]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/ipv4/tcp_input.c
tcp: convert retransmit_cnt_hint to seqno
[linux-2.6-omap-h63xx.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732                 unsigned long rtt;
733
734                 if (icsk->icsk_backoff || !tp->srtt) {
735                         /* This session failed to estimate rtt. Why?
736                          * Probably, no packets returned in time.
737                          * Reset our results.
738                          */
739                         if (!(dst_metric_locked(dst, RTAX_RTT)))
740                                 dst->metrics[RTAX_RTT - 1] = 0;
741                         return;
742                 }
743
744                 rtt = dst_metric_rtt(dst, RTAX_RTT);
745                 m = rtt - tp->srtt;
746
747                 /* If newly calculated rtt larger than stored one,
748                  * store new one. Otherwise, use EWMA. Remember,
749                  * rtt overestimation is always better than underestimation.
750                  */
751                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752                         if (m <= 0)
753                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754                         else
755                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756                 }
757
758                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759                         unsigned long var;
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
769                         if (m >= var)
770                                 var = m;
771                         else
772                                 var -= (var - m) >> 2;
773
774                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775                 }
776
777                 if (tp->snd_ssthresh >= 0xFFFF) {
778                         /* Slow start still did not finish. */
779                         if (dst_metric(dst, RTAX_SSTHRESH) &&
780                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783                         if (!dst_metric_locked(dst, RTAX_CWND) &&
784                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787                            icsk->icsk_ca_state == TCP_CA_Open) {
788                         /* Cong. avoidance phase, cwnd is reliable. */
789                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790                                 dst->metrics[RTAX_SSTHRESH-1] =
791                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794                 } else {
795                         /* Else slow start did not finish, cwnd is non-sense,
796                            ssthresh may be also invalid.
797                          */
798                         if (!dst_metric_locked(dst, RTAX_CWND))
799                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800                         if (dst_metric(dst, RTAX_SSTHRESH) &&
801                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804                 }
805
806                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808                             tp->reordering != sysctl_tcp_reordering)
809                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810                 }
811         }
812 }
813
814 /* Numbers are taken from RFC3390.
815  *
816  * John Heffner states:
817  *
818  *      The RFC specifies a window of no more than 4380 bytes
819  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
820  *      is a bit misleading because they use a clamp at 4380 bytes
821  *      rather than use a multiplier in the relevant range.
822  */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827         if (!cwnd) {
828                 if (tp->mss_cache > 1460)
829                         cwnd = 2;
830                 else
831                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832         }
833         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839         struct tcp_sock *tp = tcp_sk(sk);
840         const struct inet_connection_sock *icsk = inet_csk(sk);
841
842         tp->prior_ssthresh = 0;
843         tp->bytes_acked = 0;
844         if (icsk->icsk_ca_state < TCP_CA_CWR) {
845                 tp->undo_marker = 0;
846                 if (set_ssthresh)
847                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848                 tp->snd_cwnd = min(tp->snd_cwnd,
849                                    tcp_packets_in_flight(tp) + 1U);
850                 tp->snd_cwnd_cnt = 0;
851                 tp->high_seq = tp->snd_nxt;
852                 tp->snd_cwnd_stamp = tcp_time_stamp;
853                 TCP_ECN_queue_cwr(tp);
854
855                 tcp_set_ca_state(sk, TCP_CA_CWR);
856         }
857 }
858
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865         /* RFC3517 uses different metric in lost marker => reset on change */
866         if (tcp_is_fack(tp))
867                 tp->lost_skb_hint = NULL;
868         tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874         tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         struct dst_entry *dst = __sk_dst_get(sk);
883
884         if (dst == NULL)
885                 goto reset;
886
887         dst_confirm(dst);
888
889         if (dst_metric_locked(dst, RTAX_CWND))
890                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891         if (dst_metric(dst, RTAX_SSTHRESH)) {
892                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
895         }
896         if (dst_metric(dst, RTAX_REORDERING) &&
897             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898                 tcp_disable_fack(tp);
899                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900         }
901
902         if (dst_metric(dst, RTAX_RTT) == 0)
903                 goto reset;
904
905         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906                 goto reset;
907
908         /* Initial rtt is determined from SYN,SYN-ACK.
909          * The segment is small and rtt may appear much
910          * less than real one. Use per-dst memory
911          * to make it more realistic.
912          *
913          * A bit of theory. RTT is time passed after "normal" sized packet
914          * is sent until it is ACKed. In normal circumstances sending small
915          * packets force peer to delay ACKs and calculation is correct too.
916          * The algorithm is adaptive and, provided we follow specs, it
917          * NEVER underestimate RTT. BUT! If peer tries to make some clever
918          * tricks sort of "quick acks" for time long enough to decrease RTT
919          * to low value, and then abruptly stops to do it and starts to delay
920          * ACKs, wait for troubles.
921          */
922         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924                 tp->rtt_seq = tp->snd_nxt;
925         }
926         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929         }
930         tcp_set_rto(sk);
931         tcp_bound_rto(sk);
932         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933                 goto reset;
934         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935         tp->snd_cwnd_stamp = tcp_time_stamp;
936         return;
937
938 reset:
939         /* Play conservative. If timestamps are not
940          * supported, TCP will fail to recalculate correct
941          * rtt, if initial rto is too small. FORGET ALL AND RESET!
942          */
943         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944                 tp->srtt = 0;
945                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947         }
948 }
949
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951                                   const int ts)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         if (metric > tp->reordering) {
955                 int mib_idx;
956
957                 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959                 /* This exciting event is worth to be remembered. 8) */
960                 if (ts)
961                         mib_idx = LINUX_MIB_TCPTSREORDER;
962                 else if (tcp_is_reno(tp))
963                         mib_idx = LINUX_MIB_TCPRENOREORDER;
964                 else if (tcp_is_fack(tp))
965                         mib_idx = LINUX_MIB_TCPFACKREORDER;
966                 else
967                         mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973                        tp->reordering,
974                        tp->fackets_out,
975                        tp->sacked_out,
976                        tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978                 tcp_disable_fack(tp);
979         }
980 }
981
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985         if ((tp->retransmit_skb_hint == NULL) ||
986             before(TCP_SKB_CB(skb)->seq,
987                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988                 tp->retransmit_skb_hint = skb;
989
990         if (!tp->lost_out ||
991             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993 }
994
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998                 tcp_verify_retransmit_hint(tp, skb);
999
1000                 tp->lost_out += tcp_skb_pcount(skb);
1001                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002         }
1003 }
1004
1005 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
1006 {
1007         tcp_verify_retransmit_hint(tp, skb);
1008
1009         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1010                 tp->lost_out += tcp_skb_pcount(skb);
1011                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1012         }
1013 }
1014
1015 /* This procedure tags the retransmission queue when SACKs arrive.
1016  *
1017  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1018  * Packets in queue with these bits set are counted in variables
1019  * sacked_out, retrans_out and lost_out, correspondingly.
1020  *
1021  * Valid combinations are:
1022  * Tag  InFlight        Description
1023  * 0    1               - orig segment is in flight.
1024  * S    0               - nothing flies, orig reached receiver.
1025  * L    0               - nothing flies, orig lost by net.
1026  * R    2               - both orig and retransmit are in flight.
1027  * L|R  1               - orig is lost, retransmit is in flight.
1028  * S|R  1               - orig reached receiver, retrans is still in flight.
1029  * (L|S|R is logically valid, it could occur when L|R is sacked,
1030  *  but it is equivalent to plain S and code short-curcuits it to S.
1031  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1032  *
1033  * These 6 states form finite state machine, controlled by the following events:
1034  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1035  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1036  * 3. Loss detection event of one of three flavors:
1037  *      A. Scoreboard estimator decided the packet is lost.
1038  *         A'. Reno "three dupacks" marks head of queue lost.
1039  *         A''. Its FACK modfication, head until snd.fack is lost.
1040  *      B. SACK arrives sacking data transmitted after never retransmitted
1041  *         hole was sent out.
1042  *      C. SACK arrives sacking SND.NXT at the moment, when the
1043  *         segment was retransmitted.
1044  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1045  *
1046  * It is pleasant to note, that state diagram turns out to be commutative,
1047  * so that we are allowed not to be bothered by order of our actions,
1048  * when multiple events arrive simultaneously. (see the function below).
1049  *
1050  * Reordering detection.
1051  * --------------------
1052  * Reordering metric is maximal distance, which a packet can be displaced
1053  * in packet stream. With SACKs we can estimate it:
1054  *
1055  * 1. SACK fills old hole and the corresponding segment was not
1056  *    ever retransmitted -> reordering. Alas, we cannot use it
1057  *    when segment was retransmitted.
1058  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1059  *    for retransmitted and already SACKed segment -> reordering..
1060  * Both of these heuristics are not used in Loss state, when we cannot
1061  * account for retransmits accurately.
1062  *
1063  * SACK block validation.
1064  * ----------------------
1065  *
1066  * SACK block range validation checks that the received SACK block fits to
1067  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1068  * Note that SND.UNA is not included to the range though being valid because
1069  * it means that the receiver is rather inconsistent with itself reporting
1070  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1071  * perfectly valid, however, in light of RFC2018 which explicitly states
1072  * that "SACK block MUST reflect the newest segment.  Even if the newest
1073  * segment is going to be discarded ...", not that it looks very clever
1074  * in case of head skb. Due to potentional receiver driven attacks, we
1075  * choose to avoid immediate execution of a walk in write queue due to
1076  * reneging and defer head skb's loss recovery to standard loss recovery
1077  * procedure that will eventually trigger (nothing forbids us doing this).
1078  *
1079  * Implements also blockage to start_seq wrap-around. Problem lies in the
1080  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1081  * there's no guarantee that it will be before snd_nxt (n). The problem
1082  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1083  * wrap (s_w):
1084  *
1085  *         <- outs wnd ->                          <- wrapzone ->
1086  *         u     e      n                         u_w   e_w  s n_w
1087  *         |     |      |                          |     |   |  |
1088  * |<------------+------+----- TCP seqno space --------------+---------->|
1089  * ...-- <2^31 ->|                                           |<--------...
1090  * ...---- >2^31 ------>|                                    |<--------...
1091  *
1092  * Current code wouldn't be vulnerable but it's better still to discard such
1093  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1094  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1095  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1096  * equal to the ideal case (infinite seqno space without wrap caused issues).
1097  *
1098  * With D-SACK the lower bound is extended to cover sequence space below
1099  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1100  * again, D-SACK block must not to go across snd_una (for the same reason as
1101  * for the normal SACK blocks, explained above). But there all simplicity
1102  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1103  * fully below undo_marker they do not affect behavior in anyway and can
1104  * therefore be safely ignored. In rare cases (which are more or less
1105  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1106  * fragmentation and packet reordering past skb's retransmission. To consider
1107  * them correctly, the acceptable range must be extended even more though
1108  * the exact amount is rather hard to quantify. However, tp->max_window can
1109  * be used as an exaggerated estimate.
1110  */
1111 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1112                                   u32 start_seq, u32 end_seq)
1113 {
1114         /* Too far in future, or reversed (interpretation is ambiguous) */
1115         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1116                 return 0;
1117
1118         /* Nasty start_seq wrap-around check (see comments above) */
1119         if (!before(start_seq, tp->snd_nxt))
1120                 return 0;
1121
1122         /* In outstanding window? ...This is valid exit for D-SACKs too.
1123          * start_seq == snd_una is non-sensical (see comments above)
1124          */
1125         if (after(start_seq, tp->snd_una))
1126                 return 1;
1127
1128         if (!is_dsack || !tp->undo_marker)
1129                 return 0;
1130
1131         /* ...Then it's D-SACK, and must reside below snd_una completely */
1132         if (!after(end_seq, tp->snd_una))
1133                 return 0;
1134
1135         if (!before(start_seq, tp->undo_marker))
1136                 return 1;
1137
1138         /* Too old */
1139         if (!after(end_seq, tp->undo_marker))
1140                 return 0;
1141
1142         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1143          *   start_seq < undo_marker and end_seq >= undo_marker.
1144          */
1145         return !before(start_seq, end_seq - tp->max_window);
1146 }
1147
1148 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1149  * Event "C". Later note: FACK people cheated me again 8), we have to account
1150  * for reordering! Ugly, but should help.
1151  *
1152  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1153  * less than what is now known to be received by the other end (derived from
1154  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1155  * retransmitted skbs to avoid some costly processing per ACKs.
1156  */
1157 static void tcp_mark_lost_retrans(struct sock *sk)
1158 {
1159         const struct inet_connection_sock *icsk = inet_csk(sk);
1160         struct tcp_sock *tp = tcp_sk(sk);
1161         struct sk_buff *skb;
1162         int cnt = 0;
1163         u32 new_low_seq = tp->snd_nxt;
1164         u32 received_upto = tcp_highest_sack_seq(tp);
1165
1166         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1167             !after(received_upto, tp->lost_retrans_low) ||
1168             icsk->icsk_ca_state != TCP_CA_Recovery)
1169                 return;
1170
1171         tcp_for_write_queue(skb, sk) {
1172                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1173
1174                 if (skb == tcp_send_head(sk))
1175                         break;
1176                 if (cnt == tp->retrans_out)
1177                         break;
1178                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1179                         continue;
1180
1181                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1182                         continue;
1183
1184                 if (after(received_upto, ack_seq) &&
1185                     (tcp_is_fack(tp) ||
1186                      !before(received_upto,
1187                              ack_seq + tp->reordering * tp->mss_cache))) {
1188                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1189                         tp->retrans_out -= tcp_skb_pcount(skb);
1190
1191                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1192                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1193                 } else {
1194                         if (before(ack_seq, new_low_seq))
1195                                 new_low_seq = ack_seq;
1196                         cnt += tcp_skb_pcount(skb);
1197                 }
1198         }
1199
1200         if (tp->retrans_out)
1201                 tp->lost_retrans_low = new_low_seq;
1202 }
1203
1204 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1205                            struct tcp_sack_block_wire *sp, int num_sacks,
1206                            u32 prior_snd_una)
1207 {
1208         struct tcp_sock *tp = tcp_sk(sk);
1209         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1210         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1211         int dup_sack = 0;
1212
1213         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1214                 dup_sack = 1;
1215                 tcp_dsack_seen(tp);
1216                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1217         } else if (num_sacks > 1) {
1218                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1219                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1220
1221                 if (!after(end_seq_0, end_seq_1) &&
1222                     !before(start_seq_0, start_seq_1)) {
1223                         dup_sack = 1;
1224                         tcp_dsack_seen(tp);
1225                         NET_INC_STATS_BH(sock_net(sk),
1226                                         LINUX_MIB_TCPDSACKOFORECV);
1227                 }
1228         }
1229
1230         /* D-SACK for already forgotten data... Do dumb counting. */
1231         if (dup_sack &&
1232             !after(end_seq_0, prior_snd_una) &&
1233             after(end_seq_0, tp->undo_marker))
1234                 tp->undo_retrans--;
1235
1236         return dup_sack;
1237 }
1238
1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1240  * the incoming SACK may not exactly match but we can find smaller MSS
1241  * aligned portion of it that matches. Therefore we might need to fragment
1242  * which may fail and creates some hassle (caller must handle error case
1243  * returns).
1244  */
1245 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1246                                  u32 start_seq, u32 end_seq)
1247 {
1248         int in_sack, err;
1249         unsigned int pkt_len;
1250
1251         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1252                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1253
1254         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1255             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1256
1257                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1258
1259                 if (!in_sack)
1260                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1261                 else
1262                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1263                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1264                 if (err < 0)
1265                         return err;
1266         }
1267
1268         return in_sack;
1269 }
1270
1271 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1272                            int *reord, int dup_sack, int fack_count)
1273 {
1274         struct tcp_sock *tp = tcp_sk(sk);
1275         u8 sacked = TCP_SKB_CB(skb)->sacked;
1276         int flag = 0;
1277
1278         /* Account D-SACK for retransmitted packet. */
1279         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1280                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1281                         tp->undo_retrans--;
1282                 if (sacked & TCPCB_SACKED_ACKED)
1283                         *reord = min(fack_count, *reord);
1284         }
1285
1286         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1287         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1288                 return flag;
1289
1290         if (!(sacked & TCPCB_SACKED_ACKED)) {
1291                 if (sacked & TCPCB_SACKED_RETRANS) {
1292                         /* If the segment is not tagged as lost,
1293                          * we do not clear RETRANS, believing
1294                          * that retransmission is still in flight.
1295                          */
1296                         if (sacked & TCPCB_LOST) {
1297                                 TCP_SKB_CB(skb)->sacked &=
1298                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1299                                 tp->lost_out -= tcp_skb_pcount(skb);
1300                                 tp->retrans_out -= tcp_skb_pcount(skb);
1301
1302                                 /* clear lost hint */
1303                                 tp->retransmit_skb_hint = NULL;
1304                         }
1305                 } else {
1306                         if (!(sacked & TCPCB_RETRANS)) {
1307                                 /* New sack for not retransmitted frame,
1308                                  * which was in hole. It is reordering.
1309                                  */
1310                                 if (before(TCP_SKB_CB(skb)->seq,
1311                                            tcp_highest_sack_seq(tp)))
1312                                         *reord = min(fack_count, *reord);
1313
1314                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1315                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1316                                         flag |= FLAG_ONLY_ORIG_SACKED;
1317                         }
1318
1319                         if (sacked & TCPCB_LOST) {
1320                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1321                                 tp->lost_out -= tcp_skb_pcount(skb);
1322
1323                                 /* clear lost hint */
1324                                 tp->retransmit_skb_hint = NULL;
1325                         }
1326                 }
1327
1328                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1329                 flag |= FLAG_DATA_SACKED;
1330                 tp->sacked_out += tcp_skb_pcount(skb);
1331
1332                 fack_count += tcp_skb_pcount(skb);
1333
1334                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1335                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1336                     before(TCP_SKB_CB(skb)->seq,
1337                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1338                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1339
1340                 if (fack_count > tp->fackets_out)
1341                         tp->fackets_out = fack_count;
1342
1343                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1344                         tcp_advance_highest_sack(sk, skb);
1345         }
1346
1347         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1348          * frames and clear it. undo_retrans is decreased above, L|R frames
1349          * are accounted above as well.
1350          */
1351         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1352                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1353                 tp->retrans_out -= tcp_skb_pcount(skb);
1354                 tp->retransmit_skb_hint = NULL;
1355         }
1356
1357         return flag;
1358 }
1359
1360 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1361                                         struct tcp_sack_block *next_dup,
1362                                         u32 start_seq, u32 end_seq,
1363                                         int dup_sack_in, int *fack_count,
1364                                         int *reord, int *flag)
1365 {
1366         tcp_for_write_queue_from(skb, sk) {
1367                 int in_sack = 0;
1368                 int dup_sack = dup_sack_in;
1369
1370                 if (skb == tcp_send_head(sk))
1371                         break;
1372
1373                 /* queue is in-order => we can short-circuit the walk early */
1374                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1375                         break;
1376
1377                 if ((next_dup != NULL) &&
1378                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1379                         in_sack = tcp_match_skb_to_sack(sk, skb,
1380                                                         next_dup->start_seq,
1381                                                         next_dup->end_seq);
1382                         if (in_sack > 0)
1383                                 dup_sack = 1;
1384                 }
1385
1386                 if (in_sack <= 0)
1387                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1388                                                         end_seq);
1389                 if (unlikely(in_sack < 0))
1390                         break;
1391
1392                 if (in_sack)
1393                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1394                                                  *fack_count);
1395
1396                 *fack_count += tcp_skb_pcount(skb);
1397         }
1398         return skb;
1399 }
1400
1401 /* Avoid all extra work that is being done by sacktag while walking in
1402  * a normal way
1403  */
1404 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1405                                         u32 skip_to_seq, int *fack_count)
1406 {
1407         tcp_for_write_queue_from(skb, sk) {
1408                 if (skb == tcp_send_head(sk))
1409                         break;
1410
1411                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1412                         break;
1413
1414                 *fack_count += tcp_skb_pcount(skb);
1415         }
1416         return skb;
1417 }
1418
1419 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1420                                                 struct sock *sk,
1421                                                 struct tcp_sack_block *next_dup,
1422                                                 u32 skip_to_seq,
1423                                                 int *fack_count, int *reord,
1424                                                 int *flag)
1425 {
1426         if (next_dup == NULL)
1427                 return skb;
1428
1429         if (before(next_dup->start_seq, skip_to_seq)) {
1430                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1431                 skb = tcp_sacktag_walk(skb, sk, NULL,
1432                                      next_dup->start_seq, next_dup->end_seq,
1433                                      1, fack_count, reord, flag);
1434         }
1435
1436         return skb;
1437 }
1438
1439 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1440 {
1441         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1442 }
1443
1444 static int
1445 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1446                         u32 prior_snd_una)
1447 {
1448         const struct inet_connection_sock *icsk = inet_csk(sk);
1449         struct tcp_sock *tp = tcp_sk(sk);
1450         unsigned char *ptr = (skb_transport_header(ack_skb) +
1451                               TCP_SKB_CB(ack_skb)->sacked);
1452         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1453         struct tcp_sack_block sp[TCP_NUM_SACKS];
1454         struct tcp_sack_block *cache;
1455         struct sk_buff *skb;
1456         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1457         int used_sacks;
1458         int reord = tp->packets_out;
1459         int flag = 0;
1460         int found_dup_sack = 0;
1461         int fack_count;
1462         int i, j;
1463         int first_sack_index;
1464
1465         if (!tp->sacked_out) {
1466                 if (WARN_ON(tp->fackets_out))
1467                         tp->fackets_out = 0;
1468                 tcp_highest_sack_reset(sk);
1469         }
1470
1471         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1472                                          num_sacks, prior_snd_una);
1473         if (found_dup_sack)
1474                 flag |= FLAG_DSACKING_ACK;
1475
1476         /* Eliminate too old ACKs, but take into
1477          * account more or less fresh ones, they can
1478          * contain valid SACK info.
1479          */
1480         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1481                 return 0;
1482
1483         if (!tp->packets_out)
1484                 goto out;
1485
1486         used_sacks = 0;
1487         first_sack_index = 0;
1488         for (i = 0; i < num_sacks; i++) {
1489                 int dup_sack = !i && found_dup_sack;
1490
1491                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1492                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1493
1494                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1495                                             sp[used_sacks].start_seq,
1496                                             sp[used_sacks].end_seq)) {
1497                         int mib_idx;
1498
1499                         if (dup_sack) {
1500                                 if (!tp->undo_marker)
1501                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1502                                 else
1503                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1504                         } else {
1505                                 /* Don't count olds caused by ACK reordering */
1506                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1507                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1508                                         continue;
1509                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1510                         }
1511
1512                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1513                         if (i == 0)
1514                                 first_sack_index = -1;
1515                         continue;
1516                 }
1517
1518                 /* Ignore very old stuff early */
1519                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1520                         continue;
1521
1522                 used_sacks++;
1523         }
1524
1525         /* order SACK blocks to allow in order walk of the retrans queue */
1526         for (i = used_sacks - 1; i > 0; i--) {
1527                 for (j = 0; j < i; j++) {
1528                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1529                                 struct tcp_sack_block tmp;
1530
1531                                 tmp = sp[j];
1532                                 sp[j] = sp[j + 1];
1533                                 sp[j + 1] = tmp;
1534
1535                                 /* Track where the first SACK block goes to */
1536                                 if (j == first_sack_index)
1537                                         first_sack_index = j + 1;
1538                         }
1539                 }
1540         }
1541
1542         skb = tcp_write_queue_head(sk);
1543         fack_count = 0;
1544         i = 0;
1545
1546         if (!tp->sacked_out) {
1547                 /* It's already past, so skip checking against it */
1548                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1549         } else {
1550                 cache = tp->recv_sack_cache;
1551                 /* Skip empty blocks in at head of the cache */
1552                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1553                        !cache->end_seq)
1554                         cache++;
1555         }
1556
1557         while (i < used_sacks) {
1558                 u32 start_seq = sp[i].start_seq;
1559                 u32 end_seq = sp[i].end_seq;
1560                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1561                 struct tcp_sack_block *next_dup = NULL;
1562
1563                 if (found_dup_sack && ((i + 1) == first_sack_index))
1564                         next_dup = &sp[i + 1];
1565
1566                 /* Event "B" in the comment above. */
1567                 if (after(end_seq, tp->high_seq))
1568                         flag |= FLAG_DATA_LOST;
1569
1570                 /* Skip too early cached blocks */
1571                 while (tcp_sack_cache_ok(tp, cache) &&
1572                        !before(start_seq, cache->end_seq))
1573                         cache++;
1574
1575                 /* Can skip some work by looking recv_sack_cache? */
1576                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1577                     after(end_seq, cache->start_seq)) {
1578
1579                         /* Head todo? */
1580                         if (before(start_seq, cache->start_seq)) {
1581                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1582                                                        &fack_count);
1583                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1584                                                        start_seq,
1585                                                        cache->start_seq,
1586                                                        dup_sack, &fack_count,
1587                                                        &reord, &flag);
1588                         }
1589
1590                         /* Rest of the block already fully processed? */
1591                         if (!after(end_seq, cache->end_seq))
1592                                 goto advance_sp;
1593
1594                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1595                                                        cache->end_seq,
1596                                                        &fack_count, &reord,
1597                                                        &flag);
1598
1599                         /* ...tail remains todo... */
1600                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1601                                 /* ...but better entrypoint exists! */
1602                                 skb = tcp_highest_sack(sk);
1603                                 if (skb == NULL)
1604                                         break;
1605                                 fack_count = tp->fackets_out;
1606                                 cache++;
1607                                 goto walk;
1608                         }
1609
1610                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1611                                                &fack_count);
1612                         /* Check overlap against next cached too (past this one already) */
1613                         cache++;
1614                         continue;
1615                 }
1616
1617                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1618                         skb = tcp_highest_sack(sk);
1619                         if (skb == NULL)
1620                                 break;
1621                         fack_count = tp->fackets_out;
1622                 }
1623                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1624
1625 walk:
1626                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1627                                        dup_sack, &fack_count, &reord, &flag);
1628
1629 advance_sp:
1630                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1631                  * due to in-order walk
1632                  */
1633                 if (after(end_seq, tp->frto_highmark))
1634                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1635
1636                 i++;
1637         }
1638
1639         /* Clear the head of the cache sack blocks so we can skip it next time */
1640         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1641                 tp->recv_sack_cache[i].start_seq = 0;
1642                 tp->recv_sack_cache[i].end_seq = 0;
1643         }
1644         for (j = 0; j < used_sacks; j++)
1645                 tp->recv_sack_cache[i++] = sp[j];
1646
1647         tcp_mark_lost_retrans(sk);
1648
1649         tcp_verify_left_out(tp);
1650
1651         if ((reord < tp->fackets_out) &&
1652             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1653             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1654                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1655
1656 out:
1657
1658 #if FASTRETRANS_DEBUG > 0
1659         WARN_ON((int)tp->sacked_out < 0);
1660         WARN_ON((int)tp->lost_out < 0);
1661         WARN_ON((int)tp->retrans_out < 0);
1662         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1663 #endif
1664         return flag;
1665 }
1666
1667 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1668  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1669  */
1670 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1671 {
1672         u32 holes;
1673
1674         holes = max(tp->lost_out, 1U);
1675         holes = min(holes, tp->packets_out);
1676
1677         if ((tp->sacked_out + holes) > tp->packets_out) {
1678                 tp->sacked_out = tp->packets_out - holes;
1679                 return 1;
1680         }
1681         return 0;
1682 }
1683
1684 /* If we receive more dupacks than we expected counting segments
1685  * in assumption of absent reordering, interpret this as reordering.
1686  * The only another reason could be bug in receiver TCP.
1687  */
1688 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1689 {
1690         struct tcp_sock *tp = tcp_sk(sk);
1691         if (tcp_limit_reno_sacked(tp))
1692                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1693 }
1694
1695 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1696
1697 static void tcp_add_reno_sack(struct sock *sk)
1698 {
1699         struct tcp_sock *tp = tcp_sk(sk);
1700         tp->sacked_out++;
1701         tcp_check_reno_reordering(sk, 0);
1702         tcp_verify_left_out(tp);
1703 }
1704
1705 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1706
1707 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1708 {
1709         struct tcp_sock *tp = tcp_sk(sk);
1710
1711         if (acked > 0) {
1712                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1713                 if (acked - 1 >= tp->sacked_out)
1714                         tp->sacked_out = 0;
1715                 else
1716                         tp->sacked_out -= acked - 1;
1717         }
1718         tcp_check_reno_reordering(sk, acked);
1719         tcp_verify_left_out(tp);
1720 }
1721
1722 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1723 {
1724         tp->sacked_out = 0;
1725 }
1726
1727 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1728 {
1729         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1730 }
1731
1732 /* F-RTO can only be used if TCP has never retransmitted anything other than
1733  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1734  */
1735 int tcp_use_frto(struct sock *sk)
1736 {
1737         const struct tcp_sock *tp = tcp_sk(sk);
1738         const struct inet_connection_sock *icsk = inet_csk(sk);
1739         struct sk_buff *skb;
1740
1741         if (!sysctl_tcp_frto)
1742                 return 0;
1743
1744         /* MTU probe and F-RTO won't really play nicely along currently */
1745         if (icsk->icsk_mtup.probe_size)
1746                 return 0;
1747
1748         if (tcp_is_sackfrto(tp))
1749                 return 1;
1750
1751         /* Avoid expensive walking of rexmit queue if possible */
1752         if (tp->retrans_out > 1)
1753                 return 0;
1754
1755         skb = tcp_write_queue_head(sk);
1756         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1757         tcp_for_write_queue_from(skb, sk) {
1758                 if (skb == tcp_send_head(sk))
1759                         break;
1760                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1761                         return 0;
1762                 /* Short-circuit when first non-SACKed skb has been checked */
1763                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1764                         break;
1765         }
1766         return 1;
1767 }
1768
1769 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1770  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1771  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1772  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1773  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1774  * bits are handled if the Loss state is really to be entered (in
1775  * tcp_enter_frto_loss).
1776  *
1777  * Do like tcp_enter_loss() would; when RTO expires the second time it
1778  * does:
1779  *  "Reduce ssthresh if it has not yet been made inside this window."
1780  */
1781 void tcp_enter_frto(struct sock *sk)
1782 {
1783         const struct inet_connection_sock *icsk = inet_csk(sk);
1784         struct tcp_sock *tp = tcp_sk(sk);
1785         struct sk_buff *skb;
1786
1787         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1788             tp->snd_una == tp->high_seq ||
1789             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1790              !icsk->icsk_retransmits)) {
1791                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1792                 /* Our state is too optimistic in ssthresh() call because cwnd
1793                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1794                  * recovery has not yet completed. Pattern would be this: RTO,
1795                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1796                  * up here twice).
1797                  * RFC4138 should be more specific on what to do, even though
1798                  * RTO is quite unlikely to occur after the first Cumulative ACK
1799                  * due to back-off and complexity of triggering events ...
1800                  */
1801                 if (tp->frto_counter) {
1802                         u32 stored_cwnd;
1803                         stored_cwnd = tp->snd_cwnd;
1804                         tp->snd_cwnd = 2;
1805                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1806                         tp->snd_cwnd = stored_cwnd;
1807                 } else {
1808                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1809                 }
1810                 /* ... in theory, cong.control module could do "any tricks" in
1811                  * ssthresh(), which means that ca_state, lost bits and lost_out
1812                  * counter would have to be faked before the call occurs. We
1813                  * consider that too expensive, unlikely and hacky, so modules
1814                  * using these in ssthresh() must deal these incompatibility
1815                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1816                  */
1817                 tcp_ca_event(sk, CA_EVENT_FRTO);
1818         }
1819
1820         tp->undo_marker = tp->snd_una;
1821         tp->undo_retrans = 0;
1822
1823         skb = tcp_write_queue_head(sk);
1824         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1825                 tp->undo_marker = 0;
1826         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1827                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1828                 tp->retrans_out -= tcp_skb_pcount(skb);
1829         }
1830         tcp_verify_left_out(tp);
1831
1832         /* Too bad if TCP was application limited */
1833         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1834
1835         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1836          * The last condition is necessary at least in tp->frto_counter case.
1837          */
1838         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1839             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1840             after(tp->high_seq, tp->snd_una)) {
1841                 tp->frto_highmark = tp->high_seq;
1842         } else {
1843                 tp->frto_highmark = tp->snd_nxt;
1844         }
1845         tcp_set_ca_state(sk, TCP_CA_Disorder);
1846         tp->high_seq = tp->snd_nxt;
1847         tp->frto_counter = 1;
1848 }
1849
1850 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1851  * which indicates that we should follow the traditional RTO recovery,
1852  * i.e. mark everything lost and do go-back-N retransmission.
1853  */
1854 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1855 {
1856         struct tcp_sock *tp = tcp_sk(sk);
1857         struct sk_buff *skb;
1858
1859         tp->lost_out = 0;
1860         tp->retrans_out = 0;
1861         if (tcp_is_reno(tp))
1862                 tcp_reset_reno_sack(tp);
1863
1864         tcp_for_write_queue(skb, sk) {
1865                 if (skb == tcp_send_head(sk))
1866                         break;
1867
1868                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1869                 /*
1870                  * Count the retransmission made on RTO correctly (only when
1871                  * waiting for the first ACK and did not get it)...
1872                  */
1873                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1874                         /* For some reason this R-bit might get cleared? */
1875                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1876                                 tp->retrans_out += tcp_skb_pcount(skb);
1877                         /* ...enter this if branch just for the first segment */
1878                         flag |= FLAG_DATA_ACKED;
1879                 } else {
1880                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1881                                 tp->undo_marker = 0;
1882                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1883                 }
1884
1885                 /* Marking forward transmissions that were made after RTO lost
1886                  * can cause unnecessary retransmissions in some scenarios,
1887                  * SACK blocks will mitigate that in some but not in all cases.
1888                  * We used to not mark them but it was causing break-ups with
1889                  * receivers that do only in-order receival.
1890                  *
1891                  * TODO: we could detect presence of such receiver and select
1892                  * different behavior per flow.
1893                  */
1894                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1895                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1896                         tp->lost_out += tcp_skb_pcount(skb);
1897                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1898                 }
1899         }
1900         tcp_verify_left_out(tp);
1901
1902         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1903         tp->snd_cwnd_cnt = 0;
1904         tp->snd_cwnd_stamp = tcp_time_stamp;
1905         tp->frto_counter = 0;
1906         tp->bytes_acked = 0;
1907
1908         tp->reordering = min_t(unsigned int, tp->reordering,
1909                                sysctl_tcp_reordering);
1910         tcp_set_ca_state(sk, TCP_CA_Loss);
1911         tp->high_seq = tp->snd_nxt;
1912         TCP_ECN_queue_cwr(tp);
1913
1914         tcp_clear_all_retrans_hints(tp);
1915 }
1916
1917 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1918 {
1919         tp->retrans_out = 0;
1920         tp->lost_out = 0;
1921
1922         tp->undo_marker = 0;
1923         tp->undo_retrans = 0;
1924 }
1925
1926 void tcp_clear_retrans(struct tcp_sock *tp)
1927 {
1928         tcp_clear_retrans_partial(tp);
1929
1930         tp->fackets_out = 0;
1931         tp->sacked_out = 0;
1932 }
1933
1934 /* Enter Loss state. If "how" is not zero, forget all SACK information
1935  * and reset tags completely, otherwise preserve SACKs. If receiver
1936  * dropped its ofo queue, we will know this due to reneging detection.
1937  */
1938 void tcp_enter_loss(struct sock *sk, int how)
1939 {
1940         const struct inet_connection_sock *icsk = inet_csk(sk);
1941         struct tcp_sock *tp = tcp_sk(sk);
1942         struct sk_buff *skb;
1943
1944         /* Reduce ssthresh if it has not yet been made inside this window. */
1945         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1946             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1947                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1948                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1949                 tcp_ca_event(sk, CA_EVENT_LOSS);
1950         }
1951         tp->snd_cwnd       = 1;
1952         tp->snd_cwnd_cnt   = 0;
1953         tp->snd_cwnd_stamp = tcp_time_stamp;
1954
1955         tp->bytes_acked = 0;
1956         tcp_clear_retrans_partial(tp);
1957
1958         if (tcp_is_reno(tp))
1959                 tcp_reset_reno_sack(tp);
1960
1961         if (!how) {
1962                 /* Push undo marker, if it was plain RTO and nothing
1963                  * was retransmitted. */
1964                 tp->undo_marker = tp->snd_una;
1965         } else {
1966                 tp->sacked_out = 0;
1967                 tp->fackets_out = 0;
1968         }
1969         tcp_clear_all_retrans_hints(tp);
1970
1971         tcp_for_write_queue(skb, sk) {
1972                 if (skb == tcp_send_head(sk))
1973                         break;
1974
1975                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1976                         tp->undo_marker = 0;
1977                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1978                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1979                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1980                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1981                         tp->lost_out += tcp_skb_pcount(skb);
1982                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1983                 }
1984         }
1985         tcp_verify_left_out(tp);
1986
1987         tp->reordering = min_t(unsigned int, tp->reordering,
1988                                sysctl_tcp_reordering);
1989         tcp_set_ca_state(sk, TCP_CA_Loss);
1990         tp->high_seq = tp->snd_nxt;
1991         TCP_ECN_queue_cwr(tp);
1992         /* Abort F-RTO algorithm if one is in progress */
1993         tp->frto_counter = 0;
1994 }
1995
1996 /* If ACK arrived pointing to a remembered SACK, it means that our
1997  * remembered SACKs do not reflect real state of receiver i.e.
1998  * receiver _host_ is heavily congested (or buggy).
1999  *
2000  * Do processing similar to RTO timeout.
2001  */
2002 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2003 {
2004         if (flag & FLAG_SACK_RENEGING) {
2005                 struct inet_connection_sock *icsk = inet_csk(sk);
2006                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2007
2008                 tcp_enter_loss(sk, 1);
2009                 icsk->icsk_retransmits++;
2010                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2011                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2012                                           icsk->icsk_rto, TCP_RTO_MAX);
2013                 return 1;
2014         }
2015         return 0;
2016 }
2017
2018 static inline int tcp_fackets_out(struct tcp_sock *tp)
2019 {
2020         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2021 }
2022
2023 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2024  * counter when SACK is enabled (without SACK, sacked_out is used for
2025  * that purpose).
2026  *
2027  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2028  * segments up to the highest received SACK block so far and holes in
2029  * between them.
2030  *
2031  * With reordering, holes may still be in flight, so RFC3517 recovery
2032  * uses pure sacked_out (total number of SACKed segments) even though
2033  * it violates the RFC that uses duplicate ACKs, often these are equal
2034  * but when e.g. out-of-window ACKs or packet duplication occurs,
2035  * they differ. Since neither occurs due to loss, TCP should really
2036  * ignore them.
2037  */
2038 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2039 {
2040         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2041 }
2042
2043 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2044 {
2045         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2046 }
2047
2048 static inline int tcp_head_timedout(struct sock *sk)
2049 {
2050         struct tcp_sock *tp = tcp_sk(sk);
2051
2052         return tp->packets_out &&
2053                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2054 }
2055
2056 /* Linux NewReno/SACK/FACK/ECN state machine.
2057  * --------------------------------------
2058  *
2059  * "Open"       Normal state, no dubious events, fast path.
2060  * "Disorder"   In all the respects it is "Open",
2061  *              but requires a bit more attention. It is entered when
2062  *              we see some SACKs or dupacks. It is split of "Open"
2063  *              mainly to move some processing from fast path to slow one.
2064  * "CWR"        CWND was reduced due to some Congestion Notification event.
2065  *              It can be ECN, ICMP source quench, local device congestion.
2066  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2067  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2068  *
2069  * tcp_fastretrans_alert() is entered:
2070  * - each incoming ACK, if state is not "Open"
2071  * - when arrived ACK is unusual, namely:
2072  *      * SACK
2073  *      * Duplicate ACK.
2074  *      * ECN ECE.
2075  *
2076  * Counting packets in flight is pretty simple.
2077  *
2078  *      in_flight = packets_out - left_out + retrans_out
2079  *
2080  *      packets_out is SND.NXT-SND.UNA counted in packets.
2081  *
2082  *      retrans_out is number of retransmitted segments.
2083  *
2084  *      left_out is number of segments left network, but not ACKed yet.
2085  *
2086  *              left_out = sacked_out + lost_out
2087  *
2088  *     sacked_out: Packets, which arrived to receiver out of order
2089  *                 and hence not ACKed. With SACKs this number is simply
2090  *                 amount of SACKed data. Even without SACKs
2091  *                 it is easy to give pretty reliable estimate of this number,
2092  *                 counting duplicate ACKs.
2093  *
2094  *       lost_out: Packets lost by network. TCP has no explicit
2095  *                 "loss notification" feedback from network (for now).
2096  *                 It means that this number can be only _guessed_.
2097  *                 Actually, it is the heuristics to predict lossage that
2098  *                 distinguishes different algorithms.
2099  *
2100  *      F.e. after RTO, when all the queue is considered as lost,
2101  *      lost_out = packets_out and in_flight = retrans_out.
2102  *
2103  *              Essentially, we have now two algorithms counting
2104  *              lost packets.
2105  *
2106  *              FACK: It is the simplest heuristics. As soon as we decided
2107  *              that something is lost, we decide that _all_ not SACKed
2108  *              packets until the most forward SACK are lost. I.e.
2109  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2110  *              It is absolutely correct estimate, if network does not reorder
2111  *              packets. And it loses any connection to reality when reordering
2112  *              takes place. We use FACK by default until reordering
2113  *              is suspected on the path to this destination.
2114  *
2115  *              NewReno: when Recovery is entered, we assume that one segment
2116  *              is lost (classic Reno). While we are in Recovery and
2117  *              a partial ACK arrives, we assume that one more packet
2118  *              is lost (NewReno). This heuristics are the same in NewReno
2119  *              and SACK.
2120  *
2121  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2122  *  deflation etc. CWND is real congestion window, never inflated, changes
2123  *  only according to classic VJ rules.
2124  *
2125  * Really tricky (and requiring careful tuning) part of algorithm
2126  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2127  * The first determines the moment _when_ we should reduce CWND and,
2128  * hence, slow down forward transmission. In fact, it determines the moment
2129  * when we decide that hole is caused by loss, rather than by a reorder.
2130  *
2131  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2132  * holes, caused by lost packets.
2133  *
2134  * And the most logically complicated part of algorithm is undo
2135  * heuristics. We detect false retransmits due to both too early
2136  * fast retransmit (reordering) and underestimated RTO, analyzing
2137  * timestamps and D-SACKs. When we detect that some segments were
2138  * retransmitted by mistake and CWND reduction was wrong, we undo
2139  * window reduction and abort recovery phase. This logic is hidden
2140  * inside several functions named tcp_try_undo_<something>.
2141  */
2142
2143 /* This function decides, when we should leave Disordered state
2144  * and enter Recovery phase, reducing congestion window.
2145  *
2146  * Main question: may we further continue forward transmission
2147  * with the same cwnd?
2148  */
2149 static int tcp_time_to_recover(struct sock *sk)
2150 {
2151         struct tcp_sock *tp = tcp_sk(sk);
2152         __u32 packets_out;
2153
2154         /* Do not perform any recovery during F-RTO algorithm */
2155         if (tp->frto_counter)
2156                 return 0;
2157
2158         /* Trick#1: The loss is proven. */
2159         if (tp->lost_out)
2160                 return 1;
2161
2162         /* Not-A-Trick#2 : Classic rule... */
2163         if (tcp_dupack_heurestics(tp) > tp->reordering)
2164                 return 1;
2165
2166         /* Trick#3 : when we use RFC2988 timer restart, fast
2167          * retransmit can be triggered by timeout of queue head.
2168          */
2169         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2170                 return 1;
2171
2172         /* Trick#4: It is still not OK... But will it be useful to delay
2173          * recovery more?
2174          */
2175         packets_out = tp->packets_out;
2176         if (packets_out <= tp->reordering &&
2177             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2178             !tcp_may_send_now(sk)) {
2179                 /* We have nothing to send. This connection is limited
2180                  * either by receiver window or by application.
2181                  */
2182                 return 1;
2183         }
2184
2185         return 0;
2186 }
2187
2188 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2189  * is against sacked "cnt", otherwise it's against facked "cnt"
2190  */
2191 static void tcp_mark_head_lost(struct sock *sk, int packets)
2192 {
2193         struct tcp_sock *tp = tcp_sk(sk);
2194         struct sk_buff *skb;
2195         int cnt, oldcnt;
2196         int err;
2197         unsigned int mss;
2198
2199         WARN_ON(packets > tp->packets_out);
2200         if (tp->lost_skb_hint) {
2201                 skb = tp->lost_skb_hint;
2202                 cnt = tp->lost_cnt_hint;
2203         } else {
2204                 skb = tcp_write_queue_head(sk);
2205                 cnt = 0;
2206         }
2207
2208         tcp_for_write_queue_from(skb, sk) {
2209                 if (skb == tcp_send_head(sk))
2210                         break;
2211                 /* TODO: do this better */
2212                 /* this is not the most efficient way to do this... */
2213                 tp->lost_skb_hint = skb;
2214                 tp->lost_cnt_hint = cnt;
2215
2216                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2217                         break;
2218
2219                 oldcnt = cnt;
2220                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2221                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2222                         cnt += tcp_skb_pcount(skb);
2223
2224                 if (cnt > packets) {
2225                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2226                                 break;
2227
2228                         mss = skb_shinfo(skb)->gso_size;
2229                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2230                         if (err < 0)
2231                                 break;
2232                         cnt = packets;
2233                 }
2234
2235                 tcp_skb_mark_lost(tp, skb);
2236         }
2237         tcp_verify_left_out(tp);
2238 }
2239
2240 /* Account newly detected lost packet(s) */
2241
2242 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2243 {
2244         struct tcp_sock *tp = tcp_sk(sk);
2245
2246         if (tcp_is_reno(tp)) {
2247                 tcp_mark_head_lost(sk, 1);
2248         } else if (tcp_is_fack(tp)) {
2249                 int lost = tp->fackets_out - tp->reordering;
2250                 if (lost <= 0)
2251                         lost = 1;
2252                 tcp_mark_head_lost(sk, lost);
2253         } else {
2254                 int sacked_upto = tp->sacked_out - tp->reordering;
2255                 if (sacked_upto < fast_rexmit)
2256                         sacked_upto = fast_rexmit;
2257                 tcp_mark_head_lost(sk, sacked_upto);
2258         }
2259
2260         /* New heuristics: it is possible only after we switched
2261          * to restart timer each time when something is ACKed.
2262          * Hence, we can detect timed out packets during fast
2263          * retransmit without falling to slow start.
2264          */
2265         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2266                 struct sk_buff *skb;
2267
2268                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2269                         : tcp_write_queue_head(sk);
2270
2271                 tcp_for_write_queue_from(skb, sk) {
2272                         if (skb == tcp_send_head(sk))
2273                                 break;
2274                         if (!tcp_skb_timedout(sk, skb))
2275                                 break;
2276
2277                         tcp_skb_mark_lost(tp, skb);
2278                 }
2279
2280                 tp->scoreboard_skb_hint = skb;
2281
2282                 tcp_verify_left_out(tp);
2283         }
2284 }
2285
2286 /* CWND moderation, preventing bursts due to too big ACKs
2287  * in dubious situations.
2288  */
2289 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2290 {
2291         tp->snd_cwnd = min(tp->snd_cwnd,
2292                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2293         tp->snd_cwnd_stamp = tcp_time_stamp;
2294 }
2295
2296 /* Lower bound on congestion window is slow start threshold
2297  * unless congestion avoidance choice decides to overide it.
2298  */
2299 static inline u32 tcp_cwnd_min(const struct sock *sk)
2300 {
2301         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2302
2303         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2304 }
2305
2306 /* Decrease cwnd each second ack. */
2307 static void tcp_cwnd_down(struct sock *sk, int flag)
2308 {
2309         struct tcp_sock *tp = tcp_sk(sk);
2310         int decr = tp->snd_cwnd_cnt + 1;
2311
2312         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2313             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2314                 tp->snd_cwnd_cnt = decr & 1;
2315                 decr >>= 1;
2316
2317                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2318                         tp->snd_cwnd -= decr;
2319
2320                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2321                 tp->snd_cwnd_stamp = tcp_time_stamp;
2322         }
2323 }
2324
2325 /* Nothing was retransmitted or returned timestamp is less
2326  * than timestamp of the first retransmission.
2327  */
2328 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2329 {
2330         return !tp->retrans_stamp ||
2331                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2332                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2333 }
2334
2335 /* Undo procedures. */
2336
2337 #if FASTRETRANS_DEBUG > 1
2338 static void DBGUNDO(struct sock *sk, const char *msg)
2339 {
2340         struct tcp_sock *tp = tcp_sk(sk);
2341         struct inet_sock *inet = inet_sk(sk);
2342
2343         if (sk->sk_family == AF_INET) {
2344                 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2345                        msg,
2346                        NIPQUAD(inet->daddr), ntohs(inet->dport),
2347                        tp->snd_cwnd, tcp_left_out(tp),
2348                        tp->snd_ssthresh, tp->prior_ssthresh,
2349                        tp->packets_out);
2350         }
2351 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2352         else if (sk->sk_family == AF_INET6) {
2353                 struct ipv6_pinfo *np = inet6_sk(sk);
2354                 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2355                        msg,
2356                        NIP6(np->daddr), ntohs(inet->dport),
2357                        tp->snd_cwnd, tcp_left_out(tp),
2358                        tp->snd_ssthresh, tp->prior_ssthresh,
2359                        tp->packets_out);
2360         }
2361 #endif
2362 }
2363 #else
2364 #define DBGUNDO(x...) do { } while (0)
2365 #endif
2366
2367 static void tcp_undo_cwr(struct sock *sk, const int undo)
2368 {
2369         struct tcp_sock *tp = tcp_sk(sk);
2370
2371         if (tp->prior_ssthresh) {
2372                 const struct inet_connection_sock *icsk = inet_csk(sk);
2373
2374                 if (icsk->icsk_ca_ops->undo_cwnd)
2375                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2376                 else
2377                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2378
2379                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2380                         tp->snd_ssthresh = tp->prior_ssthresh;
2381                         TCP_ECN_withdraw_cwr(tp);
2382                 }
2383         } else {
2384                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2385         }
2386         tcp_moderate_cwnd(tp);
2387         tp->snd_cwnd_stamp = tcp_time_stamp;
2388
2389         /* There is something screwy going on with the retrans hints after
2390            an undo */
2391         tcp_clear_all_retrans_hints(tp);
2392 }
2393
2394 static inline int tcp_may_undo(struct tcp_sock *tp)
2395 {
2396         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2397 }
2398
2399 /* People celebrate: "We love our President!" */
2400 static int tcp_try_undo_recovery(struct sock *sk)
2401 {
2402         struct tcp_sock *tp = tcp_sk(sk);
2403
2404         if (tcp_may_undo(tp)) {
2405                 int mib_idx;
2406
2407                 /* Happy end! We did not retransmit anything
2408                  * or our original transmission succeeded.
2409                  */
2410                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2411                 tcp_undo_cwr(sk, 1);
2412                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2413                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2414                 else
2415                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2416
2417                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2418                 tp->undo_marker = 0;
2419         }
2420         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2421                 /* Hold old state until something *above* high_seq
2422                  * is ACKed. For Reno it is MUST to prevent false
2423                  * fast retransmits (RFC2582). SACK TCP is safe. */
2424                 tcp_moderate_cwnd(tp);
2425                 return 1;
2426         }
2427         tcp_set_ca_state(sk, TCP_CA_Open);
2428         return 0;
2429 }
2430
2431 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2432 static void tcp_try_undo_dsack(struct sock *sk)
2433 {
2434         struct tcp_sock *tp = tcp_sk(sk);
2435
2436         if (tp->undo_marker && !tp->undo_retrans) {
2437                 DBGUNDO(sk, "D-SACK");
2438                 tcp_undo_cwr(sk, 1);
2439                 tp->undo_marker = 0;
2440                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2441         }
2442 }
2443
2444 /* Undo during fast recovery after partial ACK. */
2445
2446 static int tcp_try_undo_partial(struct sock *sk, int acked)
2447 {
2448         struct tcp_sock *tp = tcp_sk(sk);
2449         /* Partial ACK arrived. Force Hoe's retransmit. */
2450         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2451
2452         if (tcp_may_undo(tp)) {
2453                 /* Plain luck! Hole if filled with delayed
2454                  * packet, rather than with a retransmit.
2455                  */
2456                 if (tp->retrans_out == 0)
2457                         tp->retrans_stamp = 0;
2458
2459                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2460
2461                 DBGUNDO(sk, "Hoe");
2462                 tcp_undo_cwr(sk, 0);
2463                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2464
2465                 /* So... Do not make Hoe's retransmit yet.
2466                  * If the first packet was delayed, the rest
2467                  * ones are most probably delayed as well.
2468                  */
2469                 failed = 0;
2470         }
2471         return failed;
2472 }
2473
2474 /* Undo during loss recovery after partial ACK. */
2475 static int tcp_try_undo_loss(struct sock *sk)
2476 {
2477         struct tcp_sock *tp = tcp_sk(sk);
2478
2479         if (tcp_may_undo(tp)) {
2480                 struct sk_buff *skb;
2481                 tcp_for_write_queue(skb, sk) {
2482                         if (skb == tcp_send_head(sk))
2483                                 break;
2484                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2485                 }
2486
2487                 tcp_clear_all_retrans_hints(tp);
2488
2489                 DBGUNDO(sk, "partial loss");
2490                 tp->lost_out = 0;
2491                 tcp_undo_cwr(sk, 1);
2492                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2493                 inet_csk(sk)->icsk_retransmits = 0;
2494                 tp->undo_marker = 0;
2495                 if (tcp_is_sack(tp))
2496                         tcp_set_ca_state(sk, TCP_CA_Open);
2497                 return 1;
2498         }
2499         return 0;
2500 }
2501
2502 static inline void tcp_complete_cwr(struct sock *sk)
2503 {
2504         struct tcp_sock *tp = tcp_sk(sk);
2505         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2506         tp->snd_cwnd_stamp = tcp_time_stamp;
2507         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2508 }
2509
2510 static void tcp_try_keep_open(struct sock *sk)
2511 {
2512         struct tcp_sock *tp = tcp_sk(sk);
2513         int state = TCP_CA_Open;
2514
2515         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2516                 state = TCP_CA_Disorder;
2517
2518         if (inet_csk(sk)->icsk_ca_state != state) {
2519                 tcp_set_ca_state(sk, state);
2520                 tp->high_seq = tp->snd_nxt;
2521         }
2522 }
2523
2524 static void tcp_try_to_open(struct sock *sk, int flag)
2525 {
2526         struct tcp_sock *tp = tcp_sk(sk);
2527
2528         tcp_verify_left_out(tp);
2529
2530         if (!tp->frto_counter && tp->retrans_out == 0)
2531                 tp->retrans_stamp = 0;
2532
2533         if (flag & FLAG_ECE)
2534                 tcp_enter_cwr(sk, 1);
2535
2536         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2537                 tcp_try_keep_open(sk);
2538                 tcp_moderate_cwnd(tp);
2539         } else {
2540                 tcp_cwnd_down(sk, flag);
2541         }
2542 }
2543
2544 static void tcp_mtup_probe_failed(struct sock *sk)
2545 {
2546         struct inet_connection_sock *icsk = inet_csk(sk);
2547
2548         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2549         icsk->icsk_mtup.probe_size = 0;
2550 }
2551
2552 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2553 {
2554         struct tcp_sock *tp = tcp_sk(sk);
2555         struct inet_connection_sock *icsk = inet_csk(sk);
2556
2557         /* FIXME: breaks with very large cwnd */
2558         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2559         tp->snd_cwnd = tp->snd_cwnd *
2560                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2561                        icsk->icsk_mtup.probe_size;
2562         tp->snd_cwnd_cnt = 0;
2563         tp->snd_cwnd_stamp = tcp_time_stamp;
2564         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2565
2566         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2567         icsk->icsk_mtup.probe_size = 0;
2568         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2569 }
2570
2571 /* Process an event, which can update packets-in-flight not trivially.
2572  * Main goal of this function is to calculate new estimate for left_out,
2573  * taking into account both packets sitting in receiver's buffer and
2574  * packets lost by network.
2575  *
2576  * Besides that it does CWND reduction, when packet loss is detected
2577  * and changes state of machine.
2578  *
2579  * It does _not_ decide what to send, it is made in function
2580  * tcp_xmit_retransmit_queue().
2581  */
2582 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2583 {
2584         struct inet_connection_sock *icsk = inet_csk(sk);
2585         struct tcp_sock *tp = tcp_sk(sk);
2586         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2587         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2588                                     (tcp_fackets_out(tp) > tp->reordering));
2589         int fast_rexmit = 0, mib_idx;
2590
2591         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2592                 tp->sacked_out = 0;
2593         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2594                 tp->fackets_out = 0;
2595
2596         /* Now state machine starts.
2597          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2598         if (flag & FLAG_ECE)
2599                 tp->prior_ssthresh = 0;
2600
2601         /* B. In all the states check for reneging SACKs. */
2602         if (tcp_check_sack_reneging(sk, flag))
2603                 return;
2604
2605         /* C. Process data loss notification, provided it is valid. */
2606         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2607             before(tp->snd_una, tp->high_seq) &&
2608             icsk->icsk_ca_state != TCP_CA_Open &&
2609             tp->fackets_out > tp->reordering) {
2610                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2611                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2612         }
2613
2614         /* D. Check consistency of the current state. */
2615         tcp_verify_left_out(tp);
2616
2617         /* E. Check state exit conditions. State can be terminated
2618          *    when high_seq is ACKed. */
2619         if (icsk->icsk_ca_state == TCP_CA_Open) {
2620                 WARN_ON(tp->retrans_out != 0);
2621                 tp->retrans_stamp = 0;
2622         } else if (!before(tp->snd_una, tp->high_seq)) {
2623                 switch (icsk->icsk_ca_state) {
2624                 case TCP_CA_Loss:
2625                         icsk->icsk_retransmits = 0;
2626                         if (tcp_try_undo_recovery(sk))
2627                                 return;
2628                         break;
2629
2630                 case TCP_CA_CWR:
2631                         /* CWR is to be held something *above* high_seq
2632                          * is ACKed for CWR bit to reach receiver. */
2633                         if (tp->snd_una != tp->high_seq) {
2634                                 tcp_complete_cwr(sk);
2635                                 tcp_set_ca_state(sk, TCP_CA_Open);
2636                         }
2637                         break;
2638
2639                 case TCP_CA_Disorder:
2640                         tcp_try_undo_dsack(sk);
2641                         if (!tp->undo_marker ||
2642                             /* For SACK case do not Open to allow to undo
2643                              * catching for all duplicate ACKs. */
2644                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2645                                 tp->undo_marker = 0;
2646                                 tcp_set_ca_state(sk, TCP_CA_Open);
2647                         }
2648                         break;
2649
2650                 case TCP_CA_Recovery:
2651                         if (tcp_is_reno(tp))
2652                                 tcp_reset_reno_sack(tp);
2653                         if (tcp_try_undo_recovery(sk))
2654                                 return;
2655                         tcp_complete_cwr(sk);
2656                         break;
2657                 }
2658         }
2659
2660         /* F. Process state. */
2661         switch (icsk->icsk_ca_state) {
2662         case TCP_CA_Recovery:
2663                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2664                         if (tcp_is_reno(tp) && is_dupack)
2665                                 tcp_add_reno_sack(sk);
2666                 } else
2667                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2668                 break;
2669         case TCP_CA_Loss:
2670                 if (flag & FLAG_DATA_ACKED)
2671                         icsk->icsk_retransmits = 0;
2672                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2673                         tcp_reset_reno_sack(tp);
2674                 if (!tcp_try_undo_loss(sk)) {
2675                         tcp_moderate_cwnd(tp);
2676                         tcp_xmit_retransmit_queue(sk);
2677                         return;
2678                 }
2679                 if (icsk->icsk_ca_state != TCP_CA_Open)
2680                         return;
2681                 /* Loss is undone; fall through to processing in Open state. */
2682         default:
2683                 if (tcp_is_reno(tp)) {
2684                         if (flag & FLAG_SND_UNA_ADVANCED)
2685                                 tcp_reset_reno_sack(tp);
2686                         if (is_dupack)
2687                                 tcp_add_reno_sack(sk);
2688                 }
2689
2690                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2691                         tcp_try_undo_dsack(sk);
2692
2693                 if (!tcp_time_to_recover(sk)) {
2694                         tcp_try_to_open(sk, flag);
2695                         return;
2696                 }
2697
2698                 /* MTU probe failure: don't reduce cwnd */
2699                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2700                     icsk->icsk_mtup.probe_size &&
2701                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2702                         tcp_mtup_probe_failed(sk);
2703                         /* Restores the reduction we did in tcp_mtup_probe() */
2704                         tp->snd_cwnd++;
2705                         tcp_simple_retransmit(sk);
2706                         return;
2707                 }
2708
2709                 /* Otherwise enter Recovery state */
2710
2711                 if (tcp_is_reno(tp))
2712                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
2713                 else
2714                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2715
2716                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2717
2718                 tp->high_seq = tp->snd_nxt;
2719                 tp->prior_ssthresh = 0;
2720                 tp->undo_marker = tp->snd_una;
2721                 tp->undo_retrans = tp->retrans_out;
2722
2723                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2724                         if (!(flag & FLAG_ECE))
2725                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2726                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2727                         TCP_ECN_queue_cwr(tp);
2728                 }
2729
2730                 tp->bytes_acked = 0;
2731                 tp->snd_cwnd_cnt = 0;
2732                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2733                 fast_rexmit = 1;
2734         }
2735
2736         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2737                 tcp_update_scoreboard(sk, fast_rexmit);
2738         tcp_cwnd_down(sk, flag);
2739         tcp_xmit_retransmit_queue(sk);
2740 }
2741
2742 /* Read draft-ietf-tcplw-high-performance before mucking
2743  * with this code. (Supersedes RFC1323)
2744  */
2745 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2746 {
2747         /* RTTM Rule: A TSecr value received in a segment is used to
2748          * update the averaged RTT measurement only if the segment
2749          * acknowledges some new data, i.e., only if it advances the
2750          * left edge of the send window.
2751          *
2752          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2753          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2754          *
2755          * Changed: reset backoff as soon as we see the first valid sample.
2756          * If we do not, we get strongly overestimated rto. With timestamps
2757          * samples are accepted even from very old segments: f.e., when rtt=1
2758          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2759          * answer arrives rto becomes 120 seconds! If at least one of segments
2760          * in window is lost... Voila.                          --ANK (010210)
2761          */
2762         struct tcp_sock *tp = tcp_sk(sk);
2763         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2764         tcp_rtt_estimator(sk, seq_rtt);
2765         tcp_set_rto(sk);
2766         inet_csk(sk)->icsk_backoff = 0;
2767         tcp_bound_rto(sk);
2768 }
2769
2770 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2771 {
2772         /* We don't have a timestamp. Can only use
2773          * packets that are not retransmitted to determine
2774          * rtt estimates. Also, we must not reset the
2775          * backoff for rto until we get a non-retransmitted
2776          * packet. This allows us to deal with a situation
2777          * where the network delay has increased suddenly.
2778          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2779          */
2780
2781         if (flag & FLAG_RETRANS_DATA_ACKED)
2782                 return;
2783
2784         tcp_rtt_estimator(sk, seq_rtt);
2785         tcp_set_rto(sk);
2786         inet_csk(sk)->icsk_backoff = 0;
2787         tcp_bound_rto(sk);
2788 }
2789
2790 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2791                                       const s32 seq_rtt)
2792 {
2793         const struct tcp_sock *tp = tcp_sk(sk);
2794         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2795         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2796                 tcp_ack_saw_tstamp(sk, flag);
2797         else if (seq_rtt >= 0)
2798                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2799 }
2800
2801 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2802 {
2803         const struct inet_connection_sock *icsk = inet_csk(sk);
2804         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2805         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2806 }
2807
2808 /* Restart timer after forward progress on connection.
2809  * RFC2988 recommends to restart timer to now+rto.
2810  */
2811 static void tcp_rearm_rto(struct sock *sk)
2812 {
2813         struct tcp_sock *tp = tcp_sk(sk);
2814
2815         if (!tp->packets_out) {
2816                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2817         } else {
2818                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2819                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2820         }
2821 }
2822
2823 /* If we get here, the whole TSO packet has not been acked. */
2824 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2825 {
2826         struct tcp_sock *tp = tcp_sk(sk);
2827         u32 packets_acked;
2828
2829         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2830
2831         packets_acked = tcp_skb_pcount(skb);
2832         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2833                 return 0;
2834         packets_acked -= tcp_skb_pcount(skb);
2835
2836         if (packets_acked) {
2837                 BUG_ON(tcp_skb_pcount(skb) == 0);
2838                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2839         }
2840
2841         return packets_acked;
2842 }
2843
2844 /* Remove acknowledged frames from the retransmission queue. If our packet
2845  * is before the ack sequence we can discard it as it's confirmed to have
2846  * arrived at the other end.
2847  */
2848 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2849 {
2850         struct tcp_sock *tp = tcp_sk(sk);
2851         const struct inet_connection_sock *icsk = inet_csk(sk);
2852         struct sk_buff *skb;
2853         u32 now = tcp_time_stamp;
2854         int fully_acked = 1;
2855         int flag = 0;
2856         u32 pkts_acked = 0;
2857         u32 reord = tp->packets_out;
2858         s32 seq_rtt = -1;
2859         s32 ca_seq_rtt = -1;
2860         ktime_t last_ackt = net_invalid_timestamp();
2861
2862         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2863                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2864                 u32 end_seq;
2865                 u32 acked_pcount;
2866                 u8 sacked = scb->sacked;
2867
2868                 /* Determine how many packets and what bytes were acked, tso and else */
2869                 if (after(scb->end_seq, tp->snd_una)) {
2870                         if (tcp_skb_pcount(skb) == 1 ||
2871                             !after(tp->snd_una, scb->seq))
2872                                 break;
2873
2874                         acked_pcount = tcp_tso_acked(sk, skb);
2875                         if (!acked_pcount)
2876                                 break;
2877
2878                         fully_acked = 0;
2879                         end_seq = tp->snd_una;
2880                 } else {
2881                         acked_pcount = tcp_skb_pcount(skb);
2882                         end_seq = scb->end_seq;
2883                 }
2884
2885                 /* MTU probing checks */
2886                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2887                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2888                         tcp_mtup_probe_success(sk, skb);
2889                 }
2890
2891                 if (sacked & TCPCB_RETRANS) {
2892                         if (sacked & TCPCB_SACKED_RETRANS)
2893                                 tp->retrans_out -= acked_pcount;
2894                         flag |= FLAG_RETRANS_DATA_ACKED;
2895                         ca_seq_rtt = -1;
2896                         seq_rtt = -1;
2897                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2898                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2899                 } else {
2900                         ca_seq_rtt = now - scb->when;
2901                         last_ackt = skb->tstamp;
2902                         if (seq_rtt < 0) {
2903                                 seq_rtt = ca_seq_rtt;
2904                         }
2905                         if (!(sacked & TCPCB_SACKED_ACKED))
2906                                 reord = min(pkts_acked, reord);
2907                 }
2908
2909                 if (sacked & TCPCB_SACKED_ACKED)
2910                         tp->sacked_out -= acked_pcount;
2911                 if (sacked & TCPCB_LOST)
2912                         tp->lost_out -= acked_pcount;
2913
2914                 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2915                         tp->urg_mode = 0;
2916
2917                 tp->packets_out -= acked_pcount;
2918                 pkts_acked += acked_pcount;
2919
2920                 /* Initial outgoing SYN's get put onto the write_queue
2921                  * just like anything else we transmit.  It is not
2922                  * true data, and if we misinform our callers that
2923                  * this ACK acks real data, we will erroneously exit
2924                  * connection startup slow start one packet too
2925                  * quickly.  This is severely frowned upon behavior.
2926                  */
2927                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2928                         flag |= FLAG_DATA_ACKED;
2929                 } else {
2930                         flag |= FLAG_SYN_ACKED;
2931                         tp->retrans_stamp = 0;
2932                 }
2933
2934                 if (!fully_acked)
2935                         break;
2936
2937                 tcp_unlink_write_queue(skb, sk);
2938                 sk_wmem_free_skb(sk, skb);
2939                 tcp_clear_all_retrans_hints(tp);
2940         }
2941
2942         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2943                 flag |= FLAG_SACK_RENEGING;
2944
2945         if (flag & FLAG_ACKED) {
2946                 const struct tcp_congestion_ops *ca_ops
2947                         = inet_csk(sk)->icsk_ca_ops;
2948
2949                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2950                 tcp_rearm_rto(sk);
2951
2952                 if (tcp_is_reno(tp)) {
2953                         tcp_remove_reno_sacks(sk, pkts_acked);
2954                 } else {
2955                         /* Non-retransmitted hole got filled? That's reordering */
2956                         if (reord < prior_fackets)
2957                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2958                 }
2959
2960                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2961
2962                 if (ca_ops->pkts_acked) {
2963                         s32 rtt_us = -1;
2964
2965                         /* Is the ACK triggering packet unambiguous? */
2966                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2967                                 /* High resolution needed and available? */
2968                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2969                                     !ktime_equal(last_ackt,
2970                                                  net_invalid_timestamp()))
2971                                         rtt_us = ktime_us_delta(ktime_get_real(),
2972                                                                 last_ackt);
2973                                 else if (ca_seq_rtt > 0)
2974                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2975                         }
2976
2977                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2978                 }
2979         }
2980
2981 #if FASTRETRANS_DEBUG > 0
2982         WARN_ON((int)tp->sacked_out < 0);
2983         WARN_ON((int)tp->lost_out < 0);
2984         WARN_ON((int)tp->retrans_out < 0);
2985         if (!tp->packets_out && tcp_is_sack(tp)) {
2986                 icsk = inet_csk(sk);
2987                 if (tp->lost_out) {
2988                         printk(KERN_DEBUG "Leak l=%u %d\n",
2989                                tp->lost_out, icsk->icsk_ca_state);
2990                         tp->lost_out = 0;
2991                 }
2992                 if (tp->sacked_out) {
2993                         printk(KERN_DEBUG "Leak s=%u %d\n",
2994                                tp->sacked_out, icsk->icsk_ca_state);
2995                         tp->sacked_out = 0;
2996                 }
2997                 if (tp->retrans_out) {
2998                         printk(KERN_DEBUG "Leak r=%u %d\n",
2999                                tp->retrans_out, icsk->icsk_ca_state);
3000                         tp->retrans_out = 0;
3001                 }
3002         }
3003 #endif
3004         return flag;
3005 }
3006
3007 static void tcp_ack_probe(struct sock *sk)
3008 {
3009         const struct tcp_sock *tp = tcp_sk(sk);
3010         struct inet_connection_sock *icsk = inet_csk(sk);
3011
3012         /* Was it a usable window open? */
3013
3014         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3015                 icsk->icsk_backoff = 0;
3016                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3017                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3018                  * This function is not for random using!
3019                  */
3020         } else {
3021                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3022                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3023                                           TCP_RTO_MAX);
3024         }
3025 }
3026
3027 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3028 {
3029         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3030                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3031 }
3032
3033 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3034 {
3035         const struct tcp_sock *tp = tcp_sk(sk);
3036         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3037                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3038 }
3039
3040 /* Check that window update is acceptable.
3041  * The function assumes that snd_una<=ack<=snd_next.
3042  */
3043 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3044                                         const u32 ack, const u32 ack_seq,
3045                                         const u32 nwin)
3046 {
3047         return (after(ack, tp->snd_una) ||
3048                 after(ack_seq, tp->snd_wl1) ||
3049                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3050 }
3051
3052 /* Update our send window.
3053  *
3054  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3055  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3056  */
3057 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3058                                  u32 ack_seq)
3059 {
3060         struct tcp_sock *tp = tcp_sk(sk);
3061         int flag = 0;
3062         u32 nwin = ntohs(tcp_hdr(skb)->window);
3063
3064         if (likely(!tcp_hdr(skb)->syn))
3065                 nwin <<= tp->rx_opt.snd_wscale;
3066
3067         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3068                 flag |= FLAG_WIN_UPDATE;
3069                 tcp_update_wl(tp, ack, ack_seq);
3070
3071                 if (tp->snd_wnd != nwin) {
3072                         tp->snd_wnd = nwin;
3073
3074                         /* Note, it is the only place, where
3075                          * fast path is recovered for sending TCP.
3076                          */
3077                         tp->pred_flags = 0;
3078                         tcp_fast_path_check(sk);
3079
3080                         if (nwin > tp->max_window) {
3081                                 tp->max_window = nwin;
3082                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3083                         }
3084                 }
3085         }
3086
3087         tp->snd_una = ack;
3088
3089         return flag;
3090 }
3091
3092 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3093  * continue in congestion avoidance.
3094  */
3095 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3096 {
3097         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3098         tp->snd_cwnd_cnt = 0;
3099         tp->bytes_acked = 0;
3100         TCP_ECN_queue_cwr(tp);
3101         tcp_moderate_cwnd(tp);
3102 }
3103
3104 /* A conservative spurious RTO response algorithm: reduce cwnd using
3105  * rate halving and continue in congestion avoidance.
3106  */
3107 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3108 {
3109         tcp_enter_cwr(sk, 0);
3110 }
3111
3112 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3113 {
3114         if (flag & FLAG_ECE)
3115                 tcp_ratehalving_spur_to_response(sk);
3116         else
3117                 tcp_undo_cwr(sk, 1);
3118 }
3119
3120 /* F-RTO spurious RTO detection algorithm (RFC4138)
3121  *
3122  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3123  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3124  * window (but not to or beyond highest sequence sent before RTO):
3125  *   On First ACK,  send two new segments out.
3126  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3127  *                  algorithm is not part of the F-RTO detection algorithm
3128  *                  given in RFC4138 but can be selected separately).
3129  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3130  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3131  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3132  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3133  *
3134  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3135  * original window even after we transmit two new data segments.
3136  *
3137  * SACK version:
3138  *   on first step, wait until first cumulative ACK arrives, then move to
3139  *   the second step. In second step, the next ACK decides.
3140  *
3141  * F-RTO is implemented (mainly) in four functions:
3142  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3143  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3144  *     called when tcp_use_frto() showed green light
3145  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3146  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3147  *     to prove that the RTO is indeed spurious. It transfers the control
3148  *     from F-RTO to the conventional RTO recovery
3149  */
3150 static int tcp_process_frto(struct sock *sk, int flag)
3151 {
3152         struct tcp_sock *tp = tcp_sk(sk);
3153
3154         tcp_verify_left_out(tp);
3155
3156         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3157         if (flag & FLAG_DATA_ACKED)
3158                 inet_csk(sk)->icsk_retransmits = 0;
3159
3160         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3161             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3162                 tp->undo_marker = 0;
3163
3164         if (!before(tp->snd_una, tp->frto_highmark)) {
3165                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3166                 return 1;
3167         }
3168
3169         if (!tcp_is_sackfrto(tp)) {
3170                 /* RFC4138 shortcoming in step 2; should also have case c):
3171                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3172                  * data, winupdate
3173                  */
3174                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3175                         return 1;
3176
3177                 if (!(flag & FLAG_DATA_ACKED)) {
3178                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3179                                             flag);
3180                         return 1;
3181                 }
3182         } else {
3183                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3184                         /* Prevent sending of new data. */
3185                         tp->snd_cwnd = min(tp->snd_cwnd,
3186                                            tcp_packets_in_flight(tp));
3187                         return 1;
3188                 }
3189
3190                 if ((tp->frto_counter >= 2) &&
3191                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3192                      ((flag & FLAG_DATA_SACKED) &&
3193                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3194                         /* RFC4138 shortcoming (see comment above) */
3195                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3196                             (flag & FLAG_NOT_DUP))
3197                                 return 1;
3198
3199                         tcp_enter_frto_loss(sk, 3, flag);
3200                         return 1;
3201                 }
3202         }
3203
3204         if (tp->frto_counter == 1) {
3205                 /* tcp_may_send_now needs to see updated state */
3206                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3207                 tp->frto_counter = 2;
3208
3209                 if (!tcp_may_send_now(sk))
3210                         tcp_enter_frto_loss(sk, 2, flag);
3211
3212                 return 1;
3213         } else {
3214                 switch (sysctl_tcp_frto_response) {
3215                 case 2:
3216                         tcp_undo_spur_to_response(sk, flag);
3217                         break;
3218                 case 1:
3219                         tcp_conservative_spur_to_response(tp);
3220                         break;
3221                 default:
3222                         tcp_ratehalving_spur_to_response(sk);
3223                         break;
3224                 }
3225                 tp->frto_counter = 0;
3226                 tp->undo_marker = 0;
3227                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3228         }
3229         return 0;
3230 }
3231
3232 /* This routine deals with incoming acks, but not outgoing ones. */
3233 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3234 {
3235         struct inet_connection_sock *icsk = inet_csk(sk);
3236         struct tcp_sock *tp = tcp_sk(sk);
3237         u32 prior_snd_una = tp->snd_una;
3238         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3239         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3240         u32 prior_in_flight;
3241         u32 prior_fackets;
3242         int prior_packets;
3243         int frto_cwnd = 0;
3244
3245         /* If the ack is newer than sent or older than previous acks
3246          * then we can probably ignore it.
3247          */
3248         if (after(ack, tp->snd_nxt))
3249                 goto uninteresting_ack;
3250
3251         if (before(ack, prior_snd_una))
3252                 goto old_ack;
3253
3254         if (after(ack, prior_snd_una))
3255                 flag |= FLAG_SND_UNA_ADVANCED;
3256
3257         if (sysctl_tcp_abc) {
3258                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3259                         tp->bytes_acked += ack - prior_snd_una;
3260                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3261                         /* we assume just one segment left network */
3262                         tp->bytes_acked += min(ack - prior_snd_una,
3263                                                tp->mss_cache);
3264         }
3265
3266         prior_fackets = tp->fackets_out;
3267         prior_in_flight = tcp_packets_in_flight(tp);
3268
3269         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3270                 /* Window is constant, pure forward advance.
3271                  * No more checks are required.
3272                  * Note, we use the fact that SND.UNA>=SND.WL2.
3273                  */
3274                 tcp_update_wl(tp, ack, ack_seq);
3275                 tp->snd_una = ack;
3276                 flag |= FLAG_WIN_UPDATE;
3277
3278                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3279
3280                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3281         } else {
3282                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3283                         flag |= FLAG_DATA;
3284                 else
3285                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3286
3287                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3288
3289                 if (TCP_SKB_CB(skb)->sacked)
3290                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3291
3292                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3293                         flag |= FLAG_ECE;
3294
3295                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3296         }
3297
3298         /* We passed data and got it acked, remove any soft error
3299          * log. Something worked...
3300          */
3301         sk->sk_err_soft = 0;
3302         icsk->icsk_probes_out = 0;
3303         tp->rcv_tstamp = tcp_time_stamp;
3304         prior_packets = tp->packets_out;
3305         if (!prior_packets)
3306                 goto no_queue;
3307
3308         /* See if we can take anything off of the retransmit queue. */
3309         flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3310
3311         if (tp->frto_counter)
3312                 frto_cwnd = tcp_process_frto(sk, flag);
3313         /* Guarantee sacktag reordering detection against wrap-arounds */
3314         if (before(tp->frto_highmark, tp->snd_una))
3315                 tp->frto_highmark = 0;
3316
3317         if (tcp_ack_is_dubious(sk, flag)) {
3318                 /* Advance CWND, if state allows this. */
3319                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3320                     tcp_may_raise_cwnd(sk, flag))
3321                         tcp_cong_avoid(sk, ack, prior_in_flight);
3322                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3323                                       flag);
3324         } else {
3325                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3326                         tcp_cong_avoid(sk, ack, prior_in_flight);
3327         }
3328
3329         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3330                 dst_confirm(sk->sk_dst_cache);
3331
3332         return 1;
3333
3334 no_queue:
3335         /* If this ack opens up a zero window, clear backoff.  It was
3336          * being used to time the probes, and is probably far higher than
3337          * it needs to be for normal retransmission.
3338          */
3339         if (tcp_send_head(sk))
3340                 tcp_ack_probe(sk);
3341         return 1;
3342
3343 old_ack:
3344         if (TCP_SKB_CB(skb)->sacked) {
3345                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3346                 if (icsk->icsk_ca_state == TCP_CA_Open)
3347                         tcp_try_keep_open(sk);
3348         }
3349
3350 uninteresting_ack:
3351         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3352         return 0;
3353 }
3354
3355 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3356  * But, this can also be called on packets in the established flow when
3357  * the fast version below fails.
3358  */
3359 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3360                        int estab)
3361 {
3362         unsigned char *ptr;
3363         struct tcphdr *th = tcp_hdr(skb);
3364         int length = (th->doff * 4) - sizeof(struct tcphdr);
3365
3366         ptr = (unsigned char *)(th + 1);
3367         opt_rx->saw_tstamp = 0;
3368
3369         while (length > 0) {
3370                 int opcode = *ptr++;
3371                 int opsize;
3372
3373                 switch (opcode) {
3374                 case TCPOPT_EOL:
3375                         return;
3376                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3377                         length--;
3378                         continue;
3379                 default:
3380                         opsize = *ptr++;
3381                         if (opsize < 2) /* "silly options" */
3382                                 return;
3383                         if (opsize > length)
3384                                 return; /* don't parse partial options */
3385                         switch (opcode) {
3386                         case TCPOPT_MSS:
3387                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3388                                         u16 in_mss = get_unaligned_be16(ptr);
3389                                         if (in_mss) {
3390                                                 if (opt_rx->user_mss &&
3391                                                     opt_rx->user_mss < in_mss)
3392                                                         in_mss = opt_rx->user_mss;
3393                                                 opt_rx->mss_clamp = in_mss;
3394                                         }
3395                                 }
3396                                 break;
3397                         case TCPOPT_WINDOW:
3398                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3399                                     !estab && sysctl_tcp_window_scaling) {
3400                                         __u8 snd_wscale = *(__u8 *)ptr;
3401                                         opt_rx->wscale_ok = 1;
3402                                         if (snd_wscale > 14) {
3403                                                 if (net_ratelimit())
3404                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3405                                                                "scaling value %d >14 received.\n",
3406                                                                snd_wscale);
3407                                                 snd_wscale = 14;
3408                                         }
3409                                         opt_rx->snd_wscale = snd_wscale;
3410                                 }
3411                                 break;
3412                         case TCPOPT_TIMESTAMP:
3413                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3414                                     ((estab && opt_rx->tstamp_ok) ||
3415                                      (!estab && sysctl_tcp_timestamps))) {
3416                                         opt_rx->saw_tstamp = 1;
3417                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3418                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3419                                 }
3420                                 break;
3421                         case TCPOPT_SACK_PERM:
3422                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3423                                     !estab && sysctl_tcp_sack) {
3424                                         opt_rx->sack_ok = 1;
3425                                         tcp_sack_reset(opt_rx);
3426                                 }
3427                                 break;
3428
3429                         case TCPOPT_SACK:
3430                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3431                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3432                                    opt_rx->sack_ok) {
3433                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3434                                 }
3435                                 break;
3436 #ifdef CONFIG_TCP_MD5SIG
3437                         case TCPOPT_MD5SIG:
3438                                 /*
3439                                  * The MD5 Hash has already been
3440                                  * checked (see tcp_v{4,6}_do_rcv()).
3441                                  */
3442                                 break;
3443 #endif
3444                         }
3445
3446                         ptr += opsize-2;
3447                         length -= opsize;
3448                 }
3449         }
3450 }
3451
3452 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3453 {
3454         __be32 *ptr = (__be32 *)(th + 1);
3455
3456         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3457                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3458                 tp->rx_opt.saw_tstamp = 1;
3459                 ++ptr;
3460                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3461                 ++ptr;
3462                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3463                 return 1;
3464         }
3465         return 0;
3466 }
3467
3468 /* Fast parse options. This hopes to only see timestamps.
3469  * If it is wrong it falls back on tcp_parse_options().
3470  */
3471 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3472                                   struct tcp_sock *tp)
3473 {
3474         if (th->doff == sizeof(struct tcphdr) >> 2) {
3475                 tp->rx_opt.saw_tstamp = 0;
3476                 return 0;
3477         } else if (tp->rx_opt.tstamp_ok &&
3478                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3479                 if (tcp_parse_aligned_timestamp(tp, th))
3480                         return 1;
3481         }
3482         tcp_parse_options(skb, &tp->rx_opt, 1);
3483         return 1;
3484 }
3485
3486 #ifdef CONFIG_TCP_MD5SIG
3487 /*
3488  * Parse MD5 Signature option
3489  */
3490 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3491 {
3492         int length = (th->doff << 2) - sizeof (*th);
3493         u8 *ptr = (u8*)(th + 1);
3494
3495         /* If the TCP option is too short, we can short cut */
3496         if (length < TCPOLEN_MD5SIG)
3497                 return NULL;
3498
3499         while (length > 0) {
3500                 int opcode = *ptr++;
3501                 int opsize;
3502
3503                 switch(opcode) {
3504                 case TCPOPT_EOL:
3505                         return NULL;
3506                 case TCPOPT_NOP:
3507                         length--;
3508                         continue;
3509                 default:
3510                         opsize = *ptr++;
3511                         if (opsize < 2 || opsize > length)
3512                                 return NULL;
3513                         if (opcode == TCPOPT_MD5SIG)
3514                                 return ptr;
3515                 }
3516                 ptr += opsize - 2;
3517                 length -= opsize;
3518         }
3519         return NULL;
3520 }
3521 #endif
3522
3523 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3524 {
3525         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3526         tp->rx_opt.ts_recent_stamp = get_seconds();
3527 }
3528
3529 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3530 {
3531         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3532                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3533                  * extra check below makes sure this can only happen
3534                  * for pure ACK frames.  -DaveM
3535                  *
3536                  * Not only, also it occurs for expired timestamps.
3537                  */
3538
3539                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3540                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3541                         tcp_store_ts_recent(tp);
3542         }
3543 }
3544
3545 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3546  *
3547  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3548  * it can pass through stack. So, the following predicate verifies that
3549  * this segment is not used for anything but congestion avoidance or
3550  * fast retransmit. Moreover, we even are able to eliminate most of such
3551  * second order effects, if we apply some small "replay" window (~RTO)
3552  * to timestamp space.
3553  *
3554  * All these measures still do not guarantee that we reject wrapped ACKs
3555  * on networks with high bandwidth, when sequence space is recycled fastly,
3556  * but it guarantees that such events will be very rare and do not affect
3557  * connection seriously. This doesn't look nice, but alas, PAWS is really
3558  * buggy extension.
3559  *
3560  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3561  * states that events when retransmit arrives after original data are rare.
3562  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3563  * the biggest problem on large power networks even with minor reordering.
3564  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3565  * up to bandwidth of 18Gigabit/sec. 8) ]
3566  */
3567
3568 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3569 {
3570         struct tcp_sock *tp = tcp_sk(sk);
3571         struct tcphdr *th = tcp_hdr(skb);
3572         u32 seq = TCP_SKB_CB(skb)->seq;
3573         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3574
3575         return (/* 1. Pure ACK with correct sequence number. */
3576                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3577
3578                 /* 2. ... and duplicate ACK. */
3579                 ack == tp->snd_una &&
3580
3581                 /* 3. ... and does not update window. */
3582                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3583
3584                 /* 4. ... and sits in replay window. */
3585                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3586 }
3587
3588 static inline int tcp_paws_discard(const struct sock *sk,
3589                                    const struct sk_buff *skb)
3590 {
3591         const struct tcp_sock *tp = tcp_sk(sk);
3592         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3593                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3594                 !tcp_disordered_ack(sk, skb));
3595 }
3596
3597 /* Check segment sequence number for validity.
3598  *
3599  * Segment controls are considered valid, if the segment
3600  * fits to the window after truncation to the window. Acceptability
3601  * of data (and SYN, FIN, of course) is checked separately.
3602  * See tcp_data_queue(), for example.
3603  *
3604  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3605  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3606  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3607  * (borrowed from freebsd)
3608  */
3609
3610 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3611 {
3612         return  !before(end_seq, tp->rcv_wup) &&
3613                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3614 }
3615
3616 /* When we get a reset we do this. */
3617 static void tcp_reset(struct sock *sk)
3618 {
3619         /* We want the right error as BSD sees it (and indeed as we do). */
3620         switch (sk->sk_state) {
3621         case TCP_SYN_SENT:
3622                 sk->sk_err = ECONNREFUSED;
3623                 break;
3624         case TCP_CLOSE_WAIT:
3625                 sk->sk_err = EPIPE;
3626                 break;
3627         case TCP_CLOSE:
3628                 return;
3629         default:
3630                 sk->sk_err = ECONNRESET;
3631         }
3632
3633         if (!sock_flag(sk, SOCK_DEAD))
3634                 sk->sk_error_report(sk);
3635
3636         tcp_done(sk);
3637 }
3638
3639 /*
3640  *      Process the FIN bit. This now behaves as it is supposed to work
3641  *      and the FIN takes effect when it is validly part of sequence
3642  *      space. Not before when we get holes.
3643  *
3644  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3645  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3646  *      TIME-WAIT)
3647  *
3648  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3649  *      close and we go into CLOSING (and later onto TIME-WAIT)
3650  *
3651  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3652  */
3653 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3654 {
3655         struct tcp_sock *tp = tcp_sk(sk);
3656
3657         inet_csk_schedule_ack(sk);
3658
3659         sk->sk_shutdown |= RCV_SHUTDOWN;
3660         sock_set_flag(sk, SOCK_DONE);
3661
3662         switch (sk->sk_state) {
3663         case TCP_SYN_RECV:
3664         case TCP_ESTABLISHED:
3665                 /* Move to CLOSE_WAIT */
3666                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3667                 inet_csk(sk)->icsk_ack.pingpong = 1;
3668                 break;
3669
3670         case TCP_CLOSE_WAIT:
3671         case TCP_CLOSING:
3672                 /* Received a retransmission of the FIN, do
3673                  * nothing.
3674                  */
3675                 break;
3676         case TCP_LAST_ACK:
3677                 /* RFC793: Remain in the LAST-ACK state. */
3678                 break;
3679
3680         case TCP_FIN_WAIT1:
3681                 /* This case occurs when a simultaneous close
3682                  * happens, we must ack the received FIN and
3683                  * enter the CLOSING state.
3684                  */
3685                 tcp_send_ack(sk);
3686                 tcp_set_state(sk, TCP_CLOSING);
3687                 break;
3688         case TCP_FIN_WAIT2:
3689                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3690                 tcp_send_ack(sk);
3691                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3692                 break;
3693         default:
3694                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3695                  * cases we should never reach this piece of code.
3696                  */
3697                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3698                        __func__, sk->sk_state);
3699                 break;
3700         }
3701
3702         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3703          * Probably, we should reset in this case. For now drop them.
3704          */
3705         __skb_queue_purge(&tp->out_of_order_queue);
3706         if (tcp_is_sack(tp))
3707                 tcp_sack_reset(&tp->rx_opt);
3708         sk_mem_reclaim(sk);
3709
3710         if (!sock_flag(sk, SOCK_DEAD)) {
3711                 sk->sk_state_change(sk);
3712
3713                 /* Do not send POLL_HUP for half duplex close. */
3714                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3715                     sk->sk_state == TCP_CLOSE)
3716                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3717                 else
3718                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3719         }
3720 }
3721
3722 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3723                                   u32 end_seq)
3724 {
3725         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3726                 if (before(seq, sp->start_seq))
3727                         sp->start_seq = seq;
3728                 if (after(end_seq, sp->end_seq))
3729                         sp->end_seq = end_seq;
3730                 return 1;
3731         }
3732         return 0;
3733 }
3734
3735 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3736 {
3737         struct tcp_sock *tp = tcp_sk(sk);
3738
3739         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3740                 int mib_idx;
3741
3742                 if (before(seq, tp->rcv_nxt))
3743                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3744                 else
3745                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3746
3747                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3748
3749                 tp->rx_opt.dsack = 1;
3750                 tp->duplicate_sack[0].start_seq = seq;
3751                 tp->duplicate_sack[0].end_seq = end_seq;
3752                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
3753         }
3754 }
3755
3756 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3757 {
3758         struct tcp_sock *tp = tcp_sk(sk);
3759
3760         if (!tp->rx_opt.dsack)
3761                 tcp_dsack_set(sk, seq, end_seq);
3762         else
3763                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3764 }
3765
3766 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3767 {
3768         struct tcp_sock *tp = tcp_sk(sk);
3769
3770         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3771             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3772                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3773                 tcp_enter_quickack_mode(sk);
3774
3775                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3776                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3777
3778                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3779                                 end_seq = tp->rcv_nxt;
3780                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3781                 }
3782         }
3783
3784         tcp_send_ack(sk);
3785 }
3786
3787 /* These routines update the SACK block as out-of-order packets arrive or
3788  * in-order packets close up the sequence space.
3789  */
3790 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3791 {
3792         int this_sack;
3793         struct tcp_sack_block *sp = &tp->selective_acks[0];
3794         struct tcp_sack_block *swalk = sp + 1;
3795
3796         /* See if the recent change to the first SACK eats into
3797          * or hits the sequence space of other SACK blocks, if so coalesce.
3798          */
3799         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3800                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3801                         int i;
3802
3803                         /* Zap SWALK, by moving every further SACK up by one slot.
3804                          * Decrease num_sacks.
3805                          */
3806                         tp->rx_opt.num_sacks--;
3807                         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3808                                                tp->rx_opt.dsack;
3809                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3810                                 sp[i] = sp[i + 1];
3811                         continue;
3812                 }
3813                 this_sack++, swalk++;
3814         }
3815 }
3816
3817 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3818                                  struct tcp_sack_block *sack2)
3819 {
3820         __u32 tmp;
3821
3822         tmp = sack1->start_seq;
3823         sack1->start_seq = sack2->start_seq;
3824         sack2->start_seq = tmp;
3825
3826         tmp = sack1->end_seq;
3827         sack1->end_seq = sack2->end_seq;
3828         sack2->end_seq = tmp;
3829 }
3830
3831 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3832 {
3833         struct tcp_sock *tp = tcp_sk(sk);
3834         struct tcp_sack_block *sp = &tp->selective_acks[0];
3835         int cur_sacks = tp->rx_opt.num_sacks;
3836         int this_sack;
3837
3838         if (!cur_sacks)
3839                 goto new_sack;
3840
3841         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3842                 if (tcp_sack_extend(sp, seq, end_seq)) {
3843                         /* Rotate this_sack to the first one. */
3844                         for (; this_sack > 0; this_sack--, sp--)
3845                                 tcp_sack_swap(sp, sp - 1);
3846                         if (cur_sacks > 1)
3847                                 tcp_sack_maybe_coalesce(tp);
3848                         return;
3849                 }
3850         }
3851
3852         /* Could not find an adjacent existing SACK, build a new one,
3853          * put it at the front, and shift everyone else down.  We
3854          * always know there is at least one SACK present already here.
3855          *
3856          * If the sack array is full, forget about the last one.
3857          */
3858         if (this_sack >= TCP_NUM_SACKS) {
3859                 this_sack--;
3860                 tp->rx_opt.num_sacks--;
3861                 sp--;
3862         }
3863         for (; this_sack > 0; this_sack--, sp--)
3864                 *sp = *(sp - 1);
3865
3866 new_sack:
3867         /* Build the new head SACK, and we're done. */
3868         sp->start_seq = seq;
3869         sp->end_seq = end_seq;
3870         tp->rx_opt.num_sacks++;
3871         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
3872 }
3873
3874 /* RCV.NXT advances, some SACKs should be eaten. */
3875
3876 static void tcp_sack_remove(struct tcp_sock *tp)
3877 {
3878         struct tcp_sack_block *sp = &tp->selective_acks[0];
3879         int num_sacks = tp->rx_opt.num_sacks;
3880         int this_sack;
3881
3882         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3883         if (skb_queue_empty(&tp->out_of_order_queue)) {
3884                 tp->rx_opt.num_sacks = 0;
3885                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3886                 return;
3887         }
3888
3889         for (this_sack = 0; this_sack < num_sacks;) {
3890                 /* Check if the start of the sack is covered by RCV.NXT. */
3891                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3892                         int i;
3893
3894                         /* RCV.NXT must cover all the block! */
3895                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3896
3897                         /* Zap this SACK, by moving forward any other SACKS. */
3898                         for (i=this_sack+1; i < num_sacks; i++)
3899                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3900                         num_sacks--;
3901                         continue;
3902                 }
3903                 this_sack++;
3904                 sp++;
3905         }
3906         if (num_sacks != tp->rx_opt.num_sacks) {
3907                 tp->rx_opt.num_sacks = num_sacks;
3908                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3909                                        tp->rx_opt.dsack;
3910         }
3911 }
3912
3913 /* This one checks to see if we can put data from the
3914  * out_of_order queue into the receive_queue.
3915  */
3916 static void tcp_ofo_queue(struct sock *sk)
3917 {
3918         struct tcp_sock *tp = tcp_sk(sk);
3919         __u32 dsack_high = tp->rcv_nxt;
3920         struct sk_buff *skb;
3921
3922         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3923                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3924                         break;
3925
3926                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3927                         __u32 dsack = dsack_high;
3928                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3929                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3930                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3931                 }
3932
3933                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3934                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3935                         __skb_unlink(skb, &tp->out_of_order_queue);
3936                         __kfree_skb(skb);
3937                         continue;
3938                 }
3939                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3940                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3941                            TCP_SKB_CB(skb)->end_seq);
3942
3943                 __skb_unlink(skb, &tp->out_of_order_queue);
3944                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3945                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3946                 if (tcp_hdr(skb)->fin)
3947                         tcp_fin(skb, sk, tcp_hdr(skb));
3948         }
3949 }
3950
3951 static int tcp_prune_ofo_queue(struct sock *sk);
3952 static int tcp_prune_queue(struct sock *sk);
3953
3954 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3955 {
3956         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3957             !sk_rmem_schedule(sk, size)) {
3958
3959                 if (tcp_prune_queue(sk) < 0)
3960                         return -1;
3961
3962                 if (!sk_rmem_schedule(sk, size)) {
3963                         if (!tcp_prune_ofo_queue(sk))
3964                                 return -1;
3965
3966                         if (!sk_rmem_schedule(sk, size))
3967                                 return -1;
3968                 }
3969         }
3970         return 0;
3971 }
3972
3973 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3974 {
3975         struct tcphdr *th = tcp_hdr(skb);
3976         struct tcp_sock *tp = tcp_sk(sk);
3977         int eaten = -1;
3978
3979         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3980                 goto drop;
3981
3982         __skb_pull(skb, th->doff * 4);
3983
3984         TCP_ECN_accept_cwr(tp, skb);
3985
3986         if (tp->rx_opt.dsack) {
3987                 tp->rx_opt.dsack = 0;
3988                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
3989         }
3990
3991         /*  Queue data for delivery to the user.
3992          *  Packets in sequence go to the receive queue.
3993          *  Out of sequence packets to the out_of_order_queue.
3994          */
3995         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3996                 if (tcp_receive_window(tp) == 0)
3997                         goto out_of_window;
3998
3999                 /* Ok. In sequence. In window. */
4000                 if (tp->ucopy.task == current &&
4001                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4002                     sock_owned_by_user(sk) && !tp->urg_data) {
4003                         int chunk = min_t(unsigned int, skb->len,
4004                                           tp->ucopy.len);
4005
4006                         __set_current_state(TASK_RUNNING);
4007
4008                         local_bh_enable();
4009                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4010                                 tp->ucopy.len -= chunk;
4011                                 tp->copied_seq += chunk;
4012                                 eaten = (chunk == skb->len && !th->fin);
4013                                 tcp_rcv_space_adjust(sk);
4014                         }
4015                         local_bh_disable();
4016                 }
4017
4018                 if (eaten <= 0) {
4019 queue_and_out:
4020                         if (eaten < 0 &&
4021                             tcp_try_rmem_schedule(sk, skb->truesize))
4022                                 goto drop;
4023
4024                         skb_set_owner_r(skb, sk);
4025                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4026                 }
4027                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4028                 if (skb->len)
4029                         tcp_event_data_recv(sk, skb);
4030                 if (th->fin)
4031                         tcp_fin(skb, sk, th);
4032
4033                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4034                         tcp_ofo_queue(sk);
4035
4036                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4037                          * gap in queue is filled.
4038                          */
4039                         if (skb_queue_empty(&tp->out_of_order_queue))
4040                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4041                 }
4042
4043                 if (tp->rx_opt.num_sacks)
4044                         tcp_sack_remove(tp);
4045
4046                 tcp_fast_path_check(sk);
4047
4048                 if (eaten > 0)
4049                         __kfree_skb(skb);
4050                 else if (!sock_flag(sk, SOCK_DEAD))
4051                         sk->sk_data_ready(sk, 0);
4052                 return;
4053         }
4054
4055         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4056                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4057                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4058                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4059
4060 out_of_window:
4061                 tcp_enter_quickack_mode(sk);
4062                 inet_csk_schedule_ack(sk);
4063 drop:
4064                 __kfree_skb(skb);
4065                 return;
4066         }
4067
4068         /* Out of window. F.e. zero window probe. */
4069         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4070                 goto out_of_window;
4071
4072         tcp_enter_quickack_mode(sk);
4073
4074         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4075                 /* Partial packet, seq < rcv_next < end_seq */
4076                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4077                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4078                            TCP_SKB_CB(skb)->end_seq);
4079
4080                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4081
4082                 /* If window is closed, drop tail of packet. But after
4083                  * remembering D-SACK for its head made in previous line.
4084                  */
4085                 if (!tcp_receive_window(tp))
4086                         goto out_of_window;
4087                 goto queue_and_out;
4088         }
4089
4090         TCP_ECN_check_ce(tp, skb);
4091
4092         if (tcp_try_rmem_schedule(sk, skb->truesize))
4093                 goto drop;
4094
4095         /* Disable header prediction. */
4096         tp->pred_flags = 0;
4097         inet_csk_schedule_ack(sk);
4098
4099         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4100                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4101
4102         skb_set_owner_r(skb, sk);
4103
4104         if (!skb_peek(&tp->out_of_order_queue)) {
4105                 /* Initial out of order segment, build 1 SACK. */
4106                 if (tcp_is_sack(tp)) {
4107                         tp->rx_opt.num_sacks = 1;
4108                         tp->rx_opt.dsack     = 0;
4109                         tp->rx_opt.eff_sacks = 1;
4110                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4111                         tp->selective_acks[0].end_seq =
4112                                                 TCP_SKB_CB(skb)->end_seq;
4113                 }
4114                 __skb_queue_head(&tp->out_of_order_queue, skb);
4115         } else {
4116                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4117                 u32 seq = TCP_SKB_CB(skb)->seq;
4118                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4119
4120                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4121                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4122
4123                         if (!tp->rx_opt.num_sacks ||
4124                             tp->selective_acks[0].end_seq != seq)
4125                                 goto add_sack;
4126
4127                         /* Common case: data arrive in order after hole. */
4128                         tp->selective_acks[0].end_seq = end_seq;
4129                         return;
4130                 }
4131
4132                 /* Find place to insert this segment. */
4133                 do {
4134                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4135                                 break;
4136                 } while ((skb1 = skb1->prev) !=
4137                          (struct sk_buff *)&tp->out_of_order_queue);
4138
4139                 /* Do skb overlap to previous one? */
4140                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4141                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4142                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4143                                 /* All the bits are present. Drop. */
4144                                 __kfree_skb(skb);
4145                                 tcp_dsack_set(sk, seq, end_seq);
4146                                 goto add_sack;
4147                         }
4148                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4149                                 /* Partial overlap. */
4150                                 tcp_dsack_set(sk, seq,
4151                                               TCP_SKB_CB(skb1)->end_seq);
4152                         } else {
4153                                 skb1 = skb1->prev;
4154                         }
4155                 }
4156                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4157
4158                 /* And clean segments covered by new one as whole. */
4159                 while ((skb1 = skb->next) !=
4160                        (struct sk_buff *)&tp->out_of_order_queue &&
4161                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4162                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4163                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4164                                                  end_seq);
4165                                 break;
4166                         }
4167                         __skb_unlink(skb1, &tp->out_of_order_queue);
4168                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4169                                          TCP_SKB_CB(skb1)->end_seq);
4170                         __kfree_skb(skb1);
4171                 }
4172
4173 add_sack:
4174                 if (tcp_is_sack(tp))
4175                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4176         }
4177 }
4178
4179 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4180                                         struct sk_buff_head *list)
4181 {
4182         struct sk_buff *next = skb->next;
4183
4184         __skb_unlink(skb, list);
4185         __kfree_skb(skb);
4186         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4187
4188         return next;
4189 }
4190
4191 /* Collapse contiguous sequence of skbs head..tail with
4192  * sequence numbers start..end.
4193  * Segments with FIN/SYN are not collapsed (only because this
4194  * simplifies code)
4195  */
4196 static void
4197 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4198              struct sk_buff *head, struct sk_buff *tail,
4199              u32 start, u32 end)
4200 {
4201         struct sk_buff *skb;
4202
4203         /* First, check that queue is collapsible and find
4204          * the point where collapsing can be useful. */
4205         for (skb = head; skb != tail;) {
4206                 /* No new bits? It is possible on ofo queue. */
4207                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4208                         skb = tcp_collapse_one(sk, skb, list);
4209                         continue;
4210                 }
4211
4212                 /* The first skb to collapse is:
4213                  * - not SYN/FIN and
4214                  * - bloated or contains data before "start" or
4215                  *   overlaps to the next one.
4216                  */
4217                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4218                     (tcp_win_from_space(skb->truesize) > skb->len ||
4219                      before(TCP_SKB_CB(skb)->seq, start) ||
4220                      (skb->next != tail &&
4221                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4222                         break;
4223
4224                 /* Decided to skip this, advance start seq. */
4225                 start = TCP_SKB_CB(skb)->end_seq;
4226                 skb = skb->next;
4227         }
4228         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4229                 return;
4230
4231         while (before(start, end)) {
4232                 struct sk_buff *nskb;
4233                 unsigned int header = skb_headroom(skb);
4234                 int copy = SKB_MAX_ORDER(header, 0);
4235
4236                 /* Too big header? This can happen with IPv6. */
4237                 if (copy < 0)
4238                         return;
4239                 if (end - start < copy)
4240                         copy = end - start;
4241                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4242                 if (!nskb)
4243                         return;
4244
4245                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4246                 skb_set_network_header(nskb, (skb_network_header(skb) -
4247                                               skb->head));
4248                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4249                                                 skb->head));
4250                 skb_reserve(nskb, header);
4251                 memcpy(nskb->head, skb->head, header);
4252                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4253                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4254                 __skb_insert(nskb, skb->prev, skb, list);
4255                 skb_set_owner_r(nskb, sk);
4256
4257                 /* Copy data, releasing collapsed skbs. */
4258                 while (copy > 0) {
4259                         int offset = start - TCP_SKB_CB(skb)->seq;
4260                         int size = TCP_SKB_CB(skb)->end_seq - start;
4261
4262                         BUG_ON(offset < 0);
4263                         if (size > 0) {
4264                                 size = min(copy, size);
4265                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4266                                         BUG();
4267                                 TCP_SKB_CB(nskb)->end_seq += size;
4268                                 copy -= size;
4269                                 start += size;
4270                         }
4271                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4272                                 skb = tcp_collapse_one(sk, skb, list);
4273                                 if (skb == tail ||
4274                                     tcp_hdr(skb)->syn ||
4275                                     tcp_hdr(skb)->fin)
4276                                         return;
4277                         }
4278                 }
4279         }
4280 }
4281
4282 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4283  * and tcp_collapse() them until all the queue is collapsed.
4284  */
4285 static void tcp_collapse_ofo_queue(struct sock *sk)
4286 {
4287         struct tcp_sock *tp = tcp_sk(sk);
4288         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4289         struct sk_buff *head;
4290         u32 start, end;
4291
4292         if (skb == NULL)
4293                 return;
4294
4295         start = TCP_SKB_CB(skb)->seq;
4296         end = TCP_SKB_CB(skb)->end_seq;
4297         head = skb;
4298
4299         for (;;) {
4300                 skb = skb->next;
4301
4302                 /* Segment is terminated when we see gap or when
4303                  * we are at the end of all the queue. */
4304                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4305                     after(TCP_SKB_CB(skb)->seq, end) ||
4306                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4307                         tcp_collapse(sk, &tp->out_of_order_queue,
4308                                      head, skb, start, end);
4309                         head = skb;
4310                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4311                                 break;
4312                         /* Start new segment */
4313                         start = TCP_SKB_CB(skb)->seq;
4314                         end = TCP_SKB_CB(skb)->end_seq;
4315                 } else {
4316                         if (before(TCP_SKB_CB(skb)->seq, start))
4317                                 start = TCP_SKB_CB(skb)->seq;
4318                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4319                                 end = TCP_SKB_CB(skb)->end_seq;
4320                 }
4321         }
4322 }
4323
4324 /*
4325  * Purge the out-of-order queue.
4326  * Return true if queue was pruned.
4327  */
4328 static int tcp_prune_ofo_queue(struct sock *sk)
4329 {
4330         struct tcp_sock *tp = tcp_sk(sk);
4331         int res = 0;
4332
4333         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4334                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4335                 __skb_queue_purge(&tp->out_of_order_queue);
4336
4337                 /* Reset SACK state.  A conforming SACK implementation will
4338                  * do the same at a timeout based retransmit.  When a connection
4339                  * is in a sad state like this, we care only about integrity
4340                  * of the connection not performance.
4341                  */
4342                 if (tp->rx_opt.sack_ok)
4343                         tcp_sack_reset(&tp->rx_opt);
4344                 sk_mem_reclaim(sk);
4345                 res = 1;
4346         }
4347         return res;
4348 }
4349
4350 /* Reduce allocated memory if we can, trying to get
4351  * the socket within its memory limits again.
4352  *
4353  * Return less than zero if we should start dropping frames
4354  * until the socket owning process reads some of the data
4355  * to stabilize the situation.
4356  */
4357 static int tcp_prune_queue(struct sock *sk)
4358 {
4359         struct tcp_sock *tp = tcp_sk(sk);
4360
4361         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4362
4363         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4364
4365         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4366                 tcp_clamp_window(sk);
4367         else if (tcp_memory_pressure)
4368                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4369
4370         tcp_collapse_ofo_queue(sk);
4371         tcp_collapse(sk, &sk->sk_receive_queue,
4372                      sk->sk_receive_queue.next,
4373                      (struct sk_buff *)&sk->sk_receive_queue,
4374                      tp->copied_seq, tp->rcv_nxt);
4375         sk_mem_reclaim(sk);
4376
4377         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4378                 return 0;
4379
4380         /* Collapsing did not help, destructive actions follow.
4381          * This must not ever occur. */
4382
4383         tcp_prune_ofo_queue(sk);
4384
4385         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4386                 return 0;
4387
4388         /* If we are really being abused, tell the caller to silently
4389          * drop receive data on the floor.  It will get retransmitted
4390          * and hopefully then we'll have sufficient space.
4391          */
4392         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4393
4394         /* Massive buffer overcommit. */
4395         tp->pred_flags = 0;
4396         return -1;
4397 }
4398
4399 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4400  * As additional protections, we do not touch cwnd in retransmission phases,
4401  * and if application hit its sndbuf limit recently.
4402  */
4403 void tcp_cwnd_application_limited(struct sock *sk)
4404 {
4405         struct tcp_sock *tp = tcp_sk(sk);
4406
4407         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4408             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4409                 /* Limited by application or receiver window. */
4410                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4411                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4412                 if (win_used < tp->snd_cwnd) {
4413                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4414                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4415                 }
4416                 tp->snd_cwnd_used = 0;
4417         }
4418         tp->snd_cwnd_stamp = tcp_time_stamp;
4419 }
4420
4421 static int tcp_should_expand_sndbuf(struct sock *sk)
4422 {
4423         struct tcp_sock *tp = tcp_sk(sk);
4424
4425         /* If the user specified a specific send buffer setting, do
4426          * not modify it.
4427          */
4428         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4429                 return 0;
4430
4431         /* If we are under global TCP memory pressure, do not expand.  */
4432         if (tcp_memory_pressure)
4433                 return 0;
4434
4435         /* If we are under soft global TCP memory pressure, do not expand.  */
4436         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4437                 return 0;
4438
4439         /* If we filled the congestion window, do not expand.  */
4440         if (tp->packets_out >= tp->snd_cwnd)
4441                 return 0;
4442
4443         return 1;
4444 }
4445
4446 /* When incoming ACK allowed to free some skb from write_queue,
4447  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4448  * on the exit from tcp input handler.
4449  *
4450  * PROBLEM: sndbuf expansion does not work well with largesend.
4451  */
4452 static void tcp_new_space(struct sock *sk)
4453 {
4454         struct tcp_sock *tp = tcp_sk(sk);
4455
4456         if (tcp_should_expand_sndbuf(sk)) {
4457                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4458                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4459                     demanded = max_t(unsigned int, tp->snd_cwnd,
4460                                      tp->reordering + 1);
4461                 sndmem *= 2 * demanded;
4462                 if (sndmem > sk->sk_sndbuf)
4463                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4464                 tp->snd_cwnd_stamp = tcp_time_stamp;
4465         }
4466
4467         sk->sk_write_space(sk);
4468 }
4469
4470 static void tcp_check_space(struct sock *sk)
4471 {
4472         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4473                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4474                 if (sk->sk_socket &&
4475                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4476                         tcp_new_space(sk);
4477         }
4478 }
4479
4480 static inline void tcp_data_snd_check(struct sock *sk)
4481 {
4482         tcp_push_pending_frames(sk);
4483         tcp_check_space(sk);
4484 }
4485
4486 /*
4487  * Check if sending an ack is needed.
4488  */
4489 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4490 {
4491         struct tcp_sock *tp = tcp_sk(sk);
4492
4493             /* More than one full frame received... */
4494         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4495              /* ... and right edge of window advances far enough.
4496               * (tcp_recvmsg() will send ACK otherwise). Or...
4497               */
4498              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4499             /* We ACK each frame or... */
4500             tcp_in_quickack_mode(sk) ||
4501             /* We have out of order data. */
4502             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4503                 /* Then ack it now */
4504                 tcp_send_ack(sk);
4505         } else {
4506                 /* Else, send delayed ack. */
4507                 tcp_send_delayed_ack(sk);
4508         }
4509 }
4510
4511 static inline void tcp_ack_snd_check(struct sock *sk)
4512 {
4513         if (!inet_csk_ack_scheduled(sk)) {
4514                 /* We sent a data segment already. */
4515                 return;
4516         }
4517         __tcp_ack_snd_check(sk, 1);
4518 }
4519
4520 /*
4521  *      This routine is only called when we have urgent data
4522  *      signaled. Its the 'slow' part of tcp_urg. It could be
4523  *      moved inline now as tcp_urg is only called from one
4524  *      place. We handle URGent data wrong. We have to - as
4525  *      BSD still doesn't use the correction from RFC961.
4526  *      For 1003.1g we should support a new option TCP_STDURG to permit
4527  *      either form (or just set the sysctl tcp_stdurg).
4528  */
4529
4530 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4531 {
4532         struct tcp_sock *tp = tcp_sk(sk);
4533         u32 ptr = ntohs(th->urg_ptr);
4534
4535         if (ptr && !sysctl_tcp_stdurg)
4536                 ptr--;
4537         ptr += ntohl(th->seq);
4538
4539         /* Ignore urgent data that we've already seen and read. */
4540         if (after(tp->copied_seq, ptr))
4541                 return;
4542
4543         /* Do not replay urg ptr.
4544          *
4545          * NOTE: interesting situation not covered by specs.
4546          * Misbehaving sender may send urg ptr, pointing to segment,
4547          * which we already have in ofo queue. We are not able to fetch
4548          * such data and will stay in TCP_URG_NOTYET until will be eaten
4549          * by recvmsg(). Seems, we are not obliged to handle such wicked
4550          * situations. But it is worth to think about possibility of some
4551          * DoSes using some hypothetical application level deadlock.
4552          */
4553         if (before(ptr, tp->rcv_nxt))
4554                 return;
4555
4556         /* Do we already have a newer (or duplicate) urgent pointer? */
4557         if (tp->urg_data && !after(ptr, tp->urg_seq))
4558                 return;
4559
4560         /* Tell the world about our new urgent pointer. */
4561         sk_send_sigurg(sk);
4562
4563         /* We may be adding urgent data when the last byte read was
4564          * urgent. To do this requires some care. We cannot just ignore
4565          * tp->copied_seq since we would read the last urgent byte again
4566          * as data, nor can we alter copied_seq until this data arrives
4567          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4568          *
4569          * NOTE. Double Dutch. Rendering to plain English: author of comment
4570          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4571          * and expect that both A and B disappear from stream. This is _wrong_.
4572          * Though this happens in BSD with high probability, this is occasional.
4573          * Any application relying on this is buggy. Note also, that fix "works"
4574          * only in this artificial test. Insert some normal data between A and B and we will
4575          * decline of BSD again. Verdict: it is better to remove to trap
4576          * buggy users.
4577          */
4578         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4579             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4580                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4581                 tp->copied_seq++;
4582                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4583                         __skb_unlink(skb, &sk->sk_receive_queue);
4584                         __kfree_skb(skb);
4585                 }
4586         }
4587
4588         tp->urg_data = TCP_URG_NOTYET;
4589         tp->urg_seq = ptr;
4590
4591         /* Disable header prediction. */
4592         tp->pred_flags = 0;
4593 }
4594
4595 /* This is the 'fast' part of urgent handling. */
4596 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4597 {
4598         struct tcp_sock *tp = tcp_sk(sk);
4599
4600         /* Check if we get a new urgent pointer - normally not. */
4601         if (th->urg)
4602                 tcp_check_urg(sk, th);
4603
4604         /* Do we wait for any urgent data? - normally not... */
4605         if (tp->urg_data == TCP_URG_NOTYET) {
4606                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4607                           th->syn;
4608
4609                 /* Is the urgent pointer pointing into this packet? */
4610                 if (ptr < skb->len) {
4611                         u8 tmp;
4612                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4613                                 BUG();
4614                         tp->urg_data = TCP_URG_VALID | tmp;
4615                         if (!sock_flag(sk, SOCK_DEAD))
4616                                 sk->sk_data_ready(sk, 0);
4617                 }
4618         }
4619 }
4620
4621 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4622 {
4623         struct tcp_sock *tp = tcp_sk(sk);
4624         int chunk = skb->len - hlen;
4625         int err;
4626
4627         local_bh_enable();
4628         if (skb_csum_unnecessary(skb))
4629                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4630         else
4631                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4632                                                        tp->ucopy.iov);
4633
4634         if (!err) {
4635                 tp->ucopy.len -= chunk;
4636                 tp->copied_seq += chunk;
4637                 tcp_rcv_space_adjust(sk);
4638         }
4639
4640         local_bh_disable();
4641         return err;
4642 }
4643
4644 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4645                                             struct sk_buff *skb)
4646 {
4647         __sum16 result;
4648
4649         if (sock_owned_by_user(sk)) {
4650                 local_bh_enable();
4651                 result = __tcp_checksum_complete(skb);
4652                 local_bh_disable();
4653         } else {
4654                 result = __tcp_checksum_complete(skb);
4655         }
4656         return result;
4657 }
4658
4659 static inline int tcp_checksum_complete_user(struct sock *sk,
4660                                              struct sk_buff *skb)
4661 {
4662         return !skb_csum_unnecessary(skb) &&
4663                __tcp_checksum_complete_user(sk, skb);
4664 }
4665
4666 #ifdef CONFIG_NET_DMA
4667 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4668                                   int hlen)
4669 {
4670         struct tcp_sock *tp = tcp_sk(sk);
4671         int chunk = skb->len - hlen;
4672         int dma_cookie;
4673         int copied_early = 0;
4674
4675         if (tp->ucopy.wakeup)
4676                 return 0;
4677
4678         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4679                 tp->ucopy.dma_chan = get_softnet_dma();
4680
4681         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4682
4683                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4684                                                          skb, hlen,
4685                                                          tp->ucopy.iov, chunk,
4686                                                          tp->ucopy.pinned_list);
4687
4688                 if (dma_cookie < 0)
4689                         goto out;
4690
4691                 tp->ucopy.dma_cookie = dma_cookie;
4692                 copied_early = 1;
4693
4694                 tp->ucopy.len -= chunk;
4695                 tp->copied_seq += chunk;
4696                 tcp_rcv_space_adjust(sk);
4697
4698                 if ((tp->ucopy.len == 0) ||
4699                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4700                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4701                         tp->ucopy.wakeup = 1;
4702                         sk->sk_data_ready(sk, 0);
4703                 }
4704         } else if (chunk > 0) {
4705                 tp->ucopy.wakeup = 1;
4706                 sk->sk_data_ready(sk, 0);
4707         }
4708 out:
4709         return copied_early;
4710 }
4711 #endif /* CONFIG_NET_DMA */
4712
4713 /* Does PAWS and seqno based validation of an incoming segment, flags will
4714  * play significant role here.
4715  */
4716 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4717                               struct tcphdr *th, int syn_inerr)
4718 {
4719         struct tcp_sock *tp = tcp_sk(sk);
4720
4721         /* RFC1323: H1. Apply PAWS check first. */
4722         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4723             tcp_paws_discard(sk, skb)) {
4724                 if (!th->rst) {
4725                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4726                         tcp_send_dupack(sk, skb);
4727                         goto discard;
4728                 }
4729                 /* Reset is accepted even if it did not pass PAWS. */
4730         }
4731
4732         /* Step 1: check sequence number */
4733         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4734                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4735                  * (RST) segments are validated by checking their SEQ-fields."
4736                  * And page 69: "If an incoming segment is not acceptable,
4737                  * an acknowledgment should be sent in reply (unless the RST
4738                  * bit is set, if so drop the segment and return)".
4739                  */
4740                 if (!th->rst)
4741                         tcp_send_dupack(sk, skb);
4742                 goto discard;
4743         }
4744
4745         /* Step 2: check RST bit */
4746         if (th->rst) {
4747                 tcp_reset(sk);
4748                 goto discard;
4749         }
4750
4751         /* ts_recent update must be made after we are sure that the packet
4752          * is in window.
4753          */
4754         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4755
4756         /* step 3: check security and precedence [ignored] */
4757
4758         /* step 4: Check for a SYN in window. */
4759         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4760                 if (syn_inerr)
4761                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4762                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4763                 tcp_reset(sk);
4764                 return -1;
4765         }
4766
4767         return 1;
4768
4769 discard:
4770         __kfree_skb(skb);
4771         return 0;
4772 }
4773
4774 /*
4775  *      TCP receive function for the ESTABLISHED state.
4776  *
4777  *      It is split into a fast path and a slow path. The fast path is
4778  *      disabled when:
4779  *      - A zero window was announced from us - zero window probing
4780  *        is only handled properly in the slow path.
4781  *      - Out of order segments arrived.
4782  *      - Urgent data is expected.
4783  *      - There is no buffer space left
4784  *      - Unexpected TCP flags/window values/header lengths are received
4785  *        (detected by checking the TCP header against pred_flags)
4786  *      - Data is sent in both directions. Fast path only supports pure senders
4787  *        or pure receivers (this means either the sequence number or the ack
4788  *        value must stay constant)
4789  *      - Unexpected TCP option.
4790  *
4791  *      When these conditions are not satisfied it drops into a standard
4792  *      receive procedure patterned after RFC793 to handle all cases.
4793  *      The first three cases are guaranteed by proper pred_flags setting,
4794  *      the rest is checked inline. Fast processing is turned on in
4795  *      tcp_data_queue when everything is OK.
4796  */
4797 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4798                         struct tcphdr *th, unsigned len)
4799 {
4800         struct tcp_sock *tp = tcp_sk(sk);
4801         int res;
4802
4803         /*
4804          *      Header prediction.
4805          *      The code loosely follows the one in the famous
4806          *      "30 instruction TCP receive" Van Jacobson mail.
4807          *
4808          *      Van's trick is to deposit buffers into socket queue
4809          *      on a device interrupt, to call tcp_recv function
4810          *      on the receive process context and checksum and copy
4811          *      the buffer to user space. smart...
4812          *
4813          *      Our current scheme is not silly either but we take the
4814          *      extra cost of the net_bh soft interrupt processing...
4815          *      We do checksum and copy also but from device to kernel.
4816          */
4817
4818         tp->rx_opt.saw_tstamp = 0;
4819
4820         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4821          *      if header_prediction is to be made
4822          *      'S' will always be tp->tcp_header_len >> 2
4823          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4824          *  turn it off (when there are holes in the receive
4825          *       space for instance)
4826          *      PSH flag is ignored.
4827          */
4828
4829         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4830             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4831                 int tcp_header_len = tp->tcp_header_len;
4832
4833                 /* Timestamp header prediction: tcp_header_len
4834                  * is automatically equal to th->doff*4 due to pred_flags
4835                  * match.
4836                  */
4837
4838                 /* Check timestamp */
4839                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4840                         /* No? Slow path! */
4841                         if (!tcp_parse_aligned_timestamp(tp, th))
4842                                 goto slow_path;
4843
4844                         /* If PAWS failed, check it more carefully in slow path */
4845                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4846                                 goto slow_path;
4847
4848                         /* DO NOT update ts_recent here, if checksum fails
4849                          * and timestamp was corrupted part, it will result
4850                          * in a hung connection since we will drop all
4851                          * future packets due to the PAWS test.
4852                          */
4853                 }
4854
4855                 if (len <= tcp_header_len) {
4856                         /* Bulk data transfer: sender */
4857                         if (len == tcp_header_len) {
4858                                 /* Predicted packet is in window by definition.
4859                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4860                                  * Hence, check seq<=rcv_wup reduces to:
4861                                  */
4862                                 if (tcp_header_len ==
4863                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4864                                     tp->rcv_nxt == tp->rcv_wup)
4865                                         tcp_store_ts_recent(tp);
4866
4867                                 /* We know that such packets are checksummed
4868                                  * on entry.
4869                                  */
4870                                 tcp_ack(sk, skb, 0);
4871                                 __kfree_skb(skb);
4872                                 tcp_data_snd_check(sk);
4873                                 return 0;
4874                         } else { /* Header too small */
4875                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4876                                 goto discard;
4877                         }
4878                 } else {
4879                         int eaten = 0;
4880                         int copied_early = 0;
4881
4882                         if (tp->copied_seq == tp->rcv_nxt &&
4883                             len - tcp_header_len <= tp->ucopy.len) {
4884 #ifdef CONFIG_NET_DMA
4885                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4886                                         copied_early = 1;
4887                                         eaten = 1;
4888                                 }
4889 #endif
4890                                 if (tp->ucopy.task == current &&
4891                                     sock_owned_by_user(sk) && !copied_early) {
4892                                         __set_current_state(TASK_RUNNING);
4893
4894                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4895                                                 eaten = 1;
4896                                 }
4897                                 if (eaten) {
4898                                         /* Predicted packet is in window by definition.
4899                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4900                                          * Hence, check seq<=rcv_wup reduces to:
4901                                          */
4902                                         if (tcp_header_len ==
4903                                             (sizeof(struct tcphdr) +
4904                                              TCPOLEN_TSTAMP_ALIGNED) &&
4905                                             tp->rcv_nxt == tp->rcv_wup)
4906                                                 tcp_store_ts_recent(tp);
4907
4908                                         tcp_rcv_rtt_measure_ts(sk, skb);
4909
4910                                         __skb_pull(skb, tcp_header_len);
4911                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4912                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4913                                 }
4914                                 if (copied_early)
4915                                         tcp_cleanup_rbuf(sk, skb->len);
4916                         }
4917                         if (!eaten) {
4918                                 if (tcp_checksum_complete_user(sk, skb))
4919                                         goto csum_error;
4920
4921                                 /* Predicted packet is in window by definition.
4922                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4923                                  * Hence, check seq<=rcv_wup reduces to:
4924                                  */
4925                                 if (tcp_header_len ==
4926                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4927                                     tp->rcv_nxt == tp->rcv_wup)
4928                                         tcp_store_ts_recent(tp);
4929
4930                                 tcp_rcv_rtt_measure_ts(sk, skb);
4931
4932                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4933                                         goto step5;
4934
4935                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
4936
4937                                 /* Bulk data transfer: receiver */
4938                                 __skb_pull(skb, tcp_header_len);
4939                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4940                                 skb_set_owner_r(skb, sk);
4941                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4942                         }
4943
4944                         tcp_event_data_recv(sk, skb);
4945
4946                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4947                                 /* Well, only one small jumplet in fast path... */
4948                                 tcp_ack(sk, skb, FLAG_DATA);
4949                                 tcp_data_snd_check(sk);
4950                                 if (!inet_csk_ack_scheduled(sk))
4951                                         goto no_ack;
4952                         }
4953
4954                         __tcp_ack_snd_check(sk, 0);
4955 no_ack:
4956 #ifdef CONFIG_NET_DMA
4957                         if (copied_early)
4958                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4959                         else
4960 #endif
4961                         if (eaten)
4962                                 __kfree_skb(skb);
4963                         else
4964                                 sk->sk_data_ready(sk, 0);
4965                         return 0;
4966                 }
4967         }
4968
4969 slow_path:
4970         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4971                 goto csum_error;
4972
4973         /*
4974          *      Standard slow path.
4975          */
4976
4977         res = tcp_validate_incoming(sk, skb, th, 1);
4978         if (res <= 0)
4979                 return -res;
4980
4981 step5:
4982         if (th->ack)
4983                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4984
4985         tcp_rcv_rtt_measure_ts(sk, skb);
4986
4987         /* Process urgent data. */
4988         tcp_urg(sk, skb, th);
4989
4990         /* step 7: process the segment text */
4991         tcp_data_queue(sk, skb);
4992
4993         tcp_data_snd_check(sk);
4994         tcp_ack_snd_check(sk);
4995         return 0;
4996
4997 csum_error:
4998         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4999
5000 discard:
5001         __kfree_skb(skb);
5002         return 0;
5003 }
5004
5005 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5006                                          struct tcphdr *th, unsigned len)
5007 {
5008         struct tcp_sock *tp = tcp_sk(sk);
5009         struct inet_connection_sock *icsk = inet_csk(sk);
5010         int saved_clamp = tp->rx_opt.mss_clamp;
5011
5012         tcp_parse_options(skb, &tp->rx_opt, 0);
5013
5014         if (th->ack) {
5015                 /* rfc793:
5016                  * "If the state is SYN-SENT then
5017                  *    first check the ACK bit
5018                  *      If the ACK bit is set
5019                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5020                  *        a reset (unless the RST bit is set, if so drop
5021                  *        the segment and return)"
5022                  *
5023                  *  We do not send data with SYN, so that RFC-correct
5024                  *  test reduces to:
5025                  */
5026                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5027                         goto reset_and_undo;
5028
5029                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5030                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5031                              tcp_time_stamp)) {
5032                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5033                         goto reset_and_undo;
5034                 }
5035
5036                 /* Now ACK is acceptable.
5037                  *
5038                  * "If the RST bit is set
5039                  *    If the ACK was acceptable then signal the user "error:
5040                  *    connection reset", drop the segment, enter CLOSED state,
5041                  *    delete TCB, and return."
5042                  */
5043
5044                 if (th->rst) {
5045                         tcp_reset(sk);
5046                         goto discard;
5047                 }
5048
5049                 /* rfc793:
5050                  *   "fifth, if neither of the SYN or RST bits is set then
5051                  *    drop the segment and return."
5052                  *
5053                  *    See note below!
5054                  *                                        --ANK(990513)
5055                  */
5056                 if (!th->syn)
5057                         goto discard_and_undo;
5058
5059                 /* rfc793:
5060                  *   "If the SYN bit is on ...
5061                  *    are acceptable then ...
5062                  *    (our SYN has been ACKed), change the connection
5063                  *    state to ESTABLISHED..."
5064                  */
5065
5066                 TCP_ECN_rcv_synack(tp, th);
5067
5068                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5069                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5070
5071                 /* Ok.. it's good. Set up sequence numbers and
5072                  * move to established.
5073                  */
5074                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5075                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5076
5077                 /* RFC1323: The window in SYN & SYN/ACK segments is
5078                  * never scaled.
5079                  */
5080                 tp->snd_wnd = ntohs(th->window);
5081                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5082
5083                 if (!tp->rx_opt.wscale_ok) {
5084                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5085                         tp->window_clamp = min(tp->window_clamp, 65535U);
5086                 }
5087
5088                 if (tp->rx_opt.saw_tstamp) {
5089                         tp->rx_opt.tstamp_ok       = 1;
5090                         tp->tcp_header_len =
5091                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5092                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5093                         tcp_store_ts_recent(tp);
5094                 } else {
5095                         tp->tcp_header_len = sizeof(struct tcphdr);
5096                 }
5097
5098                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5099                         tcp_enable_fack(tp);
5100
5101                 tcp_mtup_init(sk);
5102                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5103                 tcp_initialize_rcv_mss(sk);
5104
5105                 /* Remember, tcp_poll() does not lock socket!
5106                  * Change state from SYN-SENT only after copied_seq
5107                  * is initialized. */
5108                 tp->copied_seq = tp->rcv_nxt;
5109                 smp_mb();
5110                 tcp_set_state(sk, TCP_ESTABLISHED);
5111
5112                 security_inet_conn_established(sk, skb);
5113
5114                 /* Make sure socket is routed, for correct metrics.  */
5115                 icsk->icsk_af_ops->rebuild_header(sk);
5116
5117                 tcp_init_metrics(sk);
5118
5119                 tcp_init_congestion_control(sk);
5120
5121                 /* Prevent spurious tcp_cwnd_restart() on first data
5122                  * packet.
5123                  */
5124                 tp->lsndtime = tcp_time_stamp;
5125
5126                 tcp_init_buffer_space(sk);
5127
5128                 if (sock_flag(sk, SOCK_KEEPOPEN))
5129                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5130
5131                 if (!tp->rx_opt.snd_wscale)
5132                         __tcp_fast_path_on(tp, tp->snd_wnd);
5133                 else
5134                         tp->pred_flags = 0;
5135
5136                 if (!sock_flag(sk, SOCK_DEAD)) {
5137                         sk->sk_state_change(sk);
5138                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5139                 }
5140
5141                 if (sk->sk_write_pending ||
5142                     icsk->icsk_accept_queue.rskq_defer_accept ||
5143                     icsk->icsk_ack.pingpong) {
5144                         /* Save one ACK. Data will be ready after
5145                          * several ticks, if write_pending is set.
5146                          *
5147                          * It may be deleted, but with this feature tcpdumps
5148                          * look so _wonderfully_ clever, that I was not able
5149                          * to stand against the temptation 8)     --ANK
5150                          */
5151                         inet_csk_schedule_ack(sk);
5152                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5153                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5154                         tcp_incr_quickack(sk);
5155                         tcp_enter_quickack_mode(sk);
5156                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5157                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5158
5159 discard:
5160                         __kfree_skb(skb);
5161                         return 0;
5162                 } else {
5163                         tcp_send_ack(sk);
5164                 }
5165                 return -1;
5166         }
5167
5168         /* No ACK in the segment */
5169
5170         if (th->rst) {
5171                 /* rfc793:
5172                  * "If the RST bit is set
5173                  *
5174                  *      Otherwise (no ACK) drop the segment and return."
5175                  */
5176
5177                 goto discard_and_undo;
5178         }
5179
5180         /* PAWS check. */
5181         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5182             tcp_paws_check(&tp->rx_opt, 0))
5183                 goto discard_and_undo;
5184
5185         if (th->syn) {
5186                 /* We see SYN without ACK. It is attempt of
5187                  * simultaneous connect with crossed SYNs.
5188                  * Particularly, it can be connect to self.
5189                  */
5190                 tcp_set_state(sk, TCP_SYN_RECV);
5191
5192                 if (tp->rx_opt.saw_tstamp) {
5193                         tp->rx_opt.tstamp_ok = 1;
5194                         tcp_store_ts_recent(tp);
5195                         tp->tcp_header_len =
5196                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5197                 } else {
5198                         tp->tcp_header_len = sizeof(struct tcphdr);
5199                 }
5200
5201                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5202                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5203
5204                 /* RFC1323: The window in SYN & SYN/ACK segments is
5205                  * never scaled.
5206                  */
5207                 tp->snd_wnd    = ntohs(th->window);
5208                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5209                 tp->max_window = tp->snd_wnd;
5210
5211                 TCP_ECN_rcv_syn(tp, th);
5212
5213                 tcp_mtup_init(sk);
5214                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5215                 tcp_initialize_rcv_mss(sk);
5216
5217                 tcp_send_synack(sk);
5218 #if 0
5219                 /* Note, we could accept data and URG from this segment.
5220                  * There are no obstacles to make this.
5221                  *
5222                  * However, if we ignore data in ACKless segments sometimes,
5223                  * we have no reasons to accept it sometimes.
5224                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5225                  * is not flawless. So, discard packet for sanity.
5226                  * Uncomment this return to process the data.
5227                  */
5228                 return -1;
5229 #else
5230                 goto discard;
5231 #endif
5232         }
5233         /* "fifth, if neither of the SYN or RST bits is set then
5234          * drop the segment and return."
5235          */
5236
5237 discard_and_undo:
5238         tcp_clear_options(&tp->rx_opt);
5239         tp->rx_opt.mss_clamp = saved_clamp;
5240         goto discard;
5241
5242 reset_and_undo:
5243         tcp_clear_options(&tp->rx_opt);
5244         tp->rx_opt.mss_clamp = saved_clamp;
5245         return 1;
5246 }
5247
5248 /*
5249  *      This function implements the receiving procedure of RFC 793 for
5250  *      all states except ESTABLISHED and TIME_WAIT.
5251  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5252  *      address independent.
5253  */
5254
5255 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5256                           struct tcphdr *th, unsigned len)
5257 {
5258         struct tcp_sock *tp = tcp_sk(sk);
5259         struct inet_connection_sock *icsk = inet_csk(sk);
5260         int queued = 0;
5261         int res;
5262
5263         tp->rx_opt.saw_tstamp = 0;
5264
5265         switch (sk->sk_state) {
5266         case TCP_CLOSE:
5267                 goto discard;
5268
5269         case TCP_LISTEN:
5270                 if (th->ack)
5271                         return 1;
5272
5273                 if (th->rst)
5274                         goto discard;
5275
5276                 if (th->syn) {
5277                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5278                                 return 1;
5279
5280                         /* Now we have several options: In theory there is
5281                          * nothing else in the frame. KA9Q has an option to
5282                          * send data with the syn, BSD accepts data with the
5283                          * syn up to the [to be] advertised window and
5284                          * Solaris 2.1 gives you a protocol error. For now
5285                          * we just ignore it, that fits the spec precisely
5286                          * and avoids incompatibilities. It would be nice in
5287                          * future to drop through and process the data.
5288                          *
5289                          * Now that TTCP is starting to be used we ought to
5290                          * queue this data.
5291                          * But, this leaves one open to an easy denial of
5292                          * service attack, and SYN cookies can't defend
5293                          * against this problem. So, we drop the data
5294                          * in the interest of security over speed unless
5295                          * it's still in use.
5296                          */
5297                         kfree_skb(skb);
5298                         return 0;
5299                 }
5300                 goto discard;
5301
5302         case TCP_SYN_SENT:
5303                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5304                 if (queued >= 0)
5305                         return queued;
5306
5307                 /* Do step6 onward by hand. */
5308                 tcp_urg(sk, skb, th);
5309                 __kfree_skb(skb);
5310                 tcp_data_snd_check(sk);
5311                 return 0;
5312         }
5313
5314         res = tcp_validate_incoming(sk, skb, th, 0);
5315         if (res <= 0)
5316                 return -res;
5317
5318         /* step 5: check the ACK field */
5319         if (th->ack) {
5320                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5321
5322                 switch (sk->sk_state) {
5323                 case TCP_SYN_RECV:
5324                         if (acceptable) {
5325                                 tp->copied_seq = tp->rcv_nxt;
5326                                 smp_mb();
5327                                 tcp_set_state(sk, TCP_ESTABLISHED);
5328                                 sk->sk_state_change(sk);
5329
5330                                 /* Note, that this wakeup is only for marginal
5331                                  * crossed SYN case. Passively open sockets
5332                                  * are not waked up, because sk->sk_sleep ==
5333                                  * NULL and sk->sk_socket == NULL.
5334                                  */
5335                                 if (sk->sk_socket)
5336                                         sk_wake_async(sk,
5337                                                       SOCK_WAKE_IO, POLL_OUT);
5338
5339                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5340                                 tp->snd_wnd = ntohs(th->window) <<
5341                                               tp->rx_opt.snd_wscale;
5342                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5343                                             TCP_SKB_CB(skb)->seq);
5344
5345                                 /* tcp_ack considers this ACK as duplicate
5346                                  * and does not calculate rtt.
5347                                  * Fix it at least with timestamps.
5348                                  */
5349                                 if (tp->rx_opt.saw_tstamp &&
5350                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5351                                         tcp_ack_saw_tstamp(sk, 0);
5352
5353                                 if (tp->rx_opt.tstamp_ok)
5354                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5355
5356                                 /* Make sure socket is routed, for
5357                                  * correct metrics.
5358                                  */
5359                                 icsk->icsk_af_ops->rebuild_header(sk);
5360
5361                                 tcp_init_metrics(sk);
5362
5363                                 tcp_init_congestion_control(sk);
5364
5365                                 /* Prevent spurious tcp_cwnd_restart() on
5366                                  * first data packet.
5367                                  */
5368                                 tp->lsndtime = tcp_time_stamp;
5369
5370                                 tcp_mtup_init(sk);
5371                                 tcp_initialize_rcv_mss(sk);
5372                                 tcp_init_buffer_space(sk);
5373                                 tcp_fast_path_on(tp);
5374                         } else {
5375                                 return 1;
5376                         }
5377                         break;
5378
5379                 case TCP_FIN_WAIT1:
5380                         if (tp->snd_una == tp->write_seq) {
5381                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5382                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5383                                 dst_confirm(sk->sk_dst_cache);
5384
5385                                 if (!sock_flag(sk, SOCK_DEAD))
5386                                         /* Wake up lingering close() */
5387                                         sk->sk_state_change(sk);
5388                                 else {
5389                                         int tmo;
5390
5391                                         if (tp->linger2 < 0 ||
5392                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5393                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5394                                                 tcp_done(sk);
5395                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5396                                                 return 1;
5397                                         }
5398
5399                                         tmo = tcp_fin_time(sk);
5400                                         if (tmo > TCP_TIMEWAIT_LEN) {
5401                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5402                                         } else if (th->fin || sock_owned_by_user(sk)) {
5403                                                 /* Bad case. We could lose such FIN otherwise.
5404                                                  * It is not a big problem, but it looks confusing
5405                                                  * and not so rare event. We still can lose it now,
5406                                                  * if it spins in bh_lock_sock(), but it is really
5407                                                  * marginal case.
5408                                                  */
5409                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5410                                         } else {
5411                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5412                                                 goto discard;
5413                                         }
5414                                 }
5415                         }
5416                         break;
5417
5418                 case TCP_CLOSING:
5419                         if (tp->snd_una == tp->write_seq) {
5420                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5421                                 goto discard;
5422                         }
5423                         break;
5424
5425                 case TCP_LAST_ACK:
5426                         if (tp->snd_una == tp->write_seq) {
5427                                 tcp_update_metrics(sk);
5428                                 tcp_done(sk);
5429                                 goto discard;
5430                         }
5431                         break;
5432                 }
5433         } else
5434                 goto discard;
5435
5436         /* step 6: check the URG bit */
5437         tcp_urg(sk, skb, th);
5438
5439         /* step 7: process the segment text */
5440         switch (sk->sk_state) {
5441         case TCP_CLOSE_WAIT:
5442         case TCP_CLOSING:
5443         case TCP_LAST_ACK:
5444                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5445                         break;
5446         case TCP_FIN_WAIT1:
5447         case TCP_FIN_WAIT2:
5448                 /* RFC 793 says to queue data in these states,
5449                  * RFC 1122 says we MUST send a reset.
5450                  * BSD 4.4 also does reset.
5451                  */
5452                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5453                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5454                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5455                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5456                                 tcp_reset(sk);
5457                                 return 1;
5458                         }
5459                 }
5460                 /* Fall through */
5461         case TCP_ESTABLISHED:
5462                 tcp_data_queue(sk, skb);
5463                 queued = 1;
5464                 break;
5465         }
5466
5467         /* tcp_data could move socket to TIME-WAIT */
5468         if (sk->sk_state != TCP_CLOSE) {
5469                 tcp_data_snd_check(sk);
5470                 tcp_ack_snd_check(sk);
5471         }
5472
5473         if (!queued) {
5474 discard:
5475                 __kfree_skb(skb);
5476         }
5477         return 0;
5478 }
5479
5480 EXPORT_SYMBOL(sysctl_tcp_ecn);
5481 EXPORT_SYMBOL(sysctl_tcp_reordering);
5482 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5483 EXPORT_SYMBOL(tcp_parse_options);
5484 #ifdef CONFIG_TCP_MD5SIG
5485 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5486 #endif
5487 EXPORT_SYMBOL(tcp_rcv_established);
5488 EXPORT_SYMBOL(tcp_rcv_state_process);
5489 EXPORT_SYMBOL(tcp_initialize_rcv_mss);