]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - security/selinux/hooks.c
SELinux: check open perms in dentry_open not inode_permission
[linux-2.6-omap-h63xx.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78
79 #include "avc.h"
80 #include "objsec.h"
81 #include "netif.h"
82 #include "netnode.h"
83 #include "netport.h"
84 #include "xfrm.h"
85 #include "netlabel.h"
86 #include "audit.h"
87
88 #define XATTR_SELINUX_SUFFIX "selinux"
89 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
90
91 #define NUM_SEL_MNT_OPTS 4
92
93 extern unsigned int policydb_loaded_version;
94 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
95 extern int selinux_compat_net;
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155         return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /* Allocate and free functions for each kind of security blob. */
159
160 static int task_alloc_security(struct task_struct *task)
161 {
162         struct task_security_struct *tsec;
163
164         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
165         if (!tsec)
166                 return -ENOMEM;
167
168         tsec->osid = tsec->sid = SECINITSID_UNLABELED;
169         task->security = tsec;
170
171         return 0;
172 }
173
174 static void task_free_security(struct task_struct *task)
175 {
176         struct task_security_struct *tsec = task->security;
177         task->security = NULL;
178         kfree(tsec);
179 }
180
181 static int inode_alloc_security(struct inode *inode)
182 {
183         struct task_security_struct *tsec = current->security;
184         struct inode_security_struct *isec;
185
186         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
187         if (!isec)
188                 return -ENOMEM;
189
190         mutex_init(&isec->lock);
191         INIT_LIST_HEAD(&isec->list);
192         isec->inode = inode;
193         isec->sid = SECINITSID_UNLABELED;
194         isec->sclass = SECCLASS_FILE;
195         isec->task_sid = tsec->sid;
196         inode->i_security = isec;
197
198         return 0;
199 }
200
201 static void inode_free_security(struct inode *inode)
202 {
203         struct inode_security_struct *isec = inode->i_security;
204         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
205
206         spin_lock(&sbsec->isec_lock);
207         if (!list_empty(&isec->list))
208                 list_del_init(&isec->list);
209         spin_unlock(&sbsec->isec_lock);
210
211         inode->i_security = NULL;
212         kmem_cache_free(sel_inode_cache, isec);
213 }
214
215 static int file_alloc_security(struct file *file)
216 {
217         struct task_security_struct *tsec = current->security;
218         struct file_security_struct *fsec;
219
220         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
221         if (!fsec)
222                 return -ENOMEM;
223
224         fsec->sid = tsec->sid;
225         fsec->fown_sid = tsec->sid;
226         file->f_security = fsec;
227
228         return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233         struct file_security_struct *fsec = file->f_security;
234         file->f_security = NULL;
235         kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240         struct superblock_security_struct *sbsec;
241
242         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243         if (!sbsec)
244                 return -ENOMEM;
245
246         mutex_init(&sbsec->lock);
247         INIT_LIST_HEAD(&sbsec->list);
248         INIT_LIST_HEAD(&sbsec->isec_head);
249         spin_lock_init(&sbsec->isec_lock);
250         sbsec->sb = sb;
251         sbsec->sid = SECINITSID_UNLABELED;
252         sbsec->def_sid = SECINITSID_FILE;
253         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254         sb->s_security = sbsec;
255
256         return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261         struct superblock_security_struct *sbsec = sb->s_security;
262
263         spin_lock(&sb_security_lock);
264         if (!list_empty(&sbsec->list))
265                 list_del_init(&sbsec->list);
266         spin_unlock(&sb_security_lock);
267
268         sb->s_security = NULL;
269         kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274         struct sk_security_struct *ssec;
275
276         ssec = kzalloc(sizeof(*ssec), priority);
277         if (!ssec)
278                 return -ENOMEM;
279
280         ssec->peer_sid = SECINITSID_UNLABELED;
281         ssec->sid = SECINITSID_UNLABELED;
282         sk->sk_security = ssec;
283
284         selinux_netlbl_sk_security_reset(ssec, family);
285
286         return 0;
287 }
288
289 static void sk_free_security(struct sock *sk)
290 {
291         struct sk_security_struct *ssec = sk->sk_security;
292
293         sk->sk_security = NULL;
294         selinux_netlbl_sk_security_free(ssec);
295         kfree(ssec);
296 }
297
298 /* The security server must be initialized before
299    any labeling or access decisions can be provided. */
300 extern int ss_initialized;
301
302 /* The file system's label must be initialized prior to use. */
303
304 static char *labeling_behaviors[6] = {
305         "uses xattr",
306         "uses transition SIDs",
307         "uses task SIDs",
308         "uses genfs_contexts",
309         "not configured for labeling",
310         "uses mountpoint labeling",
311 };
312
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314
315 static inline int inode_doinit(struct inode *inode)
316 {
317         return inode_doinit_with_dentry(inode, NULL);
318 }
319
320 enum {
321         Opt_error = -1,
322         Opt_context = 1,
323         Opt_fscontext = 2,
324         Opt_defcontext = 3,
325         Opt_rootcontext = 4,
326 };
327
328 static match_table_t tokens = {
329         {Opt_context, CONTEXT_STR "%s"},
330         {Opt_fscontext, FSCONTEXT_STR "%s"},
331         {Opt_defcontext, DEFCONTEXT_STR "%s"},
332         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
333         {Opt_error, NULL},
334 };
335
336 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
337
338 static int may_context_mount_sb_relabel(u32 sid,
339                         struct superblock_security_struct *sbsec,
340                         struct task_security_struct *tsec)
341 {
342         int rc;
343
344         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345                           FILESYSTEM__RELABELFROM, NULL);
346         if (rc)
347                 return rc;
348
349         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
350                           FILESYSTEM__RELABELTO, NULL);
351         return rc;
352 }
353
354 static int may_context_mount_inode_relabel(u32 sid,
355                         struct superblock_security_struct *sbsec,
356                         struct task_security_struct *tsec)
357 {
358         int rc;
359         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
360                           FILESYSTEM__RELABELFROM, NULL);
361         if (rc)
362                 return rc;
363
364         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
365                           FILESYSTEM__ASSOCIATE, NULL);
366         return rc;
367 }
368
369 static int sb_finish_set_opts(struct super_block *sb)
370 {
371         struct superblock_security_struct *sbsec = sb->s_security;
372         struct dentry *root = sb->s_root;
373         struct inode *root_inode = root->d_inode;
374         int rc = 0;
375
376         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
377                 /* Make sure that the xattr handler exists and that no
378                    error other than -ENODATA is returned by getxattr on
379                    the root directory.  -ENODATA is ok, as this may be
380                    the first boot of the SELinux kernel before we have
381                    assigned xattr values to the filesystem. */
382                 if (!root_inode->i_op->getxattr) {
383                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
384                                "xattr support\n", sb->s_id, sb->s_type->name);
385                         rc = -EOPNOTSUPP;
386                         goto out;
387                 }
388                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
389                 if (rc < 0 && rc != -ENODATA) {
390                         if (rc == -EOPNOTSUPP)
391                                 printk(KERN_WARNING "SELinux: (dev %s, type "
392                                        "%s) has no security xattr handler\n",
393                                        sb->s_id, sb->s_type->name);
394                         else
395                                 printk(KERN_WARNING "SELinux: (dev %s, type "
396                                        "%s) getxattr errno %d\n", sb->s_id,
397                                        sb->s_type->name, -rc);
398                         goto out;
399                 }
400         }
401
402         sbsec->initialized = 1;
403
404         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
405                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
406                        sb->s_id, sb->s_type->name);
407         else
408                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
409                        sb->s_id, sb->s_type->name,
410                        labeling_behaviors[sbsec->behavior-1]);
411
412         /* Initialize the root inode. */
413         rc = inode_doinit_with_dentry(root_inode, root);
414
415         /* Initialize any other inodes associated with the superblock, e.g.
416            inodes created prior to initial policy load or inodes created
417            during get_sb by a pseudo filesystem that directly
418            populates itself. */
419         spin_lock(&sbsec->isec_lock);
420 next_inode:
421         if (!list_empty(&sbsec->isec_head)) {
422                 struct inode_security_struct *isec =
423                                 list_entry(sbsec->isec_head.next,
424                                            struct inode_security_struct, list);
425                 struct inode *inode = isec->inode;
426                 spin_unlock(&sbsec->isec_lock);
427                 inode = igrab(inode);
428                 if (inode) {
429                         if (!IS_PRIVATE(inode))
430                                 inode_doinit(inode);
431                         iput(inode);
432                 }
433                 spin_lock(&sbsec->isec_lock);
434                 list_del_init(&isec->list);
435                 goto next_inode;
436         }
437         spin_unlock(&sbsec->isec_lock);
438 out:
439         return rc;
440 }
441
442 /*
443  * This function should allow an FS to ask what it's mount security
444  * options were so it can use those later for submounts, displaying
445  * mount options, or whatever.
446  */
447 static int selinux_get_mnt_opts(const struct super_block *sb,
448                                 struct security_mnt_opts *opts)
449 {
450         int rc = 0, i;
451         struct superblock_security_struct *sbsec = sb->s_security;
452         char *context = NULL;
453         u32 len;
454         char tmp;
455
456         security_init_mnt_opts(opts);
457
458         if (!sbsec->initialized)
459                 return -EINVAL;
460
461         if (!ss_initialized)
462                 return -EINVAL;
463
464         /*
465          * if we ever use sbsec flags for anything other than tracking mount
466          * settings this is going to need a mask
467          */
468         tmp = sbsec->flags;
469         /* count the number of mount options for this sb */
470         for (i = 0; i < 8; i++) {
471                 if (tmp & 0x01)
472                         opts->num_mnt_opts++;
473                 tmp >>= 1;
474         }
475
476         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
477         if (!opts->mnt_opts) {
478                 rc = -ENOMEM;
479                 goto out_free;
480         }
481
482         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
483         if (!opts->mnt_opts_flags) {
484                 rc = -ENOMEM;
485                 goto out_free;
486         }
487
488         i = 0;
489         if (sbsec->flags & FSCONTEXT_MNT) {
490                 rc = security_sid_to_context(sbsec->sid, &context, &len);
491                 if (rc)
492                         goto out_free;
493                 opts->mnt_opts[i] = context;
494                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
495         }
496         if (sbsec->flags & CONTEXT_MNT) {
497                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
498                 if (rc)
499                         goto out_free;
500                 opts->mnt_opts[i] = context;
501                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
502         }
503         if (sbsec->flags & DEFCONTEXT_MNT) {
504                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
505                 if (rc)
506                         goto out_free;
507                 opts->mnt_opts[i] = context;
508                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
509         }
510         if (sbsec->flags & ROOTCONTEXT_MNT) {
511                 struct inode *root = sbsec->sb->s_root->d_inode;
512                 struct inode_security_struct *isec = root->i_security;
513
514                 rc = security_sid_to_context(isec->sid, &context, &len);
515                 if (rc)
516                         goto out_free;
517                 opts->mnt_opts[i] = context;
518                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
519         }
520
521         BUG_ON(i != opts->num_mnt_opts);
522
523         return 0;
524
525 out_free:
526         security_free_mnt_opts(opts);
527         return rc;
528 }
529
530 static int bad_option(struct superblock_security_struct *sbsec, char flag,
531                       u32 old_sid, u32 new_sid)
532 {
533         /* check if the old mount command had the same options */
534         if (sbsec->initialized)
535                 if (!(sbsec->flags & flag) ||
536                     (old_sid != new_sid))
537                         return 1;
538
539         /* check if we were passed the same options twice,
540          * aka someone passed context=a,context=b
541          */
542         if (!sbsec->initialized)
543                 if (sbsec->flags & flag)
544                         return 1;
545         return 0;
546 }
547
548 /*
549  * Allow filesystems with binary mount data to explicitly set mount point
550  * labeling information.
551  */
552 static int selinux_set_mnt_opts(struct super_block *sb,
553                                 struct security_mnt_opts *opts)
554 {
555         int rc = 0, i;
556         struct task_security_struct *tsec = current->security;
557         struct superblock_security_struct *sbsec = sb->s_security;
558         const char *name = sb->s_type->name;
559         struct inode *inode = sbsec->sb->s_root->d_inode;
560         struct inode_security_struct *root_isec = inode->i_security;
561         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
562         u32 defcontext_sid = 0;
563         char **mount_options = opts->mnt_opts;
564         int *flags = opts->mnt_opts_flags;
565         int num_opts = opts->num_mnt_opts;
566
567         mutex_lock(&sbsec->lock);
568
569         if (!ss_initialized) {
570                 if (!num_opts) {
571                         /* Defer initialization until selinux_complete_init,
572                            after the initial policy is loaded and the security
573                            server is ready to handle calls. */
574                         spin_lock(&sb_security_lock);
575                         if (list_empty(&sbsec->list))
576                                 list_add(&sbsec->list, &superblock_security_head);
577                         spin_unlock(&sb_security_lock);
578                         goto out;
579                 }
580                 rc = -EINVAL;
581                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
582                         "before the security server is initialized\n");
583                 goto out;
584         }
585
586         /*
587          * Binary mount data FS will come through this function twice.  Once
588          * from an explicit call and once from the generic calls from the vfs.
589          * Since the generic VFS calls will not contain any security mount data
590          * we need to skip the double mount verification.
591          *
592          * This does open a hole in which we will not notice if the first
593          * mount using this sb set explict options and a second mount using
594          * this sb does not set any security options.  (The first options
595          * will be used for both mounts)
596          */
597         if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
598             && (num_opts == 0))
599                 goto out;
600
601         /*
602          * parse the mount options, check if they are valid sids.
603          * also check if someone is trying to mount the same sb more
604          * than once with different security options.
605          */
606         for (i = 0; i < num_opts; i++) {
607                 u32 sid;
608                 rc = security_context_to_sid(mount_options[i],
609                                              strlen(mount_options[i]), &sid);
610                 if (rc) {
611                         printk(KERN_WARNING "SELinux: security_context_to_sid"
612                                "(%s) failed for (dev %s, type %s) errno=%d\n",
613                                mount_options[i], sb->s_id, name, rc);
614                         goto out;
615                 }
616                 switch (flags[i]) {
617                 case FSCONTEXT_MNT:
618                         fscontext_sid = sid;
619
620                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621                                         fscontext_sid))
622                                 goto out_double_mount;
623
624                         sbsec->flags |= FSCONTEXT_MNT;
625                         break;
626                 case CONTEXT_MNT:
627                         context_sid = sid;
628
629                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630                                         context_sid))
631                                 goto out_double_mount;
632
633                         sbsec->flags |= CONTEXT_MNT;
634                         break;
635                 case ROOTCONTEXT_MNT:
636                         rootcontext_sid = sid;
637
638                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639                                         rootcontext_sid))
640                                 goto out_double_mount;
641
642                         sbsec->flags |= ROOTCONTEXT_MNT;
643
644                         break;
645                 case DEFCONTEXT_MNT:
646                         defcontext_sid = sid;
647
648                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649                                         defcontext_sid))
650                                 goto out_double_mount;
651
652                         sbsec->flags |= DEFCONTEXT_MNT;
653
654                         break;
655                 default:
656                         rc = -EINVAL;
657                         goto out;
658                 }
659         }
660
661         if (sbsec->initialized) {
662                 /* previously mounted with options, but not on this attempt? */
663                 if (sbsec->flags && !num_opts)
664                         goto out_double_mount;
665                 rc = 0;
666                 goto out;
667         }
668
669         if (strcmp(sb->s_type->name, "proc") == 0)
670                 sbsec->proc = 1;
671
672         /* Determine the labeling behavior to use for this filesystem type. */
673         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674         if (rc) {
675                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676                        __func__, sb->s_type->name, rc);
677                 goto out;
678         }
679
680         /* sets the context of the superblock for the fs being mounted. */
681         if (fscontext_sid) {
682
683                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
684                 if (rc)
685                         goto out;
686
687                 sbsec->sid = fscontext_sid;
688         }
689
690         /*
691          * Switch to using mount point labeling behavior.
692          * sets the label used on all file below the mountpoint, and will set
693          * the superblock context if not already set.
694          */
695         if (context_sid) {
696                 if (!fscontext_sid) {
697                         rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
698                         if (rc)
699                                 goto out;
700                         sbsec->sid = context_sid;
701                 } else {
702                         rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
703                         if (rc)
704                                 goto out;
705                 }
706                 if (!rootcontext_sid)
707                         rootcontext_sid = context_sid;
708
709                 sbsec->mntpoint_sid = context_sid;
710                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
711         }
712
713         if (rootcontext_sid) {
714                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
715                 if (rc)
716                         goto out;
717
718                 root_isec->sid = rootcontext_sid;
719                 root_isec->initialized = 1;
720         }
721
722         if (defcontext_sid) {
723                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
724                         rc = -EINVAL;
725                         printk(KERN_WARNING "SELinux: defcontext option is "
726                                "invalid for this filesystem type\n");
727                         goto out;
728                 }
729
730                 if (defcontext_sid != sbsec->def_sid) {
731                         rc = may_context_mount_inode_relabel(defcontext_sid,
732                                                              sbsec, tsec);
733                         if (rc)
734                                 goto out;
735                 }
736
737                 sbsec->def_sid = defcontext_sid;
738         }
739
740         rc = sb_finish_set_opts(sb);
741 out:
742         mutex_unlock(&sbsec->lock);
743         return rc;
744 out_double_mount:
745         rc = -EINVAL;
746         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
747                "security settings for (dev %s, type %s)\n", sb->s_id, name);
748         goto out;
749 }
750
751 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
752                                         struct super_block *newsb)
753 {
754         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
755         struct superblock_security_struct *newsbsec = newsb->s_security;
756
757         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
758         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
759         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
760
761         /*
762          * if the parent was able to be mounted it clearly had no special lsm
763          * mount options.  thus we can safely put this sb on the list and deal
764          * with it later
765          */
766         if (!ss_initialized) {
767                 spin_lock(&sb_security_lock);
768                 if (list_empty(&newsbsec->list))
769                         list_add(&newsbsec->list, &superblock_security_head);
770                 spin_unlock(&sb_security_lock);
771                 return;
772         }
773
774         /* how can we clone if the old one wasn't set up?? */
775         BUG_ON(!oldsbsec->initialized);
776
777         /* if fs is reusing a sb, just let its options stand... */
778         if (newsbsec->initialized)
779                 return;
780
781         mutex_lock(&newsbsec->lock);
782
783         newsbsec->flags = oldsbsec->flags;
784
785         newsbsec->sid = oldsbsec->sid;
786         newsbsec->def_sid = oldsbsec->def_sid;
787         newsbsec->behavior = oldsbsec->behavior;
788
789         if (set_context) {
790                 u32 sid = oldsbsec->mntpoint_sid;
791
792                 if (!set_fscontext)
793                         newsbsec->sid = sid;
794                 if (!set_rootcontext) {
795                         struct inode *newinode = newsb->s_root->d_inode;
796                         struct inode_security_struct *newisec = newinode->i_security;
797                         newisec->sid = sid;
798                 }
799                 newsbsec->mntpoint_sid = sid;
800         }
801         if (set_rootcontext) {
802                 const struct inode *oldinode = oldsb->s_root->d_inode;
803                 const struct inode_security_struct *oldisec = oldinode->i_security;
804                 struct inode *newinode = newsb->s_root->d_inode;
805                 struct inode_security_struct *newisec = newinode->i_security;
806
807                 newisec->sid = oldisec->sid;
808         }
809
810         sb_finish_set_opts(newsb);
811         mutex_unlock(&newsbsec->lock);
812 }
813
814 static int selinux_parse_opts_str(char *options,
815                                   struct security_mnt_opts *opts)
816 {
817         char *p;
818         char *context = NULL, *defcontext = NULL;
819         char *fscontext = NULL, *rootcontext = NULL;
820         int rc, num_mnt_opts = 0;
821
822         opts->num_mnt_opts = 0;
823
824         /* Standard string-based options. */
825         while ((p = strsep(&options, "|")) != NULL) {
826                 int token;
827                 substring_t args[MAX_OPT_ARGS];
828
829                 if (!*p)
830                         continue;
831
832                 token = match_token(p, tokens, args);
833
834                 switch (token) {
835                 case Opt_context:
836                         if (context || defcontext) {
837                                 rc = -EINVAL;
838                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
839                                 goto out_err;
840                         }
841                         context = match_strdup(&args[0]);
842                         if (!context) {
843                                 rc = -ENOMEM;
844                                 goto out_err;
845                         }
846                         break;
847
848                 case Opt_fscontext:
849                         if (fscontext) {
850                                 rc = -EINVAL;
851                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
852                                 goto out_err;
853                         }
854                         fscontext = match_strdup(&args[0]);
855                         if (!fscontext) {
856                                 rc = -ENOMEM;
857                                 goto out_err;
858                         }
859                         break;
860
861                 case Opt_rootcontext:
862                         if (rootcontext) {
863                                 rc = -EINVAL;
864                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
865                                 goto out_err;
866                         }
867                         rootcontext = match_strdup(&args[0]);
868                         if (!rootcontext) {
869                                 rc = -ENOMEM;
870                                 goto out_err;
871                         }
872                         break;
873
874                 case Opt_defcontext:
875                         if (context || defcontext) {
876                                 rc = -EINVAL;
877                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
878                                 goto out_err;
879                         }
880                         defcontext = match_strdup(&args[0]);
881                         if (!defcontext) {
882                                 rc = -ENOMEM;
883                                 goto out_err;
884                         }
885                         break;
886
887                 default:
888                         rc = -EINVAL;
889                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
890                         goto out_err;
891
892                 }
893         }
894
895         rc = -ENOMEM;
896         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
897         if (!opts->mnt_opts)
898                 goto out_err;
899
900         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
901         if (!opts->mnt_opts_flags) {
902                 kfree(opts->mnt_opts);
903                 goto out_err;
904         }
905
906         if (fscontext) {
907                 opts->mnt_opts[num_mnt_opts] = fscontext;
908                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
909         }
910         if (context) {
911                 opts->mnt_opts[num_mnt_opts] = context;
912                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
913         }
914         if (rootcontext) {
915                 opts->mnt_opts[num_mnt_opts] = rootcontext;
916                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
917         }
918         if (defcontext) {
919                 opts->mnt_opts[num_mnt_opts] = defcontext;
920                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
921         }
922
923         opts->num_mnt_opts = num_mnt_opts;
924         return 0;
925
926 out_err:
927         kfree(context);
928         kfree(defcontext);
929         kfree(fscontext);
930         kfree(rootcontext);
931         return rc;
932 }
933 /*
934  * string mount options parsing and call set the sbsec
935  */
936 static int superblock_doinit(struct super_block *sb, void *data)
937 {
938         int rc = 0;
939         char *options = data;
940         struct security_mnt_opts opts;
941
942         security_init_mnt_opts(&opts);
943
944         if (!data)
945                 goto out;
946
947         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
948
949         rc = selinux_parse_opts_str(options, &opts);
950         if (rc)
951                 goto out_err;
952
953 out:
954         rc = selinux_set_mnt_opts(sb, &opts);
955
956 out_err:
957         security_free_mnt_opts(&opts);
958         return rc;
959 }
960
961 static void selinux_write_opts(struct seq_file *m,
962                                struct security_mnt_opts *opts)
963 {
964         int i;
965         char *prefix;
966
967         for (i = 0; i < opts->num_mnt_opts; i++) {
968                 char *has_comma = strchr(opts->mnt_opts[i], ',');
969
970                 switch (opts->mnt_opts_flags[i]) {
971                 case CONTEXT_MNT:
972                         prefix = CONTEXT_STR;
973                         break;
974                 case FSCONTEXT_MNT:
975                         prefix = FSCONTEXT_STR;
976                         break;
977                 case ROOTCONTEXT_MNT:
978                         prefix = ROOTCONTEXT_STR;
979                         break;
980                 case DEFCONTEXT_MNT:
981                         prefix = DEFCONTEXT_STR;
982                         break;
983                 default:
984                         BUG();
985                 };
986                 /* we need a comma before each option */
987                 seq_putc(m, ',');
988                 seq_puts(m, prefix);
989                 if (has_comma)
990                         seq_putc(m, '\"');
991                 seq_puts(m, opts->mnt_opts[i]);
992                 if (has_comma)
993                         seq_putc(m, '\"');
994         }
995 }
996
997 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
998 {
999         struct security_mnt_opts opts;
1000         int rc;
1001
1002         rc = selinux_get_mnt_opts(sb, &opts);
1003         if (rc) {
1004                 /* before policy load we may get EINVAL, don't show anything */
1005                 if (rc == -EINVAL)
1006                         rc = 0;
1007                 return rc;
1008         }
1009
1010         selinux_write_opts(m, &opts);
1011
1012         security_free_mnt_opts(&opts);
1013
1014         return rc;
1015 }
1016
1017 static inline u16 inode_mode_to_security_class(umode_t mode)
1018 {
1019         switch (mode & S_IFMT) {
1020         case S_IFSOCK:
1021                 return SECCLASS_SOCK_FILE;
1022         case S_IFLNK:
1023                 return SECCLASS_LNK_FILE;
1024         case S_IFREG:
1025                 return SECCLASS_FILE;
1026         case S_IFBLK:
1027                 return SECCLASS_BLK_FILE;
1028         case S_IFDIR:
1029                 return SECCLASS_DIR;
1030         case S_IFCHR:
1031                 return SECCLASS_CHR_FILE;
1032         case S_IFIFO:
1033                 return SECCLASS_FIFO_FILE;
1034
1035         }
1036
1037         return SECCLASS_FILE;
1038 }
1039
1040 static inline int default_protocol_stream(int protocol)
1041 {
1042         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1043 }
1044
1045 static inline int default_protocol_dgram(int protocol)
1046 {
1047         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1048 }
1049
1050 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1051 {
1052         switch (family) {
1053         case PF_UNIX:
1054                 switch (type) {
1055                 case SOCK_STREAM:
1056                 case SOCK_SEQPACKET:
1057                         return SECCLASS_UNIX_STREAM_SOCKET;
1058                 case SOCK_DGRAM:
1059                         return SECCLASS_UNIX_DGRAM_SOCKET;
1060                 }
1061                 break;
1062         case PF_INET:
1063         case PF_INET6:
1064                 switch (type) {
1065                 case SOCK_STREAM:
1066                         if (default_protocol_stream(protocol))
1067                                 return SECCLASS_TCP_SOCKET;
1068                         else
1069                                 return SECCLASS_RAWIP_SOCKET;
1070                 case SOCK_DGRAM:
1071                         if (default_protocol_dgram(protocol))
1072                                 return SECCLASS_UDP_SOCKET;
1073                         else
1074                                 return SECCLASS_RAWIP_SOCKET;
1075                 case SOCK_DCCP:
1076                         return SECCLASS_DCCP_SOCKET;
1077                 default:
1078                         return SECCLASS_RAWIP_SOCKET;
1079                 }
1080                 break;
1081         case PF_NETLINK:
1082                 switch (protocol) {
1083                 case NETLINK_ROUTE:
1084                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1085                 case NETLINK_FIREWALL:
1086                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1087                 case NETLINK_INET_DIAG:
1088                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1089                 case NETLINK_NFLOG:
1090                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1091                 case NETLINK_XFRM:
1092                         return SECCLASS_NETLINK_XFRM_SOCKET;
1093                 case NETLINK_SELINUX:
1094                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1095                 case NETLINK_AUDIT:
1096                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1097                 case NETLINK_IP6_FW:
1098                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1099                 case NETLINK_DNRTMSG:
1100                         return SECCLASS_NETLINK_DNRT_SOCKET;
1101                 case NETLINK_KOBJECT_UEVENT:
1102                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1103                 default:
1104                         return SECCLASS_NETLINK_SOCKET;
1105                 }
1106         case PF_PACKET:
1107                 return SECCLASS_PACKET_SOCKET;
1108         case PF_KEY:
1109                 return SECCLASS_KEY_SOCKET;
1110         case PF_APPLETALK:
1111                 return SECCLASS_APPLETALK_SOCKET;
1112         }
1113
1114         return SECCLASS_SOCKET;
1115 }
1116
1117 #ifdef CONFIG_PROC_FS
1118 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1119                                 u16 tclass,
1120                                 u32 *sid)
1121 {
1122         int buflen, rc;
1123         char *buffer, *path, *end;
1124
1125         buffer = (char *)__get_free_page(GFP_KERNEL);
1126         if (!buffer)
1127                 return -ENOMEM;
1128
1129         buflen = PAGE_SIZE;
1130         end = buffer+buflen;
1131         *--end = '\0';
1132         buflen--;
1133         path = end-1;
1134         *path = '/';
1135         while (de && de != de->parent) {
1136                 buflen -= de->namelen + 1;
1137                 if (buflen < 0)
1138                         break;
1139                 end -= de->namelen;
1140                 memcpy(end, de->name, de->namelen);
1141                 *--end = '/';
1142                 path = end;
1143                 de = de->parent;
1144         }
1145         rc = security_genfs_sid("proc", path, tclass, sid);
1146         free_page((unsigned long)buffer);
1147         return rc;
1148 }
1149 #else
1150 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1151                                 u16 tclass,
1152                                 u32 *sid)
1153 {
1154         return -EINVAL;
1155 }
1156 #endif
1157
1158 /* The inode's security attributes must be initialized before first use. */
1159 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1160 {
1161         struct superblock_security_struct *sbsec = NULL;
1162         struct inode_security_struct *isec = inode->i_security;
1163         u32 sid;
1164         struct dentry *dentry;
1165 #define INITCONTEXTLEN 255
1166         char *context = NULL;
1167         unsigned len = 0;
1168         int rc = 0;
1169
1170         if (isec->initialized)
1171                 goto out;
1172
1173         mutex_lock(&isec->lock);
1174         if (isec->initialized)
1175                 goto out_unlock;
1176
1177         sbsec = inode->i_sb->s_security;
1178         if (!sbsec->initialized) {
1179                 /* Defer initialization until selinux_complete_init,
1180                    after the initial policy is loaded and the security
1181                    server is ready to handle calls. */
1182                 spin_lock(&sbsec->isec_lock);
1183                 if (list_empty(&isec->list))
1184                         list_add(&isec->list, &sbsec->isec_head);
1185                 spin_unlock(&sbsec->isec_lock);
1186                 goto out_unlock;
1187         }
1188
1189         switch (sbsec->behavior) {
1190         case SECURITY_FS_USE_XATTR:
1191                 if (!inode->i_op->getxattr) {
1192                         isec->sid = sbsec->def_sid;
1193                         break;
1194                 }
1195
1196                 /* Need a dentry, since the xattr API requires one.
1197                    Life would be simpler if we could just pass the inode. */
1198                 if (opt_dentry) {
1199                         /* Called from d_instantiate or d_splice_alias. */
1200                         dentry = dget(opt_dentry);
1201                 } else {
1202                         /* Called from selinux_complete_init, try to find a dentry. */
1203                         dentry = d_find_alias(inode);
1204                 }
1205                 if (!dentry) {
1206                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1207                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1208                                inode->i_ino);
1209                         goto out_unlock;
1210                 }
1211
1212                 len = INITCONTEXTLEN;
1213                 context = kmalloc(len, GFP_NOFS);
1214                 if (!context) {
1215                         rc = -ENOMEM;
1216                         dput(dentry);
1217                         goto out_unlock;
1218                 }
1219                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1220                                            context, len);
1221                 if (rc == -ERANGE) {
1222                         /* Need a larger buffer.  Query for the right size. */
1223                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1224                                                    NULL, 0);
1225                         if (rc < 0) {
1226                                 dput(dentry);
1227                                 goto out_unlock;
1228                         }
1229                         kfree(context);
1230                         len = rc;
1231                         context = kmalloc(len, GFP_NOFS);
1232                         if (!context) {
1233                                 rc = -ENOMEM;
1234                                 dput(dentry);
1235                                 goto out_unlock;
1236                         }
1237                         rc = inode->i_op->getxattr(dentry,
1238                                                    XATTR_NAME_SELINUX,
1239                                                    context, len);
1240                 }
1241                 dput(dentry);
1242                 if (rc < 0) {
1243                         if (rc != -ENODATA) {
1244                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1245                                        "%d for dev=%s ino=%ld\n", __func__,
1246                                        -rc, inode->i_sb->s_id, inode->i_ino);
1247                                 kfree(context);
1248                                 goto out_unlock;
1249                         }
1250                         /* Map ENODATA to the default file SID */
1251                         sid = sbsec->def_sid;
1252                         rc = 0;
1253                 } else {
1254                         rc = security_context_to_sid_default(context, rc, &sid,
1255                                                              sbsec->def_sid,
1256                                                              GFP_NOFS);
1257                         if (rc) {
1258                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1259                                        "returned %d for dev=%s ino=%ld\n",
1260                                        __func__, context, -rc,
1261                                        inode->i_sb->s_id, inode->i_ino);
1262                                 kfree(context);
1263                                 /* Leave with the unlabeled SID */
1264                                 rc = 0;
1265                                 break;
1266                         }
1267                 }
1268                 kfree(context);
1269                 isec->sid = sid;
1270                 break;
1271         case SECURITY_FS_USE_TASK:
1272                 isec->sid = isec->task_sid;
1273                 break;
1274         case SECURITY_FS_USE_TRANS:
1275                 /* Default to the fs SID. */
1276                 isec->sid = sbsec->sid;
1277
1278                 /* Try to obtain a transition SID. */
1279                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1280                 rc = security_transition_sid(isec->task_sid,
1281                                              sbsec->sid,
1282                                              isec->sclass,
1283                                              &sid);
1284                 if (rc)
1285                         goto out_unlock;
1286                 isec->sid = sid;
1287                 break;
1288         case SECURITY_FS_USE_MNTPOINT:
1289                 isec->sid = sbsec->mntpoint_sid;
1290                 break;
1291         default:
1292                 /* Default to the fs superblock SID. */
1293                 isec->sid = sbsec->sid;
1294
1295                 if (sbsec->proc && !S_ISLNK(inode->i_mode)) {
1296                         struct proc_inode *proci = PROC_I(inode);
1297                         if (proci->pde) {
1298                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1299                                 rc = selinux_proc_get_sid(proci->pde,
1300                                                           isec->sclass,
1301                                                           &sid);
1302                                 if (rc)
1303                                         goto out_unlock;
1304                                 isec->sid = sid;
1305                         }
1306                 }
1307                 break;
1308         }
1309
1310         isec->initialized = 1;
1311
1312 out_unlock:
1313         mutex_unlock(&isec->lock);
1314 out:
1315         if (isec->sclass == SECCLASS_FILE)
1316                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317         return rc;
1318 }
1319
1320 /* Convert a Linux signal to an access vector. */
1321 static inline u32 signal_to_av(int sig)
1322 {
1323         u32 perm = 0;
1324
1325         switch (sig) {
1326         case SIGCHLD:
1327                 /* Commonly granted from child to parent. */
1328                 perm = PROCESS__SIGCHLD;
1329                 break;
1330         case SIGKILL:
1331                 /* Cannot be caught or ignored */
1332                 perm = PROCESS__SIGKILL;
1333                 break;
1334         case SIGSTOP:
1335                 /* Cannot be caught or ignored */
1336                 perm = PROCESS__SIGSTOP;
1337                 break;
1338         default:
1339                 /* All other signals. */
1340                 perm = PROCESS__SIGNAL;
1341                 break;
1342         }
1343
1344         return perm;
1345 }
1346
1347 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1348    fork check, ptrace check, etc. */
1349 static int task_has_perm(struct task_struct *tsk1,
1350                          struct task_struct *tsk2,
1351                          u32 perms)
1352 {
1353         struct task_security_struct *tsec1, *tsec2;
1354
1355         tsec1 = tsk1->security;
1356         tsec2 = tsk2->security;
1357         return avc_has_perm(tsec1->sid, tsec2->sid,
1358                             SECCLASS_PROCESS, perms, NULL);
1359 }
1360
1361 #if CAP_LAST_CAP > 63
1362 #error Fix SELinux to handle capabilities > 63.
1363 #endif
1364
1365 /* Check whether a task is allowed to use a capability. */
1366 static int task_has_capability(struct task_struct *tsk,
1367                                int cap)
1368 {
1369         struct task_security_struct *tsec;
1370         struct avc_audit_data ad;
1371         u16 sclass;
1372         u32 av = CAP_TO_MASK(cap);
1373
1374         tsec = tsk->security;
1375
1376         AVC_AUDIT_DATA_INIT(&ad, CAP);
1377         ad.tsk = tsk;
1378         ad.u.cap = cap;
1379
1380         switch (CAP_TO_INDEX(cap)) {
1381         case 0:
1382                 sclass = SECCLASS_CAPABILITY;
1383                 break;
1384         case 1:
1385                 sclass = SECCLASS_CAPABILITY2;
1386                 break;
1387         default:
1388                 printk(KERN_ERR
1389                        "SELinux:  out of range capability %d\n", cap);
1390                 BUG();
1391         }
1392         return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1393 }
1394
1395 /* Check whether a task is allowed to use a system operation. */
1396 static int task_has_system(struct task_struct *tsk,
1397                            u32 perms)
1398 {
1399         struct task_security_struct *tsec;
1400
1401         tsec = tsk->security;
1402
1403         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1404                             SECCLASS_SYSTEM, perms, NULL);
1405 }
1406
1407 /* Check whether a task has a particular permission to an inode.
1408    The 'adp' parameter is optional and allows other audit
1409    data to be passed (e.g. the dentry). */
1410 static int inode_has_perm(struct task_struct *tsk,
1411                           struct inode *inode,
1412                           u32 perms,
1413                           struct avc_audit_data *adp)
1414 {
1415         struct task_security_struct *tsec;
1416         struct inode_security_struct *isec;
1417         struct avc_audit_data ad;
1418
1419         if (unlikely(IS_PRIVATE(inode)))
1420                 return 0;
1421
1422         tsec = tsk->security;
1423         isec = inode->i_security;
1424
1425         if (!adp) {
1426                 adp = &ad;
1427                 AVC_AUDIT_DATA_INIT(&ad, FS);
1428                 ad.u.fs.inode = inode;
1429         }
1430
1431         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1432 }
1433
1434 /* Same as inode_has_perm, but pass explicit audit data containing
1435    the dentry to help the auditing code to more easily generate the
1436    pathname if needed. */
1437 static inline int dentry_has_perm(struct task_struct *tsk,
1438                                   struct vfsmount *mnt,
1439                                   struct dentry *dentry,
1440                                   u32 av)
1441 {
1442         struct inode *inode = dentry->d_inode;
1443         struct avc_audit_data ad;
1444         AVC_AUDIT_DATA_INIT(&ad, FS);
1445         ad.u.fs.path.mnt = mnt;
1446         ad.u.fs.path.dentry = dentry;
1447         return inode_has_perm(tsk, inode, av, &ad);
1448 }
1449
1450 /* Check whether a task can use an open file descriptor to
1451    access an inode in a given way.  Check access to the
1452    descriptor itself, and then use dentry_has_perm to
1453    check a particular permission to the file.
1454    Access to the descriptor is implicitly granted if it
1455    has the same SID as the process.  If av is zero, then
1456    access to the file is not checked, e.g. for cases
1457    where only the descriptor is affected like seek. */
1458 static int file_has_perm(struct task_struct *tsk,
1459                                 struct file *file,
1460                                 u32 av)
1461 {
1462         struct task_security_struct *tsec = tsk->security;
1463         struct file_security_struct *fsec = file->f_security;
1464         struct inode *inode = file->f_path.dentry->d_inode;
1465         struct avc_audit_data ad;
1466         int rc;
1467
1468         AVC_AUDIT_DATA_INIT(&ad, FS);
1469         ad.u.fs.path = file->f_path;
1470
1471         if (tsec->sid != fsec->sid) {
1472                 rc = avc_has_perm(tsec->sid, fsec->sid,
1473                                   SECCLASS_FD,
1474                                   FD__USE,
1475                                   &ad);
1476                 if (rc)
1477                         return rc;
1478         }
1479
1480         /* av is zero if only checking access to the descriptor. */
1481         if (av)
1482                 return inode_has_perm(tsk, inode, av, &ad);
1483
1484         return 0;
1485 }
1486
1487 /* Check whether a task can create a file. */
1488 static int may_create(struct inode *dir,
1489                       struct dentry *dentry,
1490                       u16 tclass)
1491 {
1492         struct task_security_struct *tsec;
1493         struct inode_security_struct *dsec;
1494         struct superblock_security_struct *sbsec;
1495         u32 newsid;
1496         struct avc_audit_data ad;
1497         int rc;
1498
1499         tsec = current->security;
1500         dsec = dir->i_security;
1501         sbsec = dir->i_sb->s_security;
1502
1503         AVC_AUDIT_DATA_INIT(&ad, FS);
1504         ad.u.fs.path.dentry = dentry;
1505
1506         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1507                           DIR__ADD_NAME | DIR__SEARCH,
1508                           &ad);
1509         if (rc)
1510                 return rc;
1511
1512         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1513                 newsid = tsec->create_sid;
1514         } else {
1515                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1516                                              &newsid);
1517                 if (rc)
1518                         return rc;
1519         }
1520
1521         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1522         if (rc)
1523                 return rc;
1524
1525         return avc_has_perm(newsid, sbsec->sid,
1526                             SECCLASS_FILESYSTEM,
1527                             FILESYSTEM__ASSOCIATE, &ad);
1528 }
1529
1530 /* Check whether a task can create a key. */
1531 static int may_create_key(u32 ksid,
1532                           struct task_struct *ctx)
1533 {
1534         struct task_security_struct *tsec;
1535
1536         tsec = ctx->security;
1537
1538         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1539 }
1540
1541 #define MAY_LINK        0
1542 #define MAY_UNLINK      1
1543 #define MAY_RMDIR       2
1544
1545 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1546 static int may_link(struct inode *dir,
1547                     struct dentry *dentry,
1548                     int kind)
1549
1550 {
1551         struct task_security_struct *tsec;
1552         struct inode_security_struct *dsec, *isec;
1553         struct avc_audit_data ad;
1554         u32 av;
1555         int rc;
1556
1557         tsec = current->security;
1558         dsec = dir->i_security;
1559         isec = dentry->d_inode->i_security;
1560
1561         AVC_AUDIT_DATA_INIT(&ad, FS);
1562         ad.u.fs.path.dentry = dentry;
1563
1564         av = DIR__SEARCH;
1565         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1566         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1567         if (rc)
1568                 return rc;
1569
1570         switch (kind) {
1571         case MAY_LINK:
1572                 av = FILE__LINK;
1573                 break;
1574         case MAY_UNLINK:
1575                 av = FILE__UNLINK;
1576                 break;
1577         case MAY_RMDIR:
1578                 av = DIR__RMDIR;
1579                 break;
1580         default:
1581                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1582                         __func__, kind);
1583                 return 0;
1584         }
1585
1586         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1587         return rc;
1588 }
1589
1590 static inline int may_rename(struct inode *old_dir,
1591                              struct dentry *old_dentry,
1592                              struct inode *new_dir,
1593                              struct dentry *new_dentry)
1594 {
1595         struct task_security_struct *tsec;
1596         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1597         struct avc_audit_data ad;
1598         u32 av;
1599         int old_is_dir, new_is_dir;
1600         int rc;
1601
1602         tsec = current->security;
1603         old_dsec = old_dir->i_security;
1604         old_isec = old_dentry->d_inode->i_security;
1605         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1606         new_dsec = new_dir->i_security;
1607
1608         AVC_AUDIT_DATA_INIT(&ad, FS);
1609
1610         ad.u.fs.path.dentry = old_dentry;
1611         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1612                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1613         if (rc)
1614                 return rc;
1615         rc = avc_has_perm(tsec->sid, old_isec->sid,
1616                           old_isec->sclass, FILE__RENAME, &ad);
1617         if (rc)
1618                 return rc;
1619         if (old_is_dir && new_dir != old_dir) {
1620                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1621                                   old_isec->sclass, DIR__REPARENT, &ad);
1622                 if (rc)
1623                         return rc;
1624         }
1625
1626         ad.u.fs.path.dentry = new_dentry;
1627         av = DIR__ADD_NAME | DIR__SEARCH;
1628         if (new_dentry->d_inode)
1629                 av |= DIR__REMOVE_NAME;
1630         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1631         if (rc)
1632                 return rc;
1633         if (new_dentry->d_inode) {
1634                 new_isec = new_dentry->d_inode->i_security;
1635                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1636                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1637                                   new_isec->sclass,
1638                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1639                 if (rc)
1640                         return rc;
1641         }
1642
1643         return 0;
1644 }
1645
1646 /* Check whether a task can perform a filesystem operation. */
1647 static int superblock_has_perm(struct task_struct *tsk,
1648                                struct super_block *sb,
1649                                u32 perms,
1650                                struct avc_audit_data *ad)
1651 {
1652         struct task_security_struct *tsec;
1653         struct superblock_security_struct *sbsec;
1654
1655         tsec = tsk->security;
1656         sbsec = sb->s_security;
1657         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1658                             perms, ad);
1659 }
1660
1661 /* Convert a Linux mode and permission mask to an access vector. */
1662 static inline u32 file_mask_to_av(int mode, int mask)
1663 {
1664         u32 av = 0;
1665
1666         if ((mode & S_IFMT) != S_IFDIR) {
1667                 if (mask & MAY_EXEC)
1668                         av |= FILE__EXECUTE;
1669                 if (mask & MAY_READ)
1670                         av |= FILE__READ;
1671
1672                 if (mask & MAY_APPEND)
1673                         av |= FILE__APPEND;
1674                 else if (mask & MAY_WRITE)
1675                         av |= FILE__WRITE;
1676
1677         } else {
1678                 if (mask & MAY_EXEC)
1679                         av |= DIR__SEARCH;
1680                 if (mask & MAY_WRITE)
1681                         av |= DIR__WRITE;
1682                 if (mask & MAY_READ)
1683                         av |= DIR__READ;
1684         }
1685
1686         return av;
1687 }
1688
1689 /* Convert a Linux file to an access vector. */
1690 static inline u32 file_to_av(struct file *file)
1691 {
1692         u32 av = 0;
1693
1694         if (file->f_mode & FMODE_READ)
1695                 av |= FILE__READ;
1696         if (file->f_mode & FMODE_WRITE) {
1697                 if (file->f_flags & O_APPEND)
1698                         av |= FILE__APPEND;
1699                 else
1700                         av |= FILE__WRITE;
1701         }
1702         if (!av) {
1703                 /*
1704                  * Special file opened with flags 3 for ioctl-only use.
1705                  */
1706                 av = FILE__IOCTL;
1707         }
1708
1709         return av;
1710 }
1711
1712 /*
1713  * Convert a file to an access vector and include the correct open
1714  * open permission.
1715  */
1716 static inline u32 open_file_to_av(struct file *file)
1717 {
1718         u32 av = file_to_av(file);
1719
1720         if (selinux_policycap_openperm) {
1721                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1722                 /*
1723                  * lnk files and socks do not really have an 'open'
1724                  */
1725                 if (S_ISREG(mode))
1726                         av |= FILE__OPEN;
1727                 else if (S_ISCHR(mode))
1728                         av |= CHR_FILE__OPEN;
1729                 else if (S_ISBLK(mode))
1730                         av |= BLK_FILE__OPEN;
1731                 else if (S_ISFIFO(mode))
1732                         av |= FIFO_FILE__OPEN;
1733                 else if (S_ISDIR(mode))
1734                         av |= DIR__OPEN;
1735                 else
1736                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1737                                 "unknown mode:%o\n", __func__, mode);
1738         }
1739         return av;
1740 }
1741
1742 /* Hook functions begin here. */
1743
1744 static int selinux_ptrace_may_access(struct task_struct *child,
1745                                      unsigned int mode)
1746 {
1747         int rc;
1748
1749         rc = secondary_ops->ptrace_may_access(child, mode);
1750         if (rc)
1751                 return rc;
1752
1753         if (mode == PTRACE_MODE_READ) {
1754                 struct task_security_struct *tsec = current->security;
1755                 struct task_security_struct *csec = child->security;
1756                 return avc_has_perm(tsec->sid, csec->sid,
1757                                     SECCLASS_FILE, FILE__READ, NULL);
1758         }
1759
1760         return task_has_perm(current, child, PROCESS__PTRACE);
1761 }
1762
1763 static int selinux_ptrace_traceme(struct task_struct *parent)
1764 {
1765         int rc;
1766
1767         rc = secondary_ops->ptrace_traceme(parent);
1768         if (rc)
1769                 return rc;
1770
1771         return task_has_perm(parent, current, PROCESS__PTRACE);
1772 }
1773
1774 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1775                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1776 {
1777         int error;
1778
1779         error = task_has_perm(current, target, PROCESS__GETCAP);
1780         if (error)
1781                 return error;
1782
1783         return secondary_ops->capget(target, effective, inheritable, permitted);
1784 }
1785
1786 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1787                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1788 {
1789         int error;
1790
1791         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1792         if (error)
1793                 return error;
1794
1795         return task_has_perm(current, target, PROCESS__SETCAP);
1796 }
1797
1798 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1799                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1800 {
1801         secondary_ops->capset_set(target, effective, inheritable, permitted);
1802 }
1803
1804 static int selinux_capable(struct task_struct *tsk, int cap)
1805 {
1806         int rc;
1807
1808         rc = secondary_ops->capable(tsk, cap);
1809         if (rc)
1810                 return rc;
1811
1812         return task_has_capability(tsk, cap);
1813 }
1814
1815 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1816 {
1817         int buflen, rc;
1818         char *buffer, *path, *end;
1819
1820         rc = -ENOMEM;
1821         buffer = (char *)__get_free_page(GFP_KERNEL);
1822         if (!buffer)
1823                 goto out;
1824
1825         buflen = PAGE_SIZE;
1826         end = buffer+buflen;
1827         *--end = '\0';
1828         buflen--;
1829         path = end-1;
1830         *path = '/';
1831         while (table) {
1832                 const char *name = table->procname;
1833                 size_t namelen = strlen(name);
1834                 buflen -= namelen + 1;
1835                 if (buflen < 0)
1836                         goto out_free;
1837                 end -= namelen;
1838                 memcpy(end, name, namelen);
1839                 *--end = '/';
1840                 path = end;
1841                 table = table->parent;
1842         }
1843         buflen -= 4;
1844         if (buflen < 0)
1845                 goto out_free;
1846         end -= 4;
1847         memcpy(end, "/sys", 4);
1848         path = end;
1849         rc = security_genfs_sid("proc", path, tclass, sid);
1850 out_free:
1851         free_page((unsigned long)buffer);
1852 out:
1853         return rc;
1854 }
1855
1856 static int selinux_sysctl(ctl_table *table, int op)
1857 {
1858         int error = 0;
1859         u32 av;
1860         struct task_security_struct *tsec;
1861         u32 tsid;
1862         int rc;
1863
1864         rc = secondary_ops->sysctl(table, op);
1865         if (rc)
1866                 return rc;
1867
1868         tsec = current->security;
1869
1870         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1871                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1872         if (rc) {
1873                 /* Default to the well-defined sysctl SID. */
1874                 tsid = SECINITSID_SYSCTL;
1875         }
1876
1877         /* The op values are "defined" in sysctl.c, thereby creating
1878          * a bad coupling between this module and sysctl.c */
1879         if (op == 001) {
1880                 error = avc_has_perm(tsec->sid, tsid,
1881                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1882         } else {
1883                 av = 0;
1884                 if (op & 004)
1885                         av |= FILE__READ;
1886                 if (op & 002)
1887                         av |= FILE__WRITE;
1888                 if (av)
1889                         error = avc_has_perm(tsec->sid, tsid,
1890                                              SECCLASS_FILE, av, NULL);
1891         }
1892
1893         return error;
1894 }
1895
1896 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1897 {
1898         int rc = 0;
1899
1900         if (!sb)
1901                 return 0;
1902
1903         switch (cmds) {
1904         case Q_SYNC:
1905         case Q_QUOTAON:
1906         case Q_QUOTAOFF:
1907         case Q_SETINFO:
1908         case Q_SETQUOTA:
1909                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1910                                          NULL);
1911                 break;
1912         case Q_GETFMT:
1913         case Q_GETINFO:
1914         case Q_GETQUOTA:
1915                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1916                                          NULL);
1917                 break;
1918         default:
1919                 rc = 0;  /* let the kernel handle invalid cmds */
1920                 break;
1921         }
1922         return rc;
1923 }
1924
1925 static int selinux_quota_on(struct dentry *dentry)
1926 {
1927         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1928 }
1929
1930 static int selinux_syslog(int type)
1931 {
1932         int rc;
1933
1934         rc = secondary_ops->syslog(type);
1935         if (rc)
1936                 return rc;
1937
1938         switch (type) {
1939         case 3:         /* Read last kernel messages */
1940         case 10:        /* Return size of the log buffer */
1941                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1942                 break;
1943         case 6:         /* Disable logging to console */
1944         case 7:         /* Enable logging to console */
1945         case 8:         /* Set level of messages printed to console */
1946                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1947                 break;
1948         case 0:         /* Close log */
1949         case 1:         /* Open log */
1950         case 2:         /* Read from log */
1951         case 4:         /* Read/clear last kernel messages */
1952         case 5:         /* Clear ring buffer */
1953         default:
1954                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1955                 break;
1956         }
1957         return rc;
1958 }
1959
1960 /*
1961  * Check that a process has enough memory to allocate a new virtual
1962  * mapping. 0 means there is enough memory for the allocation to
1963  * succeed and -ENOMEM implies there is not.
1964  *
1965  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1966  * if the capability is granted, but __vm_enough_memory requires 1 if
1967  * the capability is granted.
1968  *
1969  * Do not audit the selinux permission check, as this is applied to all
1970  * processes that allocate mappings.
1971  */
1972 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1973 {
1974         int rc, cap_sys_admin = 0;
1975         struct task_security_struct *tsec = current->security;
1976
1977         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1978         if (rc == 0)
1979                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1980                                           SECCLASS_CAPABILITY,
1981                                           CAP_TO_MASK(CAP_SYS_ADMIN),
1982                                           0,
1983                                           NULL);
1984
1985         if (rc == 0)
1986                 cap_sys_admin = 1;
1987
1988         return __vm_enough_memory(mm, pages, cap_sys_admin);
1989 }
1990
1991 /* binprm security operations */
1992
1993 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1994 {
1995         struct bprm_security_struct *bsec;
1996
1997         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1998         if (!bsec)
1999                 return -ENOMEM;
2000
2001         bsec->sid = SECINITSID_UNLABELED;
2002         bsec->set = 0;
2003
2004         bprm->security = bsec;
2005         return 0;
2006 }
2007
2008 static int selinux_bprm_set_security(struct linux_binprm *bprm)
2009 {
2010         struct task_security_struct *tsec;
2011         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2012         struct inode_security_struct *isec;
2013         struct bprm_security_struct *bsec;
2014         u32 newsid;
2015         struct avc_audit_data ad;
2016         int rc;
2017
2018         rc = secondary_ops->bprm_set_security(bprm);
2019         if (rc)
2020                 return rc;
2021
2022         bsec = bprm->security;
2023
2024         if (bsec->set)
2025                 return 0;
2026
2027         tsec = current->security;
2028         isec = inode->i_security;
2029
2030         /* Default to the current task SID. */
2031         bsec->sid = tsec->sid;
2032
2033         /* Reset fs, key, and sock SIDs on execve. */
2034         tsec->create_sid = 0;
2035         tsec->keycreate_sid = 0;
2036         tsec->sockcreate_sid = 0;
2037
2038         if (tsec->exec_sid) {
2039                 newsid = tsec->exec_sid;
2040                 /* Reset exec SID on execve. */
2041                 tsec->exec_sid = 0;
2042         } else {
2043                 /* Check for a default transition on this program. */
2044                 rc = security_transition_sid(tsec->sid, isec->sid,
2045                                              SECCLASS_PROCESS, &newsid);
2046                 if (rc)
2047                         return rc;
2048         }
2049
2050         AVC_AUDIT_DATA_INIT(&ad, FS);
2051         ad.u.fs.path = bprm->file->f_path;
2052
2053         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2054                 newsid = tsec->sid;
2055
2056         if (tsec->sid == newsid) {
2057                 rc = avc_has_perm(tsec->sid, isec->sid,
2058                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2059                 if (rc)
2060                         return rc;
2061         } else {
2062                 /* Check permissions for the transition. */
2063                 rc = avc_has_perm(tsec->sid, newsid,
2064                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2065                 if (rc)
2066                         return rc;
2067
2068                 rc = avc_has_perm(newsid, isec->sid,
2069                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2070                 if (rc)
2071                         return rc;
2072
2073                 /* Clear any possibly unsafe personality bits on exec: */
2074                 current->personality &= ~PER_CLEAR_ON_SETID;
2075
2076                 /* Set the security field to the new SID. */
2077                 bsec->sid = newsid;
2078         }
2079
2080         bsec->set = 1;
2081         return 0;
2082 }
2083
2084 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2085 {
2086         return secondary_ops->bprm_check_security(bprm);
2087 }
2088
2089
2090 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2091 {
2092         struct task_security_struct *tsec = current->security;
2093         int atsecure = 0;
2094
2095         if (tsec->osid != tsec->sid) {
2096                 /* Enable secure mode for SIDs transitions unless
2097                    the noatsecure permission is granted between
2098                    the two SIDs, i.e. ahp returns 0. */
2099                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2100                                          SECCLASS_PROCESS,
2101                                          PROCESS__NOATSECURE, NULL);
2102         }
2103
2104         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2105 }
2106
2107 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2108 {
2109         kfree(bprm->security);
2110         bprm->security = NULL;
2111 }
2112
2113 extern struct vfsmount *selinuxfs_mount;
2114 extern struct dentry *selinux_null;
2115
2116 /* Derived from fs/exec.c:flush_old_files. */
2117 static inline void flush_unauthorized_files(struct files_struct *files)
2118 {
2119         struct avc_audit_data ad;
2120         struct file *file, *devnull = NULL;
2121         struct tty_struct *tty;
2122         struct fdtable *fdt;
2123         long j = -1;
2124         int drop_tty = 0;
2125
2126         mutex_lock(&tty_mutex);
2127         tty = get_current_tty();
2128         if (tty) {
2129                 file_list_lock();
2130                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
2131                 if (file) {
2132                         /* Revalidate access to controlling tty.
2133                            Use inode_has_perm on the tty inode directly rather
2134                            than using file_has_perm, as this particular open
2135                            file may belong to another process and we are only
2136                            interested in the inode-based check here. */
2137                         struct inode *inode = file->f_path.dentry->d_inode;
2138                         if (inode_has_perm(current, inode,
2139                                            FILE__READ | FILE__WRITE, NULL)) {
2140                                 drop_tty = 1;
2141                         }
2142                 }
2143                 file_list_unlock();
2144         }
2145         mutex_unlock(&tty_mutex);
2146         /* Reset controlling tty. */
2147         if (drop_tty)
2148                 no_tty();
2149
2150         /* Revalidate access to inherited open files. */
2151
2152         AVC_AUDIT_DATA_INIT(&ad, FS);
2153
2154         spin_lock(&files->file_lock);
2155         for (;;) {
2156                 unsigned long set, i;
2157                 int fd;
2158
2159                 j++;
2160                 i = j * __NFDBITS;
2161                 fdt = files_fdtable(files);
2162                 if (i >= fdt->max_fds)
2163                         break;
2164                 set = fdt->open_fds->fds_bits[j];
2165                 if (!set)
2166                         continue;
2167                 spin_unlock(&files->file_lock);
2168                 for ( ; set ; i++, set >>= 1) {
2169                         if (set & 1) {
2170                                 file = fget(i);
2171                                 if (!file)
2172                                         continue;
2173                                 if (file_has_perm(current,
2174                                                   file,
2175                                                   file_to_av(file))) {
2176                                         sys_close(i);
2177                                         fd = get_unused_fd();
2178                                         if (fd != i) {
2179                                                 if (fd >= 0)
2180                                                         put_unused_fd(fd);
2181                                                 fput(file);
2182                                                 continue;
2183                                         }
2184                                         if (devnull) {
2185                                                 get_file(devnull);
2186                                         } else {
2187                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2188                                                 if (IS_ERR(devnull)) {
2189                                                         devnull = NULL;
2190                                                         put_unused_fd(fd);
2191                                                         fput(file);
2192                                                         continue;
2193                                                 }
2194                                         }
2195                                         fd_install(fd, devnull);
2196                                 }
2197                                 fput(file);
2198                         }
2199                 }
2200                 spin_lock(&files->file_lock);
2201
2202         }
2203         spin_unlock(&files->file_lock);
2204 }
2205
2206 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2207 {
2208         struct task_security_struct *tsec;
2209         struct bprm_security_struct *bsec;
2210         u32 sid;
2211         int rc;
2212
2213         secondary_ops->bprm_apply_creds(bprm, unsafe);
2214
2215         tsec = current->security;
2216
2217         bsec = bprm->security;
2218         sid = bsec->sid;
2219
2220         tsec->osid = tsec->sid;
2221         bsec->unsafe = 0;
2222         if (tsec->sid != sid) {
2223                 /* Check for shared state.  If not ok, leave SID
2224                    unchanged and kill. */
2225                 if (unsafe & LSM_UNSAFE_SHARE) {
2226                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2227                                         PROCESS__SHARE, NULL);
2228                         if (rc) {
2229                                 bsec->unsafe = 1;
2230                                 return;
2231                         }
2232                 }
2233
2234                 /* Check for ptracing, and update the task SID if ok.
2235                    Otherwise, leave SID unchanged and kill. */
2236                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2237                         struct task_struct *tracer;
2238                         struct task_security_struct *sec;
2239                         u32 ptsid = 0;
2240
2241                         rcu_read_lock();
2242                         tracer = tracehook_tracer_task(current);
2243                         if (likely(tracer != NULL)) {
2244                                 sec = tracer->security;
2245                                 ptsid = sec->sid;
2246                         }
2247                         rcu_read_unlock();
2248
2249                         if (ptsid != 0) {
2250                                 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2251                                                   PROCESS__PTRACE, NULL);
2252                                 if (rc) {
2253                                         bsec->unsafe = 1;
2254                                         return;
2255                                 }
2256                         }
2257                 }
2258                 tsec->sid = sid;
2259         }
2260 }
2261
2262 /*
2263  * called after apply_creds without the task lock held
2264  */
2265 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2266 {
2267         struct task_security_struct *tsec;
2268         struct rlimit *rlim, *initrlim;
2269         struct itimerval itimer;
2270         struct bprm_security_struct *bsec;
2271         int rc, i;
2272
2273         tsec = current->security;
2274         bsec = bprm->security;
2275
2276         if (bsec->unsafe) {
2277                 force_sig_specific(SIGKILL, current);
2278                 return;
2279         }
2280         if (tsec->osid == tsec->sid)
2281                 return;
2282
2283         /* Close files for which the new task SID is not authorized. */
2284         flush_unauthorized_files(current->files);
2285
2286         /* Check whether the new SID can inherit signal state
2287            from the old SID.  If not, clear itimers to avoid
2288            subsequent signal generation and flush and unblock
2289            signals. This must occur _after_ the task SID has
2290           been updated so that any kill done after the flush
2291           will be checked against the new SID. */
2292         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2293                           PROCESS__SIGINH, NULL);
2294         if (rc) {
2295                 memset(&itimer, 0, sizeof itimer);
2296                 for (i = 0; i < 3; i++)
2297                         do_setitimer(i, &itimer, NULL);
2298                 flush_signals(current);
2299                 spin_lock_irq(&current->sighand->siglock);
2300                 flush_signal_handlers(current, 1);
2301                 sigemptyset(&current->blocked);
2302                 recalc_sigpending();
2303                 spin_unlock_irq(&current->sighand->siglock);
2304         }
2305
2306         /* Always clear parent death signal on SID transitions. */
2307         current->pdeath_signal = 0;
2308
2309         /* Check whether the new SID can inherit resource limits
2310            from the old SID.  If not, reset all soft limits to
2311            the lower of the current task's hard limit and the init
2312            task's soft limit.  Note that the setting of hard limits
2313            (even to lower them) can be controlled by the setrlimit
2314            check. The inclusion of the init task's soft limit into
2315            the computation is to avoid resetting soft limits higher
2316            than the default soft limit for cases where the default
2317            is lower than the hard limit, e.g. RLIMIT_CORE or
2318            RLIMIT_STACK.*/
2319         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2320                           PROCESS__RLIMITINH, NULL);
2321         if (rc) {
2322                 for (i = 0; i < RLIM_NLIMITS; i++) {
2323                         rlim = current->signal->rlim + i;
2324                         initrlim = init_task.signal->rlim+i;
2325                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2326                 }
2327                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
2328                         /*
2329                          * This will cause RLIMIT_CPU calculations
2330                          * to be refigured.
2331                          */
2332                         current->it_prof_expires = jiffies_to_cputime(1);
2333                 }
2334         }
2335
2336         /* Wake up the parent if it is waiting so that it can
2337            recheck wait permission to the new task SID. */
2338         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2339 }
2340
2341 /* superblock security operations */
2342
2343 static int selinux_sb_alloc_security(struct super_block *sb)
2344 {
2345         return superblock_alloc_security(sb);
2346 }
2347
2348 static void selinux_sb_free_security(struct super_block *sb)
2349 {
2350         superblock_free_security(sb);
2351 }
2352
2353 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2354 {
2355         if (plen > olen)
2356                 return 0;
2357
2358         return !memcmp(prefix, option, plen);
2359 }
2360
2361 static inline int selinux_option(char *option, int len)
2362 {
2363         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2364                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2365                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2366                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2367 }
2368
2369 static inline void take_option(char **to, char *from, int *first, int len)
2370 {
2371         if (!*first) {
2372                 **to = ',';
2373                 *to += 1;
2374         } else
2375                 *first = 0;
2376         memcpy(*to, from, len);
2377         *to += len;
2378 }
2379
2380 static inline void take_selinux_option(char **to, char *from, int *first,
2381                                        int len)
2382 {
2383         int current_size = 0;
2384
2385         if (!*first) {
2386                 **to = '|';
2387                 *to += 1;
2388         } else
2389                 *first = 0;
2390
2391         while (current_size < len) {
2392                 if (*from != '"') {
2393                         **to = *from;
2394                         *to += 1;
2395                 }
2396                 from += 1;
2397                 current_size += 1;
2398         }
2399 }
2400
2401 static int selinux_sb_copy_data(char *orig, char *copy)
2402 {
2403         int fnosec, fsec, rc = 0;
2404         char *in_save, *in_curr, *in_end;
2405         char *sec_curr, *nosec_save, *nosec;
2406         int open_quote = 0;
2407
2408         in_curr = orig;
2409         sec_curr = copy;
2410
2411         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2412         if (!nosec) {
2413                 rc = -ENOMEM;
2414                 goto out;
2415         }
2416
2417         nosec_save = nosec;
2418         fnosec = fsec = 1;
2419         in_save = in_end = orig;
2420
2421         do {
2422                 if (*in_end == '"')
2423                         open_quote = !open_quote;
2424                 if ((*in_end == ',' && open_quote == 0) ||
2425                                 *in_end == '\0') {
2426                         int len = in_end - in_curr;
2427
2428                         if (selinux_option(in_curr, len))
2429                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2430                         else
2431                                 take_option(&nosec, in_curr, &fnosec, len);
2432
2433                         in_curr = in_end + 1;
2434                 }
2435         } while (*in_end++);
2436
2437         strcpy(in_save, nosec_save);
2438         free_page((unsigned long)nosec_save);
2439 out:
2440         return rc;
2441 }
2442
2443 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2444 {
2445         struct avc_audit_data ad;
2446         int rc;
2447
2448         rc = superblock_doinit(sb, data);
2449         if (rc)
2450                 return rc;
2451
2452         AVC_AUDIT_DATA_INIT(&ad, FS);
2453         ad.u.fs.path.dentry = sb->s_root;
2454         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2455 }
2456
2457 static int selinux_sb_statfs(struct dentry *dentry)
2458 {
2459         struct avc_audit_data ad;
2460
2461         AVC_AUDIT_DATA_INIT(&ad, FS);
2462         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2463         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2464 }
2465
2466 static int selinux_mount(char *dev_name,
2467                          struct path *path,
2468                          char *type,
2469                          unsigned long flags,
2470                          void *data)
2471 {
2472         int rc;
2473
2474         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2475         if (rc)
2476                 return rc;
2477
2478         if (flags & MS_REMOUNT)
2479                 return superblock_has_perm(current, path->mnt->mnt_sb,
2480                                            FILESYSTEM__REMOUNT, NULL);
2481         else
2482                 return dentry_has_perm(current, path->mnt, path->dentry,
2483                                        FILE__MOUNTON);
2484 }
2485
2486 static int selinux_umount(struct vfsmount *mnt, int flags)
2487 {
2488         int rc;
2489
2490         rc = secondary_ops->sb_umount(mnt, flags);
2491         if (rc)
2492                 return rc;
2493
2494         return superblock_has_perm(current, mnt->mnt_sb,
2495                                    FILESYSTEM__UNMOUNT, NULL);
2496 }
2497
2498 /* inode security operations */
2499
2500 static int selinux_inode_alloc_security(struct inode *inode)
2501 {
2502         return inode_alloc_security(inode);
2503 }
2504
2505 static void selinux_inode_free_security(struct inode *inode)
2506 {
2507         inode_free_security(inode);
2508 }
2509
2510 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2511                                        char **name, void **value,
2512                                        size_t *len)
2513 {
2514         struct task_security_struct *tsec;
2515         struct inode_security_struct *dsec;
2516         struct superblock_security_struct *sbsec;
2517         u32 newsid, clen;
2518         int rc;
2519         char *namep = NULL, *context;
2520
2521         tsec = current->security;
2522         dsec = dir->i_security;
2523         sbsec = dir->i_sb->s_security;
2524
2525         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2526                 newsid = tsec->create_sid;
2527         } else {
2528                 rc = security_transition_sid(tsec->sid, dsec->sid,
2529                                              inode_mode_to_security_class(inode->i_mode),
2530                                              &newsid);
2531                 if (rc) {
2532                         printk(KERN_WARNING "%s:  "
2533                                "security_transition_sid failed, rc=%d (dev=%s "
2534                                "ino=%ld)\n",
2535                                __func__,
2536                                -rc, inode->i_sb->s_id, inode->i_ino);
2537                         return rc;
2538                 }
2539         }
2540
2541         /* Possibly defer initialization to selinux_complete_init. */
2542         if (sbsec->initialized) {
2543                 struct inode_security_struct *isec = inode->i_security;
2544                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2545                 isec->sid = newsid;
2546                 isec->initialized = 1;
2547         }
2548
2549         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2550                 return -EOPNOTSUPP;
2551
2552         if (name) {
2553                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2554                 if (!namep)
2555                         return -ENOMEM;
2556                 *name = namep;
2557         }
2558
2559         if (value && len) {
2560                 rc = security_sid_to_context_force(newsid, &context, &clen);
2561                 if (rc) {
2562                         kfree(namep);
2563                         return rc;
2564                 }
2565                 *value = context;
2566                 *len = clen;
2567         }
2568
2569         return 0;
2570 }
2571
2572 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2573 {
2574         return may_create(dir, dentry, SECCLASS_FILE);
2575 }
2576
2577 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2578 {
2579         int rc;
2580
2581         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2582         if (rc)
2583                 return rc;
2584         return may_link(dir, old_dentry, MAY_LINK);
2585 }
2586
2587 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2588 {
2589         int rc;
2590
2591         rc = secondary_ops->inode_unlink(dir, dentry);
2592         if (rc)
2593                 return rc;
2594         return may_link(dir, dentry, MAY_UNLINK);
2595 }
2596
2597 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2598 {
2599         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2600 }
2601
2602 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2603 {
2604         return may_create(dir, dentry, SECCLASS_DIR);
2605 }
2606
2607 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2608 {
2609         return may_link(dir, dentry, MAY_RMDIR);
2610 }
2611
2612 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2613 {
2614         int rc;
2615
2616         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2617         if (rc)
2618                 return rc;
2619
2620         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2621 }
2622
2623 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2624                                 struct inode *new_inode, struct dentry *new_dentry)
2625 {
2626         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2627 }
2628
2629 static int selinux_inode_readlink(struct dentry *dentry)
2630 {
2631         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2632 }
2633
2634 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2635 {
2636         int rc;
2637
2638         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2639         if (rc)
2640                 return rc;
2641         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2642 }
2643
2644 static int selinux_inode_permission(struct inode *inode, int mask)
2645 {
2646         int rc;
2647
2648         rc = secondary_ops->inode_permission(inode, mask);
2649         if (rc)
2650                 return rc;
2651
2652         if (!mask) {
2653                 /* No permission to check.  Existence test. */
2654                 return 0;
2655         }
2656
2657         return inode_has_perm(current, inode,
2658                               file_mask_to_av(inode->i_mode, mask), NULL);
2659 }
2660
2661 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2662 {
2663         int rc;
2664
2665         rc = secondary_ops->inode_setattr(dentry, iattr);
2666         if (rc)
2667                 return rc;
2668
2669         if (iattr->ia_valid & ATTR_FORCE)
2670                 return 0;
2671
2672         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2673                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2674                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2675
2676         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2677 }
2678
2679 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2680 {
2681         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2682 }
2683
2684 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2685 {
2686         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2687                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2688                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2689                         if (!capable(CAP_SETFCAP))
2690                                 return -EPERM;
2691                 } else if (!capable(CAP_SYS_ADMIN)) {
2692                         /* A different attribute in the security namespace.
2693                            Restrict to administrator. */
2694                         return -EPERM;
2695                 }
2696         }
2697
2698         /* Not an attribute we recognize, so just check the
2699            ordinary setattr permission. */
2700         return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2701 }
2702
2703 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2704                                   const void *value, size_t size, int flags)
2705 {
2706         struct task_security_struct *tsec = current->security;
2707         struct inode *inode = dentry->d_inode;
2708         struct inode_security_struct *isec = inode->i_security;
2709         struct superblock_security_struct *sbsec;
2710         struct avc_audit_data ad;
2711         u32 newsid;
2712         int rc = 0;
2713
2714         if (strcmp(name, XATTR_NAME_SELINUX))
2715                 return selinux_inode_setotherxattr(dentry, name);
2716
2717         sbsec = inode->i_sb->s_security;
2718         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2719                 return -EOPNOTSUPP;
2720
2721         if (!is_owner_or_cap(inode))
2722                 return -EPERM;
2723
2724         AVC_AUDIT_DATA_INIT(&ad, FS);
2725         ad.u.fs.path.dentry = dentry;
2726
2727         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2728                           FILE__RELABELFROM, &ad);
2729         if (rc)
2730                 return rc;
2731
2732         rc = security_context_to_sid(value, size, &newsid);
2733         if (rc == -EINVAL) {
2734                 if (!capable(CAP_MAC_ADMIN))
2735                         return rc;
2736                 rc = security_context_to_sid_force(value, size, &newsid);
2737         }
2738         if (rc)
2739                 return rc;
2740
2741         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2742                           FILE__RELABELTO, &ad);
2743         if (rc)
2744                 return rc;
2745
2746         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2747                                           isec->sclass);
2748         if (rc)
2749                 return rc;
2750
2751         return avc_has_perm(newsid,
2752                             sbsec->sid,
2753                             SECCLASS_FILESYSTEM,
2754                             FILESYSTEM__ASSOCIATE,
2755                             &ad);
2756 }
2757
2758 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2759                                         const void *value, size_t size,
2760                                         int flags)
2761 {
2762         struct inode *inode = dentry->d_inode;
2763         struct inode_security_struct *isec = inode->i_security;
2764         u32 newsid;
2765         int rc;
2766
2767         if (strcmp(name, XATTR_NAME_SELINUX)) {
2768                 /* Not an attribute we recognize, so nothing to do. */
2769                 return;
2770         }
2771
2772         rc = security_context_to_sid_force(value, size, &newsid);
2773         if (rc) {
2774                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2775                        "for (%s, %lu), rc=%d\n",
2776                        inode->i_sb->s_id, inode->i_ino, -rc);
2777                 return;
2778         }
2779
2780         isec->sid = newsid;
2781         return;
2782 }
2783
2784 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2785 {
2786         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2787 }
2788
2789 static int selinux_inode_listxattr(struct dentry *dentry)
2790 {
2791         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2792 }
2793
2794 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2795 {
2796         if (strcmp(name, XATTR_NAME_SELINUX))
2797                 return selinux_inode_setotherxattr(dentry, name);
2798
2799         /* No one is allowed to remove a SELinux security label.
2800            You can change the label, but all data must be labeled. */
2801         return -EACCES;
2802 }
2803
2804 /*
2805  * Copy the inode security context value to the user.
2806  *
2807  * Permission check is handled by selinux_inode_getxattr hook.
2808  */
2809 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2810 {
2811         u32 size;
2812         int error;
2813         char *context = NULL;
2814         struct task_security_struct *tsec = current->security;
2815         struct inode_security_struct *isec = inode->i_security;
2816
2817         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2818                 return -EOPNOTSUPP;
2819
2820         /*
2821          * If the caller has CAP_MAC_ADMIN, then get the raw context
2822          * value even if it is not defined by current policy; otherwise,
2823          * use the in-core value under current policy.
2824          * Use the non-auditing forms of the permission checks since
2825          * getxattr may be called by unprivileged processes commonly
2826          * and lack of permission just means that we fall back to the
2827          * in-core context value, not a denial.
2828          */
2829         error = secondary_ops->capable(current, CAP_MAC_ADMIN);
2830         if (!error)
2831                 error = avc_has_perm_noaudit(tsec->sid, tsec->sid,
2832                                              SECCLASS_CAPABILITY2,
2833                                              CAPABILITY2__MAC_ADMIN,
2834                                              0,
2835                                              NULL);
2836         if (!error)
2837                 error = security_sid_to_context_force(isec->sid, &context,
2838                                                       &size);
2839         else
2840                 error = security_sid_to_context(isec->sid, &context, &size);
2841         if (error)
2842                 return error;
2843         error = size;
2844         if (alloc) {
2845                 *buffer = context;
2846                 goto out_nofree;
2847         }
2848         kfree(context);
2849 out_nofree:
2850         return error;
2851 }
2852
2853 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2854                                      const void *value, size_t size, int flags)
2855 {
2856         struct inode_security_struct *isec = inode->i_security;
2857         u32 newsid;
2858         int rc;
2859
2860         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2861                 return -EOPNOTSUPP;
2862
2863         if (!value || !size)
2864                 return -EACCES;
2865
2866         rc = security_context_to_sid((void *)value, size, &newsid);
2867         if (rc)
2868                 return rc;
2869
2870         isec->sid = newsid;
2871         return 0;
2872 }
2873
2874 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2875 {
2876         const int len = sizeof(XATTR_NAME_SELINUX);
2877         if (buffer && len <= buffer_size)
2878                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2879         return len;
2880 }
2881
2882 static int selinux_inode_need_killpriv(struct dentry *dentry)
2883 {
2884         return secondary_ops->inode_need_killpriv(dentry);
2885 }
2886
2887 static int selinux_inode_killpriv(struct dentry *dentry)
2888 {
2889         return secondary_ops->inode_killpriv(dentry);
2890 }
2891
2892 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2893 {
2894         struct inode_security_struct *isec = inode->i_security;
2895         *secid = isec->sid;
2896 }
2897
2898 /* file security operations */
2899
2900 static int selinux_revalidate_file_permission(struct file *file, int mask)
2901 {
2902         int rc;
2903         struct inode *inode = file->f_path.dentry->d_inode;
2904
2905         if (!mask) {
2906                 /* No permission to check.  Existence test. */
2907                 return 0;
2908         }
2909
2910         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2911         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2912                 mask |= MAY_APPEND;
2913
2914         rc = file_has_perm(current, file,
2915                            file_mask_to_av(inode->i_mode, mask));
2916         if (rc)
2917                 return rc;
2918
2919         return selinux_netlbl_inode_permission(inode, mask);
2920 }
2921
2922 static int selinux_file_permission(struct file *file, int mask)
2923 {
2924         struct inode *inode = file->f_path.dentry->d_inode;
2925         struct task_security_struct *tsec = current->security;
2926         struct file_security_struct *fsec = file->f_security;
2927         struct inode_security_struct *isec = inode->i_security;
2928
2929         if (!mask) {
2930                 /* No permission to check.  Existence test. */
2931                 return 0;
2932         }
2933
2934         if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2935             && fsec->pseqno == avc_policy_seqno())
2936                 return selinux_netlbl_inode_permission(inode, mask);
2937
2938         return selinux_revalidate_file_permission(file, mask);
2939 }
2940
2941 static int selinux_file_alloc_security(struct file *file)
2942 {
2943         return file_alloc_security(file);
2944 }
2945
2946 static void selinux_file_free_security(struct file *file)
2947 {
2948         file_free_security(file);
2949 }
2950
2951 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2952                               unsigned long arg)
2953 {
2954         u32 av = 0;
2955
2956         if (_IOC_DIR(cmd) & _IOC_WRITE)
2957                 av |= FILE__WRITE;
2958         if (_IOC_DIR(cmd) & _IOC_READ)
2959                 av |= FILE__READ;
2960         if (!av)
2961                 av = FILE__IOCTL;
2962
2963         return file_has_perm(current, file, av);
2964 }
2965
2966 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2967 {
2968 #ifndef CONFIG_PPC32
2969         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2970                 /*
2971                  * We are making executable an anonymous mapping or a
2972                  * private file mapping that will also be writable.
2973                  * This has an additional check.
2974                  */
2975                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2976                 if (rc)
2977                         return rc;
2978         }
2979 #endif
2980
2981         if (file) {
2982                 /* read access is always possible with a mapping */
2983                 u32 av = FILE__READ;
2984
2985                 /* write access only matters if the mapping is shared */
2986                 if (shared && (prot & PROT_WRITE))
2987                         av |= FILE__WRITE;
2988
2989                 if (prot & PROT_EXEC)
2990                         av |= FILE__EXECUTE;
2991
2992                 return file_has_perm(current, file, av);
2993         }
2994         return 0;
2995 }
2996
2997 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2998                              unsigned long prot, unsigned long flags,
2999                              unsigned long addr, unsigned long addr_only)
3000 {
3001         int rc = 0;
3002         u32 sid = ((struct task_security_struct *)(current->security))->sid;
3003
3004         if (addr < mmap_min_addr)
3005                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3006                                   MEMPROTECT__MMAP_ZERO, NULL);
3007         if (rc || addr_only)
3008                 return rc;
3009
3010         if (selinux_checkreqprot)
3011                 prot = reqprot;
3012
3013         return file_map_prot_check(file, prot,
3014                                    (flags & MAP_TYPE) == MAP_SHARED);
3015 }
3016
3017 static int selinux_file_mprotect(struct vm_area_struct *vma,
3018                                  unsigned long reqprot,
3019                                  unsigned long prot)
3020 {
3021         int rc;
3022
3023         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3024         if (rc)
3025                 return rc;
3026
3027         if (selinux_checkreqprot)
3028                 prot = reqprot;
3029
3030 #ifndef CONFIG_PPC32
3031         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3032                 rc = 0;
3033                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3034                     vma->vm_end <= vma->vm_mm->brk) {
3035                         rc = task_has_perm(current, current,
3036                                            PROCESS__EXECHEAP);
3037                 } else if (!vma->vm_file &&
3038                            vma->vm_start <= vma->vm_mm->start_stack &&
3039                            vma->vm_end >= vma->vm_mm->start_stack) {
3040                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
3041                 } else if (vma->vm_file && vma->anon_vma) {
3042                         /*
3043                          * We are making executable a file mapping that has
3044                          * had some COW done. Since pages might have been
3045                          * written, check ability to execute the possibly
3046                          * modified content.  This typically should only
3047                          * occur for text relocations.
3048                          */
3049                         rc = file_has_perm(current, vma->vm_file,
3050                                            FILE__EXECMOD);
3051                 }
3052                 if (rc)
3053                         return rc;
3054         }
3055 #endif
3056
3057         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3058 }
3059
3060 static int selinux_file_lock(struct file *file, unsigned int cmd)
3061 {
3062         return file_has_perm(current, file, FILE__LOCK);
3063 }
3064
3065 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3066                               unsigned long arg)
3067 {
3068         int err = 0;
3069
3070         switch (cmd) {
3071         case F_SETFL:
3072                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3073                         err = -EINVAL;
3074                         break;
3075                 }
3076
3077                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3078                         err = file_has_perm(current, file, FILE__WRITE);
3079                         break;
3080                 }
3081                 /* fall through */
3082         case F_SETOWN:
3083         case F_SETSIG:
3084         case F_GETFL:
3085         case F_GETOWN:
3086         case F_GETSIG:
3087                 /* Just check FD__USE permission */
3088                 err = file_has_perm(current, file, 0);
3089                 break;
3090         case F_GETLK:
3091         case F_SETLK:
3092         case F_SETLKW:
3093 #if BITS_PER_LONG == 32
3094         case F_GETLK64:
3095         case F_SETLK64:
3096         case F_SETLKW64:
3097 #endif
3098                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3099                         err = -EINVAL;
3100                         break;
3101                 }
3102                 err = file_has_perm(current, file, FILE__LOCK);
3103                 break;
3104         }
3105
3106         return err;
3107 }
3108
3109 static int selinux_file_set_fowner(struct file *file)
3110 {
3111         struct task_security_struct *tsec;
3112         struct file_security_struct *fsec;
3113
3114         tsec = current->security;
3115         fsec = file->f_security;
3116         fsec->fown_sid = tsec->sid;
3117
3118         return 0;
3119 }
3120
3121 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3122                                        struct fown_struct *fown, int signum)
3123 {
3124         struct file *file;
3125         u32 perm;
3126         struct task_security_struct *tsec;
3127         struct file_security_struct *fsec;
3128
3129         /* struct fown_struct is never outside the context of a struct file */
3130         file = container_of(fown, struct file, f_owner);
3131
3132         tsec = tsk->security;
3133         fsec = file->f_security;
3134
3135         if (!signum)
3136                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3137         else
3138                 perm = signal_to_av(signum);
3139
3140         return avc_has_perm(fsec->fown_sid, tsec->sid,
3141                             SECCLASS_PROCESS, perm, NULL);
3142 }
3143
3144 static int selinux_file_receive(struct file *file)
3145 {
3146         return file_has_perm(current, file, file_to_av(file));
3147 }
3148
3149 static int selinux_dentry_open(struct file *file)
3150 {
3151         struct file_security_struct *fsec;
3152         struct inode *inode;
3153         struct inode_security_struct *isec;
3154         inode = file->f_path.dentry->d_inode;
3155         fsec = file->f_security;
3156         isec = inode->i_security;
3157         /*
3158          * Save inode label and policy sequence number
3159          * at open-time so that selinux_file_permission
3160          * can determine whether revalidation is necessary.
3161          * Task label is already saved in the file security
3162          * struct as its SID.
3163          */
3164         fsec->isid = isec->sid;
3165         fsec->pseqno = avc_policy_seqno();
3166         /*
3167          * Since the inode label or policy seqno may have changed
3168          * between the selinux_inode_permission check and the saving
3169          * of state above, recheck that access is still permitted.
3170          * Otherwise, access might never be revalidated against the
3171          * new inode label or new policy.
3172          * This check is not redundant - do not remove.
3173          */
3174         return inode_has_perm(current, inode, open_file_to_av(file), NULL);
3175 }
3176
3177 /* task security operations */
3178
3179 static int selinux_task_create(unsigned long clone_flags)
3180 {
3181         int rc;
3182
3183         rc = secondary_ops->task_create(clone_flags);
3184         if (rc)
3185                 return rc;
3186
3187         return task_has_perm(current, current, PROCESS__FORK);
3188 }
3189
3190 static int selinux_task_alloc_security(struct task_struct *tsk)
3191 {
3192         struct task_security_struct *tsec1, *tsec2;
3193         int rc;
3194
3195         tsec1 = current->security;
3196
3197         rc = task_alloc_security(tsk);
3198         if (rc)
3199                 return rc;
3200         tsec2 = tsk->security;
3201
3202         tsec2->osid = tsec1->osid;
3203         tsec2->sid = tsec1->sid;
3204
3205         /* Retain the exec, fs, key, and sock SIDs across fork */
3206         tsec2->exec_sid = tsec1->exec_sid;
3207         tsec2->create_sid = tsec1->create_sid;
3208         tsec2->keycreate_sid = tsec1->keycreate_sid;
3209         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3210
3211         return 0;
3212 }
3213
3214 static void selinux_task_free_security(struct task_struct *tsk)
3215 {
3216         task_free_security(tsk);
3217 }
3218
3219 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3220 {
3221         /* Since setuid only affects the current process, and
3222            since the SELinux controls are not based on the Linux
3223            identity attributes, SELinux does not need to control
3224            this operation.  However, SELinux does control the use
3225            of the CAP_SETUID and CAP_SETGID capabilities using the
3226            capable hook. */
3227         return 0;
3228 }
3229
3230 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3231 {
3232         return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3233 }
3234
3235 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3236 {
3237         /* See the comment for setuid above. */
3238         return 0;
3239 }
3240
3241 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3242 {
3243         return task_has_perm(current, p, PROCESS__SETPGID);
3244 }
3245
3246 static int selinux_task_getpgid(struct task_struct *p)
3247 {
3248         return task_has_perm(current, p, PROCESS__GETPGID);
3249 }
3250
3251 static int selinux_task_getsid(struct task_struct *p)
3252 {
3253         return task_has_perm(current, p, PROCESS__GETSESSION);
3254 }
3255
3256 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3257 {
3258         struct task_security_struct *tsec = p->security;
3259         *secid = tsec->sid;
3260 }
3261
3262 static int selinux_task_setgroups(struct group_info *group_info)
3263 {
3264         /* See the comment for setuid above. */
3265         return 0;
3266 }
3267
3268 static int selinux_task_setnice(struct task_struct *p, int nice)
3269 {
3270         int rc;
3271
3272         rc = secondary_ops->task_setnice(p, nice);
3273         if (rc)
3274                 return rc;
3275
3276         return task_has_perm(current, p, PROCESS__SETSCHED);
3277 }
3278
3279 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3280 {
3281         int rc;
3282
3283         rc = secondary_ops->task_setioprio(p, ioprio);
3284         if (rc)
3285                 return rc;
3286
3287         return task_has_perm(current, p, PROCESS__SETSCHED);
3288 }
3289
3290 static int selinux_task_getioprio(struct task_struct *p)
3291 {
3292         return task_has_perm(current, p, PROCESS__GETSCHED);
3293 }
3294
3295 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3296 {
3297         struct rlimit *old_rlim = current->signal->rlim + resource;
3298         int rc;
3299
3300         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3301         if (rc)
3302                 return rc;
3303
3304         /* Control the ability to change the hard limit (whether
3305            lowering or raising it), so that the hard limit can
3306            later be used as a safe reset point for the soft limit
3307            upon context transitions. See selinux_bprm_apply_creds. */
3308         if (old_rlim->rlim_max != new_rlim->rlim_max)
3309                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3310
3311         return 0;
3312 }
3313
3314 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3315 {
3316         int rc;
3317
3318         rc = secondary_ops->task_setscheduler(p, policy, lp);
3319         if (rc)
3320                 return rc;
3321
3322         return task_has_perm(current, p, PROCESS__SETSCHED);
3323 }
3324
3325 static int selinux_task_getscheduler(struct task_struct *p)
3326 {
3327         return task_has_perm(current, p, PROCESS__GETSCHED);
3328 }
3329
3330 static int selinux_task_movememory(struct task_struct *p)
3331 {
3332         return task_has_perm(current, p, PROCESS__SETSCHED);
3333 }
3334
3335 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3336                                 int sig, u32 secid)
3337 {
3338         u32 perm;
3339         int rc;
3340         struct task_security_struct *tsec;
3341
3342         rc = secondary_ops->task_kill(p, info, sig, secid);
3343         if (rc)
3344                 return rc;
3345
3346         if (!sig)
3347                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3348         else
3349                 perm = signal_to_av(sig);
3350         tsec = p->security;
3351         if (secid)
3352                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3353         else
3354                 rc = task_has_perm(current, p, perm);
3355         return rc;
3356 }
3357
3358 static int selinux_task_prctl(int option,
3359                               unsigned long arg2,
3360                               unsigned long arg3,
3361                               unsigned long arg4,
3362                               unsigned long arg5,
3363                               long *rc_p)
3364 {
3365         /* The current prctl operations do not appear to require
3366            any SELinux controls since they merely observe or modify
3367            the state of the current process. */
3368         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3369 }
3370
3371 static int selinux_task_wait(struct task_struct *p)
3372 {
3373         return task_has_perm(p, current, PROCESS__SIGCHLD);
3374 }
3375
3376 static void selinux_task_reparent_to_init(struct task_struct *p)
3377 {
3378         struct task_security_struct *tsec;
3379
3380         secondary_ops->task_reparent_to_init(p);
3381
3382         tsec = p->security;
3383         tsec->osid = tsec->sid;
3384         tsec->sid = SECINITSID_KERNEL;
3385         return;
3386 }
3387
3388 static void selinux_task_to_inode(struct task_struct *p,
3389                                   struct inode *inode)
3390 {
3391         struct task_security_struct *tsec = p->security;
3392         struct inode_security_struct *isec = inode->i_security;
3393
3394         isec->sid = tsec->sid;
3395         isec->initialized = 1;
3396         return;
3397 }
3398
3399 /* Returns error only if unable to parse addresses */
3400 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3401                         struct avc_audit_data *ad, u8 *proto)
3402 {
3403         int offset, ihlen, ret = -EINVAL;
3404         struct iphdr _iph, *ih;
3405
3406         offset = skb_network_offset(skb);
3407         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3408         if (ih == NULL)
3409                 goto out;
3410
3411         ihlen = ih->ihl * 4;
3412         if (ihlen < sizeof(_iph))
3413                 goto out;
3414
3415         ad->u.net.v4info.saddr = ih->saddr;
3416         ad->u.net.v4info.daddr = ih->daddr;
3417         ret = 0;
3418
3419         if (proto)
3420                 *proto = ih->protocol;
3421
3422         switch (ih->protocol) {
3423         case IPPROTO_TCP: {
3424                 struct tcphdr _tcph, *th;
3425
3426                 if (ntohs(ih->frag_off) & IP_OFFSET)
3427                         break;
3428
3429                 offset += ihlen;
3430                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3431                 if (th == NULL)
3432                         break;
3433
3434                 ad->u.net.sport = th->source;
3435                 ad->u.net.dport = th->dest;
3436                 break;
3437         }
3438
3439         case IPPROTO_UDP: {
3440                 struct udphdr _udph, *uh;
3441
3442                 if (ntohs(ih->frag_off) & IP_OFFSET)
3443                         break;
3444
3445                 offset += ihlen;
3446                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3447                 if (uh == NULL)
3448                         break;
3449
3450                 ad->u.net.sport = uh->source;
3451                 ad->u.net.dport = uh->dest;
3452                 break;
3453         }
3454
3455         case IPPROTO_DCCP: {
3456                 struct dccp_hdr _dccph, *dh;
3457
3458                 if (ntohs(ih->frag_off) & IP_OFFSET)
3459                         break;
3460
3461                 offset += ihlen;
3462                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3463                 if (dh == NULL)
3464                         break;
3465
3466                 ad->u.net.sport = dh->dccph_sport;
3467                 ad->u.net.dport = dh->dccph_dport;
3468                 break;
3469         }
3470
3471         default:
3472                 break;
3473         }
3474 out:
3475         return ret;
3476 }
3477
3478 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3479
3480 /* Returns error only if unable to parse addresses */
3481 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3482                         struct avc_audit_data *ad, u8 *proto)
3483 {
3484         u8 nexthdr;
3485         int ret = -EINVAL, offset;
3486         struct ipv6hdr _ipv6h, *ip6;
3487
3488         offset = skb_network_offset(skb);
3489         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3490         if (ip6 == NULL)
3491                 goto out;
3492
3493         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3494         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3495         ret = 0;
3496
3497         nexthdr = ip6->nexthdr;
3498         offset += sizeof(_ipv6h);
3499         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3500         if (offset < 0)
3501                 goto out;
3502
3503         if (proto)
3504                 *proto = nexthdr;
3505
3506         switch (nexthdr) {
3507         case IPPROTO_TCP: {
3508                 struct tcphdr _tcph, *th;
3509
3510                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3511                 if (th == NULL)
3512                         break;
3513
3514                 ad->u.net.sport = th->source;
3515                 ad->u.net.dport = th->dest;
3516                 break;
3517         }
3518
3519         case IPPROTO_UDP: {
3520                 struct udphdr _udph, *uh;
3521
3522                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3523                 if (uh == NULL)
3524                         break;
3525
3526                 ad->u.net.sport = uh->source;
3527                 ad->u.net.dport = uh->dest;
3528                 break;
3529         }
3530
3531         case IPPROTO_DCCP: {
3532                 struct dccp_hdr _dccph, *dh;
3533
3534                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3535                 if (dh == NULL)
3536                         break;
3537
3538                 ad->u.net.sport = dh->dccph_sport;
3539                 ad->u.net.dport = dh->dccph_dport;
3540                 break;
3541         }
3542
3543         /* includes fragments */
3544         default:
3545                 break;
3546         }
3547 out:
3548         return ret;
3549 }
3550
3551 #endif /* IPV6 */
3552
3553 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3554                              char **_addrp, int src, u8 *proto)
3555 {
3556         char *addrp;
3557         int ret;
3558
3559         switch (ad->u.net.family) {
3560         case PF_INET:
3561                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3562                 if (ret)
3563                         goto parse_error;
3564                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3565                                        &ad->u.net.v4info.daddr);
3566                 goto okay;
3567
3568 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3569         case PF_INET6:
3570                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3571                 if (ret)
3572                         goto parse_error;
3573                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3574                                        &ad->u.net.v6info.daddr);
3575                 goto okay;
3576 #endif  /* IPV6 */
3577         default:
3578                 addrp = NULL;
3579                 goto okay;
3580         }
3581
3582 parse_error:
3583         printk(KERN_WARNING
3584                "SELinux: failure in selinux_parse_skb(),"
3585                " unable to parse packet\n");
3586         return ret;
3587
3588 okay:
3589         if (_addrp)
3590                 *_addrp = addrp;
3591         return 0;
3592 }
3593
3594 /**
3595  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3596  * @skb: the packet
3597  * @family: protocol family
3598  * @sid: the packet's peer label SID
3599  *
3600  * Description:
3601  * Check the various different forms of network peer labeling and determine
3602  * the peer label/SID for the packet; most of the magic actually occurs in
3603  * the security server function security_net_peersid_cmp().  The function
3604  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3605  * or -EACCES if @sid is invalid due to inconsistencies with the different
3606  * peer labels.
3607  *
3608  */
3609 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3610 {
3611         int err;
3612         u32 xfrm_sid;
3613         u32 nlbl_sid;
3614         u32 nlbl_type;
3615
3616         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3617         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3618
3619         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3620         if (unlikely(err)) {
3621                 printk(KERN_WARNING
3622                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3623                        " unable to determine packet's peer label\n");
3624                 return -EACCES;
3625         }
3626
3627         return 0;
3628 }
3629
3630 /* socket security operations */
3631 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3632                            u32 perms)
3633 {
3634         struct inode_security_struct *isec;
3635         struct task_security_struct *tsec;
3636         struct avc_audit_data ad;
3637         int err = 0;
3638
3639         tsec = task->security;
3640         isec = SOCK_INODE(sock)->i_security;
3641
3642         if (isec->sid == SECINITSID_KERNEL)
3643                 goto out;
3644
3645         AVC_AUDIT_DATA_INIT(&ad, NET);
3646         ad.u.net.sk = sock->sk;
3647         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3648
3649 out:
3650         return err;
3651 }
3652
3653 static int selinux_socket_create(int family, int type,
3654                                  int protocol, int kern)
3655 {
3656         int err = 0;
3657         struct task_security_struct *tsec;
3658         u32 newsid;
3659
3660         if (kern)
3661                 goto out;
3662
3663         tsec = current->security;
3664         newsid = tsec->sockcreate_sid ? : tsec->sid;
3665         err = avc_has_perm(tsec->sid, newsid,
3666                            socket_type_to_security_class(family, type,
3667                            protocol), SOCKET__CREATE, NULL);
3668
3669 out:
3670         return err;
3671 }
3672
3673 static int selinux_socket_post_create(struct socket *sock, int family,
3674                                       int type, int protocol, int kern)
3675 {
3676         int err = 0;
3677         struct inode_security_struct *isec;
3678         struct task_security_struct *tsec;
3679         struct sk_security_struct *sksec;
3680         u32 newsid;
3681
3682         isec = SOCK_INODE(sock)->i_security;
3683
3684         tsec = current->security;
3685         newsid = tsec->sockcreate_sid ? : tsec->sid;
3686         isec->sclass = socket_type_to_security_class(family, type, protocol);
3687         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3688         isec->initialized = 1;
3689
3690         if (sock->sk) {
3691                 sksec = sock->sk->sk_security;
3692                 sksec->sid = isec->sid;
3693                 sksec->sclass = isec->sclass;
3694                 err = selinux_netlbl_socket_post_create(sock);
3695         }
3696
3697         return err;
3698 }
3699
3700 /* Range of port numbers used to automatically bind.
3701    Need to determine whether we should perform a name_bind
3702    permission check between the socket and the port number. */
3703
3704 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3705 {
3706         u16 family;
3707         int err;
3708
3709         err = socket_has_perm(current, sock, SOCKET__BIND);
3710         if (err)
3711                 goto out;
3712
3713         /*
3714          * If PF_INET or PF_INET6, check name_bind permission for the port.
3715          * Multiple address binding for SCTP is not supported yet: we just
3716          * check the first address now.
3717          */
3718         family = sock->sk->sk_family;
3719         if (family == PF_INET || family == PF_INET6) {
3720                 char *addrp;
3721                 struct inode_security_struct *isec;
3722                 struct task_security_struct *tsec;
3723                 struct avc_audit_data ad;
3724                 struct sockaddr_in *addr4 = NULL;
3725                 struct sockaddr_in6 *addr6 = NULL;
3726                 unsigned short snum;
3727                 struct sock *sk = sock->sk;
3728                 u32 sid, node_perm;
3729
3730                 tsec = current->security;
3731                 isec = SOCK_INODE(sock)->i_security;
3732
3733                 if (family == PF_INET) {
3734                         addr4 = (struct sockaddr_in *)address;
3735                         snum = ntohs(addr4->sin_port);
3736                         addrp = (char *)&addr4->sin_addr.s_addr;
3737                 } else {
3738                         addr6 = (struct sockaddr_in6 *)address;
3739                         snum = ntohs(addr6->sin6_port);
3740                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3741                 }
3742
3743                 if (snum) {
3744                         int low, high;
3745
3746                         inet_get_local_port_range(&low, &high);
3747
3748                         if (snum < max(PROT_SOCK, low) || snum > high) {
3749                                 err = sel_netport_sid(sk->sk_protocol,
3750                                                       snum, &sid);
3751                                 if (err)
3752                                         goto out;
3753                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3754                                 ad.u.net.sport = htons(snum);
3755                                 ad.u.net.family = family;
3756                                 err = avc_has_perm(isec->sid, sid,
3757                                                    isec->sclass,
3758                                                    SOCKET__NAME_BIND, &ad);
3759                                 if (err)
3760                                         goto out;
3761                         }
3762                 }
3763
3764                 switch (isec->sclass) {
3765                 case SECCLASS_TCP_SOCKET:
3766                         node_perm = TCP_SOCKET__NODE_BIND;
3767                         break;
3768
3769                 case SECCLASS_UDP_SOCKET:
3770                         node_perm = UDP_SOCKET__NODE_BIND;
3771                         break;
3772
3773                 case SECCLASS_DCCP_SOCKET:
3774                         node_perm = DCCP_SOCKET__NODE_BIND;
3775                         break;
3776
3777                 default:
3778                         node_perm = RAWIP_SOCKET__NODE_BIND;
3779                         break;
3780                 }
3781
3782                 err = sel_netnode_sid(addrp, family, &sid);
3783                 if (err)
3784                         goto out;
3785
3786                 AVC_AUDIT_DATA_INIT(&ad, NET);
3787                 ad.u.net.sport = htons(snum);
3788                 ad.u.net.family = family;
3789
3790                 if (family == PF_INET)
3791                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3792                 else
3793                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3794
3795                 err = avc_has_perm(isec->sid, sid,
3796                                    isec->sclass, node_perm, &ad);
3797                 if (err)
3798                         goto out;
3799         }
3800 out:
3801         return err;
3802 }
3803
3804 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3805 {
3806         struct sock *sk = sock->sk;
3807         struct inode_security_struct *isec;
3808         int err;
3809
3810         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3811         if (err)
3812                 return err;
3813
3814         /*
3815          * If a TCP or DCCP socket, check name_connect permission for the port.
3816          */
3817         isec = SOCK_INODE(sock)->i_security;
3818         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3819             isec->sclass == SECCLASS_DCCP_SOCKET) {
3820                 struct avc_audit_data ad;
3821                 struct sockaddr_in *addr4 = NULL;
3822                 struct sockaddr_in6 *addr6 = NULL;
3823                 unsigned short snum;
3824                 u32 sid, perm;
3825
3826                 if (sk->sk_family == PF_INET) {
3827                         addr4 = (struct sockaddr_in *)address;
3828                         if (addrlen < sizeof(struct sockaddr_in))
3829                                 return -EINVAL;
3830                         snum = ntohs(addr4->sin_port);
3831                 } else {
3832                         addr6 = (struct sockaddr_in6 *)address;
3833                         if (addrlen < SIN6_LEN_RFC2133)
3834                                 return -EINVAL;
3835                         snum = ntohs(addr6->sin6_port);
3836                 }
3837
3838                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3839                 if (err)
3840                         goto out;
3841
3842                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3843                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3844
3845                 AVC_AUDIT_DATA_INIT(&ad, NET);
3846                 ad.u.net.dport = htons(snum);
3847                 ad.u.net.family = sk->sk_family;
3848                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3849                 if (err)
3850                         goto out;
3851         }
3852
3853         err = selinux_netlbl_socket_connect(sk, address);
3854
3855 out:
3856         return err;
3857 }
3858
3859 static int selinux_socket_listen(struct socket *sock, int backlog)
3860 {
3861         return socket_has_perm(current, sock, SOCKET__LISTEN);
3862 }
3863
3864 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3865 {
3866         int err;
3867         struct inode_security_struct *isec;
3868         struct inode_security_struct *newisec;
3869
3870         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3871         if (err)
3872                 return err;
3873
3874         newisec = SOCK_INODE(newsock)->i_security;
3875
3876         isec = SOCK_INODE(sock)->i_security;
3877         newisec->sclass = isec->sclass;
3878         newisec->sid = isec->sid;
3879         newisec->initialized = 1;
3880
3881         return 0;
3882 }
3883
3884 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3885                                   int size)
3886 {
3887         int rc;
3888
3889         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3890         if (rc)
3891                 return rc;
3892
3893         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3894 }
3895
3896 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3897                                   int size, int flags)
3898 {
3899         return socket_has_perm(current, sock, SOCKET__READ);
3900 }
3901
3902 static int selinux_socket_getsockname(struct socket *sock)
3903 {
3904         return socket_has_perm(current, sock, SOCKET__GETATTR);
3905 }
3906
3907 static int selinux_socket_getpeername(struct socket *sock)
3908 {
3909         return socket_has_perm(current, sock, SOCKET__GETATTR);
3910 }
3911
3912 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3913 {
3914         int err;
3915
3916         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3917         if (err)
3918                 return err;
3919
3920         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3921 }
3922
3923 static int selinux_socket_getsockopt(struct socket *sock, int level,
3924                                      int optname)
3925 {
3926         return socket_has_perm(current, sock, SOCKET__GETOPT);
3927 }
3928
3929 static int selinux_socket_shutdown(struct socket *sock, int how)
3930 {
3931         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3932 }
3933
3934 static int selinux_socket_unix_stream_connect(struct socket *sock,
3935                                               struct socket *other,
3936                                               struct sock *newsk)
3937 {
3938         struct sk_security_struct *ssec;
3939         struct inode_security_struct *isec;
3940         struct inode_security_struct *other_isec;
3941         struct avc_audit_data ad;
3942         int err;
3943
3944         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3945         if (err)
3946                 return err;
3947
3948         isec = SOCK_INODE(sock)->i_security;
3949         other_isec = SOCK_INODE(other)->i_security;
3950
3951         AVC_AUDIT_DATA_INIT(&ad, NET);
3952         ad.u.net.sk = other->sk;
3953
3954         err = avc_has_perm(isec->sid, other_isec->sid,
3955                            isec->sclass,
3956                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3957         if (err)
3958                 return err;
3959
3960         /* connecting socket */
3961         ssec = sock->sk->sk_security;
3962         ssec->peer_sid = other_isec->sid;
3963
3964         /* server child socket */
3965         ssec = newsk->sk_security;
3966         ssec->peer_sid = isec->sid;
3967         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3968
3969         return err;
3970 }
3971
3972 static int selinux_socket_unix_may_send(struct socket *sock,
3973                                         struct socket *other)
3974 {
3975         struct inode_security_struct *isec;
3976         struct inode_security_struct *other_isec;
3977         struct avc_audit_data ad;
3978         int err;
3979
3980         isec = SOCK_INODE(sock)->i_security;
3981         other_isec = SOCK_INODE(other)->i_security;
3982
3983         AVC_AUDIT_DATA_INIT(&ad, NET);
3984         ad.u.net.sk = other->sk;
3985
3986         err = avc_has_perm(isec->sid, other_isec->sid,
3987                            isec->sclass, SOCKET__SENDTO, &ad);
3988         if (err)
3989                 return err;
3990
3991         return 0;
3992 }
3993
3994 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3995                                     u32 peer_sid,
3996                                     struct avc_audit_data *ad)
3997 {
3998         int err;
3999         u32 if_sid;
4000         u32 node_sid;
4001
4002         err = sel_netif_sid(ifindex, &if_sid);
4003         if (err)
4004                 return err;
4005         err = avc_has_perm(peer_sid, if_sid,
4006                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4007         if (err)
4008                 return err;
4009
4010         err = sel_netnode_sid(addrp, family, &node_sid);
4011         if (err)
4012                 return err;
4013         return avc_has_perm(peer_sid, node_sid,
4014                             SECCLASS_NODE, NODE__RECVFROM, ad);
4015 }
4016
4017 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4018                                                 struct sk_buff *skb,
4019                                                 struct avc_audit_data *ad,
4020                                                 u16 family,
4021                                                 char *addrp)
4022 {
4023         int err;
4024         struct sk_security_struct *sksec = sk->sk_security;
4025         u16 sk_class;
4026         u32 netif_perm, node_perm, recv_perm;
4027         u32 port_sid, node_sid, if_sid, sk_sid;
4028
4029         sk_sid = sksec->sid;
4030         sk_class = sksec->sclass;
4031
4032         switch (sk_class) {
4033         case SECCLASS_UDP_SOCKET:
4034                 netif_perm = NETIF__UDP_RECV;
4035                 node_perm = NODE__UDP_RECV;
4036                 recv_perm = UDP_SOCKET__RECV_MSG;
4037                 break;
4038         case SECCLASS_TCP_SOCKET:
4039                 netif_perm = NETIF__TCP_RECV;
4040                 node_perm = NODE__TCP_RECV;
4041                 recv_perm = TCP_SOCKET__RECV_MSG;
4042                 break;
4043         case SECCLASS_DCCP_SOCKET:
4044                 netif_perm = NETIF__DCCP_RECV;
4045                 node_perm = NODE__DCCP_RECV;
4046                 recv_perm = DCCP_SOCKET__RECV_MSG;
4047                 break;
4048         default:
4049                 netif_perm = NETIF__RAWIP_RECV;
4050                 node_perm = NODE__RAWIP_RECV;
4051                 recv_perm = 0;
4052                 break;
4053         }
4054
4055         err = sel_netif_sid(skb->iif, &if_sid);
4056         if (err)
4057                 return err;
4058         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4059         if (err)
4060                 return err;
4061
4062         err = sel_netnode_sid(addrp, family, &node_sid);
4063         if (err)
4064                 return err;
4065         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4066         if (err)
4067                 return err;
4068
4069         if (!recv_perm)
4070                 return 0;
4071         err = sel_netport_sid(sk->sk_protocol,
4072                               ntohs(ad->u.net.sport), &port_sid);
4073         if (unlikely(err)) {
4074                 printk(KERN_WARNING
4075                        "SELinux: failure in"
4076                        " selinux_sock_rcv_skb_iptables_compat(),"
4077                        " network port label not found\n");
4078                 return err;
4079         }
4080         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4081 }
4082
4083 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4084                                        u16 family)
4085 {
4086         int err;
4087         struct sk_security_struct *sksec = sk->sk_security;
4088         u32 peer_sid;
4089         u32 sk_sid = sksec->sid;
4090         struct avc_audit_data ad;
4091         char *addrp;
4092
4093         AVC_AUDIT_DATA_INIT(&ad, NET);
4094         ad.u.net.netif = skb->iif;
4095         ad.u.net.family = family;
4096         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4097         if (err)
4098                 return err;
4099
4100         if (selinux_compat_net)
4101                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4102                                                            family, addrp);
4103         else
4104                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4105                                    PACKET__RECV, &ad);
4106         if (err)
4107                 return err;
4108
4109         if (selinux_policycap_netpeer) {
4110                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4111                 if (err)
4112                         return err;
4113                 err = avc_has_perm(sk_sid, peer_sid,
4114                                    SECCLASS_PEER, PEER__RECV, &ad);
4115                 if (err)
4116                         selinux_netlbl_err(skb, err, 0);
4117         } else {
4118                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4119                 if (err)
4120                         return err;
4121                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4122         }
4123
4124         return err;
4125 }
4126
4127 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4128 {
4129         int err;
4130         struct sk_security_struct *sksec = sk->sk_security;
4131         u16 family = sk->sk_family;
4132         u32 sk_sid = sksec->sid;
4133         struct avc_audit_data ad;
4134         char *addrp;
4135         u8 secmark_active;
4136         u8 peerlbl_active;
4137
4138         if (family != PF_INET && family != PF_INET6)
4139                 return 0;
4140
4141         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4142         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4143                 family = PF_INET;
4144
4145         /* If any sort of compatibility mode is enabled then handoff processing
4146          * to the selinux_sock_rcv_skb_compat() function to deal with the
4147          * special handling.  We do this in an attempt to keep this function
4148          * as fast and as clean as possible. */
4149         if (selinux_compat_net || !selinux_policycap_netpeer)
4150                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4151
4152         secmark_active = selinux_secmark_enabled();
4153         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4154         if (!secmark_active && !peerlbl_active)
4155                 return 0;
4156
4157         AVC_AUDIT_DATA_INIT(&ad, NET);
4158         ad.u.net.netif = skb->iif;
4159         ad.u.net.family = family;
4160         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4161         if (err)
4162                 return err;
4163
4164         if (peerlbl_active) {
4165                 u32 peer_sid;
4166
4167                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4168                 if (err)
4169                         return err;
4170                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4171                                                peer_sid, &ad);
4172                 if (err) {
4173                         selinux_netlbl_err(skb, err, 0);
4174                         return err;
4175                 }
4176                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4177                                    PEER__RECV, &ad);
4178                 if (err)
4179                         selinux_netlbl_err(skb, err, 0);
4180         }
4181
4182         if (secmark_active) {
4183                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4184                                    PACKET__RECV, &ad);
4185                 if (err)
4186                         return err;
4187         }
4188
4189         return err;
4190 }
4191
4192 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4193                                             int __user *optlen, unsigned len)
4194 {
4195         int err = 0;
4196         char *scontext;
4197         u32 scontext_len;
4198         struct sk_security_struct *ssec;
4199         struct inode_security_struct *isec;
4200         u32 peer_sid = SECSID_NULL;
4201
4202         isec = SOCK_INODE(sock)->i_security;
4203
4204         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4205             isec->sclass == SECCLASS_TCP_SOCKET) {
4206                 ssec = sock->sk->sk_security;
4207                 peer_sid = ssec->peer_sid;
4208         }
4209         if (peer_sid == SECSID_NULL) {
4210                 err = -ENOPROTOOPT;
4211                 goto out;
4212         }
4213
4214         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4215
4216         if (err)
4217                 goto out;
4218
4219         if (scontext_len > len) {
4220                 err = -ERANGE;
4221                 goto out_len;
4222         }
4223
4224         if (copy_to_user(optval, scontext, scontext_len))
4225                 err = -EFAULT;
4226
4227 out_len:
4228         if (put_user(scontext_len, optlen))
4229                 err = -EFAULT;
4230
4231         kfree(scontext);
4232 out:
4233         return err;
4234 }
4235
4236 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4237 {
4238         u32 peer_secid = SECSID_NULL;
4239         u16 family;
4240
4241         if (skb && skb->protocol == htons(ETH_P_IP))
4242                 family = PF_INET;
4243         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4244                 family = PF_INET6;
4245         else if (sock)
4246                 family = sock->sk->sk_family;
4247         else
4248                 goto out;
4249
4250         if (sock && family == PF_UNIX)
4251                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4252         else if (skb)
4253                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4254
4255 out:
4256         *secid = peer_secid;
4257         if (peer_secid == SECSID_NULL)
4258                 return -EINVAL;
4259         return 0;
4260 }
4261
4262 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4263 {
4264         return sk_alloc_security(sk, family, priority);
4265 }
4266
4267 static void selinux_sk_free_security(struct sock *sk)
4268 {
4269         sk_free_security(sk);
4270 }
4271
4272 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4273 {
4274         struct sk_security_struct *ssec = sk->sk_security;
4275         struct sk_security_struct *newssec = newsk->sk_security;
4276
4277         newssec->sid = ssec->sid;
4278         newssec->peer_sid = ssec->peer_sid;
4279         newssec->sclass = ssec->sclass;
4280
4281         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4282 }
4283
4284 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4285 {
4286         if (!sk)
4287                 *secid = SECINITSID_ANY_SOCKET;
4288         else {
4289                 struct sk_security_struct *sksec = sk->sk_security;
4290
4291                 *secid = sksec->sid;
4292         }
4293 }
4294
4295 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4296 {
4297         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4298         struct sk_security_struct *sksec = sk->sk_security;
4299
4300         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4301             sk->sk_family == PF_UNIX)
4302                 isec->sid = sksec->sid;
4303         sksec->sclass = isec->sclass;
4304 }
4305
4306 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4307                                      struct request_sock *req)
4308 {
4309         struct sk_security_struct *sksec = sk->sk_security;
4310         int err;
4311         u16 family = sk->sk_family;
4312         u32 newsid;
4313         u32 peersid;
4314
4315         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4316         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4317                 family = PF_INET;
4318
4319         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4320         if (err)
4321                 return err;
4322         if (peersid == SECSID_NULL) {
4323                 req->secid = sksec->sid;
4324                 req->peer_secid = SECSID_NULL;
4325                 return 0;
4326         }
4327
4328         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4329         if (err)
4330                 return err;
4331
4332         req->secid = newsid;
4333         req->peer_secid = peersid;
4334         return 0;
4335 }
4336
4337 static void selinux_inet_csk_clone(struct sock *newsk,
4338                                    const struct request_sock *req)
4339 {
4340         struct sk_security_struct *newsksec = newsk->sk_security;
4341
4342         newsksec->sid = req->secid;
4343         newsksec->peer_sid = req->peer_secid;
4344         /* NOTE: Ideally, we should also get the isec->sid for the
4345            new socket in sync, but we don't have the isec available yet.
4346            So we will wait until sock_graft to do it, by which
4347            time it will have been created and available. */
4348
4349         /* We don't need to take any sort of lock here as we are the only
4350          * thread with access to newsksec */
4351         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4352 }
4353
4354 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4355 {
4356         u16 family = sk->sk_family;
4357         struct sk_security_struct *sksec = sk->sk_security;
4358
4359         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4360         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4361                 family = PF_INET;
4362
4363         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4364
4365         selinux_netlbl_inet_conn_established(sk, family);
4366 }
4367
4368 static void selinux_req_classify_flow(const struct request_sock *req,
4369                                       struct flowi *fl)
4370 {
4371         fl->secid = req->secid;
4372 }
4373
4374 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4375 {
4376         int err = 0;
4377         u32 perm;
4378         struct nlmsghdr *nlh;
4379         struct socket *sock = sk->sk_socket;
4380         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4381
4382         if (skb->len < NLMSG_SPACE(0)) {
4383                 err = -EINVAL;
4384                 goto out;
4385         }
4386         nlh = nlmsg_hdr(skb);
4387
4388         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4389         if (err) {
4390                 if (err == -EINVAL) {
4391                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4392                                   "SELinux:  unrecognized netlink message"
4393                                   " type=%hu for sclass=%hu\n",
4394                                   nlh->nlmsg_type, isec->sclass);
4395                         if (!selinux_enforcing)
4396                                 err = 0;
4397                 }
4398
4399                 /* Ignore */
4400                 if (err == -ENOENT)
4401                         err = 0;
4402                 goto out;
4403         }
4404
4405         err = socket_has_perm(current, sock, perm);
4406 out:
4407         return err;
4408 }
4409
4410 #ifdef CONFIG_NETFILTER
4411
4412 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4413                                        u16 family)
4414 {
4415         int err;
4416         char *addrp;
4417         u32 peer_sid;
4418         struct avc_audit_data ad;
4419         u8 secmark_active;
4420         u8 netlbl_active;
4421         u8 peerlbl_active;
4422
4423         if (!selinux_policycap_netpeer)
4424                 return NF_ACCEPT;
4425
4426         secmark_active = selinux_secmark_enabled();
4427         netlbl_active = netlbl_enabled();
4428         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4429         if (!secmark_active && !peerlbl_active)
4430                 return NF_ACCEPT;
4431
4432         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4433                 return NF_DROP;
4434
4435         AVC_AUDIT_DATA_INIT(&ad, NET);
4436         ad.u.net.netif = ifindex;
4437         ad.u.net.family = family;
4438         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4439                 return NF_DROP;
4440
4441         if (peerlbl_active) {
4442                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4443                                                peer_sid, &ad);
4444                 if (err) {
4445                         selinux_netlbl_err(skb, err, 1);
4446                         return NF_DROP;
4447                 }
4448         }
4449
4450         if (secmark_active)
4451                 if (avc_has_perm(peer_sid, skb->secmark,
4452                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4453                         return NF_DROP;
4454
4455         if (netlbl_active)
4456                 /* we do this in the FORWARD path and not the POST_ROUTING
4457                  * path because we want to make sure we apply the necessary
4458                  * labeling before IPsec is applied so we can leverage AH
4459                  * protection */
4460                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4461                         return NF_DROP;
4462
4463         return NF_ACCEPT;
4464 }
4465
4466 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4467                                          struct sk_buff *skb,
4468                                          const struct net_device *in,
4469                                          const struct net_device *out,
4470                                          int (*okfn)(struct sk_buff *))
4471 {
4472         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4473 }
4474
4475 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4476 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4477                                          struct sk_buff *skb,
4478                                          const struct net_device *in,
4479                                          const struct net_device *out,
4480                                          int (*okfn)(struct sk_buff *))
4481 {
4482         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4483 }
4484 #endif  /* IPV6 */
4485
4486 static unsigned int selinux_ip_output(struct sk_buff *skb,
4487                                       u16 family)
4488 {
4489         u32 sid;
4490
4491         if (!netlbl_enabled())
4492                 return NF_ACCEPT;
4493
4494         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4495          * because we want to make sure we apply the necessary labeling
4496          * before IPsec is applied so we can leverage AH protection */
4497         if (skb->sk) {
4498                 struct sk_security_struct *sksec = skb->sk->sk_security;
4499                 sid = sksec->sid;
4500         } else
4501                 sid = SECINITSID_KERNEL;
4502         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4503                 return NF_DROP;
4504
4505         return NF_ACCEPT;
4506 }
4507
4508 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4509                                         struct sk_buff *skb,
4510                                         const struct net_device *in,
4511                                         const struct net_device *out,
4512                                         int (*okfn)(struct sk_buff *))
4513 {
4514         return selinux_ip_output(skb, PF_INET);
4515 }
4516
4517 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4518                                                 int ifindex,
4519                                                 struct avc_audit_data *ad,
4520                                                 u16 family, char *addrp)
4521 {
4522         int err;
4523         struct sk_security_struct *sksec = sk->sk_security;
4524         u16 sk_class;
4525         u32 netif_perm, node_perm, send_perm;
4526         u32 port_sid, node_sid, if_sid, sk_sid;
4527
4528         sk_sid = sksec->sid;
4529         sk_class = sksec->sclass;
4530
4531         switch (sk_class) {
4532         case SECCLASS_UDP_SOCKET:
4533                 netif_perm = NETIF__UDP_SEND;
4534                 node_perm = NODE__UDP_SEND;
4535                 send_perm = UDP_SOCKET__SEND_MSG;
4536                 break;
4537         case SECCLASS_TCP_SOCKET:
4538                 netif_perm = NETIF__TCP_SEND;
4539                 node_perm = NODE__TCP_SEND;
4540                 send_perm = TCP_SOCKET__SEND_MSG;
4541                 break;
4542         case SECCLASS_DCCP_SOCKET:
4543                 netif_perm = NETIF__DCCP_SEND;
4544                 node_perm = NODE__DCCP_SEND;
4545                 send_perm = DCCP_SOCKET__SEND_MSG;
4546                 break;
4547         default:
4548                 netif_perm = NETIF__RAWIP_SEND;
4549                 node_perm = NODE__RAWIP_SEND;
4550                 send_perm = 0;
4551                 break;
4552         }
4553
4554         err = sel_netif_sid(ifindex, &if_sid);
4555         if (err)
4556                 return err;
4557         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4558                 return err;
4559
4560         err = sel_netnode_sid(addrp, family, &node_sid);
4561         if (err)
4562                 return err;
4563         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4564         if (err)
4565                 return err;
4566
4567         if (send_perm != 0)
4568                 return 0;
4569
4570         err = sel_netport_sid(sk->sk_protocol,
4571                               ntohs(ad->u.net.dport), &port_sid);
4572         if (unlikely(err)) {
4573                 printk(KERN_WARNING
4574                        "SELinux: failure in"
4575                        " selinux_ip_postroute_iptables_compat(),"
4576                        " network port label not found\n");
4577                 return err;
4578         }
4579         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4580 }
4581
4582 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4583                                                 int ifindex,
4584                                                 u16 family)
4585 {
4586         struct sock *sk = skb->sk;
4587         struct sk_security_struct *sksec;
4588         struct avc_audit_data ad;
4589         char *addrp;
4590         u8 proto;
4591
4592         if (sk == NULL)
4593                 return NF_ACCEPT;
4594         sksec = sk->sk_security;
4595
4596         AVC_AUDIT_DATA_INIT(&ad, NET);
4597         ad.u.net.netif = ifindex;
4598         ad.u.net.family = family;
4599         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4600                 return NF_DROP;
4601
4602         if (selinux_compat_net) {
4603                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4604                                                          &ad, family, addrp))
4605                         return NF_DROP;
4606         } else {
4607                 if (avc_has_perm(sksec->sid, skb->secmark,
4608                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4609                         return NF_DROP;
4610         }
4611
4612         if (selinux_policycap_netpeer)
4613                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4614                         return NF_DROP;
4615
4616         return NF_ACCEPT;
4617 }
4618
4619 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4620                                          u16 family)
4621 {
4622         u32 secmark_perm;
4623         u32 peer_sid;
4624         struct sock *sk;
4625         struct avc_audit_data ad;
4626         char *addrp;
4627         u8 secmark_active;
4628         u8 peerlbl_active;
4629
4630         /* If any sort of compatibility mode is enabled then handoff processing
4631          * to the selinux_ip_postroute_compat() function to deal with the
4632          * special handling.  We do this in an attempt to keep this function
4633          * as fast and as clean as possible. */
4634         if (selinux_compat_net || !selinux_policycap_netpeer)
4635                 return selinux_ip_postroute_compat(skb, ifindex, family);
4636
4637         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4638          * packet transformation so allow the packet to pass without any checks
4639          * since we'll have another chance to perform access control checks
4640          * when the packet is on it's final way out.
4641          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4642          *       is NULL, in this case go ahead and apply access control. */
4643         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4644                 return NF_ACCEPT;
4645
4646         secmark_active = selinux_secmark_enabled();
4647         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4648         if (!secmark_active && !peerlbl_active)
4649                 return NF_ACCEPT;
4650
4651         /* if the packet is being forwarded then get the peer label from the
4652          * packet itself; otherwise check to see if it is from a local
4653          * application or the kernel, if from an application get the peer label
4654          * from the sending socket, otherwise use the kernel's sid */
4655         sk = skb->sk;
4656         if (sk == NULL) {
4657                 switch (family) {
4658                 case PF_INET:
4659                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4660                                 secmark_perm = PACKET__FORWARD_OUT;
4661                         else
4662                                 secmark_perm = PACKET__SEND;
4663                         break;
4664                 case PF_INET6:
4665                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4666                                 secmark_perm = PACKET__FORWARD_OUT;
4667                         else
4668                                 secmark_perm = PACKET__SEND;
4669                         break;
4670                 default:
4671                         return NF_DROP;
4672                 }
4673                 if (secmark_perm == PACKET__FORWARD_OUT) {
4674                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4675                                 return NF_DROP;
4676                 } else
4677                         peer_sid = SECINITSID_KERNEL;
4678         } else {
4679                 struct sk_security_struct *sksec = sk->sk_security;
4680                 peer_sid = sksec->sid;
4681                 secmark_perm = PACKET__SEND;
4682         }
4683
4684         AVC_AUDIT_DATA_INIT(&ad, NET);
4685         ad.u.net.netif = ifindex;
4686         ad.u.net.family = family;
4687         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4688                 return NF_DROP;
4689
4690         if (secmark_active)
4691                 if (avc_has_perm(peer_sid, skb->secmark,
4692                                  SECCLASS_PACKET, secmark_perm, &ad))
4693                         return NF_DROP;
4694
4695         if (peerlbl_active) {
4696                 u32 if_sid;
4697                 u32 node_sid;
4698
4699                 if (sel_netif_sid(ifindex, &if_sid))
4700                         return NF_DROP;
4701                 if (avc_has_perm(peer_sid, if_sid,
4702                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4703                         return NF_DROP;
4704
4705                 if (sel_netnode_sid(addrp, family, &node_sid))
4706                         return NF_DROP;
4707                 if (avc_has_perm(peer_sid, node_sid,
4708                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4709                         return NF_DROP;
4710         }
4711
4712         return NF_ACCEPT;
4713 }
4714
4715 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4716                                            struct sk_buff *skb,
4717                                            const struct net_device *in,
4718                                            const struct net_device *out,
4719                                            int (*okfn)(struct sk_buff *))
4720 {
4721         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4722 }
4723
4724 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4725 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4726                                            struct sk_buff *skb,
4727                                            const struct net_device *in,
4728                                            const struct net_device *out,
4729                                            int (*okfn)(struct sk_buff *))
4730 {
4731         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4732 }
4733 #endif  /* IPV6 */
4734
4735 #endif  /* CONFIG_NETFILTER */
4736
4737 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4738 {
4739         int err;
4740
4741         err = secondary_ops->netlink_send(sk, skb);
4742         if (err)
4743                 return err;
4744
4745         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4746                 err = selinux_nlmsg_perm(sk, skb);
4747
4748         return err;
4749 }
4750
4751 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4752 {
4753         int err;
4754         struct avc_audit_data ad;
4755
4756         err = secondary_ops->netlink_recv(skb, capability);
4757         if (err)
4758                 return err;
4759
4760         AVC_AUDIT_DATA_INIT(&ad, CAP);
4761         ad.u.cap = capability;
4762
4763         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4764                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4765 }
4766
4767 static int ipc_alloc_security(struct task_struct *task,
4768                               struct kern_ipc_perm *perm,
4769                               u16 sclass)
4770 {
4771         struct task_security_struct *tsec = task->security;
4772         struct ipc_security_struct *isec;
4773
4774         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4775         if (!isec)
4776                 return -ENOMEM;
4777
4778         isec->sclass = sclass;
4779         isec->sid = tsec->sid;
4780         perm->security = isec;
4781
4782         return 0;
4783 }
4784
4785 static void ipc_free_security(struct kern_ipc_perm *perm)
4786 {
4787         struct ipc_security_struct *isec = perm->security;
4788         perm->security = NULL;
4789         kfree(isec);
4790 }
4791
4792 static int msg_msg_alloc_security(struct msg_msg *msg)
4793 {
4794         struct msg_security_struct *msec;
4795
4796         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4797         if (!msec)
4798                 return -ENOMEM;
4799
4800         msec->sid = SECINITSID_UNLABELED;
4801         msg->security = msec;
4802
4803         return 0;
4804 }
4805
4806 static void msg_msg_free_security(struct msg_msg *msg)
4807 {
4808         struct msg_security_struct *msec = msg->security;
4809
4810         msg->security = NULL;
4811         kfree(msec);
4812 }
4813
4814 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4815                         u32 perms)
4816 {
4817         struct task_security_struct *tsec;
4818         struct ipc_security_struct *isec;
4819         struct avc_audit_data ad;
4820
4821         tsec = current->security;
4822         isec = ipc_perms->security;
4823
4824         AVC_AUDIT_DATA_INIT(&ad, IPC);
4825         ad.u.ipc_id = ipc_perms->key;
4826
4827         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4828 }
4829
4830 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4831 {
4832         return msg_msg_alloc_security(msg);
4833 }
4834
4835 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4836 {
4837         msg_msg_free_security(msg);
4838 }
4839
4840 /* message queue security operations */
4841 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4842 {
4843         struct task_security_struct *tsec;
4844         struct ipc_security_struct *isec;
4845         struct avc_audit_data ad;
4846         int rc;
4847
4848         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4849         if (rc)
4850                 return rc;
4851
4852         tsec = current->security;
4853         isec = msq->q_perm.security;
4854
4855         AVC_AUDIT_DATA_INIT(&ad, IPC);
4856         ad.u.ipc_id = msq->q_perm.key;
4857
4858         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4859                           MSGQ__CREATE, &ad);
4860         if (rc) {
4861                 ipc_free_security(&msq->q_perm);
4862                 return rc;
4863         }
4864         return 0;
4865 }
4866
4867 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4868 {
4869         ipc_free_security(&msq->q_perm);
4870 }
4871
4872 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4873 {
4874         struct task_security_struct *tsec;
4875         struct ipc_security_struct *isec;
4876         struct avc_audit_data ad;
4877
4878         tsec = current->security;
4879         isec = msq->q_perm.security;
4880
4881         AVC_AUDIT_DATA_INIT(&ad, IPC);
4882         ad.u.ipc_id = msq->q_perm.key;
4883
4884         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4885                             MSGQ__ASSOCIATE, &ad);
4886 }
4887
4888 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4889 {
4890         int err;
4891         int perms;
4892
4893         switch (cmd) {
4894         case IPC_INFO:
4895         case MSG_INFO:
4896                 /* No specific object, just general system-wide information. */
4897                 return task_has_system(current, SYSTEM__IPC_INFO);
4898         case IPC_STAT:
4899         case MSG_STAT:
4900                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4901                 break;
4902         case IPC_SET:
4903                 perms = MSGQ__SETATTR;
4904                 break;
4905         case IPC_RMID:
4906                 perms = MSGQ__DESTROY;
4907                 break;
4908         default:
4909                 return 0;
4910         }
4911
4912         err = ipc_has_perm(&msq->q_perm, perms);
4913         return err;
4914 }
4915
4916 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4917 {
4918         struct task_security_struct *tsec;
4919         struct ipc_security_struct *isec;
4920         struct msg_security_struct *msec;
4921         struct avc_audit_data ad;
4922         int rc;
4923
4924         tsec = current->security;
4925         isec = msq->q_perm.security;
4926         msec = msg->security;
4927
4928         /*
4929          * First time through, need to assign label to the message
4930          */
4931         if (msec->sid == SECINITSID_UNLABELED) {
4932                 /*
4933                  * Compute new sid based on current process and
4934                  * message queue this message will be stored in
4935                  */
4936                 rc = security_transition_sid(tsec->sid,
4937                                              isec->sid,
4938                                              SECCLASS_MSG,
4939                                              &msec->sid);
4940                 if (rc)
4941                         return rc;
4942         }
4943
4944         AVC_AUDIT_DATA_INIT(&ad, IPC);
4945         ad.u.ipc_id = msq->q_perm.key;
4946
4947         /* Can this process write to the queue? */
4948         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4949                           MSGQ__WRITE, &ad);
4950         if (!rc)
4951                 /* Can this process send the message */
4952                 rc = avc_has_perm(tsec->sid, msec->sid,
4953                                   SECCLASS_MSG, MSG__SEND, &ad);
4954         if (!rc)
4955                 /* Can the message be put in the queue? */
4956                 rc = avc_has_perm(msec->sid, isec->sid,
4957                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4958
4959         return rc;
4960 }
4961
4962 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4963                                     struct task_struct *target,
4964                                     long type, int mode)
4965 {
4966         struct task_security_struct *tsec;
4967         struct ipc_security_struct *isec;
4968         struct msg_security_struct *msec;
4969         struct avc_audit_data ad;
4970         int rc;
4971
4972         tsec = target->security;
4973         isec = msq->q_perm.security;
4974         msec = msg->security;
4975
4976         AVC_AUDIT_DATA_INIT(&ad, IPC);
4977         ad.u.ipc_id = msq->q_perm.key;
4978
4979         rc = avc_has_perm(tsec->sid, isec->sid,
4980                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4981         if (!rc)
4982                 rc = avc_has_perm(tsec->sid, msec->sid,
4983                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4984         return rc;
4985 }
4986
4987 /* Shared Memory security operations */
4988 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4989 {
4990         struct task_security_struct *tsec;
4991         struct ipc_security_struct *isec;
4992         struct avc_audit_data ad;
4993         int rc;
4994
4995         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4996         if (rc)
4997                 return rc;
4998
4999         tsec = current->security;
5000         isec = shp->shm_perm.security;
5001
5002         AVC_AUDIT_DATA_INIT(&ad, IPC);
5003         ad.u.ipc_id = shp->shm_perm.key;
5004
5005         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5006                           SHM__CREATE, &ad);
5007         if (rc) {
5008                 ipc_free_security(&shp->shm_perm);
5009                 return rc;
5010         }
5011         return 0;
5012 }
5013
5014 static void selinux_shm_free_security(struct shmid_kernel *shp)
5015 {
5016         ipc_free_security(&shp->shm_perm);
5017 }
5018
5019 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5020 {
5021         struct task_security_struct *tsec;
5022         struct ipc_security_struct *isec;
5023         struct avc_audit_data ad;
5024
5025         tsec = current->security;
5026         isec = shp->shm_perm.security;
5027
5028         AVC_AUDIT_DATA_INIT(&ad, IPC);
5029         ad.u.ipc_id = shp->shm_perm.key;
5030
5031         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5032                             SHM__ASSOCIATE, &ad);
5033 }
5034
5035 /* Note, at this point, shp is locked down */
5036 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5037 {
5038         int perms;
5039         int err;
5040
5041         switch (cmd) {
5042         case IPC_INFO:
5043         case SHM_INFO:
5044                 /* No specific object, just general system-wide information. */
5045                 return task_has_system(current, SYSTEM__IPC_INFO);
5046         case IPC_STAT:
5047         case SHM_STAT:
5048                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5049                 break;
5050         case IPC_SET:
5051                 perms = SHM__SETATTR;
5052                 break;
5053         case SHM_LOCK:
5054         case SHM_UNLOCK:
5055                 perms = SHM__LOCK;
5056                 break;
5057         case IPC_RMID:
5058                 perms = SHM__DESTROY;
5059                 break;
5060         default:
5061                 return 0;
5062         }
5063
5064         err = ipc_has_perm(&shp->shm_perm, perms);
5065         return err;
5066 }
5067
5068 static int selinux_shm_shmat(struct shmid_kernel *shp,
5069                              char __user *shmaddr, int shmflg)
5070 {
5071         u32 perms;
5072         int rc;
5073
5074         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5075         if (rc)
5076                 return rc;
5077
5078         if (shmflg & SHM_RDONLY)
5079                 perms = SHM__READ;
5080         else
5081                 perms = SHM__READ | SHM__WRITE;
5082
5083         return ipc_has_perm(&shp->shm_perm, perms);
5084 }
5085
5086 /* Semaphore security operations */
5087 static int selinux_sem_alloc_security(struct sem_array *sma)
5088 {
5089         struct task_security_struct *tsec;
5090         struct ipc_security_struct *isec;
5091         struct avc_audit_data ad;
5092         int rc;
5093
5094         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5095         if (rc)
5096                 return rc;
5097
5098         tsec = current->security;
5099         isec = sma->sem_perm.security;
5100
5101         AVC_AUDIT_DATA_INIT(&ad, IPC);
5102         ad.u.ipc_id = sma->sem_perm.key;
5103
5104         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5105                           SEM__CREATE, &ad);
5106         if (rc) {
5107                 ipc_free_security(&sma->sem_perm);
5108                 return rc;
5109         }
5110         return 0;
5111 }
5112
5113 static void selinux_sem_free_security(struct sem_array *sma)
5114 {
5115         ipc_free_security(&sma->sem_perm);
5116 }
5117
5118 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5119 {
5120         struct task_security_struct *tsec;
5121         struct ipc_security_struct *isec;
5122         struct avc_audit_data ad;
5123
5124         tsec = current->security;
5125         isec = sma->sem_perm.security;
5126
5127         AVC_AUDIT_DATA_INIT(&ad, IPC);
5128         ad.u.ipc_id = sma->sem_perm.key;
5129
5130         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5131                             SEM__ASSOCIATE, &ad);
5132 }
5133
5134 /* Note, at this point, sma is locked down */
5135 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5136 {
5137         int err;
5138         u32 perms;
5139
5140         switch (cmd) {
5141         case IPC_INFO:
5142         case SEM_INFO:
5143                 /* No specific object, just general system-wide information. */
5144                 return task_has_system(current, SYSTEM__IPC_INFO);
5145         case GETPID:
5146         case GETNCNT:
5147         case GETZCNT:
5148                 perms = SEM__GETATTR;
5149                 break;
5150         case GETVAL:
5151         case GETALL:
5152                 perms = SEM__READ;
5153                 break;
5154         case SETVAL:
5155         case SETALL:
5156                 perms = SEM__WRITE;
5157                 break;
5158         case IPC_RMID:
5159                 perms = SEM__DESTROY;
5160                 break;
5161         case IPC_SET:
5162                 perms = SEM__SETATTR;
5163                 break;
5164         case IPC_STAT:
5165         case SEM_STAT:
5166                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5167                 break;
5168         default:
5169                 return 0;
5170         }
5171
5172         err = ipc_has_perm(&sma->sem_perm, perms);
5173         return err;
5174 }
5175
5176 static int selinux_sem_semop(struct sem_array *sma,
5177                              struct sembuf *sops, unsigned nsops, int alter)
5178 {
5179         u32 perms;
5180
5181         if (alter)
5182                 perms = SEM__READ | SEM__WRITE;
5183         else
5184                 perms = SEM__READ;
5185
5186         return ipc_has_perm(&sma->sem_perm, perms);
5187 }
5188
5189 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5190 {
5191         u32 av = 0;
5192
5193         av = 0;
5194         if (flag & S_IRUGO)
5195                 av |= IPC__UNIX_READ;
5196         if (flag & S_IWUGO)
5197                 av |= IPC__UNIX_WRITE;
5198
5199         if (av == 0)
5200                 return 0;
5201
5202         return ipc_has_perm(ipcp, av);
5203 }
5204
5205 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5206 {
5207         struct ipc_security_struct *isec = ipcp->security;
5208         *secid = isec->sid;
5209 }
5210
5211 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5212 {
5213         if (inode)
5214                 inode_doinit_with_dentry(inode, dentry);
5215 }
5216
5217 static int selinux_getprocattr(struct task_struct *p,
5218                                char *name, char **value)
5219 {
5220         struct task_security_struct *tsec;
5221         u32 sid;
5222         int error;
5223         unsigned len;
5224
5225         if (current != p) {
5226                 error = task_has_perm(current, p, PROCESS__GETATTR);
5227                 if (error)
5228                         return error;
5229         }
5230
5231         tsec = p->security;
5232
5233         if (!strcmp(name, "current"))
5234                 sid = tsec->sid;
5235         else if (!strcmp(name, "prev"))
5236                 sid = tsec->osid;
5237         else if (!strcmp(name, "exec"))
5238                 sid = tsec->exec_sid;
5239         else if (!strcmp(name, "fscreate"))
5240                 sid = tsec->create_sid;
5241         else if (!strcmp(name, "keycreate"))
5242                 sid = tsec->keycreate_sid;
5243         else if (!strcmp(name, "sockcreate"))
5244                 sid = tsec->sockcreate_sid;
5245         else
5246                 return -EINVAL;
5247
5248         if (!sid)
5249                 return 0;
5250
5251         error = security_sid_to_context(sid, value, &len);
5252         if (error)
5253                 return error;
5254         return len;
5255 }
5256
5257 static int selinux_setprocattr(struct task_struct *p,
5258                                char *name, void *value, size_t size)
5259 {
5260         struct task_security_struct *tsec;
5261         struct task_struct *tracer;
5262         u32 sid = 0;
5263         int error;
5264         char *str = value;
5265
5266         if (current != p) {
5267                 /* SELinux only allows a process to change its own
5268                    security attributes. */
5269                 return -EACCES;
5270         }
5271
5272         /*
5273          * Basic control over ability to set these attributes at all.
5274          * current == p, but we'll pass them separately in case the
5275          * above restriction is ever removed.
5276          */
5277         if (!strcmp(name, "exec"))
5278                 error = task_has_perm(current, p, PROCESS__SETEXEC);
5279         else if (!strcmp(name, "fscreate"))
5280                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5281         else if (!strcmp(name, "keycreate"))
5282                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5283         else if (!strcmp(name, "sockcreate"))
5284                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5285         else if (!strcmp(name, "current"))
5286                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5287         else
5288                 error = -EINVAL;
5289         if (error)
5290                 return error;
5291
5292         /* Obtain a SID for the context, if one was specified. */
5293         if (size && str[1] && str[1] != '\n') {
5294                 if (str[size-1] == '\n') {
5295                         str[size-1] = 0;
5296                         size--;
5297                 }
5298                 error = security_context_to_sid(value, size, &sid);
5299                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5300                         if (!capable(CAP_MAC_ADMIN))
5301                                 return error;
5302                         error = security_context_to_sid_force(value, size,
5303                                                               &sid);
5304                 }
5305                 if (error)
5306                         return error;
5307         }
5308
5309         /* Permission checking based on the specified context is
5310            performed during the actual operation (execve,
5311            open/mkdir/...), when we know the full context of the
5312            operation.  See selinux_bprm_set_security for the execve
5313            checks and may_create for the file creation checks. The
5314            operation will then fail if the context is not permitted. */
5315         tsec = p->security;
5316         if (!strcmp(name, "exec"))
5317                 tsec->exec_sid = sid;
5318         else if (!strcmp(name, "fscreate"))
5319                 tsec->create_sid = sid;
5320         else if (!strcmp(name, "keycreate")) {
5321                 error = may_create_key(sid, p);
5322                 if (error)
5323                         return error;
5324                 tsec->keycreate_sid = sid;
5325         } else if (!strcmp(name, "sockcreate"))
5326                 tsec->sockcreate_sid = sid;
5327         else if (!strcmp(name, "current")) {
5328                 struct av_decision avd;
5329
5330                 if (sid == 0)
5331                         return -EINVAL;
5332                 /*
5333                  * SELinux allows to change context in the following case only.
5334                  *  - Single threaded processes.
5335                  *  - Multi threaded processes intend to change its context into
5336                  *    more restricted domain (defined by TYPEBOUNDS statement).
5337                  */
5338                 if (atomic_read(&p->mm->mm_users) != 1) {
5339                         struct task_struct *g, *t;
5340                         struct mm_struct *mm = p->mm;
5341                         read_lock(&tasklist_lock);
5342                         do_each_thread(g, t) {
5343                                 if (t->mm == mm && t != p) {
5344                                         read_unlock(&tasklist_lock);
5345                                         error = security_bounded_transition(tsec->sid, sid);
5346                                         if (!error)
5347                                                 goto boundary_ok;
5348
5349                                         return error;
5350                                 }
5351                         } while_each_thread(g, t);
5352                         read_unlock(&tasklist_lock);
5353                 }
5354 boundary_ok:
5355
5356                 /* Check permissions for the transition. */
5357                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5358                                      PROCESS__DYNTRANSITION, NULL);
5359                 if (error)
5360                         return error;
5361
5362                 /* Check for ptracing, and update the task SID if ok.
5363                    Otherwise, leave SID unchanged and fail. */
5364                 task_lock(p);
5365                 rcu_read_lock();
5366                 tracer = tracehook_tracer_task(p);
5367                 if (tracer != NULL) {
5368                         struct task_security_struct *ptsec = tracer->security;
5369                         u32 ptsid = ptsec->sid;
5370                         rcu_read_unlock();
5371                         error = avc_has_perm_noaudit(ptsid, sid,
5372                                                      SECCLASS_PROCESS,
5373                                                      PROCESS__PTRACE, 0, &avd);
5374                         if (!error)
5375                                 tsec->sid = sid;
5376                         task_unlock(p);
5377                         avc_audit(ptsid, sid, SECCLASS_PROCESS,
5378                                   PROCESS__PTRACE, &avd, error, NULL);
5379                         if (error)
5380                                 return error;
5381                 } else {
5382                         rcu_read_unlock();
5383                         tsec->sid = sid;
5384                         task_unlock(p);
5385                 }
5386         } else
5387                 return -EINVAL;
5388
5389         return size;
5390 }
5391
5392 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5393 {
5394         return security_sid_to_context(secid, secdata, seclen);
5395 }
5396
5397 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5398 {
5399         return security_context_to_sid(secdata, seclen, secid);
5400 }
5401
5402 static void selinux_release_secctx(char *secdata, u32 seclen)
5403 {
5404         kfree(secdata);
5405 }
5406
5407 #ifdef CONFIG_KEYS
5408
5409 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5410                              unsigned long flags)
5411 {
5412         struct task_security_struct *tsec = tsk->security;
5413         struct key_security_struct *ksec;
5414
5415         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5416         if (!ksec)
5417                 return -ENOMEM;
5418
5419         if (tsec->keycreate_sid)
5420                 ksec->sid = tsec->keycreate_sid;
5421         else
5422                 ksec->sid = tsec->sid;
5423         k->security = ksec;
5424
5425         return 0;
5426 }
5427
5428 static void selinux_key_free(struct key *k)
5429 {
5430         struct key_security_struct *ksec = k->security;
5431
5432         k->security = NULL;
5433         kfree(ksec);
5434 }
5435
5436 static int selinux_key_permission(key_ref_t key_ref,
5437                             struct task_struct *ctx,
5438                             key_perm_t perm)
5439 {
5440         struct key *key;
5441         struct task_security_struct *tsec;
5442         struct key_security_struct *ksec;
5443
5444         key = key_ref_to_ptr(key_ref);
5445
5446         tsec = ctx->security;
5447         ksec = key->security;
5448
5449         /* if no specific permissions are requested, we skip the
5450            permission check. No serious, additional covert channels
5451            appear to be created. */
5452         if (perm == 0)
5453                 return 0;
5454
5455         return avc_has_perm(tsec->sid, ksec->sid,
5456                             SECCLASS_KEY, perm, NULL);
5457 }
5458
5459 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5460 {
5461         struct key_security_struct *ksec = key->security;
5462         char *context = NULL;
5463         unsigned len;
5464         int rc;
5465
5466         rc = security_sid_to_context(ksec->sid, &context, &len);
5467         if (!rc)
5468                 rc = len;
5469         *_buffer = context;
5470         return rc;
5471 }
5472
5473 #endif
5474
5475 static struct security_operations selinux_ops = {
5476         .name =                         "selinux",
5477
5478         .ptrace_may_access =            selinux_ptrace_may_access,
5479         .ptrace_traceme =               selinux_ptrace_traceme,
5480         .capget =                       selinux_capget,
5481         .capset_check =                 selinux_capset_check,
5482         .capset_set =                   selinux_capset_set,
5483         .sysctl =                       selinux_sysctl,
5484         .capable =                      selinux_capable,
5485         .quotactl =                     selinux_quotactl,
5486         .quota_on =                     selinux_quota_on,
5487         .syslog =                       selinux_syslog,
5488         .vm_enough_memory =             selinux_vm_enough_memory,
5489
5490         .netlink_send =                 selinux_netlink_send,
5491         .netlink_recv =                 selinux_netlink_recv,
5492
5493         .bprm_alloc_security =          selinux_bprm_alloc_security,
5494         .bprm_free_security =           selinux_bprm_free_security,
5495         .bprm_apply_creds =             selinux_bprm_apply_creds,
5496         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
5497         .bprm_set_security =            selinux_bprm_set_security,
5498         .bprm_check_security =          selinux_bprm_check_security,
5499         .bprm_secureexec =              selinux_bprm_secureexec,
5500
5501         .sb_alloc_security =            selinux_sb_alloc_security,
5502         .sb_free_security =             selinux_sb_free_security,
5503         .sb_copy_data =                 selinux_sb_copy_data,
5504         .sb_kern_mount =                selinux_sb_kern_mount,
5505         .sb_show_options =              selinux_sb_show_options,
5506         .sb_statfs =                    selinux_sb_statfs,
5507         .sb_mount =                     selinux_mount,
5508         .sb_umount =                    selinux_umount,
5509         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5510         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5511         .sb_parse_opts_str =            selinux_parse_opts_str,
5512
5513
5514         .inode_alloc_security =         selinux_inode_alloc_security,
5515         .inode_free_security =          selinux_inode_free_security,
5516         .inode_init_security =          selinux_inode_init_security,
5517         .inode_create =                 selinux_inode_create,
5518         .inode_link =                   selinux_inode_link,
5519         .inode_unlink =                 selinux_inode_unlink,
5520         .inode_symlink =                selinux_inode_symlink,
5521         .inode_mkdir =                  selinux_inode_mkdir,
5522         .inode_rmdir =                  selinux_inode_rmdir,
5523         .inode_mknod =                  selinux_inode_mknod,
5524         .inode_rename =                 selinux_inode_rename,
5525         .inode_readlink =               selinux_inode_readlink,
5526         .inode_follow_link =            selinux_inode_follow_link,
5527         .inode_permission =             selinux_inode_permission,
5528         .inode_setattr =                selinux_inode_setattr,
5529         .inode_getattr =                selinux_inode_getattr,
5530         .inode_setxattr =               selinux_inode_setxattr,
5531         .inode_post_setxattr =          selinux_inode_post_setxattr,
5532         .inode_getxattr =               selinux_inode_getxattr,
5533         .inode_listxattr =              selinux_inode_listxattr,
5534         .inode_removexattr =            selinux_inode_removexattr,
5535         .inode_getsecurity =            selinux_inode_getsecurity,
5536         .inode_setsecurity =            selinux_inode_setsecurity,
5537         .inode_listsecurity =           selinux_inode_listsecurity,
5538         .inode_need_killpriv =          selinux_inode_need_killpriv,
5539         .inode_killpriv =               selinux_inode_killpriv,
5540         .inode_getsecid =               selinux_inode_getsecid,
5541
5542         .file_permission =              selinux_file_permission,
5543         .file_alloc_security =          selinux_file_alloc_security,
5544         .file_free_security =           selinux_file_free_security,
5545         .file_ioctl =                   selinux_file_ioctl,
5546         .file_mmap =                    selinux_file_mmap,
5547         .file_mprotect =                selinux_file_mprotect,
5548         .file_lock =                    selinux_file_lock,
5549         .file_fcntl =                   selinux_file_fcntl,
5550         .file_set_fowner =              selinux_file_set_fowner,
5551         .file_send_sigiotask =          selinux_file_send_sigiotask,
5552         .file_receive =                 selinux_file_receive,
5553
5554         .dentry_open =                  selinux_dentry_open,
5555
5556         .task_create =                  selinux_task_create,
5557         .task_alloc_security =          selinux_task_alloc_security,
5558         .task_free_security =           selinux_task_free_security,
5559         .task_setuid =                  selinux_task_setuid,
5560         .task_post_setuid =             selinux_task_post_setuid,
5561         .task_setgid =                  selinux_task_setgid,
5562         .task_setpgid =                 selinux_task_setpgid,
5563         .task_getpgid =                 selinux_task_getpgid,
5564         .task_getsid =                  selinux_task_getsid,
5565         .task_getsecid =                selinux_task_getsecid,
5566         .task_setgroups =               selinux_task_setgroups,
5567         .task_setnice =                 selinux_task_setnice,
5568         .task_setioprio =               selinux_task_setioprio,
5569         .task_getioprio =               selinux_task_getioprio,
5570         .task_setrlimit =               selinux_task_setrlimit,
5571         .task_setscheduler =            selinux_task_setscheduler,
5572         .task_getscheduler =            selinux_task_getscheduler,
5573         .task_movememory =              selinux_task_movememory,
5574         .task_kill =                    selinux_task_kill,
5575         .task_wait =                    selinux_task_wait,
5576         .task_prctl =                   selinux_task_prctl,
5577         .task_reparent_to_init =        selinux_task_reparent_to_init,
5578         .task_to_inode =                selinux_task_to_inode,
5579
5580         .ipc_permission =               selinux_ipc_permission,
5581         .ipc_getsecid =                 selinux_ipc_getsecid,
5582
5583         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5584         .msg_msg_free_security =        selinux_msg_msg_free_security,
5585
5586         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5587         .msg_queue_free_security =      selinux_msg_queue_free_security,
5588         .msg_queue_associate =          selinux_msg_queue_associate,
5589         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5590         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5591         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5592
5593         .shm_alloc_security =           selinux_shm_alloc_security,
5594         .shm_free_security =            selinux_shm_free_security,
5595         .shm_associate =                selinux_shm_associate,
5596         .shm_shmctl =                   selinux_shm_shmctl,
5597         .shm_shmat =                    selinux_shm_shmat,
5598
5599         .sem_alloc_security =           selinux_sem_alloc_security,
5600         .sem_free_security =            selinux_sem_free_security,
5601         .sem_associate =                selinux_sem_associate,
5602         .sem_semctl =                   selinux_sem_semctl,
5603         .sem_semop =                    selinux_sem_semop,
5604
5605         .d_instantiate =                selinux_d_instantiate,
5606
5607         .getprocattr =                  selinux_getprocattr,
5608         .setprocattr =                  selinux_setprocattr,
5609
5610         .secid_to_secctx =              selinux_secid_to_secctx,
5611         .secctx_to_secid =              selinux_secctx_to_secid,
5612         .release_secctx =               selinux_release_secctx,
5613
5614         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5615         .unix_may_send =                selinux_socket_unix_may_send,
5616
5617         .socket_create =                selinux_socket_create,
5618         .socket_post_create =           selinux_socket_post_create,
5619         .socket_bind =                  selinux_socket_bind,
5620         .socket_connect =               selinux_socket_connect,
5621         .socket_listen =                selinux_socket_listen,
5622         .socket_accept =                selinux_socket_accept,
5623         .socket_sendmsg =               selinux_socket_sendmsg,
5624         .socket_recvmsg =               selinux_socket_recvmsg,
5625         .socket_getsockname =           selinux_socket_getsockname,
5626         .socket_getpeername =           selinux_socket_getpeername,
5627         .socket_getsockopt =            selinux_socket_getsockopt,
5628         .socket_setsockopt =            selinux_socket_setsockopt,
5629         .socket_shutdown =              selinux_socket_shutdown,
5630         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5631         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5632         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5633         .sk_alloc_security =            selinux_sk_alloc_security,
5634         .sk_free_security =             selinux_sk_free_security,
5635         .sk_clone_security =            selinux_sk_clone_security,
5636         .sk_getsecid =                  selinux_sk_getsecid,
5637         .sock_graft =                   selinux_sock_graft,
5638         .inet_conn_request =            selinux_inet_conn_request,
5639         .inet_csk_clone =               selinux_inet_csk_clone,
5640         .inet_conn_established =        selinux_inet_conn_established,
5641         .req_classify_flow =            selinux_req_classify_flow,
5642
5643 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5644         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5645         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5646         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5647         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5648         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5649         .xfrm_state_free_security =     selinux_xfrm_state_free,
5650         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5651         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5652         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5653         .xfrm_decode_session =          selinux_xfrm_decode_session,
5654 #endif
5655
5656 #ifdef CONFIG_KEYS
5657         .key_alloc =                    selinux_key_alloc,
5658         .key_free =                     selinux_key_free,
5659         .key_permission =               selinux_key_permission,
5660         .key_getsecurity =              selinux_key_getsecurity,
5661 #endif
5662
5663 #ifdef CONFIG_AUDIT
5664         .audit_rule_init =              selinux_audit_rule_init,
5665         .audit_rule_known =             selinux_audit_rule_known,
5666         .audit_rule_match =             selinux_audit_rule_match,
5667         .audit_rule_free =              selinux_audit_rule_free,
5668 #endif
5669 };
5670
5671 static __init int selinux_init(void)
5672 {
5673         struct task_security_struct *tsec;
5674
5675         if (!security_module_enable(&selinux_ops)) {
5676                 selinux_enabled = 0;
5677                 return 0;
5678         }
5679
5680         if (!selinux_enabled) {
5681                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5682                 return 0;
5683         }
5684
5685         printk(KERN_INFO "SELinux:  Initializing.\n");
5686
5687         /* Set the security state for the initial task. */
5688         if (task_alloc_security(current))
5689                 panic("SELinux:  Failed to initialize initial task.\n");
5690         tsec = current->security;
5691         tsec->osid = tsec->sid = SECINITSID_KERNEL;
5692
5693         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5694                                             sizeof(struct inode_security_struct),
5695                                             0, SLAB_PANIC, NULL);
5696         avc_init();
5697
5698         secondary_ops = security_ops;
5699         if (!secondary_ops)
5700                 panic("SELinux: No initial security operations\n");
5701         if (register_security(&selinux_ops))
5702                 panic("SELinux: Unable to register with kernel.\n");
5703
5704         if (selinux_enforcing)
5705                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5706         else
5707                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5708
5709         return 0;
5710 }
5711
5712 void selinux_complete_init(void)
5713 {
5714         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5715
5716         /* Set up any superblocks initialized prior to the policy load. */
5717         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5718         spin_lock(&sb_lock);
5719         spin_lock(&sb_security_lock);
5720 next_sb:
5721         if (!list_empty(&superblock_security_head)) {
5722                 struct superblock_security_struct *sbsec =
5723                                 list_entry(superblock_security_head.next,
5724                                            struct superblock_security_struct,
5725                                            list);
5726                 struct super_block *sb = sbsec->sb;
5727                 sb->s_count++;
5728                 spin_unlock(&sb_security_lock);
5729                 spin_unlock(&sb_lock);
5730                 down_read(&sb->s_umount);
5731                 if (sb->s_root)
5732                         superblock_doinit(sb, NULL);
5733                 drop_super(sb);
5734                 spin_lock(&sb_lock);
5735                 spin_lock(&sb_security_lock);
5736                 list_del_init(&sbsec->list);
5737                 goto next_sb;
5738         }
5739         spin_unlock(&sb_security_lock);
5740         spin_unlock(&sb_lock);
5741 }
5742
5743 /* SELinux requires early initialization in order to label
5744    all processes and objects when they are created. */
5745 security_initcall(selinux_init);
5746
5747 #if defined(CONFIG_NETFILTER)
5748
5749 static struct nf_hook_ops selinux_ipv4_ops[] = {
5750         {
5751                 .hook =         selinux_ipv4_postroute,
5752                 .owner =        THIS_MODULE,
5753                 .pf =           PF_INET,
5754                 .hooknum =      NF_INET_POST_ROUTING,
5755                 .priority =     NF_IP_PRI_SELINUX_LAST,
5756         },
5757         {
5758                 .hook =         selinux_ipv4_forward,
5759                 .owner =        THIS_MODULE,
5760                 .pf =           PF_INET,
5761                 .hooknum =      NF_INET_FORWARD,
5762                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5763         },
5764         {
5765                 .hook =         selinux_ipv4_output,
5766                 .owner =        THIS_MODULE,
5767                 .pf =           PF_INET,
5768                 .hooknum =      NF_INET_LOCAL_OUT,
5769                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5770         }
5771 };
5772
5773 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5774
5775 static struct nf_hook_ops selinux_ipv6_ops[] = {
5776         {
5777                 .hook =         selinux_ipv6_postroute,
5778                 .owner =        THIS_MODULE,
5779                 .pf =           PF_INET6,
5780                 .hooknum =      NF_INET_POST_ROUTING,
5781                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5782         },
5783         {
5784                 .hook =         selinux_ipv6_forward,
5785                 .owner =        THIS_MODULE,
5786                 .pf =           PF_INET6,
5787                 .hooknum =      NF_INET_FORWARD,
5788                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5789         }
5790 };
5791
5792 #endif  /* IPV6 */
5793
5794 static int __init selinux_nf_ip_init(void)
5795 {
5796         int err = 0;
5797
5798         if (!selinux_enabled)
5799                 goto out;
5800
5801         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5802
5803         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5804         if (err)
5805                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5806
5807 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5808         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5809         if (err)
5810                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5811 #endif  /* IPV6 */
5812
5813 out:
5814         return err;
5815 }
5816
5817 __initcall(selinux_nf_ip_init);
5818
5819 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5820 static void selinux_nf_ip_exit(void)
5821 {
5822         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5823
5824         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5825 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5826         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5827 #endif  /* IPV6 */
5828 }
5829 #endif
5830
5831 #else /* CONFIG_NETFILTER */
5832
5833 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5834 #define selinux_nf_ip_exit()
5835 #endif
5836
5837 #endif /* CONFIG_NETFILTER */
5838
5839 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5840 static int selinux_disabled;
5841
5842 int selinux_disable(void)
5843 {
5844         extern void exit_sel_fs(void);
5845
5846         if (ss_initialized) {
5847                 /* Not permitted after initial policy load. */
5848                 return -EINVAL;
5849         }
5850
5851         if (selinux_disabled) {
5852                 /* Only do this once. */
5853                 return -EINVAL;
5854         }
5855
5856         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5857
5858         selinux_disabled = 1;
5859         selinux_enabled = 0;
5860
5861         /* Reset security_ops to the secondary module, dummy or capability. */
5862         security_ops = secondary_ops;
5863
5864         /* Unregister netfilter hooks. */
5865         selinux_nf_ip_exit();
5866
5867         /* Unregister selinuxfs. */
5868         exit_sel_fs();
5869
5870         return 0;
5871 }
5872 #endif