]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/sunrpc/cache.c
f41a7cc4cf628799b89da3eaf4009374460bc62f
[linux-2.6-omap-h63xx.git] / net / sunrpc / cache.c
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34
35 #define  RPCDBG_FACILITY RPCDBG_CACHE
36
37 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
38 static void cache_revisit_request(struct cache_head *item);
39
40 static void cache_init(struct cache_head *h)
41 {
42         time_t now = get_seconds();
43         h->next = NULL;
44         h->flags = 0;
45         kref_init(&h->ref);
46         h->expiry_time = now + CACHE_NEW_EXPIRY;
47         h->last_refresh = now;
48 }
49
50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51                                        struct cache_head *key, int hash)
52 {
53         struct cache_head **head,  **hp;
54         struct cache_head *new = NULL;
55
56         head = &detail->hash_table[hash];
57
58         read_lock(&detail->hash_lock);
59
60         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61                 struct cache_head *tmp = *hp;
62                 if (detail->match(tmp, key)) {
63                         cache_get(tmp);
64                         read_unlock(&detail->hash_lock);
65                         return tmp;
66                 }
67         }
68         read_unlock(&detail->hash_lock);
69         /* Didn't find anything, insert an empty entry */
70
71         new = detail->alloc();
72         if (!new)
73                 return NULL;
74         /* must fully initialise 'new', else
75          * we might get lose if we need to
76          * cache_put it soon.
77          */
78         cache_init(new);
79         detail->init(new, key);
80
81         write_lock(&detail->hash_lock);
82
83         /* check if entry appeared while we slept */
84         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85                 struct cache_head *tmp = *hp;
86                 if (detail->match(tmp, key)) {
87                         cache_get(tmp);
88                         write_unlock(&detail->hash_lock);
89                         cache_put(new, detail);
90                         return tmp;
91                 }
92         }
93         new->next = *head;
94         *head = new;
95         detail->entries++;
96         cache_get(new);
97         write_unlock(&detail->hash_lock);
98
99         return new;
100 }
101 EXPORT_SYMBOL(sunrpc_cache_lookup);
102
103
104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
105
106 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
107 {
108         head->expiry_time = expiry;
109         head->last_refresh = get_seconds();
110         return !test_and_set_bit(CACHE_VALID, &head->flags);
111 }
112
113 static void cache_fresh_unlocked(struct cache_head *head,
114                         struct cache_detail *detail, int new)
115 {
116         if (new)
117                 cache_revisit_request(head);
118         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119                 cache_revisit_request(head);
120                 queue_loose(detail, head);
121         }
122 }
123
124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125                                        struct cache_head *new, struct cache_head *old, int hash)
126 {
127         /* The 'old' entry is to be replaced by 'new'.
128          * If 'old' is not VALID, we update it directly,
129          * otherwise we need to replace it
130          */
131         struct cache_head **head;
132         struct cache_head *tmp;
133         int is_new;
134
135         if (!test_bit(CACHE_VALID, &old->flags)) {
136                 write_lock(&detail->hash_lock);
137                 if (!test_bit(CACHE_VALID, &old->flags)) {
138                         if (test_bit(CACHE_NEGATIVE, &new->flags))
139                                 set_bit(CACHE_NEGATIVE, &old->flags);
140                         else
141                                 detail->update(old, new);
142                         is_new = cache_fresh_locked(old, new->expiry_time);
143                         write_unlock(&detail->hash_lock);
144                         cache_fresh_unlocked(old, detail, is_new);
145                         return old;
146                 }
147                 write_unlock(&detail->hash_lock);
148         }
149         /* We need to insert a new entry */
150         tmp = detail->alloc();
151         if (!tmp) {
152                 cache_put(old, detail);
153                 return NULL;
154         }
155         cache_init(tmp);
156         detail->init(tmp, old);
157         head = &detail->hash_table[hash];
158
159         write_lock(&detail->hash_lock);
160         if (test_bit(CACHE_NEGATIVE, &new->flags))
161                 set_bit(CACHE_NEGATIVE, &tmp->flags);
162         else
163                 detail->update(tmp, new);
164         tmp->next = *head;
165         *head = tmp;
166         detail->entries++;
167         cache_get(tmp);
168         is_new = cache_fresh_locked(tmp, new->expiry_time);
169         cache_fresh_locked(old, 0);
170         write_unlock(&detail->hash_lock);
171         cache_fresh_unlocked(tmp, detail, is_new);
172         cache_fresh_unlocked(old, detail, 0);
173         cache_put(old, detail);
174         return tmp;
175 }
176 EXPORT_SYMBOL(sunrpc_cache_update);
177
178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
179 /*
180  * This is the generic cache management routine for all
181  * the authentication caches.
182  * It checks the currency of a cache item and will (later)
183  * initiate an upcall to fill it if needed.
184  *
185  *
186  * Returns 0 if the cache_head can be used, or cache_puts it and returns
187  * -EAGAIN if upcall is pending,
188  * -ETIMEDOUT if upcall failed and should be retried,
189  * -ENOENT if cache entry was negative
190  */
191 int cache_check(struct cache_detail *detail,
192                     struct cache_head *h, struct cache_req *rqstp)
193 {
194         int rv;
195         long refresh_age, age;
196
197         /* First decide return status as best we can */
198         if (!test_bit(CACHE_VALID, &h->flags) ||
199             h->expiry_time < get_seconds())
200                 rv = -EAGAIN;
201         else if (detail->flush_time > h->last_refresh)
202                 rv = -EAGAIN;
203         else {
204                 /* entry is valid */
205                 if (test_bit(CACHE_NEGATIVE, &h->flags))
206                         rv = -ENOENT;
207                 else rv = 0;
208         }
209
210         /* now see if we want to start an upcall */
211         refresh_age = (h->expiry_time - h->last_refresh);
212         age = get_seconds() - h->last_refresh;
213
214         if (rqstp == NULL) {
215                 if (rv == -EAGAIN)
216                         rv = -ENOENT;
217         } else if (rv == -EAGAIN || age > refresh_age/2) {
218                 dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
219                                 refresh_age, age);
220                 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
221                         switch (cache_make_upcall(detail, h)) {
222                         case -EINVAL:
223                                 clear_bit(CACHE_PENDING, &h->flags);
224                                 if (rv == -EAGAIN) {
225                                         set_bit(CACHE_NEGATIVE, &h->flags);
226                                         cache_fresh_unlocked(h, detail,
227                                              cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
228                                         rv = -ENOENT;
229                                 }
230                                 break;
231
232                         case -EAGAIN:
233                                 clear_bit(CACHE_PENDING, &h->flags);
234                                 cache_revisit_request(h);
235                                 break;
236                         }
237                 }
238         }
239
240         if (rv == -EAGAIN)
241                 if (cache_defer_req(rqstp, h) != 0)
242                         rv = -ETIMEDOUT;
243
244         if (rv)
245                 cache_put(h, detail);
246         return rv;
247 }
248
249 /*
250  * caches need to be periodically cleaned.
251  * For this we maintain a list of cache_detail and
252  * a current pointer into that list and into the table
253  * for that entry.
254  *
255  * Each time clean_cache is called it finds the next non-empty entry
256  * in the current table and walks the list in that entry
257  * looking for entries that can be removed.
258  *
259  * An entry gets removed if:
260  * - The expiry is before current time
261  * - The last_refresh time is before the flush_time for that cache
262  *
263  * later we might drop old entries with non-NEVER expiry if that table
264  * is getting 'full' for some definition of 'full'
265  *
266  * The question of "how often to scan a table" is an interesting one
267  * and is answered in part by the use of the "nextcheck" field in the
268  * cache_detail.
269  * When a scan of a table begins, the nextcheck field is set to a time
270  * that is well into the future.
271  * While scanning, if an expiry time is found that is earlier than the
272  * current nextcheck time, nextcheck is set to that expiry time.
273  * If the flush_time is ever set to a time earlier than the nextcheck
274  * time, the nextcheck time is then set to that flush_time.
275  *
276  * A table is then only scanned if the current time is at least
277  * the nextcheck time.
278  *
279  */
280
281 static LIST_HEAD(cache_list);
282 static DEFINE_SPINLOCK(cache_list_lock);
283 static struct cache_detail *current_detail;
284 static int current_index;
285
286 static const struct file_operations cache_file_operations;
287 static const struct file_operations content_file_operations;
288 static const struct file_operations cache_flush_operations;
289
290 static void do_cache_clean(struct work_struct *work);
291 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
292
293 static void remove_cache_proc_entries(struct cache_detail *cd)
294 {
295         if (cd->proc_ent == NULL)
296                 return;
297         if (cd->flush_ent)
298                 remove_proc_entry("flush", cd->proc_ent);
299         if (cd->channel_ent)
300                 remove_proc_entry("channel", cd->proc_ent);
301         if (cd->content_ent)
302                 remove_proc_entry("content", cd->proc_ent);
303         cd->proc_ent = NULL;
304         remove_proc_entry(cd->name, proc_net_rpc);
305 }
306
307 static void create_cache_proc_entries(struct cache_detail *cd)
308 {
309         struct proc_dir_entry *p;
310
311         cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
312         if (cd->proc_ent == NULL)
313                 return;
314         cd->proc_ent->owner = cd->owner;
315         cd->channel_ent = cd->content_ent = NULL;
316
317         p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR, cd->proc_ent);
318         cd->flush_ent = p;
319         if (p == NULL)
320                 return;
321         p->proc_fops = &cache_flush_operations;
322         p->owner = cd->owner;
323         p->data = cd;
324
325         if (cd->cache_request || cd->cache_parse) {
326                 p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
327                                       cd->proc_ent);
328                 cd->channel_ent = p;
329                 if (p == NULL)
330                         return;
331                 p->proc_fops = &cache_file_operations;
332                 p->owner = cd->owner;
333                 p->data = cd;
334         }
335         if (cd->cache_show) {
336                 p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
337                                       cd->proc_ent);
338                 cd->content_ent = p;
339                 if (p == NULL)
340                         return;
341                 p->proc_fops = &content_file_operations;
342                 p->owner = cd->owner;
343                 p->data = cd;
344         }
345 }
346
347 void cache_register(struct cache_detail *cd)
348 {
349         create_cache_proc_entries(cd);
350         rwlock_init(&cd->hash_lock);
351         INIT_LIST_HEAD(&cd->queue);
352         spin_lock(&cache_list_lock);
353         cd->nextcheck = 0;
354         cd->entries = 0;
355         atomic_set(&cd->readers, 0);
356         cd->last_close = 0;
357         cd->last_warn = -1;
358         list_add(&cd->others, &cache_list);
359         spin_unlock(&cache_list_lock);
360
361         /* start the cleaning process */
362         schedule_delayed_work(&cache_cleaner, 0);
363 }
364
365 void cache_unregister(struct cache_detail *cd)
366 {
367         cache_purge(cd);
368         spin_lock(&cache_list_lock);
369         write_lock(&cd->hash_lock);
370         if (cd->entries || atomic_read(&cd->inuse)) {
371                 write_unlock(&cd->hash_lock);
372                 spin_unlock(&cache_list_lock);
373                 goto out;
374         }
375         if (current_detail == cd)
376                 current_detail = NULL;
377         list_del_init(&cd->others);
378         write_unlock(&cd->hash_lock);
379         spin_unlock(&cache_list_lock);
380         remove_cache_proc_entries(cd);
381         if (list_empty(&cache_list)) {
382                 /* module must be being unloaded so its safe to kill the worker */
383                 cancel_delayed_work_sync(&cache_cleaner);
384         }
385         return;
386 out:
387         printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
388 }
389
390 /* clean cache tries to find something to clean
391  * and cleans it.
392  * It returns 1 if it cleaned something,
393  *            0 if it didn't find anything this time
394  *           -1 if it fell off the end of the list.
395  */
396 static int cache_clean(void)
397 {
398         int rv = 0;
399         struct list_head *next;
400
401         spin_lock(&cache_list_lock);
402
403         /* find a suitable table if we don't already have one */
404         while (current_detail == NULL ||
405             current_index >= current_detail->hash_size) {
406                 if (current_detail)
407                         next = current_detail->others.next;
408                 else
409                         next = cache_list.next;
410                 if (next == &cache_list) {
411                         current_detail = NULL;
412                         spin_unlock(&cache_list_lock);
413                         return -1;
414                 }
415                 current_detail = list_entry(next, struct cache_detail, others);
416                 if (current_detail->nextcheck > get_seconds())
417                         current_index = current_detail->hash_size;
418                 else {
419                         current_index = 0;
420                         current_detail->nextcheck = get_seconds()+30*60;
421                 }
422         }
423
424         /* find a non-empty bucket in the table */
425         while (current_detail &&
426                current_index < current_detail->hash_size &&
427                current_detail->hash_table[current_index] == NULL)
428                 current_index++;
429
430         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
431
432         if (current_detail && current_index < current_detail->hash_size) {
433                 struct cache_head *ch, **cp;
434                 struct cache_detail *d;
435
436                 write_lock(&current_detail->hash_lock);
437
438                 /* Ok, now to clean this strand */
439
440                 cp = & current_detail->hash_table[current_index];
441                 ch = *cp;
442                 for (; ch; cp= & ch->next, ch= *cp) {
443                         if (current_detail->nextcheck > ch->expiry_time)
444                                 current_detail->nextcheck = ch->expiry_time+1;
445                         if (ch->expiry_time >= get_seconds()
446                             && ch->last_refresh >= current_detail->flush_time
447                                 )
448                                 continue;
449                         if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
450                                 queue_loose(current_detail, ch);
451
452                         if (atomic_read(&ch->ref.refcount) == 1)
453                                 break;
454                 }
455                 if (ch) {
456                         *cp = ch->next;
457                         ch->next = NULL;
458                         current_detail->entries--;
459                         rv = 1;
460                 }
461                 write_unlock(&current_detail->hash_lock);
462                 d = current_detail;
463                 if (!ch)
464                         current_index ++;
465                 spin_unlock(&cache_list_lock);
466                 if (ch)
467                         cache_put(ch, d);
468         } else
469                 spin_unlock(&cache_list_lock);
470
471         return rv;
472 }
473
474 /*
475  * We want to regularly clean the cache, so we need to schedule some work ...
476  */
477 static void do_cache_clean(struct work_struct *work)
478 {
479         int delay = 5;
480         if (cache_clean() == -1)
481                 delay = 30*HZ;
482
483         if (list_empty(&cache_list))
484                 delay = 0;
485
486         if (delay)
487                 schedule_delayed_work(&cache_cleaner, delay);
488 }
489
490
491 /*
492  * Clean all caches promptly.  This just calls cache_clean
493  * repeatedly until we are sure that every cache has had a chance to
494  * be fully cleaned
495  */
496 void cache_flush(void)
497 {
498         while (cache_clean() != -1)
499                 cond_resched();
500         while (cache_clean() != -1)
501                 cond_resched();
502 }
503
504 void cache_purge(struct cache_detail *detail)
505 {
506         detail->flush_time = LONG_MAX;
507         detail->nextcheck = get_seconds();
508         cache_flush();
509         detail->flush_time = 1;
510 }
511
512
513
514 /*
515  * Deferral and Revisiting of Requests.
516  *
517  * If a cache lookup finds a pending entry, we
518  * need to defer the request and revisit it later.
519  * All deferred requests are stored in a hash table,
520  * indexed by "struct cache_head *".
521  * As it may be wasteful to store a whole request
522  * structure, we allow the request to provide a
523  * deferred form, which must contain a
524  * 'struct cache_deferred_req'
525  * This cache_deferred_req contains a method to allow
526  * it to be revisited when cache info is available
527  */
528
529 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
530 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
531
532 #define DFR_MAX 300     /* ??? */
533
534 static DEFINE_SPINLOCK(cache_defer_lock);
535 static LIST_HEAD(cache_defer_list);
536 static struct list_head cache_defer_hash[DFR_HASHSIZE];
537 static int cache_defer_cnt;
538
539 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
540 {
541         struct cache_deferred_req *dreq;
542         int hash = DFR_HASH(item);
543
544         if (cache_defer_cnt >= DFR_MAX) {
545                 /* too much in the cache, randomly drop this one,
546                  * or continue and drop the oldest below
547                  */
548                 if (net_random()&1)
549                         return -ETIMEDOUT;
550         }
551         dreq = req->defer(req);
552         if (dreq == NULL)
553                 return -ETIMEDOUT;
554
555         dreq->item = item;
556         dreq->recv_time = get_seconds();
557
558         spin_lock(&cache_defer_lock);
559
560         list_add(&dreq->recent, &cache_defer_list);
561
562         if (cache_defer_hash[hash].next == NULL)
563                 INIT_LIST_HEAD(&cache_defer_hash[hash]);
564         list_add(&dreq->hash, &cache_defer_hash[hash]);
565
566         /* it is in, now maybe clean up */
567         dreq = NULL;
568         if (++cache_defer_cnt > DFR_MAX) {
569                 dreq = list_entry(cache_defer_list.prev,
570                                   struct cache_deferred_req, recent);
571                 list_del(&dreq->recent);
572                 list_del(&dreq->hash);
573                 cache_defer_cnt--;
574         }
575         spin_unlock(&cache_defer_lock);
576
577         if (dreq) {
578                 /* there was one too many */
579                 dreq->revisit(dreq, 1);
580         }
581         if (!test_bit(CACHE_PENDING, &item->flags)) {
582                 /* must have just been validated... */
583                 cache_revisit_request(item);
584         }
585         return 0;
586 }
587
588 static void cache_revisit_request(struct cache_head *item)
589 {
590         struct cache_deferred_req *dreq;
591         struct list_head pending;
592
593         struct list_head *lp;
594         int hash = DFR_HASH(item);
595
596         INIT_LIST_HEAD(&pending);
597         spin_lock(&cache_defer_lock);
598
599         lp = cache_defer_hash[hash].next;
600         if (lp) {
601                 while (lp != &cache_defer_hash[hash]) {
602                         dreq = list_entry(lp, struct cache_deferred_req, hash);
603                         lp = lp->next;
604                         if (dreq->item == item) {
605                                 list_del(&dreq->hash);
606                                 list_move(&dreq->recent, &pending);
607                                 cache_defer_cnt--;
608                         }
609                 }
610         }
611         spin_unlock(&cache_defer_lock);
612
613         while (!list_empty(&pending)) {
614                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
615                 list_del_init(&dreq->recent);
616                 dreq->revisit(dreq, 0);
617         }
618 }
619
620 void cache_clean_deferred(void *owner)
621 {
622         struct cache_deferred_req *dreq, *tmp;
623         struct list_head pending;
624
625
626         INIT_LIST_HEAD(&pending);
627         spin_lock(&cache_defer_lock);
628
629         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
630                 if (dreq->owner == owner) {
631                         list_del(&dreq->hash);
632                         list_move(&dreq->recent, &pending);
633                         cache_defer_cnt--;
634                 }
635         }
636         spin_unlock(&cache_defer_lock);
637
638         while (!list_empty(&pending)) {
639                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
640                 list_del_init(&dreq->recent);
641                 dreq->revisit(dreq, 1);
642         }
643 }
644
645 /*
646  * communicate with user-space
647  *
648  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
649  * On read, you get a full request, or block.
650  * On write, an update request is processed.
651  * Poll works if anything to read, and always allows write.
652  *
653  * Implemented by linked list of requests.  Each open file has
654  * a ->private that also exists in this list.  New requests are added
655  * to the end and may wakeup and preceding readers.
656  * New readers are added to the head.  If, on read, an item is found with
657  * CACHE_UPCALLING clear, we free it from the list.
658  *
659  */
660
661 static DEFINE_SPINLOCK(queue_lock);
662 static DEFINE_MUTEX(queue_io_mutex);
663
664 struct cache_queue {
665         struct list_head        list;
666         int                     reader; /* if 0, then request */
667 };
668 struct cache_request {
669         struct cache_queue      q;
670         struct cache_head       *item;
671         char                    * buf;
672         int                     len;
673         int                     readers;
674 };
675 struct cache_reader {
676         struct cache_queue      q;
677         int                     offset; /* if non-0, we have a refcnt on next request */
678 };
679
680 static ssize_t
681 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
682 {
683         struct cache_reader *rp = filp->private_data;
684         struct cache_request *rq;
685         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
686         int err;
687
688         if (count == 0)
689                 return 0;
690
691         mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
692                               * readers on this file */
693  again:
694         spin_lock(&queue_lock);
695         /* need to find next request */
696         while (rp->q.list.next != &cd->queue &&
697                list_entry(rp->q.list.next, struct cache_queue, list)
698                ->reader) {
699                 struct list_head *next = rp->q.list.next;
700                 list_move(&rp->q.list, next);
701         }
702         if (rp->q.list.next == &cd->queue) {
703                 spin_unlock(&queue_lock);
704                 mutex_unlock(&queue_io_mutex);
705                 BUG_ON(rp->offset);
706                 return 0;
707         }
708         rq = container_of(rp->q.list.next, struct cache_request, q.list);
709         BUG_ON(rq->q.reader);
710         if (rp->offset == 0)
711                 rq->readers++;
712         spin_unlock(&queue_lock);
713
714         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
715                 err = -EAGAIN;
716                 spin_lock(&queue_lock);
717                 list_move(&rp->q.list, &rq->q.list);
718                 spin_unlock(&queue_lock);
719         } else {
720                 if (rp->offset + count > rq->len)
721                         count = rq->len - rp->offset;
722                 err = -EFAULT;
723                 if (copy_to_user(buf, rq->buf + rp->offset, count))
724                         goto out;
725                 rp->offset += count;
726                 if (rp->offset >= rq->len) {
727                         rp->offset = 0;
728                         spin_lock(&queue_lock);
729                         list_move(&rp->q.list, &rq->q.list);
730                         spin_unlock(&queue_lock);
731                 }
732                 err = 0;
733         }
734  out:
735         if (rp->offset == 0) {
736                 /* need to release rq */
737                 spin_lock(&queue_lock);
738                 rq->readers--;
739                 if (rq->readers == 0 &&
740                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
741                         list_del(&rq->q.list);
742                         spin_unlock(&queue_lock);
743                         cache_put(rq->item, cd);
744                         kfree(rq->buf);
745                         kfree(rq);
746                 } else
747                         spin_unlock(&queue_lock);
748         }
749         if (err == -EAGAIN)
750                 goto again;
751         mutex_unlock(&queue_io_mutex);
752         return err ? err :  count;
753 }
754
755 static char write_buf[8192]; /* protected by queue_io_mutex */
756
757 static ssize_t
758 cache_write(struct file *filp, const char __user *buf, size_t count,
759             loff_t *ppos)
760 {
761         int err;
762         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
763
764         if (count == 0)
765                 return 0;
766         if (count >= sizeof(write_buf))
767                 return -EINVAL;
768
769         mutex_lock(&queue_io_mutex);
770
771         if (copy_from_user(write_buf, buf, count)) {
772                 mutex_unlock(&queue_io_mutex);
773                 return -EFAULT;
774         }
775         write_buf[count] = '\0';
776         if (cd->cache_parse)
777                 err = cd->cache_parse(cd, write_buf, count);
778         else
779                 err = -EINVAL;
780
781         mutex_unlock(&queue_io_mutex);
782         return err ? err : count;
783 }
784
785 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
786
787 static unsigned int
788 cache_poll(struct file *filp, poll_table *wait)
789 {
790         unsigned int mask;
791         struct cache_reader *rp = filp->private_data;
792         struct cache_queue *cq;
793         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
794
795         poll_wait(filp, &queue_wait, wait);
796
797         /* alway allow write */
798         mask = POLL_OUT | POLLWRNORM;
799
800         if (!rp)
801                 return mask;
802
803         spin_lock(&queue_lock);
804
805         for (cq= &rp->q; &cq->list != &cd->queue;
806              cq = list_entry(cq->list.next, struct cache_queue, list))
807                 if (!cq->reader) {
808                         mask |= POLLIN | POLLRDNORM;
809                         break;
810                 }
811         spin_unlock(&queue_lock);
812         return mask;
813 }
814
815 static int
816 cache_ioctl(struct inode *ino, struct file *filp,
817             unsigned int cmd, unsigned long arg)
818 {
819         int len = 0;
820         struct cache_reader *rp = filp->private_data;
821         struct cache_queue *cq;
822         struct cache_detail *cd = PDE(ino)->data;
823
824         if (cmd != FIONREAD || !rp)
825                 return -EINVAL;
826
827         spin_lock(&queue_lock);
828
829         /* only find the length remaining in current request,
830          * or the length of the next request
831          */
832         for (cq= &rp->q; &cq->list != &cd->queue;
833              cq = list_entry(cq->list.next, struct cache_queue, list))
834                 if (!cq->reader) {
835                         struct cache_request *cr =
836                                 container_of(cq, struct cache_request, q);
837                         len = cr->len - rp->offset;
838                         break;
839                 }
840         spin_unlock(&queue_lock);
841
842         return put_user(len, (int __user *)arg);
843 }
844
845 static int
846 cache_open(struct inode *inode, struct file *filp)
847 {
848         struct cache_reader *rp = NULL;
849
850         nonseekable_open(inode, filp);
851         if (filp->f_mode & FMODE_READ) {
852                 struct cache_detail *cd = PDE(inode)->data;
853
854                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
855                 if (!rp)
856                         return -ENOMEM;
857                 rp->offset = 0;
858                 rp->q.reader = 1;
859                 atomic_inc(&cd->readers);
860                 spin_lock(&queue_lock);
861                 list_add(&rp->q.list, &cd->queue);
862                 spin_unlock(&queue_lock);
863         }
864         filp->private_data = rp;
865         return 0;
866 }
867
868 static int
869 cache_release(struct inode *inode, struct file *filp)
870 {
871         struct cache_reader *rp = filp->private_data;
872         struct cache_detail *cd = PDE(inode)->data;
873
874         if (rp) {
875                 spin_lock(&queue_lock);
876                 if (rp->offset) {
877                         struct cache_queue *cq;
878                         for (cq= &rp->q; &cq->list != &cd->queue;
879                              cq = list_entry(cq->list.next, struct cache_queue, list))
880                                 if (!cq->reader) {
881                                         container_of(cq, struct cache_request, q)
882                                                 ->readers--;
883                                         break;
884                                 }
885                         rp->offset = 0;
886                 }
887                 list_del(&rp->q.list);
888                 spin_unlock(&queue_lock);
889
890                 filp->private_data = NULL;
891                 kfree(rp);
892
893                 cd->last_close = get_seconds();
894                 atomic_dec(&cd->readers);
895         }
896         return 0;
897 }
898
899
900
901 static const struct file_operations cache_file_operations = {
902         .owner          = THIS_MODULE,
903         .llseek         = no_llseek,
904         .read           = cache_read,
905         .write          = cache_write,
906         .poll           = cache_poll,
907         .ioctl          = cache_ioctl, /* for FIONREAD */
908         .open           = cache_open,
909         .release        = cache_release,
910 };
911
912
913 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
914 {
915         struct cache_queue *cq;
916         spin_lock(&queue_lock);
917         list_for_each_entry(cq, &detail->queue, list)
918                 if (!cq->reader) {
919                         struct cache_request *cr = container_of(cq, struct cache_request, q);
920                         if (cr->item != ch)
921                                 continue;
922                         if (cr->readers != 0)
923                                 continue;
924                         list_del(&cr->q.list);
925                         spin_unlock(&queue_lock);
926                         cache_put(cr->item, detail);
927                         kfree(cr->buf);
928                         kfree(cr);
929                         return;
930                 }
931         spin_unlock(&queue_lock);
932 }
933
934 /*
935  * Support routines for text-based upcalls.
936  * Fields are separated by spaces.
937  * Fields are either mangled to quote space tab newline slosh with slosh
938  * or a hexified with a leading \x
939  * Record is terminated with newline.
940  *
941  */
942
943 void qword_add(char **bpp, int *lp, char *str)
944 {
945         char *bp = *bpp;
946         int len = *lp;
947         char c;
948
949         if (len < 0) return;
950
951         while ((c=*str++) && len)
952                 switch(c) {
953                 case ' ':
954                 case '\t':
955                 case '\n':
956                 case '\\':
957                         if (len >= 4) {
958                                 *bp++ = '\\';
959                                 *bp++ = '0' + ((c & 0300)>>6);
960                                 *bp++ = '0' + ((c & 0070)>>3);
961                                 *bp++ = '0' + ((c & 0007)>>0);
962                         }
963                         len -= 4;
964                         break;
965                 default:
966                         *bp++ = c;
967                         len--;
968                 }
969         if (c || len <1) len = -1;
970         else {
971                 *bp++ = ' ';
972                 len--;
973         }
974         *bpp = bp;
975         *lp = len;
976 }
977
978 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
979 {
980         char *bp = *bpp;
981         int len = *lp;
982
983         if (len < 0) return;
984
985         if (len > 2) {
986                 *bp++ = '\\';
987                 *bp++ = 'x';
988                 len -= 2;
989                 while (blen && len >= 2) {
990                         unsigned char c = *buf++;
991                         *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
992                         *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
993                         len -= 2;
994                         blen--;
995                 }
996         }
997         if (blen || len<1) len = -1;
998         else {
999                 *bp++ = ' ';
1000                 len--;
1001         }
1002         *bpp = bp;
1003         *lp = len;
1004 }
1005
1006 static void warn_no_listener(struct cache_detail *detail)
1007 {
1008         if (detail->last_warn != detail->last_close) {
1009                 detail->last_warn = detail->last_close;
1010                 if (detail->warn_no_listener)
1011                         detail->warn_no_listener(detail);
1012         }
1013 }
1014
1015 /*
1016  * register an upcall request to user-space.
1017  * Each request is at most one page long.
1018  */
1019 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1020 {
1021
1022         char *buf;
1023         struct cache_request *crq;
1024         char *bp;
1025         int len;
1026
1027         if (detail->cache_request == NULL)
1028                 return -EINVAL;
1029
1030         if (atomic_read(&detail->readers) == 0 &&
1031             detail->last_close < get_seconds() - 30) {
1032                         warn_no_listener(detail);
1033                         return -EINVAL;
1034         }
1035
1036         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1037         if (!buf)
1038                 return -EAGAIN;
1039
1040         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1041         if (!crq) {
1042                 kfree(buf);
1043                 return -EAGAIN;
1044         }
1045
1046         bp = buf; len = PAGE_SIZE;
1047
1048         detail->cache_request(detail, h, &bp, &len);
1049
1050         if (len < 0) {
1051                 kfree(buf);
1052                 kfree(crq);
1053                 return -EAGAIN;
1054         }
1055         crq->q.reader = 0;
1056         crq->item = cache_get(h);
1057         crq->buf = buf;
1058         crq->len = PAGE_SIZE - len;
1059         crq->readers = 0;
1060         spin_lock(&queue_lock);
1061         list_add_tail(&crq->q.list, &detail->queue);
1062         spin_unlock(&queue_lock);
1063         wake_up(&queue_wait);
1064         return 0;
1065 }
1066
1067 /*
1068  * parse a message from user-space and pass it
1069  * to an appropriate cache
1070  * Messages are, like requests, separated into fields by
1071  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1072  *
1073  * Message is
1074  *   reply cachename expiry key ... content....
1075  *
1076  * key and content are both parsed by cache
1077  */
1078
1079 #define isodigit(c) (isdigit(c) && c <= '7')
1080 int qword_get(char **bpp, char *dest, int bufsize)
1081 {
1082         /* return bytes copied, or -1 on error */
1083         char *bp = *bpp;
1084         int len = 0;
1085
1086         while (*bp == ' ') bp++;
1087
1088         if (bp[0] == '\\' && bp[1] == 'x') {
1089                 /* HEX STRING */
1090                 bp += 2;
1091                 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1092                         int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1093                         bp++;
1094                         byte <<= 4;
1095                         byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1096                         *dest++ = byte;
1097                         bp++;
1098                         len++;
1099                 }
1100         } else {
1101                 /* text with \nnn octal quoting */
1102                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1103                         if (*bp == '\\' &&
1104                             isodigit(bp[1]) && (bp[1] <= '3') &&
1105                             isodigit(bp[2]) &&
1106                             isodigit(bp[3])) {
1107                                 int byte = (*++bp -'0');
1108                                 bp++;
1109                                 byte = (byte << 3) | (*bp++ - '0');
1110                                 byte = (byte << 3) | (*bp++ - '0');
1111                                 *dest++ = byte;
1112                                 len++;
1113                         } else {
1114                                 *dest++ = *bp++;
1115                                 len++;
1116                         }
1117                 }
1118         }
1119
1120         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1121                 return -1;
1122         while (*bp == ' ') bp++;
1123         *bpp = bp;
1124         *dest = '\0';
1125         return len;
1126 }
1127
1128
1129 /*
1130  * support /proc/sunrpc/cache/$CACHENAME/content
1131  * as a seqfile.
1132  * We call ->cache_show passing NULL for the item to
1133  * get a header, then pass each real item in the cache
1134  */
1135
1136 struct handle {
1137         struct cache_detail *cd;
1138 };
1139
1140 static void *c_start(struct seq_file *m, loff_t *pos)
1141         __acquires(cd->hash_lock)
1142 {
1143         loff_t n = *pos;
1144         unsigned hash, entry;
1145         struct cache_head *ch;
1146         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1147
1148
1149         read_lock(&cd->hash_lock);
1150         if (!n--)
1151                 return SEQ_START_TOKEN;
1152         hash = n >> 32;
1153         entry = n & ((1LL<<32) - 1);
1154
1155         for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1156                 if (!entry--)
1157                         return ch;
1158         n &= ~((1LL<<32) - 1);
1159         do {
1160                 hash++;
1161                 n += 1LL<<32;
1162         } while(hash < cd->hash_size &&
1163                 cd->hash_table[hash]==NULL);
1164         if (hash >= cd->hash_size)
1165                 return NULL;
1166         *pos = n+1;
1167         return cd->hash_table[hash];
1168 }
1169
1170 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1171 {
1172         struct cache_head *ch = p;
1173         int hash = (*pos >> 32);
1174         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1175
1176         if (p == SEQ_START_TOKEN)
1177                 hash = 0;
1178         else if (ch->next == NULL) {
1179                 hash++;
1180                 *pos += 1LL<<32;
1181         } else {
1182                 ++*pos;
1183                 return ch->next;
1184         }
1185         *pos &= ~((1LL<<32) - 1);
1186         while (hash < cd->hash_size &&
1187                cd->hash_table[hash] == NULL) {
1188                 hash++;
1189                 *pos += 1LL<<32;
1190         }
1191         if (hash >= cd->hash_size)
1192                 return NULL;
1193         ++*pos;
1194         return cd->hash_table[hash];
1195 }
1196
1197 static void c_stop(struct seq_file *m, void *p)
1198         __releases(cd->hash_lock)
1199 {
1200         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1201         read_unlock(&cd->hash_lock);
1202 }
1203
1204 static int c_show(struct seq_file *m, void *p)
1205 {
1206         struct cache_head *cp = p;
1207         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1208
1209         if (p == SEQ_START_TOKEN)
1210                 return cd->cache_show(m, cd, NULL);
1211
1212         ifdebug(CACHE)
1213                 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1214                            cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1215         cache_get(cp);
1216         if (cache_check(cd, cp, NULL))
1217                 /* cache_check does a cache_put on failure */
1218                 seq_printf(m, "# ");
1219         else
1220                 cache_put(cp, cd);
1221
1222         return cd->cache_show(m, cd, cp);
1223 }
1224
1225 static const struct seq_operations cache_content_op = {
1226         .start  = c_start,
1227         .next   = c_next,
1228         .stop   = c_stop,
1229         .show   = c_show,
1230 };
1231
1232 static int content_open(struct inode *inode, struct file *file)
1233 {
1234         struct handle *han;
1235         struct cache_detail *cd = PDE(inode)->data;
1236
1237         han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1238         if (han == NULL)
1239                 return -ENOMEM;
1240
1241         han->cd = cd;
1242         return 0;
1243 }
1244
1245 static const struct file_operations content_file_operations = {
1246         .open           = content_open,
1247         .read           = seq_read,
1248         .llseek         = seq_lseek,
1249         .release        = seq_release_private,
1250 };
1251
1252 static ssize_t read_flush(struct file *file, char __user *buf,
1253                             size_t count, loff_t *ppos)
1254 {
1255         struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1256         char tbuf[20];
1257         unsigned long p = *ppos;
1258         size_t len;
1259
1260         sprintf(tbuf, "%lu\n", cd->flush_time);
1261         len = strlen(tbuf);
1262         if (p >= len)
1263                 return 0;
1264         len -= p;
1265         if (len > count)
1266                 len = count;
1267         if (copy_to_user(buf, (void*)(tbuf+p), len))
1268                 return -EFAULT;
1269         *ppos += len;
1270         return len;
1271 }
1272
1273 static ssize_t write_flush(struct file * file, const char __user * buf,
1274                              size_t count, loff_t *ppos)
1275 {
1276         struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1277         char tbuf[20];
1278         char *ep;
1279         long flushtime;
1280         if (*ppos || count > sizeof(tbuf)-1)
1281                 return -EINVAL;
1282         if (copy_from_user(tbuf, buf, count))
1283                 return -EFAULT;
1284         tbuf[count] = 0;
1285         flushtime = simple_strtoul(tbuf, &ep, 0);
1286         if (*ep && *ep != '\n')
1287                 return -EINVAL;
1288
1289         cd->flush_time = flushtime;
1290         cd->nextcheck = get_seconds();
1291         cache_flush();
1292
1293         *ppos += count;
1294         return count;
1295 }
1296
1297 static const struct file_operations cache_flush_operations = {
1298         .open           = nonseekable_open,
1299         .read           = read_flush,
1300         .write          = write_flush,
1301 };