]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/ipv4/tcp_input.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6-omap-h63xx.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732
733                 if (icsk->icsk_backoff || !tp->srtt) {
734                         /* This session failed to estimate rtt. Why?
735                          * Probably, no packets returned in time.
736                          * Reset our results.
737                          */
738                         if (!(dst_metric_locked(dst, RTAX_RTT)))
739                                 dst->metrics[RTAX_RTT - 1] = 0;
740                         return;
741                 }
742
743                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
744
745                 /* If newly calculated rtt larger than stored one,
746                  * store new one. Otherwise, use EWMA. Remember,
747                  * rtt overestimation is always better than underestimation.
748                  */
749                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
750                         if (m <= 0)
751                                 dst->metrics[RTAX_RTT - 1] = tp->srtt;
752                         else
753                                 dst->metrics[RTAX_RTT - 1] -= (m >> 3);
754                 }
755
756                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
757                         if (m < 0)
758                                 m = -m;
759
760                         /* Scale deviation to rttvar fixed point */
761                         m >>= 1;
762                         if (m < tp->mdev)
763                                 m = tp->mdev;
764
765                         if (m >= dst_metric(dst, RTAX_RTTVAR))
766                                 dst->metrics[RTAX_RTTVAR - 1] = m;
767                         else
768                                 dst->metrics[RTAX_RTTVAR-1] -=
769                                         (dst_metric(dst, RTAX_RTTVAR) - m)>>2;
770                 }
771
772                 if (tp->snd_ssthresh >= 0xFFFF) {
773                         /* Slow start still did not finish. */
774                         if (dst_metric(dst, RTAX_SSTHRESH) &&
775                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
776                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
777                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
778                         if (!dst_metric_locked(dst, RTAX_CWND) &&
779                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
780                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
781                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
782                            icsk->icsk_ca_state == TCP_CA_Open) {
783                         /* Cong. avoidance phase, cwnd is reliable. */
784                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
785                                 dst->metrics[RTAX_SSTHRESH-1] =
786                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
787                         if (!dst_metric_locked(dst, RTAX_CWND))
788                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
789                 } else {
790                         /* Else slow start did not finish, cwnd is non-sense,
791                            ssthresh may be also invalid.
792                          */
793                         if (!dst_metric_locked(dst, RTAX_CWND))
794                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
795                         if (dst_metric(dst, RTAX_SSTHRESH) &&
796                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
797                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
798                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
799                 }
800
801                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
802                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
803                             tp->reordering != sysctl_tcp_reordering)
804                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
805                 }
806         }
807 }
808
809 /* Numbers are taken from RFC3390.
810  *
811  * John Heffner states:
812  *
813  *      The RFC specifies a window of no more than 4380 bytes
814  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
815  *      is a bit misleading because they use a clamp at 4380 bytes
816  *      rather than use a multiplier in the relevant range.
817  */
818 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
819 {
820         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
821
822         if (!cwnd) {
823                 if (tp->mss_cache > 1460)
824                         cwnd = 2;
825                 else
826                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
827         }
828         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
829 }
830
831 /* Set slow start threshold and cwnd not falling to slow start */
832 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
833 {
834         struct tcp_sock *tp = tcp_sk(sk);
835         const struct inet_connection_sock *icsk = inet_csk(sk);
836
837         tp->prior_ssthresh = 0;
838         tp->bytes_acked = 0;
839         if (icsk->icsk_ca_state < TCP_CA_CWR) {
840                 tp->undo_marker = 0;
841                 if (set_ssthresh)
842                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
843                 tp->snd_cwnd = min(tp->snd_cwnd,
844                                    tcp_packets_in_flight(tp) + 1U);
845                 tp->snd_cwnd_cnt = 0;
846                 tp->high_seq = tp->snd_nxt;
847                 tp->snd_cwnd_stamp = tcp_time_stamp;
848                 TCP_ECN_queue_cwr(tp);
849
850                 tcp_set_ca_state(sk, TCP_CA_CWR);
851         }
852 }
853
854 /*
855  * Packet counting of FACK is based on in-order assumptions, therefore TCP
856  * disables it when reordering is detected
857  */
858 static void tcp_disable_fack(struct tcp_sock *tp)
859 {
860         /* RFC3517 uses different metric in lost marker => reset on change */
861         if (tcp_is_fack(tp))
862                 tp->lost_skb_hint = NULL;
863         tp->rx_opt.sack_ok &= ~2;
864 }
865
866 /* Take a notice that peer is sending D-SACKs */
867 static void tcp_dsack_seen(struct tcp_sock *tp)
868 {
869         tp->rx_opt.sack_ok |= 4;
870 }
871
872 /* Initialize metrics on socket. */
873
874 static void tcp_init_metrics(struct sock *sk)
875 {
876         struct tcp_sock *tp = tcp_sk(sk);
877         struct dst_entry *dst = __sk_dst_get(sk);
878
879         if (dst == NULL)
880                 goto reset;
881
882         dst_confirm(dst);
883
884         if (dst_metric_locked(dst, RTAX_CWND))
885                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
886         if (dst_metric(dst, RTAX_SSTHRESH)) {
887                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
888                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
889                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
890         }
891         if (dst_metric(dst, RTAX_REORDERING) &&
892             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
893                 tcp_disable_fack(tp);
894                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
895         }
896
897         if (dst_metric(dst, RTAX_RTT) == 0)
898                 goto reset;
899
900         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
901                 goto reset;
902
903         /* Initial rtt is determined from SYN,SYN-ACK.
904          * The segment is small and rtt may appear much
905          * less than real one. Use per-dst memory
906          * to make it more realistic.
907          *
908          * A bit of theory. RTT is time passed after "normal" sized packet
909          * is sent until it is ACKed. In normal circumstances sending small
910          * packets force peer to delay ACKs and calculation is correct too.
911          * The algorithm is adaptive and, provided we follow specs, it
912          * NEVER underestimate RTT. BUT! If peer tries to make some clever
913          * tricks sort of "quick acks" for time long enough to decrease RTT
914          * to low value, and then abruptly stops to do it and starts to delay
915          * ACKs, wait for troubles.
916          */
917         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
918                 tp->srtt = dst_metric(dst, RTAX_RTT);
919                 tp->rtt_seq = tp->snd_nxt;
920         }
921         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
922                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
923                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
924         }
925         tcp_set_rto(sk);
926         tcp_bound_rto(sk);
927         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
928                 goto reset;
929         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
930         tp->snd_cwnd_stamp = tcp_time_stamp;
931         return;
932
933 reset:
934         /* Play conservative. If timestamps are not
935          * supported, TCP will fail to recalculate correct
936          * rtt, if initial rto is too small. FORGET ALL AND RESET!
937          */
938         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
939                 tp->srtt = 0;
940                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
941                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
942         }
943 }
944
945 static void tcp_update_reordering(struct sock *sk, const int metric,
946                                   const int ts)
947 {
948         struct tcp_sock *tp = tcp_sk(sk);
949         if (metric > tp->reordering) {
950                 int mib_idx;
951
952                 tp->reordering = min(TCP_MAX_REORDERING, metric);
953
954                 /* This exciting event is worth to be remembered. 8) */
955                 if (ts)
956                         mib_idx = LINUX_MIB_TCPTSREORDER;
957                 else if (tcp_is_reno(tp))
958                         mib_idx = LINUX_MIB_TCPRENOREORDER;
959                 else if (tcp_is_fack(tp))
960                         mib_idx = LINUX_MIB_TCPFACKREORDER;
961                 else
962                         mib_idx = LINUX_MIB_TCPSACKREORDER;
963
964                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
965 #if FASTRETRANS_DEBUG > 1
966                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
967                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
968                        tp->reordering,
969                        tp->fackets_out,
970                        tp->sacked_out,
971                        tp->undo_marker ? tp->undo_retrans : 0);
972 #endif
973                 tcp_disable_fack(tp);
974         }
975 }
976
977 /* This procedure tags the retransmission queue when SACKs arrive.
978  *
979  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
980  * Packets in queue with these bits set are counted in variables
981  * sacked_out, retrans_out and lost_out, correspondingly.
982  *
983  * Valid combinations are:
984  * Tag  InFlight        Description
985  * 0    1               - orig segment is in flight.
986  * S    0               - nothing flies, orig reached receiver.
987  * L    0               - nothing flies, orig lost by net.
988  * R    2               - both orig and retransmit are in flight.
989  * L|R  1               - orig is lost, retransmit is in flight.
990  * S|R  1               - orig reached receiver, retrans is still in flight.
991  * (L|S|R is logically valid, it could occur when L|R is sacked,
992  *  but it is equivalent to plain S and code short-curcuits it to S.
993  *  L|S is logically invalid, it would mean -1 packet in flight 8))
994  *
995  * These 6 states form finite state machine, controlled by the following events:
996  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
997  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
998  * 3. Loss detection event of one of three flavors:
999  *      A. Scoreboard estimator decided the packet is lost.
1000  *         A'. Reno "three dupacks" marks head of queue lost.
1001  *         A''. Its FACK modfication, head until snd.fack is lost.
1002  *      B. SACK arrives sacking data transmitted after never retransmitted
1003  *         hole was sent out.
1004  *      C. SACK arrives sacking SND.NXT at the moment, when the
1005  *         segment was retransmitted.
1006  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1007  *
1008  * It is pleasant to note, that state diagram turns out to be commutative,
1009  * so that we are allowed not to be bothered by order of our actions,
1010  * when multiple events arrive simultaneously. (see the function below).
1011  *
1012  * Reordering detection.
1013  * --------------------
1014  * Reordering metric is maximal distance, which a packet can be displaced
1015  * in packet stream. With SACKs we can estimate it:
1016  *
1017  * 1. SACK fills old hole and the corresponding segment was not
1018  *    ever retransmitted -> reordering. Alas, we cannot use it
1019  *    when segment was retransmitted.
1020  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1021  *    for retransmitted and already SACKed segment -> reordering..
1022  * Both of these heuristics are not used in Loss state, when we cannot
1023  * account for retransmits accurately.
1024  *
1025  * SACK block validation.
1026  * ----------------------
1027  *
1028  * SACK block range validation checks that the received SACK block fits to
1029  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1030  * Note that SND.UNA is not included to the range though being valid because
1031  * it means that the receiver is rather inconsistent with itself reporting
1032  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1033  * perfectly valid, however, in light of RFC2018 which explicitly states
1034  * that "SACK block MUST reflect the newest segment.  Even if the newest
1035  * segment is going to be discarded ...", not that it looks very clever
1036  * in case of head skb. Due to potentional receiver driven attacks, we
1037  * choose to avoid immediate execution of a walk in write queue due to
1038  * reneging and defer head skb's loss recovery to standard loss recovery
1039  * procedure that will eventually trigger (nothing forbids us doing this).
1040  *
1041  * Implements also blockage to start_seq wrap-around. Problem lies in the
1042  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1043  * there's no guarantee that it will be before snd_nxt (n). The problem
1044  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1045  * wrap (s_w):
1046  *
1047  *         <- outs wnd ->                          <- wrapzone ->
1048  *         u     e      n                         u_w   e_w  s n_w
1049  *         |     |      |                          |     |   |  |
1050  * |<------------+------+----- TCP seqno space --------------+---------->|
1051  * ...-- <2^31 ->|                                           |<--------...
1052  * ...---- >2^31 ------>|                                    |<--------...
1053  *
1054  * Current code wouldn't be vulnerable but it's better still to discard such
1055  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1056  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1057  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1058  * equal to the ideal case (infinite seqno space without wrap caused issues).
1059  *
1060  * With D-SACK the lower bound is extended to cover sequence space below
1061  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1062  * again, D-SACK block must not to go across snd_una (for the same reason as
1063  * for the normal SACK blocks, explained above). But there all simplicity
1064  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1065  * fully below undo_marker they do not affect behavior in anyway and can
1066  * therefore be safely ignored. In rare cases (which are more or less
1067  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1068  * fragmentation and packet reordering past skb's retransmission. To consider
1069  * them correctly, the acceptable range must be extended even more though
1070  * the exact amount is rather hard to quantify. However, tp->max_window can
1071  * be used as an exaggerated estimate.
1072  */
1073 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1074                                   u32 start_seq, u32 end_seq)
1075 {
1076         /* Too far in future, or reversed (interpretation is ambiguous) */
1077         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1078                 return 0;
1079
1080         /* Nasty start_seq wrap-around check (see comments above) */
1081         if (!before(start_seq, tp->snd_nxt))
1082                 return 0;
1083
1084         /* In outstanding window? ...This is valid exit for D-SACKs too.
1085          * start_seq == snd_una is non-sensical (see comments above)
1086          */
1087         if (after(start_seq, tp->snd_una))
1088                 return 1;
1089
1090         if (!is_dsack || !tp->undo_marker)
1091                 return 0;
1092
1093         /* ...Then it's D-SACK, and must reside below snd_una completely */
1094         if (!after(end_seq, tp->snd_una))
1095                 return 0;
1096
1097         if (!before(start_seq, tp->undo_marker))
1098                 return 1;
1099
1100         /* Too old */
1101         if (!after(end_seq, tp->undo_marker))
1102                 return 0;
1103
1104         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1105          *   start_seq < undo_marker and end_seq >= undo_marker.
1106          */
1107         return !before(start_seq, end_seq - tp->max_window);
1108 }
1109
1110 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1111  * Event "C". Later note: FACK people cheated me again 8), we have to account
1112  * for reordering! Ugly, but should help.
1113  *
1114  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1115  * less than what is now known to be received by the other end (derived from
1116  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1117  * retransmitted skbs to avoid some costly processing per ACKs.
1118  */
1119 static void tcp_mark_lost_retrans(struct sock *sk)
1120 {
1121         const struct inet_connection_sock *icsk = inet_csk(sk);
1122         struct tcp_sock *tp = tcp_sk(sk);
1123         struct sk_buff *skb;
1124         int cnt = 0;
1125         u32 new_low_seq = tp->snd_nxt;
1126         u32 received_upto = tcp_highest_sack_seq(tp);
1127
1128         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1129             !after(received_upto, tp->lost_retrans_low) ||
1130             icsk->icsk_ca_state != TCP_CA_Recovery)
1131                 return;
1132
1133         tcp_for_write_queue(skb, sk) {
1134                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1135
1136                 if (skb == tcp_send_head(sk))
1137                         break;
1138                 if (cnt == tp->retrans_out)
1139                         break;
1140                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1141                         continue;
1142
1143                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1144                         continue;
1145
1146                 if (after(received_upto, ack_seq) &&
1147                     (tcp_is_fack(tp) ||
1148                      !before(received_upto,
1149                              ack_seq + tp->reordering * tp->mss_cache))) {
1150                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1151                         tp->retrans_out -= tcp_skb_pcount(skb);
1152
1153                         /* clear lost hint */
1154                         tp->retransmit_skb_hint = NULL;
1155
1156                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1157                                 tp->lost_out += tcp_skb_pcount(skb);
1158                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1159                         }
1160                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1161                 } else {
1162                         if (before(ack_seq, new_low_seq))
1163                                 new_low_seq = ack_seq;
1164                         cnt += tcp_skb_pcount(skb);
1165                 }
1166         }
1167
1168         if (tp->retrans_out)
1169                 tp->lost_retrans_low = new_low_seq;
1170 }
1171
1172 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1173                            struct tcp_sack_block_wire *sp, int num_sacks,
1174                            u32 prior_snd_una)
1175 {
1176         struct tcp_sock *tp = tcp_sk(sk);
1177         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1178         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1179         int dup_sack = 0;
1180
1181         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1182                 dup_sack = 1;
1183                 tcp_dsack_seen(tp);
1184                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1185         } else if (num_sacks > 1) {
1186                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1187                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1188
1189                 if (!after(end_seq_0, end_seq_1) &&
1190                     !before(start_seq_0, start_seq_1)) {
1191                         dup_sack = 1;
1192                         tcp_dsack_seen(tp);
1193                         NET_INC_STATS_BH(sock_net(sk),
1194                                         LINUX_MIB_TCPDSACKOFORECV);
1195                 }
1196         }
1197
1198         /* D-SACK for already forgotten data... Do dumb counting. */
1199         if (dup_sack &&
1200             !after(end_seq_0, prior_snd_una) &&
1201             after(end_seq_0, tp->undo_marker))
1202                 tp->undo_retrans--;
1203
1204         return dup_sack;
1205 }
1206
1207 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1208  * the incoming SACK may not exactly match but we can find smaller MSS
1209  * aligned portion of it that matches. Therefore we might need to fragment
1210  * which may fail and creates some hassle (caller must handle error case
1211  * returns).
1212  */
1213 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1214                                  u32 start_seq, u32 end_seq)
1215 {
1216         int in_sack, err;
1217         unsigned int pkt_len;
1218
1219         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1220                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1221
1222         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1223             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1224
1225                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1226
1227                 if (!in_sack)
1228                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1229                 else
1230                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1231                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1232                 if (err < 0)
1233                         return err;
1234         }
1235
1236         return in_sack;
1237 }
1238
1239 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1240                            int *reord, int dup_sack, int fack_count)
1241 {
1242         struct tcp_sock *tp = tcp_sk(sk);
1243         u8 sacked = TCP_SKB_CB(skb)->sacked;
1244         int flag = 0;
1245
1246         /* Account D-SACK for retransmitted packet. */
1247         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1248                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1249                         tp->undo_retrans--;
1250                 if (sacked & TCPCB_SACKED_ACKED)
1251                         *reord = min(fack_count, *reord);
1252         }
1253
1254         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1255         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1256                 return flag;
1257
1258         if (!(sacked & TCPCB_SACKED_ACKED)) {
1259                 if (sacked & TCPCB_SACKED_RETRANS) {
1260                         /* If the segment is not tagged as lost,
1261                          * we do not clear RETRANS, believing
1262                          * that retransmission is still in flight.
1263                          */
1264                         if (sacked & TCPCB_LOST) {
1265                                 TCP_SKB_CB(skb)->sacked &=
1266                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1267                                 tp->lost_out -= tcp_skb_pcount(skb);
1268                                 tp->retrans_out -= tcp_skb_pcount(skb);
1269
1270                                 /* clear lost hint */
1271                                 tp->retransmit_skb_hint = NULL;
1272                         }
1273                 } else {
1274                         if (!(sacked & TCPCB_RETRANS)) {
1275                                 /* New sack for not retransmitted frame,
1276                                  * which was in hole. It is reordering.
1277                                  */
1278                                 if (before(TCP_SKB_CB(skb)->seq,
1279                                            tcp_highest_sack_seq(tp)))
1280                                         *reord = min(fack_count, *reord);
1281
1282                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1283                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1284                                         flag |= FLAG_ONLY_ORIG_SACKED;
1285                         }
1286
1287                         if (sacked & TCPCB_LOST) {
1288                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1289                                 tp->lost_out -= tcp_skb_pcount(skb);
1290
1291                                 /* clear lost hint */
1292                                 tp->retransmit_skb_hint = NULL;
1293                         }
1294                 }
1295
1296                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1297                 flag |= FLAG_DATA_SACKED;
1298                 tp->sacked_out += tcp_skb_pcount(skb);
1299
1300                 fack_count += tcp_skb_pcount(skb);
1301
1302                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1303                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1304                     before(TCP_SKB_CB(skb)->seq,
1305                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1306                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1307
1308                 if (fack_count > tp->fackets_out)
1309                         tp->fackets_out = fack_count;
1310
1311                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1312                         tcp_advance_highest_sack(sk, skb);
1313         }
1314
1315         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1316          * frames and clear it. undo_retrans is decreased above, L|R frames
1317          * are accounted above as well.
1318          */
1319         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1320                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1321                 tp->retrans_out -= tcp_skb_pcount(skb);
1322                 tp->retransmit_skb_hint = NULL;
1323         }
1324
1325         return flag;
1326 }
1327
1328 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1329                                         struct tcp_sack_block *next_dup,
1330                                         u32 start_seq, u32 end_seq,
1331                                         int dup_sack_in, int *fack_count,
1332                                         int *reord, int *flag)
1333 {
1334         tcp_for_write_queue_from(skb, sk) {
1335                 int in_sack = 0;
1336                 int dup_sack = dup_sack_in;
1337
1338                 if (skb == tcp_send_head(sk))
1339                         break;
1340
1341                 /* queue is in-order => we can short-circuit the walk early */
1342                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1343                         break;
1344
1345                 if ((next_dup != NULL) &&
1346                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1347                         in_sack = tcp_match_skb_to_sack(sk, skb,
1348                                                         next_dup->start_seq,
1349                                                         next_dup->end_seq);
1350                         if (in_sack > 0)
1351                                 dup_sack = 1;
1352                 }
1353
1354                 if (in_sack <= 0)
1355                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1356                                                         end_seq);
1357                 if (unlikely(in_sack < 0))
1358                         break;
1359
1360                 if (in_sack)
1361                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1362                                                  *fack_count);
1363
1364                 *fack_count += tcp_skb_pcount(skb);
1365         }
1366         return skb;
1367 }
1368
1369 /* Avoid all extra work that is being done by sacktag while walking in
1370  * a normal way
1371  */
1372 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1373                                         u32 skip_to_seq, int *fack_count)
1374 {
1375         tcp_for_write_queue_from(skb, sk) {
1376                 if (skb == tcp_send_head(sk))
1377                         break;
1378
1379                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1380                         break;
1381
1382                 *fack_count += tcp_skb_pcount(skb);
1383         }
1384         return skb;
1385 }
1386
1387 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1388                                                 struct sock *sk,
1389                                                 struct tcp_sack_block *next_dup,
1390                                                 u32 skip_to_seq,
1391                                                 int *fack_count, int *reord,
1392                                                 int *flag)
1393 {
1394         if (next_dup == NULL)
1395                 return skb;
1396
1397         if (before(next_dup->start_seq, skip_to_seq)) {
1398                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1399                 skb = tcp_sacktag_walk(skb, sk, NULL,
1400                                      next_dup->start_seq, next_dup->end_seq,
1401                                      1, fack_count, reord, flag);
1402         }
1403
1404         return skb;
1405 }
1406
1407 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1408 {
1409         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1410 }
1411
1412 static int
1413 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1414                         u32 prior_snd_una)
1415 {
1416         const struct inet_connection_sock *icsk = inet_csk(sk);
1417         struct tcp_sock *tp = tcp_sk(sk);
1418         unsigned char *ptr = (skb_transport_header(ack_skb) +
1419                               TCP_SKB_CB(ack_skb)->sacked);
1420         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1421         struct tcp_sack_block sp[4];
1422         struct tcp_sack_block *cache;
1423         struct sk_buff *skb;
1424         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1425         int used_sacks;
1426         int reord = tp->packets_out;
1427         int flag = 0;
1428         int found_dup_sack = 0;
1429         int fack_count;
1430         int i, j;
1431         int first_sack_index;
1432
1433         if (!tp->sacked_out) {
1434                 if (WARN_ON(tp->fackets_out))
1435                         tp->fackets_out = 0;
1436                 tcp_highest_sack_reset(sk);
1437         }
1438
1439         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1440                                          num_sacks, prior_snd_una);
1441         if (found_dup_sack)
1442                 flag |= FLAG_DSACKING_ACK;
1443
1444         /* Eliminate too old ACKs, but take into
1445          * account more or less fresh ones, they can
1446          * contain valid SACK info.
1447          */
1448         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1449                 return 0;
1450
1451         if (!tp->packets_out)
1452                 goto out;
1453
1454         used_sacks = 0;
1455         first_sack_index = 0;
1456         for (i = 0; i < num_sacks; i++) {
1457                 int dup_sack = !i && found_dup_sack;
1458
1459                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1460                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1461
1462                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1463                                             sp[used_sacks].start_seq,
1464                                             sp[used_sacks].end_seq)) {
1465                         int mib_idx;
1466
1467                         if (dup_sack) {
1468                                 if (!tp->undo_marker)
1469                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1470                                 else
1471                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1472                         } else {
1473                                 /* Don't count olds caused by ACK reordering */
1474                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1475                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1476                                         continue;
1477                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1478                         }
1479
1480                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1481                         if (i == 0)
1482                                 first_sack_index = -1;
1483                         continue;
1484                 }
1485
1486                 /* Ignore very old stuff early */
1487                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1488                         continue;
1489
1490                 used_sacks++;
1491         }
1492
1493         /* order SACK blocks to allow in order walk of the retrans queue */
1494         for (i = used_sacks - 1; i > 0; i--) {
1495                 for (j = 0; j < i; j++) {
1496                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1497                                 struct tcp_sack_block tmp;
1498
1499                                 tmp = sp[j];
1500                                 sp[j] = sp[j + 1];
1501                                 sp[j + 1] = tmp;
1502
1503                                 /* Track where the first SACK block goes to */
1504                                 if (j == first_sack_index)
1505                                         first_sack_index = j + 1;
1506                         }
1507                 }
1508         }
1509
1510         skb = tcp_write_queue_head(sk);
1511         fack_count = 0;
1512         i = 0;
1513
1514         if (!tp->sacked_out) {
1515                 /* It's already past, so skip checking against it */
1516                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1517         } else {
1518                 cache = tp->recv_sack_cache;
1519                 /* Skip empty blocks in at head of the cache */
1520                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1521                        !cache->end_seq)
1522                         cache++;
1523         }
1524
1525         while (i < used_sacks) {
1526                 u32 start_seq = sp[i].start_seq;
1527                 u32 end_seq = sp[i].end_seq;
1528                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1529                 struct tcp_sack_block *next_dup = NULL;
1530
1531                 if (found_dup_sack && ((i + 1) == first_sack_index))
1532                         next_dup = &sp[i + 1];
1533
1534                 /* Event "B" in the comment above. */
1535                 if (after(end_seq, tp->high_seq))
1536                         flag |= FLAG_DATA_LOST;
1537
1538                 /* Skip too early cached blocks */
1539                 while (tcp_sack_cache_ok(tp, cache) &&
1540                        !before(start_seq, cache->end_seq))
1541                         cache++;
1542
1543                 /* Can skip some work by looking recv_sack_cache? */
1544                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1545                     after(end_seq, cache->start_seq)) {
1546
1547                         /* Head todo? */
1548                         if (before(start_seq, cache->start_seq)) {
1549                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1550                                                        &fack_count);
1551                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1552                                                        start_seq,
1553                                                        cache->start_seq,
1554                                                        dup_sack, &fack_count,
1555                                                        &reord, &flag);
1556                         }
1557
1558                         /* Rest of the block already fully processed? */
1559                         if (!after(end_seq, cache->end_seq))
1560                                 goto advance_sp;
1561
1562                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1563                                                        cache->end_seq,
1564                                                        &fack_count, &reord,
1565                                                        &flag);
1566
1567                         /* ...tail remains todo... */
1568                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1569                                 /* ...but better entrypoint exists! */
1570                                 skb = tcp_highest_sack(sk);
1571                                 if (skb == NULL)
1572                                         break;
1573                                 fack_count = tp->fackets_out;
1574                                 cache++;
1575                                 goto walk;
1576                         }
1577
1578                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1579                                                &fack_count);
1580                         /* Check overlap against next cached too (past this one already) */
1581                         cache++;
1582                         continue;
1583                 }
1584
1585                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1586                         skb = tcp_highest_sack(sk);
1587                         if (skb == NULL)
1588                                 break;
1589                         fack_count = tp->fackets_out;
1590                 }
1591                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1592
1593 walk:
1594                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1595                                        dup_sack, &fack_count, &reord, &flag);
1596
1597 advance_sp:
1598                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1599                  * due to in-order walk
1600                  */
1601                 if (after(end_seq, tp->frto_highmark))
1602                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1603
1604                 i++;
1605         }
1606
1607         /* Clear the head of the cache sack blocks so we can skip it next time */
1608         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1609                 tp->recv_sack_cache[i].start_seq = 0;
1610                 tp->recv_sack_cache[i].end_seq = 0;
1611         }
1612         for (j = 0; j < used_sacks; j++)
1613                 tp->recv_sack_cache[i++] = sp[j];
1614
1615         tcp_mark_lost_retrans(sk);
1616
1617         tcp_verify_left_out(tp);
1618
1619         if ((reord < tp->fackets_out) &&
1620             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1621             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1622                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1623
1624 out:
1625
1626 #if FASTRETRANS_DEBUG > 0
1627         BUG_TRAP((int)tp->sacked_out >= 0);
1628         BUG_TRAP((int)tp->lost_out >= 0);
1629         BUG_TRAP((int)tp->retrans_out >= 0);
1630         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1631 #endif
1632         return flag;
1633 }
1634
1635 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1636  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1637  */
1638 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1639 {
1640         u32 holes;
1641
1642         holes = max(tp->lost_out, 1U);
1643         holes = min(holes, tp->packets_out);
1644
1645         if ((tp->sacked_out + holes) > tp->packets_out) {
1646                 tp->sacked_out = tp->packets_out - holes;
1647                 return 1;
1648         }
1649         return 0;
1650 }
1651
1652 /* If we receive more dupacks than we expected counting segments
1653  * in assumption of absent reordering, interpret this as reordering.
1654  * The only another reason could be bug in receiver TCP.
1655  */
1656 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1657 {
1658         struct tcp_sock *tp = tcp_sk(sk);
1659         if (tcp_limit_reno_sacked(tp))
1660                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1661 }
1662
1663 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1664
1665 static void tcp_add_reno_sack(struct sock *sk)
1666 {
1667         struct tcp_sock *tp = tcp_sk(sk);
1668         tp->sacked_out++;
1669         tcp_check_reno_reordering(sk, 0);
1670         tcp_verify_left_out(tp);
1671 }
1672
1673 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1674
1675 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1676 {
1677         struct tcp_sock *tp = tcp_sk(sk);
1678
1679         if (acked > 0) {
1680                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1681                 if (acked - 1 >= tp->sacked_out)
1682                         tp->sacked_out = 0;
1683                 else
1684                         tp->sacked_out -= acked - 1;
1685         }
1686         tcp_check_reno_reordering(sk, acked);
1687         tcp_verify_left_out(tp);
1688 }
1689
1690 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1691 {
1692         tp->sacked_out = 0;
1693 }
1694
1695 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1696 {
1697         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1698 }
1699
1700 /* F-RTO can only be used if TCP has never retransmitted anything other than
1701  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1702  */
1703 int tcp_use_frto(struct sock *sk)
1704 {
1705         const struct tcp_sock *tp = tcp_sk(sk);
1706         const struct inet_connection_sock *icsk = inet_csk(sk);
1707         struct sk_buff *skb;
1708
1709         if (!sysctl_tcp_frto)
1710                 return 0;
1711
1712         /* MTU probe and F-RTO won't really play nicely along currently */
1713         if (icsk->icsk_mtup.probe_size)
1714                 return 0;
1715
1716         if (tcp_is_sackfrto(tp))
1717                 return 1;
1718
1719         /* Avoid expensive walking of rexmit queue if possible */
1720         if (tp->retrans_out > 1)
1721                 return 0;
1722
1723         skb = tcp_write_queue_head(sk);
1724         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1725         tcp_for_write_queue_from(skb, sk) {
1726                 if (skb == tcp_send_head(sk))
1727                         break;
1728                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1729                         return 0;
1730                 /* Short-circuit when first non-SACKed skb has been checked */
1731                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1732                         break;
1733         }
1734         return 1;
1735 }
1736
1737 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1738  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1739  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1740  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1741  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1742  * bits are handled if the Loss state is really to be entered (in
1743  * tcp_enter_frto_loss).
1744  *
1745  * Do like tcp_enter_loss() would; when RTO expires the second time it
1746  * does:
1747  *  "Reduce ssthresh if it has not yet been made inside this window."
1748  */
1749 void tcp_enter_frto(struct sock *sk)
1750 {
1751         const struct inet_connection_sock *icsk = inet_csk(sk);
1752         struct tcp_sock *tp = tcp_sk(sk);
1753         struct sk_buff *skb;
1754
1755         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1756             tp->snd_una == tp->high_seq ||
1757             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1758              !icsk->icsk_retransmits)) {
1759                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1760                 /* Our state is too optimistic in ssthresh() call because cwnd
1761                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1762                  * recovery has not yet completed. Pattern would be this: RTO,
1763                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1764                  * up here twice).
1765                  * RFC4138 should be more specific on what to do, even though
1766                  * RTO is quite unlikely to occur after the first Cumulative ACK
1767                  * due to back-off and complexity of triggering events ...
1768                  */
1769                 if (tp->frto_counter) {
1770                         u32 stored_cwnd;
1771                         stored_cwnd = tp->snd_cwnd;
1772                         tp->snd_cwnd = 2;
1773                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1774                         tp->snd_cwnd = stored_cwnd;
1775                 } else {
1776                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1777                 }
1778                 /* ... in theory, cong.control module could do "any tricks" in
1779                  * ssthresh(), which means that ca_state, lost bits and lost_out
1780                  * counter would have to be faked before the call occurs. We
1781                  * consider that too expensive, unlikely and hacky, so modules
1782                  * using these in ssthresh() must deal these incompatibility
1783                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1784                  */
1785                 tcp_ca_event(sk, CA_EVENT_FRTO);
1786         }
1787
1788         tp->undo_marker = tp->snd_una;
1789         tp->undo_retrans = 0;
1790
1791         skb = tcp_write_queue_head(sk);
1792         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1793                 tp->undo_marker = 0;
1794         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1795                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1796                 tp->retrans_out -= tcp_skb_pcount(skb);
1797         }
1798         tcp_verify_left_out(tp);
1799
1800         /* Too bad if TCP was application limited */
1801         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1802
1803         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1804          * The last condition is necessary at least in tp->frto_counter case.
1805          */
1806         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1807             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1808             after(tp->high_seq, tp->snd_una)) {
1809                 tp->frto_highmark = tp->high_seq;
1810         } else {
1811                 tp->frto_highmark = tp->snd_nxt;
1812         }
1813         tcp_set_ca_state(sk, TCP_CA_Disorder);
1814         tp->high_seq = tp->snd_nxt;
1815         tp->frto_counter = 1;
1816 }
1817
1818 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1819  * which indicates that we should follow the traditional RTO recovery,
1820  * i.e. mark everything lost and do go-back-N retransmission.
1821  */
1822 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1823 {
1824         struct tcp_sock *tp = tcp_sk(sk);
1825         struct sk_buff *skb;
1826
1827         tp->lost_out = 0;
1828         tp->retrans_out = 0;
1829         if (tcp_is_reno(tp))
1830                 tcp_reset_reno_sack(tp);
1831
1832         tcp_for_write_queue(skb, sk) {
1833                 if (skb == tcp_send_head(sk))
1834                         break;
1835
1836                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1837                 /*
1838                  * Count the retransmission made on RTO correctly (only when
1839                  * waiting for the first ACK and did not get it)...
1840                  */
1841                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1842                         /* For some reason this R-bit might get cleared? */
1843                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1844                                 tp->retrans_out += tcp_skb_pcount(skb);
1845                         /* ...enter this if branch just for the first segment */
1846                         flag |= FLAG_DATA_ACKED;
1847                 } else {
1848                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1849                                 tp->undo_marker = 0;
1850                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1851                 }
1852
1853                 /* Marking forward transmissions that were made after RTO lost
1854                  * can cause unnecessary retransmissions in some scenarios,
1855                  * SACK blocks will mitigate that in some but not in all cases.
1856                  * We used to not mark them but it was causing break-ups with
1857                  * receivers that do only in-order receival.
1858                  *
1859                  * TODO: we could detect presence of such receiver and select
1860                  * different behavior per flow.
1861                  */
1862                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1863                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1864                         tp->lost_out += tcp_skb_pcount(skb);
1865                 }
1866         }
1867         tcp_verify_left_out(tp);
1868
1869         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1870         tp->snd_cwnd_cnt = 0;
1871         tp->snd_cwnd_stamp = tcp_time_stamp;
1872         tp->frto_counter = 0;
1873         tp->bytes_acked = 0;
1874
1875         tp->reordering = min_t(unsigned int, tp->reordering,
1876                                sysctl_tcp_reordering);
1877         tcp_set_ca_state(sk, TCP_CA_Loss);
1878         tp->high_seq = tp->snd_nxt;
1879         TCP_ECN_queue_cwr(tp);
1880
1881         tcp_clear_retrans_hints_partial(tp);
1882 }
1883
1884 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1885 {
1886         tp->retrans_out = 0;
1887         tp->lost_out = 0;
1888
1889         tp->undo_marker = 0;
1890         tp->undo_retrans = 0;
1891 }
1892
1893 void tcp_clear_retrans(struct tcp_sock *tp)
1894 {
1895         tcp_clear_retrans_partial(tp);
1896
1897         tp->fackets_out = 0;
1898         tp->sacked_out = 0;
1899 }
1900
1901 /* Enter Loss state. If "how" is not zero, forget all SACK information
1902  * and reset tags completely, otherwise preserve SACKs. If receiver
1903  * dropped its ofo queue, we will know this due to reneging detection.
1904  */
1905 void tcp_enter_loss(struct sock *sk, int how)
1906 {
1907         const struct inet_connection_sock *icsk = inet_csk(sk);
1908         struct tcp_sock *tp = tcp_sk(sk);
1909         struct sk_buff *skb;
1910
1911         /* Reduce ssthresh if it has not yet been made inside this window. */
1912         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1913             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1914                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1915                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1916                 tcp_ca_event(sk, CA_EVENT_LOSS);
1917         }
1918         tp->snd_cwnd       = 1;
1919         tp->snd_cwnd_cnt   = 0;
1920         tp->snd_cwnd_stamp = tcp_time_stamp;
1921
1922         tp->bytes_acked = 0;
1923         tcp_clear_retrans_partial(tp);
1924
1925         if (tcp_is_reno(tp))
1926                 tcp_reset_reno_sack(tp);
1927
1928         if (!how) {
1929                 /* Push undo marker, if it was plain RTO and nothing
1930                  * was retransmitted. */
1931                 tp->undo_marker = tp->snd_una;
1932                 tcp_clear_retrans_hints_partial(tp);
1933         } else {
1934                 tp->sacked_out = 0;
1935                 tp->fackets_out = 0;
1936                 tcp_clear_all_retrans_hints(tp);
1937         }
1938
1939         tcp_for_write_queue(skb, sk) {
1940                 if (skb == tcp_send_head(sk))
1941                         break;
1942
1943                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1944                         tp->undo_marker = 0;
1945                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1946                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1947                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1948                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1949                         tp->lost_out += tcp_skb_pcount(skb);
1950                 }
1951         }
1952         tcp_verify_left_out(tp);
1953
1954         tp->reordering = min_t(unsigned int, tp->reordering,
1955                                sysctl_tcp_reordering);
1956         tcp_set_ca_state(sk, TCP_CA_Loss);
1957         tp->high_seq = tp->snd_nxt;
1958         TCP_ECN_queue_cwr(tp);
1959         /* Abort F-RTO algorithm if one is in progress */
1960         tp->frto_counter = 0;
1961 }
1962
1963 /* If ACK arrived pointing to a remembered SACK, it means that our
1964  * remembered SACKs do not reflect real state of receiver i.e.
1965  * receiver _host_ is heavily congested (or buggy).
1966  *
1967  * Do processing similar to RTO timeout.
1968  */
1969 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1970 {
1971         if (flag & FLAG_SACK_RENEGING) {
1972                 struct inet_connection_sock *icsk = inet_csk(sk);
1973                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1974
1975                 tcp_enter_loss(sk, 1);
1976                 icsk->icsk_retransmits++;
1977                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1978                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1979                                           icsk->icsk_rto, TCP_RTO_MAX);
1980                 return 1;
1981         }
1982         return 0;
1983 }
1984
1985 static inline int tcp_fackets_out(struct tcp_sock *tp)
1986 {
1987         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1988 }
1989
1990 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1991  * counter when SACK is enabled (without SACK, sacked_out is used for
1992  * that purpose).
1993  *
1994  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1995  * segments up to the highest received SACK block so far and holes in
1996  * between them.
1997  *
1998  * With reordering, holes may still be in flight, so RFC3517 recovery
1999  * uses pure sacked_out (total number of SACKed segments) even though
2000  * it violates the RFC that uses duplicate ACKs, often these are equal
2001  * but when e.g. out-of-window ACKs or packet duplication occurs,
2002  * they differ. Since neither occurs due to loss, TCP should really
2003  * ignore them.
2004  */
2005 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2006 {
2007         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2008 }
2009
2010 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2011 {
2012         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2013 }
2014
2015 static inline int tcp_head_timedout(struct sock *sk)
2016 {
2017         struct tcp_sock *tp = tcp_sk(sk);
2018
2019         return tp->packets_out &&
2020                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2021 }
2022
2023 /* Linux NewReno/SACK/FACK/ECN state machine.
2024  * --------------------------------------
2025  *
2026  * "Open"       Normal state, no dubious events, fast path.
2027  * "Disorder"   In all the respects it is "Open",
2028  *              but requires a bit more attention. It is entered when
2029  *              we see some SACKs or dupacks. It is split of "Open"
2030  *              mainly to move some processing from fast path to slow one.
2031  * "CWR"        CWND was reduced due to some Congestion Notification event.
2032  *              It can be ECN, ICMP source quench, local device congestion.
2033  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2034  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2035  *
2036  * tcp_fastretrans_alert() is entered:
2037  * - each incoming ACK, if state is not "Open"
2038  * - when arrived ACK is unusual, namely:
2039  *      * SACK
2040  *      * Duplicate ACK.
2041  *      * ECN ECE.
2042  *
2043  * Counting packets in flight is pretty simple.
2044  *
2045  *      in_flight = packets_out - left_out + retrans_out
2046  *
2047  *      packets_out is SND.NXT-SND.UNA counted in packets.
2048  *
2049  *      retrans_out is number of retransmitted segments.
2050  *
2051  *      left_out is number of segments left network, but not ACKed yet.
2052  *
2053  *              left_out = sacked_out + lost_out
2054  *
2055  *     sacked_out: Packets, which arrived to receiver out of order
2056  *                 and hence not ACKed. With SACKs this number is simply
2057  *                 amount of SACKed data. Even without SACKs
2058  *                 it is easy to give pretty reliable estimate of this number,
2059  *                 counting duplicate ACKs.
2060  *
2061  *       lost_out: Packets lost by network. TCP has no explicit
2062  *                 "loss notification" feedback from network (for now).
2063  *                 It means that this number can be only _guessed_.
2064  *                 Actually, it is the heuristics to predict lossage that
2065  *                 distinguishes different algorithms.
2066  *
2067  *      F.e. after RTO, when all the queue is considered as lost,
2068  *      lost_out = packets_out and in_flight = retrans_out.
2069  *
2070  *              Essentially, we have now two algorithms counting
2071  *              lost packets.
2072  *
2073  *              FACK: It is the simplest heuristics. As soon as we decided
2074  *              that something is lost, we decide that _all_ not SACKed
2075  *              packets until the most forward SACK are lost. I.e.
2076  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2077  *              It is absolutely correct estimate, if network does not reorder
2078  *              packets. And it loses any connection to reality when reordering
2079  *              takes place. We use FACK by default until reordering
2080  *              is suspected on the path to this destination.
2081  *
2082  *              NewReno: when Recovery is entered, we assume that one segment
2083  *              is lost (classic Reno). While we are in Recovery and
2084  *              a partial ACK arrives, we assume that one more packet
2085  *              is lost (NewReno). This heuristics are the same in NewReno
2086  *              and SACK.
2087  *
2088  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2089  *  deflation etc. CWND is real congestion window, never inflated, changes
2090  *  only according to classic VJ rules.
2091  *
2092  * Really tricky (and requiring careful tuning) part of algorithm
2093  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2094  * The first determines the moment _when_ we should reduce CWND and,
2095  * hence, slow down forward transmission. In fact, it determines the moment
2096  * when we decide that hole is caused by loss, rather than by a reorder.
2097  *
2098  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2099  * holes, caused by lost packets.
2100  *
2101  * And the most logically complicated part of algorithm is undo
2102  * heuristics. We detect false retransmits due to both too early
2103  * fast retransmit (reordering) and underestimated RTO, analyzing
2104  * timestamps and D-SACKs. When we detect that some segments were
2105  * retransmitted by mistake and CWND reduction was wrong, we undo
2106  * window reduction and abort recovery phase. This logic is hidden
2107  * inside several functions named tcp_try_undo_<something>.
2108  */
2109
2110 /* This function decides, when we should leave Disordered state
2111  * and enter Recovery phase, reducing congestion window.
2112  *
2113  * Main question: may we further continue forward transmission
2114  * with the same cwnd?
2115  */
2116 static int tcp_time_to_recover(struct sock *sk)
2117 {
2118         struct tcp_sock *tp = tcp_sk(sk);
2119         __u32 packets_out;
2120
2121         /* Do not perform any recovery during F-RTO algorithm */
2122         if (tp->frto_counter)
2123                 return 0;
2124
2125         /* Trick#1: The loss is proven. */
2126         if (tp->lost_out)
2127                 return 1;
2128
2129         /* Not-A-Trick#2 : Classic rule... */
2130         if (tcp_dupack_heurestics(tp) > tp->reordering)
2131                 return 1;
2132
2133         /* Trick#3 : when we use RFC2988 timer restart, fast
2134          * retransmit can be triggered by timeout of queue head.
2135          */
2136         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2137                 return 1;
2138
2139         /* Trick#4: It is still not OK... But will it be useful to delay
2140          * recovery more?
2141          */
2142         packets_out = tp->packets_out;
2143         if (packets_out <= tp->reordering &&
2144             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2145             !tcp_may_send_now(sk)) {
2146                 /* We have nothing to send. This connection is limited
2147                  * either by receiver window or by application.
2148                  */
2149                 return 1;
2150         }
2151
2152         return 0;
2153 }
2154
2155 /* RFC: This is from the original, I doubt that this is necessary at all:
2156  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2157  * retransmitted past LOST markings in the first place? I'm not fully sure
2158  * about undo and end of connection cases, which can cause R without L?
2159  */
2160 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2161 {
2162         if ((tp->retransmit_skb_hint != NULL) &&
2163             before(TCP_SKB_CB(skb)->seq,
2164                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2165                 tp->retransmit_skb_hint = NULL;
2166 }
2167
2168 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2169  * is against sacked "cnt", otherwise it's against facked "cnt"
2170  */
2171 static void tcp_mark_head_lost(struct sock *sk, int packets)
2172 {
2173         struct tcp_sock *tp = tcp_sk(sk);
2174         struct sk_buff *skb;
2175         int cnt, oldcnt;
2176         int err;
2177         unsigned int mss;
2178
2179         BUG_TRAP(packets <= tp->packets_out);
2180         if (tp->lost_skb_hint) {
2181                 skb = tp->lost_skb_hint;
2182                 cnt = tp->lost_cnt_hint;
2183         } else {
2184                 skb = tcp_write_queue_head(sk);
2185                 cnt = 0;
2186         }
2187
2188         tcp_for_write_queue_from(skb, sk) {
2189                 if (skb == tcp_send_head(sk))
2190                         break;
2191                 /* TODO: do this better */
2192                 /* this is not the most efficient way to do this... */
2193                 tp->lost_skb_hint = skb;
2194                 tp->lost_cnt_hint = cnt;
2195
2196                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2197                         break;
2198
2199                 oldcnt = cnt;
2200                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2201                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2202                         cnt += tcp_skb_pcount(skb);
2203
2204                 if (cnt > packets) {
2205                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2206                                 break;
2207
2208                         mss = skb_shinfo(skb)->gso_size;
2209                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2210                         if (err < 0)
2211                                 break;
2212                         cnt = packets;
2213                 }
2214
2215                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2216                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2217                         tp->lost_out += tcp_skb_pcount(skb);
2218                         tcp_verify_retransmit_hint(tp, skb);
2219                 }
2220         }
2221         tcp_verify_left_out(tp);
2222 }
2223
2224 /* Account newly detected lost packet(s) */
2225
2226 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2227 {
2228         struct tcp_sock *tp = tcp_sk(sk);
2229
2230         if (tcp_is_reno(tp)) {
2231                 tcp_mark_head_lost(sk, 1);
2232         } else if (tcp_is_fack(tp)) {
2233                 int lost = tp->fackets_out - tp->reordering;
2234                 if (lost <= 0)
2235                         lost = 1;
2236                 tcp_mark_head_lost(sk, lost);
2237         } else {
2238                 int sacked_upto = tp->sacked_out - tp->reordering;
2239                 if (sacked_upto < fast_rexmit)
2240                         sacked_upto = fast_rexmit;
2241                 tcp_mark_head_lost(sk, sacked_upto);
2242         }
2243
2244         /* New heuristics: it is possible only after we switched
2245          * to restart timer each time when something is ACKed.
2246          * Hence, we can detect timed out packets during fast
2247          * retransmit without falling to slow start.
2248          */
2249         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2250                 struct sk_buff *skb;
2251
2252                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2253                         : tcp_write_queue_head(sk);
2254
2255                 tcp_for_write_queue_from(skb, sk) {
2256                         if (skb == tcp_send_head(sk))
2257                                 break;
2258                         if (!tcp_skb_timedout(sk, skb))
2259                                 break;
2260
2261                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2262                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2263                                 tp->lost_out += tcp_skb_pcount(skb);
2264                                 tcp_verify_retransmit_hint(tp, skb);
2265                         }
2266                 }
2267
2268                 tp->scoreboard_skb_hint = skb;
2269
2270                 tcp_verify_left_out(tp);
2271         }
2272 }
2273
2274 /* CWND moderation, preventing bursts due to too big ACKs
2275  * in dubious situations.
2276  */
2277 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2278 {
2279         tp->snd_cwnd = min(tp->snd_cwnd,
2280                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2281         tp->snd_cwnd_stamp = tcp_time_stamp;
2282 }
2283
2284 /* Lower bound on congestion window is slow start threshold
2285  * unless congestion avoidance choice decides to overide it.
2286  */
2287 static inline u32 tcp_cwnd_min(const struct sock *sk)
2288 {
2289         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2290
2291         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2292 }
2293
2294 /* Decrease cwnd each second ack. */
2295 static void tcp_cwnd_down(struct sock *sk, int flag)
2296 {
2297         struct tcp_sock *tp = tcp_sk(sk);
2298         int decr = tp->snd_cwnd_cnt + 1;
2299
2300         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2301             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2302                 tp->snd_cwnd_cnt = decr & 1;
2303                 decr >>= 1;
2304
2305                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2306                         tp->snd_cwnd -= decr;
2307
2308                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2309                 tp->snd_cwnd_stamp = tcp_time_stamp;
2310         }
2311 }
2312
2313 /* Nothing was retransmitted or returned timestamp is less
2314  * than timestamp of the first retransmission.
2315  */
2316 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2317 {
2318         return !tp->retrans_stamp ||
2319                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2320                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2321 }
2322
2323 /* Undo procedures. */
2324
2325 #if FASTRETRANS_DEBUG > 1
2326 static void DBGUNDO(struct sock *sk, const char *msg)
2327 {
2328         struct tcp_sock *tp = tcp_sk(sk);
2329         struct inet_sock *inet = inet_sk(sk);
2330
2331         if (sk->sk_family == AF_INET) {
2332                 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2333                        msg,
2334                        NIPQUAD(inet->daddr), ntohs(inet->dport),
2335                        tp->snd_cwnd, tcp_left_out(tp),
2336                        tp->snd_ssthresh, tp->prior_ssthresh,
2337                        tp->packets_out);
2338         }
2339 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2340         else if (sk->sk_family == AF_INET6) {
2341                 struct ipv6_pinfo *np = inet6_sk(sk);
2342                 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2343                        msg,
2344                        NIP6(np->daddr), ntohs(inet->dport),
2345                        tp->snd_cwnd, tcp_left_out(tp),
2346                        tp->snd_ssthresh, tp->prior_ssthresh,
2347                        tp->packets_out);
2348         }
2349 #endif
2350 }
2351 #else
2352 #define DBGUNDO(x...) do { } while (0)
2353 #endif
2354
2355 static void tcp_undo_cwr(struct sock *sk, const int undo)
2356 {
2357         struct tcp_sock *tp = tcp_sk(sk);
2358
2359         if (tp->prior_ssthresh) {
2360                 const struct inet_connection_sock *icsk = inet_csk(sk);
2361
2362                 if (icsk->icsk_ca_ops->undo_cwnd)
2363                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2364                 else
2365                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2366
2367                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2368                         tp->snd_ssthresh = tp->prior_ssthresh;
2369                         TCP_ECN_withdraw_cwr(tp);
2370                 }
2371         } else {
2372                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2373         }
2374         tcp_moderate_cwnd(tp);
2375         tp->snd_cwnd_stamp = tcp_time_stamp;
2376
2377         /* There is something screwy going on with the retrans hints after
2378            an undo */
2379         tcp_clear_all_retrans_hints(tp);
2380 }
2381
2382 static inline int tcp_may_undo(struct tcp_sock *tp)
2383 {
2384         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2385 }
2386
2387 /* People celebrate: "We love our President!" */
2388 static int tcp_try_undo_recovery(struct sock *sk)
2389 {
2390         struct tcp_sock *tp = tcp_sk(sk);
2391
2392         if (tcp_may_undo(tp)) {
2393                 int mib_idx;
2394
2395                 /* Happy end! We did not retransmit anything
2396                  * or our original transmission succeeded.
2397                  */
2398                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2399                 tcp_undo_cwr(sk, 1);
2400                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2401                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2402                 else
2403                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2404
2405                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2406                 tp->undo_marker = 0;
2407         }
2408         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2409                 /* Hold old state until something *above* high_seq
2410                  * is ACKed. For Reno it is MUST to prevent false
2411                  * fast retransmits (RFC2582). SACK TCP is safe. */
2412                 tcp_moderate_cwnd(tp);
2413                 return 1;
2414         }
2415         tcp_set_ca_state(sk, TCP_CA_Open);
2416         return 0;
2417 }
2418
2419 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2420 static void tcp_try_undo_dsack(struct sock *sk)
2421 {
2422         struct tcp_sock *tp = tcp_sk(sk);
2423
2424         if (tp->undo_marker && !tp->undo_retrans) {
2425                 DBGUNDO(sk, "D-SACK");
2426                 tcp_undo_cwr(sk, 1);
2427                 tp->undo_marker = 0;
2428                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2429         }
2430 }
2431
2432 /* Undo during fast recovery after partial ACK. */
2433
2434 static int tcp_try_undo_partial(struct sock *sk, int acked)
2435 {
2436         struct tcp_sock *tp = tcp_sk(sk);
2437         /* Partial ACK arrived. Force Hoe's retransmit. */
2438         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2439
2440         if (tcp_may_undo(tp)) {
2441                 /* Plain luck! Hole if filled with delayed
2442                  * packet, rather than with a retransmit.
2443                  */
2444                 if (tp->retrans_out == 0)
2445                         tp->retrans_stamp = 0;
2446
2447                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2448
2449                 DBGUNDO(sk, "Hoe");
2450                 tcp_undo_cwr(sk, 0);
2451                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2452
2453                 /* So... Do not make Hoe's retransmit yet.
2454                  * If the first packet was delayed, the rest
2455                  * ones are most probably delayed as well.
2456                  */
2457                 failed = 0;
2458         }
2459         return failed;
2460 }
2461
2462 /* Undo during loss recovery after partial ACK. */
2463 static int tcp_try_undo_loss(struct sock *sk)
2464 {
2465         struct tcp_sock *tp = tcp_sk(sk);
2466
2467         if (tcp_may_undo(tp)) {
2468                 struct sk_buff *skb;
2469                 tcp_for_write_queue(skb, sk) {
2470                         if (skb == tcp_send_head(sk))
2471                                 break;
2472                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2473                 }
2474
2475                 tcp_clear_all_retrans_hints(tp);
2476
2477                 DBGUNDO(sk, "partial loss");
2478                 tp->lost_out = 0;
2479                 tcp_undo_cwr(sk, 1);
2480                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2481                 inet_csk(sk)->icsk_retransmits = 0;
2482                 tp->undo_marker = 0;
2483                 if (tcp_is_sack(tp))
2484                         tcp_set_ca_state(sk, TCP_CA_Open);
2485                 return 1;
2486         }
2487         return 0;
2488 }
2489
2490 static inline void tcp_complete_cwr(struct sock *sk)
2491 {
2492         struct tcp_sock *tp = tcp_sk(sk);
2493         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2494         tp->snd_cwnd_stamp = tcp_time_stamp;
2495         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2496 }
2497
2498 static void tcp_try_keep_open(struct sock *sk)
2499 {
2500         struct tcp_sock *tp = tcp_sk(sk);
2501         int state = TCP_CA_Open;
2502
2503         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2504                 state = TCP_CA_Disorder;
2505
2506         if (inet_csk(sk)->icsk_ca_state != state) {
2507                 tcp_set_ca_state(sk, state);
2508                 tp->high_seq = tp->snd_nxt;
2509         }
2510 }
2511
2512 static void tcp_try_to_open(struct sock *sk, int flag)
2513 {
2514         struct tcp_sock *tp = tcp_sk(sk);
2515
2516         tcp_verify_left_out(tp);
2517
2518         if (!tp->frto_counter && tp->retrans_out == 0)
2519                 tp->retrans_stamp = 0;
2520
2521         if (flag & FLAG_ECE)
2522                 tcp_enter_cwr(sk, 1);
2523
2524         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2525                 tcp_try_keep_open(sk);
2526                 tcp_moderate_cwnd(tp);
2527         } else {
2528                 tcp_cwnd_down(sk, flag);
2529         }
2530 }
2531
2532 static void tcp_mtup_probe_failed(struct sock *sk)
2533 {
2534         struct inet_connection_sock *icsk = inet_csk(sk);
2535
2536         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2537         icsk->icsk_mtup.probe_size = 0;
2538 }
2539
2540 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2541 {
2542         struct tcp_sock *tp = tcp_sk(sk);
2543         struct inet_connection_sock *icsk = inet_csk(sk);
2544
2545         /* FIXME: breaks with very large cwnd */
2546         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2547         tp->snd_cwnd = tp->snd_cwnd *
2548                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2549                        icsk->icsk_mtup.probe_size;
2550         tp->snd_cwnd_cnt = 0;
2551         tp->snd_cwnd_stamp = tcp_time_stamp;
2552         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2553
2554         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2555         icsk->icsk_mtup.probe_size = 0;
2556         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2557 }
2558
2559 /* Process an event, which can update packets-in-flight not trivially.
2560  * Main goal of this function is to calculate new estimate for left_out,
2561  * taking into account both packets sitting in receiver's buffer and
2562  * packets lost by network.
2563  *
2564  * Besides that it does CWND reduction, when packet loss is detected
2565  * and changes state of machine.
2566  *
2567  * It does _not_ decide what to send, it is made in function
2568  * tcp_xmit_retransmit_queue().
2569  */
2570 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2571 {
2572         struct inet_connection_sock *icsk = inet_csk(sk);
2573         struct tcp_sock *tp = tcp_sk(sk);
2574         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2575         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2576                                     (tcp_fackets_out(tp) > tp->reordering));
2577         int fast_rexmit = 0, mib_idx;
2578
2579         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2580                 tp->sacked_out = 0;
2581         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2582                 tp->fackets_out = 0;
2583
2584         /* Now state machine starts.
2585          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2586         if (flag & FLAG_ECE)
2587                 tp->prior_ssthresh = 0;
2588
2589         /* B. In all the states check for reneging SACKs. */
2590         if (tcp_check_sack_reneging(sk, flag))
2591                 return;
2592
2593         /* C. Process data loss notification, provided it is valid. */
2594         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2595             before(tp->snd_una, tp->high_seq) &&
2596             icsk->icsk_ca_state != TCP_CA_Open &&
2597             tp->fackets_out > tp->reordering) {
2598                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2599                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2600         }
2601
2602         /* D. Check consistency of the current state. */
2603         tcp_verify_left_out(tp);
2604
2605         /* E. Check state exit conditions. State can be terminated
2606          *    when high_seq is ACKed. */
2607         if (icsk->icsk_ca_state == TCP_CA_Open) {
2608                 BUG_TRAP(tp->retrans_out == 0);
2609                 tp->retrans_stamp = 0;
2610         } else if (!before(tp->snd_una, tp->high_seq)) {
2611                 switch (icsk->icsk_ca_state) {
2612                 case TCP_CA_Loss:
2613                         icsk->icsk_retransmits = 0;
2614                         if (tcp_try_undo_recovery(sk))
2615                                 return;
2616                         break;
2617
2618                 case TCP_CA_CWR:
2619                         /* CWR is to be held something *above* high_seq
2620                          * is ACKed for CWR bit to reach receiver. */
2621                         if (tp->snd_una != tp->high_seq) {
2622                                 tcp_complete_cwr(sk);
2623                                 tcp_set_ca_state(sk, TCP_CA_Open);
2624                         }
2625                         break;
2626
2627                 case TCP_CA_Disorder:
2628                         tcp_try_undo_dsack(sk);
2629                         if (!tp->undo_marker ||
2630                             /* For SACK case do not Open to allow to undo
2631                              * catching for all duplicate ACKs. */
2632                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2633                                 tp->undo_marker = 0;
2634                                 tcp_set_ca_state(sk, TCP_CA_Open);
2635                         }
2636                         break;
2637
2638                 case TCP_CA_Recovery:
2639                         if (tcp_is_reno(tp))
2640                                 tcp_reset_reno_sack(tp);
2641                         if (tcp_try_undo_recovery(sk))
2642                                 return;
2643                         tcp_complete_cwr(sk);
2644                         break;
2645                 }
2646         }
2647
2648         /* F. Process state. */
2649         switch (icsk->icsk_ca_state) {
2650         case TCP_CA_Recovery:
2651                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2652                         if (tcp_is_reno(tp) && is_dupack)
2653                                 tcp_add_reno_sack(sk);
2654                 } else
2655                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2656                 break;
2657         case TCP_CA_Loss:
2658                 if (flag & FLAG_DATA_ACKED)
2659                         icsk->icsk_retransmits = 0;
2660                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2661                         tcp_reset_reno_sack(tp);
2662                 if (!tcp_try_undo_loss(sk)) {
2663                         tcp_moderate_cwnd(tp);
2664                         tcp_xmit_retransmit_queue(sk);
2665                         return;
2666                 }
2667                 if (icsk->icsk_ca_state != TCP_CA_Open)
2668                         return;
2669                 /* Loss is undone; fall through to processing in Open state. */
2670         default:
2671                 if (tcp_is_reno(tp)) {
2672                         if (flag & FLAG_SND_UNA_ADVANCED)
2673                                 tcp_reset_reno_sack(tp);
2674                         if (is_dupack)
2675                                 tcp_add_reno_sack(sk);
2676                 }
2677
2678                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2679                         tcp_try_undo_dsack(sk);
2680
2681                 if (!tcp_time_to_recover(sk)) {
2682                         tcp_try_to_open(sk, flag);
2683                         return;
2684                 }
2685
2686                 /* MTU probe failure: don't reduce cwnd */
2687                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2688                     icsk->icsk_mtup.probe_size &&
2689                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2690                         tcp_mtup_probe_failed(sk);
2691                         /* Restores the reduction we did in tcp_mtup_probe() */
2692                         tp->snd_cwnd++;
2693                         tcp_simple_retransmit(sk);
2694                         return;
2695                 }
2696
2697                 /* Otherwise enter Recovery state */
2698
2699                 if (tcp_is_reno(tp))
2700                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
2701                 else
2702                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2703
2704                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2705
2706                 tp->high_seq = tp->snd_nxt;
2707                 tp->prior_ssthresh = 0;
2708                 tp->undo_marker = tp->snd_una;
2709                 tp->undo_retrans = tp->retrans_out;
2710
2711                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2712                         if (!(flag & FLAG_ECE))
2713                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2714                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2715                         TCP_ECN_queue_cwr(tp);
2716                 }
2717
2718                 tp->bytes_acked = 0;
2719                 tp->snd_cwnd_cnt = 0;
2720                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2721                 fast_rexmit = 1;
2722         }
2723
2724         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2725                 tcp_update_scoreboard(sk, fast_rexmit);
2726         tcp_cwnd_down(sk, flag);
2727         tcp_xmit_retransmit_queue(sk);
2728 }
2729
2730 /* Read draft-ietf-tcplw-high-performance before mucking
2731  * with this code. (Supersedes RFC1323)
2732  */
2733 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2734 {
2735         /* RTTM Rule: A TSecr value received in a segment is used to
2736          * update the averaged RTT measurement only if the segment
2737          * acknowledges some new data, i.e., only if it advances the
2738          * left edge of the send window.
2739          *
2740          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2741          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2742          *
2743          * Changed: reset backoff as soon as we see the first valid sample.
2744          * If we do not, we get strongly overestimated rto. With timestamps
2745          * samples are accepted even from very old segments: f.e., when rtt=1
2746          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2747          * answer arrives rto becomes 120 seconds! If at least one of segments
2748          * in window is lost... Voila.                          --ANK (010210)
2749          */
2750         struct tcp_sock *tp = tcp_sk(sk);
2751         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2752         tcp_rtt_estimator(sk, seq_rtt);
2753         tcp_set_rto(sk);
2754         inet_csk(sk)->icsk_backoff = 0;
2755         tcp_bound_rto(sk);
2756 }
2757
2758 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2759 {
2760         /* We don't have a timestamp. Can only use
2761          * packets that are not retransmitted to determine
2762          * rtt estimates. Also, we must not reset the
2763          * backoff for rto until we get a non-retransmitted
2764          * packet. This allows us to deal with a situation
2765          * where the network delay has increased suddenly.
2766          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2767          */
2768
2769         if (flag & FLAG_RETRANS_DATA_ACKED)
2770                 return;
2771
2772         tcp_rtt_estimator(sk, seq_rtt);
2773         tcp_set_rto(sk);
2774         inet_csk(sk)->icsk_backoff = 0;
2775         tcp_bound_rto(sk);
2776 }
2777
2778 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2779                                       const s32 seq_rtt)
2780 {
2781         const struct tcp_sock *tp = tcp_sk(sk);
2782         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2783         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2784                 tcp_ack_saw_tstamp(sk, flag);
2785         else if (seq_rtt >= 0)
2786                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2787 }
2788
2789 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2790 {
2791         const struct inet_connection_sock *icsk = inet_csk(sk);
2792         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2793         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2794 }
2795
2796 /* Restart timer after forward progress on connection.
2797  * RFC2988 recommends to restart timer to now+rto.
2798  */
2799 static void tcp_rearm_rto(struct sock *sk)
2800 {
2801         struct tcp_sock *tp = tcp_sk(sk);
2802
2803         if (!tp->packets_out) {
2804                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2805         } else {
2806                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2807                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2808         }
2809 }
2810
2811 /* If we get here, the whole TSO packet has not been acked. */
2812 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2813 {
2814         struct tcp_sock *tp = tcp_sk(sk);
2815         u32 packets_acked;
2816
2817         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2818
2819         packets_acked = tcp_skb_pcount(skb);
2820         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2821                 return 0;
2822         packets_acked -= tcp_skb_pcount(skb);
2823
2824         if (packets_acked) {
2825                 BUG_ON(tcp_skb_pcount(skb) == 0);
2826                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2827         }
2828
2829         return packets_acked;
2830 }
2831
2832 /* Remove acknowledged frames from the retransmission queue. If our packet
2833  * is before the ack sequence we can discard it as it's confirmed to have
2834  * arrived at the other end.
2835  */
2836 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2837 {
2838         struct tcp_sock *tp = tcp_sk(sk);
2839         const struct inet_connection_sock *icsk = inet_csk(sk);
2840         struct sk_buff *skb;
2841         u32 now = tcp_time_stamp;
2842         int fully_acked = 1;
2843         int flag = 0;
2844         u32 pkts_acked = 0;
2845         u32 reord = tp->packets_out;
2846         s32 seq_rtt = -1;
2847         s32 ca_seq_rtt = -1;
2848         ktime_t last_ackt = net_invalid_timestamp();
2849
2850         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2851                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2852                 u32 end_seq;
2853                 u32 acked_pcount;
2854                 u8 sacked = scb->sacked;
2855
2856                 /* Determine how many packets and what bytes were acked, tso and else */
2857                 if (after(scb->end_seq, tp->snd_una)) {
2858                         if (tcp_skb_pcount(skb) == 1 ||
2859                             !after(tp->snd_una, scb->seq))
2860                                 break;
2861
2862                         acked_pcount = tcp_tso_acked(sk, skb);
2863                         if (!acked_pcount)
2864                                 break;
2865
2866                         fully_acked = 0;
2867                         end_seq = tp->snd_una;
2868                 } else {
2869                         acked_pcount = tcp_skb_pcount(skb);
2870                         end_seq = scb->end_seq;
2871                 }
2872
2873                 /* MTU probing checks */
2874                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2875                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2876                         tcp_mtup_probe_success(sk, skb);
2877                 }
2878
2879                 if (sacked & TCPCB_RETRANS) {
2880                         if (sacked & TCPCB_SACKED_RETRANS)
2881                                 tp->retrans_out -= acked_pcount;
2882                         flag |= FLAG_RETRANS_DATA_ACKED;
2883                         ca_seq_rtt = -1;
2884                         seq_rtt = -1;
2885                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2886                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2887                 } else {
2888                         ca_seq_rtt = now - scb->when;
2889                         last_ackt = skb->tstamp;
2890                         if (seq_rtt < 0) {
2891                                 seq_rtt = ca_seq_rtt;
2892                         }
2893                         if (!(sacked & TCPCB_SACKED_ACKED))
2894                                 reord = min(pkts_acked, reord);
2895                 }
2896
2897                 if (sacked & TCPCB_SACKED_ACKED)
2898                         tp->sacked_out -= acked_pcount;
2899                 if (sacked & TCPCB_LOST)
2900                         tp->lost_out -= acked_pcount;
2901
2902                 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2903                         tp->urg_mode = 0;
2904
2905                 tp->packets_out -= acked_pcount;
2906                 pkts_acked += acked_pcount;
2907
2908                 /* Initial outgoing SYN's get put onto the write_queue
2909                  * just like anything else we transmit.  It is not
2910                  * true data, and if we misinform our callers that
2911                  * this ACK acks real data, we will erroneously exit
2912                  * connection startup slow start one packet too
2913                  * quickly.  This is severely frowned upon behavior.
2914                  */
2915                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2916                         flag |= FLAG_DATA_ACKED;
2917                 } else {
2918                         flag |= FLAG_SYN_ACKED;
2919                         tp->retrans_stamp = 0;
2920                 }
2921
2922                 if (!fully_acked)
2923                         break;
2924
2925                 tcp_unlink_write_queue(skb, sk);
2926                 sk_wmem_free_skb(sk, skb);
2927                 tcp_clear_all_retrans_hints(tp);
2928         }
2929
2930         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2931                 flag |= FLAG_SACK_RENEGING;
2932
2933         if (flag & FLAG_ACKED) {
2934                 const struct tcp_congestion_ops *ca_ops
2935                         = inet_csk(sk)->icsk_ca_ops;
2936
2937                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2938                 tcp_rearm_rto(sk);
2939
2940                 if (tcp_is_reno(tp)) {
2941                         tcp_remove_reno_sacks(sk, pkts_acked);
2942                 } else {
2943                         /* Non-retransmitted hole got filled? That's reordering */
2944                         if (reord < prior_fackets)
2945                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2946                 }
2947
2948                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2949
2950                 if (ca_ops->pkts_acked) {
2951                         s32 rtt_us = -1;
2952
2953                         /* Is the ACK triggering packet unambiguous? */
2954                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2955                                 /* High resolution needed and available? */
2956                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2957                                     !ktime_equal(last_ackt,
2958                                                  net_invalid_timestamp()))
2959                                         rtt_us = ktime_us_delta(ktime_get_real(),
2960                                                                 last_ackt);
2961                                 else if (ca_seq_rtt > 0)
2962                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2963                         }
2964
2965                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2966                 }
2967         }
2968
2969 #if FASTRETRANS_DEBUG > 0
2970         BUG_TRAP((int)tp->sacked_out >= 0);
2971         BUG_TRAP((int)tp->lost_out >= 0);
2972         BUG_TRAP((int)tp->retrans_out >= 0);
2973         if (!tp->packets_out && tcp_is_sack(tp)) {
2974                 icsk = inet_csk(sk);
2975                 if (tp->lost_out) {
2976                         printk(KERN_DEBUG "Leak l=%u %d\n",
2977                                tp->lost_out, icsk->icsk_ca_state);
2978                         tp->lost_out = 0;
2979                 }
2980                 if (tp->sacked_out) {
2981                         printk(KERN_DEBUG "Leak s=%u %d\n",
2982                                tp->sacked_out, icsk->icsk_ca_state);
2983                         tp->sacked_out = 0;
2984                 }
2985                 if (tp->retrans_out) {
2986                         printk(KERN_DEBUG "Leak r=%u %d\n",
2987                                tp->retrans_out, icsk->icsk_ca_state);
2988                         tp->retrans_out = 0;
2989                 }
2990         }
2991 #endif
2992         return flag;
2993 }
2994
2995 static void tcp_ack_probe(struct sock *sk)
2996 {
2997         const struct tcp_sock *tp = tcp_sk(sk);
2998         struct inet_connection_sock *icsk = inet_csk(sk);
2999
3000         /* Was it a usable window open? */
3001
3002         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3003                 icsk->icsk_backoff = 0;
3004                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3005                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3006                  * This function is not for random using!
3007                  */
3008         } else {
3009                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3010                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3011                                           TCP_RTO_MAX);
3012         }
3013 }
3014
3015 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3016 {
3017         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3018                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3019 }
3020
3021 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3022 {
3023         const struct tcp_sock *tp = tcp_sk(sk);
3024         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3025                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3026 }
3027
3028 /* Check that window update is acceptable.
3029  * The function assumes that snd_una<=ack<=snd_next.
3030  */
3031 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3032                                         const u32 ack, const u32 ack_seq,
3033                                         const u32 nwin)
3034 {
3035         return (after(ack, tp->snd_una) ||
3036                 after(ack_seq, tp->snd_wl1) ||
3037                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3038 }
3039
3040 /* Update our send window.
3041  *
3042  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3043  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3044  */
3045 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3046                                  u32 ack_seq)
3047 {
3048         struct tcp_sock *tp = tcp_sk(sk);
3049         int flag = 0;
3050         u32 nwin = ntohs(tcp_hdr(skb)->window);
3051
3052         if (likely(!tcp_hdr(skb)->syn))
3053                 nwin <<= tp->rx_opt.snd_wscale;
3054
3055         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3056                 flag |= FLAG_WIN_UPDATE;
3057                 tcp_update_wl(tp, ack, ack_seq);
3058
3059                 if (tp->snd_wnd != nwin) {
3060                         tp->snd_wnd = nwin;
3061
3062                         /* Note, it is the only place, where
3063                          * fast path is recovered for sending TCP.
3064                          */
3065                         tp->pred_flags = 0;
3066                         tcp_fast_path_check(sk);
3067
3068                         if (nwin > tp->max_window) {
3069                                 tp->max_window = nwin;
3070                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3071                         }
3072                 }
3073         }
3074
3075         tp->snd_una = ack;
3076
3077         return flag;
3078 }
3079
3080 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3081  * continue in congestion avoidance.
3082  */
3083 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3084 {
3085         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3086         tp->snd_cwnd_cnt = 0;
3087         tp->bytes_acked = 0;
3088         TCP_ECN_queue_cwr(tp);
3089         tcp_moderate_cwnd(tp);
3090 }
3091
3092 /* A conservative spurious RTO response algorithm: reduce cwnd using
3093  * rate halving and continue in congestion avoidance.
3094  */
3095 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3096 {
3097         tcp_enter_cwr(sk, 0);
3098 }
3099
3100 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3101 {
3102         if (flag & FLAG_ECE)
3103                 tcp_ratehalving_spur_to_response(sk);
3104         else
3105                 tcp_undo_cwr(sk, 1);
3106 }
3107
3108 /* F-RTO spurious RTO detection algorithm (RFC4138)
3109  *
3110  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3111  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3112  * window (but not to or beyond highest sequence sent before RTO):
3113  *   On First ACK,  send two new segments out.
3114  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3115  *                  algorithm is not part of the F-RTO detection algorithm
3116  *                  given in RFC4138 but can be selected separately).
3117  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3118  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3119  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3120  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3121  *
3122  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3123  * original window even after we transmit two new data segments.
3124  *
3125  * SACK version:
3126  *   on first step, wait until first cumulative ACK arrives, then move to
3127  *   the second step. In second step, the next ACK decides.
3128  *
3129  * F-RTO is implemented (mainly) in four functions:
3130  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3131  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3132  *     called when tcp_use_frto() showed green light
3133  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3134  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3135  *     to prove that the RTO is indeed spurious. It transfers the control
3136  *     from F-RTO to the conventional RTO recovery
3137  */
3138 static int tcp_process_frto(struct sock *sk, int flag)
3139 {
3140         struct tcp_sock *tp = tcp_sk(sk);
3141
3142         tcp_verify_left_out(tp);
3143
3144         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3145         if (flag & FLAG_DATA_ACKED)
3146                 inet_csk(sk)->icsk_retransmits = 0;
3147
3148         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3149             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3150                 tp->undo_marker = 0;
3151
3152         if (!before(tp->snd_una, tp->frto_highmark)) {
3153                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3154                 return 1;
3155         }
3156
3157         if (!tcp_is_sackfrto(tp)) {
3158                 /* RFC4138 shortcoming in step 2; should also have case c):
3159                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3160                  * data, winupdate
3161                  */
3162                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3163                         return 1;
3164
3165                 if (!(flag & FLAG_DATA_ACKED)) {
3166                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3167                                             flag);
3168                         return 1;
3169                 }
3170         } else {
3171                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3172                         /* Prevent sending of new data. */
3173                         tp->snd_cwnd = min(tp->snd_cwnd,
3174                                            tcp_packets_in_flight(tp));
3175                         return 1;
3176                 }
3177
3178                 if ((tp->frto_counter >= 2) &&
3179                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3180                      ((flag & FLAG_DATA_SACKED) &&
3181                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3182                         /* RFC4138 shortcoming (see comment above) */
3183                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3184                             (flag & FLAG_NOT_DUP))
3185                                 return 1;
3186
3187                         tcp_enter_frto_loss(sk, 3, flag);
3188                         return 1;
3189                 }
3190         }
3191
3192         if (tp->frto_counter == 1) {
3193                 /* tcp_may_send_now needs to see updated state */
3194                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3195                 tp->frto_counter = 2;
3196
3197                 if (!tcp_may_send_now(sk))
3198                         tcp_enter_frto_loss(sk, 2, flag);
3199
3200                 return 1;
3201         } else {
3202                 switch (sysctl_tcp_frto_response) {
3203                 case 2:
3204                         tcp_undo_spur_to_response(sk, flag);
3205                         break;
3206                 case 1:
3207                         tcp_conservative_spur_to_response(tp);
3208                         break;
3209                 default:
3210                         tcp_ratehalving_spur_to_response(sk);
3211                         break;
3212                 }
3213                 tp->frto_counter = 0;
3214                 tp->undo_marker = 0;
3215                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3216         }
3217         return 0;
3218 }
3219
3220 /* This routine deals with incoming acks, but not outgoing ones. */
3221 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3222 {
3223         struct inet_connection_sock *icsk = inet_csk(sk);
3224         struct tcp_sock *tp = tcp_sk(sk);
3225         u32 prior_snd_una = tp->snd_una;
3226         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3227         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3228         u32 prior_in_flight;
3229         u32 prior_fackets;
3230         int prior_packets;
3231         int frto_cwnd = 0;
3232
3233         /* If the ack is newer than sent or older than previous acks
3234          * then we can probably ignore it.
3235          */
3236         if (after(ack, tp->snd_nxt))
3237                 goto uninteresting_ack;
3238
3239         if (before(ack, prior_snd_una))
3240                 goto old_ack;
3241
3242         if (after(ack, prior_snd_una))
3243                 flag |= FLAG_SND_UNA_ADVANCED;
3244
3245         if (sysctl_tcp_abc) {
3246                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3247                         tp->bytes_acked += ack - prior_snd_una;
3248                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3249                         /* we assume just one segment left network */
3250                         tp->bytes_acked += min(ack - prior_snd_una,
3251                                                tp->mss_cache);
3252         }
3253
3254         prior_fackets = tp->fackets_out;
3255         prior_in_flight = tcp_packets_in_flight(tp);
3256
3257         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3258                 /* Window is constant, pure forward advance.
3259                  * No more checks are required.
3260                  * Note, we use the fact that SND.UNA>=SND.WL2.
3261                  */
3262                 tcp_update_wl(tp, ack, ack_seq);
3263                 tp->snd_una = ack;
3264                 flag |= FLAG_WIN_UPDATE;
3265
3266                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3267
3268                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3269         } else {
3270                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3271                         flag |= FLAG_DATA;
3272                 else
3273                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3274
3275                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3276
3277                 if (TCP_SKB_CB(skb)->sacked)
3278                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3279
3280                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3281                         flag |= FLAG_ECE;
3282
3283                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3284         }
3285
3286         /* We passed data and got it acked, remove any soft error
3287          * log. Something worked...
3288          */
3289         sk->sk_err_soft = 0;
3290         tp->rcv_tstamp = tcp_time_stamp;
3291         prior_packets = tp->packets_out;
3292         if (!prior_packets)
3293                 goto no_queue;
3294
3295         /* See if we can take anything off of the retransmit queue. */
3296         flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3297
3298         if (tp->frto_counter)
3299                 frto_cwnd = tcp_process_frto(sk, flag);
3300         /* Guarantee sacktag reordering detection against wrap-arounds */
3301         if (before(tp->frto_highmark, tp->snd_una))
3302                 tp->frto_highmark = 0;
3303
3304         if (tcp_ack_is_dubious(sk, flag)) {
3305                 /* Advance CWND, if state allows this. */
3306                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3307                     tcp_may_raise_cwnd(sk, flag))
3308                         tcp_cong_avoid(sk, ack, prior_in_flight);
3309                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3310                                       flag);
3311         } else {
3312                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3313                         tcp_cong_avoid(sk, ack, prior_in_flight);
3314         }
3315
3316         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3317                 dst_confirm(sk->sk_dst_cache);
3318
3319         return 1;
3320
3321 no_queue:
3322         icsk->icsk_probes_out = 0;
3323
3324         /* If this ack opens up a zero window, clear backoff.  It was
3325          * being used to time the probes, and is probably far higher than
3326          * it needs to be for normal retransmission.
3327          */
3328         if (tcp_send_head(sk))
3329                 tcp_ack_probe(sk);
3330         return 1;
3331
3332 old_ack:
3333         if (TCP_SKB_CB(skb)->sacked) {
3334                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3335                 if (icsk->icsk_ca_state == TCP_CA_Open)
3336                         tcp_try_keep_open(sk);
3337         }
3338
3339 uninteresting_ack:
3340         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3341         return 0;
3342 }
3343
3344 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3345  * But, this can also be called on packets in the established flow when
3346  * the fast version below fails.
3347  */
3348 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3349                        int estab)
3350 {
3351         unsigned char *ptr;
3352         struct tcphdr *th = tcp_hdr(skb);
3353         int length = (th->doff * 4) - sizeof(struct tcphdr);
3354
3355         ptr = (unsigned char *)(th + 1);
3356         opt_rx->saw_tstamp = 0;
3357
3358         while (length > 0) {
3359                 int opcode = *ptr++;
3360                 int opsize;
3361
3362                 switch (opcode) {
3363                 case TCPOPT_EOL:
3364                         return;
3365                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3366                         length--;
3367                         continue;
3368                 default:
3369                         opsize = *ptr++;
3370                         if (opsize < 2) /* "silly options" */
3371                                 return;
3372                         if (opsize > length)
3373                                 return; /* don't parse partial options */
3374                         switch (opcode) {
3375                         case TCPOPT_MSS:
3376                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3377                                         u16 in_mss = get_unaligned_be16(ptr);
3378                                         if (in_mss) {
3379                                                 if (opt_rx->user_mss &&
3380                                                     opt_rx->user_mss < in_mss)
3381                                                         in_mss = opt_rx->user_mss;
3382                                                 opt_rx->mss_clamp = in_mss;
3383                                         }
3384                                 }
3385                                 break;
3386                         case TCPOPT_WINDOW:
3387                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3388                                     !estab && sysctl_tcp_window_scaling) {
3389                                         __u8 snd_wscale = *(__u8 *)ptr;
3390                                         opt_rx->wscale_ok = 1;
3391                                         if (snd_wscale > 14) {
3392                                                 if (net_ratelimit())
3393                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3394                                                                "scaling value %d >14 received.\n",
3395                                                                snd_wscale);
3396                                                 snd_wscale = 14;
3397                                         }
3398                                         opt_rx->snd_wscale = snd_wscale;
3399                                 }
3400                                 break;
3401                         case TCPOPT_TIMESTAMP:
3402                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3403                                     ((estab && opt_rx->tstamp_ok) ||
3404                                      (!estab && sysctl_tcp_timestamps))) {
3405                                         opt_rx->saw_tstamp = 1;
3406                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3407                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3408                                 }
3409                                 break;
3410                         case TCPOPT_SACK_PERM:
3411                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3412                                     !estab && sysctl_tcp_sack) {
3413                                         opt_rx->sack_ok = 1;
3414                                         tcp_sack_reset(opt_rx);
3415                                 }
3416                                 break;
3417
3418                         case TCPOPT_SACK:
3419                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3420                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3421                                    opt_rx->sack_ok) {
3422                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3423                                 }
3424                                 break;
3425 #ifdef CONFIG_TCP_MD5SIG
3426                         case TCPOPT_MD5SIG:
3427                                 /*
3428                                  * The MD5 Hash has already been
3429                                  * checked (see tcp_v{4,6}_do_rcv()).
3430                                  */
3431                                 break;
3432 #endif
3433                         }
3434
3435                         ptr += opsize-2;
3436                         length -= opsize;
3437                 }
3438         }
3439 }
3440
3441 /* Fast parse options. This hopes to only see timestamps.
3442  * If it is wrong it falls back on tcp_parse_options().
3443  */
3444 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3445                                   struct tcp_sock *tp)
3446 {
3447         if (th->doff == sizeof(struct tcphdr) >> 2) {
3448                 tp->rx_opt.saw_tstamp = 0;
3449                 return 0;
3450         } else if (tp->rx_opt.tstamp_ok &&
3451                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3452                 __be32 *ptr = (__be32 *)(th + 1);
3453                 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3454                                   | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3455                         tp->rx_opt.saw_tstamp = 1;
3456                         ++ptr;
3457                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
3458                         ++ptr;
3459                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3460                         return 1;
3461                 }
3462         }
3463         tcp_parse_options(skb, &tp->rx_opt, 1);
3464         return 1;
3465 }
3466
3467 #ifdef CONFIG_TCP_MD5SIG
3468 /*
3469  * Parse MD5 Signature option
3470  */
3471 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3472 {
3473         int length = (th->doff << 2) - sizeof (*th);
3474         u8 *ptr = (u8*)(th + 1);
3475
3476         /* If the TCP option is too short, we can short cut */
3477         if (length < TCPOLEN_MD5SIG)
3478                 return NULL;
3479
3480         while (length > 0) {
3481                 int opcode = *ptr++;
3482                 int opsize;
3483
3484                 switch(opcode) {
3485                 case TCPOPT_EOL:
3486                         return NULL;
3487                 case TCPOPT_NOP:
3488                         length--;
3489                         continue;
3490                 default:
3491                         opsize = *ptr++;
3492                         if (opsize < 2 || opsize > length)
3493                                 return NULL;
3494                         if (opcode == TCPOPT_MD5SIG)
3495                                 return ptr;
3496                 }
3497                 ptr += opsize - 2;
3498                 length -= opsize;
3499         }
3500         return NULL;
3501 }
3502 #endif
3503
3504 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3505 {
3506         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3507         tp->rx_opt.ts_recent_stamp = get_seconds();
3508 }
3509
3510 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3511 {
3512         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3513                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3514                  * extra check below makes sure this can only happen
3515                  * for pure ACK frames.  -DaveM
3516                  *
3517                  * Not only, also it occurs for expired timestamps.
3518                  */
3519
3520                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3521                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3522                         tcp_store_ts_recent(tp);
3523         }
3524 }
3525
3526 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3527  *
3528  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3529  * it can pass through stack. So, the following predicate verifies that
3530  * this segment is not used for anything but congestion avoidance or
3531  * fast retransmit. Moreover, we even are able to eliminate most of such
3532  * second order effects, if we apply some small "replay" window (~RTO)
3533  * to timestamp space.
3534  *
3535  * All these measures still do not guarantee that we reject wrapped ACKs
3536  * on networks with high bandwidth, when sequence space is recycled fastly,
3537  * but it guarantees that such events will be very rare and do not affect
3538  * connection seriously. This doesn't look nice, but alas, PAWS is really
3539  * buggy extension.
3540  *
3541  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3542  * states that events when retransmit arrives after original data are rare.
3543  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3544  * the biggest problem on large power networks even with minor reordering.
3545  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3546  * up to bandwidth of 18Gigabit/sec. 8) ]
3547  */
3548
3549 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3550 {
3551         struct tcp_sock *tp = tcp_sk(sk);
3552         struct tcphdr *th = tcp_hdr(skb);
3553         u32 seq = TCP_SKB_CB(skb)->seq;
3554         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3555
3556         return (/* 1. Pure ACK with correct sequence number. */
3557                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3558
3559                 /* 2. ... and duplicate ACK. */
3560                 ack == tp->snd_una &&
3561
3562                 /* 3. ... and does not update window. */
3563                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3564
3565                 /* 4. ... and sits in replay window. */
3566                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3567 }
3568
3569 static inline int tcp_paws_discard(const struct sock *sk,
3570                                    const struct sk_buff *skb)
3571 {
3572         const struct tcp_sock *tp = tcp_sk(sk);
3573         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3574                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3575                 !tcp_disordered_ack(sk, skb));
3576 }
3577
3578 /* Check segment sequence number for validity.
3579  *
3580  * Segment controls are considered valid, if the segment
3581  * fits to the window after truncation to the window. Acceptability
3582  * of data (and SYN, FIN, of course) is checked separately.
3583  * See tcp_data_queue(), for example.
3584  *
3585  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3586  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3587  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3588  * (borrowed from freebsd)
3589  */
3590
3591 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3592 {
3593         return  !before(end_seq, tp->rcv_wup) &&
3594                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3595 }
3596
3597 /* When we get a reset we do this. */
3598 static void tcp_reset(struct sock *sk)
3599 {
3600         /* We want the right error as BSD sees it (and indeed as we do). */
3601         switch (sk->sk_state) {
3602         case TCP_SYN_SENT:
3603                 sk->sk_err = ECONNREFUSED;
3604                 break;
3605         case TCP_CLOSE_WAIT:
3606                 sk->sk_err = EPIPE;
3607                 break;
3608         case TCP_CLOSE:
3609                 return;
3610         default:
3611                 sk->sk_err = ECONNRESET;
3612         }
3613
3614         if (!sock_flag(sk, SOCK_DEAD))
3615                 sk->sk_error_report(sk);
3616
3617         tcp_done(sk);
3618 }
3619
3620 /*
3621  *      Process the FIN bit. This now behaves as it is supposed to work
3622  *      and the FIN takes effect when it is validly part of sequence
3623  *      space. Not before when we get holes.
3624  *
3625  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3626  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3627  *      TIME-WAIT)
3628  *
3629  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3630  *      close and we go into CLOSING (and later onto TIME-WAIT)
3631  *
3632  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3633  */
3634 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3635 {
3636         struct tcp_sock *tp = tcp_sk(sk);
3637
3638         inet_csk_schedule_ack(sk);
3639
3640         sk->sk_shutdown |= RCV_SHUTDOWN;
3641         sock_set_flag(sk, SOCK_DONE);
3642
3643         switch (sk->sk_state) {
3644         case TCP_SYN_RECV:
3645         case TCP_ESTABLISHED:
3646                 /* Move to CLOSE_WAIT */
3647                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3648                 inet_csk(sk)->icsk_ack.pingpong = 1;
3649                 break;
3650
3651         case TCP_CLOSE_WAIT:
3652         case TCP_CLOSING:
3653                 /* Received a retransmission of the FIN, do
3654                  * nothing.
3655                  */
3656                 break;
3657         case TCP_LAST_ACK:
3658                 /* RFC793: Remain in the LAST-ACK state. */
3659                 break;
3660
3661         case TCP_FIN_WAIT1:
3662                 /* This case occurs when a simultaneous close
3663                  * happens, we must ack the received FIN and
3664                  * enter the CLOSING state.
3665                  */
3666                 tcp_send_ack(sk);
3667                 tcp_set_state(sk, TCP_CLOSING);
3668                 break;
3669         case TCP_FIN_WAIT2:
3670                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3671                 tcp_send_ack(sk);
3672                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3673                 break;
3674         default:
3675                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3676                  * cases we should never reach this piece of code.
3677                  */
3678                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3679                        __func__, sk->sk_state);
3680                 break;
3681         }
3682
3683         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3684          * Probably, we should reset in this case. For now drop them.
3685          */
3686         __skb_queue_purge(&tp->out_of_order_queue);
3687         if (tcp_is_sack(tp))
3688                 tcp_sack_reset(&tp->rx_opt);
3689         sk_mem_reclaim(sk);
3690
3691         if (!sock_flag(sk, SOCK_DEAD)) {
3692                 sk->sk_state_change(sk);
3693
3694                 /* Do not send POLL_HUP for half duplex close. */
3695                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3696                     sk->sk_state == TCP_CLOSE)
3697                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3698                 else
3699                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3700         }
3701 }
3702
3703 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3704                                   u32 end_seq)
3705 {
3706         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3707                 if (before(seq, sp->start_seq))
3708                         sp->start_seq = seq;
3709                 if (after(end_seq, sp->end_seq))
3710                         sp->end_seq = end_seq;
3711                 return 1;
3712         }
3713         return 0;
3714 }
3715
3716 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3717 {
3718         struct tcp_sock *tp = tcp_sk(sk);
3719
3720         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3721                 int mib_idx;
3722
3723                 if (before(seq, tp->rcv_nxt))
3724                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3725                 else
3726                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3727
3728                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3729
3730                 tp->rx_opt.dsack = 1;
3731                 tp->duplicate_sack[0].start_seq = seq;
3732                 tp->duplicate_sack[0].end_seq = end_seq;
3733                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3734                                            4 - tp->rx_opt.tstamp_ok);
3735         }
3736 }
3737
3738 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3739 {
3740         struct tcp_sock *tp = tcp_sk(sk);
3741
3742         if (!tp->rx_opt.dsack)
3743                 tcp_dsack_set(sk, seq, end_seq);
3744         else
3745                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3746 }
3747
3748 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3749 {
3750         struct tcp_sock *tp = tcp_sk(sk);
3751
3752         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3753             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3754                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3755                 tcp_enter_quickack_mode(sk);
3756
3757                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3758                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3759
3760                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3761                                 end_seq = tp->rcv_nxt;
3762                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3763                 }
3764         }
3765
3766         tcp_send_ack(sk);
3767 }
3768
3769 /* These routines update the SACK block as out-of-order packets arrive or
3770  * in-order packets close up the sequence space.
3771  */
3772 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3773 {
3774         int this_sack;
3775         struct tcp_sack_block *sp = &tp->selective_acks[0];
3776         struct tcp_sack_block *swalk = sp + 1;
3777
3778         /* See if the recent change to the first SACK eats into
3779          * or hits the sequence space of other SACK blocks, if so coalesce.
3780          */
3781         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3782                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3783                         int i;
3784
3785                         /* Zap SWALK, by moving every further SACK up by one slot.
3786                          * Decrease num_sacks.
3787                          */
3788                         tp->rx_opt.num_sacks--;
3789                         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3790                                                    tp->rx_opt.dsack,
3791                                                    4 - tp->rx_opt.tstamp_ok);
3792                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3793                                 sp[i] = sp[i + 1];
3794                         continue;
3795                 }
3796                 this_sack++, swalk++;
3797         }
3798 }
3799
3800 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3801                                  struct tcp_sack_block *sack2)
3802 {
3803         __u32 tmp;
3804
3805         tmp = sack1->start_seq;
3806         sack1->start_seq = sack2->start_seq;
3807         sack2->start_seq = tmp;
3808
3809         tmp = sack1->end_seq;
3810         sack1->end_seq = sack2->end_seq;
3811         sack2->end_seq = tmp;
3812 }
3813
3814 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3815 {
3816         struct tcp_sock *tp = tcp_sk(sk);
3817         struct tcp_sack_block *sp = &tp->selective_acks[0];
3818         int cur_sacks = tp->rx_opt.num_sacks;
3819         int this_sack;
3820
3821         if (!cur_sacks)
3822                 goto new_sack;
3823
3824         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3825                 if (tcp_sack_extend(sp, seq, end_seq)) {
3826                         /* Rotate this_sack to the first one. */
3827                         for (; this_sack > 0; this_sack--, sp--)
3828                                 tcp_sack_swap(sp, sp - 1);
3829                         if (cur_sacks > 1)
3830                                 tcp_sack_maybe_coalesce(tp);
3831                         return;
3832                 }
3833         }
3834
3835         /* Could not find an adjacent existing SACK, build a new one,
3836          * put it at the front, and shift everyone else down.  We
3837          * always know there is at least one SACK present already here.
3838          *
3839          * If the sack array is full, forget about the last one.
3840          */
3841         if (this_sack >= 4) {
3842                 this_sack--;
3843                 tp->rx_opt.num_sacks--;
3844                 sp--;
3845         }
3846         for (; this_sack > 0; this_sack--, sp--)
3847                 *sp = *(sp - 1);
3848
3849 new_sack:
3850         /* Build the new head SACK, and we're done. */
3851         sp->start_seq = seq;
3852         sp->end_seq = end_seq;
3853         tp->rx_opt.num_sacks++;
3854         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3855                                    4 - tp->rx_opt.tstamp_ok);
3856 }
3857
3858 /* RCV.NXT advances, some SACKs should be eaten. */
3859
3860 static void tcp_sack_remove(struct tcp_sock *tp)
3861 {
3862         struct tcp_sack_block *sp = &tp->selective_acks[0];
3863         int num_sacks = tp->rx_opt.num_sacks;
3864         int this_sack;
3865
3866         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3867         if (skb_queue_empty(&tp->out_of_order_queue)) {
3868                 tp->rx_opt.num_sacks = 0;
3869                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3870                 return;
3871         }
3872
3873         for (this_sack = 0; this_sack < num_sacks;) {
3874                 /* Check if the start of the sack is covered by RCV.NXT. */
3875                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3876                         int i;
3877
3878                         /* RCV.NXT must cover all the block! */
3879                         BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3880
3881                         /* Zap this SACK, by moving forward any other SACKS. */
3882                         for (i=this_sack+1; i < num_sacks; i++)
3883                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3884                         num_sacks--;
3885                         continue;
3886                 }
3887                 this_sack++;
3888                 sp++;
3889         }
3890         if (num_sacks != tp->rx_opt.num_sacks) {
3891                 tp->rx_opt.num_sacks = num_sacks;
3892                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3893                                            tp->rx_opt.dsack,
3894                                            4 - tp->rx_opt.tstamp_ok);
3895         }
3896 }
3897
3898 /* This one checks to see if we can put data from the
3899  * out_of_order queue into the receive_queue.
3900  */
3901 static void tcp_ofo_queue(struct sock *sk)
3902 {
3903         struct tcp_sock *tp = tcp_sk(sk);
3904         __u32 dsack_high = tp->rcv_nxt;
3905         struct sk_buff *skb;
3906
3907         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3908                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3909                         break;
3910
3911                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3912                         __u32 dsack = dsack_high;
3913                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3914                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3915                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3916                 }
3917
3918                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3919                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3920                         __skb_unlink(skb, &tp->out_of_order_queue);
3921                         __kfree_skb(skb);
3922                         continue;
3923                 }
3924                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3925                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3926                            TCP_SKB_CB(skb)->end_seq);
3927
3928                 __skb_unlink(skb, &tp->out_of_order_queue);
3929                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3930                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3931                 if (tcp_hdr(skb)->fin)
3932                         tcp_fin(skb, sk, tcp_hdr(skb));
3933         }
3934 }
3935
3936 static int tcp_prune_ofo_queue(struct sock *sk);
3937 static int tcp_prune_queue(struct sock *sk);
3938
3939 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3940 {
3941         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3942             !sk_rmem_schedule(sk, size)) {
3943
3944                 if (tcp_prune_queue(sk) < 0)
3945                         return -1;
3946
3947                 if (!sk_rmem_schedule(sk, size)) {
3948                         if (!tcp_prune_ofo_queue(sk))
3949                                 return -1;
3950
3951                         if (!sk_rmem_schedule(sk, size))
3952                                 return -1;
3953                 }
3954         }
3955         return 0;
3956 }
3957
3958 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3959 {
3960         struct tcphdr *th = tcp_hdr(skb);
3961         struct tcp_sock *tp = tcp_sk(sk);
3962         int eaten = -1;
3963
3964         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3965                 goto drop;
3966
3967         __skb_pull(skb, th->doff * 4);
3968
3969         TCP_ECN_accept_cwr(tp, skb);
3970
3971         if (tp->rx_opt.dsack) {
3972                 tp->rx_opt.dsack = 0;
3973                 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3974                                              4 - tp->rx_opt.tstamp_ok);
3975         }
3976
3977         /*  Queue data for delivery to the user.
3978          *  Packets in sequence go to the receive queue.
3979          *  Out of sequence packets to the out_of_order_queue.
3980          */
3981         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3982                 if (tcp_receive_window(tp) == 0)
3983                         goto out_of_window;
3984
3985                 /* Ok. In sequence. In window. */
3986                 if (tp->ucopy.task == current &&
3987                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3988                     sock_owned_by_user(sk) && !tp->urg_data) {
3989                         int chunk = min_t(unsigned int, skb->len,
3990                                           tp->ucopy.len);
3991
3992                         __set_current_state(TASK_RUNNING);
3993
3994                         local_bh_enable();
3995                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3996                                 tp->ucopy.len -= chunk;
3997                                 tp->copied_seq += chunk;
3998                                 eaten = (chunk == skb->len && !th->fin);
3999                                 tcp_rcv_space_adjust(sk);
4000                         }
4001                         local_bh_disable();
4002                 }
4003
4004                 if (eaten <= 0) {
4005 queue_and_out:
4006                         if (eaten < 0 &&
4007                             tcp_try_rmem_schedule(sk, skb->truesize))
4008                                 goto drop;
4009
4010                         skb_set_owner_r(skb, sk);
4011                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4012                 }
4013                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4014                 if (skb->len)
4015                         tcp_event_data_recv(sk, skb);
4016                 if (th->fin)
4017                         tcp_fin(skb, sk, th);
4018
4019                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4020                         tcp_ofo_queue(sk);
4021
4022                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4023                          * gap in queue is filled.
4024                          */
4025                         if (skb_queue_empty(&tp->out_of_order_queue))
4026                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4027                 }
4028
4029                 if (tp->rx_opt.num_sacks)
4030                         tcp_sack_remove(tp);
4031
4032                 tcp_fast_path_check(sk);
4033
4034                 if (eaten > 0)
4035                         __kfree_skb(skb);
4036                 else if (!sock_flag(sk, SOCK_DEAD))
4037                         sk->sk_data_ready(sk, 0);
4038                 return;
4039         }
4040
4041         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4042                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4043                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4044                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4045
4046 out_of_window:
4047                 tcp_enter_quickack_mode(sk);
4048                 inet_csk_schedule_ack(sk);
4049 drop:
4050                 __kfree_skb(skb);
4051                 return;
4052         }
4053
4054         /* Out of window. F.e. zero window probe. */
4055         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4056                 goto out_of_window;
4057
4058         tcp_enter_quickack_mode(sk);
4059
4060         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4061                 /* Partial packet, seq < rcv_next < end_seq */
4062                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4063                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4064                            TCP_SKB_CB(skb)->end_seq);
4065
4066                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4067
4068                 /* If window is closed, drop tail of packet. But after
4069                  * remembering D-SACK for its head made in previous line.
4070                  */
4071                 if (!tcp_receive_window(tp))
4072                         goto out_of_window;
4073                 goto queue_and_out;
4074         }
4075
4076         TCP_ECN_check_ce(tp, skb);
4077
4078         if (tcp_try_rmem_schedule(sk, skb->truesize))
4079                 goto drop;
4080
4081         /* Disable header prediction. */
4082         tp->pred_flags = 0;
4083         inet_csk_schedule_ack(sk);
4084
4085         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4086                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4087
4088         skb_set_owner_r(skb, sk);
4089
4090         if (!skb_peek(&tp->out_of_order_queue)) {
4091                 /* Initial out of order segment, build 1 SACK. */
4092                 if (tcp_is_sack(tp)) {
4093                         tp->rx_opt.num_sacks = 1;
4094                         tp->rx_opt.dsack     = 0;
4095                         tp->rx_opt.eff_sacks = 1;
4096                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4097                         tp->selective_acks[0].end_seq =
4098                                                 TCP_SKB_CB(skb)->end_seq;
4099                 }
4100                 __skb_queue_head(&tp->out_of_order_queue, skb);
4101         } else {
4102                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4103                 u32 seq = TCP_SKB_CB(skb)->seq;
4104                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4105
4106                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4107                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4108
4109                         if (!tp->rx_opt.num_sacks ||
4110                             tp->selective_acks[0].end_seq != seq)
4111                                 goto add_sack;
4112
4113                         /* Common case: data arrive in order after hole. */
4114                         tp->selective_acks[0].end_seq = end_seq;
4115                         return;
4116                 }
4117
4118                 /* Find place to insert this segment. */
4119                 do {
4120                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4121                                 break;
4122                 } while ((skb1 = skb1->prev) !=
4123                          (struct sk_buff *)&tp->out_of_order_queue);
4124
4125                 /* Do skb overlap to previous one? */
4126                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4127                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4128                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4129                                 /* All the bits are present. Drop. */
4130                                 __kfree_skb(skb);
4131                                 tcp_dsack_set(sk, seq, end_seq);
4132                                 goto add_sack;
4133                         }
4134                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4135                                 /* Partial overlap. */
4136                                 tcp_dsack_set(sk, seq,
4137                                               TCP_SKB_CB(skb1)->end_seq);
4138                         } else {
4139                                 skb1 = skb1->prev;
4140                         }
4141                 }
4142                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4143
4144                 /* And clean segments covered by new one as whole. */
4145                 while ((skb1 = skb->next) !=
4146                        (struct sk_buff *)&tp->out_of_order_queue &&
4147                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4148                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4149                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4150                                                  end_seq);
4151                                 break;
4152                         }
4153                         __skb_unlink(skb1, &tp->out_of_order_queue);
4154                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4155                                          TCP_SKB_CB(skb1)->end_seq);
4156                         __kfree_skb(skb1);
4157                 }
4158
4159 add_sack:
4160                 if (tcp_is_sack(tp))
4161                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4162         }
4163 }
4164
4165 /* Collapse contiguous sequence of skbs head..tail with
4166  * sequence numbers start..end.
4167  * Segments with FIN/SYN are not collapsed (only because this
4168  * simplifies code)
4169  */
4170 static void
4171 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4172              struct sk_buff *head, struct sk_buff *tail,
4173              u32 start, u32 end)
4174 {
4175         struct sk_buff *skb;
4176
4177         /* First, check that queue is collapsible and find
4178          * the point where collapsing can be useful. */
4179         for (skb = head; skb != tail;) {
4180                 /* No new bits? It is possible on ofo queue. */
4181                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4182                         struct sk_buff *next = skb->next;
4183                         __skb_unlink(skb, list);
4184                         __kfree_skb(skb);
4185                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4186                         skb = next;
4187                         continue;
4188                 }
4189
4190                 /* The first skb to collapse is:
4191                  * - not SYN/FIN and
4192                  * - bloated or contains data before "start" or
4193                  *   overlaps to the next one.
4194                  */
4195                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4196                     (tcp_win_from_space(skb->truesize) > skb->len ||
4197                      before(TCP_SKB_CB(skb)->seq, start) ||
4198                      (skb->next != tail &&
4199                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4200                         break;
4201
4202                 /* Decided to skip this, advance start seq. */
4203                 start = TCP_SKB_CB(skb)->end_seq;
4204                 skb = skb->next;
4205         }
4206         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4207                 return;
4208
4209         while (before(start, end)) {
4210                 struct sk_buff *nskb;
4211                 unsigned int header = skb_headroom(skb);
4212                 int copy = SKB_MAX_ORDER(header, 0);
4213
4214                 /* Too big header? This can happen with IPv6. */
4215                 if (copy < 0)
4216                         return;
4217                 if (end - start < copy)
4218                         copy = end - start;
4219                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4220                 if (!nskb)
4221                         return;
4222
4223                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4224                 skb_set_network_header(nskb, (skb_network_header(skb) -
4225                                               skb->head));
4226                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4227                                                 skb->head));
4228                 skb_reserve(nskb, header);
4229                 memcpy(nskb->head, skb->head, header);
4230                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4231                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4232                 __skb_insert(nskb, skb->prev, skb, list);
4233                 skb_set_owner_r(nskb, sk);
4234
4235                 /* Copy data, releasing collapsed skbs. */
4236                 while (copy > 0) {
4237                         int offset = start - TCP_SKB_CB(skb)->seq;
4238                         int size = TCP_SKB_CB(skb)->end_seq - start;
4239
4240                         BUG_ON(offset < 0);
4241                         if (size > 0) {
4242                                 size = min(copy, size);
4243                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4244                                         BUG();
4245                                 TCP_SKB_CB(nskb)->end_seq += size;
4246                                 copy -= size;
4247                                 start += size;
4248                         }
4249                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4250                                 struct sk_buff *next = skb->next;
4251                                 __skb_unlink(skb, list);
4252                                 __kfree_skb(skb);
4253                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4254                                 skb = next;
4255                                 if (skb == tail ||
4256                                     tcp_hdr(skb)->syn ||
4257                                     tcp_hdr(skb)->fin)
4258                                         return;
4259                         }
4260                 }
4261         }
4262 }
4263
4264 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4265  * and tcp_collapse() them until all the queue is collapsed.
4266  */
4267 static void tcp_collapse_ofo_queue(struct sock *sk)
4268 {
4269         struct tcp_sock *tp = tcp_sk(sk);
4270         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4271         struct sk_buff *head;
4272         u32 start, end;
4273
4274         if (skb == NULL)
4275                 return;
4276
4277         start = TCP_SKB_CB(skb)->seq;
4278         end = TCP_SKB_CB(skb)->end_seq;
4279         head = skb;
4280
4281         for (;;) {
4282                 skb = skb->next;
4283
4284                 /* Segment is terminated when we see gap or when
4285                  * we are at the end of all the queue. */
4286                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4287                     after(TCP_SKB_CB(skb)->seq, end) ||
4288                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4289                         tcp_collapse(sk, &tp->out_of_order_queue,
4290                                      head, skb, start, end);
4291                         head = skb;
4292                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4293                                 break;
4294                         /* Start new segment */
4295                         start = TCP_SKB_CB(skb)->seq;
4296                         end = TCP_SKB_CB(skb)->end_seq;
4297                 } else {
4298                         if (before(TCP_SKB_CB(skb)->seq, start))
4299                                 start = TCP_SKB_CB(skb)->seq;
4300                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4301                                 end = TCP_SKB_CB(skb)->end_seq;
4302                 }
4303         }
4304 }
4305
4306 /*
4307  * Purge the out-of-order queue.
4308  * Return true if queue was pruned.
4309  */
4310 static int tcp_prune_ofo_queue(struct sock *sk)
4311 {
4312         struct tcp_sock *tp = tcp_sk(sk);
4313         int res = 0;
4314
4315         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4316                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4317                 __skb_queue_purge(&tp->out_of_order_queue);
4318
4319                 /* Reset SACK state.  A conforming SACK implementation will
4320                  * do the same at a timeout based retransmit.  When a connection
4321                  * is in a sad state like this, we care only about integrity
4322                  * of the connection not performance.
4323                  */
4324                 if (tp->rx_opt.sack_ok)
4325                         tcp_sack_reset(&tp->rx_opt);
4326                 sk_mem_reclaim(sk);
4327                 res = 1;
4328         }
4329         return res;
4330 }
4331
4332 /* Reduce allocated memory if we can, trying to get
4333  * the socket within its memory limits again.
4334  *
4335  * Return less than zero if we should start dropping frames
4336  * until the socket owning process reads some of the data
4337  * to stabilize the situation.
4338  */
4339 static int tcp_prune_queue(struct sock *sk)
4340 {
4341         struct tcp_sock *tp = tcp_sk(sk);
4342
4343         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4344
4345         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4346
4347         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4348                 tcp_clamp_window(sk);
4349         else if (tcp_memory_pressure)
4350                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4351
4352         tcp_collapse_ofo_queue(sk);
4353         tcp_collapse(sk, &sk->sk_receive_queue,
4354                      sk->sk_receive_queue.next,
4355                      (struct sk_buff *)&sk->sk_receive_queue,
4356                      tp->copied_seq, tp->rcv_nxt);
4357         sk_mem_reclaim(sk);
4358
4359         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4360                 return 0;
4361
4362         /* Collapsing did not help, destructive actions follow.
4363          * This must not ever occur. */
4364
4365         tcp_prune_ofo_queue(sk);
4366
4367         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4368                 return 0;
4369
4370         /* If we are really being abused, tell the caller to silently
4371          * drop receive data on the floor.  It will get retransmitted
4372          * and hopefully then we'll have sufficient space.
4373          */
4374         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4375
4376         /* Massive buffer overcommit. */
4377         tp->pred_flags = 0;
4378         return -1;
4379 }
4380
4381 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4382  * As additional protections, we do not touch cwnd in retransmission phases,
4383  * and if application hit its sndbuf limit recently.
4384  */
4385 void tcp_cwnd_application_limited(struct sock *sk)
4386 {
4387         struct tcp_sock *tp = tcp_sk(sk);
4388
4389         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4390             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4391                 /* Limited by application or receiver window. */
4392                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4393                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4394                 if (win_used < tp->snd_cwnd) {
4395                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4396                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4397                 }
4398                 tp->snd_cwnd_used = 0;
4399         }
4400         tp->snd_cwnd_stamp = tcp_time_stamp;
4401 }
4402
4403 static int tcp_should_expand_sndbuf(struct sock *sk)
4404 {
4405         struct tcp_sock *tp = tcp_sk(sk);
4406
4407         /* If the user specified a specific send buffer setting, do
4408          * not modify it.
4409          */
4410         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4411                 return 0;
4412
4413         /* If we are under global TCP memory pressure, do not expand.  */
4414         if (tcp_memory_pressure)
4415                 return 0;
4416
4417         /* If we are under soft global TCP memory pressure, do not expand.  */
4418         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4419                 return 0;
4420
4421         /* If we filled the congestion window, do not expand.  */
4422         if (tp->packets_out >= tp->snd_cwnd)
4423                 return 0;
4424
4425         return 1;
4426 }
4427
4428 /* When incoming ACK allowed to free some skb from write_queue,
4429  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4430  * on the exit from tcp input handler.
4431  *
4432  * PROBLEM: sndbuf expansion does not work well with largesend.
4433  */
4434 static void tcp_new_space(struct sock *sk)
4435 {
4436         struct tcp_sock *tp = tcp_sk(sk);
4437
4438         if (tcp_should_expand_sndbuf(sk)) {
4439                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4440                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4441                     demanded = max_t(unsigned int, tp->snd_cwnd,
4442                                      tp->reordering + 1);
4443                 sndmem *= 2 * demanded;
4444                 if (sndmem > sk->sk_sndbuf)
4445                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4446                 tp->snd_cwnd_stamp = tcp_time_stamp;
4447         }
4448
4449         sk->sk_write_space(sk);
4450 }
4451
4452 static void tcp_check_space(struct sock *sk)
4453 {
4454         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4455                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4456                 if (sk->sk_socket &&
4457                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4458                         tcp_new_space(sk);
4459         }
4460 }
4461
4462 static inline void tcp_data_snd_check(struct sock *sk)
4463 {
4464         tcp_push_pending_frames(sk);
4465         tcp_check_space(sk);
4466 }
4467
4468 /*
4469  * Check if sending an ack is needed.
4470  */
4471 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4472 {
4473         struct tcp_sock *tp = tcp_sk(sk);
4474
4475             /* More than one full frame received... */
4476         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4477              /* ... and right edge of window advances far enough.
4478               * (tcp_recvmsg() will send ACK otherwise). Or...
4479               */
4480              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4481             /* We ACK each frame or... */
4482             tcp_in_quickack_mode(sk) ||
4483             /* We have out of order data. */
4484             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4485                 /* Then ack it now */
4486                 tcp_send_ack(sk);
4487         } else {
4488                 /* Else, send delayed ack. */
4489                 tcp_send_delayed_ack(sk);
4490         }
4491 }
4492
4493 static inline void tcp_ack_snd_check(struct sock *sk)
4494 {
4495         if (!inet_csk_ack_scheduled(sk)) {
4496                 /* We sent a data segment already. */
4497                 return;
4498         }
4499         __tcp_ack_snd_check(sk, 1);
4500 }
4501
4502 /*
4503  *      This routine is only called when we have urgent data
4504  *      signaled. Its the 'slow' part of tcp_urg. It could be
4505  *      moved inline now as tcp_urg is only called from one
4506  *      place. We handle URGent data wrong. We have to - as
4507  *      BSD still doesn't use the correction from RFC961.
4508  *      For 1003.1g we should support a new option TCP_STDURG to permit
4509  *      either form (or just set the sysctl tcp_stdurg).
4510  */
4511
4512 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4513 {
4514         struct tcp_sock *tp = tcp_sk(sk);
4515         u32 ptr = ntohs(th->urg_ptr);
4516
4517         if (ptr && !sysctl_tcp_stdurg)
4518                 ptr--;
4519         ptr += ntohl(th->seq);
4520
4521         /* Ignore urgent data that we've already seen and read. */
4522         if (after(tp->copied_seq, ptr))
4523                 return;
4524
4525         /* Do not replay urg ptr.
4526          *
4527          * NOTE: interesting situation not covered by specs.
4528          * Misbehaving sender may send urg ptr, pointing to segment,
4529          * which we already have in ofo queue. We are not able to fetch
4530          * such data and will stay in TCP_URG_NOTYET until will be eaten
4531          * by recvmsg(). Seems, we are not obliged to handle such wicked
4532          * situations. But it is worth to think about possibility of some
4533          * DoSes using some hypothetical application level deadlock.
4534          */
4535         if (before(ptr, tp->rcv_nxt))
4536                 return;
4537
4538         /* Do we already have a newer (or duplicate) urgent pointer? */
4539         if (tp->urg_data && !after(ptr, tp->urg_seq))
4540                 return;
4541
4542         /* Tell the world about our new urgent pointer. */
4543         sk_send_sigurg(sk);
4544
4545         /* We may be adding urgent data when the last byte read was
4546          * urgent. To do this requires some care. We cannot just ignore
4547          * tp->copied_seq since we would read the last urgent byte again
4548          * as data, nor can we alter copied_seq until this data arrives
4549          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4550          *
4551          * NOTE. Double Dutch. Rendering to plain English: author of comment
4552          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4553          * and expect that both A and B disappear from stream. This is _wrong_.
4554          * Though this happens in BSD with high probability, this is occasional.
4555          * Any application relying on this is buggy. Note also, that fix "works"
4556          * only in this artificial test. Insert some normal data between A and B and we will
4557          * decline of BSD again. Verdict: it is better to remove to trap
4558          * buggy users.
4559          */
4560         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4561             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4562                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4563                 tp->copied_seq++;
4564                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4565                         __skb_unlink(skb, &sk->sk_receive_queue);
4566                         __kfree_skb(skb);
4567                 }
4568         }
4569
4570         tp->urg_data = TCP_URG_NOTYET;
4571         tp->urg_seq = ptr;
4572
4573         /* Disable header prediction. */
4574         tp->pred_flags = 0;
4575 }
4576
4577 /* This is the 'fast' part of urgent handling. */
4578 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4579 {
4580         struct tcp_sock *tp = tcp_sk(sk);
4581
4582         /* Check if we get a new urgent pointer - normally not. */
4583         if (th->urg)
4584                 tcp_check_urg(sk, th);
4585
4586         /* Do we wait for any urgent data? - normally not... */
4587         if (tp->urg_data == TCP_URG_NOTYET) {
4588                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4589                           th->syn;
4590
4591                 /* Is the urgent pointer pointing into this packet? */
4592                 if (ptr < skb->len) {
4593                         u8 tmp;
4594                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4595                                 BUG();
4596                         tp->urg_data = TCP_URG_VALID | tmp;
4597                         if (!sock_flag(sk, SOCK_DEAD))
4598                                 sk->sk_data_ready(sk, 0);
4599                 }
4600         }
4601 }
4602
4603 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4604 {
4605         struct tcp_sock *tp = tcp_sk(sk);
4606         int chunk = skb->len - hlen;
4607         int err;
4608
4609         local_bh_enable();
4610         if (skb_csum_unnecessary(skb))
4611                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4612         else
4613                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4614                                                        tp->ucopy.iov);
4615
4616         if (!err) {
4617                 tp->ucopy.len -= chunk;
4618                 tp->copied_seq += chunk;
4619                 tcp_rcv_space_adjust(sk);
4620         }
4621
4622         local_bh_disable();
4623         return err;
4624 }
4625
4626 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4627                                             struct sk_buff *skb)
4628 {
4629         __sum16 result;
4630
4631         if (sock_owned_by_user(sk)) {
4632                 local_bh_enable();
4633                 result = __tcp_checksum_complete(skb);
4634                 local_bh_disable();
4635         } else {
4636                 result = __tcp_checksum_complete(skb);
4637         }
4638         return result;
4639 }
4640
4641 static inline int tcp_checksum_complete_user(struct sock *sk,
4642                                              struct sk_buff *skb)
4643 {
4644         return !skb_csum_unnecessary(skb) &&
4645                __tcp_checksum_complete_user(sk, skb);
4646 }
4647
4648 #ifdef CONFIG_NET_DMA
4649 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4650                                   int hlen)
4651 {
4652         struct tcp_sock *tp = tcp_sk(sk);
4653         int chunk = skb->len - hlen;
4654         int dma_cookie;
4655         int copied_early = 0;
4656
4657         if (tp->ucopy.wakeup)
4658                 return 0;
4659
4660         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4661                 tp->ucopy.dma_chan = get_softnet_dma();
4662
4663         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4664
4665                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4666                                                          skb, hlen,
4667                                                          tp->ucopy.iov, chunk,
4668                                                          tp->ucopy.pinned_list);
4669
4670                 if (dma_cookie < 0)
4671                         goto out;
4672
4673                 tp->ucopy.dma_cookie = dma_cookie;
4674                 copied_early = 1;
4675
4676                 tp->ucopy.len -= chunk;
4677                 tp->copied_seq += chunk;
4678                 tcp_rcv_space_adjust(sk);
4679
4680                 if ((tp->ucopy.len == 0) ||
4681                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4682                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4683                         tp->ucopy.wakeup = 1;
4684                         sk->sk_data_ready(sk, 0);
4685                 }
4686         } else if (chunk > 0) {
4687                 tp->ucopy.wakeup = 1;
4688                 sk->sk_data_ready(sk, 0);
4689         }
4690 out:
4691         return copied_early;
4692 }
4693 #endif /* CONFIG_NET_DMA */
4694
4695 /*
4696  *      TCP receive function for the ESTABLISHED state.
4697  *
4698  *      It is split into a fast path and a slow path. The fast path is
4699  *      disabled when:
4700  *      - A zero window was announced from us - zero window probing
4701  *        is only handled properly in the slow path.
4702  *      - Out of order segments arrived.
4703  *      - Urgent data is expected.
4704  *      - There is no buffer space left
4705  *      - Unexpected TCP flags/window values/header lengths are received
4706  *        (detected by checking the TCP header against pred_flags)
4707  *      - Data is sent in both directions. Fast path only supports pure senders
4708  *        or pure receivers (this means either the sequence number or the ack
4709  *        value must stay constant)
4710  *      - Unexpected TCP option.
4711  *
4712  *      When these conditions are not satisfied it drops into a standard
4713  *      receive procedure patterned after RFC793 to handle all cases.
4714  *      The first three cases are guaranteed by proper pred_flags setting,
4715  *      the rest is checked inline. Fast processing is turned on in
4716  *      tcp_data_queue when everything is OK.
4717  */
4718 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4719                         struct tcphdr *th, unsigned len)
4720 {
4721         struct tcp_sock *tp = tcp_sk(sk);
4722
4723         /*
4724          *      Header prediction.
4725          *      The code loosely follows the one in the famous
4726          *      "30 instruction TCP receive" Van Jacobson mail.
4727          *
4728          *      Van's trick is to deposit buffers into socket queue
4729          *      on a device interrupt, to call tcp_recv function
4730          *      on the receive process context and checksum and copy
4731          *      the buffer to user space. smart...
4732          *
4733          *      Our current scheme is not silly either but we take the
4734          *      extra cost of the net_bh soft interrupt processing...
4735          *      We do checksum and copy also but from device to kernel.
4736          */
4737
4738         tp->rx_opt.saw_tstamp = 0;
4739
4740         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4741          *      if header_prediction is to be made
4742          *      'S' will always be tp->tcp_header_len >> 2
4743          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4744          *  turn it off (when there are holes in the receive
4745          *       space for instance)
4746          *      PSH flag is ignored.
4747          */
4748
4749         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4750             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4751                 int tcp_header_len = tp->tcp_header_len;
4752
4753                 /* Timestamp header prediction: tcp_header_len
4754                  * is automatically equal to th->doff*4 due to pred_flags
4755                  * match.
4756                  */
4757
4758                 /* Check timestamp */
4759                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4760                         __be32 *ptr = (__be32 *)(th + 1);
4761
4762                         /* No? Slow path! */
4763                         if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4764                                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4765                                 goto slow_path;
4766
4767                         tp->rx_opt.saw_tstamp = 1;
4768                         ++ptr;
4769                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
4770                         ++ptr;
4771                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4772
4773                         /* If PAWS failed, check it more carefully in slow path */
4774                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4775                                 goto slow_path;
4776
4777                         /* DO NOT update ts_recent here, if checksum fails
4778                          * and timestamp was corrupted part, it will result
4779                          * in a hung connection since we will drop all
4780                          * future packets due to the PAWS test.
4781                          */
4782                 }
4783
4784                 if (len <= tcp_header_len) {
4785                         /* Bulk data transfer: sender */
4786                         if (len == tcp_header_len) {
4787                                 /* Predicted packet is in window by definition.
4788                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4789                                  * Hence, check seq<=rcv_wup reduces to:
4790                                  */
4791                                 if (tcp_header_len ==
4792                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4793                                     tp->rcv_nxt == tp->rcv_wup)
4794                                         tcp_store_ts_recent(tp);
4795
4796                                 /* We know that such packets are checksummed
4797                                  * on entry.
4798                                  */
4799                                 tcp_ack(sk, skb, 0);
4800                                 __kfree_skb(skb);
4801                                 tcp_data_snd_check(sk);
4802                                 return 0;
4803                         } else { /* Header too small */
4804                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4805                                 goto discard;
4806                         }
4807                 } else {
4808                         int eaten = 0;
4809                         int copied_early = 0;
4810
4811                         if (tp->copied_seq == tp->rcv_nxt &&
4812                             len - tcp_header_len <= tp->ucopy.len) {
4813 #ifdef CONFIG_NET_DMA
4814                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4815                                         copied_early = 1;
4816                                         eaten = 1;
4817                                 }
4818 #endif
4819                                 if (tp->ucopy.task == current &&
4820                                     sock_owned_by_user(sk) && !copied_early) {
4821                                         __set_current_state(TASK_RUNNING);
4822
4823                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4824                                                 eaten = 1;
4825                                 }
4826                                 if (eaten) {
4827                                         /* Predicted packet is in window by definition.
4828                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4829                                          * Hence, check seq<=rcv_wup reduces to:
4830                                          */
4831                                         if (tcp_header_len ==
4832                                             (sizeof(struct tcphdr) +
4833                                              TCPOLEN_TSTAMP_ALIGNED) &&
4834                                             tp->rcv_nxt == tp->rcv_wup)
4835                                                 tcp_store_ts_recent(tp);
4836
4837                                         tcp_rcv_rtt_measure_ts(sk, skb);
4838
4839                                         __skb_pull(skb, tcp_header_len);
4840                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4841                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4842                                 }
4843                                 if (copied_early)
4844                                         tcp_cleanup_rbuf(sk, skb->len);
4845                         }
4846                         if (!eaten) {
4847                                 if (tcp_checksum_complete_user(sk, skb))
4848                                         goto csum_error;
4849
4850                                 /* Predicted packet is in window by definition.
4851                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4852                                  * Hence, check seq<=rcv_wup reduces to:
4853                                  */
4854                                 if (tcp_header_len ==
4855                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4856                                     tp->rcv_nxt == tp->rcv_wup)
4857                                         tcp_store_ts_recent(tp);
4858
4859                                 tcp_rcv_rtt_measure_ts(sk, skb);
4860
4861                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4862                                         goto step5;
4863
4864                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
4865
4866                                 /* Bulk data transfer: receiver */
4867                                 __skb_pull(skb, tcp_header_len);
4868                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4869                                 skb_set_owner_r(skb, sk);
4870                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4871                         }
4872
4873                         tcp_event_data_recv(sk, skb);
4874
4875                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4876                                 /* Well, only one small jumplet in fast path... */
4877                                 tcp_ack(sk, skb, FLAG_DATA);
4878                                 tcp_data_snd_check(sk);
4879                                 if (!inet_csk_ack_scheduled(sk))
4880                                         goto no_ack;
4881                         }
4882
4883                         __tcp_ack_snd_check(sk, 0);
4884 no_ack:
4885 #ifdef CONFIG_NET_DMA
4886                         if (copied_early)
4887                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4888                         else
4889 #endif
4890                         if (eaten)
4891                                 __kfree_skb(skb);
4892                         else
4893                                 sk->sk_data_ready(sk, 0);
4894                         return 0;
4895                 }
4896         }
4897
4898 slow_path:
4899         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4900                 goto csum_error;
4901
4902         /*
4903          * RFC1323: H1. Apply PAWS check first.
4904          */
4905         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4906             tcp_paws_discard(sk, skb)) {
4907                 if (!th->rst) {
4908                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4909                         tcp_send_dupack(sk, skb);
4910                         goto discard;
4911                 }
4912                 /* Resets are accepted even if PAWS failed.
4913
4914                    ts_recent update must be made after we are sure
4915                    that the packet is in window.
4916                  */
4917         }
4918
4919         /*
4920          *      Standard slow path.
4921          */
4922
4923         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4924                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4925                  * (RST) segments are validated by checking their SEQ-fields."
4926                  * And page 69: "If an incoming segment is not acceptable,
4927                  * an acknowledgment should be sent in reply (unless the RST bit
4928                  * is set, if so drop the segment and return)".
4929                  */
4930                 if (!th->rst)
4931                         tcp_send_dupack(sk, skb);
4932                 goto discard;
4933         }
4934
4935         if (th->rst) {
4936                 tcp_reset(sk);
4937                 goto discard;
4938         }
4939
4940         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4941
4942         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4943                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4944                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4945                 tcp_reset(sk);
4946                 return 1;
4947         }
4948
4949 step5:
4950         if (th->ack)
4951                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4952
4953         tcp_rcv_rtt_measure_ts(sk, skb);
4954
4955         /* Process urgent data. */
4956         tcp_urg(sk, skb, th);
4957
4958         /* step 7: process the segment text */
4959         tcp_data_queue(sk, skb);
4960
4961         tcp_data_snd_check(sk);
4962         tcp_ack_snd_check(sk);
4963         return 0;
4964
4965 csum_error:
4966         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4967
4968 discard:
4969         __kfree_skb(skb);
4970         return 0;
4971 }
4972
4973 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4974                                          struct tcphdr *th, unsigned len)
4975 {
4976         struct tcp_sock *tp = tcp_sk(sk);
4977         struct inet_connection_sock *icsk = inet_csk(sk);
4978         int saved_clamp = tp->rx_opt.mss_clamp;
4979
4980         tcp_parse_options(skb, &tp->rx_opt, 0);
4981
4982         if (th->ack) {
4983                 /* rfc793:
4984                  * "If the state is SYN-SENT then
4985                  *    first check the ACK bit
4986                  *      If the ACK bit is set
4987                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4988                  *        a reset (unless the RST bit is set, if so drop
4989                  *        the segment and return)"
4990                  *
4991                  *  We do not send data with SYN, so that RFC-correct
4992                  *  test reduces to:
4993                  */
4994                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4995                         goto reset_and_undo;
4996
4997                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4998                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4999                              tcp_time_stamp)) {
5000                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5001                         goto reset_and_undo;
5002                 }
5003
5004                 /* Now ACK is acceptable.
5005                  *
5006                  * "If the RST bit is set
5007                  *    If the ACK was acceptable then signal the user "error:
5008                  *    connection reset", drop the segment, enter CLOSED state,
5009                  *    delete TCB, and return."
5010                  */
5011
5012                 if (th->rst) {
5013                         tcp_reset(sk);
5014                         goto discard;
5015                 }
5016
5017                 /* rfc793:
5018                  *   "fifth, if neither of the SYN or RST bits is set then
5019                  *    drop the segment and return."
5020                  *
5021                  *    See note below!
5022                  *                                        --ANK(990513)
5023                  */
5024                 if (!th->syn)
5025                         goto discard_and_undo;
5026
5027                 /* rfc793:
5028                  *   "If the SYN bit is on ...
5029                  *    are acceptable then ...
5030                  *    (our SYN has been ACKed), change the connection
5031                  *    state to ESTABLISHED..."
5032                  */
5033
5034                 TCP_ECN_rcv_synack(tp, th);
5035
5036                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5037                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5038
5039                 /* Ok.. it's good. Set up sequence numbers and
5040                  * move to established.
5041                  */
5042                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5043                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5044
5045                 /* RFC1323: The window in SYN & SYN/ACK segments is
5046                  * never scaled.
5047                  */
5048                 tp->snd_wnd = ntohs(th->window);
5049                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5050
5051                 if (!tp->rx_opt.wscale_ok) {
5052                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5053                         tp->window_clamp = min(tp->window_clamp, 65535U);
5054                 }
5055
5056                 if (tp->rx_opt.saw_tstamp) {
5057                         tp->rx_opt.tstamp_ok       = 1;
5058                         tp->tcp_header_len =
5059                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5060                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5061                         tcp_store_ts_recent(tp);
5062                 } else {
5063                         tp->tcp_header_len = sizeof(struct tcphdr);
5064                 }
5065
5066                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5067                         tcp_enable_fack(tp);
5068
5069                 tcp_mtup_init(sk);
5070                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5071                 tcp_initialize_rcv_mss(sk);
5072
5073                 /* Remember, tcp_poll() does not lock socket!
5074                  * Change state from SYN-SENT only after copied_seq
5075                  * is initialized. */
5076                 tp->copied_seq = tp->rcv_nxt;
5077                 smp_mb();
5078                 tcp_set_state(sk, TCP_ESTABLISHED);
5079
5080                 security_inet_conn_established(sk, skb);
5081
5082                 /* Make sure socket is routed, for correct metrics.  */
5083                 icsk->icsk_af_ops->rebuild_header(sk);
5084
5085                 tcp_init_metrics(sk);
5086
5087                 tcp_init_congestion_control(sk);
5088
5089                 /* Prevent spurious tcp_cwnd_restart() on first data
5090                  * packet.
5091                  */
5092                 tp->lsndtime = tcp_time_stamp;
5093
5094                 tcp_init_buffer_space(sk);
5095
5096                 if (sock_flag(sk, SOCK_KEEPOPEN))
5097                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5098
5099                 if (!tp->rx_opt.snd_wscale)
5100                         __tcp_fast_path_on(tp, tp->snd_wnd);
5101                 else
5102                         tp->pred_flags = 0;
5103
5104                 if (!sock_flag(sk, SOCK_DEAD)) {
5105                         sk->sk_state_change(sk);
5106                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5107                 }
5108
5109                 if (sk->sk_write_pending ||
5110                     icsk->icsk_accept_queue.rskq_defer_accept ||
5111                     icsk->icsk_ack.pingpong) {
5112                         /* Save one ACK. Data will be ready after
5113                          * several ticks, if write_pending is set.
5114                          *
5115                          * It may be deleted, but with this feature tcpdumps
5116                          * look so _wonderfully_ clever, that I was not able
5117                          * to stand against the temptation 8)     --ANK
5118                          */
5119                         inet_csk_schedule_ack(sk);
5120                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5121                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5122                         tcp_incr_quickack(sk);
5123                         tcp_enter_quickack_mode(sk);
5124                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5125                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5126
5127 discard:
5128                         __kfree_skb(skb);
5129                         return 0;
5130                 } else {
5131                         tcp_send_ack(sk);
5132                 }
5133                 return -1;
5134         }
5135
5136         /* No ACK in the segment */
5137
5138         if (th->rst) {
5139                 /* rfc793:
5140                  * "If the RST bit is set
5141                  *
5142                  *      Otherwise (no ACK) drop the segment and return."
5143                  */
5144
5145                 goto discard_and_undo;
5146         }
5147
5148         /* PAWS check. */
5149         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5150             tcp_paws_check(&tp->rx_opt, 0))
5151                 goto discard_and_undo;
5152
5153         if (th->syn) {
5154                 /* We see SYN without ACK. It is attempt of
5155                  * simultaneous connect with crossed SYNs.
5156                  * Particularly, it can be connect to self.
5157                  */
5158                 tcp_set_state(sk, TCP_SYN_RECV);
5159
5160                 if (tp->rx_opt.saw_tstamp) {
5161                         tp->rx_opt.tstamp_ok = 1;
5162                         tcp_store_ts_recent(tp);
5163                         tp->tcp_header_len =
5164                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5165                 } else {
5166                         tp->tcp_header_len = sizeof(struct tcphdr);
5167                 }
5168
5169                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5170                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5171
5172                 /* RFC1323: The window in SYN & SYN/ACK segments is
5173                  * never scaled.
5174                  */
5175                 tp->snd_wnd    = ntohs(th->window);
5176                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5177                 tp->max_window = tp->snd_wnd;
5178
5179                 TCP_ECN_rcv_syn(tp, th);
5180
5181                 tcp_mtup_init(sk);
5182                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5183                 tcp_initialize_rcv_mss(sk);
5184
5185                 tcp_send_synack(sk);
5186 #if 0
5187                 /* Note, we could accept data and URG from this segment.
5188                  * There are no obstacles to make this.
5189                  *
5190                  * However, if we ignore data in ACKless segments sometimes,
5191                  * we have no reasons to accept it sometimes.
5192                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5193                  * is not flawless. So, discard packet for sanity.
5194                  * Uncomment this return to process the data.
5195                  */
5196                 return -1;
5197 #else
5198                 goto discard;
5199 #endif
5200         }
5201         /* "fifth, if neither of the SYN or RST bits is set then
5202          * drop the segment and return."
5203          */
5204
5205 discard_and_undo:
5206         tcp_clear_options(&tp->rx_opt);
5207         tp->rx_opt.mss_clamp = saved_clamp;
5208         goto discard;
5209
5210 reset_and_undo:
5211         tcp_clear_options(&tp->rx_opt);
5212         tp->rx_opt.mss_clamp = saved_clamp;
5213         return 1;
5214 }
5215
5216 /*
5217  *      This function implements the receiving procedure of RFC 793 for
5218  *      all states except ESTABLISHED and TIME_WAIT.
5219  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5220  *      address independent.
5221  */
5222
5223 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5224                           struct tcphdr *th, unsigned len)
5225 {
5226         struct tcp_sock *tp = tcp_sk(sk);
5227         struct inet_connection_sock *icsk = inet_csk(sk);
5228         int queued = 0;
5229
5230         tp->rx_opt.saw_tstamp = 0;
5231
5232         switch (sk->sk_state) {
5233         case TCP_CLOSE:
5234                 goto discard;
5235
5236         case TCP_LISTEN:
5237                 if (th->ack)
5238                         return 1;
5239
5240                 if (th->rst)
5241                         goto discard;
5242
5243                 if (th->syn) {
5244                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5245                                 return 1;
5246
5247                         /* Now we have several options: In theory there is
5248                          * nothing else in the frame. KA9Q has an option to
5249                          * send data with the syn, BSD accepts data with the
5250                          * syn up to the [to be] advertised window and
5251                          * Solaris 2.1 gives you a protocol error. For now
5252                          * we just ignore it, that fits the spec precisely
5253                          * and avoids incompatibilities. It would be nice in
5254                          * future to drop through and process the data.
5255                          *
5256                          * Now that TTCP is starting to be used we ought to
5257                          * queue this data.
5258                          * But, this leaves one open to an easy denial of
5259                          * service attack, and SYN cookies can't defend
5260                          * against this problem. So, we drop the data
5261                          * in the interest of security over speed unless
5262                          * it's still in use.
5263                          */
5264                         kfree_skb(skb);
5265                         return 0;
5266                 }
5267                 goto discard;
5268
5269         case TCP_SYN_SENT:
5270                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5271                 if (queued >= 0)
5272                         return queued;
5273
5274                 /* Do step6 onward by hand. */
5275                 tcp_urg(sk, skb, th);
5276                 __kfree_skb(skb);
5277                 tcp_data_snd_check(sk);
5278                 return 0;
5279         }
5280
5281         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5282             tcp_paws_discard(sk, skb)) {
5283                 if (!th->rst) {
5284                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5285                         tcp_send_dupack(sk, skb);
5286                         goto discard;
5287                 }
5288                 /* Reset is accepted even if it did not pass PAWS. */
5289         }
5290
5291         /* step 1: check sequence number */
5292         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5293                 if (!th->rst)
5294                         tcp_send_dupack(sk, skb);
5295                 goto discard;
5296         }
5297
5298         /* step 2: check RST bit */
5299         if (th->rst) {
5300                 tcp_reset(sk);
5301                 goto discard;
5302         }
5303
5304         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5305
5306         /* step 3: check security and precedence [ignored] */
5307
5308         /*      step 4:
5309          *
5310          *      Check for a SYN in window.
5311          */
5312         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5313                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5314                 tcp_reset(sk);
5315                 return 1;
5316         }
5317
5318         /* step 5: check the ACK field */
5319         if (th->ack) {
5320                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5321
5322                 switch (sk->sk_state) {
5323                 case TCP_SYN_RECV:
5324                         if (acceptable) {
5325                                 tp->copied_seq = tp->rcv_nxt;
5326                                 smp_mb();
5327                                 tcp_set_state(sk, TCP_ESTABLISHED);
5328                                 sk->sk_state_change(sk);
5329
5330                                 /* Note, that this wakeup is only for marginal
5331                                  * crossed SYN case. Passively open sockets
5332                                  * are not waked up, because sk->sk_sleep ==
5333                                  * NULL and sk->sk_socket == NULL.
5334                                  */
5335                                 if (sk->sk_socket)
5336                                         sk_wake_async(sk,
5337                                                       SOCK_WAKE_IO, POLL_OUT);
5338
5339                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5340                                 tp->snd_wnd = ntohs(th->window) <<
5341                                               tp->rx_opt.snd_wscale;
5342                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5343                                             TCP_SKB_CB(skb)->seq);
5344
5345                                 /* tcp_ack considers this ACK as duplicate
5346                                  * and does not calculate rtt.
5347                                  * Fix it at least with timestamps.
5348                                  */
5349                                 if (tp->rx_opt.saw_tstamp &&
5350                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5351                                         tcp_ack_saw_tstamp(sk, 0);
5352
5353                                 if (tp->rx_opt.tstamp_ok)
5354                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5355
5356                                 /* Make sure socket is routed, for
5357                                  * correct metrics.
5358                                  */
5359                                 icsk->icsk_af_ops->rebuild_header(sk);
5360
5361                                 tcp_init_metrics(sk);
5362
5363                                 tcp_init_congestion_control(sk);
5364
5365                                 /* Prevent spurious tcp_cwnd_restart() on
5366                                  * first data packet.
5367                                  */
5368                                 tp->lsndtime = tcp_time_stamp;
5369
5370                                 tcp_mtup_init(sk);
5371                                 tcp_initialize_rcv_mss(sk);
5372                                 tcp_init_buffer_space(sk);
5373                                 tcp_fast_path_on(tp);
5374                         } else {
5375                                 return 1;
5376                         }
5377                         break;
5378
5379                 case TCP_FIN_WAIT1:
5380                         if (tp->snd_una == tp->write_seq) {
5381                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5382                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5383                                 dst_confirm(sk->sk_dst_cache);
5384
5385                                 if (!sock_flag(sk, SOCK_DEAD))
5386                                         /* Wake up lingering close() */
5387                                         sk->sk_state_change(sk);
5388                                 else {
5389                                         int tmo;
5390
5391                                         if (tp->linger2 < 0 ||
5392                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5393                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5394                                                 tcp_done(sk);
5395                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5396                                                 return 1;
5397                                         }
5398
5399                                         tmo = tcp_fin_time(sk);
5400                                         if (tmo > TCP_TIMEWAIT_LEN) {
5401                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5402                                         } else if (th->fin || sock_owned_by_user(sk)) {
5403                                                 /* Bad case. We could lose such FIN otherwise.
5404                                                  * It is not a big problem, but it looks confusing
5405                                                  * and not so rare event. We still can lose it now,
5406                                                  * if it spins in bh_lock_sock(), but it is really
5407                                                  * marginal case.
5408                                                  */
5409                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5410                                         } else {
5411                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5412                                                 goto discard;
5413                                         }
5414                                 }
5415                         }
5416                         break;
5417
5418                 case TCP_CLOSING:
5419                         if (tp->snd_una == tp->write_seq) {
5420                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5421                                 goto discard;
5422                         }
5423                         break;
5424
5425                 case TCP_LAST_ACK:
5426                         if (tp->snd_una == tp->write_seq) {
5427                                 tcp_update_metrics(sk);
5428                                 tcp_done(sk);
5429                                 goto discard;
5430                         }
5431                         break;
5432                 }
5433         } else
5434                 goto discard;
5435
5436         /* step 6: check the URG bit */
5437         tcp_urg(sk, skb, th);
5438
5439         /* step 7: process the segment text */
5440         switch (sk->sk_state) {
5441         case TCP_CLOSE_WAIT:
5442         case TCP_CLOSING:
5443         case TCP_LAST_ACK:
5444                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5445                         break;
5446         case TCP_FIN_WAIT1:
5447         case TCP_FIN_WAIT2:
5448                 /* RFC 793 says to queue data in these states,
5449                  * RFC 1122 says we MUST send a reset.
5450                  * BSD 4.4 also does reset.
5451                  */
5452                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5453                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5454                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5455                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5456                                 tcp_reset(sk);
5457                                 return 1;
5458                         }
5459                 }
5460                 /* Fall through */
5461         case TCP_ESTABLISHED:
5462                 tcp_data_queue(sk, skb);
5463                 queued = 1;
5464                 break;
5465         }
5466
5467         /* tcp_data could move socket to TIME-WAIT */
5468         if (sk->sk_state != TCP_CLOSE) {
5469                 tcp_data_snd_check(sk);
5470                 tcp_ack_snd_check(sk);
5471         }
5472
5473         if (!queued) {
5474 discard:
5475                 __kfree_skb(skb);
5476         }
5477         return 0;
5478 }
5479
5480 EXPORT_SYMBOL(sysctl_tcp_ecn);
5481 EXPORT_SYMBOL(sysctl_tcp_reordering);
5482 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5483 EXPORT_SYMBOL(tcp_parse_options);
5484 #ifdef CONFIG_TCP_MD5SIG
5485 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5486 #endif
5487 EXPORT_SYMBOL(tcp_rcv_established);
5488 EXPORT_SYMBOL(tcp_rcv_state_process);
5489 EXPORT_SYMBOL(tcp_initialize_rcv_mss);