct *sbsec;
2505         u32 newsid, clen;
2506         int rc;
2507         char *namep = NULL, *context;
2508
2509         tsec = current->security;
2510         dsec = dir->i_security;
2511         sbsec = dir->i_sb->s_security;
2512
2513         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2514                 newsid = tsec->create_sid;
2515         } else {
2516                 rc = security_transition_sid(tsec->sid, dsec->sid,
2517                                              inode_mode_to_security_class(inode->i_mode),
2518                                              &newsid);
2519                 if (rc) {
2520                         printk(KERN_WARNING "%s:  "
2521                                "security_transition_sid failed, rc=%d (dev=%s "
2522                                "ino=%ld)\n",
2523                                __func__,
2524                                -rc, inode->i_sb->s_id, inode->i_ino);
2525                         return rc;
2526                 }
2527         }
2528
2529         /* Possibly defer initialization to selinux_complete_init. */
2530         if (sbsec->initialized) {
2531                 struct inode_security_struct *isec = inode->i_security;
2532                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2533                 isec->sid = newsid;
2534                 isec->initialized = 1;
2535         }
2536
2537         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2538                 return -EOPNOTSUPP;
2539
2540         if (name) {
2541                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2542                 if (!namep)
2543                         return -ENOMEM;
2544                 *name = namep;
2545         }
2546
2547         if (value && len) {
2548                 rc = security_sid_to_context_force(newsid, &context, &clen);
2549                 if (rc) {
2550                         kfree(namep);
2551                         return rc;
2552                 }
2553                 *value = context;
2554                 *len = clen;
2555         }
2556
2557         return 0;
2558 }
2559
2560 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2561 {
2562         return may_create(dir, dentry, SECCLASS_FILE);
2563 }
2564
2565 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2566 {
2567         int rc;
2568
2569         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2570         if (rc)
2571                 return rc;
2572         return may_link(dir, old_dentry, MAY_LINK);
2573 }
2574
2575 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2576 {
2577         int rc;
2578
2579         rc = secondary_ops->inode_unlink(dir, dentry);
2580         if (rc)
2581                 return rc;
2582         return may_link(dir, dentry, MAY_UNLINK);
2583 }
2584
2585 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2586 {
2587         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2588 }
2589
2590 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2591 {
2592         return may_create(dir, dentry, SECCLASS_DIR);
2593 }
2594
2595 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2596 {
2597         return may_link(dir, dentry, MAY_RMDIR);
2598 }
2599
2600 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2601 {
2602         int rc;
2603
2604         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2605         if (rc)
2606                 return rc;
2607
2608         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2609 }
2610
2611 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2612                                 struct inode *new_inode, struct dentry *new_dentry)
2613 {
2614         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2615 }
2616
2617 static int selinux_inode_readlink(struct dentry *dentry)
2618 {
2619         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2620 }
2621
2622 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2623 {
2624         int rc;
2625
2626         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2627         if (rc)
2628                 return rc;
2629         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2630 }
2631
2632 static int selinux_inode_permission(struct inode *inode, int mask)
2633 {
2634         int rc;
2635
2636         rc = secondary_ops->inode_permission(inode, mask);
2637         if (rc)
2638                 return rc;
2639
2640         if (!mask) {
2641                 /* No permission to check.  Existence test. */
2642                 return 0;
2643         }
2644
2645         return inode_has_perm(current, inode,
2646                                open_file_mask_to_av(inode->i_mode, mask), NULL);
2647 }
2648
2649 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2650 {
2651         int rc;
2652
2653         rc = secondary_ops->inode_setattr(dentry, iattr);
2654         if (rc)
2655                 return rc;
2656
2657         if (iattr->ia_valid & ATTR_FORCE)
2658                 return 0;
2659
2660         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2661                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2662                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2663
2664         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2665 }
2666
2667 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2668 {
2669         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2670 }
2671
2672 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2673 {
2674         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2675                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2676                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2677                         if (!capable(CAP_SETFCAP))
2678                                 return -EPERM;
2679                 } else if (!capable(CAP_SYS_ADMIN)) {
2680                         /* A different attribute in the security namespace.
2681                            Restrict to administrator. */
2682                         return -EPERM;
2683                 }
2684         }
2685
2686         /* Not an attribute we recognize, so just check the
2687            ordinary setattr permission. */
2688         return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2689 }
2690
2691 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2692                                   const void *value, size_t size, int flags)
2693 {
2694         struct task_security_struct *tsec = current->security;
2695         struct inode *inode = dentry->d_inode;
2696         struct inode_security_struct *isec = inode->i_security;
2697         struct superblock_security_struct *sbsec;
2698         struct avc_audit_data ad;
2699         u32 newsid;
2700         int rc = 0;
2701
2702         if (strcmp(name, XATTR_NAME_SELINUX))
2703                 return selinux_inode_setotherxattr(dentry, name);
2704
2705         sbsec = inode->i_sb->s_security;
2706         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2707                 return -EOPNOTSUPP;
2708
2709         if (!is_owner_or_cap(inode))
2710                 return -EPERM;
2711
2712         AVC_AUDIT_DATA_INIT(&ad, FS);
2713         ad.u.fs.path.dentry = dentry;
2714
2715         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2716                           FILE__RELABELFROM, &ad);
2717         if (rc)
2718                 return rc;
2719
2720         rc = security_context_to_sid(value, size, &newsid);
2721         if (rc == -EINVAL) {
2722                 if (!capable(CAP_MAC_ADMIN))
2723                         return rc;
2724                 rc = security_context_to_sid_force(value, size, &newsid);
2725         }
2726         if (rc)
2727                 return rc;
2728
2729         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2730                           FILE__RELABELTO, &ad);
2731         if (rc)
2732                 return rc;
2733
2734         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2735                                           isec->sclass);
2736         if (rc)
2737                 return rc;
2738
2739         return avc_has_perm(newsid,
2740                             sbsec->sid,
2741                             SECCLASS_FILESYSTEM,
2742                             FILESYSTEM__ASSOCIATE,
2743                             &ad);
2744 }
2745
2746 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2747                                         const void *value, size_t size,
2748                                         int flags)
2749 {
2750         struct inode *inode = dentry->d_inode;
2751         struct inode_security_struct *isec = inode->i_security;
2752         u32 newsid;
2753         int rc;
2754
2755         if (strcmp(name, XATTR_NAME_SELINUX)) {
2756                 /* Not an attribute we recognize, so nothing to do. */
2757                 return;
2758         }
2759
2760         rc = security_context_to_sid_force(value, size, &newsid);
2761         if (rc) {
2762                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2763                        "for (%s, %lu), rc=%d\n",
2764                        inode->i_sb->s_id, inode->i_ino, -rc);
2765                 return;
2766         }
2767
2768         isec->sid = newsid;
2769         return;
2770 }
2771
2772 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2773 {
2774         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2775 }
2776
2777 static int selinux_inode_listxattr(struct dentry *dentry)
2778 {
2779         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2780 }
2781
2782 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2783 {
2784         if (strcmp(name, XATTR_NAME_SELINUX))
2785                 return selinux_inode_setotherxattr(dentry, name);
2786
2787         /* No one is allowed to remove a SELinux security label.
2788            You can change the label, but all data must be labeled. */
2789         return -EACCES;
2790 }
2791
2792 /*
2793  * Copy the inode security context value to the user.
2794  *
2795  * Permission check is handled by selinux_inode_getxattr hook.
2796  */
2797 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2798 {
2799         u32 size;
2800         int error;
2801         char *context = NULL;
2802         struct task_security_struct *tsec = current->security;
2803         struct inode_security_struct *isec = inode->i_security;
2804
2805         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2806                 return -EOPNOTSUPP;
2807
2808         /*
2809          * If the caller has CAP_MAC_ADMIN, then get the raw context
2810          * value even if it is not defined by current policy; otherwise,
2811          * use the in-core value under current policy.
2812          * Use the non-auditing forms of the permission checks since
2813          * getxattr may be called by unprivileged processes commonly
2814          * and lack of permission just means that we fall back to the
2815          * in-core context value, not a denial.
2816          */
2817         error = secondary_ops->capable(current, CAP_MAC_ADMIN);
2818         if (!error)
2819                 error = avc_has_perm_noaudit(tsec->sid, tsec->sid,
2820                                              SECCLASS_CAPABILITY2,
2821                                              CAPABILITY2__MAC_ADMIN,
2822                                              0,
2823                                              NULL);
2824         if (!error)
2825                 error = security_sid_to_context_force(isec->sid, &context,
2826                                                       &size);
2827         else
2828                 error = security_sid_to_context(isec->sid, &context, &size);
2829         if (error)
2830                 return error;
2831         error = size;
2832         if (alloc) {
2833                 *buffer = context;
2834                 goto out_nofree;
2835         }
2836         kfree(context);
2837 out_nofree:
2838         return error;
2839 }
2840
2841 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2842                                      const void *value, size_t size, int flags)
2843 {
2844         struct inode_security_struct *isec = inode->i_security;
2845         u32 newsid;
2846         int rc;
2847
2848         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2849                 return -EOPNOTSUPP;
2850
2851         if (!value || !size)
2852                 return -EACCES;
2853
2854         rc = security_context_to_sid((void *)value, size, &newsid);
2855         if (rc)
2856                 return rc;
2857
2858         isec->sid = newsid;
2859         return 0;
2860 }
2861
2862 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2863 {
2864         const int len = sizeof(XATTR_NAME_SELINUX);
2865         if (buffer && len <= buffer_size)
2866                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2867         return len;
2868 }
2869
2870 static int selinux_inode_need_killpriv(struct dentry *dentry)
2871 {
2872         return secondary_ops->inode_need_killpriv(dentry);
2873 }
2874
2875 static int selinux_inode_killpriv(struct dentry *dentry)
2876 {
2877         return secondary_ops->inode_killpriv(dentry);
2878 }
2879
2880 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2881 {
2882         struct inode_security_struct *isec = inode->i_security;
2883         *secid = isec->sid;
2884 }
2885
2886 /* file security operations */
2887
2888 static int selinux_revalidate_file_permission(struct file *file, int mask)
2889 {
2890         int rc;
2891         struct inode *inode = file->f_path.dentry->d_inode;
2892
2893         if (!mask) {
2894                 /* No permission to check.  Existence test. */
2895                 return 0;
2896         }
2897
2898         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2899         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2900                 mask |= MAY_APPEND;
2901
2902         rc = file_has_perm(current, file,
2903                            file_mask_to_av(inode->i_mode, mask));
2904         if (rc)
2905                 return rc;
2906
2907         return selinux_netlbl_inode_permission(inode, mask);
2908 }
2909
2910 static int selinux_file_permission(struct file *file, int mask)
2911 {
2912         struct inode *inode = file->f_path.dentry->d_inode;
2913         struct task_security_struct *tsec = current->security;
2914         struct file_security_struct *fsec = file->f_security;
2915         struct inode_security_struct *isec = inode->i_security;
2916
2917         if (!mask) {
2918                 /* No permission to check.  Existence test. */
2919                 return 0;
2920         }
2921
2922         if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2923             && fsec->pseqno == avc_policy_seqno())
2924                 return selinux_netlbl_inode_permission(inode, mask);
2925
2926         return selinux_revalidate_file_permission(file, mask);
2927 }
2928
2929 static int selinux_file_alloc_security(struct file *file)
2930 {
2931         return file_alloc_security(file);
2932 }
2933
2934 static void selinux_file_free_security(struct file *file)
2935 {
2936         file_free_security(file);
2937 }
2938
2939 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2940                               unsigned long arg)
2941 {
2942         u32 av = 0;
2943
2944         if (_IOC_DIR(cmd) & _IOC_WRITE)
2945                 av |= FILE__WRITE;
2946         if (_IOC_DIR(cmd) & _IOC_READ)
2947                 av |= FILE__READ;
2948         if (!av)
2949                 av = FILE__IOCTL;
2950
2951         return file_has_perm(current, file, av);
2952 }
2953
2954 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2955 {
2956 #ifndef CONFIG_PPC32
2957         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2958                 /*
2959                  * We are making executable an anonymous mapping or a
2960                  * private file mapping that will also be writable.
2961                  * This has an additional check.
2962                  */
2963                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2964                 if (rc)
2965                         return rc;
2966         }
2967 #endif
2968
2969         if (file) {
2970                 /* read access is always possible with a mapping */
2971                 u32 av = FILE__READ;
2972
2973                 /* write access only matters if the mapping is shared */
2974                 if (shared && (prot & PROT_WRITE))
2975                         av |= FILE__WRITE;
2976
2977                 if (prot & PROT_EXEC)
2978                         av |= FILE__EXECUTE;
2979
2980                 return file_has_perm(current, file, av);
2981         }
2982         return 0;
2983 }
2984
2985 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2986                              unsigned long prot, unsigned long flags,
2987                              unsigned long addr, unsigned long addr_only)
2988 {
2989         int rc = 0;
2990         u32 sid = ((struct task_security_struct *)(current->security))->sid;
2991
2992         if (addr < mmap_min_addr)
2993                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2994                                   MEMPROTECT__MMAP_ZERO, NULL);
2995         if (rc || addr_only)
2996                 return rc;
2997
2998         if (selinux_checkreqprot)
2999                 prot = reqprot;
3000
3001         return file_map_prot_check(file, prot,
3002                                    (flags & MAP_TYPE) == MAP_SHARED);
3003 }
3004
3005 static int selinux_file_mprotect(struct vm_area_struct *vma,
3006                                  unsigned long reqprot,
3007                                  unsigned long prot)
3008 {
3009         int rc;
3010
3011         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3012         if (rc)
3013                 return rc;
3014
3015         if (selinux_checkreqprot)
3016                 prot = reqprot;
3017
3018 #ifndef CONFIG_PPC32
3019         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3020                 rc = 0;
3021                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3022                     vma->vm_end <= vma->vm_mm->brk) {
3023                         rc = task_has_perm(current, current,
3024                                            PROCESS__EXECHEAP);
3025                 } else if (!vma->vm_file &&
3026                            vma->vm_start <= vma->vm_mm->start_stack &&
3027                            vma->vm_end >= vma->vm_mm->start_stack) {
3028                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
3029                 } else if (vma->vm_file && vma->anon_vma) {
3030                         /*
3031                          * We are making executable a file mapping that has
3032                          * had some COW done. Since pages might have been
3033                          * written, check ability to execute the possibly
3034                          * modified content.  This typically should only
3035                          * occur for text relocations.
3036                          */
3037                         rc = file_has_perm(current, vma->vm_file,
3038                                            FILE__EXECMOD);
3039                 }
3040                 if (rc)
3041                         return rc;
3042         }
3043 #endif
3044
3045         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3046 }
3047
3048 static int selinux_file_lock(struct file *file, unsigned int cmd)
3049 {
3050         return file_has_perm(current, file, FILE__LOCK);
3051 }
3052
3053 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3054                               unsigned long arg)
3055 {
3056         int err = 0;
3057
3058         switch (cmd) {
3059         case F_SETFL:
3060                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3061                         err = -EINVAL;
3062                         break;
3063                 }
3064
3065                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3066                         err = file_has_perm(current, file, FILE__WRITE);
3067                         break;
3068                 }
3069                 /* fall through */
3070         case F_SETOWN:
3071         case F_SETSIG:
3072         case F_GETFL:
3073         case F_GETOWN:
3074         case F_GETSIG:
3075                 /* Just check FD__USE permission */
3076                 err = file_has_perm(current, file, 0);
3077                 break;
3078         case F_GETLK:
3079         case F_SETLK:
3080         case F_SETLKW:
3081 #if BITS_PER_LONG == 32
3082         case F_GETLK64:
3083         case F_SETLK64:
3084         case F_SETLKW64:
3085 #endif
3086                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3087                         err = -EINVAL;
3088                         break;
3089                 }
3090                 err = file_has_perm(current, file, FILE__LOCK);
3091                 break;
3092         }
3093
3094         return err;
3095 }
3096
3097 static int selinux_file_set_fowner(struct file *file)
3098 {
3099         struct task_security_struct *tsec;
3100         struct file_security_struct *fsec;
3101
3102         tsec = current->security;
3103         fsec = file->f_security;
3104         fsec->fown_sid = tsec->sid;
3105
3106         return 0;
3107 }
3108
3109 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3110                                        struct fown_struct *fown, int signum)
3111 {
3112         struct file *file;
3113         u32 perm;
3114         struct task_security_struct *tsec;
3115         struct file_security_struct *fsec;
3116
3117         /* struct fown_struct is never outside the context of a struct file */
3118         file = container_of(fown, struct file, f_owner);
3119
3120         tsec = tsk->security;
3121         fsec = file->f_security;
3122
3123         if (!signum)
3124                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3125         else
3126                 perm = signal_to_av(signum);
3127
3128         return avc_has_perm(fsec->fown_sid, tsec->sid,
3129                             SECCLASS_PROCESS, perm, NULL);
3130 }
3131
3132 static int selinux_file_receive(struct file *file)
3133 {
3134         return file_has_perm(current, file, file_to_av(file));
3135 }
3136
3137 static int selinux_dentry_open(struct file *file)
3138 {
3139         struct file_security_struct *fsec;
3140         struct inode *inode;
3141         struct inode_security_struct *isec;
3142         inode = file->f_path.dentry->d_inode;
3143         fsec = file->f_security;
3144         isec = inode->i_security;
3145         /*
3146          * Save inode label and policy sequence number
3147          * at open-time so that selinux_file_permission
3148          * can determine whether revalidation is necessary.
3149          * Task label is already saved in the file security
3150          * struct as its SID.
3151          */
3152         fsec->isid = isec->sid;
3153         fsec->pseqno = avc_policy_seqno();
3154         /*
3155          * Since the inode label or policy seqno may have changed
3156          * between the selinux_inode_permission check and the saving
3157          * of state above, recheck that access is still permitted.
3158          * Otherwise, access might never be revalidated against the
3159          * new inode label or new policy.
3160          * This check is not redundant - do not remove.
3161          */
3162         return inode_has_perm(current, inode, file_to_av(file), NULL);
3163 }
3164
3165 /* task security operations */
3166
3167 static int selinux_task_create(unsigned long clone_flags)
3168 {
3169         int rc;
3170
3171         rc = secondary_ops->task_create(clone_flags);
3172         if (rc)
3173                 return rc;
3174
3175         return task_has_perm(current, current, PROCESS__FORK);
3176 }
3177
3178 static int selinux_task_alloc_security(struct task_struct *tsk)
3179 {
3180         struct task_security_struct *tsec1, *tsec2;
3181         int rc;
3182
3183         tsec1 = current->security;
3184
3185         rc = task_alloc_security(tsk);
3186         if (rc)
3187                 return rc;
3188         tsec2 = tsk->security;
3189
3190         tsec2->osid = tsec1->osid;
3191         tsec2->sid = tsec1->sid;
3192
3193         /* Retain the exec, fs, key, and sock SIDs across fork */
3194         tsec2->exec_sid = tsec1->exec_sid;
3195         tsec2->create_sid = tsec1->create_sid;
3196         tsec2->keycreate_sid = tsec1->keycreate_sid;
3197         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3198
3199         return 0;
3200 }
3201
3202 static void selinux_task_free_security(struct task_struct *tsk)
3203 {
3204         task_free_security(tsk);
3205 }
3206
3207 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3208 {
3209         /* Since setuid only affects the current process, and
3210            since the SELinux controls are not based on the Linux
3211            identity attributes, SELinux does not need to control
3212            this operation.  However, SELinux does control the use
3213            of the CAP_SETUID and CAP_SETGID capabilities using the
3214            capable hook. */
3215         return 0;
3216 }
3217
3218 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3219 {
3220         return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3221 }
3222
3223 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3224 {
3225         /* See the comment for setuid above. */
3226         return 0;
3227 }
3228
3229 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3230 {
3231         return task_has_perm(current, p, PROCESS__SETPGID);
3232 }
3233
3234 static int selinux_task_getpgid(struct task_struct *p)
3235 {
3236         return task_has_perm(current, p, PROCESS__GETPGID);
3237 }
3238
3239 static int selinux_task_getsid(struct task_struct *p)
3240 {
3241         return task_has_perm(current, p, PROCESS__GETSESSION);
3242 }
3243
3244 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3245 {
3246         struct task_security_struct *tsec = p->security;
3247         *secid = tsec->sid;
3248 }
3249
3250 static int selinux_task_setgroups(struct group_info *group_info)
3251 {
3252         /* See the comment for setuid above. */
3253         return 0;
3254 }
3255
3256 static int selinux_task_setnice(struct task_struct *p, int nice)
3257 {
3258         int rc;
3259
3260         rc = secondary_ops->task_setnice(p, nice);
3261         if (rc)
3262                 return rc;
3263
3264         return task_has_perm(current, p, PROCESS__SETSCHED);
3265 }
3266
3267 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3268 {
3269         int rc;
3270
3271         rc = secondary_ops->task_setioprio(p, ioprio);
3272         if (rc)
3273                 return rc;
3274
3275         return task_has_perm(current, p, PROCESS__SETSCHED);
3276 }
3277
3278 static int selinux_task_getioprio(struct task_struct *p)
3279 {
3280         return task_has_perm(current, p, PROCESS__GETSCHED);
3281 }
3282
3283 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3284 {
3285         struct rlimit *old_rlim = current->signal->rlim + resource;
3286         int rc;
3287
3288         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3289         if (rc)
3290                 return rc;
3291
3292         /* Control the ability to change the hard limit (whether
3293            lowering or raising it), so that the hard limit can
3294            later be used as a safe reset point for the soft limit
3295            upon context transitions. See selinux_bprm_apply_creds. */
3296         if (old_rlim->rlim_max != new_rlim->rlim_max)
3297                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3298
3299         return 0;
3300 }
3301
3302 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3303 {
3304         int rc;
3305
3306         rc = secondary_ops->task_setscheduler(p, policy, lp);
3307         if (rc)
3308                 return rc;
3309
3310         return task_has_perm(current, p, PROCESS__SETSCHED);
3311 }
3312
3313 static int selinux_task_getscheduler(struct task_struct *p)
3314 {
3315         return task_has_perm(current, p, PROCESS__GETSCHED);
3316 }
3317
3318 static int selinux_task_movememory(struct task_struct *p)
3319 {
3320         return task_has_perm(current, p, PROCESS__SETSCHED);
3321 }
3322
3323 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3324                                 int sig, u32 secid)
3325 {
3326         u32 perm;
3327         int rc;
3328         struct task_security_struct *tsec;
3329
3330         rc = secondary_ops->task_kill(p, info, sig, secid);
3331         if (rc)
3332                 return rc;
3333
3334         if (!sig)
3335                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3336         else
3337                 perm = signal_to_av(sig);
3338         tsec = p->security;
3339         if (secid)
3340                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3341         else
3342                 rc = task_has_perm(current, p, perm);
3343         return rc;
3344 }
3345
3346 static int selinux_task_prctl(int option,
3347                               unsigned long arg2,
3348                               unsigned long arg3,
3349                               unsigned long arg4,
3350                               unsigned long arg5,
3351                               long *rc_p)
3352 {
3353         /* The current prctl operations do not appear to require
3354            any SELinux controls since they merely observe or modify
3355            the state of the current process. */
3356         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3357 }
3358
3359 static int selinux_task_wait(struct task_struct *p)
3360 {
3361         return task_has_perm(p, current, PROCESS__SIGCHLD);
3362 }
3363
3364 static void selinux_task_reparent_to_init(struct task_struct *p)
3365 {
3366         struct task_security_struct *tsec;
3367
3368         secondary_ops->task_reparent_to_init(p);
3369
3370         tsec = p->security;
3371         tsec->osid = tsec->sid;
3372         tsec->sid = SECINITSID_KERNEL;
3373         return;
3374 }
3375
3376 static void selinux_task_to_inode(struct task_struct *p,
3377                                   struct inode *inode)
3378 {
3379         struct task_security_struct *tsec = p->security;
3380         struct inode_security_struct *isec = inode->i_security;
3381
3382         isec->sid = tsec->sid;
3383         isec->initialized = 1;
3384         return;
3385 }
3386
3387 /* Returns error only if unable to parse addresses */
3388 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3389                         struct avc_audit_data *ad, u8 *proto)
3390 {
3391         int offset, ihlen, ret = -EINVAL;
3392         struct iphdr _iph, *ih;
3393
3394         offset = skb_network_offset(skb);
3395         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3396         if (ih == NULL)
3397                 goto out;
3398
3399         ihlen = ih->ihl * 4;
3400         if (ihlen < sizeof(_iph))
3401                 goto out;
3402
3403         ad->u.net.v4info.saddr = ih->saddr;
3404         ad->u.net.v4info.daddr = ih->daddr;
3405         ret = 0;
3406
3407         if (proto)
3408                 *proto = ih->protocol;
3409
3410         switch (ih->protocol) {
3411         case IPPROTO_TCP: {
3412                 struct tcphdr _tcph, *th;
3413
3414                 if (ntohs(ih->frag_off) & IP_OFFSET)
3415                         break;
3416
3417                 offset += ihlen;
3418                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3419                 if (th == NULL)
3420                         break;
3421
3422                 ad->u.net.sport = th->source;
3423                 ad->u.net.dport = th->dest;
3424                 break;
3425         }
3426
3427         case IPPROTO_UDP: {
3428                 struct udphdr _udph, *uh;
3429
3430                 if (ntohs(ih->frag_off) & IP_OFFSET)
3431                         break;
3432
3433                 offset += ihlen;
3434                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3435                 if (uh == NULL)
3436                         break;
3437
3438                 ad->u.net.sport = uh->source;
3439                 ad->u.net.dport = uh->dest;
3440                 break;
3441         }
3442
3443         case IPPROTO_DCCP: {
3444                 struct dccp_hdr _dccph, *dh;
3445
3446                 if (ntohs(ih->frag_off) & IP_OFFSET)
3447                         break;
3448
3449                 offset += ihlen;
3450                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3451                 if (dh == NULL)
3452                         break;
3453
3454                 ad->u.net.sport = dh->dccph_sport;
3455                 ad->u.net.dport = dh->dccph_dport;
3456                 break;
3457         }
3458
3459         default:
3460                 break;
3461         }
3462 out:
3463         return ret;
3464 }
3465
3466 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3467
3468 /* Returns error only if unable to parse addresses */
3469 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3470                         struct avc_audit_data *ad, u8 *proto)
3471 {
3472         u8 nexthdr;
3473         int ret = -EINVAL, offset;
3474         struct ipv6hdr _ipv6h, *ip6;
3475
3476         offset = skb_network_offset(skb);
3477         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3478         if (ip6 == NULL)
3479                 goto out;
3480
3481         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3482         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3483         ret = 0;
3484
3485         nexthdr = ip6->nexthdr;
3486         offset += sizeof(_ipv6h);
3487         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3488         if (offset < 0)
3489                 goto out;
3490
3491         if (proto)
3492                 *proto = nexthdr;
3493
3494         switch (nexthdr) {
3495         case IPPROTO_TCP: {
3496                 struct tcphdr _tcph, *th;
3497
3498                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3499                 if (th == NULL)
3500                         break;
3501
3502                 ad->u.net.sport = th->source;
3503                 ad->u.net.dport = th->dest;
3504                 break;
3505         }
3506
3507         case IPPROTO_UDP: {
3508                 struct udphdr _udph, *uh;
3509
3510                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3511                 if (uh == NULL)
3512                         break;
3513
3514                 ad->u.net.sport = uh->source;
3515                 ad->u.net.dport = uh->dest;
3516                 break;
3517         }
3518
3519         case IPPROTO_DCCP: {
3520                 struct dccp_hdr _dccph, *dh;
3521
3522                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3523                 if (dh == NULL)
3524                         break;
3525
3526                 ad->u.net.sport = dh->dccph_sport;
3527                 ad->u.net.dport = dh->dccph_dport;
3528                 break;
3529         }
3530
3531         /* includes fragments */
3532         default:
3533                 break;
3534         }
3535 out:
3536         return ret;
3537 }
3538
3539 #endif /* IPV6 */
3540
3541 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3542                              char **_addrp, int src, u8 *proto)
3543 {
3544         char *addrp;
3545         int ret;
3546
3547         switch (ad->u.net.family) {
3548         case PF_INET:
3549                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3550                 if (ret)
3551                         goto parse_error;
3552                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3553                                        &ad->u.net.v4info.daddr);
3554                 goto okay;
3555
3556 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3557         case PF_INET6:
3558                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3559                 if (ret)
3560                         goto parse_error;
3561                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3562                                        &ad->u.net.v6info.daddr);
3563                 goto okay;
3564 #endif  /* IPV6 */
3565         default:
3566                 addrp = NULL;
3567                 goto okay;
3568         }
3569
3570 parse_error:
3571         printk(KERN_WARNING
3572                "SELinux: failure in selinux_parse_skb(),"
3573                " unable to parse packet\n");
3574         return ret;
3575
3576 okay:
3577         if (_addrp)
3578                 *_addrp = addrp;
3579         return 0;
3580 }
3581
3582 /**
3583  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3584  * @skb: the packet
3585  * @family: protocol family
3586  * @sid: the packet's peer label SID
3587  *
3588  * Description:
3589  * Check the various different forms of network peer labeling and determine
3590  * the peer label/SID for the packet; most of the magic actually occurs in
3591  * the security server function security_net_peersid_cmp().  The function
3592  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3593  * or -EACCES if @sid is invalid due to inconsistencies with the different
3594  * peer labels.
3595  *
3596  */
3597 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3598 {
3599         int err;
3600         u32 xfrm_sid;
3601         u32 nlbl_sid;
3602         u32 nlbl_type;
3603
3604         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3605         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3606
3607         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3608         if (unlikely(err)) {
3609                 printk(KERN_WARNING
3610                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3611                        " unable to determine packet's peer label\n");
3612                 return -EACCES;
3613         }
3614
3615         return 0;
3616 }
3617
3618 /* socket security operations */
3619 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3620                            u32 perms)
3621 {
3622         struct inode_security_struct *isec;
3623         struct task_security_struct *tsec;
3624         struct avc_audit_data ad;
3625         int err = 0;
3626
3627         tsec = task->security;
3628         isec = SOCK_INODE(sock)->i_security;
3629
3630         if (isec->sid == SECINITSID_KERNEL)
3631                 goto out;
3632
3633         AVC_AUDIT_DATA_INIT(&ad, NET);
3634         ad.u.net.sk = sock->sk;
3635         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3636
3637 out:
3638         return err;
3639 }
3640
3641 static int selinux_socket_create(int family, int type,
3642                                  int protocol, int kern)
3643 {
3644         int err = 0;
3645         struct task_security_struct *tsec;
3646         u32 newsid;
3647
3648         if (kern)
3649                 goto out;
3650
3651         tsec = current->security;
3652         newsid = tsec->sockcreate_sid ? : tsec->sid;
3653         err = avc_has_perm(tsec->sid, newsid,
3654                            socket_type_to_security_class(family, type,
3655                            protocol), SOCKET__CREATE, NULL);
3656
3657 out:
3658         return err;
3659 }
3660
3661 static int selinux_socket_post_create(struct socket *sock, int family,
3662                                       int type, int protocol, int kern)
3663 {
3664         int err = 0;
3665         struct inode_security_struct *isec;
3666         struct task_security_struct *tsec;
3667         struct sk_security_struct *sksec;
3668         u32 newsid;
3669
3670         isec = SOCK_INODE(sock)->i_security;
3671
3672         tsec = current->security;
3673         newsid = tsec->sockcreate_sid ? : tsec->sid;
3674         isec->sclass = socket_type_to_security_class(family, type, protocol);
3675         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3676         isec->initialized = 1;
3677
3678         if (sock->sk) {
3679                 sksec = sock->sk->sk_security;
3680                 sksec->sid = isec->sid;
3681                 sksec->sclass = isec->sclass;
3682                 err = selinux_netlbl_socket_post_create(sock);
3683         }
3684
3685         return err;
3686 }
3687
3688 /* Range of port numbers used to automatically bind.
3689    Need to determine whether we should perform a name_bind
3690    permission check between the socket and the port number. */
3691
3692 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3693 {
3694         u16 family;
3695         int err;
3696
3697         err = socket_has_perm(current, sock, SOCKET__BIND);
3698         if (err)
3699                 goto out;
3700
3701         /*
3702          * If PF_INET or PF_INET6, check name_bind permission for the port.
3703          * Multiple address binding for SCTP is not supported yet: we just
3704          * check the first address now.
3705          */
3706         family = sock->sk->sk_family;
3707         if (family == PF_INET || family == PF_INET6) {
3708                 char *addrp;
3709                 struct inode_security_struct *isec;
3710                 struct task_security_struct *tsec;
3711                 struct avc_audit_data ad;
3712                 struct sockaddr_in *addr4 = NULL;
3713                 struct sockaddr_in6 *addr6 = NULL;
3714                 unsigned short snum;
3715                 struct sock *sk = sock->sk;
3716                 u32 sid, node_perm;
3717
3718                 tsec = current->security;
3719                 isec = SOCK_INODE(sock)->i_security;
3720
3721                 if (family == PF_INET) {
3722                         addr4 = (struct sockaddr_in *)address;
3723                         snum = ntohs(addr4->sin_port);
3724                         addrp = (char *)&addr4->sin_addr.s_addr;
3725                 } else {
3726                         addr6 = (struct sockaddr_in6 *)address;
3727                         snum = ntohs(addr6->sin6_port);
3728                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3729                 }
3730
3731                 if (snum) {
3732                         int low, high;
3733
3734                         inet_get_local_port_range(&low, &high);
3735
3736                         if (snum < max(PROT_SOCK, low) || snum > high) {
3737                                 err = sel_netport_sid(sk->sk_protocol,
3738                                                       snum, &sid);
3739                                 if (err)
3740                                         goto out;
3741                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3742                                 ad.u.net.sport = htons(snum);
3743                                 ad.u.net.family = family;
3744                                 err = avc_has_perm(isec->sid, sid,
3745                                                    isec->sclass,
3746                                                    SOCKET__NAME_BIND, &ad);
3747                                 if (err)
3748                                         goto out;
3749                         }
3750                 }
3751
3752                 switch (isec->sclass) {
3753                 case SECCLASS_TCP_SOCKET:
3754                         node_perm = TCP_SOCKET__NODE_BIND;
3755                         break;
3756
3757                 case SECCLASS_UDP_SOCKET:
3758                         node_perm = UDP_SOCKET__NODE_BIND;
3759                         break;
3760
3761                 case SECCLASS_DCCP_SOCKET:
3762                         node_perm = DCCP_SOCKET__NODE_BIND;
3763                         break;
3764
3765                 default:
3766                         node_perm = RAWIP_SOCKET__NODE_BIND;
3767                         break;
3768                 }
3769
3770                 err = sel_netnode_sid(addrp, family, &sid);
3771                 if (err)
3772                         goto out;
3773
3774                 AVC_AUDIT_DATA_INIT(&ad, NET);
3775                 ad.u.net.sport = htons(snum);
3776                 ad.u.net.family = family;
3777
3778                 if (family == PF_INET)
3779                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3780                 else
3781                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3782
3783                 err = avc_has_perm(isec->sid, sid,
3784                                    isec->sclass, node_perm, &ad);
3785                 if (err)
3786                         goto out;
3787         }
3788 out:
3789         return err;
3790 }
3791
3792 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3793 {
3794         struct inode_security_struct *isec;
3795         int err;
3796
3797         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3798         if (err)
3799                 return err;
3800
3801         /*
3802          * If a TCP or DCCP socket, check name_connect permission for the port.
3803          */
3804         isec = SOCK_INODE(sock)->i_security;
3805         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3806             isec->sclass == SECCLASS_DCCP_SOCKET) {
3807                 struct sock *sk = sock->sk;
3808                 struct avc_audit_data ad;
3809                 struct sockaddr_in *addr4 = NULL;
3810                 struct sockaddr_in6 *addr6 = NULL;
3811                 unsigned short snum;
3812                 u32 sid, perm;
3813
3814                 if (sk->sk_family == PF_INET) {
3815                         addr4 = (struct sockaddr_in *)address;
3816                         if (addrlen < sizeof(struct sockaddr_in))
3817                                 return -EINVAL;
3818                         snum = ntohs(addr4->sin_port);
3819                 } else {
3820                         addr6 = (struct sockaddr_in6 *)address;
3821                         if (addrlen < SIN6_LEN_RFC2133)
3822                                 return -EINVAL;
3823                         snum = ntohs(addr6->sin6_port);
3824                 }
3825
3826                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3827                 if (err)
3828                         goto out;
3829
3830                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3831                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3832
3833                 AVC_AUDIT_DATA_INIT(&ad, NET);
3834                 ad.u.net.dport = htons(snum);
3835                 ad.u.net.family = sk->sk_family;
3836                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3837                 if (err)
3838                         goto out;
3839         }
3840
3841 out:
3842         return err;
3843 }
3844
3845 static int selinux_socket_listen(struct socket *sock, int backlog)
3846 {
3847         return socket_has_perm(current, sock, SOCKET__LISTEN);
3848 }
3849
3850 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3851 {
3852         int err;
3853         struct inode_security_struct *isec;
3854         struct inode_security_struct *newisec;
3855
3856         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3857         if (err)
3858                 return err;
3859
3860         newisec = SOCK_INODE(newsock)->i_security;
3861
3862         isec = SOCK_INODE(sock)->i_security;
3863         newisec->sclass = isec->sclass;
3864         newisec->sid = isec->sid;
3865         newisec->initialized = 1;
3866
3867         return 0;
3868 }
3869
3870 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3871                                   int size)
3872 {
3873         int rc;
3874
3875         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3876         if (rc)
3877                 return rc;
3878
3879         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3880 }
3881
3882 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3883                                   int size, int flags)
3884 {
3885         return socket_has_perm(current, sock, SOCKET__READ);
3886 }
3887
3888 static int selinux_socket_getsockname(struct socket *sock)
3889 {
3890         return socket_has_perm(current, sock, SOCKET__GETATTR);
3891 }
3892
3893 static int selinux_socket_getpeername(struct socket *sock)
3894 {
3895         return socket_has_perm(current, sock, SOCKET__GETATTR);
3896 }
3897
3898 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3899 {
3900         int err;
3901
3902         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3903         if (err)
3904                 return err;
3905
3906         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3907 }
3908
3909 static int selinux_socket_getsockopt(struct socket *sock, int level,
3910                                      int optname)
3911 {
3912         return socket_has_perm(current, sock, SOCKET__GETOPT);
3913 }
3914
3915 static int selinux_socket_shutdown(struct socket *sock, int how)
3916 {
3917         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3918 }
3919
3920 static int selinux_socket_unix_stream_connect(struct socket *sock,
3921                                               struct socket *other,
3922                                               struct sock *newsk)
3923 {
3924         struct sk_security_struct *ssec;
3925         struct inode_security_struct *isec;
3926         struct inode_security_struct *other_isec;
3927         struct avc_audit_data ad;
3928         int err;
3929
3930         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3931         if (err)
3932                 return err;
3933
3934         isec = SOCK_INODE(sock)->i_security;
3935         other_isec = SOCK_INODE(other)->i_security;
3936
3937         AVC_AUDIT_DATA_INIT(&ad, NET);
3938         ad.u.net.sk = other->sk;
3939
3940         err = avc_has_perm(isec->sid, other_isec->sid,
3941                            isec->sclass,
3942                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3943         if (err)
3944                 return err;
3945
3946         /* connecting socket */
3947         ssec = sock->sk->sk_security;
3948         ssec->peer_sid = other_isec->sid;
3949
3950         /* server child socket */
3951         ssec = newsk->sk_security;
3952         ssec->peer_sid = isec->sid;
3953         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3954
3955         return err;
3956 }
3957
3958 static int selinux_socket_unix_may_send(struct socket *sock,
3959                                         struct socket *other)
3960 {
3961         struct inode_security_struct *isec;
3962         struct inode_security_struct *other_isec;
3963         struct avc_audit_data ad;
3964         int err;
3965
3966         isec = SOCK_INODE(sock)->i_security;
3967         other_isec = SOCK_INODE(other)->i_security;
3968
3969         AVC_AUDIT_DATA_INIT(&ad, NET);
3970         ad.u.net.sk = other->sk;
3971
3972         err = avc_has_perm(isec->sid, other_isec->sid,
3973                            isec->sclass, SOCKET__SENDTO, &ad);
3974         if (err)
3975                 return err;
3976
3977         return 0;
3978 }
3979
3980 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3981                                     u32 peer_sid,
3982                                     struct avc_audit_data *ad)
3983 {
3984         int err;
3985         u32 if_sid;
3986         u32 node_sid;
3987
3988         err = sel_netif_sid(ifindex, &if_sid);
3989         if (err)
3990                 return err;
3991         err = avc_has_perm(peer_sid, if_sid,
3992                            SECCLASS_NETIF, NETIF__INGRESS, ad);
3993         if (err)
3994                 return err;
3995
3996         err = sel_netnode_sid(addrp, family, &node_sid);
3997         if (err)
3998                 return err;
3999         return avc_has_perm(peer_sid, node_sid,
4000                             SECCLASS_NODE, NODE__RECVFROM, ad);
4001 }
4002
4003 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4004                                                 struct sk_buff *skb,
4005                                                 struct avc_audit_data *ad,
4006                                                 u16 family,
4007                                                 char *addrp)
4008 {
4009         int err;
4010         struct sk_security_struct *sksec = sk->sk_security;
4011         u16 sk_class;
4012         u32 netif_perm, node_perm, recv_perm;
4013         u32 port_sid, node_sid, if_sid, sk_sid;
4014
4015         sk_sid = sksec->sid;
4016         sk_class = sksec->sclass;
4017
4018         switch (sk_class) {
4019         case SECCLASS_UDP_SOCKET:
4020                 netif_perm = NETIF__UDP_RECV;
4021                 node_perm = NODE__UDP_RECV;
4022                 recv_perm = UDP_SOCKET__RECV_MSG;
4023                 break;
4024         case SECCLASS_TCP_SOCKET:
4025                 netif_perm = NETIF__TCP_RECV;
4026                 node_perm = NODE__TCP_RECV;
4027                 recv_perm = TCP_SOCKET__RECV_MSG;
4028                 break;
4029         case SECCLASS_DCCP_SOCKET:
4030                 netif_perm = NETIF__DCCP_RECV;
4031                 node_perm = NODE__DCCP_RECV;
4032                 recv_perm = DCCP_SOCKET__RECV_MSG;
4033                 break;
4034         default:
4035                 netif_perm = NETIF__RAWIP_RECV;
4036                 node_perm = NODE__RAWIP_RECV;
4037                 recv_perm = 0;
4038                 break;
4039         }
4040
4041         err = sel_netif_sid(skb->iif, &if_sid);
4042         if (err)
4043                 return err;
4044         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4045         if (err)
4046                 return err;
4047
4048         err = sel_netnode_sid(addrp, family, &node_sid);
4049         if (err)
4050                 return err;
4051         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4052         if (err)
4053                 return err;
4054
4055         if (!recv_perm)
4056                 return 0;
4057         err = sel_netport_sid(sk->sk_protocol,
4058                               ntohs(ad->u.net.sport), &port_sid);
4059         if (unlikely(err)) {
4060                 printk(KERN_WARNING
4061                        "SELinux: failure in"
4062                        " selinux_sock_rcv_skb_iptables_compat(),"
4063                        " network port label not found\n");
4064                 return err;
4065         }
4066         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4067 }
4068
4069 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4070                                        struct avc_audit_data *ad,
4071                                        u16 family, char *addrp)
4072 {
4073         int err;
4074         struct sk_security_struct *sksec = sk->sk_security;
4075         u32 peer_sid;
4076         u32 sk_sid = sksec->sid;
4077
4078         if (selinux_compat_net)
4079                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, ad,
4080                                                            family, addrp);
4081         else
4082                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4083                                    PACKET__RECV, ad);
4084         if (err)
4085                 return err;
4086
4087         if (selinux_policycap_netpeer) {
4088                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4089                 if (err)
4090                         return err;
4091                 err = avc_has_perm(sk_sid, peer_sid,
4092                                    SECCLASS_PEER, PEER__RECV, ad);
4093         } else {
4094                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, ad);
4095                 if (err)
4096                         return err;
4097                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, ad);
4098         }
4099
4100         return err;
4101 }
4102
4103 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4104 {
4105         int err;
4106         struct sk_security_struct *sksec = sk->sk_security;
4107         u16 family = sk->sk_family;
4108         u32 sk_sid = sksec->sid;
4109         struct avc_audit_data ad;
4110         char *addrp;
4111
4112         if (family != PF_INET && family != PF_INET6)
4113                 return 0;
4114
4115         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4116         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4117                 family = PF_INET;
4118
4119         AVC_AUDIT_DATA_INIT(&ad, NET);
4120         ad.u.net.netif = skb->iif;
4121         ad.u.net.family = family;
4122         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4123         if (err)
4124                 return err;
4125
4126         /* If any sort of compatibility mode is enabled then handoff processing
4127          * to the selinux_sock_rcv_skb_compat() function to deal with the
4128          * special handling.  We do this in an attempt to keep this function
4129          * as fast and as clean as possible. */
4130         if (selinux_compat_net || !selinux_policycap_netpeer)
4131                 return selinux_sock_rcv_skb_compat(sk, skb, &ad,
4132                                                    family, addrp);
4133
4134         if (netlbl_enabled() || selinux_xfrm_enabled()) {
4135                 u32 peer_sid;
4136
4137                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4138                 if (err)
4139                         return err;
4140                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4141                                                peer_sid, &ad);
4142                 if (err)
4143                         return err;
4144                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4145                                    PEER__RECV, &ad);
4146         }
4147
4148         if (selinux_secmark_enabled()) {
4149                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4150                                    PACKET__RECV, &ad);
4151                 if (err)
4152                         return err;
4153         }
4154
4155         return err;
4156 }
4157
4158 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4159                                             int __user *optlen, unsigned len)
4160 {
4161         int err = 0;
4162         char *scontext;
4163         u32 scontext_len;
4164         struct sk_security_struct *ssec;
4165         struct inode_security_struct *isec;
4166         u32 peer_sid = SECSID_NULL;
4167
4168         isec = SOCK_INODE(sock)->i_security;
4169
4170         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4171             isec->sclass == SECCLASS_TCP_SOCKET) {
4172                 ssec = sock->sk->sk_security;
4173                 peer_sid = ssec->peer_sid;
4174         }
4175         if (peer_sid == SECSID_NULL) {
4176                 err = -ENOPROTOOPT;
4177                 goto out;
4178         }
4179
4180         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4181
4182         if (err)
4183                 goto out;
4184
4185         if (scontext_len > len) {
4186                 err = -ERANGE;
4187                 goto out_len;
4188         }
4189
4190         if (copy_to_user(optval, scontext, scontext_len))
4191                 err = -EFAULT;
4192
4193 out_len:
4194         if (put_user(scontext_len, optlen))
4195                 err = -EFAULT;
4196
4197         kfree(scontext);
4198 out:
4199         return err;
4200 }
4201
4202 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4203 {
4204         u32 peer_secid = SECSID_NULL;
4205         u16 family;
4206
4207         if (sock)
4208                 family = sock->sk->sk_family;
4209         else if (skb && skb->sk)
4210                 family = skb->sk->sk_family;
4211         else
4212                 goto out;
4213
4214         if (sock && family == PF_UNIX)
4215                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4216         else if (skb)
4217                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4218
4219 out:
4220         *secid = peer_secid;
4221         if (peer_secid == SECSID_NULL)
4222                 return -EINVAL;
4223         return 0;
4224 }
4225
4226 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4227 {
4228         return sk_alloc_security(sk, family, priority);
4229 }
4230
4231 static void selinux_sk_free_security(struct sock *sk)
4232 {
4233         sk_free_security(sk);
4234 }
4235
4236 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4237 {
4238         struct sk_security_struct *ssec = sk->sk_security;
4239         struct sk_security_struct *newssec = newsk->sk_security;
4240
4241         newssec->sid = ssec->sid;
4242         newssec->peer_sid = ssec->peer_sid;
4243         newssec->sclass = ssec->sclass;
4244
4245         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4246 }
4247
4248 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4249 {
4250         if (!sk)
4251                 *secid = SECINITSID_ANY_SOCKET;
4252         else {
4253                 struct sk_security_struct *sksec = sk->sk_security;
4254
4255                 *secid = sksec->sid;
4256         }
4257 }
4258
4259 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4260 {
4261         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4262         struct sk_security_struct *sksec = sk->sk_security;
4263
4264         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4265             sk->sk_family == PF_UNIX)
4266                 isec->sid = sksec->sid;
4267         sksec->sclass = isec->sclass;
4268
4269         selinux_netlbl_sock_graft(sk, parent);
4270 }
4271
4272 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4273                                      struct request_sock *req)
4274 {
4275         struct sk_security_struct *sksec = sk->sk_security;
4276         int err;
4277         u32 newsid;
4278         u32 peersid;
4279
4280         err = selinux_skb_peerlbl_sid(skb, sk->sk_family, &peersid);
4281         if (err)
4282                 return err;
4283         if (peersid == SECSID_NULL) {
4284                 req->secid = sksec->sid;
4285                 req->peer_secid = SECSID_NULL;
4286                 return 0;
4287         }
4288
4289         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4290         if (err)
4291                 return err;
4292
4293         req->secid = newsid;
4294         req->peer_secid = peersid;
4295         return 0;
4296 }
4297
4298 static void selinux_inet_csk_clone(struct sock *newsk,
4299                                    const struct request_sock *req)
4300 {
4301         struct sk_security_struct *newsksec = newsk->sk_security;
4302
4303         newsksec->sid = req->secid;
4304         newsksec->peer_sid = req->peer_secid;
4305         /* NOTE: Ideally, we should also get the isec->sid for the
4306            new socket in sync, but we don't have the isec available yet.
4307            So we will wait until sock_graft to do it, by which
4308            time it will have been created and available. */
4309
4310         /* We don't need to take any sort of lock here as we are the only
4311          * thread with access to newsksec */
4312         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4313 }
4314
4315 static void selinux_inet_conn_established(struct sock *sk,
4316                                 struct sk_buff *skb)
4317 {
4318         struct sk_security_struct *sksec = sk->sk_security;
4319
4320         selinux_skb_peerlbl_sid(skb, sk->sk_family, &sksec->peer_sid);
4321 }
4322
4323 static void selinux_req_classify_flow(const struct request_sock *req,
4324                                       struct flowi *fl)
4325 {
4326         fl->secid = req->secid;
4327 }
4328
4329 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4330 {
4331         int err = 0;
4332         u32 perm;
4333         struct nlmsghdr *nlh;
4334         struct socket *sock = sk->sk_socket;
4335         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4336
4337         if (skb->len < NLMSG_SPACE(0)) {
4338                 err = -EINVAL;
4339                 goto out;
4340         }
4341         nlh = nlmsg_hdr(skb);
4342
4343         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4344         if (err) {
4345                 if (err == -EINVAL) {
4346                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4347                                   "SELinux:  unrecognized netlink message"
4348                                   " type=%hu for sclass=%hu\n",
4349                                   nlh->nlmsg_type, isec->sclass);
4350                         if (!selinux_enforcing)
4351                                 err = 0;
4352                 }
4353
4354                 /* Ignore */
4355                 if (err == -ENOENT)
4356                         err = 0;
4357                 goto out;
4358         }
4359
4360         err = socket_has_perm(current, sock, perm);
4361 out:
4362         return err;
4363 }
4364
4365 #ifdef CONFIG_NETFILTER
4366
4367 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4368                                        u16 family)
4369 {
4370         char *addrp;
4371         u32 peer_sid;
4372         struct avc_audit_data ad;
4373         u8 secmark_active;
4374         u8 peerlbl_active;
4375
4376         if (!selinux_policycap_netpeer)
4377                 return NF_ACCEPT;
4378
4379         secmark_active = selinux_secmark_enabled();
4380         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4381         if (!secmark_active && !peerlbl_active)
4382                 return NF_ACCEPT;
4383
4384         AVC_AUDIT_DATA_INIT(&ad, NET);
4385         ad.u.net.netif = ifindex;
4386         ad.u.net.family = family;
4387         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4388                 return NF_DROP;
4389
4390         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4391                 return NF_DROP;
4392
4393         if (peerlbl_active)
4394                 if (selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4395                                              peer_sid, &ad) != 0)
4396                         return NF_DROP;
4397
4398         if (secmark_active)
4399                 if (avc_has_perm(peer_sid, skb->secmark,
4400                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4401                         return NF_DROP;
4402
4403         return NF_ACCEPT;
4404 }
4405
4406 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4407                                          struct sk_buff *skb,
4408                                          const struct net_device *in,
4409                                          const struct net_device *out,
4410                                          int (*okfn)(struct sk_buff *))
4411 {
4412         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4413 }
4414
4415 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4416 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4417                                          struct sk_buff *skb,
4418                                          const struct net_device *in,
4419                                          const struct net_device *out,
4420                                          int (*okfn)(struct sk_buff *))
4421 {
4422         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4423 }
4424 #endif  /* IPV6 */
4425
4426 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4427                                                 int ifindex,
4428                                                 struct avc_audit_data *ad,
4429                                                 u16 family, char *addrp)
4430 {
4431         int err;
4432         struct sk_security_struct *sksec = sk->sk_security;
4433         u16 sk_class;
4434         u32 netif_perm, node_perm, send_perm;
4435         u32 port_sid, node_sid, if_sid, sk_sid;
4436
4437         sk_sid = sksec->sid;
4438         sk_class = sksec->sclass;
4439
4440         switch (sk_class) {
4441         case SECCLASS_UDP_SOCKET:
4442                 netif_perm = NETIF__UDP_SEND;
4443                 node_perm = NODE__UDP_SEND;
4444                 send_perm = UDP_SOCKET__SEND_MSG;
4445                 break;
4446         case SECCLASS_TCP_SOCKET:
4447                 netif_perm = NETIF__TCP_SEND;
4448                 node_perm = NODE__TCP_SEND;
4449                 send_perm = TCP_SOCKET__SEND_MSG;
4450                 break;
4451         case SECCLASS_DCCP_SOCKET:
4452                 netif_perm = NETIF__DCCP_SEND;
4453                 node_perm = NODE__DCCP_SEND;
4454                 send_perm = DCCP_SOCKET__SEND_MSG;
4455                 break;
4456         default:
4457                 netif_perm = NETIF__RAWIP_SEND;
4458                 node_perm = NODE__RAWIP_SEND;
4459                 send_perm = 0;
4460                 break;
4461         }
4462
4463         err = sel_netif_sid(ifindex, &if_sid);
4464         if (err)
4465                 return err;
4466         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4467                 return err;
4468
4469         err = sel_netnode_sid(addrp, family, &node_sid);
4470         if (err)
4471                 return err;
4472         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4473         if (err)
4474                 return err;
4475
4476         if (send_perm != 0)
4477                 return 0;
4478
4479         err = sel_netport_sid(sk->sk_protocol,
4480                               ntohs(ad->u.net.dport), &port_sid);
4481         if (unlikely(err)) {
4482                 printk(KERN_WARNING
4483                        "SELinux: failure in"
4484                        " selinux_ip_postroute_iptables_compat(),"
4485                        " network port label not found\n");
4486                 return err;
4487         }
4488         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4489 }
4490
4491 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4492                                                 int ifindex,
4493                                                 struct avc_audit_data *ad,
4494                                                 u16 family,
4495                                                 char *addrp,
4496                                                 u8 proto)
4497 {
4498         struct sock *sk = skb->sk;
4499         struct sk_security_struct *sksec;
4500
4501         if (sk == NULL)
4502                 return NF_ACCEPT;
4503         sksec = sk->sk_security;
4504
4505         if (selinux_compat_net) {
4506                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4507                                                          ad, family, addrp))
4508                         return NF_DROP;
4509         } else {
4510                 if (avc_has_perm(sksec->sid, skb->secmark,
4511                                  SECCLASS_PACKET, PACKET__SEND, ad))
4512                         return NF_DROP;
4513         }
4514
4515         if (selinux_policycap_netpeer)
4516                 if (selinux_xfrm_postroute_last(sksec->sid, skb, ad, proto))
4517                         return NF_DROP;
4518
4519         return NF_ACCEPT;
4520 }
4521
4522 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4523                                          u16 family)
4524 {
4525         u32 secmark_perm;
4526         u32 peer_sid;
4527         struct sock *sk;
4528         struct avc_audit_data ad;
4529         char *addrp;
4530         u8 proto;
4531         u8 secmark_active;
4532         u8 peerlbl_active;
4533
4534         AVC_AUDIT_DATA_INIT(&ad, NET);
4535         ad.u.net.netif = ifindex;
4536         ad.u.net.family = family;
4537         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4538                 return NF_DROP;
4539
4540         /* If any sort of compatibility mode is enabled then handoff processing
4541          * to the selinux_ip_postroute_compat() function to deal with the
4542          * special handling.  We do this in an attempt to keep this function
4543          * as fast and as clean as possible. */
4544         if (selinux_compat_net || !selinux_policycap_netpeer)
4545                 return selinux_ip_postroute_compat(skb, ifindex, &ad,
4546                                                    family, addrp, proto);
4547
4548         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4549          * packet transformation so allow the packet to pass without any checks
4550          * since we'll have another chance to perform access control checks
4551          * when the packet is on it's final way out.
4552          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4553          *       is NULL, in this case go ahead and apply access control. */
4554         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4555                 return NF_ACCEPT;
4556
4557         secmark_active = selinux_secmark_enabled();
4558         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4559         if (!secmark_active && !peerlbl_active)
4560                 return NF_ACCEPT;
4561
4562         /* if the packet is locally generated (skb->sk != NULL) then use the
4563          * socket's label as the peer label, otherwise the packet is being
4564          * forwarded through this system and we need to fetch the peer label
4565          * directly from the packet */
4566         sk = skb->sk;
4567         if (sk) {
4568                 struct sk_security_struct *sksec = sk->sk_security;
4569                 peer_sid = sksec->sid;
4570                 secmark_perm = PACKET__SEND;
4571         } else {
4572                 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4573                                 return NF_DROP;
4574                 secmark_perm = PACKET__FORWARD_OUT;
4575         }
4576
4577         if (secmark_active)
4578                 if (avc_has_perm(peer_sid, skb->secmark,
4579                                  SECCLASS_PACKET, secmark_perm, &ad))
4580                         return NF_DROP;
4581
4582         if (peerlbl_active) {
4583                 u32 if_sid;
4584                 u32 node_sid;
4585
4586                 if (sel_netif_sid(ifindex, &if_sid))
4587                         return NF_DROP;
4588                 if (avc_has_perm(peer_sid, if_sid,
4589                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4590                         return NF_DROP;
4591
4592                 if (sel_netnode_sid(addrp, family, &node_sid))
4593                         return NF_DROP;
4594                 if (avc_has_perm(peer_sid, node_sid,
4595                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4596                         return NF_DROP;
4597         }
4598
4599         return NF_ACCEPT;
4600 }
4601
4602 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4603                                            struct sk_buff *skb,
4604                                            const struct net_device *in,
4605                                            const struct net_device *out,
4606                                            int (*okfn)(struct sk_buff *))
4607 {
4608         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4609 }
4610
4611 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4612 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4613                                            struct sk_buff *skb,
4614                                            const struct net_device *in,
4615                                            const struct net_device *out,
4616                                            int (*okfn)(struct sk_buff *))
4617 {
4618         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4619 }
4620 #endif  /* IPV6 */
4621
4622 #endif  /* CONFIG_NETFILTER */
4623
4624 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4625 {
4626         int err;
4627
4628         err = secondary_ops->netlink_send(sk, skb);
4629         if (err)
4630                 return err;
4631
4632         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4633                 err = selinux_nlmsg_perm(sk, skb);
4634
4635         return err;
4636 }
4637
4638 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4639 {
4640         int err;
4641         struct avc_audit_data ad;
4642
4643         err = secondary_ops->netlink_recv(skb, capability);
4644         if (err)
4645                 return err;
4646
4647         AVC_AUDIT_DATA_INIT(&ad, CAP);
4648         ad.u.cap = capability;
4649
4650         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4651                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4652 }
4653
4654 static int ipc_alloc_security(struct task_struct *task,
4655                               struct kern_ipc_perm *perm,
4656                               u16 sclass)
4657 {
4658         struct task_security_struct *tsec = task->security;
4659         struct ipc_security_struct *isec;
4660
4661         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4662         if (!isec)
4663                 return -ENOMEM;
4664
4665         isec->sclass = sclass;
4666         isec->sid = tsec->sid;
4667         perm->security = isec;
4668
4669         return 0;
4670 }
4671
4672 static void ipc_free_security(struct kern_ipc_perm *perm)
4673 {
4674         struct ipc_security_struct *isec = perm->security;
4675         perm->security = NULL;
4676         kfree(isec);
4677 }
4678
4679 static int msg_msg_alloc_security(struct msg_msg *msg)
4680 {
4681         struct msg_security_struct *msec;
4682
4683         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4684         if (!msec)
4685                 return -ENOMEM;
4686
4687         msec->sid = SECINITSID_UNLABELED;
4688         msg->security = msec;
4689
4690         return 0;
4691 }
4692
4693 static void msg_msg_free_security(struct msg_msg *msg)
4694 {
4695         struct msg_security_struct *msec = msg->security;
4696
4697         msg->security = NULL;
4698         kfree(msec);
4699 }
4700
4701 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4702                         u32 perms)
4703 {
4704         struct task_security_struct *tsec;
4705         struct ipc_security_struct *isec;
4706         struct avc_audit_data ad;
4707
4708         tsec = current->security;
4709         isec = ipc_perms->security;
4710
4711         AVC_AUDIT_DATA_INIT(&ad, IPC);
4712         ad.u.ipc_id = ipc_perms->key;
4713
4714         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4715 }
4716
4717 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4718 {
4719         return msg_msg_alloc_security(msg);
4720 }
4721
4722 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4723 {
4724         msg_msg_free_security(msg);
4725 }
4726
4727 /* message queue security operations */
4728 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4729 {
4730         struct task_security_struct *tsec;
4731         struct ipc_security_struct *isec;
4732         struct avc_audit_data ad;
4733         int rc;
4734
4735         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4736         if (rc)
4737                 return rc;
4738
4739         tsec = current->security;
4740         isec = msq->q_perm.security;
4741
4742         AVC_AUDIT_DATA_INIT(&ad, IPC);
4743         ad.u.ipc_id = msq->q_perm.key;
4744
4745         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4746                           MSGQ__CREATE, &ad);
4747         if (rc) {
4748                 ipc_free_security(&msq->q_perm);
4749                 return rc;
4750         }
4751         return 0;
4752 }
4753
4754 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4755 {
4756         ipc_free_security(&msq->q_perm);
4757 }
4758
4759 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4760 {
4761         struct task_security_struct *tsec;
4762         struct ipc_security_struct *isec;
4763         struct avc_audit_data ad;
4764
4765         tsec = current->security;
4766         isec = msq->q_perm.security;
4767
4768         AVC_AUDIT_DATA_INIT(&ad, IPC);
4769         ad.u.ipc_id = msq->q_perm.key;
4770
4771         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4772                             MSGQ__ASSOCIATE, &ad);
4773 }
4774
4775 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4776 {
4777         int err;
4778         int perms;
4779
4780         switch (cmd) {
4781         case IPC_INFO:
4782         case MSG_INFO:
4783                 /* No specific object, just general system-wide information. */
4784                 return task_has_system(current, SYSTEM__IPC_INFO);
4785         case IPC_STAT:
4786         case MSG_STAT:
4787                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4788                 break;
4789         case IPC_SET:
4790                 perms = MSGQ__SETATTR;
4791                 break;
4792         case IPC_RMID:
4793                 perms = MSGQ__DESTROY;
4794                 break;
4795         default:
4796                 return 0;
4797         }
4798
4799         err = ipc_has_perm(&msq->q_perm, perms);
4800         return err;
4801 }
4802
4803 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4804 {
4805         struct task_security_struct *tsec;
4806         struct ipc_security_struct *isec;
4807         struct msg_security_struct *msec;
4808         struct avc_audit_data ad;
4809         int rc;
4810
4811         tsec = current->security;
4812         isec = msq->q_perm.security;
4813         msec = msg->security;
4814
4815         /*
4816          * First time through, need to assign label to the message
4817          */
4818         if (msec->sid == SECINITSID_UNLABELED) {
4819                 /*
4820                  * Compute new sid based on current process and
4821                  * message queue this message will be stored in
4822                  */
4823                 rc = security_transition_sid(tsec->sid,
4824                                              isec->sid,
4825                                              SECCLASS_MSG,
4826                                              &msec->sid);
4827                 if (rc)
4828                         return rc;
4829         }
4830
4831         AVC_AUDIT_DATA_INIT(&ad, IPC);
4832         ad.u.ipc_id = msq->q_perm.key;
4833
4834         /* Can this process write to the queue? */
4835         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4836                           MSGQ__WRITE, &ad);
4837         if (!rc)
4838                 /* Can this process send the message */
4839                 rc = avc_has_perm(tsec->sid, msec->sid,
4840                                   SECCLASS_MSG, MSG__SEND, &ad);
4841         if (!rc)
4842                 /* Can the message be put in the queue? */
4843                 rc = avc_has_perm(msec->sid, isec->sid,
4844                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4845
4846         return rc;
4847 }
4848
4849 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4850                                     struct task_struct *target,
4851                                     long type, int mode)
4852 {
4853         struct task_security_struct *tsec;
4854         struct ipc_security_struct *isec;
4855         struct msg_security_struct *msec;
4856         struct avc_audit_data ad;
4857         int rc;
4858
4859         tsec = target->security;
4860         isec = msq->q_perm.security;
4861         msec = msg->security;
4862
4863         AVC_AUDIT_DATA_INIT(&ad, IPC);
4864         ad.u.ipc_id = msq->q_perm.key;
4865
4866         rc = avc_has_perm(tsec->sid, isec->sid,
4867                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4868         if (!rc)
4869                 rc = avc_has_perm(tsec->sid, msec->sid,
4870                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4871         return rc;
4872 }
4873
4874 /* Shared Memory security operations */
4875 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4876 {
4877         struct task_security_struct *tsec;
4878         struct ipc_security_struct *isec;
4879         struct avc_audit_data ad;
4880         int rc;
4881
4882         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4883         if (rc)
4884                 return rc;
4885
4886         tsec = current->security;
4887         isec = shp->shm_perm.security;
4888
4889         AVC_AUDIT_DATA_INIT(&ad, IPC);
4890         ad.u.ipc_id = shp->shm_perm.key;
4891
4892         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4893                           SHM__CREATE, &ad);
4894         if (rc) {
4895                 ipc_free_security(&shp->shm_perm);
4896                 return rc;
4897         }
4898         return 0;
4899 }
4900
4901 static void selinux_shm_free_security(struct shmid_kernel *shp)
4902 {
4903         ipc_free_security(&shp->shm_perm);
4904 }
4905
4906 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4907 {
4908         struct task_security_struct *tsec;
4909         struct ipc_security_struct *isec;
4910         struct avc_audit_data ad;
4911
4912         tsec = current->security;
4913         isec = shp->shm_perm.security;
4914
4915         AVC_AUDIT_DATA_INIT(&ad, IPC);
4916         ad.u.ipc_id = shp->shm_perm.key;
4917
4918         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4919                             SHM__ASSOCIATE, &ad);
4920 }
4921
4922 /* Note, at this point, shp is locked down */
4923 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4924 {
4925         int perms;
4926         int err;
4927
4928         switch (cmd) {
4929         case IPC_INFO:
4930         case SHM_INFO:
4931                 /* No specific object, just general system-wide information. */
4932                 return task_has_system(current, SYSTEM__IPC_INFO);
4933         case IPC_STAT:
4934         case SHM_STAT:
4935                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4936                 break;
4937         case IPC_SET:
4938                 perms = SHM__SETATTR;
4939                 break;
4940         case SHM_LOCK:
4941         case SHM_UNLOCK:
4942                 perms = SHM__LOCK;
4943                 break;
4944         case IPC_RMID:
4945                 perms = SHM__DESTROY;
4946                 break;
4947         default:
4948                 return 0;
4949         }
4950
4951         err = ipc_has_perm(&shp->shm_perm, perms);
4952         return err;
4953 }
4954
4955 static int selinux_shm_shmat(struct shmid_kernel *shp,
4956                              char __user *shmaddr, int shmflg)
4957 {
4958         u32 perms;
4959         int rc;
4960
4961         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4962         if (rc)
4963                 return rc;
4964
4965         if (shmflg & SHM_RDONLY)
4966                 perms = SHM__READ;
4967         else
4968                 perms = SHM__READ | SHM__WRITE;
4969
4970         return ipc_has_perm(&shp->shm_perm, perms);
4971 }
4972
4973 /* Semaphore security operations */
4974 static int selinux_sem_alloc_security(struct sem_array *sma)
4975 {
4976         struct task_security_struct *tsec;
4977         struct ipc_security_struct *isec;
4978         struct avc_audit_data ad;
4979         int rc;
4980
4981         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4982         if (rc)
4983                 return rc;
4984
4985         tsec = current->security;
4986         isec = sma->sem_perm.security;
4987
4988         AVC_AUDIT_DATA_INIT(&ad, IPC);
4989         ad.u.ipc_id = sma->sem_perm.key;
4990
4991         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4992                           SEM__CREATE, &ad);
4993         if (rc) {
4994                 ipc_free_security(&sma->sem_perm);
4995                 return rc;
4996         }
4997         return 0;
4998 }
4999
5000 static void selinux_sem_free_security(struct sem_array *sma)
5001 {
5002         ipc_free_security(&sma->sem_perm);
5003 }
5004
5005 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5006 {
5007         struct task_security_struct *tsec;
5008         struct ipc_security_struct *isec;
5009         struct avc_audit_data ad;
5010
5011         tsec = current->security;
5012         isec = sma->sem_perm.security;
5013
5014         AVC_AUDIT_DATA_INIT(&ad, IPC);
5015         ad.u.ipc_id = sma->sem_perm.key;
5016
5017         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5018                             SEM__ASSOCIATE, &ad);
5019 }
5020
5021 /* Note, at this point, sma is locked down */
5022 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5023 {
5024         int err;
5025         u32 perms;
5026
5027         switch (cmd) {
5028         case IPC_INFO:
5029         case SEM_INFO:
5030                 /* No specific object, just general system-wide information. */
5031                 return task_has_system(current, SYSTEM__IPC_INFO);
5032         case GETPID:
5033         case GETNCNT:
5034         case GETZCNT:
5035                 perms = SEM__GETATTR;
5036                 break;
5037         case GETVAL:
5038         case GETALL:
5039                 perms = SEM__READ;
5040                 break;
5041         case SETVAL:
5042         case SETALL:
5043                 perms = SEM__WRITE;
5044                 break;
5045         case IPC_RMID:
5046                 perms = SEM__DESTROY;
5047                 break;
5048         case IPC_SET:
5049                 perms = SEM__SETATTR;
5050                 break;
5051         case IPC_STAT:
5052         case SEM_STAT:
5053                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5054                 break;
5055         default:
5056                 return 0;
5057         }
5058
5059         err = ipc_has_perm(&sma->sem_perm, perms);
5060         return err;
5061 }
5062
5063 static int selinux_sem_semop(struct sem_array *sma,
5064                              struct sembuf *sops, unsigned nsops, int alter)
5065 {
5066         u32 perms;
5067
5068         if (alter)
5069                 perms = SEM__READ | SEM__WRITE;
5070         else
5071                 perms = SEM__READ;
5072
5073         return ipc_has_perm(&sma->sem_perm, perms);
5074 }
5075
5076 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5077 {
5078         u32 av = 0;
5079
5080         av = 0;
5081         if (flag & S_IRUGO)
5082                 av |= IPC__UNIX_READ;
5083         if (flag & S_IWUGO)
5084                 av |= IPC__UNIX_WRITE;
5085
5086         if (av == 0)
5087                 return 0;
5088
5089         return ipc_has_perm(ipcp, av);
5090 }
5091
5092 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5093 {
5094         struct ipc_security_struct *isec = ipcp->security;
5095         *secid = isec->sid;
5096 }
5097
5098 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5099 {
5100         if (inode)
5101                 inode_doinit_with_dentry(inode, dentry);
5102 }
5103
5104 static int selinux_getprocattr(struct task_struct *p,
5105                                char *name, char **value)
5106 {
5107         struct task_security_struct *tsec;
5108         u32 sid;
5109         int error;
5110         unsigned len;
5111
5112         if (current != p) {
5113                 error = task_has_perm(current, p, PROCESS__GETATTR);
5114                 if (error)
5115                         return error;
5116         }
5117
5118         tsec = p->security;
5119
5120         if (!strcmp(name, "current"))
5121                 sid = tsec->sid;
5122         else if (!strcmp(name, "prev"))
5123                 sid = tsec->osid;
5124         else if (!strcmp(name, "exec"))
5125                 sid = tsec->exec_sid;
5126         else if (!strcmp(name, "fscreate"))
5127                 sid = tsec->create_sid;
5128         else if (!strcmp(name, "keycreate"))
5129                 sid = tsec->keycreate_sid;
5130         else if (!strcmp(name, "sockcreate"))
5131                 sid = tsec->sockcreate_sid;
5132         else
5133                 return -EINVAL;
5134
5135         if (!sid)
5136                 return 0;
5137
5138         error = security_sid_to_context(sid, value, &len);
5139         if (error)
5140                 return error;
5141         return len;
5142 }
5143
5144 static int selinux_setprocattr(struct task_struct *p,
5145                                char *name, void *value, size_t size)
5146 {
5147         struct task_security_struct *tsec;
5148         struct task_struct *tracer;
5149         u32 sid = 0;
5150         int error;
5151         char *str = value;
5152
5153         if (current != p) {
5154                 /* SELinux only allows a process to change its own
5155                    security attributes. */
5156                 return -EACCES;
5157         }
5158
5159         /*
5160          * Basic control over ability to set these attributes at all.
5161          * current == p, but we'll pass them separately in case the
5162          * above restriction is ever removed.
5163          */
5164         if (!strcmp(name, "exec"))
5165                 error = task_has_perm(current, p, PROCESS__SETEXEC);
5166         else if (!strcmp(name, "fscreate"))
5167                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5168         else if (!strcmp(name, "keycreate"))
5169                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5170         else if (!strcmp(name, "sockcreate"))
5171                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5172         else if (!strcmp(name, "current"))
5173                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5174         else
5175                 error = -EINVAL;
5176         if (error)
5177                 return error;
5178
5179         /* Obtain a SID for the context, if one was specified. */
5180         if (size && str[1] && str[1] != '\n') {
5181                 if (str[size-1] == '\n') {
5182                         str[size-1] = 0;
5183                         size--;
5184                 }
5185                 error = security_context_to_sid(value, size, &sid);
5186                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5187                         if (!capable(CAP_MAC_ADMIN))
5188                                 return error;
5189                         error = security_context_to_sid_force(value, size,
5190                                                               &sid);
5191                 }
5192                 if (error)
5193                         return error;
5194         }
5195
5196         /* Permission checking based on the specified context is
5197            performed during the actual operation (execve,
5198            open/mkdir/...), when we know the full context of the
5199            operation.  See selinux_bprm_set_security for the execve
5200            checks and may_create for the file creation checks. The
5201            operation will then fail if the context is not permitted. */
5202         tsec = p->security;
5203         if (!strcmp(name, "exec"))
5204                 tsec->exec_sid = sid;
5205         else if (!strcmp(name, "fscreate"))
5206                 tsec->create_sid = sid;
5207         else if (!strcmp(name, "keycreate")) {
5208                 error = may_create_key(sid, p);
5209                 if (error)
5210                         return error;
5211                 tsec->keycreate_sid = sid;
5212         } else if (!strcmp(name, "sockcreate"))
5213                 tsec->sockcreate_sid = sid;
5214         else if (!strcmp(name, "current")) {
5215                 struct av_decision avd;
5216
5217                 if (sid == 0)
5218                         return -EINVAL;
5219
5220                 /* Only allow single threaded processes to change context */
5221                 if (atomic_read(&p->mm->mm_users) != 1) {
5222                         struct task_struct *g, *t;
5223                         struct mm_struct *mm = p->mm;
5224                         read_lock(&tasklist_lock);
5225                         do_each_thread(g, t) {
5226                                 if (t->mm == mm && t != p) {
5227                                         read_unlock(&tasklist_lock);
5228                                         return -EPERM;
5229                                 }
5230                         } while_each_thread(g, t);
5231                         read_unlock(&tasklist_lock);
5232                 }
5233
5234                 /* Check permissions for the transition. */
5235                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5236                                      PROCESS__DYNTRANSITION, NULL);
5237                 if (error)
5238                         return error;
5239
5240                 /* Check for ptracing, and update the task SID if ok.
5241                    Otherwise, leave SID unchanged and fail. */
5242                 task_lock(p);
5243                 rcu_read_lock();
5244                 tracer = tracehook_tracer_task(p);
5245                 if (tracer != NULL) {
5246                         struct task_security_struct *ptsec = tracer->security;
5247                         u32 ptsid = ptsec->sid;
5248                         rcu_read_unlock();
5249                         error = avc_has_perm_noaudit(ptsid, sid,
5250                                                      SECCLASS_PROCESS,
5251                                                      PROCESS__PTRACE, 0, &avd);
5252                         if (!error)
5253                                 tsec->sid = sid;
5254                         task_unlock(p);
5255                         avc_audit(ptsid, sid, SECCLASS_PROCESS,
5256                                   PROCESS__PTRACE, &avd, error, NULL);
5257                         if (error)
5258                                 return error;
5259                 } else {
5260                         rcu_read_unlock();
5261                         tsec->sid = sid;
5262                         task_unlock(p);
5263                 }
5264         } else
5265                 return -EINVAL;
5266
5267         return size;
5268 }
5269
5270 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5271 {
5272         return security_sid_to_context(secid, secdata, seclen);
5273 }
5274
5275 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5276 {
5277         return security_context_to_sid(secdata, seclen, secid);
5278 }
5279
5280 static void selinux_release_secctx(char *secdata, u32 seclen)
5281 {
5282         kfree(secdata);
5283 }
5284
5285 #ifdef CONFIG_KEYS
5286
5287 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5288                              unsigned long flags)
5289 {
5290         struct task_security_struct *tsec = tsk->security;
5291         struct key_security_struct *ksec;
5292
5293         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5294         if (!ksec)
5295                 return -ENOMEM;
5296
5297         if (tsec->keycreate_sid)
5298                 ksec->sid = tsec->keycreate_sid;
5299         else
5300                 ksec->sid = tsec->sid;
5301         k->security = ksec;
5302
5303         return 0;
5304 }
5305
5306 static void selinux_key_free(struct key *k)
5307 {
5308         struct key_security_struct *ksec = k->security;
5309
5310         k->security = NULL;
5311         kfree(ksec);
5312 }
5313
5314 static int selinux_key_permission(key_ref_t key_ref,
5315                             struct task_struct *ctx,
5316                             key_perm_t perm)
5317 {
5318         struct key *key;
5319         struct task_security_struct *tsec;
5320         struct key_security_struct *ksec;
5321
5322         key = key_ref_to_ptr(key_ref);
5323
5324         tsec = ctx->security;
5325         ksec = key->security;
5326
5327         /* if no specific permissions are requested, we skip the
5328            permission check. No serious, additional covert channels
5329            appear to be created. */
5330         if (perm == 0)
5331                 return 0;
5332
5333         return avc_has_perm(tsec->sid, ksec->sid,
5334                             SECCLASS_KEY, perm, NULL);
5335 }
5336
5337 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5338 {
5339         struct key_security_struct *ksec = key->security;
5340         char *context = NULL;
5341         unsigned len;
5342         int rc;
5343
5344         rc = security_sid_to_context(ksec->sid, &context, &len);
5345         if (!rc)
5346                 rc = len;
5347         *_buffer = context;
5348         return rc;
5349 }
5350
5351 #endif
5352
5353 static struct security_operations selinux_ops = {
5354         .name =                         "selinux",
5355
5356         .ptrace =                       selinux_ptrace,
5357         .capget =                       selinux_capget,
5358         .capset_check =                 selinux_capset_check,
5359         .capset_set =                   selinux_capset_set,
5360         .sysctl =                       selinux_sysctl,
5361         .capable =                      selinux_capable,
5362         .quotactl =                     selinux_quotactl,
5363         .quota_on =                     selinux_quota_on,
5364         .syslog =                       selinux_syslog,
5365         .vm_enough_memory =             selinux_vm_enough_memory,
5366
5367         .netlink_send =                 selinux_netlink_send,
5368         .netlink_recv =                 selinux_netlink_recv,
5369
5370         .bprm_alloc_security =          selinux_bprm_alloc_security,
5371         .bprm_free_security =           selinux_bprm_free_security,
5372         .bprm_apply_creds =             selinux_bprm_apply_creds,
5373         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
5374         .bprm_set_security =            selinux_bprm_set_security,
5375         .bprm_check_security =          selinux_bprm_check_security,
5376         .bprm_secureexec =              selinux_bprm_secureexec,
5377
5378         .sb_alloc_security =            selinux_sb_alloc_security,
5379         .sb_free_security =             selinux_sb_free_security,
5380         .sb_copy_data =                 selinux_sb_copy_data,
5381         .sb_kern_mount =                selinux_sb_kern_mount,
5382         .sb_show_options =              selinux_sb_show_options,
5383         .sb_statfs =                    selinux_sb_statfs,
5384         .sb_mount =                     selinux_mount,
5385         .sb_umount =                    selinux_umount,
5386         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5387         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5388         .sb_parse_opts_str =            selinux_parse_opts_str,
5389
5390
5391         .inode_alloc_security =         selinux_inode_alloc_security,
5392         .inode_free_security =          selinux_inode_free_security,
5393         .inode_init_security =          selinux_inode_init_security,
5394         .inode_create =                 selinux_inode_create,
5395         .inode_link =                   selinux_inode_link,
5396         .inode_unlink =                 selinux_inode_unlink,
5397         .inode_symlink =                selinux_inode_symlink,
5398         .inode_mkdir =                  selinux_inode_mkdir,
5399         .inode_rmdir =                  selinux_inode_rmdir,
5400         .inode_mknod =                  selinux_inode_mknod,
5401         .inode_rename =                 selinux_inode_rename,
5402         .inode_readlink =               selinux_inode_readlink,
5403         .inode_follow_link =            selinux_inode_follow_link,
5404         .inode_permission =             selinux_inode_permission,
5405         .inode_setattr =                selinux_inode_setattr,
5406         .inode_getattr =                selinux_inode_getattr,
5407         .inode_setxattr =               selinux_inode_setxattr,
5408         .inode_post_setxattr =          selinux_inode_post_setxattr,
5409         .inode_getxattr =               selinux_inode_getxattr,
5410         .inode_listxattr =              selinux_inode_listxattr,
5411         .inode_removexattr =            selinux_inode_removexattr,
5412         .inode_getsecurity =            selinux_inode_getsecurity,
5413         .inode_setsecurity =            selinux_inode_setsecurity,
5414         .inode_listsecurity =           selinux_inode_listsecurity,
5415         .inode_need_killpriv =          selinux_inode_need_killpriv,
5416         .inode_killpriv =               selinux_inode_killpriv,
5417         .inode_getsecid =               selinux_inode_getsecid,
5418
5419         .file_permission =              selinux_file_permission,
5420         .file_alloc_security =          selinux_file_alloc_security,
5421         .file_free_security =           selinux_file_free_security,
5422         .file_ioctl =                   selinux_file_ioctl,
5423         .file_mmap =                    selinux_file_mmap,
5424         .file_mprotect =                selinux_file_mprotect,
5425         .file_lock =                    selinux_file_lock,
5426         .file_fcntl =                   selinux_file_fcntl,
5427         .file_set_fowner =              selinux_file_set_fowner,
5428         .file_send_sigiotask =          selinux_file_send_sigiotask,
5429         .file_receive =                 selinux_file_receive,
5430
5431         .dentry_open =                  selinux_dentry_open,
5432
5433         .task_create =                  selinux_task_create,
5434         .task_alloc_security =          selinux_task_alloc_security,
5435         .task_free_security =           selinux_task_free_security,
5436         .task_setuid =                  selinux_task_setuid,
5437         .task_post_setuid =             selinux_task_post_setuid,
5438         .task_setgid =                  selinux_task_setgid,
5439         .task_setpgid =                 selinux_task_setpgid,
5440         .task_getpgid =                 selinux_task_getpgid,
5441         .task_getsid =                  selinux_task_getsid,
5442         .task_getsecid =                selinux_task_getsecid,
5443         .task_setgroups =               selinux_task_setgroups,
5444         .task_setnice =                 selinux_task_setnice,
5445         .task_setioprio =               selinux_task_setioprio,
5446         .task_getioprio =               selinux_task_getioprio,
5447         .task_setrlimit =               selinux_task_setrlimit,
5448         .task_setscheduler =            selinux_task_setscheduler,
5449         .task_getscheduler =            selinux_task_getscheduler,
5450         .task_movememory =              selinux_task_movememory,
5451         .task_kill =                    selinux_task_kill,
5452         .task_wait =                    selinux_task_wait,
5453         .task_prctl =                   selinux_task_prctl,
5454         .task_reparent_to_init =        selinux_task_reparent_to_init,
5455         .task_to_inode =                selinux_task_to_inode,
5456
5457         .ipc_permission =               selinux_ipc_permission,
5458         .ipc_getsecid =                 selinux_ipc_getsecid,
5459
5460         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5461         .msg_msg_free_security =        selinux_msg_msg_free_security,
5462
5463         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5464         .msg_queue_free_security =      selinux_msg_queue_free_security,
5465         .msg_queue_associate =          selinux_msg_queue_associate,
5466         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5467         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5468         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5469
5470         .shm_alloc_security =           selinux_shm_alloc_security,
5471         .shm_free_security =            selinux_shm_free_security,
5472         .shm_associate =                selinux_shm_associate,
5473         .shm_shmctl =                   selinux_shm_shmctl,
5474         .shm_shmat =                    selinux_shm_shmat,
5475
5476         .sem_alloc_security =           selinux_sem_alloc_security,
5477         .sem_free_security =            selinux_sem_free_security,
5478         .sem_associate =                selinux_sem_associate,
5479         .sem_semctl =                   selinux_sem_semctl,
5480         .sem_semop =                    selinux_sem_semop,
5481
5482         .d_instantiate =                selinux_d_instantiate,
5483
5484         .getprocattr =                  selinux_getprocattr,
5485         .setprocattr =                  selinux_setprocattr,
5486
5487         .secid_to_secctx =              selinux_secid_to_secctx,
5488         .secctx_to_secid =              selinux_secctx_to_secid,
5489         .release_secctx =               selinux_release_secctx,
5490
5491         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5492         .unix_may_send =                selinux_socket_unix_may_send,
5493
5494         .socket_create =                selinux_socket_create,
5495         .socket_post_create =           selinux_socket_post_create,
5496         .socket_bind =                  selinux_socket_bind,
5497         .socket_connect =               selinux_socket_connect,
5498         .socket_listen =                selinux_socket_listen,
5499         .socket_accept =                selinux_socket_accept,
5500         .socket_sendmsg =               selinux_socket_sendmsg,
5501         .socket_recvmsg =               selinux_socket_recvmsg,
5502         .socket_getsockname =           selinux_socket_getsockname,
5503         .socket_getpeername =           selinux_socket_getpeername,
5504         .socket_getsockopt =            selinux_socket_getsockopt,
5505         .socket_setsockopt =            selinux_socket_setsockopt,
5506         .socket_shutdown =              selinux_socket_shutdown,
5507         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5508         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5509         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5510         .sk_alloc_security =            selinux_sk_alloc_security,
5511         .sk_free_security =             selinux_sk_free_security,
5512         .sk_clone_security =            selinux_sk_clone_security,
5513         .sk_getsecid =                  selinux_sk_getsecid,
5514         .sock_graft =                   selinux_sock_graft,
5515         .inet_conn_request =            selinux_inet_conn_request,
5516         .inet_csk_clone =               selinux_inet_csk_clone,
5517         .inet_conn_established =        selinux_inet_conn_established,
5518         .req_classify_flow =            selinux_req_classify_flow,
5519
5520 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5521         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5522         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5523         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5524         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5525         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5526         .xfrm_state_free_security =     selinux_xfrm_state_free,
5527         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5528         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5529         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5530         .xfrm_decode_session =          selinux_xfrm_decode_session,
5531 #endif
5532
5533 #ifdef CONFIG_KEYS
5534         .key_alloc =                    selinux_key_alloc,
5535         .key_free =                     selinux_key_free,
5536         .key_permission =               selinux_key_permission,
5537         .key_getsecurity =              selinux_key_getsecurity,
5538 #endif
5539
5540 #ifdef CONFIG_AUDIT
5541         .audit_rule_init =              selinux_audit_rule_init,
5542         .audit_rule_known =             selinux_audit_rule_known,
5543         .audit_rule_match =             selinux_audit_rule_match,
5544         .audit_rule_free =              selinux_audit_rule_free,
5545 #endif
5546 };
5547
5548 static __init int selinux_init(void)
5549 {
5550         struct task_security_struct *tsec;
5551
5552         if (!security_module_enable(&selinux_ops)) {
5553                 selinux_enabled = 0;
5554                 return 0;
5555         }
5556
5557         if (!selinux_enabled) {
5558                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5559                 return 0;
5560         }
5561
5562         printk(KERN_INFO "SELinux:  Initializing.\n");
5563
5564         /* Set the security state for the initial task. */
5565         if (task_alloc_security(current))
5566                 panic("SELinux:  Failed to initialize initial task.\n");
5567         tsec = current->security;
5568         tsec->osid = tsec->sid = SECINITSID_KERNEL;
5569
5570         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5571                                             sizeof(struct inode_security_struct),
5572                                             0, SLAB_PANIC, NULL);
5573         avc_init();
5574
5575         secondary_ops = security_ops;
5576         if (!secondary_ops)
5577                 panic("SELinux: No initial security operations\n");
5578         if (register_security(&selinux_ops))
5579                 panic("SELinux: Unable to register with kernel.\n");
5580
5581         if (selinux_enforcing)
5582                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5583         else
5584                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5585
5586         return 0;
5587 }
5588
5589 void selinux_complete_init(void)
5590 {
5591         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5592
5593         /* Set up any superblocks initialized prior to the policy load. */
5594         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5595         spin_lock(&sb_lock);
5596         spin_lock(&sb_security_lock);
5597 next_sb:
5598         if (!list_empty(&superblock_security_head)) {
5599                 struct superblock_security_struct *sbsec =
5600                                 list_entry(superblock_security_head.next,
5601                                            struct superblock_security_struct,
5602                                            list);
5603                 struct super_block *sb = sbsec->sb;
5604                 sb->s_count++;
5605                 spin_unlock(&sb_security_lock);
5606                 spin_unlock(&sb_lock);
5607                 down_read(&sb->s_umount);
5608                 if (sb->s_root)
5609                         superblock_doinit(sb, NULL);
5610                 drop_super(sb);
5611                 spin_lock(&sb_lock);
5612                 spin_lock(&sb_security_lock);
5613                 list_del_init(&sbsec->list);
5614                 goto next_sb;
5615         }
5616         spin_unlock(&sb_security_lock);
5617         spin_unlock(&sb_lock);
5618 }
5619
5620 /* SELinux requires early initialization in order to label
5621    all processes and objects when they are created. */
5622 security_initcall(selinux_init);
5623
5624 #if defined(CONFIG_NETFILTER)
5625
5626 static struct nf_hook_ops selinux_ipv4_ops[] = {
5627         {
5628                 .hook =         selinux_ipv4_postroute,
5629                 .owner =        THIS_MODULE,
5630                 .pf =           PF_INET,
5631                 .hooknum =      NF_INET_POST_ROUTING,
5632                 .priority =     NF_IP_PRI_SELINUX_LAST,
5633         },
5634         {
5635                 .hook =         selinux_ipv4_forward,
5636                 .owner =        THIS_MODULE,
5637                 .pf =           PF_INET,
5638                 .hooknum =      NF_INET_FORWARD,
5639                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5640         }
5641 };
5642
5643 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5644
5645 static struct nf_hook_ops selinux_ipv6_ops[] = {
5646         {
5647                 .hook =         selinux_ipv6_postroute,
5648                 .owner =        THIS_MODULE,
5649                 .pf =           PF_INET6,
5650                 .hooknum =      NF_INET_POST_ROUTING,
5651                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5652         },
5653         {
5654                 .hook =         selinux_ipv6_forward,
5655                 .owner =        THIS_MODULE,
5656                 .pf =           PF_INET6,
5657                 .hooknum =      NF_INET_FORWARD,
5658                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5659         }
5660 };
5661
5662 #endif  /* IPV6 */
5663
5664 static int __init selinux_nf_ip_init(void)
5665 {
5666         int err = 0;
5667
5668         if (!selinux_enabled)
5669                 goto out;
5670
5671         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5672
5673         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5674         if (err)
5675                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5676
5677 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5678         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5679         if (err)
5680                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5681 #endif  /* IPV6 */
5682
5683 out:
5684         return err;
5685 }
5686
5687 __initcall(selinux_nf_ip_init);
5688
5689 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5690 static void selinux_nf_ip_exit(void)
5691 {
5692         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5693
5694         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5695 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5696         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5697 #endif  /* IPV6 */
5698 }
5699 #endif
5700
5701 #else /* CONFIG_NETFILTER */
5702
5703 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5704 #define selinux_nf_ip_exit()
5705 #endif
5706
5707 #endif /* CONFIG_NETFILTER */
5708
5709 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5710 static int selinux_disabled;
5711
5712 int selinux_disable(void)
5713 {
5714         extern void exit_sel_fs(void);
5715
5716         if (ss_initialized) {
5717                 /* Not permitted after initial policy load. */
5718                 return -EINVAL;
5719         }
5720
5721         if (selinux_disabled) {
5722                 /* Only do this once. */
5723                 return -EINVAL;
5724         }
5725
5726         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5727
5728         selinux_disabled = 1;
5729         selinux_enabled = 0;
5730
5731         /* Reset security_ops to the secondary module, dummy or capability. */
5732         security_ops = secondary_ops;
5733
5734         /* Unregister netfilter hooks. */
5735         selinux_nf_ip_exit();
5736
5737         /* Unregister selinuxfs. */
5738         exit_sel_fs();
5739
5740         return 0;
5741 }
5742 #endif