]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/ipv4/tcp_input.c
[TCP]: Fix lost_retrans loop vs fastpath problems
[linux-2.6-omap-h63xx.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 /*
24  * Changes:
25  *              Pedro Roque     :       Fast Retransmit/Recovery.
26  *                                      Two receive queues.
27  *                                      Retransmit queue handled by TCP.
28  *                                      Better retransmit timer handling.
29  *                                      New congestion avoidance.
30  *                                      Header prediction.
31  *                                      Variable renaming.
32  *
33  *              Eric            :       Fast Retransmit.
34  *              Randy Scott     :       MSS option defines.
35  *              Eric Schenk     :       Fixes to slow start algorithm.
36  *              Eric Schenk     :       Yet another double ACK bug.
37  *              Eric Schenk     :       Delayed ACK bug fixes.
38  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
39  *              David S. Miller :       Don't allow zero congestion window.
40  *              Eric Schenk     :       Fix retransmitter so that it sends
41  *                                      next packet on ack of previous packet.
42  *              Andi Kleen      :       Moved open_request checking here
43  *                                      and process RSTs for open_requests.
44  *              Andi Kleen      :       Better prune_queue, and other fixes.
45  *              Andrey Savochkin:       Fix RTT measurements in the presence of
46  *                                      timestamps.
47  *              Andrey Savochkin:       Check sequence numbers correctly when
48  *                                      removing SACKs due to in sequence incoming
49  *                                      data segments.
50  *              Andi Kleen:             Make sure we never ack data there is not
51  *                                      enough room for. Also make this condition
52  *                                      a fatal error if it might still happen.
53  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
54  *                                      connections with MSS<min(MTU,ann. MSS)
55  *                                      work without delayed acks.
56  *              Andi Kleen:             Process packets with PSH set in the
57  *                                      fast path.
58  *              J Hadi Salim:           ECN support
59  *              Andrei Gurtov,
60  *              Pasi Sarolahti,
61  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
62  *                                      engine. Lots of bugs are found.
63  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
64  */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
96 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
97 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
99 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
100 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
101 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
102 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
103 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained DSACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121  * real world.
122  */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124                                 const struct sk_buff *skb)
125 {
126         struct inet_connection_sock *icsk = inet_csk(sk);
127         const unsigned int lss = icsk->icsk_ack.last_seg_size;
128         unsigned int len;
129
130         icsk->icsk_ack.last_seg_size = 0;
131
132         /* skb->len may jitter because of SACKs, even if peer
133          * sends good full-sized frames.
134          */
135         len = skb_shinfo(skb)->gso_size ?: skb->len;
136         if (len >= icsk->icsk_ack.rcv_mss) {
137                 icsk->icsk_ack.rcv_mss = len;
138         } else {
139                 /* Otherwise, we make more careful check taking into account,
140                  * that SACKs block is variable.
141                  *
142                  * "len" is invariant segment length, including TCP header.
143                  */
144                 len += skb->data - skb_transport_header(skb);
145                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146                     /* If PSH is not set, packet should be
147                      * full sized, provided peer TCP is not badly broken.
148                      * This observation (if it is correct 8)) allows
149                      * to handle super-low mtu links fairly.
150                      */
151                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153                         /* Subtract also invariant (if peer is RFC compliant),
154                          * tcp header plus fixed timestamp option length.
155                          * Resulting "len" is MSS free of SACK jitter.
156                          */
157                         len -= tcp_sk(sk)->tcp_header_len;
158                         icsk->icsk_ack.last_seg_size = len;
159                         if (len == lss) {
160                                 icsk->icsk_ack.rcv_mss = len;
161                                 return;
162                         }
163                 }
164                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167         }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172         struct inet_connection_sock *icsk = inet_csk(sk);
173         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175         if (quickacks==0)
176                 quickacks=2;
177         if (quickacks > icsk->icsk_ack.quick)
178                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183         struct inet_connection_sock *icsk = inet_csk(sk);
184         tcp_incr_quickack(sk);
185         icsk->icsk_ack.pingpong = 0;
186         icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195         const struct inet_connection_sock *icsk = inet_csk(sk);
196         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201         if (tp->ecn_flags&TCP_ECN_OK)
202                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207         if (tcp_hdr(skb)->cwr)
208                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218         if (tp->ecn_flags&TCP_ECN_OK) {
219                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221                 /* Funny extension: if ECT is not set on a segment,
222                  * it is surely retransmit. It is not in ECN RFC,
223                  * but Linux follows this rule. */
224                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225                         tcp_enter_quickack_mode((struct sock *)tp);
226         }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231         if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232                 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237         if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238                 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243         if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244                 return 1;
245         return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256                      sizeof(struct sk_buff);
257
258         if (sk->sk_sndbuf < 3 * sndmem)
259                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290         struct tcp_sock *tp = tcp_sk(sk);
291         /* Optimize this! */
292         int truesize = tcp_win_from_space(skb->truesize)/2;
293         int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295         while (tp->rcv_ssthresh <= window) {
296                 if (truesize <= skb->len)
297                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299                 truesize >>= 1;
300                 window >>= 1;
301         }
302         return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306                             struct sk_buff *skb)
307 {
308         struct tcp_sock *tp = tcp_sk(sk);
309
310         /* Check #1 */
311         if (tp->rcv_ssthresh < tp->window_clamp &&
312             (int)tp->rcv_ssthresh < tcp_space(sk) &&
313             !tcp_memory_pressure) {
314                 int incr;
315
316                 /* Check #2. Increase window, if skb with such overhead
317                  * will fit to rcvbuf in future.
318                  */
319                 if (tcp_win_from_space(skb->truesize) <= skb->len)
320                         incr = 2*tp->advmss;
321                 else
322                         incr = __tcp_grow_window(sk, skb);
323
324                 if (incr) {
325                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326                         inet_csk(sk)->icsk_ack.quick |= 1;
327                 }
328         }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335         struct tcp_sock *tp = tcp_sk(sk);
336         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338         /* Try to select rcvbuf so that 4 mss-sized segments
339          * will fit to window and corresponding skbs will fit to our rcvbuf.
340          * (was 3; 4 is minimum to allow fast retransmit to work.)
341          */
342         while (tcp_win_from_space(rcvmem) < tp->advmss)
343                 rcvmem += 128;
344         if (sk->sk_rcvbuf < 4 * rcvmem)
345                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353         struct tcp_sock *tp = tcp_sk(sk);
354         int maxwin;
355
356         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357                 tcp_fixup_rcvbuf(sk);
358         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359                 tcp_fixup_sndbuf(sk);
360
361         tp->rcvq_space.space = tp->rcv_wnd;
362
363         maxwin = tcp_full_space(sk);
364
365         if (tp->window_clamp >= maxwin) {
366                 tp->window_clamp = maxwin;
367
368                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369                         tp->window_clamp = max(maxwin -
370                                                (maxwin >> sysctl_tcp_app_win),
371                                                4 * tp->advmss);
372         }
373
374         /* Force reservation of one segment. */
375         if (sysctl_tcp_app_win &&
376             tp->window_clamp > 2 * tp->advmss &&
377             tp->window_clamp + tp->advmss > maxwin)
378                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381         tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387         struct tcp_sock *tp = tcp_sk(sk);
388         struct inet_connection_sock *icsk = inet_csk(sk);
389
390         icsk->icsk_ack.quick = 0;
391
392         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394             !tcp_memory_pressure &&
395             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397                                     sysctl_tcp_rmem[2]);
398         }
399         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400                 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405  * RCV_MSS is an our guess about MSS used by the peer.
406  * We haven't any direct information about the MSS.
407  * It's better to underestimate the RCV_MSS rather than overestimate.
408  * Overestimations make us ACKing less frequently than needed.
409  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410  */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413         struct tcp_sock *tp = tcp_sk(sk);
414         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416         hint = min(hint, tp->rcv_wnd/2);
417         hint = min(hint, TCP_MIN_RCVMSS);
418         hint = max(hint, TCP_MIN_MSS);
419
420         inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424  *
425  * The algorithm for RTT estimation w/o timestamps is based on
426  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428  *
429  * More detail on this code can be found at
430  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431  * though this reference is out of date.  A new paper
432  * is pending.
433  */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436         u32 new_sample = tp->rcv_rtt_est.rtt;
437         long m = sample;
438
439         if (m == 0)
440                 m = 1;
441
442         if (new_sample != 0) {
443                 /* If we sample in larger samples in the non-timestamp
444                  * case, we could grossly overestimate the RTT especially
445                  * with chatty applications or bulk transfer apps which
446                  * are stalled on filesystem I/O.
447                  *
448                  * Also, since we are only going for a minimum in the
449                  * non-timestamp case, we do not smooth things out
450                  * else with timestamps disabled convergence takes too
451                  * long.
452                  */
453                 if (!win_dep) {
454                         m -= (new_sample >> 3);
455                         new_sample += m;
456                 } else if (m < new_sample)
457                         new_sample = m << 3;
458         } else {
459                 /* No previous measure. */
460                 new_sample = m << 3;
461         }
462
463         if (tp->rcv_rtt_est.rtt != new_sample)
464                 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469         if (tp->rcv_rtt_est.time == 0)
470                 goto new_measure;
471         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472                 return;
473         tcp_rcv_rtt_update(tp,
474                            jiffies - tp->rcv_rtt_est.time,
475                            1);
476
477 new_measure:
478         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479         tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484         struct tcp_sock *tp = tcp_sk(sk);
485         if (tp->rx_opt.rcv_tsecr &&
486             (TCP_SKB_CB(skb)->end_seq -
487              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492  * This function should be called every time data is copied to user space.
493  * It calculates the appropriate TCP receive buffer space.
494  */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497         struct tcp_sock *tp = tcp_sk(sk);
498         int time;
499         int space;
500
501         if (tp->rcvq_space.time == 0)
502                 goto new_measure;
503
504         time = tcp_time_stamp - tp->rcvq_space.time;
505         if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506             tp->rcv_rtt_est.rtt == 0)
507                 return;
508
509         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511         space = max(tp->rcvq_space.space, space);
512
513         if (tp->rcvq_space.space != space) {
514                 int rcvmem;
515
516                 tp->rcvq_space.space = space;
517
518                 if (sysctl_tcp_moderate_rcvbuf &&
519                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520                         int new_clamp = space;
521
522                         /* Receive space grows, normalize in order to
523                          * take into account packet headers and sk_buff
524                          * structure overhead.
525                          */
526                         space /= tp->advmss;
527                         if (!space)
528                                 space = 1;
529                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
530                                   16 + sizeof(struct sk_buff));
531                         while (tcp_win_from_space(rcvmem) < tp->advmss)
532                                 rcvmem += 128;
533                         space *= rcvmem;
534                         space = min(space, sysctl_tcp_rmem[2]);
535                         if (space > sk->sk_rcvbuf) {
536                                 sk->sk_rcvbuf = space;
537
538                                 /* Make the window clamp follow along.  */
539                                 tp->window_clamp = new_clamp;
540                         }
541                 }
542         }
543
544 new_measure:
545         tp->rcvq_space.seq = tp->copied_seq;
546         tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550  * behavior of the tp->ato delayed ack timeout interval.  When a
551  * connection starts up, we want to ack as quickly as possible.  The
552  * problem is that "good" TCP's do slow start at the beginning of data
553  * transmission.  The means that until we send the first few ACK's the
554  * sender will sit on his end and only queue most of his data, because
555  * he can only send snd_cwnd unacked packets at any given time.  For
556  * each ACK we send, he increments snd_cwnd and transmits more of his
557  * queue.  -DaveM
558  */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561         struct tcp_sock *tp = tcp_sk(sk);
562         struct inet_connection_sock *icsk = inet_csk(sk);
563         u32 now;
564
565         inet_csk_schedule_ack(sk);
566
567         tcp_measure_rcv_mss(sk, skb);
568
569         tcp_rcv_rtt_measure(tp);
570
571         now = tcp_time_stamp;
572
573         if (!icsk->icsk_ack.ato) {
574                 /* The _first_ data packet received, initialize
575                  * delayed ACK engine.
576                  */
577                 tcp_incr_quickack(sk);
578                 icsk->icsk_ack.ato = TCP_ATO_MIN;
579         } else {
580                 int m = now - icsk->icsk_ack.lrcvtime;
581
582                 if (m <= TCP_ATO_MIN/2) {
583                         /* The fastest case is the first. */
584                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585                 } else if (m < icsk->icsk_ack.ato) {
586                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
588                                 icsk->icsk_ack.ato = icsk->icsk_rto;
589                 } else if (m > icsk->icsk_rto) {
590                         /* Too long gap. Apparently sender failed to
591                          * restart window, so that we send ACKs quickly.
592                          */
593                         tcp_incr_quickack(sk);
594                         sk_stream_mem_reclaim(sk);
595                 }
596         }
597         icsk->icsk_ack.lrcvtime = now;
598
599         TCP_ECN_check_ce(tp, skb);
600
601         if (skb->len >= 128)
602                 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607         struct dst_entry *dst = __sk_dst_get(sk);
608         u32 rto_min = TCP_RTO_MIN;
609
610         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611                 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612         return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616  * routine either comes from timestamps, or from segments that were
617  * known _not_ to have been retransmitted [see Karn/Partridge
618  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619  * piece by Van Jacobson.
620  * NOTE: the next three routines used to be one big routine.
621  * To save cycles in the RFC 1323 implementation it was better to break
622  * it up into three procedures. -- erics
623  */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626         struct tcp_sock *tp = tcp_sk(sk);
627         long m = mrtt; /* RTT */
628
629         /*      The following amusing code comes from Jacobson's
630          *      article in SIGCOMM '88.  Note that rtt and mdev
631          *      are scaled versions of rtt and mean deviation.
632          *      This is designed to be as fast as possible
633          *      m stands for "measurement".
634          *
635          *      On a 1990 paper the rto value is changed to:
636          *      RTO = rtt + 4 * mdev
637          *
638          * Funny. This algorithm seems to be very broken.
639          * These formulae increase RTO, when it should be decreased, increase
640          * too slowly, when it should be increased quickly, decrease too quickly
641          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642          * does not matter how to _calculate_ it. Seems, it was trap
643          * that VJ failed to avoid. 8)
644          */
645         if (m == 0)
646                 m = 1;
647         if (tp->srtt != 0) {
648                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
649                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
650                 if (m < 0) {
651                         m = -m;         /* m is now abs(error) */
652                         m -= (tp->mdev >> 2);   /* similar update on mdev */
653                         /* This is similar to one of Eifel findings.
654                          * Eifel blocks mdev updates when rtt decreases.
655                          * This solution is a bit different: we use finer gain
656                          * for mdev in this case (alpha*beta).
657                          * Like Eifel it also prevents growth of rto,
658                          * but also it limits too fast rto decreases,
659                          * happening in pure Eifel.
660                          */
661                         if (m > 0)
662                                 m >>= 3;
663                 } else {
664                         m -= (tp->mdev >> 2);   /* similar update on mdev */
665                 }
666                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
667                 if (tp->mdev > tp->mdev_max) {
668                         tp->mdev_max = tp->mdev;
669                         if (tp->mdev_max > tp->rttvar)
670                                 tp->rttvar = tp->mdev_max;
671                 }
672                 if (after(tp->snd_una, tp->rtt_seq)) {
673                         if (tp->mdev_max < tp->rttvar)
674                                 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675                         tp->rtt_seq = tp->snd_nxt;
676                         tp->mdev_max = tcp_rto_min(sk);
677                 }
678         } else {
679                 /* no previous measure. */
680                 tp->srtt = m<<3;        /* take the measured time to be rtt */
681                 tp->mdev = m<<1;        /* make sure rto = 3*rtt */
682                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683                 tp->rtt_seq = tp->snd_nxt;
684         }
685 }
686
687 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
688  * routine referred to above.
689  */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692         const struct tcp_sock *tp = tcp_sk(sk);
693         /* Old crap is replaced with new one. 8)
694          *
695          * More seriously:
696          * 1. If rtt variance happened to be less 50msec, it is hallucination.
697          *    It cannot be less due to utterly erratic ACK generation made
698          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699          *    to do with delayed acks, because at cwnd>2 true delack timeout
700          *    is invisible. Actually, Linux-2.4 also generates erratic
701          *    ACKs in some circumstances.
702          */
703         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705         /* 2. Fixups made earlier cannot be right.
706          *    If we do not estimate RTO correctly without them,
707          *    all the algo is pure shit and should be replaced
708          *    with correct one. It is exactly, which we pretend to do.
709          */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713  * guarantees that rto is higher.
714  */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722    This function is called only, when TCP finishes successfully
723    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724  */
725 void tcp_update_metrics(struct sock *sk)
726 {
727         struct tcp_sock *tp = tcp_sk(sk);
728         struct dst_entry *dst = __sk_dst_get(sk);
729
730         if (sysctl_tcp_nometrics_save)
731                 return;
732
733         dst_confirm(dst);
734
735         if (dst && (dst->flags&DST_HOST)) {
736                 const struct inet_connection_sock *icsk = inet_csk(sk);
737                 int m;
738
739                 if (icsk->icsk_backoff || !tp->srtt) {
740                         /* This session failed to estimate rtt. Why?
741                          * Probably, no packets returned in time.
742                          * Reset our results.
743                          */
744                         if (!(dst_metric_locked(dst, RTAX_RTT)))
745                                 dst->metrics[RTAX_RTT-1] = 0;
746                         return;
747                 }
748
749                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751                 /* If newly calculated rtt larger than stored one,
752                  * store new one. Otherwise, use EWMA. Remember,
753                  * rtt overestimation is always better than underestimation.
754                  */
755                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756                         if (m <= 0)
757                                 dst->metrics[RTAX_RTT-1] = tp->srtt;
758                         else
759                                 dst->metrics[RTAX_RTT-1] -= (m>>3);
760                 }
761
762                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763                         if (m < 0)
764                                 m = -m;
765
766                         /* Scale deviation to rttvar fixed point */
767                         m >>= 1;
768                         if (m < tp->mdev)
769                                 m = tp->mdev;
770
771                         if (m >= dst_metric(dst, RTAX_RTTVAR))
772                                 dst->metrics[RTAX_RTTVAR-1] = m;
773                         else
774                                 dst->metrics[RTAX_RTTVAR-1] -=
775                                         (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776                 }
777
778                 if (tp->snd_ssthresh >= 0xFFFF) {
779                         /* Slow start still did not finish. */
780                         if (dst_metric(dst, RTAX_SSTHRESH) &&
781                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784                         if (!dst_metric_locked(dst, RTAX_CWND) &&
785                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786                                 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788                            icsk->icsk_ca_state == TCP_CA_Open) {
789                         /* Cong. avoidance phase, cwnd is reliable. */
790                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791                                 dst->metrics[RTAX_SSTHRESH-1] =
792                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793                         if (!dst_metric_locked(dst, RTAX_CWND))
794                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795                 } else {
796                         /* Else slow start did not finish, cwnd is non-sense,
797                            ssthresh may be also invalid.
798                          */
799                         if (!dst_metric_locked(dst, RTAX_CWND))
800                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801                         if (dst->metrics[RTAX_SSTHRESH-1] &&
802                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803                             tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805                 }
806
807                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808                         if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809                             tp->reordering != sysctl_tcp_reordering)
810                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811                 }
812         }
813 }
814
815 /* Numbers are taken from RFC3390.
816  *
817  * John Heffner states:
818  *
819  *      The RFC specifies a window of no more than 4380 bytes
820  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
821  *      is a bit misleading because they use a clamp at 4380 bytes
822  *      rather than use a multiplier in the relevant range.
823  */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828         if (!cwnd) {
829                 if (tp->mss_cache > 1460)
830                         cwnd = 2;
831                 else
832                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833         }
834         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840         struct tcp_sock *tp = tcp_sk(sk);
841         const struct inet_connection_sock *icsk = inet_csk(sk);
842
843         tp->prior_ssthresh = 0;
844         tp->bytes_acked = 0;
845         if (icsk->icsk_ca_state < TCP_CA_CWR) {
846                 tp->undo_marker = 0;
847                 if (set_ssthresh)
848                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849                 tp->snd_cwnd = min(tp->snd_cwnd,
850                                    tcp_packets_in_flight(tp) + 1U);
851                 tp->snd_cwnd_cnt = 0;
852                 tp->high_seq = tp->snd_nxt;
853                 tp->snd_cwnd_stamp = tcp_time_stamp;
854                 TCP_ECN_queue_cwr(tp);
855
856                 tcp_set_ca_state(sk, TCP_CA_CWR);
857         }
858 }
859
860 /*
861  * Packet counting of FACK is based on in-order assumptions, therefore TCP
862  * disables it when reordering is detected
863  */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866         tp->rx_opt.sack_ok &= ~2;
867 }
868
869 /* Take a notice that peer is sending DSACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872         tp->rx_opt.sack_ok |= 4;
873 }
874
875 /* Initialize metrics on socket. */
876
877 static void tcp_init_metrics(struct sock *sk)
878 {
879         struct tcp_sock *tp = tcp_sk(sk);
880         struct dst_entry *dst = __sk_dst_get(sk);
881
882         if (dst == NULL)
883                 goto reset;
884
885         dst_confirm(dst);
886
887         if (dst_metric_locked(dst, RTAX_CWND))
888                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889         if (dst_metric(dst, RTAX_SSTHRESH)) {
890                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
893         }
894         if (dst_metric(dst, RTAX_REORDERING) &&
895             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896                 tcp_disable_fack(tp);
897                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898         }
899
900         if (dst_metric(dst, RTAX_RTT) == 0)
901                 goto reset;
902
903         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904                 goto reset;
905
906         /* Initial rtt is determined from SYN,SYN-ACK.
907          * The segment is small and rtt may appear much
908          * less than real one. Use per-dst memory
909          * to make it more realistic.
910          *
911          * A bit of theory. RTT is time passed after "normal" sized packet
912          * is sent until it is ACKed. In normal circumstances sending small
913          * packets force peer to delay ACKs and calculation is correct too.
914          * The algorithm is adaptive and, provided we follow specs, it
915          * NEVER underestimate RTT. BUT! If peer tries to make some clever
916          * tricks sort of "quick acks" for time long enough to decrease RTT
917          * to low value, and then abruptly stops to do it and starts to delay
918          * ACKs, wait for troubles.
919          */
920         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921                 tp->srtt = dst_metric(dst, RTAX_RTT);
922                 tp->rtt_seq = tp->snd_nxt;
923         }
924         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926                 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927         }
928         tcp_set_rto(sk);
929         tcp_bound_rto(sk);
930         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931                 goto reset;
932         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933         tp->snd_cwnd_stamp = tcp_time_stamp;
934         return;
935
936 reset:
937         /* Play conservative. If timestamps are not
938          * supported, TCP will fail to recalculate correct
939          * rtt, if initial rto is too small. FORGET ALL AND RESET!
940          */
941         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942                 tp->srtt = 0;
943                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945         }
946 }
947
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949                                   const int ts)
950 {
951         struct tcp_sock *tp = tcp_sk(sk);
952         if (metric > tp->reordering) {
953                 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955                 /* This exciting event is worth to be remembered. 8) */
956                 if (ts)
957                         NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958                 else if (tcp_is_reno(tp))
959                         NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960                 else if (tcp_is_fack(tp))
961                         NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962                 else
963                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967                        tp->reordering,
968                        tp->fackets_out,
969                        tp->sacked_out,
970                        tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972                 tcp_disable_fack(tp);
973         }
974 }
975
976 /* This procedure tags the retransmission queue when SACKs arrive.
977  *
978  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979  * Packets in queue with these bits set are counted in variables
980  * sacked_out, retrans_out and lost_out, correspondingly.
981  *
982  * Valid combinations are:
983  * Tag  InFlight        Description
984  * 0    1               - orig segment is in flight.
985  * S    0               - nothing flies, orig reached receiver.
986  * L    0               - nothing flies, orig lost by net.
987  * R    2               - both orig and retransmit are in flight.
988  * L|R  1               - orig is lost, retransmit is in flight.
989  * S|R  1               - orig reached receiver, retrans is still in flight.
990  * (L|S|R is logically valid, it could occur when L|R is sacked,
991  *  but it is equivalent to plain S and code short-curcuits it to S.
992  *  L|S is logically invalid, it would mean -1 packet in flight 8))
993  *
994  * These 6 states form finite state machine, controlled by the following events:
995  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997  * 3. Loss detection event of one of three flavors:
998  *      A. Scoreboard estimator decided the packet is lost.
999  *         A'. Reno "three dupacks" marks head of queue lost.
1000  *         A''. Its FACK modfication, head until snd.fack is lost.
1001  *      B. SACK arrives sacking data transmitted after never retransmitted
1002  *         hole was sent out.
1003  *      C. SACK arrives sacking SND.NXT at the moment, when the
1004  *         segment was retransmitted.
1005  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006  *
1007  * It is pleasant to note, that state diagram turns out to be commutative,
1008  * so that we are allowed not to be bothered by order of our actions,
1009  * when multiple events arrive simultaneously. (see the function below).
1010  *
1011  * Reordering detection.
1012  * --------------------
1013  * Reordering metric is maximal distance, which a packet can be displaced
1014  * in packet stream. With SACKs we can estimate it:
1015  *
1016  * 1. SACK fills old hole and the corresponding segment was not
1017  *    ever retransmitted -> reordering. Alas, we cannot use it
1018  *    when segment was retransmitted.
1019  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020  *    for retransmitted and already SACKed segment -> reordering..
1021  * Both of these heuristics are not used in Loss state, when we cannot
1022  * account for retransmits accurately.
1023  *
1024  * SACK block validation.
1025  * ----------------------
1026  *
1027  * SACK block range validation checks that the received SACK block fits to
1028  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029  * Note that SND.UNA is not included to the range though being valid because
1030  * it means that the receiver is rather inconsistent with itself reporting
1031  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032  * perfectly valid, however, in light of RFC2018 which explicitly states
1033  * that "SACK block MUST reflect the newest segment.  Even if the newest
1034  * segment is going to be discarded ...", not that it looks very clever
1035  * in case of head skb. Due to potentional receiver driven attacks, we
1036  * choose to avoid immediate execution of a walk in write queue due to
1037  * reneging and defer head skb's loss recovery to standard loss recovery
1038  * procedure that will eventually trigger (nothing forbids us doing this).
1039  *
1040  * Implements also blockage to start_seq wrap-around. Problem lies in the
1041  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042  * there's no guarantee that it will be before snd_nxt (n). The problem
1043  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044  * wrap (s_w):
1045  *
1046  *         <- outs wnd ->                          <- wrapzone ->
1047  *         u     e      n                         u_w   e_w  s n_w
1048  *         |     |      |                          |     |   |  |
1049  * |<------------+------+----- TCP seqno space --------------+---------->|
1050  * ...-- <2^31 ->|                                           |<--------...
1051  * ...---- >2^31 ------>|                                    |<--------...
1052  *
1053  * Current code wouldn't be vulnerable but it's better still to discard such
1054  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057  * equal to the ideal case (infinite seqno space without wrap caused issues).
1058  *
1059  * With D-SACK the lower bound is extended to cover sequence space below
1060  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061  * again, DSACK block must not to go across snd_una (for the same reason as
1062  * for the normal SACK blocks, explained above). But there all simplicity
1063  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064  * fully below undo_marker they do not affect behavior in anyway and can
1065  * therefore be safely ignored. In rare cases (which are more or less
1066  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067  * fragmentation and packet reordering past skb's retransmission. To consider
1068  * them correctly, the acceptable range must be extended even more though
1069  * the exact amount is rather hard to quantify. However, tp->max_window can
1070  * be used as an exaggerated estimate.
1071  */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073                                   u32 start_seq, u32 end_seq)
1074 {
1075         /* Too far in future, or reversed (interpretation is ambiguous) */
1076         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077                 return 0;
1078
1079         /* Nasty start_seq wrap-around check (see comments above) */
1080         if (!before(start_seq, tp->snd_nxt))
1081                 return 0;
1082
1083         /* In outstanding window? ...This is valid exit for DSACKs too.
1084          * start_seq == snd_una is non-sensical (see comments above)
1085          */
1086         if (after(start_seq, tp->snd_una))
1087                 return 1;
1088
1089         if (!is_dsack || !tp->undo_marker)
1090                 return 0;
1091
1092         /* ...Then it's D-SACK, and must reside below snd_una completely */
1093         if (!after(end_seq, tp->snd_una))
1094                 return 0;
1095
1096         if (!before(start_seq, tp->undo_marker))
1097                 return 1;
1098
1099         /* Too old */
1100         if (!after(end_seq, tp->undo_marker))
1101                 return 0;
1102
1103         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104          *   start_seq < undo_marker and end_seq >= undo_marker.
1105          */
1106         return !before(start_seq, end_seq - tp->max_window);
1107 }
1108
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110  * Event "C". Later note: FACK people cheated me again 8), we have to account
1111  * for reordering! Ugly, but should help.
1112  *
1113  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114  * less than what is now known to be received by the other end (derived from
1115  * SACK blocks by the caller).
1116  */
1117 static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto)
1118 {
1119         struct tcp_sock *tp = tcp_sk(sk);
1120         struct sk_buff *skb;
1121         int flag = 0;
1122         int cnt = 0;
1123
1124         tcp_for_write_queue(skb, sk) {
1125                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1126
1127                 if (skb == tcp_send_head(sk))
1128                         break;
1129                 if (cnt == tp->retrans_out)
1130                         break;
1131                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1132                         continue;
1133
1134                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1135                         continue;
1136
1137                 if (after(received_upto, ack_seq) &&
1138                     (tcp_is_fack(tp) ||
1139                      !before(received_upto,
1140                              ack_seq + tp->reordering * tp->mss_cache))) {
1141                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1142                         tp->retrans_out -= tcp_skb_pcount(skb);
1143
1144                         /* clear lost hint */
1145                         tp->retransmit_skb_hint = NULL;
1146
1147                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1148                                 tp->lost_out += tcp_skb_pcount(skb);
1149                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1150                                 flag |= FLAG_DATA_SACKED;
1151                                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1152                         }
1153                 } else {
1154                         cnt += tcp_skb_pcount(skb);
1155                 }
1156         }
1157         return flag;
1158 }
1159
1160 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1161                            struct tcp_sack_block_wire *sp, int num_sacks,
1162                            u32 prior_snd_una)
1163 {
1164         u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1165         u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1166         int dup_sack = 0;
1167
1168         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1169                 dup_sack = 1;
1170                 tcp_dsack_seen(tp);
1171                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1172         } else if (num_sacks > 1) {
1173                 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1174                 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1175
1176                 if (!after(end_seq_0, end_seq_1) &&
1177                     !before(start_seq_0, start_seq_1)) {
1178                         dup_sack = 1;
1179                         tcp_dsack_seen(tp);
1180                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1181                 }
1182         }
1183
1184         /* D-SACK for already forgotten data... Do dumb counting. */
1185         if (dup_sack &&
1186             !after(end_seq_0, prior_snd_una) &&
1187             after(end_seq_0, tp->undo_marker))
1188                 tp->undo_retrans--;
1189
1190         return dup_sack;
1191 }
1192
1193 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1194  * the incoming SACK may not exactly match but we can find smaller MSS
1195  * aligned portion of it that matches. Therefore we might need to fragment
1196  * which may fail and creates some hassle (caller must handle error case
1197  * returns).
1198  */
1199 int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1200                           u32 start_seq, u32 end_seq)
1201 {
1202         int in_sack, err;
1203         unsigned int pkt_len;
1204
1205         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1206                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1207
1208         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1209             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1210
1211                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1212
1213                 if (!in_sack)
1214                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1215                 else
1216                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1217                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1218                 if (err < 0)
1219                         return err;
1220         }
1221
1222         return in_sack;
1223 }
1224
1225 static int
1226 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1227 {
1228         const struct inet_connection_sock *icsk = inet_csk(sk);
1229         struct tcp_sock *tp = tcp_sk(sk);
1230         unsigned char *ptr = (skb_transport_header(ack_skb) +
1231                               TCP_SKB_CB(ack_skb)->sacked);
1232         struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1233         struct sk_buff *cached_skb;
1234         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1235         int reord = tp->packets_out;
1236         int prior_fackets;
1237         u32 highest_sack_end_seq = 0;
1238         int flag = 0;
1239         int found_dup_sack = 0;
1240         int cached_fack_count;
1241         int i;
1242         int first_sack_index;
1243
1244         if (!tp->sacked_out) {
1245                 if (WARN_ON(tp->fackets_out))
1246                         tp->fackets_out = 0;
1247                 tp->highest_sack = tp->snd_una;
1248         }
1249         prior_fackets = tp->fackets_out;
1250
1251         found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1252                                          num_sacks, prior_snd_una);
1253         if (found_dup_sack)
1254                 flag |= FLAG_DSACKING_ACK;
1255
1256         /* Eliminate too old ACKs, but take into
1257          * account more or less fresh ones, they can
1258          * contain valid SACK info.
1259          */
1260         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1261                 return 0;
1262
1263         /* SACK fastpath:
1264          * if the only SACK change is the increase of the end_seq of
1265          * the first block then only apply that SACK block
1266          * and use retrans queue hinting otherwise slowpath */
1267         flag = 1;
1268         for (i = 0; i < num_sacks; i++) {
1269                 __be32 start_seq = sp[i].start_seq;
1270                 __be32 end_seq = sp[i].end_seq;
1271
1272                 if (i == 0) {
1273                         if (tp->recv_sack_cache[i].start_seq != start_seq)
1274                                 flag = 0;
1275                 } else {
1276                         if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1277                             (tp->recv_sack_cache[i].end_seq != end_seq))
1278                                 flag = 0;
1279                 }
1280                 tp->recv_sack_cache[i].start_seq = start_seq;
1281                 tp->recv_sack_cache[i].end_seq = end_seq;
1282         }
1283         /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1284         for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1285                 tp->recv_sack_cache[i].start_seq = 0;
1286                 tp->recv_sack_cache[i].end_seq = 0;
1287         }
1288
1289         first_sack_index = 0;
1290         if (flag)
1291                 num_sacks = 1;
1292         else {
1293                 int j;
1294                 tp->fastpath_skb_hint = NULL;
1295
1296                 /* order SACK blocks to allow in order walk of the retrans queue */
1297                 for (i = num_sacks-1; i > 0; i--) {
1298                         for (j = 0; j < i; j++){
1299                                 if (after(ntohl(sp[j].start_seq),
1300                                           ntohl(sp[j+1].start_seq))){
1301                                         struct tcp_sack_block_wire tmp;
1302
1303                                         tmp = sp[j];
1304                                         sp[j] = sp[j+1];
1305                                         sp[j+1] = tmp;
1306
1307                                         /* Track where the first SACK block goes to */
1308                                         if (j == first_sack_index)
1309                                                 first_sack_index = j+1;
1310                                 }
1311
1312                         }
1313                 }
1314         }
1315
1316         /* clear flag as used for different purpose in following code */
1317         flag = 0;
1318
1319         /* Use SACK fastpath hint if valid */
1320         cached_skb = tp->fastpath_skb_hint;
1321         cached_fack_count = tp->fastpath_cnt_hint;
1322         if (!cached_skb) {
1323                 cached_skb = tcp_write_queue_head(sk);
1324                 cached_fack_count = 0;
1325         }
1326
1327         for (i=0; i<num_sacks; i++, sp++) {
1328                 struct sk_buff *skb;
1329                 __u32 start_seq = ntohl(sp->start_seq);
1330                 __u32 end_seq = ntohl(sp->end_seq);
1331                 int fack_count;
1332                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1333
1334                 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1335                         if (dup_sack) {
1336                                 if (!tp->undo_marker)
1337                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1338                                 else
1339                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1340                         } else {
1341                                 /* Don't count olds caused by ACK reordering */
1342                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1343                                     !after(end_seq, tp->snd_una))
1344                                         continue;
1345                                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1346                         }
1347                         continue;
1348                 }
1349
1350                 skb = cached_skb;
1351                 fack_count = cached_fack_count;
1352
1353                 /* Event "B" in the comment above. */
1354                 if (after(end_seq, tp->high_seq))
1355                         flag |= FLAG_DATA_LOST;
1356
1357                 tcp_for_write_queue_from(skb, sk) {
1358                         int in_sack;
1359                         u8 sacked;
1360
1361                         if (skb == tcp_send_head(sk))
1362                                 break;
1363
1364                         cached_skb = skb;
1365                         cached_fack_count = fack_count;
1366                         if (i == first_sack_index) {
1367                                 tp->fastpath_skb_hint = skb;
1368                                 tp->fastpath_cnt_hint = fack_count;
1369                         }
1370
1371                         /* The retransmission queue is always in order, so
1372                          * we can short-circuit the walk early.
1373                          */
1374                         if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1375                                 break;
1376
1377                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1378                         if (in_sack < 0)
1379                                 break;
1380
1381                         fack_count += tcp_skb_pcount(skb);
1382
1383                         sacked = TCP_SKB_CB(skb)->sacked;
1384
1385                         /* Account D-SACK for retransmitted packet. */
1386                         if ((dup_sack && in_sack) &&
1387                             (sacked & TCPCB_RETRANS) &&
1388                             after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1389                                 tp->undo_retrans--;
1390
1391                         /* The frame is ACKed. */
1392                         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1393                                 if (sacked&TCPCB_RETRANS) {
1394                                         if ((dup_sack && in_sack) &&
1395                                             (sacked&TCPCB_SACKED_ACKED))
1396                                                 reord = min(fack_count, reord);
1397                                 } else {
1398                                         /* If it was in a hole, we detected reordering. */
1399                                         if (fack_count < prior_fackets &&
1400                                             !(sacked&TCPCB_SACKED_ACKED))
1401                                                 reord = min(fack_count, reord);
1402                                 }
1403
1404                                 /* Nothing to do; acked frame is about to be dropped. */
1405                                 continue;
1406                         }
1407
1408                         if (!in_sack)
1409                                 continue;
1410
1411                         if (!(sacked&TCPCB_SACKED_ACKED)) {
1412                                 if (sacked & TCPCB_SACKED_RETRANS) {
1413                                         /* If the segment is not tagged as lost,
1414                                          * we do not clear RETRANS, believing
1415                                          * that retransmission is still in flight.
1416                                          */
1417                                         if (sacked & TCPCB_LOST) {
1418                                                 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1419                                                 tp->lost_out -= tcp_skb_pcount(skb);
1420                                                 tp->retrans_out -= tcp_skb_pcount(skb);
1421
1422                                                 /* clear lost hint */
1423                                                 tp->retransmit_skb_hint = NULL;
1424                                         }
1425                                 } else {
1426                                         /* New sack for not retransmitted frame,
1427                                          * which was in hole. It is reordering.
1428                                          */
1429                                         if (!(sacked & TCPCB_RETRANS) &&
1430                                             fack_count < prior_fackets)
1431                                                 reord = min(fack_count, reord);
1432
1433                                         if (sacked & TCPCB_LOST) {
1434                                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1435                                                 tp->lost_out -= tcp_skb_pcount(skb);
1436
1437                                                 /* clear lost hint */
1438                                                 tp->retransmit_skb_hint = NULL;
1439                                         }
1440                                         /* SACK enhanced F-RTO detection.
1441                                          * Set flag if and only if non-rexmitted
1442                                          * segments below frto_highmark are
1443                                          * SACKed (RFC4138; Appendix B).
1444                                          * Clearing correct due to in-order walk
1445                                          */
1446                                         if (after(end_seq, tp->frto_highmark)) {
1447                                                 flag &= ~FLAG_ONLY_ORIG_SACKED;
1448                                         } else {
1449                                                 if (!(sacked & TCPCB_RETRANS))
1450                                                         flag |= FLAG_ONLY_ORIG_SACKED;
1451                                         }
1452                                 }
1453
1454                                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1455                                 flag |= FLAG_DATA_SACKED;
1456                                 tp->sacked_out += tcp_skb_pcount(skb);
1457
1458                                 if (fack_count > tp->fackets_out)
1459                                         tp->fackets_out = fack_count;
1460
1461                                 if (after(TCP_SKB_CB(skb)->seq, tp->highest_sack)) {
1462                                         tp->highest_sack = TCP_SKB_CB(skb)->seq;
1463                                         highest_sack_end_seq = TCP_SKB_CB(skb)->end_seq;
1464                                 }
1465                         } else {
1466                                 if (dup_sack && (sacked&TCPCB_RETRANS))
1467                                         reord = min(fack_count, reord);
1468                         }
1469
1470                         /* D-SACK. We can detect redundant retransmission
1471                          * in S|R and plain R frames and clear it.
1472                          * undo_retrans is decreased above, L|R frames
1473                          * are accounted above as well.
1474                          */
1475                         if (dup_sack &&
1476                             (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1477                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1478                                 tp->retrans_out -= tcp_skb_pcount(skb);
1479                                 tp->retransmit_skb_hint = NULL;
1480                         }
1481                 }
1482         }
1483
1484         if (tp->retrans_out && highest_sack_end_seq &&
1485             after(highest_sack_end_seq, tp->high_seq) &&
1486             icsk->icsk_ca_state == TCP_CA_Recovery)
1487                 flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq);
1488
1489         tcp_verify_left_out(tp);
1490
1491         if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1492             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1493                 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1494
1495 #if FASTRETRANS_DEBUG > 0
1496         BUG_TRAP((int)tp->sacked_out >= 0);
1497         BUG_TRAP((int)tp->lost_out >= 0);
1498         BUG_TRAP((int)tp->retrans_out >= 0);
1499         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1500 #endif
1501         return flag;
1502 }
1503
1504 /* If we receive more dupacks than we expected counting segments
1505  * in assumption of absent reordering, interpret this as reordering.
1506  * The only another reason could be bug in receiver TCP.
1507  */
1508 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1509 {
1510         struct tcp_sock *tp = tcp_sk(sk);
1511         u32 holes;
1512
1513         holes = max(tp->lost_out, 1U);
1514         holes = min(holes, tp->packets_out);
1515
1516         if ((tp->sacked_out + holes) > tp->packets_out) {
1517                 tp->sacked_out = tp->packets_out - holes;
1518                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1519         }
1520 }
1521
1522 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1523
1524 static void tcp_add_reno_sack(struct sock *sk)
1525 {
1526         struct tcp_sock *tp = tcp_sk(sk);
1527         tp->sacked_out++;
1528         tcp_check_reno_reordering(sk, 0);
1529         tcp_verify_left_out(tp);
1530 }
1531
1532 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1533
1534 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1535 {
1536         struct tcp_sock *tp = tcp_sk(sk);
1537
1538         if (acked > 0) {
1539                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1540                 if (acked-1 >= tp->sacked_out)
1541                         tp->sacked_out = 0;
1542                 else
1543                         tp->sacked_out -= acked-1;
1544         }
1545         tcp_check_reno_reordering(sk, acked);
1546         tcp_verify_left_out(tp);
1547 }
1548
1549 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1550 {
1551         tp->sacked_out = 0;
1552 }
1553
1554 /* F-RTO can only be used if TCP has never retransmitted anything other than
1555  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1556  */
1557 int tcp_use_frto(struct sock *sk)
1558 {
1559         const struct tcp_sock *tp = tcp_sk(sk);
1560         struct sk_buff *skb;
1561
1562         if (!sysctl_tcp_frto)
1563                 return 0;
1564
1565         if (IsSackFrto())
1566                 return 1;
1567
1568         /* Avoid expensive walking of rexmit queue if possible */
1569         if (tp->retrans_out > 1)
1570                 return 0;
1571
1572         skb = tcp_write_queue_head(sk);
1573         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1574         tcp_for_write_queue_from(skb, sk) {
1575                 if (skb == tcp_send_head(sk))
1576                         break;
1577                 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1578                         return 0;
1579                 /* Short-circuit when first non-SACKed skb has been checked */
1580                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1581                         break;
1582         }
1583         return 1;
1584 }
1585
1586 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1587  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1588  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1589  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1590  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1591  * bits are handled if the Loss state is really to be entered (in
1592  * tcp_enter_frto_loss).
1593  *
1594  * Do like tcp_enter_loss() would; when RTO expires the second time it
1595  * does:
1596  *  "Reduce ssthresh if it has not yet been made inside this window."
1597  */
1598 void tcp_enter_frto(struct sock *sk)
1599 {
1600         const struct inet_connection_sock *icsk = inet_csk(sk);
1601         struct tcp_sock *tp = tcp_sk(sk);
1602         struct sk_buff *skb;
1603
1604         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1605             tp->snd_una == tp->high_seq ||
1606             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1607              !icsk->icsk_retransmits)) {
1608                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1609                 /* Our state is too optimistic in ssthresh() call because cwnd
1610                  * is not reduced until tcp_enter_frto_loss() when previous FRTO
1611                  * recovery has not yet completed. Pattern would be this: RTO,
1612                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1613                  * up here twice).
1614                  * RFC4138 should be more specific on what to do, even though
1615                  * RTO is quite unlikely to occur after the first Cumulative ACK
1616                  * due to back-off and complexity of triggering events ...
1617                  */
1618                 if (tp->frto_counter) {
1619                         u32 stored_cwnd;
1620                         stored_cwnd = tp->snd_cwnd;
1621                         tp->snd_cwnd = 2;
1622                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1623                         tp->snd_cwnd = stored_cwnd;
1624                 } else {
1625                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1626                 }
1627                 /* ... in theory, cong.control module could do "any tricks" in
1628                  * ssthresh(), which means that ca_state, lost bits and lost_out
1629                  * counter would have to be faked before the call occurs. We
1630                  * consider that too expensive, unlikely and hacky, so modules
1631                  * using these in ssthresh() must deal these incompatibility
1632                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1633                  */
1634                 tcp_ca_event(sk, CA_EVENT_FRTO);
1635         }
1636
1637         tp->undo_marker = tp->snd_una;
1638         tp->undo_retrans = 0;
1639
1640         skb = tcp_write_queue_head(sk);
1641         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1642                 tp->undo_marker = 0;
1643         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1644                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1645                 tp->retrans_out -= tcp_skb_pcount(skb);
1646         }
1647         tcp_verify_left_out(tp);
1648
1649         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1650          * The last condition is necessary at least in tp->frto_counter case.
1651          */
1652         if (IsSackFrto() && (tp->frto_counter ||
1653             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1654             after(tp->high_seq, tp->snd_una)) {
1655                 tp->frto_highmark = tp->high_seq;
1656         } else {
1657                 tp->frto_highmark = tp->snd_nxt;
1658         }
1659         tcp_set_ca_state(sk, TCP_CA_Disorder);
1660         tp->high_seq = tp->snd_nxt;
1661         tp->frto_counter = 1;
1662 }
1663
1664 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1665  * which indicates that we should follow the traditional RTO recovery,
1666  * i.e. mark everything lost and do go-back-N retransmission.
1667  */
1668 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1669 {
1670         struct tcp_sock *tp = tcp_sk(sk);
1671         struct sk_buff *skb;
1672
1673         tp->lost_out = 0;
1674         tp->retrans_out = 0;
1675         if (tcp_is_reno(tp))
1676                 tcp_reset_reno_sack(tp);
1677
1678         tcp_for_write_queue(skb, sk) {
1679                 if (skb == tcp_send_head(sk))
1680                         break;
1681                 /*
1682                  * Count the retransmission made on RTO correctly (only when
1683                  * waiting for the first ACK and did not get it)...
1684                  */
1685                 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1686                         /* For some reason this R-bit might get cleared? */
1687                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1688                                 tp->retrans_out += tcp_skb_pcount(skb);
1689                         /* ...enter this if branch just for the first segment */
1690                         flag |= FLAG_DATA_ACKED;
1691                 } else {
1692                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1693                                 tp->undo_marker = 0;
1694                         TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1695                 }
1696
1697                 /* Don't lost mark skbs that were fwd transmitted after RTO */
1698                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1699                     !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1700                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1701                         tp->lost_out += tcp_skb_pcount(skb);
1702                 }
1703         }
1704         tcp_verify_left_out(tp);
1705
1706         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1707         tp->snd_cwnd_cnt = 0;
1708         tp->snd_cwnd_stamp = tcp_time_stamp;
1709         tp->frto_counter = 0;
1710         tp->bytes_acked = 0;
1711
1712         tp->reordering = min_t(unsigned int, tp->reordering,
1713                                              sysctl_tcp_reordering);
1714         tcp_set_ca_state(sk, TCP_CA_Loss);
1715         tp->high_seq = tp->frto_highmark;
1716         TCP_ECN_queue_cwr(tp);
1717
1718         tcp_clear_retrans_hints_partial(tp);
1719 }
1720
1721 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1722 {
1723         tp->retrans_out = 0;
1724         tp->lost_out = 0;
1725
1726         tp->undo_marker = 0;
1727         tp->undo_retrans = 0;
1728 }
1729
1730 void tcp_clear_retrans(struct tcp_sock *tp)
1731 {
1732         tcp_clear_retrans_partial(tp);
1733
1734         tp->fackets_out = 0;
1735         tp->sacked_out = 0;
1736 }
1737
1738 /* Enter Loss state. If "how" is not zero, forget all SACK information
1739  * and reset tags completely, otherwise preserve SACKs. If receiver
1740  * dropped its ofo queue, we will know this due to reneging detection.
1741  */
1742 void tcp_enter_loss(struct sock *sk, int how)
1743 {
1744         const struct inet_connection_sock *icsk = inet_csk(sk);
1745         struct tcp_sock *tp = tcp_sk(sk);
1746         struct sk_buff *skb;
1747
1748         /* Reduce ssthresh if it has not yet been made inside this window. */
1749         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1750             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1751                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1752                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1753                 tcp_ca_event(sk, CA_EVENT_LOSS);
1754         }
1755         tp->snd_cwnd       = 1;
1756         tp->snd_cwnd_cnt   = 0;
1757         tp->snd_cwnd_stamp = tcp_time_stamp;
1758
1759         tp->bytes_acked = 0;
1760         tcp_clear_retrans_partial(tp);
1761
1762         if (tcp_is_reno(tp))
1763                 tcp_reset_reno_sack(tp);
1764
1765         if (!how) {
1766                 /* Push undo marker, if it was plain RTO and nothing
1767                  * was retransmitted. */
1768                 tp->undo_marker = tp->snd_una;
1769                 tcp_clear_retrans_hints_partial(tp);
1770         } else {
1771                 tp->sacked_out = 0;
1772                 tp->fackets_out = 0;
1773                 tcp_clear_all_retrans_hints(tp);
1774         }
1775
1776         tcp_for_write_queue(skb, sk) {
1777                 if (skb == tcp_send_head(sk))
1778                         break;
1779
1780                 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1781                         tp->undo_marker = 0;
1782                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1783                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1784                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1785                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1786                         tp->lost_out += tcp_skb_pcount(skb);
1787                 }
1788         }
1789         tcp_verify_left_out(tp);
1790
1791         tp->reordering = min_t(unsigned int, tp->reordering,
1792                                              sysctl_tcp_reordering);
1793         tcp_set_ca_state(sk, TCP_CA_Loss);
1794         tp->high_seq = tp->snd_nxt;
1795         TCP_ECN_queue_cwr(tp);
1796         /* Abort FRTO algorithm if one is in progress */
1797         tp->frto_counter = 0;
1798 }
1799
1800 static int tcp_check_sack_reneging(struct sock *sk)
1801 {
1802         struct sk_buff *skb;
1803
1804         /* If ACK arrived pointing to a remembered SACK,
1805          * it means that our remembered SACKs do not reflect
1806          * real state of receiver i.e.
1807          * receiver _host_ is heavily congested (or buggy).
1808          * Do processing similar to RTO timeout.
1809          */
1810         if ((skb = tcp_write_queue_head(sk)) != NULL &&
1811             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1812                 struct inet_connection_sock *icsk = inet_csk(sk);
1813                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1814
1815                 tcp_enter_loss(sk, 1);
1816                 icsk->icsk_retransmits++;
1817                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1818                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1819                                           icsk->icsk_rto, TCP_RTO_MAX);
1820                 return 1;
1821         }
1822         return 0;
1823 }
1824
1825 static inline int tcp_fackets_out(struct tcp_sock *tp)
1826 {
1827         return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1828 }
1829
1830 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1831 {
1832         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1833 }
1834
1835 static inline int tcp_head_timedout(struct sock *sk)
1836 {
1837         struct tcp_sock *tp = tcp_sk(sk);
1838
1839         return tp->packets_out &&
1840                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1841 }
1842
1843 /* Linux NewReno/SACK/FACK/ECN state machine.
1844  * --------------------------------------
1845  *
1846  * "Open"       Normal state, no dubious events, fast path.
1847  * "Disorder"   In all the respects it is "Open",
1848  *              but requires a bit more attention. It is entered when
1849  *              we see some SACKs or dupacks. It is split of "Open"
1850  *              mainly to move some processing from fast path to slow one.
1851  * "CWR"        CWND was reduced due to some Congestion Notification event.
1852  *              It can be ECN, ICMP source quench, local device congestion.
1853  * "Recovery"   CWND was reduced, we are fast-retransmitting.
1854  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
1855  *
1856  * tcp_fastretrans_alert() is entered:
1857  * - each incoming ACK, if state is not "Open"
1858  * - when arrived ACK is unusual, namely:
1859  *      * SACK
1860  *      * Duplicate ACK.
1861  *      * ECN ECE.
1862  *
1863  * Counting packets in flight is pretty simple.
1864  *
1865  *      in_flight = packets_out - left_out + retrans_out
1866  *
1867  *      packets_out is SND.NXT-SND.UNA counted in packets.
1868  *
1869  *      retrans_out is number of retransmitted segments.
1870  *
1871  *      left_out is number of segments left network, but not ACKed yet.
1872  *
1873  *              left_out = sacked_out + lost_out
1874  *
1875  *     sacked_out: Packets, which arrived to receiver out of order
1876  *                 and hence not ACKed. With SACKs this number is simply
1877  *                 amount of SACKed data. Even without SACKs
1878  *                 it is easy to give pretty reliable estimate of this number,
1879  *                 counting duplicate ACKs.
1880  *
1881  *       lost_out: Packets lost by network. TCP has no explicit
1882  *                 "loss notification" feedback from network (for now).
1883  *                 It means that this number can be only _guessed_.
1884  *                 Actually, it is the heuristics to predict lossage that
1885  *                 distinguishes different algorithms.
1886  *
1887  *      F.e. after RTO, when all the queue is considered as lost,
1888  *      lost_out = packets_out and in_flight = retrans_out.
1889  *
1890  *              Essentially, we have now two algorithms counting
1891  *              lost packets.
1892  *
1893  *              FACK: It is the simplest heuristics. As soon as we decided
1894  *              that something is lost, we decide that _all_ not SACKed
1895  *              packets until the most forward SACK are lost. I.e.
1896  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
1897  *              It is absolutely correct estimate, if network does not reorder
1898  *              packets. And it loses any connection to reality when reordering
1899  *              takes place. We use FACK by default until reordering
1900  *              is suspected on the path to this destination.
1901  *
1902  *              NewReno: when Recovery is entered, we assume that one segment
1903  *              is lost (classic Reno). While we are in Recovery and
1904  *              a partial ACK arrives, we assume that one more packet
1905  *              is lost (NewReno). This heuristics are the same in NewReno
1906  *              and SACK.
1907  *
1908  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1909  *  deflation etc. CWND is real congestion window, never inflated, changes
1910  *  only according to classic VJ rules.
1911  *
1912  * Really tricky (and requiring careful tuning) part of algorithm
1913  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1914  * The first determines the moment _when_ we should reduce CWND and,
1915  * hence, slow down forward transmission. In fact, it determines the moment
1916  * when we decide that hole is caused by loss, rather than by a reorder.
1917  *
1918  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1919  * holes, caused by lost packets.
1920  *
1921  * And the most logically complicated part of algorithm is undo
1922  * heuristics. We detect false retransmits due to both too early
1923  * fast retransmit (reordering) and underestimated RTO, analyzing
1924  * timestamps and D-SACKs. When we detect that some segments were
1925  * retransmitted by mistake and CWND reduction was wrong, we undo
1926  * window reduction and abort recovery phase. This logic is hidden
1927  * inside several functions named tcp_try_undo_<something>.
1928  */
1929
1930 /* This function decides, when we should leave Disordered state
1931  * and enter Recovery phase, reducing congestion window.
1932  *
1933  * Main question: may we further continue forward transmission
1934  * with the same cwnd?
1935  */
1936 static int tcp_time_to_recover(struct sock *sk)
1937 {
1938         struct tcp_sock *tp = tcp_sk(sk);
1939         __u32 packets_out;
1940
1941         /* Do not perform any recovery during FRTO algorithm */
1942         if (tp->frto_counter)
1943                 return 0;
1944
1945         /* Trick#1: The loss is proven. */
1946         if (tp->lost_out)
1947                 return 1;
1948
1949         /* Not-A-Trick#2 : Classic rule... */
1950         if (tcp_fackets_out(tp) > tp->reordering)
1951                 return 1;
1952
1953         /* Trick#3 : when we use RFC2988 timer restart, fast
1954          * retransmit can be triggered by timeout of queue head.
1955          */
1956         if (tcp_head_timedout(sk))
1957                 return 1;
1958
1959         /* Trick#4: It is still not OK... But will it be useful to delay
1960          * recovery more?
1961          */
1962         packets_out = tp->packets_out;
1963         if (packets_out <= tp->reordering &&
1964             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1965             !tcp_may_send_now(sk)) {
1966                 /* We have nothing to send. This connection is limited
1967                  * either by receiver window or by application.
1968                  */
1969                 return 1;
1970         }
1971
1972         return 0;
1973 }
1974
1975 /* RFC: This is from the original, I doubt that this is necessary at all:
1976  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1977  * retransmitted past LOST markings in the first place? I'm not fully sure
1978  * about undo and end of connection cases, which can cause R without L?
1979  */
1980 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1981                                        struct sk_buff *skb)
1982 {
1983         if ((tp->retransmit_skb_hint != NULL) &&
1984             before(TCP_SKB_CB(skb)->seq,
1985             TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1986                 tp->retransmit_skb_hint = NULL;
1987 }
1988
1989 /* Mark head of queue up as lost. */
1990 static void tcp_mark_head_lost(struct sock *sk,
1991                                int packets, u32 high_seq)
1992 {
1993         struct tcp_sock *tp = tcp_sk(sk);
1994         struct sk_buff *skb;
1995         int cnt;
1996
1997         BUG_TRAP(packets <= tp->packets_out);
1998         if (tp->lost_skb_hint) {
1999                 skb = tp->lost_skb_hint;
2000                 cnt = tp->lost_cnt_hint;
2001         } else {
2002                 skb = tcp_write_queue_head(sk);
2003                 cnt = 0;
2004         }
2005
2006         tcp_for_write_queue_from(skb, sk) {
2007                 if (skb == tcp_send_head(sk))
2008                         break;
2009                 /* TODO: do this better */
2010                 /* this is not the most efficient way to do this... */
2011                 tp->lost_skb_hint = skb;
2012                 tp->lost_cnt_hint = cnt;
2013                 cnt += tcp_skb_pcount(skb);
2014                 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
2015                         break;
2016                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2017                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2018                         tp->lost_out += tcp_skb_pcount(skb);
2019                         tcp_verify_retransmit_hint(tp, skb);
2020                 }
2021         }
2022         tcp_verify_left_out(tp);
2023 }
2024
2025 /* Account newly detected lost packet(s) */
2026
2027 static void tcp_update_scoreboard(struct sock *sk)
2028 {
2029         struct tcp_sock *tp = tcp_sk(sk);
2030
2031         if (tcp_is_fack(tp)) {
2032                 int lost = tp->fackets_out - tp->reordering;
2033                 if (lost <= 0)
2034                         lost = 1;
2035                 tcp_mark_head_lost(sk, lost, tp->high_seq);
2036         } else {
2037                 tcp_mark_head_lost(sk, 1, tp->high_seq);
2038         }
2039
2040         /* New heuristics: it is possible only after we switched
2041          * to restart timer each time when something is ACKed.
2042          * Hence, we can detect timed out packets during fast
2043          * retransmit without falling to slow start.
2044          */
2045         if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
2046                 struct sk_buff *skb;
2047
2048                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2049                         : tcp_write_queue_head(sk);
2050
2051                 tcp_for_write_queue_from(skb, sk) {
2052                         if (skb == tcp_send_head(sk))
2053                                 break;
2054                         if (!tcp_skb_timedout(sk, skb))
2055                                 break;
2056
2057                         if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
2058                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2059                                 tp->lost_out += tcp_skb_pcount(skb);
2060                                 tcp_verify_retransmit_hint(tp, skb);
2061                         }
2062                 }
2063
2064                 tp->scoreboard_skb_hint = skb;
2065
2066                 tcp_verify_left_out(tp);
2067         }
2068 }
2069
2070 /* CWND moderation, preventing bursts due to too big ACKs
2071  * in dubious situations.
2072  */
2073 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2074 {
2075         tp->snd_cwnd = min(tp->snd_cwnd,
2076                            tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2077         tp->snd_cwnd_stamp = tcp_time_stamp;
2078 }
2079
2080 /* Lower bound on congestion window is slow start threshold
2081  * unless congestion avoidance choice decides to overide it.
2082  */
2083 static inline u32 tcp_cwnd_min(const struct sock *sk)
2084 {
2085         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2086
2087         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2088 }
2089
2090 /* Decrease cwnd each second ack. */
2091 static void tcp_cwnd_down(struct sock *sk, int flag)
2092 {
2093         struct tcp_sock *tp = tcp_sk(sk);
2094         int decr = tp->snd_cwnd_cnt + 1;
2095
2096         if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2097             (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2098                 tp->snd_cwnd_cnt = decr&1;
2099                 decr >>= 1;
2100
2101                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2102                         tp->snd_cwnd -= decr;
2103
2104                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2105                 tp->snd_cwnd_stamp = tcp_time_stamp;
2106         }
2107 }
2108
2109 /* Nothing was retransmitted or returned timestamp is less
2110  * than timestamp of the first retransmission.
2111  */
2112 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2113 {
2114         return !tp->retrans_stamp ||
2115                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2116                  (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2117 }
2118
2119 /* Undo procedures. */
2120
2121 #if FASTRETRANS_DEBUG > 1
2122 static void DBGUNDO(struct sock *sk, const char *msg)
2123 {
2124         struct tcp_sock *tp = tcp_sk(sk);
2125         struct inet_sock *inet = inet_sk(sk);
2126
2127         printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2128                msg,
2129                NIPQUAD(inet->daddr), ntohs(inet->dport),
2130                tp->snd_cwnd, tcp_left_out(tp),
2131                tp->snd_ssthresh, tp->prior_ssthresh,
2132                tp->packets_out);
2133 }
2134 #else
2135 #define DBGUNDO(x...) do { } while (0)
2136 #endif
2137
2138 static void tcp_undo_cwr(struct sock *sk, const int undo)
2139 {
2140         struct tcp_sock *tp = tcp_sk(sk);
2141
2142         if (tp->prior_ssthresh) {
2143                 const struct inet_connection_sock *icsk = inet_csk(sk);
2144
2145                 if (icsk->icsk_ca_ops->undo_cwnd)
2146                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2147                 else
2148                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2149
2150                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2151                         tp->snd_ssthresh = tp->prior_ssthresh;
2152                         TCP_ECN_withdraw_cwr(tp);
2153                 }
2154         } else {
2155                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2156         }
2157         tcp_moderate_cwnd(tp);
2158         tp->snd_cwnd_stamp = tcp_time_stamp;
2159
2160         /* There is something screwy going on with the retrans hints after
2161            an undo */
2162         tcp_clear_all_retrans_hints(tp);
2163 }
2164
2165 static inline int tcp_may_undo(struct tcp_sock *tp)
2166 {
2167         return tp->undo_marker &&
2168                 (!tp->undo_retrans || tcp_packet_delayed(tp));
2169 }
2170
2171 /* People celebrate: "We love our President!" */
2172 static int tcp_try_undo_recovery(struct sock *sk)
2173 {
2174         struct tcp_sock *tp = tcp_sk(sk);
2175
2176         if (tcp_may_undo(tp)) {
2177                 /* Happy end! We did not retransmit anything
2178                  * or our original transmission succeeded.
2179                  */
2180                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2181                 tcp_undo_cwr(sk, 1);
2182                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2183                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2184                 else
2185                         NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2186                 tp->undo_marker = 0;
2187         }
2188         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2189                 /* Hold old state until something *above* high_seq
2190                  * is ACKed. For Reno it is MUST to prevent false
2191                  * fast retransmits (RFC2582). SACK TCP is safe. */
2192                 tcp_moderate_cwnd(tp);
2193                 return 1;
2194         }
2195         tcp_set_ca_state(sk, TCP_CA_Open);
2196         return 0;
2197 }
2198
2199 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2200 static void tcp_try_undo_dsack(struct sock *sk)
2201 {
2202         struct tcp_sock *tp = tcp_sk(sk);
2203
2204         if (tp->undo_marker && !tp->undo_retrans) {
2205                 DBGUNDO(sk, "D-SACK");
2206                 tcp_undo_cwr(sk, 1);
2207                 tp->undo_marker = 0;
2208                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2209         }
2210 }
2211
2212 /* Undo during fast recovery after partial ACK. */
2213
2214 static int tcp_try_undo_partial(struct sock *sk, int acked)
2215 {
2216         struct tcp_sock *tp = tcp_sk(sk);
2217         /* Partial ACK arrived. Force Hoe's retransmit. */
2218         int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
2219
2220         if (tcp_may_undo(tp)) {
2221                 /* Plain luck! Hole if filled with delayed
2222                  * packet, rather than with a retransmit.
2223                  */
2224                 if (tp->retrans_out == 0)
2225                         tp->retrans_stamp = 0;
2226
2227                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2228
2229                 DBGUNDO(sk, "Hoe");
2230                 tcp_undo_cwr(sk, 0);
2231                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2232
2233                 /* So... Do not make Hoe's retransmit yet.
2234                  * If the first packet was delayed, the rest
2235                  * ones are most probably delayed as well.
2236                  */
2237                 failed = 0;
2238         }
2239         return failed;
2240 }
2241
2242 /* Undo during loss recovery after partial ACK. */
2243 static int tcp_try_undo_loss(struct sock *sk)
2244 {
2245         struct tcp_sock *tp = tcp_sk(sk);
2246
2247         if (tcp_may_undo(tp)) {
2248                 struct sk_buff *skb;
2249                 tcp_for_write_queue(skb, sk) {
2250                         if (skb == tcp_send_head(sk))
2251                                 break;
2252                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2253                 }
2254
2255                 tcp_clear_all_retrans_hints(tp);
2256
2257                 DBGUNDO(sk, "partial loss");
2258                 tp->lost_out = 0;
2259                 tcp_undo_cwr(sk, 1);
2260                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2261                 inet_csk(sk)->icsk_retransmits = 0;
2262                 tp->undo_marker = 0;
2263                 if (tcp_is_sack(tp))
2264                         tcp_set_ca_state(sk, TCP_CA_Open);
2265                 return 1;
2266         }
2267         return 0;
2268 }
2269
2270 static inline void tcp_complete_cwr(struct sock *sk)
2271 {
2272         struct tcp_sock *tp = tcp_sk(sk);
2273         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2274         tp->snd_cwnd_stamp = tcp_time_stamp;
2275         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2276 }
2277
2278 static void tcp_try_to_open(struct sock *sk, int flag)
2279 {
2280         struct tcp_sock *tp = tcp_sk(sk);
2281
2282         tcp_verify_left_out(tp);
2283
2284         if (tp->retrans_out == 0)
2285                 tp->retrans_stamp = 0;
2286
2287         if (flag&FLAG_ECE)
2288                 tcp_enter_cwr(sk, 1);
2289
2290         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2291                 int state = TCP_CA_Open;
2292
2293                 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2294                         state = TCP_CA_Disorder;
2295
2296                 if (inet_csk(sk)->icsk_ca_state != state) {
2297                         tcp_set_ca_state(sk, state);
2298                         tp->high_seq = tp->snd_nxt;
2299                 }
2300                 tcp_moderate_cwnd(tp);
2301         } else {
2302                 tcp_cwnd_down(sk, flag);
2303         }
2304 }
2305
2306 static void tcp_mtup_probe_failed(struct sock *sk)
2307 {
2308         struct inet_connection_sock *icsk = inet_csk(sk);
2309
2310         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2311         icsk->icsk_mtup.probe_size = 0;
2312 }
2313
2314 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2315 {
2316         struct tcp_sock *tp = tcp_sk(sk);
2317         struct inet_connection_sock *icsk = inet_csk(sk);
2318
2319         /* FIXME: breaks with very large cwnd */
2320         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2321         tp->snd_cwnd = tp->snd_cwnd *
2322                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2323                        icsk->icsk_mtup.probe_size;
2324         tp->snd_cwnd_cnt = 0;
2325         tp->snd_cwnd_stamp = tcp_time_stamp;
2326         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2327
2328         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2329         icsk->icsk_mtup.probe_size = 0;
2330         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2331 }
2332
2333
2334 /* Process an event, which can update packets-in-flight not trivially.
2335  * Main goal of this function is to calculate new estimate for left_out,
2336  * taking into account both packets sitting in receiver's buffer and
2337  * packets lost by network.
2338  *
2339  * Besides that it does CWND reduction, when packet loss is detected
2340  * and changes state of machine.
2341  *
2342  * It does _not_ decide what to send, it is made in function
2343  * tcp_xmit_retransmit_queue().
2344  */
2345 static void
2346 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2347 {
2348         struct inet_connection_sock *icsk = inet_csk(sk);
2349         struct tcp_sock *tp = tcp_sk(sk);
2350         int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2351         int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2352                                     (tp->fackets_out > tp->reordering));
2353
2354         /* Some technical things:
2355          * 1. Reno does not count dupacks (sacked_out) automatically. */
2356         if (!tp->packets_out)
2357                 tp->sacked_out = 0;
2358
2359         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2360                 tp->fackets_out = 0;
2361
2362         /* Now state machine starts.
2363          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2364         if (flag&FLAG_ECE)
2365                 tp->prior_ssthresh = 0;
2366
2367         /* B. In all the states check for reneging SACKs. */
2368         if (tp->sacked_out && tcp_check_sack_reneging(sk))
2369                 return;
2370
2371         /* C. Process data loss notification, provided it is valid. */
2372         if ((flag&FLAG_DATA_LOST) &&
2373             before(tp->snd_una, tp->high_seq) &&
2374             icsk->icsk_ca_state != TCP_CA_Open &&
2375             tp->fackets_out > tp->reordering) {
2376                 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2377                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2378         }
2379
2380         /* D. Check consistency of the current state. */
2381         tcp_verify_left_out(tp);
2382
2383         /* E. Check state exit conditions. State can be terminated
2384          *    when high_seq is ACKed. */
2385         if (icsk->icsk_ca_state == TCP_CA_Open) {
2386                 BUG_TRAP(tp->retrans_out == 0);
2387                 tp->retrans_stamp = 0;
2388         } else if (!before(tp->snd_una, tp->high_seq)) {
2389                 switch (icsk->icsk_ca_state) {
2390                 case TCP_CA_Loss:
2391                         icsk->icsk_retransmits = 0;
2392                         if (tcp_try_undo_recovery(sk))
2393                                 return;
2394                         break;
2395
2396                 case TCP_CA_CWR:
2397                         /* CWR is to be held something *above* high_seq
2398                          * is ACKed for CWR bit to reach receiver. */
2399                         if (tp->snd_una != tp->high_seq) {
2400                                 tcp_complete_cwr(sk);
2401                                 tcp_set_ca_state(sk, TCP_CA_Open);
2402                         }
2403                         break;
2404
2405                 case TCP_CA_Disorder:
2406                         tcp_try_undo_dsack(sk);
2407                         if (!tp->undo_marker ||
2408                             /* For SACK case do not Open to allow to undo
2409                              * catching for all duplicate ACKs. */
2410                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2411                                 tp->undo_marker = 0;
2412                                 tcp_set_ca_state(sk, TCP_CA_Open);
2413                         }
2414                         break;
2415
2416                 case TCP_CA_Recovery:
2417                         if (tcp_is_reno(tp))
2418                                 tcp_reset_reno_sack(tp);
2419                         if (tcp_try_undo_recovery(sk))
2420                                 return;
2421                         tcp_complete_cwr(sk);
2422                         break;
2423                 }
2424         }
2425
2426         /* F. Process state. */
2427         switch (icsk->icsk_ca_state) {
2428         case TCP_CA_Recovery:
2429                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2430                         if (tcp_is_reno(tp) && is_dupack)
2431                                 tcp_add_reno_sack(sk);
2432                 } else
2433                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2434                 break;
2435         case TCP_CA_Loss:
2436                 if (flag&FLAG_DATA_ACKED)
2437                         icsk->icsk_retransmits = 0;
2438                 if (!tcp_try_undo_loss(sk)) {
2439                         tcp_moderate_cwnd(tp);
2440                         tcp_xmit_retransmit_queue(sk);
2441                         return;
2442                 }
2443                 if (icsk->icsk_ca_state != TCP_CA_Open)
2444                         return;
2445                 /* Loss is undone; fall through to processing in Open state. */
2446         default:
2447                 if (tcp_is_reno(tp)) {
2448                         if (flag & FLAG_SND_UNA_ADVANCED)
2449                                 tcp_reset_reno_sack(tp);
2450                         if (is_dupack)
2451                                 tcp_add_reno_sack(sk);
2452                 }
2453
2454                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2455                         tcp_try_undo_dsack(sk);
2456
2457                 if (!tcp_time_to_recover(sk)) {
2458                         tcp_try_to_open(sk, flag);
2459                         return;
2460                 }
2461
2462                 /* MTU probe failure: don't reduce cwnd */
2463                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2464                     icsk->icsk_mtup.probe_size &&
2465                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2466                         tcp_mtup_probe_failed(sk);
2467                         /* Restores the reduction we did in tcp_mtup_probe() */
2468                         tp->snd_cwnd++;
2469                         tcp_simple_retransmit(sk);
2470                         return;
2471                 }
2472
2473                 /* Otherwise enter Recovery state */
2474
2475                 if (tcp_is_reno(tp))
2476                         NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2477                 else
2478                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2479
2480                 tp->high_seq = tp->snd_nxt;
2481                 tp->prior_ssthresh = 0;
2482                 tp->undo_marker = tp->snd_una;
2483                 tp->undo_retrans = tp->retrans_out;
2484
2485                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2486                         if (!(flag&FLAG_ECE))
2487                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2488                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2489                         TCP_ECN_queue_cwr(tp);
2490                 }
2491
2492                 tp->bytes_acked = 0;
2493                 tp->snd_cwnd_cnt = 0;
2494                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2495         }
2496
2497         if (do_lost || tcp_head_timedout(sk))
2498                 tcp_update_scoreboard(sk);
2499         tcp_cwnd_down(sk, flag);
2500         tcp_xmit_retransmit_queue(sk);
2501 }
2502
2503 /* Read draft-ietf-tcplw-high-performance before mucking
2504  * with this code. (Supersedes RFC1323)
2505  */
2506 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2507 {
2508         /* RTTM Rule: A TSecr value received in a segment is used to
2509          * update the averaged RTT measurement only if the segment
2510          * acknowledges some new data, i.e., only if it advances the
2511          * left edge of the send window.
2512          *
2513          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2514          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2515          *
2516          * Changed: reset backoff as soon as we see the first valid sample.
2517          * If we do not, we get strongly overestimated rto. With timestamps
2518          * samples are accepted even from very old segments: f.e., when rtt=1
2519          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2520          * answer arrives rto becomes 120 seconds! If at least one of segments
2521          * in window is lost... Voila.                          --ANK (010210)
2522          */
2523         struct tcp_sock *tp = tcp_sk(sk);
2524         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2525         tcp_rtt_estimator(sk, seq_rtt);
2526         tcp_set_rto(sk);
2527         inet_csk(sk)->icsk_backoff = 0;
2528         tcp_bound_rto(sk);
2529 }
2530
2531 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2532 {
2533         /* We don't have a timestamp. Can only use
2534          * packets that are not retransmitted to determine
2535          * rtt estimates. Also, we must not reset the
2536          * backoff for rto until we get a non-retransmitted
2537          * packet. This allows us to deal with a situation
2538          * where the network delay has increased suddenly.
2539          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2540          */
2541
2542         if (flag & FLAG_RETRANS_DATA_ACKED)
2543                 return;
2544
2545         tcp_rtt_estimator(sk, seq_rtt);
2546         tcp_set_rto(sk);
2547         inet_csk(sk)->icsk_backoff = 0;
2548         tcp_bound_rto(sk);
2549 }
2550
2551 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2552                                       const s32 seq_rtt)
2553 {
2554         const struct tcp_sock *tp = tcp_sk(sk);
2555         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2556         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2557                 tcp_ack_saw_tstamp(sk, flag);
2558         else if (seq_rtt >= 0)
2559                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2560 }
2561
2562 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2563                            u32 in_flight, int good)
2564 {
2565         const struct inet_connection_sock *icsk = inet_csk(sk);
2566         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2567         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2568 }
2569
2570 /* Restart timer after forward progress on connection.
2571  * RFC2988 recommends to restart timer to now+rto.
2572  */
2573 static void tcp_rearm_rto(struct sock *sk)
2574 {
2575         struct tcp_sock *tp = tcp_sk(sk);
2576
2577         if (!tp->packets_out) {
2578                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2579         } else {
2580                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2581         }
2582 }
2583
2584 /* If we get here, the whole TSO packet has not been acked. */
2585 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2586 {
2587         struct tcp_sock *tp = tcp_sk(sk);
2588         u32 packets_acked;
2589
2590         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2591
2592         packets_acked = tcp_skb_pcount(skb);
2593         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2594                 return 0;
2595         packets_acked -= tcp_skb_pcount(skb);
2596
2597         if (packets_acked) {
2598                 BUG_ON(tcp_skb_pcount(skb) == 0);
2599                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2600         }
2601
2602         return packets_acked;
2603 }
2604
2605 /* Remove acknowledged frames from the retransmission queue. If our packet
2606  * is before the ack sequence we can discard it as it's confirmed to have
2607  * arrived at the other end.
2608  */
2609 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
2610 {
2611         struct tcp_sock *tp = tcp_sk(sk);
2612         const struct inet_connection_sock *icsk = inet_csk(sk);
2613         struct sk_buff *skb;
2614         u32 now = tcp_time_stamp;
2615         int fully_acked = 1;
2616         int flag = 0;
2617         int prior_packets = tp->packets_out;
2618         s32 seq_rtt = -1;
2619         ktime_t last_ackt = net_invalid_timestamp();
2620
2621         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2622                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2623                 u32 end_seq;
2624                 u32 packets_acked;
2625                 u8 sacked = scb->sacked;
2626
2627                 if (after(scb->end_seq, tp->snd_una)) {
2628                         if (tcp_skb_pcount(skb) == 1 ||
2629                             !after(tp->snd_una, scb->seq))
2630                                 break;
2631
2632                         packets_acked = tcp_tso_acked(sk, skb);
2633                         if (!packets_acked)
2634                                 break;
2635
2636                         fully_acked = 0;
2637                         end_seq = tp->snd_una;
2638                 } else {
2639                         packets_acked = tcp_skb_pcount(skb);
2640                         end_seq = scb->end_seq;
2641                 }
2642
2643                 /* MTU probing checks */
2644                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2645                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2646                         tcp_mtup_probe_success(sk, skb);
2647                 }
2648
2649                 if (sacked) {
2650                         if (sacked & TCPCB_RETRANS) {
2651                                 if (sacked & TCPCB_SACKED_RETRANS)
2652                                         tp->retrans_out -= packets_acked;
2653                                 flag |= FLAG_RETRANS_DATA_ACKED;
2654                                 seq_rtt = -1;
2655                                 if ((flag & FLAG_DATA_ACKED) ||
2656                                     (packets_acked > 1))
2657                                         flag |= FLAG_NONHEAD_RETRANS_ACKED;
2658                         } else if (seq_rtt < 0) {
2659                                 seq_rtt = now - scb->when;
2660                                 if (fully_acked)
2661                                         last_ackt = skb->tstamp;
2662                         }
2663
2664                         if (sacked & TCPCB_SACKED_ACKED)
2665                                 tp->sacked_out -= packets_acked;
2666                         if (sacked & TCPCB_LOST)
2667                                 tp->lost_out -= packets_acked;
2668
2669                         if ((sacked & TCPCB_URG) && tp->urg_mode &&
2670                             !before(end_seq, tp->snd_up))
2671                                 tp->urg_mode = 0;
2672                 } else if (seq_rtt < 0) {
2673                         seq_rtt = now - scb->when;
2674                         if (fully_acked)
2675                                 last_ackt = skb->tstamp;
2676                 }
2677                 tp->packets_out -= packets_acked;
2678
2679                 /* Initial outgoing SYN's get put onto the write_queue
2680                  * just like anything else we transmit.  It is not
2681                  * true data, and if we misinform our callers that
2682                  * this ACK acks real data, we will erroneously exit
2683                  * connection startup slow start one packet too
2684                  * quickly.  This is severely frowned upon behavior.
2685                  */
2686                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2687                         flag |= FLAG_DATA_ACKED;
2688                 } else {
2689                         flag |= FLAG_SYN_ACKED;
2690                         tp->retrans_stamp = 0;
2691                 }
2692
2693                 if (!fully_acked)
2694                         break;
2695
2696                 tcp_unlink_write_queue(skb, sk);
2697                 sk_stream_free_skb(sk, skb);
2698                 tcp_clear_all_retrans_hints(tp);
2699         }
2700
2701         if (flag & FLAG_ACKED) {
2702                 u32 pkts_acked = prior_packets - tp->packets_out;
2703                 const struct tcp_congestion_ops *ca_ops
2704                         = inet_csk(sk)->icsk_ca_ops;
2705
2706                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2707                 tcp_rearm_rto(sk);
2708
2709                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2710                 /* hint's skb might be NULL but we don't need to care */
2711                 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2712                                                tp->fastpath_cnt_hint);
2713                 if (tcp_is_reno(tp))
2714                         tcp_remove_reno_sacks(sk, pkts_acked);
2715
2716                 if (ca_ops->pkts_acked) {
2717                         s32 rtt_us = -1;
2718
2719                         /* Is the ACK triggering packet unambiguous? */
2720                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2721                                 /* High resolution needed and available? */
2722                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2723                                     !ktime_equal(last_ackt,
2724                                                  net_invalid_timestamp()))
2725                                         rtt_us = ktime_us_delta(ktime_get_real(),
2726                                                                 last_ackt);
2727                                 else if (seq_rtt > 0)
2728                                         rtt_us = jiffies_to_usecs(seq_rtt);
2729                         }
2730
2731                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2732                 }
2733         }
2734
2735 #if FASTRETRANS_DEBUG > 0
2736         BUG_TRAP((int)tp->sacked_out >= 0);
2737         BUG_TRAP((int)tp->lost_out >= 0);
2738         BUG_TRAP((int)tp->retrans_out >= 0);
2739         if (!tp->packets_out && tcp_is_sack(tp)) {
2740                 icsk = inet_csk(sk);
2741                 if (tp->lost_out) {
2742                         printk(KERN_DEBUG "Leak l=%u %d\n",
2743                                tp->lost_out, icsk->icsk_ca_state);
2744                         tp->lost_out = 0;
2745                 }
2746                 if (tp->sacked_out) {
2747                         printk(KERN_DEBUG "Leak s=%u %d\n",
2748                                tp->sacked_out, icsk->icsk_ca_state);
2749                         tp->sacked_out = 0;
2750                 }
2751                 if (tp->retrans_out) {
2752                         printk(KERN_DEBUG "Leak r=%u %d\n",
2753                                tp->retrans_out, icsk->icsk_ca_state);
2754                         tp->retrans_out = 0;
2755                 }
2756         }
2757 #endif
2758         *seq_rtt_p = seq_rtt;
2759         return flag;
2760 }
2761
2762 static void tcp_ack_probe(struct sock *sk)
2763 {
2764         const struct tcp_sock *tp = tcp_sk(sk);
2765         struct inet_connection_sock *icsk = inet_csk(sk);
2766
2767         /* Was it a usable window open? */
2768
2769         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2770                    tp->snd_una + tp->snd_wnd)) {
2771                 icsk->icsk_backoff = 0;
2772                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2773                 /* Socket must be waked up by subsequent tcp_data_snd_check().
2774                  * This function is not for random using!
2775                  */
2776         } else {
2777                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2778                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2779                                           TCP_RTO_MAX);
2780         }
2781 }
2782
2783 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2784 {
2785         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2786                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2787 }
2788
2789 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2790 {
2791         const struct tcp_sock *tp = tcp_sk(sk);
2792         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2793                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2794 }
2795
2796 /* Check that window update is acceptable.
2797  * The function assumes that snd_una<=ack<=snd_next.
2798  */
2799 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2800                                         const u32 ack_seq, const u32 nwin)
2801 {
2802         return (after(ack, tp->snd_una) ||
2803                 after(ack_seq, tp->snd_wl1) ||
2804                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2805 }
2806
2807 /* Update our send window.
2808  *
2809  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2810  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2811  */
2812 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2813                                  u32 ack_seq)
2814 {
2815         struct tcp_sock *tp = tcp_sk(sk);
2816         int flag = 0;
2817         u32 nwin = ntohs(tcp_hdr(skb)->window);
2818
2819         if (likely(!tcp_hdr(skb)->syn))
2820                 nwin <<= tp->rx_opt.snd_wscale;
2821
2822         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2823                 flag |= FLAG_WIN_UPDATE;
2824                 tcp_update_wl(tp, ack, ack_seq);
2825
2826                 if (tp->snd_wnd != nwin) {
2827                         tp->snd_wnd = nwin;
2828
2829                         /* Note, it is the only place, where
2830                          * fast path is recovered for sending TCP.
2831                          */
2832                         tp->pred_flags = 0;
2833                         tcp_fast_path_check(sk);
2834
2835                         if (nwin > tp->max_window) {
2836                                 tp->max_window = nwin;
2837                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2838                         }
2839                 }
2840         }
2841
2842         tp->snd_una = ack;
2843
2844         return flag;
2845 }
2846
2847 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2848  * continue in congestion avoidance.
2849  */
2850 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2851 {
2852         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2853         tp->snd_cwnd_cnt = 0;
2854         tp->bytes_acked = 0;
2855         TCP_ECN_queue_cwr(tp);
2856         tcp_moderate_cwnd(tp);
2857 }
2858
2859 /* A conservative spurious RTO response algorithm: reduce cwnd using
2860  * rate halving and continue in congestion avoidance.
2861  */
2862 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2863 {
2864         tcp_enter_cwr(sk, 0);
2865 }
2866
2867 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2868 {
2869         if (flag&FLAG_ECE)
2870                 tcp_ratehalving_spur_to_response(sk);
2871         else
2872                 tcp_undo_cwr(sk, 1);
2873 }
2874
2875 /* F-RTO spurious RTO detection algorithm (RFC4138)
2876  *
2877  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2878  * comments). State (ACK number) is kept in frto_counter. When ACK advances
2879  * window (but not to or beyond highest sequence sent before RTO):
2880  *   On First ACK,  send two new segments out.
2881  *   On Second ACK, RTO was likely spurious. Do spurious response (response
2882  *                  algorithm is not part of the F-RTO detection algorithm
2883  *                  given in RFC4138 but can be selected separately).
2884  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2885  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2886  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2887  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2888  *
2889  * Rationale: if the RTO was spurious, new ACKs should arrive from the
2890  * original window even after we transmit two new data segments.
2891  *
2892  * SACK version:
2893  *   on first step, wait until first cumulative ACK arrives, then move to
2894  *   the second step. In second step, the next ACK decides.
2895  *
2896  * F-RTO is implemented (mainly) in four functions:
2897  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
2898  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2899  *     called when tcp_use_frto() showed green light
2900  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2901  *   - tcp_enter_frto_loss() is called if there is not enough evidence
2902  *     to prove that the RTO is indeed spurious. It transfers the control
2903  *     from F-RTO to the conventional RTO recovery
2904  */
2905 static int tcp_process_frto(struct sock *sk, int flag)
2906 {
2907         struct tcp_sock *tp = tcp_sk(sk);
2908
2909         tcp_verify_left_out(tp);
2910
2911         /* Duplicate the behavior from Loss state (fastretrans_alert) */
2912         if (flag&FLAG_DATA_ACKED)
2913                 inet_csk(sk)->icsk_retransmits = 0;
2914
2915         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2916             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2917                 tp->undo_marker = 0;
2918
2919         if (!before(tp->snd_una, tp->frto_highmark)) {
2920                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2921                 return 1;
2922         }
2923
2924         if (!IsSackFrto() || tcp_is_reno(tp)) {
2925                 /* RFC4138 shortcoming in step 2; should also have case c):
2926                  * ACK isn't duplicate nor advances window, e.g., opposite dir
2927                  * data, winupdate
2928                  */
2929                 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2930                         return 1;
2931
2932                 if (!(flag&FLAG_DATA_ACKED)) {
2933                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2934                                             flag);
2935                         return 1;
2936                 }
2937         } else {
2938                 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2939                         /* Prevent sending of new data. */
2940                         tp->snd_cwnd = min(tp->snd_cwnd,
2941                                            tcp_packets_in_flight(tp));
2942                         return 1;
2943                 }
2944
2945                 if ((tp->frto_counter >= 2) &&
2946                     (!(flag&FLAG_FORWARD_PROGRESS) ||
2947                      ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2948                         /* RFC4138 shortcoming (see comment above) */
2949                         if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2950                                 return 1;
2951
2952                         tcp_enter_frto_loss(sk, 3, flag);
2953                         return 1;
2954                 }
2955         }
2956
2957         if (tp->frto_counter == 1) {
2958                 /* Sending of the next skb must be allowed or no FRTO */
2959                 if (!tcp_send_head(sk) ||
2960                     after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2961                                      tp->snd_una + tp->snd_wnd)) {
2962                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2963                                             flag);
2964                         return 1;
2965                 }
2966
2967                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2968                 tp->frto_counter = 2;
2969                 return 1;
2970         } else {
2971                 switch (sysctl_tcp_frto_response) {
2972                 case 2:
2973                         tcp_undo_spur_to_response(sk, flag);
2974                         break;
2975                 case 1:
2976                         tcp_conservative_spur_to_response(tp);
2977                         break;
2978                 default:
2979                         tcp_ratehalving_spur_to_response(sk);
2980                         break;
2981                 }
2982                 tp->frto_counter = 0;
2983                 tp->undo_marker = 0;
2984                 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
2985         }
2986         return 0;
2987 }
2988
2989 /* This routine deals with incoming acks, but not outgoing ones. */
2990 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2991 {
2992         struct inet_connection_sock *icsk = inet_csk(sk);
2993         struct tcp_sock *tp = tcp_sk(sk);
2994         u32 prior_snd_una = tp->snd_una;
2995         u32 ack_seq = TCP_SKB_CB(skb)->seq;
2996         u32 ack = TCP_SKB_CB(skb)->ack_seq;
2997         u32 prior_in_flight;
2998         s32 seq_rtt;
2999         int prior_packets;
3000         int frto_cwnd = 0;
3001
3002         /* If the ack is newer than sent or older than previous acks
3003          * then we can probably ignore it.
3004          */
3005         if (after(ack, tp->snd_nxt))
3006                 goto uninteresting_ack;
3007
3008         if (before(ack, prior_snd_una))
3009                 goto old_ack;
3010
3011         if (after(ack, prior_snd_una))
3012                 flag |= FLAG_SND_UNA_ADVANCED;
3013
3014         if (sysctl_tcp_abc) {
3015                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3016                         tp->bytes_acked += ack - prior_snd_una;
3017                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3018                         /* we assume just one segment left network */
3019                         tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3020         }
3021
3022         if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3023                 /* Window is constant, pure forward advance.
3024                  * No more checks are required.
3025                  * Note, we use the fact that SND.UNA>=SND.WL2.
3026                  */
3027                 tcp_update_wl(tp, ack, ack_seq);
3028                 tp->snd_una = ack;
3029                 flag |= FLAG_WIN_UPDATE;
3030
3031                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3032
3033                 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3034         } else {
3035                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3036                         flag |= FLAG_DATA;
3037                 else
3038                         NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3039
3040                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3041
3042                 if (TCP_SKB_CB(skb)->sacked)
3043                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3044
3045                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3046                         flag |= FLAG_ECE;
3047
3048                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3049         }
3050
3051         /* We passed data and got it acked, remove any soft error
3052          * log. Something worked...
3053          */
3054         sk->sk_err_soft = 0;
3055         tp->rcv_tstamp = tcp_time_stamp;
3056         prior_packets = tp->packets_out;
3057         if (!prior_packets)
3058                 goto no_queue;
3059
3060         prior_in_flight = tcp_packets_in_flight(tp);
3061
3062         /* See if we can take anything off of the retransmit queue. */
3063         flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
3064
3065         /* Guarantee sacktag reordering detection against wrap-arounds */
3066         if (before(tp->frto_highmark, tp->snd_una))
3067                 tp->frto_highmark = 0;
3068         if (tp->frto_counter)
3069                 frto_cwnd = tcp_process_frto(sk, flag);
3070
3071         if (tcp_ack_is_dubious(sk, flag)) {
3072                 /* Advance CWND, if state allows this. */
3073                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3074                     tcp_may_raise_cwnd(sk, flag))
3075                         tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3076                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3077         } else {
3078                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3079                         tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3080         }
3081
3082         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3083                 dst_confirm(sk->sk_dst_cache);
3084
3085         return 1;
3086
3087 no_queue:
3088         icsk->icsk_probes_out = 0;
3089
3090         /* If this ack opens up a zero window, clear backoff.  It was
3091          * being used to time the probes, and is probably far higher than
3092          * it needs to be for normal retransmission.
3093          */
3094         if (tcp_send_head(sk))
3095                 tcp_ack_probe(sk);
3096         return 1;
3097
3098 old_ack:
3099         if (TCP_SKB_CB(skb)->sacked)
3100                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3101
3102 uninteresting_ack:
3103         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3104         return 0;
3105 }
3106
3107
3108 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3109  * But, this can also be called on packets in the established flow when
3110  * the fast version below fails.
3111  */
3112 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3113 {
3114         unsigned char *ptr;
3115         struct tcphdr *th = tcp_hdr(skb);
3116         int length=(th->doff*4)-sizeof(struct tcphdr);
3117
3118         ptr = (unsigned char *)(th + 1);
3119         opt_rx->saw_tstamp = 0;
3120
3121         while (length > 0) {
3122                 int opcode=*ptr++;
3123                 int opsize;
3124
3125                 switch (opcode) {
3126                         case TCPOPT_EOL:
3127                                 return;
3128                         case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3129                                 length--;
3130                                 continue;
3131                         default:
3132                                 opsize=*ptr++;
3133                                 if (opsize < 2) /* "silly options" */
3134                                         return;
3135                                 if (opsize > length)
3136                                         return; /* don't parse partial options */
3137                                 switch (opcode) {
3138                                 case TCPOPT_MSS:
3139                                         if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3140                                                 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3141                                                 if (in_mss) {
3142                                                         if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3143                                                                 in_mss = opt_rx->user_mss;
3144                                                         opt_rx->mss_clamp = in_mss;
3145                                                 }
3146                                         }
3147                                         break;
3148                                 case TCPOPT_WINDOW:
3149                                         if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3150                                                 if (sysctl_tcp_window_scaling) {
3151                                                         __u8 snd_wscale = *(__u8 *) ptr;
3152                                                         opt_rx->wscale_ok = 1;
3153                                                         if (snd_wscale > 14) {
3154                                                                 if (net_ratelimit())
3155                                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3156                                                                                "scaling value %d >14 received.\n",
3157                                                                                snd_wscale);
3158                                                                 snd_wscale = 14;
3159                                                         }
3160                                                         opt_rx->snd_wscale = snd_wscale;
3161                                                 }
3162                                         break;
3163                                 case TCPOPT_TIMESTAMP:
3164                                         if (opsize==TCPOLEN_TIMESTAMP) {
3165                                                 if ((estab && opt_rx->tstamp_ok) ||
3166                                                     (!estab && sysctl_tcp_timestamps)) {
3167                                                         opt_rx->saw_tstamp = 1;
3168                                                         opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3169                                                         opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3170                                                 }
3171                                         }
3172                                         break;
3173                                 case TCPOPT_SACK_PERM:
3174                                         if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3175                                                 if (sysctl_tcp_sack) {
3176                                                         opt_rx->sack_ok = 1;
3177                                                         tcp_sack_reset(opt_rx);
3178                                                 }
3179                                         }
3180                                         break;
3181
3182                                 case TCPOPT_SACK:
3183                                         if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3184                                            !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3185                                            opt_rx->sack_ok) {
3186                                                 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3187                                         }
3188                                         break;
3189 #ifdef CONFIG_TCP_MD5SIG
3190                                 case TCPOPT_MD5SIG:
3191                                         /*
3192                                          * The MD5 Hash has already been
3193                                          * checked (see tcp_v{4,6}_do_rcv()).
3194                                          */
3195                                         break;
3196 #endif
3197                                 }
3198
3199                                 ptr+=opsize-2;
3200                                 length-=opsize;
3201                 }
3202         }
3203 }
3204
3205 /* Fast parse options. This hopes to only see timestamps.
3206  * If it is wrong it falls back on tcp_parse_options().
3207  */
3208 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3209                                   struct tcp_sock *tp)
3210 {
3211         if (th->doff == sizeof(struct tcphdr)>>2) {
3212                 tp->rx_opt.saw_tstamp = 0;
3213                 return 0;
3214         } else if (tp->rx_opt.tstamp_ok &&
3215                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3216                 __be32 *ptr = (__be32 *)(th + 1);
3217                 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3218                                   | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3219                         tp->rx_opt.saw_tstamp = 1;
3220                         ++ptr;
3221                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
3222                         ++ptr;
3223                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3224                         return 1;
3225                 }
3226         }
3227         tcp_parse_options(skb, &tp->rx_opt, 1);
3228         return 1;
3229 }
3230
3231 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3232 {
3233         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3234         tp->rx_opt.ts_recent_stamp = get_seconds();
3235 }
3236
3237 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3238 {
3239         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3240                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3241                  * extra check below makes sure this can only happen
3242                  * for pure ACK frames.  -DaveM
3243                  *
3244                  * Not only, also it occurs for expired timestamps.
3245                  */
3246
3247                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3248                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3249                         tcp_store_ts_recent(tp);
3250         }
3251 }
3252
3253 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3254  *
3255  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3256  * it can pass through stack. So, the following predicate verifies that
3257  * this segment is not used for anything but congestion avoidance or
3258  * fast retransmit. Moreover, we even are able to eliminate most of such
3259  * second order effects, if we apply some small "replay" window (~RTO)
3260  * to timestamp space.
3261  *
3262  * All these measures still do not guarantee that we reject wrapped ACKs
3263  * on networks with high bandwidth, when sequence space is recycled fastly,
3264  * but it guarantees that such events will be very rare and do not affect
3265  * connection seriously. This doesn't look nice, but alas, PAWS is really
3266  * buggy extension.
3267  *
3268  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3269  * states that events when retransmit arrives after original data are rare.
3270  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3271  * the biggest problem on large power networks even with minor reordering.
3272  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3273  * up to bandwidth of 18Gigabit/sec. 8) ]
3274  */
3275
3276 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3277 {
3278         struct tcp_sock *tp = tcp_sk(sk);
3279         struct tcphdr *th = tcp_hdr(skb);
3280         u32 seq = TCP_SKB_CB(skb)->seq;
3281         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3282
3283         return (/* 1. Pure ACK with correct sequence number. */
3284                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3285
3286                 /* 2. ... and duplicate ACK. */
3287                 ack == tp->snd_una &&
3288
3289                 /* 3. ... and does not update window. */
3290                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3291
3292                 /* 4. ... and sits in replay window. */
3293                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3294 }
3295
3296 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3297 {
3298         const struct tcp_sock *tp = tcp_sk(sk);
3299         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3300                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3301                 !tcp_disordered_ack(sk, skb));
3302 }
3303
3304 /* Check segment sequence number for validity.
3305  *
3306  * Segment controls are considered valid, if the segment
3307  * fits to the window after truncation to the window. Acceptability
3308  * of data (and SYN, FIN, of course) is checked separately.
3309  * See tcp_data_queue(), for example.
3310  *
3311  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3312  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3313  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3314  * (borrowed from freebsd)
3315  */
3316
3317 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3318 {
3319         return  !before(end_seq, tp->rcv_wup) &&
3320                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3321 }
3322
3323 /* When we get a reset we do this. */
3324 static void tcp_reset(struct sock *sk)
3325 {
3326         /* We want the right error as BSD sees it (and indeed as we do). */
3327         switch (sk->sk_state) {
3328                 case TCP_SYN_SENT:
3329                         sk->sk_err = ECONNREFUSED;
3330                         break;
3331                 case TCP_CLOSE_WAIT:
3332                         sk->sk_err = EPIPE;
3333                         break;
3334                 case TCP_CLOSE:
3335                         return;
3336                 default:
3337                         sk->sk_err = ECONNRESET;
3338         }
3339
3340         if (!sock_flag(sk, SOCK_DEAD))
3341                 sk->sk_error_report(sk);
3342
3343         tcp_done(sk);
3344 }
3345
3346 /*
3347  *      Process the FIN bit. This now behaves as it is supposed to work
3348  *      and the FIN takes effect when it is validly part of sequence
3349  *      space. Not before when we get holes.
3350  *
3351  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3352  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3353  *      TIME-WAIT)
3354  *
3355  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3356  *      close and we go into CLOSING (and later onto TIME-WAIT)
3357  *
3358  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3359  */
3360 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3361 {
3362         struct tcp_sock *tp = tcp_sk(sk);
3363
3364         inet_csk_schedule_ack(sk);
3365
3366         sk->sk_shutdown |= RCV_SHUTDOWN;
3367         sock_set_flag(sk, SOCK_DONE);
3368
3369         switch (sk->sk_state) {
3370                 case TCP_SYN_RECV:
3371                 case TCP_ESTABLISHED:
3372                         /* Move to CLOSE_WAIT */
3373                         tcp_set_state(sk, TCP_CLOSE_WAIT);
3374                         inet_csk(sk)->icsk_ack.pingpong = 1;
3375                         break;
3376
3377                 case TCP_CLOSE_WAIT:
3378                 case TCP_CLOSING:
3379                         /* Received a retransmission of the FIN, do
3380                          * nothing.
3381                          */
3382                         break;
3383                 case TCP_LAST_ACK:
3384                         /* RFC793: Remain in the LAST-ACK state. */
3385                         break;
3386
3387                 case TCP_FIN_WAIT1:
3388                         /* This case occurs when a simultaneous close
3389                          * happens, we must ack the received FIN and
3390                          * enter the CLOSING state.
3391                          */
3392                         tcp_send_ack(sk);
3393                         tcp_set_state(sk, TCP_CLOSING);
3394                         break;
3395                 case TCP_FIN_WAIT2:
3396                         /* Received a FIN -- send ACK and enter TIME_WAIT. */
3397                         tcp_send_ack(sk);
3398                         tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3399                         break;
3400                 default:
3401                         /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3402                          * cases we should never reach this piece of code.
3403                          */
3404                         printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3405                                __FUNCTION__, sk->sk_state);
3406                         break;
3407         }
3408
3409         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3410          * Probably, we should reset in this case. For now drop them.
3411          */
3412         __skb_queue_purge(&tp->out_of_order_queue);
3413         if (tcp_is_sack(tp))
3414                 tcp_sack_reset(&tp->rx_opt);
3415         sk_stream_mem_reclaim(sk);
3416
3417         if (!sock_flag(sk, SOCK_DEAD)) {
3418                 sk->sk_state_change(sk);
3419
3420                 /* Do not send POLL_HUP for half duplex close. */
3421                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3422                     sk->sk_state == TCP_CLOSE)
3423                         sk_wake_async(sk, 1, POLL_HUP);
3424                 else
3425                         sk_wake_async(sk, 1, POLL_IN);
3426         }
3427 }
3428
3429 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3430 {
3431         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3432                 if (before(seq, sp->start_seq))
3433                         sp->start_seq = seq;
3434                 if (after(end_seq, sp->end_seq))
3435                         sp->end_seq = end_seq;
3436                 return 1;
3437         }
3438         return 0;
3439 }
3440
3441 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3442 {
3443         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3444                 if (before(seq, tp->rcv_nxt))
3445                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3446                 else
3447                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3448
3449                 tp->rx_opt.dsack = 1;
3450                 tp->duplicate_sack[0].start_seq = seq;
3451                 tp->duplicate_sack[0].end_seq = end_seq;
3452                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3453         }
3454 }
3455
3456 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3457 {
3458         if (!tp->rx_opt.dsack)
3459                 tcp_dsack_set(tp, seq, end_seq);
3460         else
3461                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3462 }
3463
3464 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3465 {
3466         struct tcp_sock *tp = tcp_sk(sk);
3467
3468         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3469             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3470                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3471                 tcp_enter_quickack_mode(sk);
3472
3473                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3474                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3475
3476                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3477                                 end_seq = tp->rcv_nxt;
3478                         tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3479                 }
3480         }
3481
3482         tcp_send_ack(sk);
3483 }
3484
3485 /* These routines update the SACK block as out-of-order packets arrive or
3486  * in-order packets close up the sequence space.
3487  */
3488 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3489 {
3490         int this_sack;
3491         struct tcp_sack_block *sp = &tp->selective_acks[0];
3492         struct tcp_sack_block *swalk = sp+1;
3493
3494         /* See if the recent change to the first SACK eats into
3495          * or hits the sequence space of other SACK blocks, if so coalesce.
3496          */
3497         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3498                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3499                         int i;
3500
3501                         /* Zap SWALK, by moving every further SACK up by one slot.
3502                          * Decrease num_sacks.
3503                          */
3504                         tp->rx_opt.num_sacks--;
3505                         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3506                         for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3507                                 sp[i] = sp[i+1];
3508                         continue;
3509                 }
3510                 this_sack++, swalk++;
3511         }
3512 }
3513
3514 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3515 {
3516         __u32 tmp;
3517
3518         tmp = sack1->start_seq;
3519         sack1->start_seq = sack2->start_seq;
3520         sack2->start_seq = tmp;
3521
3522         tmp = sack1->end_seq;
3523         sack1->end_seq = sack2->end_seq;
3524         sack2->end_seq = tmp;
3525 }
3526
3527 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3528 {
3529         struct tcp_sock *tp = tcp_sk(sk);
3530         struct tcp_sack_block *sp = &tp->selective_acks[0];
3531         int cur_sacks = tp->rx_opt.num_sacks;
3532         int this_sack;
3533
3534         if (!cur_sacks)
3535                 goto new_sack;
3536
3537         for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3538                 if (tcp_sack_extend(sp, seq, end_seq)) {
3539                         /* Rotate this_sack to the first one. */
3540                         for (; this_sack>0; this_sack--, sp--)
3541                                 tcp_sack_swap(sp, sp-1);
3542                         if (cur_sacks > 1)
3543                                 tcp_sack_maybe_coalesce(tp);
3544                         return;
3545                 }
3546         }
3547
3548         /* Could not find an adjacent existing SACK, build a new one,
3549          * put it at the front, and shift everyone else down.  We
3550          * always know there is at least one SACK present already here.
3551          *
3552          * If the sack array is full, forget about the last one.
3553          */
3554         if (this_sack >= 4) {
3555                 this_sack--;
3556                 tp->rx_opt.num_sacks--;
3557                 sp--;
3558         }
3559         for (; this_sack > 0; this_sack--, sp--)
3560                 *sp = *(sp-1);
3561
3562 new_sack:
3563         /* Build the new head SACK, and we're done. */
3564         sp->start_seq = seq;
3565         sp->end_seq = end_seq;
3566         tp->rx_opt.num_sacks++;
3567         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3568 }
3569
3570 /* RCV.NXT advances, some SACKs should be eaten. */
3571
3572 static void tcp_sack_remove(struct tcp_sock *tp)
3573 {
3574         struct tcp_sack_block *sp = &tp->selective_acks[0];
3575         int num_sacks = tp->rx_opt.num_sacks;
3576         int this_sack;
3577
3578         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3579         if (skb_queue_empty(&tp->out_of_order_queue)) {
3580                 tp->rx_opt.num_sacks = 0;
3581                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3582                 return;
3583         }
3584
3585         for (this_sack = 0; this_sack < num_sacks; ) {
3586                 /* Check if the start of the sack is covered by RCV.NXT. */
3587                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3588                         int i;
3589
3590                         /* RCV.NXT must cover all the block! */
3591                         BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3592
3593                         /* Zap this SACK, by moving forward any other SACKS. */
3594                         for (i=this_sack+1; i < num_sacks; i++)
3595                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3596                         num_sacks--;
3597                         continue;
3598                 }
3599                 this_sack++;
3600                 sp++;
3601         }
3602         if (num_sacks != tp->rx_opt.num_sacks) {
3603                 tp->rx_opt.num_sacks = num_sacks;
3604                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3605         }
3606 }
3607
3608 /* This one checks to see if we can put data from the
3609  * out_of_order queue into the receive_queue.
3610  */
3611 static void tcp_ofo_queue(struct sock *sk)
3612 {
3613         struct tcp_sock *tp = tcp_sk(sk);
3614         __u32 dsack_high = tp->rcv_nxt;
3615         struct sk_buff *skb;
3616
3617         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3618                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3619                         break;
3620
3621                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3622                         __u32 dsack = dsack_high;
3623                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3624                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3625                         tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3626                 }
3627
3628                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3629                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3630                         __skb_unlink(skb, &tp->out_of_order_queue);
3631                         __kfree_skb(skb);
3632                         continue;
3633                 }
3634                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3635                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3636                            TCP_SKB_CB(skb)->end_seq);
3637
3638                 __skb_unlink(skb, &tp->out_of_order_queue);
3639                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3640                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3641                 if (tcp_hdr(skb)->fin)
3642                         tcp_fin(skb, sk, tcp_hdr(skb));
3643         }
3644 }
3645
3646 static int tcp_prune_queue(struct sock *sk);
3647
3648 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3649 {
3650         struct tcphdr *th = tcp_hdr(skb);
3651         struct tcp_sock *tp = tcp_sk(sk);
3652         int eaten = -1;
3653
3654         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3655                 goto drop;
3656
3657         __skb_pull(skb, th->doff*4);
3658
3659         TCP_ECN_accept_cwr(tp, skb);
3660
3661         if (tp->rx_opt.dsack) {
3662                 tp->rx_opt.dsack = 0;
3663                 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3664                                                     4 - tp->rx_opt.tstamp_ok);
3665         }
3666
3667         /*  Queue data for delivery to the user.
3668          *  Packets in sequence go to the receive queue.
3669          *  Out of sequence packets to the out_of_order_queue.
3670          */
3671         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3672                 if (tcp_receive_window(tp) == 0)
3673                         goto out_of_window;
3674
3675                 /* Ok. In sequence. In window. */
3676                 if (tp->ucopy.task == current &&
3677                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3678                     sock_owned_by_user(sk) && !tp->urg_data) {
3679                         int chunk = min_t(unsigned int, skb->len,
3680                                                         tp->ucopy.len);
3681
3682                         __set_current_state(TASK_RUNNING);
3683
3684                         local_bh_enable();
3685                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3686                                 tp->ucopy.len -= chunk;
3687                                 tp->copied_seq += chunk;
3688                                 eaten = (chunk == skb->len && !th->fin);
3689                                 tcp_rcv_space_adjust(sk);
3690                         }
3691                         local_bh_disable();
3692                 }
3693
3694                 if (eaten <= 0) {
3695 queue_and_out:
3696                         if (eaten < 0 &&
3697                             (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3698                              !sk_stream_rmem_schedule(sk, skb))) {
3699                                 if (tcp_prune_queue(sk) < 0 ||
3700                                     !sk_stream_rmem_schedule(sk, skb))
3701                                         goto drop;
3702                         }
3703                         sk_stream_set_owner_r(skb, sk);
3704                         __skb_queue_tail(&sk->sk_receive_queue, skb);
3705                 }
3706                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3707                 if (skb->len)
3708                         tcp_event_data_recv(sk, skb);
3709                 if (th->fin)
3710                         tcp_fin(skb, sk, th);
3711
3712                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3713                         tcp_ofo_queue(sk);
3714
3715                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
3716                          * gap in queue is filled.
3717                          */
3718                         if (skb_queue_empty(&tp->out_of_order_queue))
3719                                 inet_csk(sk)->icsk_ack.pingpong = 0;
3720                 }
3721
3722                 if (tp->rx_opt.num_sacks)
3723                         tcp_sack_remove(tp);
3724
3725                 tcp_fast_path_check(sk);
3726
3727                 if (eaten > 0)
3728                         __kfree_skb(skb);
3729                 else if (!sock_flag(sk, SOCK_DEAD))
3730                         sk->sk_data_ready(sk, 0);
3731                 return;
3732         }
3733
3734         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3735                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
3736                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3737                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3738
3739 out_of_window:
3740                 tcp_enter_quickack_mode(sk);
3741                 inet_csk_schedule_ack(sk);
3742 drop:
3743                 __kfree_skb(skb);
3744                 return;
3745         }
3746
3747         /* Out of window. F.e. zero window probe. */
3748         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3749                 goto out_of_window;
3750
3751         tcp_enter_quickack_mode(sk);
3752
3753         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3754                 /* Partial packet, seq < rcv_next < end_seq */
3755                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3756                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3757                            TCP_SKB_CB(skb)->end_seq);
3758
3759                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3760
3761                 /* If window is closed, drop tail of packet. But after
3762                  * remembering D-SACK for its head made in previous line.
3763                  */
3764                 if (!tcp_receive_window(tp))
3765                         goto out_of_window;
3766                 goto queue_and_out;
3767         }
3768
3769         TCP_ECN_check_ce(tp, skb);
3770
3771         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3772             !sk_stream_rmem_schedule(sk, skb)) {
3773                 if (tcp_prune_queue(sk) < 0 ||
3774                     !sk_stream_rmem_schedule(sk, skb))
3775                         goto drop;
3776         }
3777
3778         /* Disable header prediction. */
3779         tp->pred_flags = 0;
3780         inet_csk_schedule_ack(sk);
3781
3782         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3783                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3784
3785         sk_stream_set_owner_r(skb, sk);
3786
3787         if (!skb_peek(&tp->out_of_order_queue)) {
3788                 /* Initial out of order segment, build 1 SACK. */
3789                 if (tcp_is_sack(tp)) {
3790                         tp->rx_opt.num_sacks = 1;
3791                         tp->rx_opt.dsack     = 0;
3792                         tp->rx_opt.eff_sacks = 1;
3793                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3794                         tp->selective_acks[0].end_seq =
3795                                                 TCP_SKB_CB(skb)->end_seq;
3796                 }
3797                 __skb_queue_head(&tp->out_of_order_queue,skb);
3798         } else {
3799                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3800                 u32 seq = TCP_SKB_CB(skb)->seq;
3801                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3802
3803                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3804                         __skb_append(skb1, skb, &tp->out_of_order_queue);
3805
3806                         if (!tp->rx_opt.num_sacks ||
3807                             tp->selective_acks[0].end_seq != seq)
3808                                 goto add_sack;
3809
3810                         /* Common case: data arrive in order after hole. */
3811                         tp->selective_acks[0].end_seq = end_seq;
3812                         return;
3813                 }
3814
3815                 /* Find place to insert this segment. */
3816                 do {
3817                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
3818                                 break;
3819                 } while ((skb1 = skb1->prev) !=
3820                          (struct sk_buff*)&tp->out_of_order_queue);
3821
3822                 /* Do skb overlap to previous one? */
3823                 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3824                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3825                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3826                                 /* All the bits are present. Drop. */
3827                                 __kfree_skb(skb);
3828                                 tcp_dsack_set(tp, seq, end_seq);
3829                                 goto add_sack;
3830                         }
3831                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3832                                 /* Partial overlap. */
3833                                 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3834                         } else {
3835                                 skb1 = skb1->prev;
3836                         }
3837                 }
3838                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3839
3840                 /* And clean segments covered by new one as whole. */
3841                 while ((skb1 = skb->next) !=
3842                        (struct sk_buff*)&tp->out_of_order_queue &&
3843                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3844                        if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3845                                tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3846                                break;
3847                        }
3848                        __skb_unlink(skb1, &tp->out_of_order_queue);
3849                        tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3850                        __kfree_skb(skb1);
3851                 }
3852
3853 add_sack:
3854                 if (tcp_is_sack(tp))
3855                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
3856         }
3857 }
3858
3859 /* Collapse contiguous sequence of skbs head..tail with
3860  * sequence numbers start..end.
3861  * Segments with FIN/SYN are not collapsed (only because this
3862  * simplifies code)
3863  */
3864 static void
3865 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3866              struct sk_buff *head, struct sk_buff *tail,
3867              u32 start, u32 end)
3868 {
3869         struct sk_buff *skb;
3870
3871         /* First, check that queue is collapsible and find
3872          * the point where collapsing can be useful. */
3873         for (skb = head; skb != tail; ) {
3874                 /* No new bits? It is possible on ofo queue. */
3875                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3876                         struct sk_buff *next = skb->next;
3877                         __skb_unlink(skb, list);
3878                         __kfree_skb(skb);
3879                         NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3880                         skb = next;
3881                         continue;
3882                 }
3883
3884                 /* The first skb to collapse is:
3885                  * - not SYN/FIN and
3886                  * - bloated or contains data before "start" or
3887                  *   overlaps to the next one.
3888                  */
3889                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3890                     (tcp_win_from_space(skb->truesize) > skb->len ||
3891                      before(TCP_SKB_CB(skb)->seq, start) ||
3892                      (skb->next != tail &&
3893                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3894                         break;
3895
3896                 /* Decided to skip this, advance start seq. */
3897                 start = TCP_SKB_CB(skb)->end_seq;
3898                 skb = skb->next;
3899         }
3900         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3901                 return;
3902
3903         while (before(start, end)) {
3904                 struct sk_buff *nskb;
3905                 int header = skb_headroom(skb);
3906                 int copy = SKB_MAX_ORDER(header, 0);
3907
3908                 /* Too big header? This can happen with IPv6. */
3909                 if (copy < 0)
3910                         return;
3911                 if (end-start < copy)
3912                         copy = end-start;
3913                 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3914                 if (!nskb)
3915                         return;
3916
3917                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3918                 skb_set_network_header(nskb, (skb_network_header(skb) -
3919                                               skb->head));
3920                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3921                                                 skb->head));
3922                 skb_reserve(nskb, header);
3923                 memcpy(nskb->head, skb->head, header);
3924                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3925                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3926                 __skb_insert(nskb, skb->prev, skb, list);
3927                 sk_stream_set_owner_r(nskb, sk);
3928
3929                 /* Copy data, releasing collapsed skbs. */
3930                 while (copy > 0) {
3931                         int offset = start - TCP_SKB_CB(skb)->seq;
3932                         int size = TCP_SKB_CB(skb)->end_seq - start;
3933
3934                         BUG_ON(offset < 0);
3935                         if (size > 0) {
3936                                 size = min(copy, size);
3937                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3938                                         BUG();
3939                                 TCP_SKB_CB(nskb)->end_seq += size;
3940                                 copy -= size;
3941                                 start += size;
3942                         }
3943                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3944                                 struct sk_buff *next = skb->next;
3945                                 __skb_unlink(skb, list);
3946                                 __kfree_skb(skb);
3947                                 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3948                                 skb = next;
3949                                 if (skb == tail ||
3950                                     tcp_hdr(skb)->syn ||
3951                                     tcp_hdr(skb)->fin)
3952                                         return;
3953                         }
3954                 }
3955         }
3956 }
3957
3958 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3959  * and tcp_collapse() them until all the queue is collapsed.
3960  */
3961 static void tcp_collapse_ofo_queue(struct sock *sk)
3962 {
3963         struct tcp_sock *tp = tcp_sk(sk);
3964         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3965         struct sk_buff *head;
3966         u32 start, end;
3967
3968         if (skb == NULL)
3969                 return;
3970
3971         start = TCP_SKB_CB(skb)->seq;
3972         end = TCP_SKB_CB(skb)->end_seq;
3973         head = skb;
3974
3975         for (;;) {
3976                 skb = skb->next;
3977
3978                 /* Segment is terminated when we see gap or when
3979                  * we are at the end of all the queue. */
3980                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3981                     after(TCP_SKB_CB(skb)->seq, end) ||
3982                     before(TCP_SKB_CB(skb)->end_seq, start)) {
3983                         tcp_collapse(sk, &tp->out_of_order_queue,
3984                                      head, skb, start, end);
3985                         head = skb;
3986                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3987                                 break;
3988                         /* Start new segment */
3989                         start = TCP_SKB_CB(skb)->seq;
3990                         end = TCP_SKB_CB(skb)->end_seq;
3991                 } else {
3992                         if (before(TCP_SKB_CB(skb)->seq, start))
3993                                 start = TCP_SKB_CB(skb)->seq;
3994                         if (after(TCP_SKB_CB(skb)->end_seq, end))
3995                                 end = TCP_SKB_CB(skb)->end_seq;
3996                 }
3997         }
3998 }
3999
4000 /* Reduce allocated memory if we can, trying to get
4001  * the socket within its memory limits again.
4002  *
4003  * Return less than zero if we should start dropping frames
4004  * until the socket owning process reads some of the data
4005  * to stabilize the situation.
4006  */
4007 static int tcp_prune_queue(struct sock *sk)
4008 {
4009         struct tcp_sock *tp = tcp_sk(sk);
4010
4011         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4012
4013         NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4014
4015         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4016                 tcp_clamp_window(sk);
4017         else if (tcp_memory_pressure)
4018                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4019
4020         tcp_collapse_ofo_queue(sk);
4021         tcp_collapse(sk, &sk->sk_receive_queue,
4022                      sk->sk_receive_queue.next,
4023                      (struct sk_buff*)&sk->sk_receive_queue,
4024                      tp->copied_seq, tp->rcv_nxt);
4025         sk_stream_mem_reclaim(sk);
4026
4027         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4028                 return 0;
4029
4030         /* Collapsing did not help, destructive actions follow.
4031          * This must not ever occur. */
4032
4033         /* First, purge the out_of_order queue. */
4034         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4035                 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4036                 __skb_queue_purge(&tp->out_of_order_queue);
4037
4038                 /* Reset SACK state.  A conforming SACK implementation will
4039                  * do the same at a timeout based retransmit.  When a connection
4040                  * is in a sad state like this, we care only about integrity
4041                  * of the connection not performance.
4042                  */
4043                 if (tcp_is_sack(tp))
4044                         tcp_sack_reset(&tp->rx_opt);
4045                 sk_stream_mem_reclaim(sk);
4046         }
4047
4048         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4049                 return 0;
4050
4051         /* If we are really being abused, tell the caller to silently
4052          * drop receive data on the floor.  It will get retransmitted
4053          * and hopefully then we'll have sufficient space.
4054          */
4055         NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4056
4057         /* Massive buffer overcommit. */
4058         tp->pred_flags = 0;
4059         return -1;
4060 }
4061
4062
4063 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4064  * As additional protections, we do not touch cwnd in retransmission phases,
4065  * and if application hit its sndbuf limit recently.
4066  */
4067 void tcp_cwnd_application_limited(struct sock *sk)
4068 {
4069         struct tcp_sock *tp = tcp_sk(sk);
4070
4071         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4072             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4073                 /* Limited by application or receiver window. */
4074                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4075                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4076                 if (win_used < tp->snd_cwnd) {
4077                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4078                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4079                 }
4080                 tp->snd_cwnd_used = 0;
4081         }
4082         tp->snd_cwnd_stamp = tcp_time_stamp;
4083 }
4084
4085 static int tcp_should_expand_sndbuf(struct sock *sk)
4086 {
4087         struct tcp_sock *tp = tcp_sk(sk);
4088
4089         /* If the user specified a specific send buffer setting, do
4090          * not modify it.
4091          */
4092         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4093                 return 0;
4094
4095         /* If we are under global TCP memory pressure, do not expand.  */
4096         if (tcp_memory_pressure)
4097                 return 0;
4098
4099         /* If we are under soft global TCP memory pressure, do not expand.  */
4100         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4101                 return 0;
4102
4103         /* If we filled the congestion window, do not expand.  */
4104         if (tp->packets_out >= tp->snd_cwnd)
4105                 return 0;
4106
4107         return 1;
4108 }
4109
4110 /* When incoming ACK allowed to free some skb from write_queue,
4111  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4112  * on the exit from tcp input handler.
4113  *
4114  * PROBLEM: sndbuf expansion does not work well with largesend.
4115  */
4116 static void tcp_new_space(struct sock *sk)
4117 {
4118         struct tcp_sock *tp = tcp_sk(sk);
4119
4120         if (tcp_should_expand_sndbuf(sk)) {
4121                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4122                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4123                     demanded = max_t(unsigned int, tp->snd_cwnd,
4124                                                    tp->reordering + 1);
4125                 sndmem *= 2*demanded;
4126                 if (sndmem > sk->sk_sndbuf)
4127                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4128                 tp->snd_cwnd_stamp = tcp_time_stamp;
4129         }
4130
4131         sk->sk_write_space(sk);
4132 }
4133
4134 static void tcp_check_space(struct sock *sk)
4135 {
4136         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4137                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4138                 if (sk->sk_socket &&
4139                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4140                         tcp_new_space(sk);
4141         }
4142 }
4143
4144 static inline void tcp_data_snd_check(struct sock *sk)
4145 {
4146         tcp_push_pending_frames(sk);
4147         tcp_check_space(sk);
4148 }
4149
4150 /*
4151  * Check if sending an ack is needed.
4152  */
4153 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4154 {
4155         struct tcp_sock *tp = tcp_sk(sk);
4156
4157             /* More than one full frame received... */
4158         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4159              /* ... and right edge of window advances far enough.
4160               * (tcp_recvmsg() will send ACK otherwise). Or...
4161               */
4162              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4163             /* We ACK each frame or... */
4164             tcp_in_quickack_mode(sk) ||
4165             /* We have out of order data. */
4166             (ofo_possible &&
4167              skb_peek(&tp->out_of_order_queue))) {
4168                 /* Then ack it now */
4169                 tcp_send_ack(sk);
4170         } else {
4171                 /* Else, send delayed ack. */
4172                 tcp_send_delayed_ack(sk);
4173         }
4174 }
4175
4176 static inline void tcp_ack_snd_check(struct sock *sk)
4177 {
4178         if (!inet_csk_ack_scheduled(sk)) {
4179                 /* We sent a data segment already. */
4180                 return;
4181         }
4182         __tcp_ack_snd_check(sk, 1);
4183 }
4184
4185 /*
4186  *      This routine is only called when we have urgent data
4187  *      signaled. Its the 'slow' part of tcp_urg. It could be
4188  *      moved inline now as tcp_urg is only called from one
4189  *      place. We handle URGent data wrong. We have to - as
4190  *      BSD still doesn't use the correction from RFC961.
4191  *      For 1003.1g we should support a new option TCP_STDURG to permit
4192  *      either form (or just set the sysctl tcp_stdurg).
4193  */
4194
4195 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4196 {
4197         struct tcp_sock *tp = tcp_sk(sk);
4198         u32 ptr = ntohs(th->urg_ptr);
4199
4200         if (ptr && !sysctl_tcp_stdurg)
4201                 ptr--;
4202         ptr += ntohl(th->seq);
4203
4204         /* Ignore urgent data that we've already seen and read. */
4205         if (after(tp->copied_seq, ptr))
4206                 return;
4207
4208         /* Do not replay urg ptr.
4209          *
4210          * NOTE: interesting situation not covered by specs.
4211          * Misbehaving sender may send urg ptr, pointing to segment,
4212          * which we already have in ofo queue. We are not able to fetch
4213          * such data and will stay in TCP_URG_NOTYET until will be eaten
4214          * by recvmsg(). Seems, we are not obliged to handle such wicked
4215          * situations. But it is worth to think about possibility of some
4216          * DoSes using some hypothetical application level deadlock.
4217          */
4218         if (before(ptr, tp->rcv_nxt))
4219                 return;
4220
4221         /* Do we already have a newer (or duplicate) urgent pointer? */
4222         if (tp->urg_data && !after(ptr, tp->urg_seq))
4223                 return;
4224
4225         /* Tell the world about our new urgent pointer. */
4226         sk_send_sigurg(sk);
4227
4228         /* We may be adding urgent data when the last byte read was
4229          * urgent. To do this requires some care. We cannot just ignore
4230          * tp->copied_seq since we would read the last urgent byte again
4231          * as data, nor can we alter copied_seq until this data arrives
4232          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4233          *
4234          * NOTE. Double Dutch. Rendering to plain English: author of comment
4235          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4236          * and expect that both A and B disappear from stream. This is _wrong_.
4237          * Though this happens in BSD with high probability, this is occasional.
4238          * Any application relying on this is buggy. Note also, that fix "works"
4239          * only in this artificial test. Insert some normal data between A and B and we will
4240          * decline of BSD again. Verdict: it is better to remove to trap
4241          * buggy users.
4242          */
4243         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4244             !sock_flag(sk, SOCK_URGINLINE) &&
4245             tp->copied_seq != tp->rcv_nxt) {
4246                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4247                 tp->copied_seq++;
4248                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4249                         __skb_unlink(skb, &sk->sk_receive_queue);
4250                         __kfree_skb(skb);
4251                 }
4252         }
4253
4254         tp->urg_data   = TCP_URG_NOTYET;
4255         tp->urg_seq    = ptr;
4256
4257         /* Disable header prediction. */
4258         tp->pred_flags = 0;
4259 }
4260
4261 /* This is the 'fast' part of urgent handling. */
4262 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4263 {
4264         struct tcp_sock *tp = tcp_sk(sk);
4265
4266         /* Check if we get a new urgent pointer - normally not. */
4267         if (th->urg)
4268                 tcp_check_urg(sk,th);
4269
4270         /* Do we wait for any urgent data? - normally not... */
4271         if (tp->urg_data == TCP_URG_NOTYET) {
4272                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4273                           th->syn;
4274
4275                 /* Is the urgent pointer pointing into this packet? */
4276                 if (ptr < skb->len) {
4277                         u8 tmp;
4278                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4279                                 BUG();
4280                         tp->urg_data = TCP_URG_VALID | tmp;
4281                         if (!sock_flag(sk, SOCK_DEAD))
4282                                 sk->sk_data_ready(sk, 0);
4283                 }
4284         }
4285 }
4286
4287 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4288 {
4289         struct tcp_sock *tp = tcp_sk(sk);
4290         int chunk = skb->len - hlen;
4291         int err;
4292
4293         local_bh_enable();
4294         if (skb_csum_unnecessary(skb))
4295                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4296         else
4297                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4298                                                        tp->ucopy.iov);
4299
4300         if (!err) {
4301                 tp->ucopy.len -= chunk;
4302                 tp->copied_seq += chunk;
4303                 tcp_rcv_space_adjust(sk);
4304         }
4305
4306         local_bh_disable();
4307         return err;
4308 }
4309
4310 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4311 {
4312         __sum16 result;
4313
4314         if (sock_owned_by_user(sk)) {
4315                 local_bh_enable();
4316                 result = __tcp_checksum_complete(skb);
4317                 local_bh_disable();
4318         } else {
4319                 result = __tcp_checksum_complete(skb);
4320         }
4321         return result;
4322 }
4323
4324 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4325 {
4326         return !skb_csum_unnecessary(skb) &&
4327                 __tcp_checksum_complete_user(sk, skb);
4328 }
4329
4330 #ifdef CONFIG_NET_DMA
4331 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4332 {
4333         struct tcp_sock *tp = tcp_sk(sk);
4334         int chunk = skb->len - hlen;
4335         int dma_cookie;
4336         int copied_early = 0;
4337
4338         if (tp->ucopy.wakeup)
4339                 return 0;
4340
4341         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4342                 tp->ucopy.dma_chan = get_softnet_dma();
4343
4344         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4345
4346                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4347                         skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4348
4349                 if (dma_cookie < 0)
4350                         goto out;
4351
4352                 tp->ucopy.dma_cookie = dma_cookie;
4353                 copied_early = 1;
4354
4355                 tp->ucopy.len -= chunk;
4356                 tp->copied_seq += chunk;
4357                 tcp_rcv_space_adjust(sk);
4358
4359                 if ((tp->ucopy.len == 0) ||
4360                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4361                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4362                         tp->ucopy.wakeup = 1;
4363                         sk->sk_data_ready(sk, 0);
4364                 }
4365         } else if (chunk > 0) {
4366                 tp->ucopy.wakeup = 1;
4367                 sk->sk_data_ready(sk, 0);
4368         }
4369 out:
4370         return copied_early;
4371 }
4372 #endif /* CONFIG_NET_DMA */
4373
4374 /*
4375  *      TCP receive function for the ESTABLISHED state.
4376  *
4377  *      It is split into a fast path and a slow path. The fast path is
4378  *      disabled when:
4379  *      - A zero window was announced from us - zero window probing
4380  *        is only handled properly in the slow path.
4381  *      - Out of order segments arrived.
4382  *      - Urgent data is expected.
4383  *      - There is no buffer space left
4384  *      - Unexpected TCP flags/window values/header lengths are received
4385  *        (detected by checking the TCP header against pred_flags)
4386  *      - Data is sent in both directions. Fast path only supports pure senders
4387  *        or pure receivers (this means either the sequence number or the ack
4388  *        value must stay constant)
4389  *      - Unexpected TCP option.
4390  *
4391  *      When these conditions are not satisfied it drops into a standard
4392  *      receive procedure patterned after RFC793 to handle all cases.
4393  *      The first three cases are guaranteed by proper pred_flags setting,
4394  *      the rest is checked inline. Fast processing is turned on in
4395  *      tcp_data_queue when everything is OK.
4396  */
4397 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4398                         struct tcphdr *th, unsigned len)
4399 {
4400         struct tcp_sock *tp = tcp_sk(sk);
4401
4402         /*
4403          *      Header prediction.
4404          *      The code loosely follows the one in the famous
4405          *      "30 instruction TCP receive" Van Jacobson mail.
4406          *
4407          *      Van's trick is to deposit buffers into socket queue
4408          *      on a device interrupt, to call tcp_recv function
4409          *      on the receive process context and checksum and copy
4410          *      the buffer to user space. smart...
4411          *
4412          *      Our current scheme is not silly either but we take the
4413          *      extra cost of the net_bh soft interrupt processing...
4414          *      We do checksum and copy also but from device to kernel.
4415          */
4416
4417         tp->rx_opt.saw_tstamp = 0;
4418
4419         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4420          *      if header_prediction is to be made
4421          *      'S' will always be tp->tcp_header_len >> 2
4422          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4423          *  turn it off (when there are holes in the receive
4424          *       space for instance)
4425          *      PSH flag is ignored.
4426          */
4427
4428         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4429                 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4430                 int tcp_header_len = tp->tcp_header_len;
4431
4432                 /* Timestamp header prediction: tcp_header_len
4433                  * is automatically equal to th->doff*4 due to pred_flags
4434                  * match.
4435                  */
4436
4437                 /* Check timestamp */
4438                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4439                         __be32 *ptr = (__be32 *)(th + 1);
4440
4441                         /* No? Slow path! */
4442                         if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4443                                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4444                                 goto slow_path;
4445
4446                         tp->rx_opt.saw_tstamp = 1;
4447                         ++ptr;
4448                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
4449                         ++ptr;
4450                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4451
4452                         /* If PAWS failed, check it more carefully in slow path */
4453                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4454                                 goto slow_path;
4455
4456                         /* DO NOT update ts_recent here, if checksum fails
4457                          * and timestamp was corrupted part, it will result
4458                          * in a hung connection since we will drop all
4459                          * future packets due to the PAWS test.
4460                          */
4461                 }
4462
4463                 if (len <= tcp_header_len) {
4464                         /* Bulk data transfer: sender */
4465                         if (len == tcp_header_len) {
4466                                 /* Predicted packet is in window by definition.
4467                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4468                                  * Hence, check seq<=rcv_wup reduces to:
4469                                  */
4470                                 if (tcp_header_len ==
4471                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4472                                     tp->rcv_nxt == tp->rcv_wup)
4473                                         tcp_store_ts_recent(tp);
4474
4475                                 /* We know that such packets are checksummed
4476                                  * on entry.
4477                                  */
4478                                 tcp_ack(sk, skb, 0);
4479                                 __kfree_skb(skb);
4480                                 tcp_data_snd_check(sk);
4481                                 return 0;
4482                         } else { /* Header too small */
4483                                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4484                                 goto discard;
4485                         }
4486                 } else {
4487                         int eaten = 0;
4488                         int copied_early = 0;
4489
4490                         if (tp->copied_seq == tp->rcv_nxt &&
4491                             len - tcp_header_len <= tp->ucopy.len) {
4492 #ifdef CONFIG_NET_DMA
4493                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4494                                         copied_early = 1;
4495                                         eaten = 1;
4496                                 }
4497 #endif
4498                                 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4499                                         __set_current_state(TASK_RUNNING);
4500
4501                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4502                                                 eaten = 1;
4503                                 }
4504                                 if (eaten) {
4505                                         /* Predicted packet is in window by definition.
4506                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4507                                          * Hence, check seq<=rcv_wup reduces to:
4508                                          */
4509                                         if (tcp_header_len ==
4510                                             (sizeof(struct tcphdr) +
4511                                              TCPOLEN_TSTAMP_ALIGNED) &&
4512                                             tp->rcv_nxt == tp->rcv_wup)
4513                                                 tcp_store_ts_recent(tp);
4514
4515                                         tcp_rcv_rtt_measure_ts(sk, skb);
4516
4517                                         __skb_pull(skb, tcp_header_len);
4518                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4519                                         NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4520                                 }
4521                                 if (copied_early)
4522                                         tcp_cleanup_rbuf(sk, skb->len);
4523                         }
4524                         if (!eaten) {
4525                                 if (tcp_checksum_complete_user(sk, skb))
4526                                         goto csum_error;
4527
4528                                 /* Predicted packet is in window by definition.
4529                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4530                                  * Hence, check seq<=rcv_wup reduces to:
4531                                  */
4532                                 if (tcp_header_len ==
4533                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4534                                     tp->rcv_nxt == tp->rcv_wup)
4535                                         tcp_store_ts_recent(tp);
4536
4537                                 tcp_rcv_rtt_measure_ts(sk, skb);
4538
4539                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4540                                         goto step5;
4541
4542                                 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4543
4544                                 /* Bulk data transfer: receiver */
4545                                 __skb_pull(skb,tcp_header_len);
4546                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4547                                 sk_stream_set_owner_r(skb, sk);
4548                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4549                         }
4550
4551                         tcp_event_data_recv(sk, skb);
4552
4553                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4554                                 /* Well, only one small jumplet in fast path... */
4555                                 tcp_ack(sk, skb, FLAG_DATA);
4556                                 tcp_data_snd_check(sk);
4557                                 if (!inet_csk_ack_scheduled(sk))
4558                                         goto no_ack;
4559                         }
4560
4561                         __tcp_ack_snd_check(sk, 0);
4562 no_ack:
4563 #ifdef CONFIG_NET_DMA
4564                         if (copied_early)
4565                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4566                         else
4567 #endif
4568                         if (eaten)
4569                                 __kfree_skb(skb);
4570                         else
4571                                 sk->sk_data_ready(sk, 0);
4572                         return 0;
4573                 }
4574         }
4575
4576 slow_path:
4577         if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4578                 goto csum_error;
4579
4580         /*
4581          * RFC1323: H1. Apply PAWS check first.
4582          */
4583         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4584             tcp_paws_discard(sk, skb)) {
4585                 if (!th->rst) {
4586                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4587                         tcp_send_dupack(sk, skb);
4588                         goto discard;
4589                 }
4590                 /* Resets are accepted even if PAWS failed.
4591
4592                    ts_recent update must be made after we are sure
4593                    that the packet is in window.
4594                  */
4595         }
4596
4597         /*
4598          *      Standard slow path.
4599          */
4600
4601         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4602                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4603                  * (RST) segments are validated by checking their SEQ-fields."
4604                  * And page 69: "If an incoming segment is not acceptable,
4605                  * an acknowledgment should be sent in reply (unless the RST bit
4606                  * is set, if so drop the segment and return)".
4607                  */
4608                 if (!th->rst)
4609                         tcp_send_dupack(sk, skb);
4610                 goto discard;
4611         }
4612
4613         if (th->rst) {
4614                 tcp_reset(sk);
4615                 goto discard;
4616         }
4617
4618         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4619
4620         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4621                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4622                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4623                 tcp_reset(sk);
4624                 return 1;
4625         }
4626
4627 step5:
4628         if (th->ack)
4629                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4630
4631         tcp_rcv_rtt_measure_ts(sk, skb);
4632
4633         /* Process urgent data. */
4634         tcp_urg(sk, skb, th);
4635
4636         /* step 7: process the segment text */
4637         tcp_data_queue(sk, skb);
4638
4639         tcp_data_snd_check(sk);
4640         tcp_ack_snd_check(sk);
4641         return 0;
4642
4643 csum_error:
4644         TCP_INC_STATS_BH(TCP_MIB_INERRS);
4645
4646 discard:
4647         __kfree_skb(skb);
4648         return 0;
4649 }
4650
4651 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4652                                          struct tcphdr *th, unsigned len)
4653 {
4654         struct tcp_sock *tp = tcp_sk(sk);
4655         struct inet_connection_sock *icsk = inet_csk(sk);
4656         int saved_clamp = tp->rx_opt.mss_clamp;
4657
4658         tcp_parse_options(skb, &tp->rx_opt, 0);
4659
4660         if (th->ack) {
4661                 /* rfc793:
4662                  * "If the state is SYN-SENT then
4663                  *    first check the ACK bit
4664                  *      If the ACK bit is set
4665                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4666                  *        a reset (unless the RST bit is set, if so drop
4667                  *        the segment and return)"
4668                  *
4669                  *  We do not send data with SYN, so that RFC-correct
4670                  *  test reduces to:
4671                  */
4672                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4673                         goto reset_and_undo;
4674
4675                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4676                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4677                              tcp_time_stamp)) {
4678                         NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4679                         goto reset_and_undo;
4680                 }
4681
4682                 /* Now ACK is acceptable.
4683                  *
4684                  * "If the RST bit is set
4685                  *    If the ACK was acceptable then signal the user "error:
4686                  *    connection reset", drop the segment, enter CLOSED state,
4687                  *    delete TCB, and return."
4688                  */
4689
4690                 if (th->rst) {
4691                         tcp_reset(sk);
4692                         goto discard;
4693                 }
4694
4695                 /* rfc793:
4696                  *   "fifth, if neither of the SYN or RST bits is set then
4697                  *    drop the segment and return."
4698                  *
4699                  *    See note below!
4700                  *                                        --ANK(990513)
4701                  */
4702                 if (!th->syn)
4703                         goto discard_and_undo;
4704
4705                 /* rfc793:
4706                  *   "If the SYN bit is on ...
4707                  *    are acceptable then ...
4708                  *    (our SYN has been ACKed), change the connection
4709                  *    state to ESTABLISHED..."
4710                  */
4711
4712                 TCP_ECN_rcv_synack(tp, th);
4713
4714                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4715                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4716
4717                 /* Ok.. it's good. Set up sequence numbers and
4718                  * move to established.
4719                  */
4720                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4721                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4722
4723                 /* RFC1323: The window in SYN & SYN/ACK segments is
4724                  * never scaled.
4725                  */
4726                 tp->snd_wnd = ntohs(th->window);
4727                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4728
4729                 if (!tp->rx_opt.wscale_ok) {
4730                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4731                         tp->window_clamp = min(tp->window_clamp, 65535U);
4732                 }
4733
4734                 if (tp->rx_opt.saw_tstamp) {
4735                         tp->rx_opt.tstamp_ok       = 1;
4736                         tp->tcp_header_len =
4737                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4738                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
4739                         tcp_store_ts_recent(tp);
4740                 } else {
4741                         tp->tcp_header_len = sizeof(struct tcphdr);
4742                 }
4743
4744                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4745                         tcp_enable_fack(tp);
4746
4747                 tcp_mtup_init(sk);
4748                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4749                 tcp_initialize_rcv_mss(sk);
4750
4751                 /* Remember, tcp_poll() does not lock socket!
4752                  * Change state from SYN-SENT only after copied_seq
4753                  * is initialized. */
4754                 tp->copied_seq = tp->rcv_nxt;
4755                 smp_mb();
4756                 tcp_set_state(sk, TCP_ESTABLISHED);
4757
4758                 security_inet_conn_established(sk, skb);
4759
4760                 /* Make sure socket is routed, for correct metrics.  */
4761                 icsk->icsk_af_ops->rebuild_header(sk);
4762
4763                 tcp_init_metrics(sk);
4764
4765                 tcp_init_congestion_control(sk);
4766
4767                 /* Prevent spurious tcp_cwnd_restart() on first data
4768                  * packet.
4769                  */
4770                 tp->lsndtime = tcp_time_stamp;
4771
4772                 tcp_init_buffer_space(sk);
4773
4774                 if (sock_flag(sk, SOCK_KEEPOPEN))
4775                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4776
4777                 if (!tp->rx_opt.snd_wscale)
4778                         __tcp_fast_path_on(tp, tp->snd_wnd);
4779                 else
4780                         tp->pred_flags = 0;
4781
4782                 if (!sock_flag(sk, SOCK_DEAD)) {
4783                         sk->sk_state_change(sk);
4784                         sk_wake_async(sk, 0, POLL_OUT);
4785                 }
4786
4787                 if (sk->sk_write_pending ||
4788                     icsk->icsk_accept_queue.rskq_defer_accept ||
4789                     icsk->icsk_ack.pingpong) {
4790                         /* Save one ACK. Data will be ready after
4791                          * several ticks, if write_pending is set.
4792                          *
4793                          * It may be deleted, but with this feature tcpdumps
4794                          * look so _wonderfully_ clever, that I was not able
4795                          * to stand against the temptation 8)     --ANK
4796                          */
4797                         inet_csk_schedule_ack(sk);
4798                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4799                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
4800                         tcp_incr_quickack(sk);
4801                         tcp_enter_quickack_mode(sk);
4802                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4803                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
4804
4805 discard:
4806                         __kfree_skb(skb);
4807                         return 0;
4808                 } else {
4809                         tcp_send_ack(sk);
4810                 }
4811                 return -1;
4812         }
4813
4814         /* No ACK in the segment */
4815
4816         if (th->rst) {
4817                 /* rfc793:
4818                  * "If the RST bit is set
4819                  *
4820                  *      Otherwise (no ACK) drop the segment and return."
4821                  */
4822
4823                 goto discard_and_undo;
4824         }
4825
4826         /* PAWS check. */
4827         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4828                 goto discard_and_undo;
4829
4830         if (th->syn) {
4831                 /* We see SYN without ACK. It is attempt of
4832                  * simultaneous connect with crossed SYNs.
4833                  * Particularly, it can be connect to self.
4834                  */
4835                 tcp_set_state(sk, TCP_SYN_RECV);
4836
4837                 if (tp->rx_opt.saw_tstamp) {
4838                         tp->rx_opt.tstamp_ok = 1;
4839                         tcp_store_ts_recent(tp);
4840                         tp->tcp_header_len =
4841                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4842                 } else {
4843                         tp->tcp_header_len = sizeof(struct tcphdr);
4844                 }
4845
4846                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4847                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4848
4849                 /* RFC1323: The window in SYN & SYN/ACK segments is
4850                  * never scaled.
4851                  */
4852                 tp->snd_wnd    = ntohs(th->window);
4853                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4854                 tp->max_window = tp->snd_wnd;
4855
4856                 TCP_ECN_rcv_syn(tp, th);
4857
4858                 tcp_mtup_init(sk);
4859                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4860                 tcp_initialize_rcv_mss(sk);
4861
4862
4863                 tcp_send_synack(sk);
4864 #if 0
4865                 /* Note, we could accept data and URG from this segment.
4866                  * There are no obstacles to make this.
4867                  *
4868                  * However, if we ignore data in ACKless segments sometimes,
4869                  * we have no reasons to accept it sometimes.
4870                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
4871                  * is not flawless. So, discard packet for sanity.
4872                  * Uncomment this return to process the data.
4873                  */
4874                 return -1;
4875 #else
4876                 goto discard;
4877 #endif
4878         }
4879         /* "fifth, if neither of the SYN or RST bits is set then
4880          * drop the segment and return."
4881          */
4882
4883 discard_and_undo:
4884         tcp_clear_options(&tp->rx_opt);
4885         tp->rx_opt.mss_clamp = saved_clamp;
4886         goto discard;
4887
4888 reset_and_undo:
4889         tcp_clear_options(&tp->rx_opt);
4890         tp->rx_opt.mss_clamp = saved_clamp;
4891         return 1;
4892 }
4893
4894
4895 /*
4896  *      This function implements the receiving procedure of RFC 793 for
4897  *      all states except ESTABLISHED and TIME_WAIT.
4898  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4899  *      address independent.
4900  */
4901
4902 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4903                           struct tcphdr *th, unsigned len)
4904 {
4905         struct tcp_sock *tp = tcp_sk(sk);
4906         struct inet_connection_sock *icsk = inet_csk(sk);
4907         int queued = 0;
4908
4909         tp->rx_opt.saw_tstamp = 0;
4910
4911         switch (sk->sk_state) {
4912         case TCP_CLOSE:
4913                 goto discard;
4914
4915         case TCP_LISTEN:
4916                 if (th->ack)
4917                         return 1;
4918
4919                 if (th->rst)
4920                         goto discard;
4921
4922                 if (th->syn) {
4923                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4924                                 return 1;
4925
4926                         /* Now we have several options: In theory there is
4927                          * nothing else in the frame. KA9Q has an option to
4928                          * send data with the syn, BSD accepts data with the
4929                          * syn up to the [to be] advertised window and
4930                          * Solaris 2.1 gives you a protocol error. For now
4931                          * we just ignore it, that fits the spec precisely
4932                          * and avoids incompatibilities. It would be nice in
4933                          * future to drop through and process the data.
4934                          *
4935                          * Now that TTCP is starting to be used we ought to
4936                          * queue this data.
4937                          * But, this leaves one open to an easy denial of
4938                          * service attack, and SYN cookies can't defend
4939                          * against this problem. So, we drop the data
4940                          * in the interest of security over speed unless
4941                          * it's still in use.
4942                          */
4943                         kfree_skb(skb);
4944                         return 0;
4945                 }
4946                 goto discard;
4947
4948         case TCP_SYN_SENT:
4949                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4950                 if (queued >= 0)
4951                         return queued;
4952
4953                 /* Do step6 onward by hand. */
4954                 tcp_urg(sk, skb, th);
4955                 __kfree_skb(skb);
4956                 tcp_data_snd_check(sk);
4957                 return 0;
4958         }
4959
4960         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4961             tcp_paws_discard(sk, skb)) {
4962                 if (!th->rst) {
4963                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4964                         tcp_send_dupack(sk, skb);
4965                         goto discard;
4966                 }
4967                 /* Reset is accepted even if it did not pass PAWS. */
4968         }
4969
4970         /* step 1: check sequence number */
4971         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4972                 if (!th->rst)
4973                         tcp_send_dupack(sk, skb);
4974                 goto discard;
4975         }
4976
4977         /* step 2: check RST bit */
4978         if (th->rst) {
4979                 tcp_reset(sk);
4980                 goto discard;
4981         }
4982
4983         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4984
4985         /* step 3: check security and precedence [ignored] */
4986
4987         /*      step 4:
4988          *
4989          *      Check for a SYN in window.
4990          */
4991         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4992                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4993                 tcp_reset(sk);
4994                 return 1;
4995         }
4996
4997         /* step 5: check the ACK field */
4998         if (th->ack) {
4999                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5000
5001                 switch (sk->sk_state) {
5002                 case TCP_SYN_RECV:
5003                         if (acceptable) {
5004                                 tp->copied_seq = tp->rcv_nxt;
5005                                 smp_mb();
5006                                 tcp_set_state(sk, TCP_ESTABLISHED);
5007                                 sk->sk_state_change(sk);
5008
5009                                 /* Note, that this wakeup is only for marginal
5010                                  * crossed SYN case. Passively open sockets
5011                                  * are not waked up, because sk->sk_sleep ==
5012                                  * NULL and sk->sk_socket == NULL.
5013                                  */
5014                                 if (sk->sk_socket) {
5015                                         sk_wake_async(sk,0,POLL_OUT);
5016                                 }
5017
5018                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5019                                 tp->snd_wnd = ntohs(th->window) <<
5020                                               tp->rx_opt.snd_wscale;
5021                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5022                                             TCP_SKB_CB(skb)->seq);
5023
5024                                 /* tcp_ack considers this ACK as duplicate
5025                                  * and does not calculate rtt.
5026                                  * Fix it at least with timestamps.
5027                                  */
5028                                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5029                                     !tp->srtt)
5030                                         tcp_ack_saw_tstamp(sk, 0);
5031
5032                                 if (tp->rx_opt.tstamp_ok)
5033                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5034
5035                                 /* Make sure socket is routed, for
5036                                  * correct metrics.
5037                                  */
5038                                 icsk->icsk_af_ops->rebuild_header(sk);
5039
5040                                 tcp_init_metrics(sk);
5041
5042                                 tcp_init_congestion_control(sk);
5043
5044                                 /* Prevent spurious tcp_cwnd_restart() on
5045                                  * first data packet.
5046                                  */
5047                                 tp->lsndtime = tcp_time_stamp;
5048
5049                                 tcp_mtup_init(sk);
5050                                 tcp_initialize_rcv_mss(sk);
5051                                 tcp_init_buffer_space(sk);
5052                                 tcp_fast_path_on(tp);
5053                         } else {
5054                                 return 1;
5055                         }
5056                         break;
5057
5058                 case TCP_FIN_WAIT1:
5059                         if (tp->snd_una == tp->write_seq) {
5060                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5061                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5062                                 dst_confirm(sk->sk_dst_cache);
5063
5064                                 if (!sock_flag(sk, SOCK_DEAD))
5065                                         /* Wake up lingering close() */
5066                                         sk->sk_state_change(sk);
5067                                 else {
5068                                         int tmo;
5069
5070                                         if (tp->linger2 < 0 ||
5071                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5072                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5073                                                 tcp_done(sk);
5074                                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5075                                                 return 1;
5076                                         }
5077
5078                                         tmo = tcp_fin_time(sk);
5079                                         if (tmo > TCP_TIMEWAIT_LEN) {
5080                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5081                                         } else if (th->fin || sock_owned_by_user(sk)) {
5082                                                 /* Bad case. We could lose such FIN otherwise.
5083                                                  * It is not a big problem, but it looks confusing
5084                                                  * and not so rare event. We still can lose it now,
5085                                                  * if it spins in bh_lock_sock(), but it is really
5086                                                  * marginal case.
5087                                                  */
5088                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5089                                         } else {
5090                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5091                                                 goto discard;
5092                                         }
5093                                 }
5094                         }
5095                         break;
5096
5097                 case TCP_CLOSING:
5098                         if (tp->snd_una == tp->write_seq) {
5099                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5100                                 goto discard;
5101                         }
5102                         break;
5103
5104                 case TCP_LAST_ACK:
5105                         if (tp->snd_una == tp->write_seq) {
5106                                 tcp_update_metrics(sk);
5107                                 tcp_done(sk);
5108                                 goto discard;
5109                         }
5110                         break;
5111                 }
5112         } else
5113                 goto discard;
5114
5115         /* step 6: check the URG bit */
5116         tcp_urg(sk, skb, th);
5117
5118         /* step 7: process the segment text */
5119         switch (sk->sk_state) {
5120         case TCP_CLOSE_WAIT:
5121         case TCP_CLOSING:
5122         case TCP_LAST_ACK:
5123                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5124                         break;
5125         case TCP_FIN_WAIT1:
5126         case TCP_FIN_WAIT2:
5127                 /* RFC 793 says to queue data in these states,
5128                  * RFC 1122 says we MUST send a reset.
5129                  * BSD 4.4 also does reset.
5130                  */
5131                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5132                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5133                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5134                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5135                                 tcp_reset(sk);
5136                                 return 1;
5137                         }
5138                 }
5139                 /* Fall through */
5140         case TCP_ESTABLISHED:
5141                 tcp_data_queue(sk, skb);
5142                 queued = 1;
5143                 break;
5144         }
5145
5146         /* tcp_data could move socket to TIME-WAIT */
5147         if (sk->sk_state != TCP_CLOSE) {
5148                 tcp_data_snd_check(sk);
5149                 tcp_ack_snd_check(sk);
5150         }
5151
5152         if (!queued) {
5153 discard:
5154                 __kfree_skb(skb);
5155         }
5156         return 0;
5157 }
5158
5159 EXPORT_SYMBOL(sysctl_tcp_ecn);
5160 EXPORT_SYMBOL(sysctl_tcp_reordering);
5161 EXPORT_SYMBOL(tcp_parse_options);
5162 EXPORT_SYMBOL(tcp_rcv_established);
5163 EXPORT_SYMBOL(tcp_rcv_state_process);
5164 EXPORT_SYMBOL(tcp_initialize_rcv_mss);