]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/ipv4/tcp_input.c
b54d9d37b636a79b26de0f0ee36e9f6024ba453e
[linux-2.6-omap-h63xx.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 /*
24  * Changes:
25  *              Pedro Roque     :       Fast Retransmit/Recovery.
26  *                                      Two receive queues.
27  *                                      Retransmit queue handled by TCP.
28  *                                      Better retransmit timer handling.
29  *                                      New congestion avoidance.
30  *                                      Header prediction.
31  *                                      Variable renaming.
32  *
33  *              Eric            :       Fast Retransmit.
34  *              Randy Scott     :       MSS option defines.
35  *              Eric Schenk     :       Fixes to slow start algorithm.
36  *              Eric Schenk     :       Yet another double ACK bug.
37  *              Eric Schenk     :       Delayed ACK bug fixes.
38  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
39  *              David S. Miller :       Don't allow zero congestion window.
40  *              Eric Schenk     :       Fix retransmitter so that it sends
41  *                                      next packet on ack of previous packet.
42  *              Andi Kleen      :       Moved open_request checking here
43  *                                      and process RSTs for open_requests.
44  *              Andi Kleen      :       Better prune_queue, and other fixes.
45  *              Andrey Savochkin:       Fix RTT measurements in the presence of
46  *                                      timestamps.
47  *              Andrey Savochkin:       Check sequence numbers correctly when
48  *                                      removing SACKs due to in sequence incoming
49  *                                      data segments.
50  *              Andi Kleen:             Make sure we never ack data there is not
51  *                                      enough room for. Also make this condition
52  *                                      a fatal error if it might still happen.
53  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
54  *                                      connections with MSS<min(MTU,ann. MSS)
55  *                                      work without delayed acks.
56  *              Andi Kleen:             Process packets with PSH set in the
57  *                                      fast path.
58  *              J Hadi Salim:           ECN support
59  *              Andrei Gurtov,
60  *              Pasi Sarolahti,
61  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
62  *                                      engine. Lots of bugs are found.
63  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
64  */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 int sysctl_tcp_ecn __read_mostly;
82 int sysctl_tcp_dsack __read_mostly = 1;
83 int sysctl_tcp_app_win __read_mostly = 31;
84 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85
86 int sysctl_tcp_stdurg __read_mostly;
87 int sysctl_tcp_rfc1337 __read_mostly;
88 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
89 int sysctl_tcp_frto __read_mostly = 2;
90 int sysctl_tcp_frto_response __read_mostly;
91 int sysctl_tcp_nometrics_save __read_mostly;
92
93 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
94 int sysctl_tcp_abc __read_mostly;
95
96 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
97 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
98 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
99 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
100 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
101 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
102 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
103 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
104 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
105 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
106 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
107 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
108 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
109 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
110
111 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
112 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
113 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
114 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
115 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121  * real world.
122  */
123 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
124 {
125         struct inet_connection_sock *icsk = inet_csk(sk);
126         const unsigned int lss = icsk->icsk_ack.last_seg_size;
127         unsigned int len;
128
129         icsk->icsk_ack.last_seg_size = 0;
130
131         /* skb->len may jitter because of SACKs, even if peer
132          * sends good full-sized frames.
133          */
134         len = skb_shinfo(skb)->gso_size ? : skb->len;
135         if (len >= icsk->icsk_ack.rcv_mss) {
136                 icsk->icsk_ack.rcv_mss = len;
137         } else {
138                 /* Otherwise, we make more careful check taking into account,
139                  * that SACKs block is variable.
140                  *
141                  * "len" is invariant segment length, including TCP header.
142                  */
143                 len += skb->data - skb_transport_header(skb);
144                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145                     /* If PSH is not set, packet should be
146                      * full sized, provided peer TCP is not badly broken.
147                      * This observation (if it is correct 8)) allows
148                      * to handle super-low mtu links fairly.
149                      */
150                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152                         /* Subtract also invariant (if peer is RFC compliant),
153                          * tcp header plus fixed timestamp option length.
154                          * Resulting "len" is MSS free of SACK jitter.
155                          */
156                         len -= tcp_sk(sk)->tcp_header_len;
157                         icsk->icsk_ack.last_seg_size = len;
158                         if (len == lss) {
159                                 icsk->icsk_ack.rcv_mss = len;
160                                 return;
161                         }
162                 }
163                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166         }
167 }
168
169 static void tcp_incr_quickack(struct sock *sk)
170 {
171         struct inet_connection_sock *icsk = inet_csk(sk);
172         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173
174         if (quickacks == 0)
175                 quickacks = 2;
176         if (quickacks > icsk->icsk_ack.quick)
177                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 }
179
180 void tcp_enter_quickack_mode(struct sock *sk)
181 {
182         struct inet_connection_sock *icsk = inet_csk(sk);
183         tcp_incr_quickack(sk);
184         icsk->icsk_ack.pingpong = 0;
185         icsk->icsk_ack.ato = TCP_ATO_MIN;
186 }
187
188 /* Send ACKs quickly, if "quick" count is not exhausted
189  * and the session is not interactive.
190  */
191
192 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 {
194         const struct inet_connection_sock *icsk = inet_csk(sk);
195         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 }
197
198 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
199 {
200         if (tp->ecn_flags & TCP_ECN_OK)
201                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
202 }
203
204 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
205 {
206         if (tcp_hdr(skb)->cwr)
207                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
208 }
209
210 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
211 {
212         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
216 {
217         if (tp->ecn_flags & TCP_ECN_OK) {
218                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
219                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
220                 /* Funny extension: if ECT is not set on a segment,
221                  * it is surely retransmit. It is not in ECN RFC,
222                  * but Linux follows this rule. */
223                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
224                         tcp_enter_quickack_mode((struct sock *)tp);
225         }
226 }
227
228 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
229 {
230         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
231                 tp->ecn_flags &= ~TCP_ECN_OK;
232 }
233
234 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
235 {
236         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
237                 tp->ecn_flags &= ~TCP_ECN_OK;
238 }
239
240 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
241 {
242         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
243                 return 1;
244         return 0;
245 }
246
247 /* Buffer size and advertised window tuning.
248  *
249  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250  */
251
252 static void tcp_fixup_sndbuf(struct sock *sk)
253 {
254         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
255                      sizeof(struct sk_buff);
256
257         if (sk->sk_sndbuf < 3 * sndmem)
258                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
259 }
260
261 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
262  *
263  * All tcp_full_space() is split to two parts: "network" buffer, allocated
264  * forward and advertised in receiver window (tp->rcv_wnd) and
265  * "application buffer", required to isolate scheduling/application
266  * latencies from network.
267  * window_clamp is maximal advertised window. It can be less than
268  * tcp_full_space(), in this case tcp_full_space() - window_clamp
269  * is reserved for "application" buffer. The less window_clamp is
270  * the smoother our behaviour from viewpoint of network, but the lower
271  * throughput and the higher sensitivity of the connection to losses. 8)
272  *
273  * rcv_ssthresh is more strict window_clamp used at "slow start"
274  * phase to predict further behaviour of this connection.
275  * It is used for two goals:
276  * - to enforce header prediction at sender, even when application
277  *   requires some significant "application buffer". It is check #1.
278  * - to prevent pruning of receive queue because of misprediction
279  *   of receiver window. Check #2.
280  *
281  * The scheme does not work when sender sends good segments opening
282  * window and then starts to feed us spaghetti. But it should work
283  * in common situations. Otherwise, we have to rely on queue collapsing.
284  */
285
286 /* Slow part of check#2. */
287 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
288 {
289         struct tcp_sock *tp = tcp_sk(sk);
290         /* Optimize this! */
291         int truesize = tcp_win_from_space(skb->truesize) >> 1;
292         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
293
294         while (tp->rcv_ssthresh <= window) {
295                 if (truesize <= skb->len)
296                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
297
298                 truesize >>= 1;
299                 window >>= 1;
300         }
301         return 0;
302 }
303
304 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
305 {
306         struct tcp_sock *tp = tcp_sk(sk);
307
308         /* Check #1 */
309         if (tp->rcv_ssthresh < tp->window_clamp &&
310             (int)tp->rcv_ssthresh < tcp_space(sk) &&
311             !tcp_memory_pressure) {
312                 int incr;
313
314                 /* Check #2. Increase window, if skb with such overhead
315                  * will fit to rcvbuf in future.
316                  */
317                 if (tcp_win_from_space(skb->truesize) <= skb->len)
318                         incr = 2 * tp->advmss;
319                 else
320                         incr = __tcp_grow_window(sk, skb);
321
322                 if (incr) {
323                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
324                                                tp->window_clamp);
325                         inet_csk(sk)->icsk_ack.quick |= 1;
326                 }
327         }
328 }
329
330 /* 3. Tuning rcvbuf, when connection enters established state. */
331
332 static void tcp_fixup_rcvbuf(struct sock *sk)
333 {
334         struct tcp_sock *tp = tcp_sk(sk);
335         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
336
337         /* Try to select rcvbuf so that 4 mss-sized segments
338          * will fit to window and corresponding skbs will fit to our rcvbuf.
339          * (was 3; 4 is minimum to allow fast retransmit to work.)
340          */
341         while (tcp_win_from_space(rcvmem) < tp->advmss)
342                 rcvmem += 128;
343         if (sk->sk_rcvbuf < 4 * rcvmem)
344                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
345 }
346
347 /* 4. Try to fixup all. It is made immediately after connection enters
348  *    established state.
349  */
350 static void tcp_init_buffer_space(struct sock *sk)
351 {
352         struct tcp_sock *tp = tcp_sk(sk);
353         int maxwin;
354
355         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
356                 tcp_fixup_rcvbuf(sk);
357         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
358                 tcp_fixup_sndbuf(sk);
359
360         tp->rcvq_space.space = tp->rcv_wnd;
361
362         maxwin = tcp_full_space(sk);
363
364         if (tp->window_clamp >= maxwin) {
365                 tp->window_clamp = maxwin;
366
367                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
368                         tp->window_clamp = max(maxwin -
369                                                (maxwin >> sysctl_tcp_app_win),
370                                                4 * tp->advmss);
371         }
372
373         /* Force reservation of one segment. */
374         if (sysctl_tcp_app_win &&
375             tp->window_clamp > 2 * tp->advmss &&
376             tp->window_clamp + tp->advmss > maxwin)
377                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
378
379         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
380         tp->snd_cwnd_stamp = tcp_time_stamp;
381 }
382
383 /* 5. Recalculate window clamp after socket hit its memory bounds. */
384 static void tcp_clamp_window(struct sock *sk)
385 {
386         struct tcp_sock *tp = tcp_sk(sk);
387         struct inet_connection_sock *icsk = inet_csk(sk);
388
389         icsk->icsk_ack.quick = 0;
390
391         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
392             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
393             !tcp_memory_pressure &&
394             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
395                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
396                                     sysctl_tcp_rmem[2]);
397         }
398         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
399                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
400 }
401
402 /* Initialize RCV_MSS value.
403  * RCV_MSS is an our guess about MSS used by the peer.
404  * We haven't any direct information about the MSS.
405  * It's better to underestimate the RCV_MSS rather than overestimate.
406  * Overestimations make us ACKing less frequently than needed.
407  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
408  */
409 void tcp_initialize_rcv_mss(struct sock *sk)
410 {
411         struct tcp_sock *tp = tcp_sk(sk);
412         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
413
414         hint = min(hint, tp->rcv_wnd / 2);
415         hint = min(hint, TCP_MIN_RCVMSS);
416         hint = max(hint, TCP_MIN_MSS);
417
418         inet_csk(sk)->icsk_ack.rcv_mss = hint;
419 }
420
421 /* Receiver "autotuning" code.
422  *
423  * The algorithm for RTT estimation w/o timestamps is based on
424  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
425  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
426  *
427  * More detail on this code can be found at
428  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
429  * though this reference is out of date.  A new paper
430  * is pending.
431  */
432 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
433 {
434         u32 new_sample = tp->rcv_rtt_est.rtt;
435         long m = sample;
436
437         if (m == 0)
438                 m = 1;
439
440         if (new_sample != 0) {
441                 /* If we sample in larger samples in the non-timestamp
442                  * case, we could grossly overestimate the RTT especially
443                  * with chatty applications or bulk transfer apps which
444                  * are stalled on filesystem I/O.
445                  *
446                  * Also, since we are only going for a minimum in the
447                  * non-timestamp case, we do not smooth things out
448                  * else with timestamps disabled convergence takes too
449                  * long.
450                  */
451                 if (!win_dep) {
452                         m -= (new_sample >> 3);
453                         new_sample += m;
454                 } else if (m < new_sample)
455                         new_sample = m << 3;
456         } else {
457                 /* No previous measure. */
458                 new_sample = m << 3;
459         }
460
461         if (tp->rcv_rtt_est.rtt != new_sample)
462                 tp->rcv_rtt_est.rtt = new_sample;
463 }
464
465 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
466 {
467         if (tp->rcv_rtt_est.time == 0)
468                 goto new_measure;
469         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
470                 return;
471         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
472
473 new_measure:
474         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
475         tp->rcv_rtt_est.time = tcp_time_stamp;
476 }
477
478 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
479                                           const struct sk_buff *skb)
480 {
481         struct tcp_sock *tp = tcp_sk(sk);
482         if (tp->rx_opt.rcv_tsecr &&
483             (TCP_SKB_CB(skb)->end_seq -
484              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
485                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
486 }
487
488 /*
489  * This function should be called every time data is copied to user space.
490  * It calculates the appropriate TCP receive buffer space.
491  */
492 void tcp_rcv_space_adjust(struct sock *sk)
493 {
494         struct tcp_sock *tp = tcp_sk(sk);
495         int time;
496         int space;
497
498         if (tp->rcvq_space.time == 0)
499                 goto new_measure;
500
501         time = tcp_time_stamp - tp->rcvq_space.time;
502         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
503                 return;
504
505         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
506
507         space = max(tp->rcvq_space.space, space);
508
509         if (tp->rcvq_space.space != space) {
510                 int rcvmem;
511
512                 tp->rcvq_space.space = space;
513
514                 if (sysctl_tcp_moderate_rcvbuf &&
515                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
516                         int new_clamp = space;
517
518                         /* Receive space grows, normalize in order to
519                          * take into account packet headers and sk_buff
520                          * structure overhead.
521                          */
522                         space /= tp->advmss;
523                         if (!space)
524                                 space = 1;
525                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
526                                   16 + sizeof(struct sk_buff));
527                         while (tcp_win_from_space(rcvmem) < tp->advmss)
528                                 rcvmem += 128;
529                         space *= rcvmem;
530                         space = min(space, sysctl_tcp_rmem[2]);
531                         if (space > sk->sk_rcvbuf) {
532                                 sk->sk_rcvbuf = space;
533
534                                 /* Make the window clamp follow along.  */
535                                 tp->window_clamp = new_clamp;
536                         }
537                 }
538         }
539
540 new_measure:
541         tp->rcvq_space.seq = tp->copied_seq;
542         tp->rcvq_space.time = tcp_time_stamp;
543 }
544
545 /* There is something which you must keep in mind when you analyze the
546  * behavior of the tp->ato delayed ack timeout interval.  When a
547  * connection starts up, we want to ack as quickly as possible.  The
548  * problem is that "good" TCP's do slow start at the beginning of data
549  * transmission.  The means that until we send the first few ACK's the
550  * sender will sit on his end and only queue most of his data, because
551  * he can only send snd_cwnd unacked packets at any given time.  For
552  * each ACK we send, he increments snd_cwnd and transmits more of his
553  * queue.  -DaveM
554  */
555 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
556 {
557         struct tcp_sock *tp = tcp_sk(sk);
558         struct inet_connection_sock *icsk = inet_csk(sk);
559         u32 now;
560
561         inet_csk_schedule_ack(sk);
562
563         tcp_measure_rcv_mss(sk, skb);
564
565         tcp_rcv_rtt_measure(tp);
566
567         now = tcp_time_stamp;
568
569         if (!icsk->icsk_ack.ato) {
570                 /* The _first_ data packet received, initialize
571                  * delayed ACK engine.
572                  */
573                 tcp_incr_quickack(sk);
574                 icsk->icsk_ack.ato = TCP_ATO_MIN;
575         } else {
576                 int m = now - icsk->icsk_ack.lrcvtime;
577
578                 if (m <= TCP_ATO_MIN / 2) {
579                         /* The fastest case is the first. */
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
581                 } else if (m < icsk->icsk_ack.ato) {
582                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
583                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
584                                 icsk->icsk_ack.ato = icsk->icsk_rto;
585                 } else if (m > icsk->icsk_rto) {
586                         /* Too long gap. Apparently sender failed to
587                          * restart window, so that we send ACKs quickly.
588                          */
589                         tcp_incr_quickack(sk);
590                         sk_mem_reclaim(sk);
591                 }
592         }
593         icsk->icsk_ack.lrcvtime = now;
594
595         TCP_ECN_check_ce(tp, skb);
596
597         if (skb->len >= 128)
598                 tcp_grow_window(sk, skb);
599 }
600
601 static u32 tcp_rto_min(struct sock *sk)
602 {
603         struct dst_entry *dst = __sk_dst_get(sk);
604         u32 rto_min = TCP_RTO_MIN;
605
606         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
607                 rto_min = dst_metric(dst, RTAX_RTO_MIN);
608         return rto_min;
609 }
610
611 /* Called to compute a smoothed rtt estimate. The data fed to this
612  * routine either comes from timestamps, or from segments that were
613  * known _not_ to have been retransmitted [see Karn/Partridge
614  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
615  * piece by Van Jacobson.
616  * NOTE: the next three routines used to be one big routine.
617  * To save cycles in the RFC 1323 implementation it was better to break
618  * it up into three procedures. -- erics
619  */
620 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
621 {
622         struct tcp_sock *tp = tcp_sk(sk);
623         long m = mrtt; /* RTT */
624
625         /*      The following amusing code comes from Jacobson's
626          *      article in SIGCOMM '88.  Note that rtt and mdev
627          *      are scaled versions of rtt and mean deviation.
628          *      This is designed to be as fast as possible
629          *      m stands for "measurement".
630          *
631          *      On a 1990 paper the rto value is changed to:
632          *      RTO = rtt + 4 * mdev
633          *
634          * Funny. This algorithm seems to be very broken.
635          * These formulae increase RTO, when it should be decreased, increase
636          * too slowly, when it should be increased quickly, decrease too quickly
637          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
638          * does not matter how to _calculate_ it. Seems, it was trap
639          * that VJ failed to avoid. 8)
640          */
641         if (m == 0)
642                 m = 1;
643         if (tp->srtt != 0) {
644                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
645                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
646                 if (m < 0) {
647                         m = -m;         /* m is now abs(error) */
648                         m -= (tp->mdev >> 2);   /* similar update on mdev */
649                         /* This is similar to one of Eifel findings.
650                          * Eifel blocks mdev updates when rtt decreases.
651                          * This solution is a bit different: we use finer gain
652                          * for mdev in this case (alpha*beta).
653                          * Like Eifel it also prevents growth of rto,
654                          * but also it limits too fast rto decreases,
655                          * happening in pure Eifel.
656                          */
657                         if (m > 0)
658                                 m >>= 3;
659                 } else {
660                         m -= (tp->mdev >> 2);   /* similar update on mdev */
661                 }
662                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
663                 if (tp->mdev > tp->mdev_max) {
664                         tp->mdev_max = tp->mdev;
665                         if (tp->mdev_max > tp->rttvar)
666                                 tp->rttvar = tp->mdev_max;
667                 }
668                 if (after(tp->snd_una, tp->rtt_seq)) {
669                         if (tp->mdev_max < tp->rttvar)
670                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
671                         tp->rtt_seq = tp->snd_nxt;
672                         tp->mdev_max = tcp_rto_min(sk);
673                 }
674         } else {
675                 /* no previous measure. */
676                 tp->srtt = m << 3;      /* take the measured time to be rtt */
677                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
678                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
679                 tp->rtt_seq = tp->snd_nxt;
680         }
681 }
682
683 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
684  * routine referred to above.
685  */
686 static inline void tcp_set_rto(struct sock *sk)
687 {
688         const struct tcp_sock *tp = tcp_sk(sk);
689         /* Old crap is replaced with new one. 8)
690          *
691          * More seriously:
692          * 1. If rtt variance happened to be less 50msec, it is hallucination.
693          *    It cannot be less due to utterly erratic ACK generation made
694          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
695          *    to do with delayed acks, because at cwnd>2 true delack timeout
696          *    is invisible. Actually, Linux-2.4 also generates erratic
697          *    ACKs in some circumstances.
698          */
699         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
700
701         /* 2. Fixups made earlier cannot be right.
702          *    If we do not estimate RTO correctly without them,
703          *    all the algo is pure shit and should be replaced
704          *    with correct one. It is exactly, which we pretend to do.
705          */
706 }
707
708 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
709  * guarantees that rto is higher.
710  */
711 static inline void tcp_bound_rto(struct sock *sk)
712 {
713         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
714                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
715 }
716
717 /* Save metrics learned by this TCP session.
718    This function is called only, when TCP finishes successfully
719    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
720  */
721 void tcp_update_metrics(struct sock *sk)
722 {
723         struct tcp_sock *tp = tcp_sk(sk);
724         struct dst_entry *dst = __sk_dst_get(sk);
725
726         if (sysctl_tcp_nometrics_save)
727                 return;
728
729         dst_confirm(dst);
730
731         if (dst && (dst->flags & DST_HOST)) {
732                 const struct inet_connection_sock *icsk = inet_csk(sk);
733                 int m;
734
735                 if (icsk->icsk_backoff || !tp->srtt) {
736                         /* This session failed to estimate rtt. Why?
737                          * Probably, no packets returned in time.
738                          * Reset our results.
739                          */
740                         if (!(dst_metric_locked(dst, RTAX_RTT)))
741                                 dst->metrics[RTAX_RTT - 1] = 0;
742                         return;
743                 }
744
745                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
746
747                 /* If newly calculated rtt larger than stored one,
748                  * store new one. Otherwise, use EWMA. Remember,
749                  * rtt overestimation is always better than underestimation.
750                  */
751                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752                         if (m <= 0)
753                                 dst->metrics[RTAX_RTT - 1] = tp->srtt;
754                         else
755                                 dst->metrics[RTAX_RTT - 1] -= (m >> 3);
756                 }
757
758                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759                         if (m < 0)
760                                 m = -m;
761
762                         /* Scale deviation to rttvar fixed point */
763                         m >>= 1;
764                         if (m < tp->mdev)
765                                 m = tp->mdev;
766
767                         if (m >= dst_metric(dst, RTAX_RTTVAR))
768                                 dst->metrics[RTAX_RTTVAR - 1] = m;
769                         else
770                                 dst->metrics[RTAX_RTTVAR-1] -=
771                                         (dst_metric(dst, RTAX_RTTVAR) - m)>>2;
772                 }
773
774                 if (tp->snd_ssthresh >= 0xFFFF) {
775                         /* Slow start still did not finish. */
776                         if (dst_metric(dst, RTAX_SSTHRESH) &&
777                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
780                         if (!dst_metric_locked(dst, RTAX_CWND) &&
781                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
783                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
784                            icsk->icsk_ca_state == TCP_CA_Open) {
785                         /* Cong. avoidance phase, cwnd is reliable. */
786                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787                                 dst->metrics[RTAX_SSTHRESH-1] =
788                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
789                         if (!dst_metric_locked(dst, RTAX_CWND))
790                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
791                 } else {
792                         /* Else slow start did not finish, cwnd is non-sense,
793                            ssthresh may be also invalid.
794                          */
795                         if (!dst_metric_locked(dst, RTAX_CWND))
796                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
797                         if (dst_metric(dst, RTAX_SSTHRESH) &&
798                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
799                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
800                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
801                 }
802
803                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
804                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
805                             tp->reordering != sysctl_tcp_reordering)
806                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
807                 }
808         }
809 }
810
811 /* Numbers are taken from RFC3390.
812  *
813  * John Heffner states:
814  *
815  *      The RFC specifies a window of no more than 4380 bytes
816  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
817  *      is a bit misleading because they use a clamp at 4380 bytes
818  *      rather than use a multiplier in the relevant range.
819  */
820 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
821 {
822         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
823
824         if (!cwnd) {
825                 if (tp->mss_cache > 1460)
826                         cwnd = 2;
827                 else
828                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
829         }
830         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831 }
832
833 /* Set slow start threshold and cwnd not falling to slow start */
834 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
835 {
836         struct tcp_sock *tp = tcp_sk(sk);
837         const struct inet_connection_sock *icsk = inet_csk(sk);
838
839         tp->prior_ssthresh = 0;
840         tp->bytes_acked = 0;
841         if (icsk->icsk_ca_state < TCP_CA_CWR) {
842                 tp->undo_marker = 0;
843                 if (set_ssthresh)
844                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
845                 tp->snd_cwnd = min(tp->snd_cwnd,
846                                    tcp_packets_in_flight(tp) + 1U);
847                 tp->snd_cwnd_cnt = 0;
848                 tp->high_seq = tp->snd_nxt;
849                 tp->snd_cwnd_stamp = tcp_time_stamp;
850                 TCP_ECN_queue_cwr(tp);
851
852                 tcp_set_ca_state(sk, TCP_CA_CWR);
853         }
854 }
855
856 /*
857  * Packet counting of FACK is based on in-order assumptions, therefore TCP
858  * disables it when reordering is detected
859  */
860 static void tcp_disable_fack(struct tcp_sock *tp)
861 {
862         /* RFC3517 uses different metric in lost marker => reset on change */
863         if (tcp_is_fack(tp))
864                 tp->lost_skb_hint = NULL;
865         tp->rx_opt.sack_ok &= ~2;
866 }
867
868 /* Take a notice that peer is sending D-SACKs */
869 static void tcp_dsack_seen(struct tcp_sock *tp)
870 {
871         tp->rx_opt.sack_ok |= 4;
872 }
873
874 /* Initialize metrics on socket. */
875
876 static void tcp_init_metrics(struct sock *sk)
877 {
878         struct tcp_sock *tp = tcp_sk(sk);
879         struct dst_entry *dst = __sk_dst_get(sk);
880
881         if (dst == NULL)
882                 goto reset;
883
884         dst_confirm(dst);
885
886         if (dst_metric_locked(dst, RTAX_CWND))
887                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
888         if (dst_metric(dst, RTAX_SSTHRESH)) {
889                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
890                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
891                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
892         }
893         if (dst_metric(dst, RTAX_REORDERING) &&
894             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
895                 tcp_disable_fack(tp);
896                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
897         }
898
899         if (dst_metric(dst, RTAX_RTT) == 0)
900                 goto reset;
901
902         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
903                 goto reset;
904
905         /* Initial rtt is determined from SYN,SYN-ACK.
906          * The segment is small and rtt may appear much
907          * less than real one. Use per-dst memory
908          * to make it more realistic.
909          *
910          * A bit of theory. RTT is time passed after "normal" sized packet
911          * is sent until it is ACKed. In normal circumstances sending small
912          * packets force peer to delay ACKs and calculation is correct too.
913          * The algorithm is adaptive and, provided we follow specs, it
914          * NEVER underestimate RTT. BUT! If peer tries to make some clever
915          * tricks sort of "quick acks" for time long enough to decrease RTT
916          * to low value, and then abruptly stops to do it and starts to delay
917          * ACKs, wait for troubles.
918          */
919         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
920                 tp->srtt = dst_metric(dst, RTAX_RTT);
921                 tp->rtt_seq = tp->snd_nxt;
922         }
923         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
924                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
925                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
926         }
927         tcp_set_rto(sk);
928         tcp_bound_rto(sk);
929         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
930                 goto reset;
931         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932         tp->snd_cwnd_stamp = tcp_time_stamp;
933         return;
934
935 reset:
936         /* Play conservative. If timestamps are not
937          * supported, TCP will fail to recalculate correct
938          * rtt, if initial rto is too small. FORGET ALL AND RESET!
939          */
940         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
941                 tp->srtt = 0;
942                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
943                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
944         }
945 }
946
947 static void tcp_update_reordering(struct sock *sk, const int metric,
948                                   const int ts)
949 {
950         struct tcp_sock *tp = tcp_sk(sk);
951         if (metric > tp->reordering) {
952                 tp->reordering = min(TCP_MAX_REORDERING, metric);
953
954                 /* This exciting event is worth to be remembered. 8) */
955                 if (ts)
956                         NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
957                 else if (tcp_is_reno(tp))
958                         NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
959                 else if (tcp_is_fack(tp))
960                         NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
961                 else
962                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
963 #if FASTRETRANS_DEBUG > 1
964                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
965                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
966                        tp->reordering,
967                        tp->fackets_out,
968                        tp->sacked_out,
969                        tp->undo_marker ? tp->undo_retrans : 0);
970 #endif
971                 tcp_disable_fack(tp);
972         }
973 }
974
975 /* This procedure tags the retransmission queue when SACKs arrive.
976  *
977  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
978  * Packets in queue with these bits set are counted in variables
979  * sacked_out, retrans_out and lost_out, correspondingly.
980  *
981  * Valid combinations are:
982  * Tag  InFlight        Description
983  * 0    1               - orig segment is in flight.
984  * S    0               - nothing flies, orig reached receiver.
985  * L    0               - nothing flies, orig lost by net.
986  * R    2               - both orig and retransmit are in flight.
987  * L|R  1               - orig is lost, retransmit is in flight.
988  * S|R  1               - orig reached receiver, retrans is still in flight.
989  * (L|S|R is logically valid, it could occur when L|R is sacked,
990  *  but it is equivalent to plain S and code short-curcuits it to S.
991  *  L|S is logically invalid, it would mean -1 packet in flight 8))
992  *
993  * These 6 states form finite state machine, controlled by the following events:
994  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
995  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
996  * 3. Loss detection event of one of three flavors:
997  *      A. Scoreboard estimator decided the packet is lost.
998  *         A'. Reno "three dupacks" marks head of queue lost.
999  *         A''. Its FACK modfication, head until snd.fack is lost.
1000  *      B. SACK arrives sacking data transmitted after never retransmitted
1001  *         hole was sent out.
1002  *      C. SACK arrives sacking SND.NXT at the moment, when the
1003  *         segment was retransmitted.
1004  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1005  *
1006  * It is pleasant to note, that state diagram turns out to be commutative,
1007  * so that we are allowed not to be bothered by order of our actions,
1008  * when multiple events arrive simultaneously. (see the function below).
1009  *
1010  * Reordering detection.
1011  * --------------------
1012  * Reordering metric is maximal distance, which a packet can be displaced
1013  * in packet stream. With SACKs we can estimate it:
1014  *
1015  * 1. SACK fills old hole and the corresponding segment was not
1016  *    ever retransmitted -> reordering. Alas, we cannot use it
1017  *    when segment was retransmitted.
1018  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1019  *    for retransmitted and already SACKed segment -> reordering..
1020  * Both of these heuristics are not used in Loss state, when we cannot
1021  * account for retransmits accurately.
1022  *
1023  * SACK block validation.
1024  * ----------------------
1025  *
1026  * SACK block range validation checks that the received SACK block fits to
1027  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1028  * Note that SND.UNA is not included to the range though being valid because
1029  * it means that the receiver is rather inconsistent with itself reporting
1030  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1031  * perfectly valid, however, in light of RFC2018 which explicitly states
1032  * that "SACK block MUST reflect the newest segment.  Even if the newest
1033  * segment is going to be discarded ...", not that it looks very clever
1034  * in case of head skb. Due to potentional receiver driven attacks, we
1035  * choose to avoid immediate execution of a walk in write queue due to
1036  * reneging and defer head skb's loss recovery to standard loss recovery
1037  * procedure that will eventually trigger (nothing forbids us doing this).
1038  *
1039  * Implements also blockage to start_seq wrap-around. Problem lies in the
1040  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1041  * there's no guarantee that it will be before snd_nxt (n). The problem
1042  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1043  * wrap (s_w):
1044  *
1045  *         <- outs wnd ->                          <- wrapzone ->
1046  *         u     e      n                         u_w   e_w  s n_w
1047  *         |     |      |                          |     |   |  |
1048  * |<------------+------+----- TCP seqno space --------------+---------->|
1049  * ...-- <2^31 ->|                                           |<--------...
1050  * ...---- >2^31 ------>|                                    |<--------...
1051  *
1052  * Current code wouldn't be vulnerable but it's better still to discard such
1053  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1054  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1055  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1056  * equal to the ideal case (infinite seqno space without wrap caused issues).
1057  *
1058  * With D-SACK the lower bound is extended to cover sequence space below
1059  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1060  * again, D-SACK block must not to go across snd_una (for the same reason as
1061  * for the normal SACK blocks, explained above). But there all simplicity
1062  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1063  * fully below undo_marker they do not affect behavior in anyway and can
1064  * therefore be safely ignored. In rare cases (which are more or less
1065  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1066  * fragmentation and packet reordering past skb's retransmission. To consider
1067  * them correctly, the acceptable range must be extended even more though
1068  * the exact amount is rather hard to quantify. However, tp->max_window can
1069  * be used as an exaggerated estimate.
1070  */
1071 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1072                                   u32 start_seq, u32 end_seq)
1073 {
1074         /* Too far in future, or reversed (interpretation is ambiguous) */
1075         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1076                 return 0;
1077
1078         /* Nasty start_seq wrap-around check (see comments above) */
1079         if (!before(start_seq, tp->snd_nxt))
1080                 return 0;
1081
1082         /* In outstanding window? ...This is valid exit for D-SACKs too.
1083          * start_seq == snd_una is non-sensical (see comments above)
1084          */
1085         if (after(start_seq, tp->snd_una))
1086                 return 1;
1087
1088         if (!is_dsack || !tp->undo_marker)
1089                 return 0;
1090
1091         /* ...Then it's D-SACK, and must reside below snd_una completely */
1092         if (!after(end_seq, tp->snd_una))
1093                 return 0;
1094
1095         if (!before(start_seq, tp->undo_marker))
1096                 return 1;
1097
1098         /* Too old */
1099         if (!after(end_seq, tp->undo_marker))
1100                 return 0;
1101
1102         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1103          *   start_seq < undo_marker and end_seq >= undo_marker.
1104          */
1105         return !before(start_seq, end_seq - tp->max_window);
1106 }
1107
1108 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1109  * Event "C". Later note: FACK people cheated me again 8), we have to account
1110  * for reordering! Ugly, but should help.
1111  *
1112  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1113  * less than what is now known to be received by the other end (derived from
1114  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1115  * retransmitted skbs to avoid some costly processing per ACKs.
1116  */
1117 static void tcp_mark_lost_retrans(struct sock *sk)
1118 {
1119         const struct inet_connection_sock *icsk = inet_csk(sk);
1120         struct tcp_sock *tp = tcp_sk(sk);
1121         struct sk_buff *skb;
1122         int cnt = 0;
1123         u32 new_low_seq = tp->snd_nxt;
1124         u32 received_upto = tcp_highest_sack_seq(tp);
1125
1126         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1127             !after(received_upto, tp->lost_retrans_low) ||
1128             icsk->icsk_ca_state != TCP_CA_Recovery)
1129                 return;
1130
1131         tcp_for_write_queue(skb, sk) {
1132                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1133
1134                 if (skb == tcp_send_head(sk))
1135                         break;
1136                 if (cnt == tp->retrans_out)
1137                         break;
1138                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1139                         continue;
1140
1141                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1142                         continue;
1143
1144                 if (after(received_upto, ack_seq) &&
1145                     (tcp_is_fack(tp) ||
1146                      !before(received_upto,
1147                              ack_seq + tp->reordering * tp->mss_cache))) {
1148                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1149                         tp->retrans_out -= tcp_skb_pcount(skb);
1150
1151                         /* clear lost hint */
1152                         tp->retransmit_skb_hint = NULL;
1153
1154                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1155                                 tp->lost_out += tcp_skb_pcount(skb);
1156                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1157                         }
1158                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1159                 } else {
1160                         if (before(ack_seq, new_low_seq))
1161                                 new_low_seq = ack_seq;
1162                         cnt += tcp_skb_pcount(skb);
1163                 }
1164         }
1165
1166         if (tp->retrans_out)
1167                 tp->lost_retrans_low = new_low_seq;
1168 }
1169
1170 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1171                            struct tcp_sack_block_wire *sp, int num_sacks,
1172                            u32 prior_snd_una)
1173 {
1174         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1175         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1176         int dup_sack = 0;
1177
1178         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1179                 dup_sack = 1;
1180                 tcp_dsack_seen(tp);
1181                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1182         } else if (num_sacks > 1) {
1183                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1184                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1185
1186                 if (!after(end_seq_0, end_seq_1) &&
1187                     !before(start_seq_0, start_seq_1)) {
1188                         dup_sack = 1;
1189                         tcp_dsack_seen(tp);
1190                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1191                 }
1192         }
1193
1194         /* D-SACK for already forgotten data... Do dumb counting. */
1195         if (dup_sack &&
1196             !after(end_seq_0, prior_snd_una) &&
1197             after(end_seq_0, tp->undo_marker))
1198                 tp->undo_retrans--;
1199
1200         return dup_sack;
1201 }
1202
1203 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1204  * the incoming SACK may not exactly match but we can find smaller MSS
1205  * aligned portion of it that matches. Therefore we might need to fragment
1206  * which may fail and creates some hassle (caller must handle error case
1207  * returns).
1208  */
1209 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1210                                  u32 start_seq, u32 end_seq)
1211 {
1212         int in_sack, err;
1213         unsigned int pkt_len;
1214
1215         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1216                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1217
1218         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1219             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1220
1221                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1222
1223                 if (!in_sack)
1224                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1225                 else
1226                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1227                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1228                 if (err < 0)
1229                         return err;
1230         }
1231
1232         return in_sack;
1233 }
1234
1235 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1236                            int *reord, int dup_sack, int fack_count)
1237 {
1238         struct tcp_sock *tp = tcp_sk(sk);
1239         u8 sacked = TCP_SKB_CB(skb)->sacked;
1240         int flag = 0;
1241
1242         /* Account D-SACK for retransmitted packet. */
1243         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1244                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1245                         tp->undo_retrans--;
1246                 if (sacked & TCPCB_SACKED_ACKED)
1247                         *reord = min(fack_count, *reord);
1248         }
1249
1250         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1251         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1252                 return flag;
1253
1254         if (!(sacked & TCPCB_SACKED_ACKED)) {
1255                 if (sacked & TCPCB_SACKED_RETRANS) {
1256                         /* If the segment is not tagged as lost,
1257                          * we do not clear RETRANS, believing
1258                          * that retransmission is still in flight.
1259                          */
1260                         if (sacked & TCPCB_LOST) {
1261                                 TCP_SKB_CB(skb)->sacked &=
1262                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1263                                 tp->lost_out -= tcp_skb_pcount(skb);
1264                                 tp->retrans_out -= tcp_skb_pcount(skb);
1265
1266                                 /* clear lost hint */
1267                                 tp->retransmit_skb_hint = NULL;
1268                         }
1269                 } else {
1270                         if (!(sacked & TCPCB_RETRANS)) {
1271                                 /* New sack for not retransmitted frame,
1272                                  * which was in hole. It is reordering.
1273                                  */
1274                                 if (before(TCP_SKB_CB(skb)->seq,
1275                                            tcp_highest_sack_seq(tp)))
1276                                         *reord = min(fack_count, *reord);
1277
1278                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1279                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1280                                         flag |= FLAG_ONLY_ORIG_SACKED;
1281                         }
1282
1283                         if (sacked & TCPCB_LOST) {
1284                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1285                                 tp->lost_out -= tcp_skb_pcount(skb);
1286
1287                                 /* clear lost hint */
1288                                 tp->retransmit_skb_hint = NULL;
1289                         }
1290                 }
1291
1292                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1293                 flag |= FLAG_DATA_SACKED;
1294                 tp->sacked_out += tcp_skb_pcount(skb);
1295
1296                 fack_count += tcp_skb_pcount(skb);
1297
1298                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1299                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1300                     before(TCP_SKB_CB(skb)->seq,
1301                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1302                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1303
1304                 if (fack_count > tp->fackets_out)
1305                         tp->fackets_out = fack_count;
1306
1307                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1308                         tcp_advance_highest_sack(sk, skb);
1309         }
1310
1311         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1312          * frames and clear it. undo_retrans is decreased above, L|R frames
1313          * are accounted above as well.
1314          */
1315         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1316                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1317                 tp->retrans_out -= tcp_skb_pcount(skb);
1318                 tp->retransmit_skb_hint = NULL;
1319         }
1320
1321         return flag;
1322 }
1323
1324 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1325                                         struct tcp_sack_block *next_dup,
1326                                         u32 start_seq, u32 end_seq,
1327                                         int dup_sack_in, int *fack_count,
1328                                         int *reord, int *flag)
1329 {
1330         tcp_for_write_queue_from(skb, sk) {
1331                 int in_sack = 0;
1332                 int dup_sack = dup_sack_in;
1333
1334                 if (skb == tcp_send_head(sk))
1335                         break;
1336
1337                 /* queue is in-order => we can short-circuit the walk early */
1338                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1339                         break;
1340
1341                 if ((next_dup != NULL) &&
1342                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1343                         in_sack = tcp_match_skb_to_sack(sk, skb,
1344                                                         next_dup->start_seq,
1345                                                         next_dup->end_seq);
1346                         if (in_sack > 0)
1347                                 dup_sack = 1;
1348                 }
1349
1350                 if (in_sack <= 0)
1351                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1352                                                         end_seq);
1353                 if (unlikely(in_sack < 0))
1354                         break;
1355
1356                 if (in_sack)
1357                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1358                                                  *fack_count);
1359
1360                 *fack_count += tcp_skb_pcount(skb);
1361         }
1362         return skb;
1363 }
1364
1365 /* Avoid all extra work that is being done by sacktag while walking in
1366  * a normal way
1367  */
1368 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1369                                         u32 skip_to_seq, int *fack_count)
1370 {
1371         tcp_for_write_queue_from(skb, sk) {
1372                 if (skb == tcp_send_head(sk))
1373                         break;
1374
1375                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1376                         break;
1377
1378                 *fack_count += tcp_skb_pcount(skb);
1379         }
1380         return skb;
1381 }
1382
1383 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1384                                                 struct sock *sk,
1385                                                 struct tcp_sack_block *next_dup,
1386                                                 u32 skip_to_seq,
1387                                                 int *fack_count, int *reord,
1388                                                 int *flag)
1389 {
1390         if (next_dup == NULL)
1391                 return skb;
1392
1393         if (before(next_dup->start_seq, skip_to_seq)) {
1394                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1395                 tcp_sacktag_walk(skb, sk, NULL,
1396                                  next_dup->start_seq, next_dup->end_seq,
1397                                  1, fack_count, reord, flag);
1398         }
1399
1400         return skb;
1401 }
1402
1403 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1404 {
1405         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1406 }
1407
1408 static int
1409 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1410                         u32 prior_snd_una)
1411 {
1412         const struct inet_connection_sock *icsk = inet_csk(sk);
1413         struct tcp_sock *tp = tcp_sk(sk);
1414         unsigned char *ptr = (skb_transport_header(ack_skb) +
1415                               TCP_SKB_CB(ack_skb)->sacked);
1416         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1417         struct tcp_sack_block sp[4];
1418         struct tcp_sack_block *cache;
1419         struct sk_buff *skb;
1420         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1421         int used_sacks;
1422         int reord = tp->packets_out;
1423         int flag = 0;
1424         int found_dup_sack = 0;
1425         int fack_count;
1426         int i, j;
1427         int first_sack_index;
1428
1429         if (!tp->sacked_out) {
1430                 if (WARN_ON(tp->fackets_out))
1431                         tp->fackets_out = 0;
1432                 tcp_highest_sack_reset(sk);
1433         }
1434
1435         found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1436                                          num_sacks, prior_snd_una);
1437         if (found_dup_sack)
1438                 flag |= FLAG_DSACKING_ACK;
1439
1440         /* Eliminate too old ACKs, but take into
1441          * account more or less fresh ones, they can
1442          * contain valid SACK info.
1443          */
1444         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1445                 return 0;
1446
1447         if (!tp->packets_out)
1448                 goto out;
1449
1450         used_sacks = 0;
1451         first_sack_index = 0;
1452         for (i = 0; i < num_sacks; i++) {
1453                 int dup_sack = !i && found_dup_sack;
1454
1455                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1456                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1457
1458                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1459                                             sp[used_sacks].start_seq,
1460                                             sp[used_sacks].end_seq)) {
1461                         if (dup_sack) {
1462                                 if (!tp->undo_marker)
1463                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1464                                 else
1465                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1466                         } else {
1467                                 /* Don't count olds caused by ACK reordering */
1468                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1469                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1470                                         continue;
1471                                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1472                         }
1473                         if (i == 0)
1474                                 first_sack_index = -1;
1475                         continue;
1476                 }
1477
1478                 /* Ignore very old stuff early */
1479                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1480                         continue;
1481
1482                 used_sacks++;
1483         }
1484
1485         /* order SACK blocks to allow in order walk of the retrans queue */
1486         for (i = used_sacks - 1; i > 0; i--) {
1487                 for (j = 0; j < i; j++) {
1488                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1489                                 struct tcp_sack_block tmp;
1490
1491                                 tmp = sp[j];
1492                                 sp[j] = sp[j + 1];
1493                                 sp[j + 1] = tmp;
1494
1495                                 /* Track where the first SACK block goes to */
1496                                 if (j == first_sack_index)
1497                                         first_sack_index = j + 1;
1498                         }
1499                 }
1500         }
1501
1502         skb = tcp_write_queue_head(sk);
1503         fack_count = 0;
1504         i = 0;
1505
1506         if (!tp->sacked_out) {
1507                 /* It's already past, so skip checking against it */
1508                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1509         } else {
1510                 cache = tp->recv_sack_cache;
1511                 /* Skip empty blocks in at head of the cache */
1512                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1513                        !cache->end_seq)
1514                         cache++;
1515         }
1516
1517         while (i < used_sacks) {
1518                 u32 start_seq = sp[i].start_seq;
1519                 u32 end_seq = sp[i].end_seq;
1520                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1521                 struct tcp_sack_block *next_dup = NULL;
1522
1523                 if (found_dup_sack && ((i + 1) == first_sack_index))
1524                         next_dup = &sp[i + 1];
1525
1526                 /* Event "B" in the comment above. */
1527                 if (after(end_seq, tp->high_seq))
1528                         flag |= FLAG_DATA_LOST;
1529
1530                 /* Skip too early cached blocks */
1531                 while (tcp_sack_cache_ok(tp, cache) &&
1532                        !before(start_seq, cache->end_seq))
1533                         cache++;
1534
1535                 /* Can skip some work by looking recv_sack_cache? */
1536                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1537                     after(end_seq, cache->start_seq)) {
1538
1539                         /* Head todo? */
1540                         if (before(start_seq, cache->start_seq)) {
1541                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1542                                                        &fack_count);
1543                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1544                                                        start_seq,
1545                                                        cache->start_seq,
1546                                                        dup_sack, &fack_count,
1547                                                        &reord, &flag);
1548                         }
1549
1550                         /* Rest of the block already fully processed? */
1551                         if (!after(end_seq, cache->end_seq))
1552                                 goto advance_sp;
1553
1554                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1555                                                        cache->end_seq,
1556                                                        &fack_count, &reord,
1557                                                        &flag);
1558
1559                         /* ...tail remains todo... */
1560                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1561                                 /* ...but better entrypoint exists! */
1562                                 skb = tcp_highest_sack(sk);
1563                                 if (skb == NULL)
1564                                         break;
1565                                 fack_count = tp->fackets_out;
1566                                 cache++;
1567                                 goto walk;
1568                         }
1569
1570                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1571                                                &fack_count);
1572                         /* Check overlap against next cached too (past this one already) */
1573                         cache++;
1574                         continue;
1575                 }
1576
1577                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1578                         skb = tcp_highest_sack(sk);
1579                         if (skb == NULL)
1580                                 break;
1581                         fack_count = tp->fackets_out;
1582                 }
1583                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1584
1585 walk:
1586                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1587                                        dup_sack, &fack_count, &reord, &flag);
1588
1589 advance_sp:
1590                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1591                  * due to in-order walk
1592                  */
1593                 if (after(end_seq, tp->frto_highmark))
1594                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1595
1596                 i++;
1597         }
1598
1599         /* Clear the head of the cache sack blocks so we can skip it next time */
1600         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1601                 tp->recv_sack_cache[i].start_seq = 0;
1602                 tp->recv_sack_cache[i].end_seq = 0;
1603         }
1604         for (j = 0; j < used_sacks; j++)
1605                 tp->recv_sack_cache[i++] = sp[j];
1606
1607         tcp_mark_lost_retrans(sk);
1608
1609         tcp_verify_left_out(tp);
1610
1611         if ((reord < tp->fackets_out) &&
1612             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1613             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1614                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1615
1616 out:
1617
1618 #if FASTRETRANS_DEBUG > 0
1619         BUG_TRAP((int)tp->sacked_out >= 0);
1620         BUG_TRAP((int)tp->lost_out >= 0);
1621         BUG_TRAP((int)tp->retrans_out >= 0);
1622         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1623 #endif
1624         return flag;
1625 }
1626
1627 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1628  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1629  */
1630 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1631 {
1632         u32 holes;
1633
1634         holes = max(tp->lost_out, 1U);
1635         holes = min(holes, tp->packets_out);
1636
1637         if ((tp->sacked_out + holes) > tp->packets_out) {
1638                 tp->sacked_out = tp->packets_out - holes;
1639                 return 1;
1640         }
1641         return 0;
1642 }
1643
1644 /* If we receive more dupacks than we expected counting segments
1645  * in assumption of absent reordering, interpret this as reordering.
1646  * The only another reason could be bug in receiver TCP.
1647  */
1648 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1649 {
1650         struct tcp_sock *tp = tcp_sk(sk);
1651         if (tcp_limit_reno_sacked(tp))
1652                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1653 }
1654
1655 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1656
1657 static void tcp_add_reno_sack(struct sock *sk)
1658 {
1659         struct tcp_sock *tp = tcp_sk(sk);
1660         tp->sacked_out++;
1661         tcp_check_reno_reordering(sk, 0);
1662         tcp_verify_left_out(tp);
1663 }
1664
1665 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1666
1667 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1668 {
1669         struct tcp_sock *tp = tcp_sk(sk);
1670
1671         if (acked > 0) {
1672                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1673                 if (acked - 1 >= tp->sacked_out)
1674                         tp->sacked_out = 0;
1675                 else
1676                         tp->sacked_out -= acked - 1;
1677         }
1678         tcp_check_reno_reordering(sk, acked);
1679         tcp_verify_left_out(tp);
1680 }
1681
1682 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1683 {
1684         tp->sacked_out = 0;
1685 }
1686
1687 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1688 {
1689         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1690 }
1691
1692 /* F-RTO can only be used if TCP has never retransmitted anything other than
1693  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1694  */
1695 int tcp_use_frto(struct sock *sk)
1696 {
1697         const struct tcp_sock *tp = tcp_sk(sk);
1698         const struct inet_connection_sock *icsk = inet_csk(sk);
1699         struct sk_buff *skb;
1700
1701         if (!sysctl_tcp_frto)
1702                 return 0;
1703
1704         /* MTU probe and F-RTO won't really play nicely along currently */
1705         if (icsk->icsk_mtup.probe_size)
1706                 return 0;
1707
1708         if (tcp_is_sackfrto(tp))
1709                 return 1;
1710
1711         /* Avoid expensive walking of rexmit queue if possible */
1712         if (tp->retrans_out > 1)
1713                 return 0;
1714
1715         skb = tcp_write_queue_head(sk);
1716         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1717         tcp_for_write_queue_from(skb, sk) {
1718                 if (skb == tcp_send_head(sk))
1719                         break;
1720                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1721                         return 0;
1722                 /* Short-circuit when first non-SACKed skb has been checked */
1723                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1724                         break;
1725         }
1726         return 1;
1727 }
1728
1729 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1730  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1731  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1732  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1733  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1734  * bits are handled if the Loss state is really to be entered (in
1735  * tcp_enter_frto_loss).
1736  *
1737  * Do like tcp_enter_loss() would; when RTO expires the second time it
1738  * does:
1739  *  "Reduce ssthresh if it has not yet been made inside this window."
1740  */
1741 void tcp_enter_frto(struct sock *sk)
1742 {
1743         const struct inet_connection_sock *icsk = inet_csk(sk);
1744         struct tcp_sock *tp = tcp_sk(sk);
1745         struct sk_buff *skb;
1746
1747         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1748             tp->snd_una == tp->high_seq ||
1749             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1750              !icsk->icsk_retransmits)) {
1751                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1752                 /* Our state is too optimistic in ssthresh() call because cwnd
1753                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1754                  * recovery has not yet completed. Pattern would be this: RTO,
1755                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1756                  * up here twice).
1757                  * RFC4138 should be more specific on what to do, even though
1758                  * RTO is quite unlikely to occur after the first Cumulative ACK
1759                  * due to back-off and complexity of triggering events ...
1760                  */
1761                 if (tp->frto_counter) {
1762                         u32 stored_cwnd;
1763                         stored_cwnd = tp->snd_cwnd;
1764                         tp->snd_cwnd = 2;
1765                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1766                         tp->snd_cwnd = stored_cwnd;
1767                 } else {
1768                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1769                 }
1770                 /* ... in theory, cong.control module could do "any tricks" in
1771                  * ssthresh(), which means that ca_state, lost bits and lost_out
1772                  * counter would have to be faked before the call occurs. We
1773                  * consider that too expensive, unlikely and hacky, so modules
1774                  * using these in ssthresh() must deal these incompatibility
1775                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1776                  */
1777                 tcp_ca_event(sk, CA_EVENT_FRTO);
1778         }
1779
1780         tp->undo_marker = tp->snd_una;
1781         tp->undo_retrans = 0;
1782
1783         skb = tcp_write_queue_head(sk);
1784         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1785                 tp->undo_marker = 0;
1786         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1787                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1788                 tp->retrans_out -= tcp_skb_pcount(skb);
1789         }
1790         tcp_verify_left_out(tp);
1791
1792         /* Too bad if TCP was application limited */
1793         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1794
1795         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1796          * The last condition is necessary at least in tp->frto_counter case.
1797          */
1798         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1799             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1800             after(tp->high_seq, tp->snd_una)) {
1801                 tp->frto_highmark = tp->high_seq;
1802         } else {
1803                 tp->frto_highmark = tp->snd_nxt;
1804         }
1805         tcp_set_ca_state(sk, TCP_CA_Disorder);
1806         tp->high_seq = tp->snd_nxt;
1807         tp->frto_counter = 1;
1808 }
1809
1810 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1811  * which indicates that we should follow the traditional RTO recovery,
1812  * i.e. mark everything lost and do go-back-N retransmission.
1813  */
1814 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1815 {
1816         struct tcp_sock *tp = tcp_sk(sk);
1817         struct sk_buff *skb;
1818
1819         tp->lost_out = 0;
1820         tp->retrans_out = 0;
1821         if (tcp_is_reno(tp))
1822                 tcp_reset_reno_sack(tp);
1823
1824         tcp_for_write_queue(skb, sk) {
1825                 if (skb == tcp_send_head(sk))
1826                         break;
1827
1828                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1829                 /*
1830                  * Count the retransmission made on RTO correctly (only when
1831                  * waiting for the first ACK and did not get it)...
1832                  */
1833                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1834                         /* For some reason this R-bit might get cleared? */
1835                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1836                                 tp->retrans_out += tcp_skb_pcount(skb);
1837                         /* ...enter this if branch just for the first segment */
1838                         flag |= FLAG_DATA_ACKED;
1839                 } else {
1840                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1841                                 tp->undo_marker = 0;
1842                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1843                 }
1844
1845                 /* Marking forward transmissions that were made after RTO lost
1846                  * can cause unnecessary retransmissions in some scenarios,
1847                  * SACK blocks will mitigate that in some but not in all cases.
1848                  * We used to not mark them but it was causing break-ups with
1849                  * receivers that do only in-order receival.
1850                  *
1851                  * TODO: we could detect presence of such receiver and select
1852                  * different behavior per flow.
1853                  */
1854                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1855                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1856                         tp->lost_out += tcp_skb_pcount(skb);
1857                 }
1858         }
1859         tcp_verify_left_out(tp);
1860
1861         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1862         tp->snd_cwnd_cnt = 0;
1863         tp->snd_cwnd_stamp = tcp_time_stamp;
1864         tp->frto_counter = 0;
1865         tp->bytes_acked = 0;
1866
1867         tp->reordering = min_t(unsigned int, tp->reordering,
1868                                sysctl_tcp_reordering);
1869         tcp_set_ca_state(sk, TCP_CA_Loss);
1870         tp->high_seq = tp->snd_nxt;
1871         TCP_ECN_queue_cwr(tp);
1872
1873         tcp_clear_retrans_hints_partial(tp);
1874 }
1875
1876 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1877 {
1878         tp->retrans_out = 0;
1879         tp->lost_out = 0;
1880
1881         tp->undo_marker = 0;
1882         tp->undo_retrans = 0;
1883 }
1884
1885 void tcp_clear_retrans(struct tcp_sock *tp)
1886 {
1887         tcp_clear_retrans_partial(tp);
1888
1889         tp->fackets_out = 0;
1890         tp->sacked_out = 0;
1891 }
1892
1893 /* Enter Loss state. If "how" is not zero, forget all SACK information
1894  * and reset tags completely, otherwise preserve SACKs. If receiver
1895  * dropped its ofo queue, we will know this due to reneging detection.
1896  */
1897 void tcp_enter_loss(struct sock *sk, int how)
1898 {
1899         const struct inet_connection_sock *icsk = inet_csk(sk);
1900         struct tcp_sock *tp = tcp_sk(sk);
1901         struct sk_buff *skb;
1902
1903         /* Reduce ssthresh if it has not yet been made inside this window. */
1904         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1905             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1906                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1907                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1908                 tcp_ca_event(sk, CA_EVENT_LOSS);
1909         }
1910         tp->snd_cwnd       = 1;
1911         tp->snd_cwnd_cnt   = 0;
1912         tp->snd_cwnd_stamp = tcp_time_stamp;
1913
1914         tp->bytes_acked = 0;
1915         tcp_clear_retrans_partial(tp);
1916
1917         if (tcp_is_reno(tp))
1918                 tcp_reset_reno_sack(tp);
1919
1920         if (!how) {
1921                 /* Push undo marker, if it was plain RTO and nothing
1922                  * was retransmitted. */
1923                 tp->undo_marker = tp->snd_una;
1924                 tcp_clear_retrans_hints_partial(tp);
1925         } else {
1926                 tp->sacked_out = 0;
1927                 tp->fackets_out = 0;
1928                 tcp_clear_all_retrans_hints(tp);
1929         }
1930
1931         tcp_for_write_queue(skb, sk) {
1932                 if (skb == tcp_send_head(sk))
1933                         break;
1934
1935                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1936                         tp->undo_marker = 0;
1937                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1938                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1939                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1940                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1941                         tp->lost_out += tcp_skb_pcount(skb);
1942                 }
1943         }
1944         tcp_verify_left_out(tp);
1945
1946         tp->reordering = min_t(unsigned int, tp->reordering,
1947                                sysctl_tcp_reordering);
1948         tcp_set_ca_state(sk, TCP_CA_Loss);
1949         tp->high_seq = tp->snd_nxt;
1950         TCP_ECN_queue_cwr(tp);
1951         /* Abort F-RTO algorithm if one is in progress */
1952         tp->frto_counter = 0;
1953 }
1954
1955 /* If ACK arrived pointing to a remembered SACK, it means that our
1956  * remembered SACKs do not reflect real state of receiver i.e.
1957  * receiver _host_ is heavily congested (or buggy).
1958  *
1959  * Do processing similar to RTO timeout.
1960  */
1961 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1962 {
1963         if (flag & FLAG_SACK_RENEGING) {
1964                 struct inet_connection_sock *icsk = inet_csk(sk);
1965                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1966
1967                 tcp_enter_loss(sk, 1);
1968                 icsk->icsk_retransmits++;
1969                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1970                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1971                                           icsk->icsk_rto, TCP_RTO_MAX);
1972                 return 1;
1973         }
1974         return 0;
1975 }
1976
1977 static inline int tcp_fackets_out(struct tcp_sock *tp)
1978 {
1979         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1980 }
1981
1982 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1983  * counter when SACK is enabled (without SACK, sacked_out is used for
1984  * that purpose).
1985  *
1986  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1987  * segments up to the highest received SACK block so far and holes in
1988  * between them.
1989  *
1990  * With reordering, holes may still be in flight, so RFC3517 recovery
1991  * uses pure sacked_out (total number of SACKed segments) even though
1992  * it violates the RFC that uses duplicate ACKs, often these are equal
1993  * but when e.g. out-of-window ACKs or packet duplication occurs,
1994  * they differ. Since neither occurs due to loss, TCP should really
1995  * ignore them.
1996  */
1997 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1998 {
1999         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2000 }
2001
2002 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2003 {
2004         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2005 }
2006
2007 static inline int tcp_head_timedout(struct sock *sk)
2008 {
2009         struct tcp_sock *tp = tcp_sk(sk);
2010
2011         return tp->packets_out &&
2012                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2013 }
2014
2015 /* Linux NewReno/SACK/FACK/ECN state machine.
2016  * --------------------------------------
2017  *
2018  * "Open"       Normal state, no dubious events, fast path.
2019  * "Disorder"   In all the respects it is "Open",
2020  *              but requires a bit more attention. It is entered when
2021  *              we see some SACKs or dupacks. It is split of "Open"
2022  *              mainly to move some processing from fast path to slow one.
2023  * "CWR"        CWND was reduced due to some Congestion Notification event.
2024  *              It can be ECN, ICMP source quench, local device congestion.
2025  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2026  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2027  *
2028  * tcp_fastretrans_alert() is entered:
2029  * - each incoming ACK, if state is not "Open"
2030  * - when arrived ACK is unusual, namely:
2031  *      * SACK
2032  *      * Duplicate ACK.
2033  *      * ECN ECE.
2034  *
2035  * Counting packets in flight is pretty simple.
2036  *
2037  *      in_flight = packets_out - left_out + retrans_out
2038  *
2039  *      packets_out is SND.NXT-SND.UNA counted in packets.
2040  *
2041  *      retrans_out is number of retransmitted segments.
2042  *
2043  *      left_out is number of segments left network, but not ACKed yet.
2044  *
2045  *              left_out = sacked_out + lost_out
2046  *
2047  *     sacked_out: Packets, which arrived to receiver out of order
2048  *                 and hence not ACKed. With SACKs this number is simply
2049  *                 amount of SACKed data. Even without SACKs
2050  *                 it is easy to give pretty reliable estimate of this number,
2051  *                 counting duplicate ACKs.
2052  *
2053  *       lost_out: Packets lost by network. TCP has no explicit
2054  *                 "loss notification" feedback from network (for now).
2055  *                 It means that this number can be only _guessed_.
2056  *                 Actually, it is the heuristics to predict lossage that
2057  *                 distinguishes different algorithms.
2058  *
2059  *      F.e. after RTO, when all the queue is considered as lost,
2060  *      lost_out = packets_out and in_flight = retrans_out.
2061  *
2062  *              Essentially, we have now two algorithms counting
2063  *              lost packets.
2064  *
2065  *              FACK: It is the simplest heuristics. As soon as we decided
2066  *              that something is lost, we decide that _all_ not SACKed
2067  *              packets until the most forward SACK are lost. I.e.
2068  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2069  *              It is absolutely correct estimate, if network does not reorder
2070  *              packets. And it loses any connection to reality when reordering
2071  *              takes place. We use FACK by default until reordering
2072  *              is suspected on the path to this destination.
2073  *
2074  *              NewReno: when Recovery is entered, we assume that one segment
2075  *              is lost (classic Reno). While we are in Recovery and
2076  *              a partial ACK arrives, we assume that one more packet
2077  *              is lost (NewReno). This heuristics are the same in NewReno
2078  *              and SACK.
2079  *
2080  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2081  *  deflation etc. CWND is real congestion window, never inflated, changes
2082  *  only according to classic VJ rules.
2083  *
2084  * Really tricky (and requiring careful tuning) part of algorithm
2085  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2086  * The first determines the moment _when_ we should reduce CWND and,
2087  * hence, slow down forward transmission. In fact, it determines the moment
2088  * when we decide that hole is caused by loss, rather than by a reorder.
2089  *
2090  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2091  * holes, caused by lost packets.
2092  *
2093  * And the most logically complicated part of algorithm is undo
2094  * heuristics. We detect false retransmits due to both too early
2095  * fast retransmit (reordering) and underestimated RTO, analyzing
2096  * timestamps and D-SACKs. When we detect that some segments were
2097  * retransmitted by mistake and CWND reduction was wrong, we undo
2098  * window reduction and abort recovery phase. This logic is hidden
2099  * inside several functions named tcp_try_undo_<something>.
2100  */
2101
2102 /* This function decides, when we should leave Disordered state
2103  * and enter Recovery phase, reducing congestion window.
2104  *
2105  * Main question: may we further continue forward transmission
2106  * with the same cwnd?
2107  */
2108 static int tcp_time_to_recover(struct sock *sk)
2109 {
2110         struct tcp_sock *tp = tcp_sk(sk);
2111         __u32 packets_out;
2112
2113         /* Do not perform any recovery during F-RTO algorithm */
2114         if (tp->frto_counter)
2115                 return 0;
2116
2117         /* Trick#1: The loss is proven. */
2118         if (tp->lost_out)
2119                 return 1;
2120
2121         /* Not-A-Trick#2 : Classic rule... */
2122         if (tcp_dupack_heurestics(tp) > tp->reordering)
2123                 return 1;
2124
2125         /* Trick#3 : when we use RFC2988 timer restart, fast
2126          * retransmit can be triggered by timeout of queue head.
2127          */
2128         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2129                 return 1;
2130
2131         /* Trick#4: It is still not OK... But will it be useful to delay
2132          * recovery more?
2133          */
2134         packets_out = tp->packets_out;
2135         if (packets_out <= tp->reordering &&
2136             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2137             !tcp_may_send_now(sk)) {
2138                 /* We have nothing to send. This connection is limited
2139                  * either by receiver window or by application.
2140                  */
2141                 return 1;
2142         }
2143
2144         return 0;
2145 }
2146
2147 /* RFC: This is from the original, I doubt that this is necessary at all:
2148  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2149  * retransmitted past LOST markings in the first place? I'm not fully sure
2150  * about undo and end of connection cases, which can cause R without L?
2151  */
2152 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2153 {
2154         if ((tp->retransmit_skb_hint != NULL) &&
2155             before(TCP_SKB_CB(skb)->seq,
2156                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2157                 tp->retransmit_skb_hint = NULL;
2158 }
2159
2160 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2161  * is against sacked "cnt", otherwise it's against facked "cnt"
2162  */
2163 static void tcp_mark_head_lost(struct sock *sk, int packets)
2164 {
2165         struct tcp_sock *tp = tcp_sk(sk);
2166         struct sk_buff *skb;
2167         int cnt, oldcnt;
2168         int err;
2169         unsigned int mss;
2170
2171         BUG_TRAP(packets <= tp->packets_out);
2172         if (tp->lost_skb_hint) {
2173                 skb = tp->lost_skb_hint;
2174                 cnt = tp->lost_cnt_hint;
2175         } else {
2176                 skb = tcp_write_queue_head(sk);
2177                 cnt = 0;
2178         }
2179
2180         tcp_for_write_queue_from(skb, sk) {
2181                 if (skb == tcp_send_head(sk))
2182                         break;
2183                 /* TODO: do this better */
2184                 /* this is not the most efficient way to do this... */
2185                 tp->lost_skb_hint = skb;
2186                 tp->lost_cnt_hint = cnt;
2187
2188                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2189                         break;
2190
2191                 oldcnt = cnt;
2192                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2193                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2194                         cnt += tcp_skb_pcount(skb);
2195
2196                 if (cnt > packets) {
2197                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2198                                 break;
2199
2200                         mss = skb_shinfo(skb)->gso_size;
2201                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2202                         if (err < 0)
2203                                 break;
2204                         cnt = packets;
2205                 }
2206
2207                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2208                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2209                         tp->lost_out += tcp_skb_pcount(skb);
2210                         tcp_verify_retransmit_hint(tp, skb);
2211                 }
2212         }
2213         tcp_verify_left_out(tp);
2214 }
2215
2216 /* Account newly detected lost packet(s) */
2217
2218 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2219 {
2220         struct tcp_sock *tp = tcp_sk(sk);
2221
2222         if (tcp_is_reno(tp)) {
2223                 tcp_mark_head_lost(sk, 1);
2224         } else if (tcp_is_fack(tp)) {
2225                 int lost = tp->fackets_out - tp->reordering;
2226                 if (lost <= 0)
2227                         lost = 1;
2228                 tcp_mark_head_lost(sk, lost);
2229         } else {
2230                 int sacked_upto = tp->sacked_out - tp->reordering;
2231                 if (sacked_upto < fast_rexmit)
2232                         sacked_upto = fast_rexmit;
2233                 tcp_mark_head_lost(sk, sacked_upto);
2234         }
2235
2236         /* New heuristics: it is possible only after we switched
2237          * to restart timer each time when something is ACKed.
2238          * Hence, we can detect timed out packets during fast
2239          * retransmit without falling to slow start.
2240          */
2241         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2242                 struct sk_buff *skb;
2243
2244                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2245                         : tcp_write_queue_head(sk);
2246
2247                 tcp_for_write_queue_from(skb, sk) {
2248                         if (skb == tcp_send_head(sk))
2249                                 break;
2250                         if (!tcp_skb_timedout(sk, skb))
2251                                 break;
2252
2253                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2254                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2255                                 tp->lost_out += tcp_skb_pcount(skb);
2256                                 tcp_verify_retransmit_hint(tp, skb);
2257                         }
2258                 }
2259
2260                 tp->scoreboard_skb_hint = skb;
2261
2262                 tcp_verify_left_out(tp);
2263         }
2264 }
2265
2266 /* CWND moderation, preventing bursts due to too big ACKs
2267  * in dubious situations.
2268  */
2269 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2270 {
2271         tp->snd_cwnd = min(tp->snd_cwnd,
2272                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2273         tp->snd_cwnd_stamp = tcp_time_stamp;
2274 }
2275
2276 /* Lower bound on congestion window is slow start threshold
2277  * unless congestion avoidance choice decides to overide it.
2278  */
2279 static inline u32 tcp_cwnd_min(const struct sock *sk)
2280 {
2281         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2282
2283         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2284 }
2285
2286 /* Decrease cwnd each second ack. */
2287 static void tcp_cwnd_down(struct sock *sk, int flag)
2288 {
2289         struct tcp_sock *tp = tcp_sk(sk);
2290         int decr = tp->snd_cwnd_cnt + 1;
2291
2292         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2293             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2294                 tp->snd_cwnd_cnt = decr & 1;
2295                 decr >>= 1;
2296
2297                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2298                         tp->snd_cwnd -= decr;
2299
2300                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2301                 tp->snd_cwnd_stamp = tcp_time_stamp;
2302         }
2303 }
2304
2305 /* Nothing was retransmitted or returned timestamp is less
2306  * than timestamp of the first retransmission.
2307  */
2308 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2309 {
2310         return !tp->retrans_stamp ||
2311                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2312                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2313 }
2314
2315 /* Undo procedures. */
2316
2317 #if FASTRETRANS_DEBUG > 1
2318 static void DBGUNDO(struct sock *sk, const char *msg)
2319 {
2320         struct tcp_sock *tp = tcp_sk(sk);
2321         struct inet_sock *inet = inet_sk(sk);
2322
2323         if (sk->sk_family == AF_INET) {
2324                 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2325                        msg,
2326                        NIPQUAD(inet->daddr), ntohs(inet->dport),
2327                        tp->snd_cwnd, tcp_left_out(tp),
2328                        tp->snd_ssthresh, tp->prior_ssthresh,
2329                        tp->packets_out);
2330         }
2331 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2332         else if (sk->sk_family == AF_INET6) {
2333                 struct ipv6_pinfo *np = inet6_sk(sk);
2334                 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2335                        msg,
2336                        NIP6(np->daddr), ntohs(inet->dport),
2337                        tp->snd_cwnd, tcp_left_out(tp),
2338                        tp->snd_ssthresh, tp->prior_ssthresh,
2339                        tp->packets_out);
2340         }
2341 #endif
2342 }
2343 #else
2344 #define DBGUNDO(x...) do { } while (0)
2345 #endif
2346
2347 static void tcp_undo_cwr(struct sock *sk, const int undo)
2348 {
2349         struct tcp_sock *tp = tcp_sk(sk);
2350
2351         if (tp->prior_ssthresh) {
2352                 const struct inet_connection_sock *icsk = inet_csk(sk);
2353
2354                 if (icsk->icsk_ca_ops->undo_cwnd)
2355                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2356                 else
2357                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2358
2359                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2360                         tp->snd_ssthresh = tp->prior_ssthresh;
2361                         TCP_ECN_withdraw_cwr(tp);
2362                 }
2363         } else {
2364                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2365         }
2366         tcp_moderate_cwnd(tp);
2367         tp->snd_cwnd_stamp = tcp_time_stamp;
2368
2369         /* There is something screwy going on with the retrans hints after
2370            an undo */
2371         tcp_clear_all_retrans_hints(tp);
2372 }
2373
2374 static inline int tcp_may_undo(struct tcp_sock *tp)
2375 {
2376         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2377 }
2378
2379 /* People celebrate: "We love our President!" */
2380 static int tcp_try_undo_recovery(struct sock *sk)
2381 {
2382         struct tcp_sock *tp = tcp_sk(sk);
2383
2384         if (tcp_may_undo(tp)) {
2385                 /* Happy end! We did not retransmit anything
2386                  * or our original transmission succeeded.
2387                  */
2388                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2389                 tcp_undo_cwr(sk, 1);
2390                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2391                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2392                 else
2393                         NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2394                 tp->undo_marker = 0;
2395         }
2396         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2397                 /* Hold old state until something *above* high_seq
2398                  * is ACKed. For Reno it is MUST to prevent false
2399                  * fast retransmits (RFC2582). SACK TCP is safe. */
2400                 tcp_moderate_cwnd(tp);
2401                 return 1;
2402         }
2403         tcp_set_ca_state(sk, TCP_CA_Open);
2404         return 0;
2405 }
2406
2407 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2408 static void tcp_try_undo_dsack(struct sock *sk)
2409 {
2410         struct tcp_sock *tp = tcp_sk(sk);
2411
2412         if (tp->undo_marker && !tp->undo_retrans) {
2413                 DBGUNDO(sk, "D-SACK");
2414                 tcp_undo_cwr(sk, 1);
2415                 tp->undo_marker = 0;
2416                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2417         }
2418 }
2419
2420 /* Undo during fast recovery after partial ACK. */
2421
2422 static int tcp_try_undo_partial(struct sock *sk, int acked)
2423 {
2424         struct tcp_sock *tp = tcp_sk(sk);
2425         /* Partial ACK arrived. Force Hoe's retransmit. */
2426         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2427
2428         if (tcp_may_undo(tp)) {
2429                 /* Plain luck! Hole if filled with delayed
2430                  * packet, rather than with a retransmit.
2431                  */
2432                 if (tp->retrans_out == 0)
2433                         tp->retrans_stamp = 0;
2434
2435                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2436
2437                 DBGUNDO(sk, "Hoe");
2438                 tcp_undo_cwr(sk, 0);
2439                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2440
2441                 /* So... Do not make Hoe's retransmit yet.
2442                  * If the first packet was delayed, the rest
2443                  * ones are most probably delayed as well.
2444                  */
2445                 failed = 0;
2446         }
2447         return failed;
2448 }
2449
2450 /* Undo during loss recovery after partial ACK. */
2451 static int tcp_try_undo_loss(struct sock *sk)
2452 {
2453         struct tcp_sock *tp = tcp_sk(sk);
2454
2455         if (tcp_may_undo(tp)) {
2456                 struct sk_buff *skb;
2457                 tcp_for_write_queue(skb, sk) {
2458                         if (skb == tcp_send_head(sk))
2459                                 break;
2460                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2461                 }
2462
2463                 tcp_clear_all_retrans_hints(tp);
2464
2465                 DBGUNDO(sk, "partial loss");
2466                 tp->lost_out = 0;
2467                 tcp_undo_cwr(sk, 1);
2468                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2469                 inet_csk(sk)->icsk_retransmits = 0;
2470                 tp->undo_marker = 0;
2471                 if (tcp_is_sack(tp))
2472                         tcp_set_ca_state(sk, TCP_CA_Open);
2473                 return 1;
2474         }
2475         return 0;
2476 }
2477
2478 static inline void tcp_complete_cwr(struct sock *sk)
2479 {
2480         struct tcp_sock *tp = tcp_sk(sk);
2481         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2482         tp->snd_cwnd_stamp = tcp_time_stamp;
2483         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2484 }
2485
2486 static void tcp_try_to_open(struct sock *sk, int flag)
2487 {
2488         struct tcp_sock *tp = tcp_sk(sk);
2489
2490         tcp_verify_left_out(tp);
2491
2492         if (!tp->frto_counter && tp->retrans_out == 0)
2493                 tp->retrans_stamp = 0;
2494
2495         if (flag & FLAG_ECE)
2496                 tcp_enter_cwr(sk, 1);
2497
2498         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2499                 int state = TCP_CA_Open;
2500
2501                 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2502                         state = TCP_CA_Disorder;
2503
2504                 if (inet_csk(sk)->icsk_ca_state != state) {
2505                         tcp_set_ca_state(sk, state);
2506                         tp->high_seq = tp->snd_nxt;
2507                 }
2508                 tcp_moderate_cwnd(tp);
2509         } else {
2510                 tcp_cwnd_down(sk, flag);
2511         }
2512 }
2513
2514 static void tcp_mtup_probe_failed(struct sock *sk)
2515 {
2516         struct inet_connection_sock *icsk = inet_csk(sk);
2517
2518         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2519         icsk->icsk_mtup.probe_size = 0;
2520 }
2521
2522 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2523 {
2524         struct tcp_sock *tp = tcp_sk(sk);
2525         struct inet_connection_sock *icsk = inet_csk(sk);
2526
2527         /* FIXME: breaks with very large cwnd */
2528         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2529         tp->snd_cwnd = tp->snd_cwnd *
2530                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2531                        icsk->icsk_mtup.probe_size;
2532         tp->snd_cwnd_cnt = 0;
2533         tp->snd_cwnd_stamp = tcp_time_stamp;
2534         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2535
2536         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2537         icsk->icsk_mtup.probe_size = 0;
2538         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2539 }
2540
2541 /* Process an event, which can update packets-in-flight not trivially.
2542  * Main goal of this function is to calculate new estimate for left_out,
2543  * taking into account both packets sitting in receiver's buffer and
2544  * packets lost by network.
2545  *
2546  * Besides that it does CWND reduction, when packet loss is detected
2547  * and changes state of machine.
2548  *
2549  * It does _not_ decide what to send, it is made in function
2550  * tcp_xmit_retransmit_queue().
2551  */
2552 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2553 {
2554         struct inet_connection_sock *icsk = inet_csk(sk);
2555         struct tcp_sock *tp = tcp_sk(sk);
2556         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2557         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2558                                     (tcp_fackets_out(tp) > tp->reordering));
2559         int fast_rexmit = 0;
2560
2561         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2562                 tp->sacked_out = 0;
2563         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2564                 tp->fackets_out = 0;
2565
2566         /* Now state machine starts.
2567          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2568         if (flag & FLAG_ECE)
2569                 tp->prior_ssthresh = 0;
2570
2571         /* B. In all the states check for reneging SACKs. */
2572         if (tcp_check_sack_reneging(sk, flag))
2573                 return;
2574
2575         /* C. Process data loss notification, provided it is valid. */
2576         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2577             before(tp->snd_una, tp->high_seq) &&
2578             icsk->icsk_ca_state != TCP_CA_Open &&
2579             tp->fackets_out > tp->reordering) {
2580                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2581                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2582         }
2583
2584         /* D. Check consistency of the current state. */
2585         tcp_verify_left_out(tp);
2586
2587         /* E. Check state exit conditions. State can be terminated
2588          *    when high_seq is ACKed. */
2589         if (icsk->icsk_ca_state == TCP_CA_Open) {
2590                 BUG_TRAP(tp->retrans_out == 0);
2591                 tp->retrans_stamp = 0;
2592         } else if (!before(tp->snd_una, tp->high_seq)) {
2593                 switch (icsk->icsk_ca_state) {
2594                 case TCP_CA_Loss:
2595                         icsk->icsk_retransmits = 0;
2596                         if (tcp_try_undo_recovery(sk))
2597                                 return;
2598                         break;
2599
2600                 case TCP_CA_CWR:
2601                         /* CWR is to be held something *above* high_seq
2602                          * is ACKed for CWR bit to reach receiver. */
2603                         if (tp->snd_una != tp->high_seq) {
2604                                 tcp_complete_cwr(sk);
2605                                 tcp_set_ca_state(sk, TCP_CA_Open);
2606                         }
2607                         break;
2608
2609                 case TCP_CA_Disorder:
2610                         tcp_try_undo_dsack(sk);
2611                         if (!tp->undo_marker ||
2612                             /* For SACK case do not Open to allow to undo
2613                              * catching for all duplicate ACKs. */
2614                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2615                                 tp->undo_marker = 0;
2616                                 tcp_set_ca_state(sk, TCP_CA_Open);
2617                         }
2618                         break;
2619
2620                 case TCP_CA_Recovery:
2621                         if (tcp_is_reno(tp))
2622                                 tcp_reset_reno_sack(tp);
2623                         if (tcp_try_undo_recovery(sk))
2624                                 return;
2625                         tcp_complete_cwr(sk);
2626                         break;
2627                 }
2628         }
2629
2630         /* F. Process state. */
2631         switch (icsk->icsk_ca_state) {
2632         case TCP_CA_Recovery:
2633                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2634                         if (tcp_is_reno(tp) && is_dupack)
2635                                 tcp_add_reno_sack(sk);
2636                 } else
2637                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2638                 break;
2639         case TCP_CA_Loss:
2640                 if (flag & FLAG_DATA_ACKED)
2641                         icsk->icsk_retransmits = 0;
2642                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2643                         tcp_reset_reno_sack(tp);
2644                 if (!tcp_try_undo_loss(sk)) {
2645                         tcp_moderate_cwnd(tp);
2646                         tcp_xmit_retransmit_queue(sk);
2647                         return;
2648                 }
2649                 if (icsk->icsk_ca_state != TCP_CA_Open)
2650                         return;
2651                 /* Loss is undone; fall through to processing in Open state. */
2652         default:
2653                 if (tcp_is_reno(tp)) {
2654                         if (flag & FLAG_SND_UNA_ADVANCED)
2655                                 tcp_reset_reno_sack(tp);
2656                         if (is_dupack)
2657                                 tcp_add_reno_sack(sk);
2658                 }
2659
2660                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2661                         tcp_try_undo_dsack(sk);
2662
2663                 if (!tcp_time_to_recover(sk)) {
2664                         tcp_try_to_open(sk, flag);
2665                         return;
2666                 }
2667
2668                 /* MTU probe failure: don't reduce cwnd */
2669                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2670                     icsk->icsk_mtup.probe_size &&
2671                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2672                         tcp_mtup_probe_failed(sk);
2673                         /* Restores the reduction we did in tcp_mtup_probe() */
2674                         tp->snd_cwnd++;
2675                         tcp_simple_retransmit(sk);
2676                         return;
2677                 }
2678
2679                 /* Otherwise enter Recovery state */
2680
2681                 if (tcp_is_reno(tp))
2682                         NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2683                 else
2684                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2685
2686                 tp->high_seq = tp->snd_nxt;
2687                 tp->prior_ssthresh = 0;
2688                 tp->undo_marker = tp->snd_una;
2689                 tp->undo_retrans = tp->retrans_out;
2690
2691                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2692                         if (!(flag & FLAG_ECE))
2693                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2694                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2695                         TCP_ECN_queue_cwr(tp);
2696                 }
2697
2698                 tp->bytes_acked = 0;
2699                 tp->snd_cwnd_cnt = 0;
2700                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2701                 fast_rexmit = 1;
2702         }
2703
2704         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2705                 tcp_update_scoreboard(sk, fast_rexmit);
2706         tcp_cwnd_down(sk, flag);
2707         tcp_xmit_retransmit_queue(sk);
2708 }
2709
2710 /* Read draft-ietf-tcplw-high-performance before mucking
2711  * with this code. (Supersedes RFC1323)
2712  */
2713 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2714 {
2715         /* RTTM Rule: A TSecr value received in a segment is used to
2716          * update the averaged RTT measurement only if the segment
2717          * acknowledges some new data, i.e., only if it advances the
2718          * left edge of the send window.
2719          *
2720          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2721          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2722          *
2723          * Changed: reset backoff as soon as we see the first valid sample.
2724          * If we do not, we get strongly overestimated rto. With timestamps
2725          * samples are accepted even from very old segments: f.e., when rtt=1
2726          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2727          * answer arrives rto becomes 120 seconds! If at least one of segments
2728          * in window is lost... Voila.                          --ANK (010210)
2729          */
2730         struct tcp_sock *tp = tcp_sk(sk);
2731         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2732         tcp_rtt_estimator(sk, seq_rtt);
2733         tcp_set_rto(sk);
2734         inet_csk(sk)->icsk_backoff = 0;
2735         tcp_bound_rto(sk);
2736 }
2737
2738 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2739 {
2740         /* We don't have a timestamp. Can only use
2741          * packets that are not retransmitted to determine
2742          * rtt estimates. Also, we must not reset the
2743          * backoff for rto until we get a non-retransmitted
2744          * packet. This allows us to deal with a situation
2745          * where the network delay has increased suddenly.
2746          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2747          */
2748
2749         if (flag & FLAG_RETRANS_DATA_ACKED)
2750                 return;
2751
2752         tcp_rtt_estimator(sk, seq_rtt);
2753         tcp_set_rto(sk);
2754         inet_csk(sk)->icsk_backoff = 0;
2755         tcp_bound_rto(sk);
2756 }
2757
2758 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2759                                       const s32 seq_rtt)
2760 {
2761         const struct tcp_sock *tp = tcp_sk(sk);
2762         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2763         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2764                 tcp_ack_saw_tstamp(sk, flag);
2765         else if (seq_rtt >= 0)
2766                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2767 }
2768
2769 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2770 {
2771         const struct inet_connection_sock *icsk = inet_csk(sk);
2772         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2773         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2774 }
2775
2776 /* Restart timer after forward progress on connection.
2777  * RFC2988 recommends to restart timer to now+rto.
2778  */
2779 static void tcp_rearm_rto(struct sock *sk)
2780 {
2781         struct tcp_sock *tp = tcp_sk(sk);
2782
2783         if (!tp->packets_out) {
2784                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2785         } else {
2786                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2787                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2788         }
2789 }
2790
2791 /* If we get here, the whole TSO packet has not been acked. */
2792 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2793 {
2794         struct tcp_sock *tp = tcp_sk(sk);
2795         u32 packets_acked;
2796
2797         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2798
2799         packets_acked = tcp_skb_pcount(skb);
2800         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2801                 return 0;
2802         packets_acked -= tcp_skb_pcount(skb);
2803
2804         if (packets_acked) {
2805                 BUG_ON(tcp_skb_pcount(skb) == 0);
2806                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2807         }
2808
2809         return packets_acked;
2810 }
2811
2812 /* Remove acknowledged frames from the retransmission queue. If our packet
2813  * is before the ack sequence we can discard it as it's confirmed to have
2814  * arrived at the other end.
2815  */
2816 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2817 {
2818         struct tcp_sock *tp = tcp_sk(sk);
2819         const struct inet_connection_sock *icsk = inet_csk(sk);
2820         struct sk_buff *skb;
2821         u32 now = tcp_time_stamp;
2822         int fully_acked = 1;
2823         int flag = 0;
2824         u32 pkts_acked = 0;
2825         u32 reord = tp->packets_out;
2826         s32 seq_rtt = -1;
2827         s32 ca_seq_rtt = -1;
2828         ktime_t last_ackt = net_invalid_timestamp();
2829
2830         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2831                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2832                 u32 end_seq;
2833                 u32 acked_pcount;
2834                 u8 sacked = scb->sacked;
2835
2836                 /* Determine how many packets and what bytes were acked, tso and else */
2837                 if (after(scb->end_seq, tp->snd_una)) {
2838                         if (tcp_skb_pcount(skb) == 1 ||
2839                             !after(tp->snd_una, scb->seq))
2840                                 break;
2841
2842                         acked_pcount = tcp_tso_acked(sk, skb);
2843                         if (!acked_pcount)
2844                                 break;
2845
2846                         fully_acked = 0;
2847                         end_seq = tp->snd_una;
2848                 } else {
2849                         acked_pcount = tcp_skb_pcount(skb);
2850                         end_seq = scb->end_seq;
2851                 }
2852
2853                 /* MTU probing checks */
2854                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2855                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2856                         tcp_mtup_probe_success(sk, skb);
2857                 }
2858
2859                 if (sacked & TCPCB_RETRANS) {
2860                         if (sacked & TCPCB_SACKED_RETRANS)
2861                                 tp->retrans_out -= acked_pcount;
2862                         flag |= FLAG_RETRANS_DATA_ACKED;
2863                         ca_seq_rtt = -1;
2864                         seq_rtt = -1;
2865                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2866                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2867                 } else {
2868                         ca_seq_rtt = now - scb->when;
2869                         last_ackt = skb->tstamp;
2870                         if (seq_rtt < 0) {
2871                                 seq_rtt = ca_seq_rtt;
2872                         }
2873                         if (!(sacked & TCPCB_SACKED_ACKED))
2874                                 reord = min(pkts_acked, reord);
2875                 }
2876
2877                 if (sacked & TCPCB_SACKED_ACKED)
2878                         tp->sacked_out -= acked_pcount;
2879                 if (sacked & TCPCB_LOST)
2880                         tp->lost_out -= acked_pcount;
2881
2882                 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2883                         tp->urg_mode = 0;
2884
2885                 tp->packets_out -= acked_pcount;
2886                 pkts_acked += acked_pcount;
2887
2888                 /* Initial outgoing SYN's get put onto the write_queue
2889                  * just like anything else we transmit.  It is not
2890                  * true data, and if we misinform our callers that
2891                  * this ACK acks real data, we will erroneously exit
2892                  * connection startup slow start one packet too
2893                  * quickly.  This is severely frowned upon behavior.
2894                  */
2895                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2896                         flag |= FLAG_DATA_ACKED;
2897                 } else {
2898                         flag |= FLAG_SYN_ACKED;
2899                         tp->retrans_stamp = 0;
2900                 }
2901
2902                 if (!fully_acked)
2903                         break;
2904
2905                 tcp_unlink_write_queue(skb, sk);
2906                 sk_wmem_free_skb(sk, skb);
2907                 tcp_clear_all_retrans_hints(tp);
2908         }
2909
2910         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2911                 flag |= FLAG_SACK_RENEGING;
2912
2913         if (flag & FLAG_ACKED) {
2914                 const struct tcp_congestion_ops *ca_ops
2915                         = inet_csk(sk)->icsk_ca_ops;
2916
2917                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2918                 tcp_rearm_rto(sk);
2919
2920                 if (tcp_is_reno(tp)) {
2921                         tcp_remove_reno_sacks(sk, pkts_acked);
2922                 } else {
2923                         /* Non-retransmitted hole got filled? That's reordering */
2924                         if (reord < prior_fackets)
2925                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2926                 }
2927
2928                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2929
2930                 if (ca_ops->pkts_acked) {
2931                         s32 rtt_us = -1;
2932
2933                         /* Is the ACK triggering packet unambiguous? */
2934                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2935                                 /* High resolution needed and available? */
2936                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2937                                     !ktime_equal(last_ackt,
2938                                                  net_invalid_timestamp()))
2939                                         rtt_us = ktime_us_delta(ktime_get_real(),
2940                                                                 last_ackt);
2941                                 else if (ca_seq_rtt > 0)
2942                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2943                         }
2944
2945                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2946                 }
2947         }
2948
2949 #if FASTRETRANS_DEBUG > 0
2950         BUG_TRAP((int)tp->sacked_out >= 0);
2951         BUG_TRAP((int)tp->lost_out >= 0);
2952         BUG_TRAP((int)tp->retrans_out >= 0);
2953         if (!tp->packets_out && tcp_is_sack(tp)) {
2954                 icsk = inet_csk(sk);
2955                 if (tp->lost_out) {
2956                         printk(KERN_DEBUG "Leak l=%u %d\n",
2957                                tp->lost_out, icsk->icsk_ca_state);
2958                         tp->lost_out = 0;
2959                 }
2960                 if (tp->sacked_out) {
2961                         printk(KERN_DEBUG "Leak s=%u %d\n",
2962                                tp->sacked_out, icsk->icsk_ca_state);
2963                         tp->sacked_out = 0;
2964                 }
2965                 if (tp->retrans_out) {
2966                         printk(KERN_DEBUG "Leak r=%u %d\n",
2967                                tp->retrans_out, icsk->icsk_ca_state);
2968                         tp->retrans_out = 0;
2969                 }
2970         }
2971 #endif
2972         return flag;
2973 }
2974
2975 static void tcp_ack_probe(struct sock *sk)
2976 {
2977         const struct tcp_sock *tp = tcp_sk(sk);
2978         struct inet_connection_sock *icsk = inet_csk(sk);
2979
2980         /* Was it a usable window open? */
2981
2982         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2983                 icsk->icsk_backoff = 0;
2984                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2985                 /* Socket must be waked up by subsequent tcp_data_snd_check().
2986                  * This function is not for random using!
2987                  */
2988         } else {
2989                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2990                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2991                                           TCP_RTO_MAX);
2992         }
2993 }
2994
2995 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2996 {
2997         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2998                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2999 }
3000
3001 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3002 {
3003         const struct tcp_sock *tp = tcp_sk(sk);
3004         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3005                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3006 }
3007
3008 /* Check that window update is acceptable.
3009  * The function assumes that snd_una<=ack<=snd_next.
3010  */
3011 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3012                                         const u32 ack, const u32 ack_seq,
3013                                         const u32 nwin)
3014 {
3015         return (after(ack, tp->snd_una) ||
3016                 after(ack_seq, tp->snd_wl1) ||
3017                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3018 }
3019
3020 /* Update our send window.
3021  *
3022  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3023  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3024  */
3025 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3026                                  u32 ack_seq)
3027 {
3028         struct tcp_sock *tp = tcp_sk(sk);
3029         int flag = 0;
3030         u32 nwin = ntohs(tcp_hdr(skb)->window);
3031
3032         if (likely(!tcp_hdr(skb)->syn))
3033                 nwin <<= tp->rx_opt.snd_wscale;
3034
3035         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3036                 flag |= FLAG_WIN_UPDATE;
3037                 tcp_update_wl(tp, ack, ack_seq);
3038
3039                 if (tp->snd_wnd != nwin) {
3040                         tp->snd_wnd = nwin;
3041
3042                         /* Note, it is the only place, where
3043                          * fast path is recovered for sending TCP.
3044                          */
3045                         tp->pred_flags = 0;
3046                         tcp_fast_path_check(sk);
3047
3048                         if (nwin > tp->max_window) {
3049                                 tp->max_window = nwin;
3050                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3051                         }
3052                 }
3053         }
3054
3055         tp->snd_una = ack;
3056
3057         return flag;
3058 }
3059
3060 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3061  * continue in congestion avoidance.
3062  */
3063 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3064 {
3065         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3066         tp->snd_cwnd_cnt = 0;
3067         tp->bytes_acked = 0;
3068         TCP_ECN_queue_cwr(tp);
3069         tcp_moderate_cwnd(tp);
3070 }
3071
3072 /* A conservative spurious RTO response algorithm: reduce cwnd using
3073  * rate halving and continue in congestion avoidance.
3074  */
3075 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3076 {
3077         tcp_enter_cwr(sk, 0);
3078 }
3079
3080 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3081 {
3082         if (flag & FLAG_ECE)
3083                 tcp_ratehalving_spur_to_response(sk);
3084         else
3085                 tcp_undo_cwr(sk, 1);
3086 }
3087
3088 /* F-RTO spurious RTO detection algorithm (RFC4138)
3089  *
3090  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3091  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3092  * window (but not to or beyond highest sequence sent before RTO):
3093  *   On First ACK,  send two new segments out.
3094  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3095  *                  algorithm is not part of the F-RTO detection algorithm
3096  *                  given in RFC4138 but can be selected separately).
3097  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3098  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3099  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3100  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3101  *
3102  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3103  * original window even after we transmit two new data segments.
3104  *
3105  * SACK version:
3106  *   on first step, wait until first cumulative ACK arrives, then move to
3107  *   the second step. In second step, the next ACK decides.
3108  *
3109  * F-RTO is implemented (mainly) in four functions:
3110  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3111  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3112  *     called when tcp_use_frto() showed green light
3113  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3114  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3115  *     to prove that the RTO is indeed spurious. It transfers the control
3116  *     from F-RTO to the conventional RTO recovery
3117  */
3118 static int tcp_process_frto(struct sock *sk, int flag)
3119 {
3120         struct tcp_sock *tp = tcp_sk(sk);
3121
3122         tcp_verify_left_out(tp);
3123
3124         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3125         if (flag & FLAG_DATA_ACKED)
3126                 inet_csk(sk)->icsk_retransmits = 0;
3127
3128         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3129             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3130                 tp->undo_marker = 0;
3131
3132         if (!before(tp->snd_una, tp->frto_highmark)) {
3133                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3134                 return 1;
3135         }
3136
3137         if (!tcp_is_sackfrto(tp)) {
3138                 /* RFC4138 shortcoming in step 2; should also have case c):
3139                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3140                  * data, winupdate
3141                  */
3142                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3143                         return 1;
3144
3145                 if (!(flag & FLAG_DATA_ACKED)) {
3146                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3147                                             flag);
3148                         return 1;
3149                 }
3150         } else {
3151                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3152                         /* Prevent sending of new data. */
3153                         tp->snd_cwnd = min(tp->snd_cwnd,
3154                                            tcp_packets_in_flight(tp));
3155                         return 1;
3156                 }
3157
3158                 if ((tp->frto_counter >= 2) &&
3159                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3160                      ((flag & FLAG_DATA_SACKED) &&
3161                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3162                         /* RFC4138 shortcoming (see comment above) */
3163                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3164                             (flag & FLAG_NOT_DUP))
3165                                 return 1;
3166
3167                         tcp_enter_frto_loss(sk, 3, flag);
3168                         return 1;
3169                 }
3170         }
3171
3172         if (tp->frto_counter == 1) {
3173                 /* tcp_may_send_now needs to see updated state */
3174                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3175                 tp->frto_counter = 2;
3176
3177                 if (!tcp_may_send_now(sk))
3178                         tcp_enter_frto_loss(sk, 2, flag);
3179
3180                 return 1;
3181         } else {
3182                 switch (sysctl_tcp_frto_response) {
3183                 case 2:
3184                         tcp_undo_spur_to_response(sk, flag);
3185                         break;
3186                 case 1:
3187                         tcp_conservative_spur_to_response(tp);
3188                         break;
3189                 default:
3190                         tcp_ratehalving_spur_to_response(sk);
3191                         break;
3192                 }
3193                 tp->frto_counter = 0;
3194                 tp->undo_marker = 0;
3195                 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3196         }
3197         return 0;
3198 }
3199
3200 /* This routine deals with incoming acks, but not outgoing ones. */
3201 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3202 {
3203         struct inet_connection_sock *icsk = inet_csk(sk);
3204         struct tcp_sock *tp = tcp_sk(sk);
3205         u32 prior_snd_una = tp->snd_una;
3206         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3207         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3208         u32 prior_in_flight;
3209         u32 prior_fackets;
3210         int prior_packets;
3211         int frto_cwnd = 0;
3212
3213         /* If the ack is newer than sent or older than previous acks
3214          * then we can probably ignore it.
3215          */
3216         if (after(ack, tp->snd_nxt))
3217                 goto uninteresting_ack;
3218
3219         if (before(ack, prior_snd_una))
3220                 goto old_ack;
3221
3222         if (after(ack, prior_snd_una))
3223                 flag |= FLAG_SND_UNA_ADVANCED;
3224
3225         if (sysctl_tcp_abc) {
3226                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3227                         tp->bytes_acked += ack - prior_snd_una;
3228                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3229                         /* we assume just one segment left network */
3230                         tp->bytes_acked += min(ack - prior_snd_una,
3231                                                tp->mss_cache);
3232         }
3233
3234         prior_fackets = tp->fackets_out;
3235         prior_in_flight = tcp_packets_in_flight(tp);
3236
3237         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3238                 /* Window is constant, pure forward advance.
3239                  * No more checks are required.
3240                  * Note, we use the fact that SND.UNA>=SND.WL2.
3241                  */
3242                 tcp_update_wl(tp, ack, ack_seq);
3243                 tp->snd_una = ack;
3244                 flag |= FLAG_WIN_UPDATE;
3245
3246                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3247
3248                 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3249         } else {
3250                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3251                         flag |= FLAG_DATA;
3252                 else
3253                         NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3254
3255                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3256
3257                 if (TCP_SKB_CB(skb)->sacked)
3258                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3259
3260                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3261                         flag |= FLAG_ECE;
3262
3263                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3264         }
3265
3266         /* We passed data and got it acked, remove any soft error
3267          * log. Something worked...
3268          */
3269         sk->sk_err_soft = 0;
3270         tp->rcv_tstamp = tcp_time_stamp;
3271         prior_packets = tp->packets_out;
3272         if (!prior_packets)
3273                 goto no_queue;
3274
3275         /* See if we can take anything off of the retransmit queue. */
3276         flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3277
3278         if (tp->frto_counter)
3279                 frto_cwnd = tcp_process_frto(sk, flag);
3280         /* Guarantee sacktag reordering detection against wrap-arounds */
3281         if (before(tp->frto_highmark, tp->snd_una))
3282                 tp->frto_highmark = 0;
3283
3284         if (tcp_ack_is_dubious(sk, flag)) {
3285                 /* Advance CWND, if state allows this. */
3286                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3287                     tcp_may_raise_cwnd(sk, flag))
3288                         tcp_cong_avoid(sk, ack, prior_in_flight);
3289                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3290                                       flag);
3291         } else {
3292                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3293                         tcp_cong_avoid(sk, ack, prior_in_flight);
3294         }
3295
3296         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3297                 dst_confirm(sk->sk_dst_cache);
3298
3299         return 1;
3300
3301 no_queue:
3302         icsk->icsk_probes_out = 0;
3303
3304         /* If this ack opens up a zero window, clear backoff.  It was
3305          * being used to time the probes, and is probably far higher than
3306          * it needs to be for normal retransmission.
3307          */
3308         if (tcp_send_head(sk))
3309                 tcp_ack_probe(sk);
3310         return 1;
3311
3312 old_ack:
3313         if (TCP_SKB_CB(skb)->sacked)
3314                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3315
3316 uninteresting_ack:
3317         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3318         return 0;
3319 }
3320
3321 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3322  * But, this can also be called on packets in the established flow when
3323  * the fast version below fails.
3324  */
3325 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3326                        int estab)
3327 {
3328         unsigned char *ptr;
3329         struct tcphdr *th = tcp_hdr(skb);
3330         int length = (th->doff * 4) - sizeof(struct tcphdr);
3331
3332         ptr = (unsigned char *)(th + 1);
3333         opt_rx->saw_tstamp = 0;
3334
3335         while (length > 0) {
3336                 int opcode = *ptr++;
3337                 int opsize;
3338
3339                 switch (opcode) {
3340                 case TCPOPT_EOL:
3341                         return;
3342                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3343                         length--;
3344                         continue;
3345                 default:
3346                         opsize = *ptr++;
3347                         if (opsize < 2) /* "silly options" */
3348                                 return;
3349                         if (opsize > length)
3350                                 return; /* don't parse partial options */
3351                         switch (opcode) {
3352                         case TCPOPT_MSS:
3353                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3354                                         u16 in_mss = get_unaligned_be16(ptr);
3355                                         if (in_mss) {
3356                                                 if (opt_rx->user_mss &&
3357                                                     opt_rx->user_mss < in_mss)
3358                                                         in_mss = opt_rx->user_mss;
3359                                                 opt_rx->mss_clamp = in_mss;
3360                                         }
3361                                 }
3362                                 break;
3363                         case TCPOPT_WINDOW:
3364                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3365                                     !estab && sysctl_tcp_window_scaling) {
3366                                         __u8 snd_wscale = *(__u8 *)ptr;
3367                                         opt_rx->wscale_ok = 1;
3368                                         if (snd_wscale > 14) {
3369                                                 if (net_ratelimit())
3370                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3371                                                                "scaling value %d >14 received.\n",
3372                                                                snd_wscale);
3373                                                 snd_wscale = 14;
3374                                         }
3375                                         opt_rx->snd_wscale = snd_wscale;
3376                                 }
3377                                 break;
3378                         case TCPOPT_TIMESTAMP:
3379                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3380                                     ((estab && opt_rx->tstamp_ok) ||
3381                                      (!estab && sysctl_tcp_timestamps))) {
3382                                         opt_rx->saw_tstamp = 1;
3383                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3384                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3385                                 }
3386                                 break;
3387                         case TCPOPT_SACK_PERM:
3388                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3389                                     !estab && sysctl_tcp_sack) {
3390                                         opt_rx->sack_ok = 1;
3391                                         tcp_sack_reset(opt_rx);
3392                                 }
3393                                 break;
3394
3395                         case TCPOPT_SACK:
3396                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3397                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3398                                    opt_rx->sack_ok) {
3399                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3400                                 }
3401                                 break;
3402 #ifdef CONFIG_TCP_MD5SIG
3403                         case TCPOPT_MD5SIG:
3404                                 /*
3405                                  * The MD5 Hash has already been
3406                                  * checked (see tcp_v{4,6}_do_rcv()).
3407                                  */
3408                                 break;
3409 #endif
3410                         }
3411
3412                         ptr += opsize-2;
3413                         length -= opsize;
3414                 }
3415         }
3416 }
3417
3418 /* Fast parse options. This hopes to only see timestamps.
3419  * If it is wrong it falls back on tcp_parse_options().
3420  */
3421 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3422                                   struct tcp_sock *tp)
3423 {
3424         if (th->doff == sizeof(struct tcphdr) >> 2) {
3425                 tp->rx_opt.saw_tstamp = 0;
3426                 return 0;
3427         } else if (tp->rx_opt.tstamp_ok &&
3428                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3429                 __be32 *ptr = (__be32 *)(th + 1);
3430                 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3431                                   | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3432                         tp->rx_opt.saw_tstamp = 1;
3433                         ++ptr;
3434                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
3435                         ++ptr;
3436                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3437                         return 1;
3438                 }
3439         }
3440         tcp_parse_options(skb, &tp->rx_opt, 1);
3441         return 1;
3442 }
3443
3444 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3445 {
3446         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3447         tp->rx_opt.ts_recent_stamp = get_seconds();
3448 }
3449
3450 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3451 {
3452         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3453                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3454                  * extra check below makes sure this can only happen
3455                  * for pure ACK frames.  -DaveM
3456                  *
3457                  * Not only, also it occurs for expired timestamps.
3458                  */
3459
3460                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3461                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3462                         tcp_store_ts_recent(tp);
3463         }
3464 }
3465
3466 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3467  *
3468  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3469  * it can pass through stack. So, the following predicate verifies that
3470  * this segment is not used for anything but congestion avoidance or
3471  * fast retransmit. Moreover, we even are able to eliminate most of such
3472  * second order effects, if we apply some small "replay" window (~RTO)
3473  * to timestamp space.
3474  *
3475  * All these measures still do not guarantee that we reject wrapped ACKs
3476  * on networks with high bandwidth, when sequence space is recycled fastly,
3477  * but it guarantees that such events will be very rare and do not affect
3478  * connection seriously. This doesn't look nice, but alas, PAWS is really
3479  * buggy extension.
3480  *
3481  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3482  * states that events when retransmit arrives after original data are rare.
3483  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3484  * the biggest problem on large power networks even with minor reordering.
3485  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3486  * up to bandwidth of 18Gigabit/sec. 8) ]
3487  */
3488
3489 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3490 {
3491         struct tcp_sock *tp = tcp_sk(sk);
3492         struct tcphdr *th = tcp_hdr(skb);
3493         u32 seq = TCP_SKB_CB(skb)->seq;
3494         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3495
3496         return (/* 1. Pure ACK with correct sequence number. */
3497                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3498
3499                 /* 2. ... and duplicate ACK. */
3500                 ack == tp->snd_una &&
3501
3502                 /* 3. ... and does not update window. */
3503                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3504
3505                 /* 4. ... and sits in replay window. */
3506                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3507 }
3508
3509 static inline int tcp_paws_discard(const struct sock *sk,
3510                                    const struct sk_buff *skb)
3511 {
3512         const struct tcp_sock *tp = tcp_sk(sk);
3513         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3514                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3515                 !tcp_disordered_ack(sk, skb));
3516 }
3517
3518 /* Check segment sequence number for validity.
3519  *
3520  * Segment controls are considered valid, if the segment
3521  * fits to the window after truncation to the window. Acceptability
3522  * of data (and SYN, FIN, of course) is checked separately.
3523  * See tcp_data_queue(), for example.
3524  *
3525  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3526  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3527  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3528  * (borrowed from freebsd)
3529  */
3530
3531 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3532 {
3533         return  !before(end_seq, tp->rcv_wup) &&
3534                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3535 }
3536
3537 /* When we get a reset we do this. */
3538 static void tcp_reset(struct sock *sk)
3539 {
3540         /* We want the right error as BSD sees it (and indeed as we do). */
3541         switch (sk->sk_state) {
3542         case TCP_SYN_SENT:
3543                 sk->sk_err = ECONNREFUSED;
3544                 break;
3545         case TCP_CLOSE_WAIT:
3546                 sk->sk_err = EPIPE;
3547                 break;
3548         case TCP_CLOSE:
3549                 return;
3550         default:
3551                 sk->sk_err = ECONNRESET;
3552         }
3553
3554         if (!sock_flag(sk, SOCK_DEAD))
3555                 sk->sk_error_report(sk);
3556
3557         tcp_done(sk);
3558 }
3559
3560 /*
3561  *      Process the FIN bit. This now behaves as it is supposed to work
3562  *      and the FIN takes effect when it is validly part of sequence
3563  *      space. Not before when we get holes.
3564  *
3565  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3566  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3567  *      TIME-WAIT)
3568  *
3569  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3570  *      close and we go into CLOSING (and later onto TIME-WAIT)
3571  *
3572  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3573  */
3574 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3575 {
3576         struct tcp_sock *tp = tcp_sk(sk);
3577
3578         inet_csk_schedule_ack(sk);
3579
3580         sk->sk_shutdown |= RCV_SHUTDOWN;
3581         sock_set_flag(sk, SOCK_DONE);
3582
3583         switch (sk->sk_state) {
3584         case TCP_SYN_RECV:
3585         case TCP_ESTABLISHED:
3586                 /* Move to CLOSE_WAIT */
3587                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3588                 inet_csk(sk)->icsk_ack.pingpong = 1;
3589                 break;
3590
3591         case TCP_CLOSE_WAIT:
3592         case TCP_CLOSING:
3593                 /* Received a retransmission of the FIN, do
3594                  * nothing.
3595                  */
3596                 break;
3597         case TCP_LAST_ACK:
3598                 /* RFC793: Remain in the LAST-ACK state. */
3599                 break;
3600
3601         case TCP_FIN_WAIT1:
3602                 /* This case occurs when a simultaneous close
3603                  * happens, we must ack the received FIN and
3604                  * enter the CLOSING state.
3605                  */
3606                 tcp_send_ack(sk);
3607                 tcp_set_state(sk, TCP_CLOSING);
3608                 break;
3609         case TCP_FIN_WAIT2:
3610                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3611                 tcp_send_ack(sk);
3612                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3613                 break;
3614         default:
3615                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3616                  * cases we should never reach this piece of code.
3617                  */
3618                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3619                        __func__, sk->sk_state);
3620                 break;
3621         }
3622
3623         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3624          * Probably, we should reset in this case. For now drop them.
3625          */
3626         __skb_queue_purge(&tp->out_of_order_queue);
3627         if (tcp_is_sack(tp))
3628                 tcp_sack_reset(&tp->rx_opt);
3629         sk_mem_reclaim(sk);
3630
3631         if (!sock_flag(sk, SOCK_DEAD)) {
3632                 sk->sk_state_change(sk);
3633
3634                 /* Do not send POLL_HUP for half duplex close. */
3635                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3636                     sk->sk_state == TCP_CLOSE)
3637                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3638                 else
3639                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3640         }
3641 }
3642
3643 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3644                                   u32 end_seq)
3645 {
3646         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3647                 if (before(seq, sp->start_seq))
3648                         sp->start_seq = seq;
3649                 if (after(end_seq, sp->end_seq))
3650                         sp->end_seq = end_seq;
3651                 return 1;
3652         }
3653         return 0;
3654 }
3655
3656 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3657 {
3658         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3659                 if (before(seq, tp->rcv_nxt))
3660                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3661                 else
3662                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3663
3664                 tp->rx_opt.dsack = 1;
3665                 tp->duplicate_sack[0].start_seq = seq;
3666                 tp->duplicate_sack[0].end_seq = end_seq;
3667                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3668                                            4 - tp->rx_opt.tstamp_ok);
3669         }
3670 }
3671
3672 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3673 {
3674         if (!tp->rx_opt.dsack)
3675                 tcp_dsack_set(tp, seq, end_seq);
3676         else
3677                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3678 }
3679
3680 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3681 {
3682         struct tcp_sock *tp = tcp_sk(sk);
3683
3684         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3685             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3686                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3687                 tcp_enter_quickack_mode(sk);
3688
3689                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3690                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3691
3692                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3693                                 end_seq = tp->rcv_nxt;
3694                         tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3695                 }
3696         }
3697
3698         tcp_send_ack(sk);
3699 }
3700
3701 /* These routines update the SACK block as out-of-order packets arrive or
3702  * in-order packets close up the sequence space.
3703  */
3704 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3705 {
3706         int this_sack;
3707         struct tcp_sack_block *sp = &tp->selective_acks[0];
3708         struct tcp_sack_block *swalk = sp + 1;
3709
3710         /* See if the recent change to the first SACK eats into
3711          * or hits the sequence space of other SACK blocks, if so coalesce.
3712          */
3713         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3714                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3715                         int i;
3716
3717                         /* Zap SWALK, by moving every further SACK up by one slot.
3718                          * Decrease num_sacks.
3719                          */
3720                         tp->rx_opt.num_sacks--;
3721                         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3722                                                    tp->rx_opt.dsack,
3723                                                    4 - tp->rx_opt.tstamp_ok);
3724                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3725                                 sp[i] = sp[i + 1];
3726                         continue;
3727                 }
3728                 this_sack++, swalk++;
3729         }
3730 }
3731
3732 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3733                                  struct tcp_sack_block *sack2)
3734 {
3735         __u32 tmp;
3736
3737         tmp = sack1->start_seq;
3738         sack1->start_seq = sack2->start_seq;
3739         sack2->start_seq = tmp;
3740
3741         tmp = sack1->end_seq;
3742         sack1->end_seq = sack2->end_seq;
3743         sack2->end_seq = tmp;
3744 }
3745
3746 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3747 {
3748         struct tcp_sock *tp = tcp_sk(sk);
3749         struct tcp_sack_block *sp = &tp->selective_acks[0];
3750         int cur_sacks = tp->rx_opt.num_sacks;
3751         int this_sack;
3752
3753         if (!cur_sacks)
3754                 goto new_sack;
3755
3756         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3757                 if (tcp_sack_extend(sp, seq, end_seq)) {
3758                         /* Rotate this_sack to the first one. */
3759                         for (; this_sack > 0; this_sack--, sp--)
3760                                 tcp_sack_swap(sp, sp - 1);
3761                         if (cur_sacks > 1)
3762                                 tcp_sack_maybe_coalesce(tp);
3763                         return;
3764                 }
3765         }
3766
3767         /* Could not find an adjacent existing SACK, build a new one,
3768          * put it at the front, and shift everyone else down.  We
3769          * always know there is at least one SACK present already here.
3770          *
3771          * If the sack array is full, forget about the last one.
3772          */
3773         if (this_sack >= 4) {
3774                 this_sack--;
3775                 tp->rx_opt.num_sacks--;
3776                 sp--;
3777         }
3778         for (; this_sack > 0; this_sack--, sp--)
3779                 *sp = *(sp - 1);
3780
3781 new_sack:
3782         /* Build the new head SACK, and we're done. */
3783         sp->start_seq = seq;
3784         sp->end_seq = end_seq;
3785         tp->rx_opt.num_sacks++;
3786         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3787                                    4 - tp->rx_opt.tstamp_ok);
3788 }
3789
3790 /* RCV.NXT advances, some SACKs should be eaten. */
3791
3792 static void tcp_sack_remove(struct tcp_sock *tp)
3793 {
3794         struct tcp_sack_block *sp = &tp->selective_acks[0];
3795         int num_sacks = tp->rx_opt.num_sacks;
3796         int this_sack;
3797
3798         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3799         if (skb_queue_empty(&tp->out_of_order_queue)) {
3800                 tp->rx_opt.num_sacks = 0;
3801                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3802                 return;
3803         }
3804
3805         for (this_sack = 0; this_sack < num_sacks;) {
3806                 /* Check if the start of the sack is covered by RCV.NXT. */
3807                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3808                         int i;
3809
3810                         /* RCV.NXT must cover all the block! */
3811                         BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3812
3813                         /* Zap this SACK, by moving forward any other SACKS. */
3814                         for (i=this_sack+1; i < num_sacks; i++)
3815                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3816                         num_sacks--;
3817                         continue;
3818                 }
3819                 this_sack++;
3820                 sp++;
3821         }
3822         if (num_sacks != tp->rx_opt.num_sacks) {
3823                 tp->rx_opt.num_sacks = num_sacks;
3824                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3825                                            tp->rx_opt.dsack,
3826                                            4 - tp->rx_opt.tstamp_ok);
3827         }
3828 }
3829
3830 /* This one checks to see if we can put data from the
3831  * out_of_order queue into the receive_queue.
3832  */
3833 static void tcp_ofo_queue(struct sock *sk)
3834 {
3835         struct tcp_sock *tp = tcp_sk(sk);
3836         __u32 dsack_high = tp->rcv_nxt;
3837         struct sk_buff *skb;
3838
3839         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3840                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3841                         break;
3842
3843                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3844                         __u32 dsack = dsack_high;
3845                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3846                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3847                         tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3848                 }
3849
3850                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3851                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3852                         __skb_unlink(skb, &tp->out_of_order_queue);
3853                         __kfree_skb(skb);
3854                         continue;
3855                 }
3856                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3857                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3858                            TCP_SKB_CB(skb)->end_seq);
3859
3860                 __skb_unlink(skb, &tp->out_of_order_queue);
3861                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3862                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3863                 if (tcp_hdr(skb)->fin)
3864                         tcp_fin(skb, sk, tcp_hdr(skb));
3865         }
3866 }
3867
3868 static int tcp_prune_ofo_queue(struct sock *sk);
3869 static int tcp_prune_queue(struct sock *sk);
3870
3871 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3872 {
3873         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3874             !sk_rmem_schedule(sk, size)) {
3875
3876                 if (tcp_prune_queue(sk) < 0)
3877                         return -1;
3878
3879                 if (!sk_rmem_schedule(sk, size)) {
3880                         if (!tcp_prune_ofo_queue(sk))
3881                                 return -1;
3882
3883                         if (!sk_rmem_schedule(sk, size))
3884                                 return -1;
3885                 }
3886         }
3887         return 0;
3888 }
3889
3890 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3891 {
3892         struct tcphdr *th = tcp_hdr(skb);
3893         struct tcp_sock *tp = tcp_sk(sk);
3894         int eaten = -1;
3895
3896         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3897                 goto drop;
3898
3899         __skb_pull(skb, th->doff * 4);
3900
3901         TCP_ECN_accept_cwr(tp, skb);
3902
3903         if (tp->rx_opt.dsack) {
3904                 tp->rx_opt.dsack = 0;
3905                 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3906                                              4 - tp->rx_opt.tstamp_ok);
3907         }
3908
3909         /*  Queue data for delivery to the user.
3910          *  Packets in sequence go to the receive queue.
3911          *  Out of sequence packets to the out_of_order_queue.
3912          */
3913         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3914                 if (tcp_receive_window(tp) == 0)
3915                         goto out_of_window;
3916
3917                 /* Ok. In sequence. In window. */
3918                 if (tp->ucopy.task == current &&
3919                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3920                     sock_owned_by_user(sk) && !tp->urg_data) {
3921                         int chunk = min_t(unsigned int, skb->len,
3922                                           tp->ucopy.len);
3923
3924                         __set_current_state(TASK_RUNNING);
3925
3926                         local_bh_enable();
3927                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3928                                 tp->ucopy.len -= chunk;
3929                                 tp->copied_seq += chunk;
3930                                 eaten = (chunk == skb->len && !th->fin);
3931                                 tcp_rcv_space_adjust(sk);
3932                         }
3933                         local_bh_disable();
3934                 }
3935
3936                 if (eaten <= 0) {
3937 queue_and_out:
3938                         if (eaten < 0 &&
3939                             tcp_try_rmem_schedule(sk, skb->truesize))
3940                                 goto drop;
3941
3942                         skb_set_owner_r(skb, sk);
3943                         __skb_queue_tail(&sk->sk_receive_queue, skb);
3944                 }
3945                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3946                 if (skb->len)
3947                         tcp_event_data_recv(sk, skb);
3948                 if (th->fin)
3949                         tcp_fin(skb, sk, th);
3950
3951                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3952                         tcp_ofo_queue(sk);
3953
3954                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
3955                          * gap in queue is filled.
3956                          */
3957                         if (skb_queue_empty(&tp->out_of_order_queue))
3958                                 inet_csk(sk)->icsk_ack.pingpong = 0;
3959                 }
3960
3961                 if (tp->rx_opt.num_sacks)
3962                         tcp_sack_remove(tp);
3963
3964                 tcp_fast_path_check(sk);
3965
3966                 if (eaten > 0)
3967                         __kfree_skb(skb);
3968                 else if (!sock_flag(sk, SOCK_DEAD))
3969                         sk->sk_data_ready(sk, 0);
3970                 return;
3971         }
3972
3973         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3974                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
3975                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3976                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3977
3978 out_of_window:
3979                 tcp_enter_quickack_mode(sk);
3980                 inet_csk_schedule_ack(sk);
3981 drop:
3982                 __kfree_skb(skb);
3983                 return;
3984         }
3985
3986         /* Out of window. F.e. zero window probe. */
3987         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3988                 goto out_of_window;
3989
3990         tcp_enter_quickack_mode(sk);
3991
3992         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3993                 /* Partial packet, seq < rcv_next < end_seq */
3994                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3995                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3996                            TCP_SKB_CB(skb)->end_seq);
3997
3998                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3999
4000                 /* If window is closed, drop tail of packet. But after
4001                  * remembering D-SACK for its head made in previous line.
4002                  */
4003                 if (!tcp_receive_window(tp))
4004                         goto out_of_window;
4005                 goto queue_and_out;
4006         }
4007
4008         TCP_ECN_check_ce(tp, skb);
4009
4010         if (tcp_try_rmem_schedule(sk, skb->truesize))
4011                 goto drop;
4012
4013         /* Disable header prediction. */
4014         tp->pred_flags = 0;
4015         inet_csk_schedule_ack(sk);
4016
4017         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4018                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4019
4020         skb_set_owner_r(skb, sk);
4021
4022         if (!skb_peek(&tp->out_of_order_queue)) {
4023                 /* Initial out of order segment, build 1 SACK. */
4024                 if (tcp_is_sack(tp)) {
4025                         tp->rx_opt.num_sacks = 1;
4026                         tp->rx_opt.dsack     = 0;
4027                         tp->rx_opt.eff_sacks = 1;
4028                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4029                         tp->selective_acks[0].end_seq =
4030                                                 TCP_SKB_CB(skb)->end_seq;
4031                 }
4032                 __skb_queue_head(&tp->out_of_order_queue, skb);
4033         } else {
4034                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4035                 u32 seq = TCP_SKB_CB(skb)->seq;
4036                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4037
4038                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4039                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4040
4041                         if (!tp->rx_opt.num_sacks ||
4042                             tp->selective_acks[0].end_seq != seq)
4043                                 goto add_sack;
4044
4045                         /* Common case: data arrive in order after hole. */
4046                         tp->selective_acks[0].end_seq = end_seq;
4047                         return;
4048                 }
4049
4050                 /* Find place to insert this segment. */
4051                 do {
4052                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4053                                 break;
4054                 } while ((skb1 = skb1->prev) !=
4055                          (struct sk_buff *)&tp->out_of_order_queue);
4056
4057                 /* Do skb overlap to previous one? */
4058                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4059                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4060                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4061                                 /* All the bits are present. Drop. */
4062                                 __kfree_skb(skb);
4063                                 tcp_dsack_set(tp, seq, end_seq);
4064                                 goto add_sack;
4065                         }
4066                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4067                                 /* Partial overlap. */
4068                                 tcp_dsack_set(tp, seq,
4069                                               TCP_SKB_CB(skb1)->end_seq);
4070                         } else {
4071                                 skb1 = skb1->prev;
4072                         }
4073                 }
4074                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4075
4076                 /* And clean segments covered by new one as whole. */
4077                 while ((skb1 = skb->next) !=
4078                        (struct sk_buff *)&tp->out_of_order_queue &&
4079                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4080                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4081                                 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4082                                                  end_seq);
4083                                 break;
4084                         }
4085                         __skb_unlink(skb1, &tp->out_of_order_queue);
4086                         tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4087                                          TCP_SKB_CB(skb1)->end_seq);
4088                         __kfree_skb(skb1);
4089                 }
4090
4091 add_sack:
4092                 if (tcp_is_sack(tp))
4093                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4094         }
4095 }
4096
4097 /* Collapse contiguous sequence of skbs head..tail with
4098  * sequence numbers start..end.
4099  * Segments with FIN/SYN are not collapsed (only because this
4100  * simplifies code)
4101  */
4102 static void
4103 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4104              struct sk_buff *head, struct sk_buff *tail,
4105              u32 start, u32 end)
4106 {
4107         struct sk_buff *skb;
4108
4109         /* First, check that queue is collapsible and find
4110          * the point where collapsing can be useful. */
4111         for (skb = head; skb != tail;) {
4112                 /* No new bits? It is possible on ofo queue. */
4113                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4114                         struct sk_buff *next = skb->next;
4115                         __skb_unlink(skb, list);
4116                         __kfree_skb(skb);
4117                         NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4118                         skb = next;
4119                         continue;
4120                 }
4121
4122                 /* The first skb to collapse is:
4123                  * - not SYN/FIN and
4124                  * - bloated or contains data before "start" or
4125                  *   overlaps to the next one.
4126                  */
4127                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4128                     (tcp_win_from_space(skb->truesize) > skb->len ||
4129                      before(TCP_SKB_CB(skb)->seq, start) ||
4130                      (skb->next != tail &&
4131                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4132                         break;
4133
4134                 /* Decided to skip this, advance start seq. */
4135                 start = TCP_SKB_CB(skb)->end_seq;
4136                 skb = skb->next;
4137         }
4138         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4139                 return;
4140
4141         while (before(start, end)) {
4142                 struct sk_buff *nskb;
4143                 unsigned int header = skb_headroom(skb);
4144                 int copy = SKB_MAX_ORDER(header, 0);
4145
4146                 /* Too big header? This can happen with IPv6. */
4147                 if (copy < 0)
4148                         return;
4149                 if (end - start < copy)
4150                         copy = end - start;
4151                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4152                 if (!nskb)
4153                         return;
4154
4155                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4156                 skb_set_network_header(nskb, (skb_network_header(skb) -
4157                                               skb->head));
4158                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4159                                                 skb->head));
4160                 skb_reserve(nskb, header);
4161                 memcpy(nskb->head, skb->head, header);
4162                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4163                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4164                 __skb_insert(nskb, skb->prev, skb, list);
4165                 skb_set_owner_r(nskb, sk);
4166
4167                 /* Copy data, releasing collapsed skbs. */
4168                 while (copy > 0) {
4169                         int offset = start - TCP_SKB_CB(skb)->seq;
4170                         int size = TCP_SKB_CB(skb)->end_seq - start;
4171
4172                         BUG_ON(offset < 0);
4173                         if (size > 0) {
4174                                 size = min(copy, size);
4175                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4176                                         BUG();
4177                                 TCP_SKB_CB(nskb)->end_seq += size;
4178                                 copy -= size;
4179                                 start += size;
4180                         }
4181                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4182                                 struct sk_buff *next = skb->next;
4183                                 __skb_unlink(skb, list);
4184                                 __kfree_skb(skb);
4185                                 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4186                                 skb = next;
4187                                 if (skb == tail ||
4188                                     tcp_hdr(skb)->syn ||
4189                                     tcp_hdr(skb)->fin)
4190                                         return;
4191                         }
4192                 }
4193         }
4194 }
4195
4196 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4197  * and tcp_collapse() them until all the queue is collapsed.
4198  */
4199 static void tcp_collapse_ofo_queue(struct sock *sk)
4200 {
4201         struct tcp_sock *tp = tcp_sk(sk);
4202         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4203         struct sk_buff *head;
4204         u32 start, end;
4205
4206         if (skb == NULL)
4207                 return;
4208
4209         start = TCP_SKB_CB(skb)->seq;
4210         end = TCP_SKB_CB(skb)->end_seq;
4211         head = skb;
4212
4213         for (;;) {
4214                 skb = skb->next;
4215
4216                 /* Segment is terminated when we see gap or when
4217                  * we are at the end of all the queue. */
4218                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4219                     after(TCP_SKB_CB(skb)->seq, end) ||
4220                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4221                         tcp_collapse(sk, &tp->out_of_order_queue,
4222                                      head, skb, start, end);
4223                         head = skb;
4224                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4225                                 break;
4226                         /* Start new segment */
4227                         start = TCP_SKB_CB(skb)->seq;
4228                         end = TCP_SKB_CB(skb)->end_seq;
4229                 } else {
4230                         if (before(TCP_SKB_CB(skb)->seq, start))
4231                                 start = TCP_SKB_CB(skb)->seq;
4232                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4233                                 end = TCP_SKB_CB(skb)->end_seq;
4234                 }
4235         }
4236 }
4237
4238 /*
4239  * Purge the out-of-order queue.
4240  * Return true if queue was pruned.
4241  */
4242 static int tcp_prune_ofo_queue(struct sock *sk)
4243 {
4244         struct tcp_sock *tp = tcp_sk(sk);
4245         int res = 0;
4246
4247         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4248                 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4249                 __skb_queue_purge(&tp->out_of_order_queue);
4250
4251                 /* Reset SACK state.  A conforming SACK implementation will
4252                  * do the same at a timeout based retransmit.  When a connection
4253                  * is in a sad state like this, we care only about integrity
4254                  * of the connection not performance.
4255                  */
4256                 if (tp->rx_opt.sack_ok)
4257                         tcp_sack_reset(&tp->rx_opt);
4258                 sk_mem_reclaim(sk);
4259                 res = 1;
4260         }
4261         return res;
4262 }
4263
4264 /* Reduce allocated memory if we can, trying to get
4265  * the socket within its memory limits again.
4266  *
4267  * Return less than zero if we should start dropping frames
4268  * until the socket owning process reads some of the data
4269  * to stabilize the situation.
4270  */
4271 static int tcp_prune_queue(struct sock *sk)
4272 {
4273         struct tcp_sock *tp = tcp_sk(sk);
4274
4275         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4276
4277         NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4278
4279         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4280                 tcp_clamp_window(sk);
4281         else if (tcp_memory_pressure)
4282                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4283
4284         tcp_collapse_ofo_queue(sk);
4285         tcp_collapse(sk, &sk->sk_receive_queue,
4286                      sk->sk_receive_queue.next,
4287                      (struct sk_buff *)&sk->sk_receive_queue,
4288                      tp->copied_seq, tp->rcv_nxt);
4289         sk_mem_reclaim(sk);
4290
4291         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4292                 return 0;
4293
4294         /* Collapsing did not help, destructive actions follow.
4295          * This must not ever occur. */
4296
4297         tcp_prune_ofo_queue(sk);
4298
4299         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4300                 return 0;
4301
4302         /* If we are really being abused, tell the caller to silently
4303          * drop receive data on the floor.  It will get retransmitted
4304          * and hopefully then we'll have sufficient space.
4305          */
4306         NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4307
4308         /* Massive buffer overcommit. */
4309         tp->pred_flags = 0;
4310         return -1;
4311 }
4312
4313 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4314  * As additional protections, we do not touch cwnd in retransmission phases,
4315  * and if application hit its sndbuf limit recently.
4316  */
4317 void tcp_cwnd_application_limited(struct sock *sk)
4318 {
4319         struct tcp_sock *tp = tcp_sk(sk);
4320
4321         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4322             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4323                 /* Limited by application or receiver window. */
4324                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4325                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4326                 if (win_used < tp->snd_cwnd) {
4327                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4328                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4329                 }
4330                 tp->snd_cwnd_used = 0;
4331         }
4332         tp->snd_cwnd_stamp = tcp_time_stamp;
4333 }
4334
4335 static int tcp_should_expand_sndbuf(struct sock *sk)
4336 {
4337         struct tcp_sock *tp = tcp_sk(sk);
4338
4339         /* If the user specified a specific send buffer setting, do
4340          * not modify it.
4341          */
4342         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4343                 return 0;
4344
4345         /* If we are under global TCP memory pressure, do not expand.  */
4346         if (tcp_memory_pressure)
4347                 return 0;
4348
4349         /* If we are under soft global TCP memory pressure, do not expand.  */
4350         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4351                 return 0;
4352
4353         /* If we filled the congestion window, do not expand.  */
4354         if (tp->packets_out >= tp->snd_cwnd)
4355                 return 0;
4356
4357         return 1;
4358 }
4359
4360 /* When incoming ACK allowed to free some skb from write_queue,
4361  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4362  * on the exit from tcp input handler.
4363  *
4364  * PROBLEM: sndbuf expansion does not work well with largesend.
4365  */
4366 static void tcp_new_space(struct sock *sk)
4367 {
4368         struct tcp_sock *tp = tcp_sk(sk);
4369
4370         if (tcp_should_expand_sndbuf(sk)) {
4371                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4372                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4373                     demanded = max_t(unsigned int, tp->snd_cwnd,
4374                                      tp->reordering + 1);
4375                 sndmem *= 2 * demanded;
4376                 if (sndmem > sk->sk_sndbuf)
4377                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4378                 tp->snd_cwnd_stamp = tcp_time_stamp;
4379         }
4380
4381         sk->sk_write_space(sk);
4382 }
4383
4384 static void tcp_check_space(struct sock *sk)
4385 {
4386         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4387                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4388                 if (sk->sk_socket &&
4389                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4390                         tcp_new_space(sk);
4391         }
4392 }
4393
4394 static inline void tcp_data_snd_check(struct sock *sk)
4395 {
4396         tcp_push_pending_frames(sk);
4397         tcp_check_space(sk);
4398 }
4399
4400 /*
4401  * Check if sending an ack is needed.
4402  */
4403 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4404 {
4405         struct tcp_sock *tp = tcp_sk(sk);
4406
4407             /* More than one full frame received... */
4408         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4409              /* ... and right edge of window advances far enough.
4410               * (tcp_recvmsg() will send ACK otherwise). Or...
4411               */
4412              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4413             /* We ACK each frame or... */
4414             tcp_in_quickack_mode(sk) ||
4415             /* We have out of order data. */
4416             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4417                 /* Then ack it now */
4418                 tcp_send_ack(sk);
4419         } else {
4420                 /* Else, send delayed ack. */
4421                 tcp_send_delayed_ack(sk);
4422         }
4423 }
4424
4425 static inline void tcp_ack_snd_check(struct sock *sk)
4426 {
4427         if (!inet_csk_ack_scheduled(sk)) {
4428                 /* We sent a data segment already. */
4429                 return;
4430         }
4431         __tcp_ack_snd_check(sk, 1);
4432 }
4433
4434 /*
4435  *      This routine is only called when we have urgent data
4436  *      signaled. Its the 'slow' part of tcp_urg. It could be
4437  *      moved inline now as tcp_urg is only called from one
4438  *      place. We handle URGent data wrong. We have to - as
4439  *      BSD still doesn't use the correction from RFC961.
4440  *      For 1003.1g we should support a new option TCP_STDURG to permit
4441  *      either form (or just set the sysctl tcp_stdurg).
4442  */
4443
4444 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4445 {
4446         struct tcp_sock *tp = tcp_sk(sk);
4447         u32 ptr = ntohs(th->urg_ptr);
4448
4449         if (ptr && !sysctl_tcp_stdurg)
4450                 ptr--;
4451         ptr += ntohl(th->seq);
4452
4453         /* Ignore urgent data that we've already seen and read. */
4454         if (after(tp->copied_seq, ptr))
4455                 return;
4456
4457         /* Do not replay urg ptr.
4458          *
4459          * NOTE: interesting situation not covered by specs.
4460          * Misbehaving sender may send urg ptr, pointing to segment,
4461          * which we already have in ofo queue. We are not able to fetch
4462          * such data and will stay in TCP_URG_NOTYET until will be eaten
4463          * by recvmsg(). Seems, we are not obliged to handle such wicked
4464          * situations. But it is worth to think about possibility of some
4465          * DoSes using some hypothetical application level deadlock.
4466          */
4467         if (before(ptr, tp->rcv_nxt))
4468                 return;
4469
4470         /* Do we already have a newer (or duplicate) urgent pointer? */
4471         if (tp->urg_data && !after(ptr, tp->urg_seq))
4472                 return;
4473
4474         /* Tell the world about our new urgent pointer. */
4475         sk_send_sigurg(sk);
4476
4477         /* We may be adding urgent data when the last byte read was
4478          * urgent. To do this requires some care. We cannot just ignore
4479          * tp->copied_seq since we would read the last urgent byte again
4480          * as data, nor can we alter copied_seq until this data arrives
4481          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4482          *
4483          * NOTE. Double Dutch. Rendering to plain English: author of comment
4484          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4485          * and expect that both A and B disappear from stream. This is _wrong_.
4486          * Though this happens in BSD with high probability, this is occasional.
4487          * Any application relying on this is buggy. Note also, that fix "works"
4488          * only in this artificial test. Insert some normal data between A and B and we will
4489          * decline of BSD again. Verdict: it is better to remove to trap
4490          * buggy users.
4491          */
4492         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4493             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4494                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4495                 tp->copied_seq++;
4496                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4497                         __skb_unlink(skb, &sk->sk_receive_queue);
4498                         __kfree_skb(skb);
4499                 }
4500         }
4501
4502         tp->urg_data = TCP_URG_NOTYET;
4503         tp->urg_seq = ptr;
4504
4505         /* Disable header prediction. */
4506         tp->pred_flags = 0;
4507 }
4508
4509 /* This is the 'fast' part of urgent handling. */
4510 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4511 {
4512         struct tcp_sock *tp = tcp_sk(sk);
4513
4514         /* Check if we get a new urgent pointer - normally not. */
4515         if (th->urg)
4516                 tcp_check_urg(sk, th);
4517
4518         /* Do we wait for any urgent data? - normally not... */
4519         if (tp->urg_data == TCP_URG_NOTYET) {
4520                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4521                           th->syn;
4522
4523                 /* Is the urgent pointer pointing into this packet? */
4524                 if (ptr < skb->len) {
4525                         u8 tmp;
4526                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4527                                 BUG();
4528                         tp->urg_data = TCP_URG_VALID | tmp;
4529                         if (!sock_flag(sk, SOCK_DEAD))
4530                                 sk->sk_data_ready(sk, 0);
4531                 }
4532         }
4533 }
4534
4535 static int tcp_defer_accept_check(struct sock *sk)
4536 {
4537         struct tcp_sock *tp = tcp_sk(sk);
4538
4539         if (tp->defer_tcp_accept.request) {
4540                 int queued_data =  tp->rcv_nxt - tp->copied_seq;
4541                 int hasfin =  !skb_queue_empty(&sk->sk_receive_queue) ?
4542                         tcp_hdr((struct sk_buff *)
4543                                 sk->sk_receive_queue.prev)->fin : 0;
4544
4545                 if (queued_data && hasfin)
4546                         queued_data--;
4547
4548                 if (queued_data &&
4549                     tp->defer_tcp_accept.listen_sk->sk_state == TCP_LISTEN) {
4550                         if (sock_flag(sk, SOCK_KEEPOPEN)) {
4551                                 inet_csk_reset_keepalive_timer(sk,
4552                                                                keepalive_time_when(tp));
4553                         } else {
4554                                 inet_csk_delete_keepalive_timer(sk);
4555                         }
4556
4557                         inet_csk_reqsk_queue_add(
4558                                 tp->defer_tcp_accept.listen_sk,
4559                                 tp->defer_tcp_accept.request,
4560                                 sk);
4561
4562                         tp->defer_tcp_accept.listen_sk->sk_data_ready(
4563                                 tp->defer_tcp_accept.listen_sk, 0);
4564
4565                         sock_put(tp->defer_tcp_accept.listen_sk);
4566                         sock_put(sk);
4567                         tp->defer_tcp_accept.listen_sk = NULL;
4568                         tp->defer_tcp_accept.request = NULL;
4569                 } else if (hasfin ||
4570                            tp->defer_tcp_accept.listen_sk->sk_state != TCP_LISTEN) {
4571                         tcp_reset(sk);
4572                         return -1;
4573                 }
4574         }
4575         return 0;
4576 }
4577
4578 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4579 {
4580         struct tcp_sock *tp = tcp_sk(sk);
4581         int chunk = skb->len - hlen;
4582         int err;
4583
4584         local_bh_enable();
4585         if (skb_csum_unnecessary(skb))
4586                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4587         else
4588                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4589                                                        tp->ucopy.iov);
4590
4591         if (!err) {
4592                 tp->ucopy.len -= chunk;
4593                 tp->copied_seq += chunk;
4594                 tcp_rcv_space_adjust(sk);
4595         }
4596
4597         local_bh_disable();
4598         return err;
4599 }
4600
4601 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4602                                             struct sk_buff *skb)
4603 {
4604         __sum16 result;
4605
4606         if (sock_owned_by_user(sk)) {
4607                 local_bh_enable();
4608                 result = __tcp_checksum_complete(skb);
4609                 local_bh_disable();
4610         } else {
4611                 result = __tcp_checksum_complete(skb);
4612         }
4613         return result;
4614 }
4615
4616 static inline int tcp_checksum_complete_user(struct sock *sk,
4617                                              struct sk_buff *skb)
4618 {
4619         return !skb_csum_unnecessary(skb) &&
4620                __tcp_checksum_complete_user(sk, skb);
4621 }
4622
4623 #ifdef CONFIG_NET_DMA
4624 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4625                                   int hlen)
4626 {
4627         struct tcp_sock *tp = tcp_sk(sk);
4628         int chunk = skb->len - hlen;
4629         int dma_cookie;
4630         int copied_early = 0;
4631
4632         if (tp->ucopy.wakeup)
4633                 return 0;
4634
4635         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4636                 tp->ucopy.dma_chan = get_softnet_dma();
4637
4638         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4639
4640                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4641                                                          skb, hlen,
4642                                                          tp->ucopy.iov, chunk,
4643                                                          tp->ucopy.pinned_list);
4644
4645                 if (dma_cookie < 0)
4646                         goto out;
4647
4648                 tp->ucopy.dma_cookie = dma_cookie;
4649                 copied_early = 1;
4650
4651                 tp->ucopy.len -= chunk;
4652                 tp->copied_seq += chunk;
4653                 tcp_rcv_space_adjust(sk);
4654
4655                 if ((tp->ucopy.len == 0) ||
4656                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4657                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4658                         tp->ucopy.wakeup = 1;
4659                         sk->sk_data_ready(sk, 0);
4660                 }
4661         } else if (chunk > 0) {
4662                 tp->ucopy.wakeup = 1;
4663                 sk->sk_data_ready(sk, 0);
4664         }
4665 out:
4666         return copied_early;
4667 }
4668 #endif /* CONFIG_NET_DMA */
4669
4670 /*
4671  *      TCP receive function for the ESTABLISHED state.
4672  *
4673  *      It is split into a fast path and a slow path. The fast path is
4674  *      disabled when:
4675  *      - A zero window was announced from us - zero window probing
4676  *        is only handled properly in the slow path.
4677  *      - Out of order segments arrived.
4678  *      - Urgent data is expected.
4679  *      - There is no buffer space left
4680  *      - Unexpected TCP flags/window values/header lengths are received
4681  *        (detected by checking the TCP header against pred_flags)
4682  *      - Data is sent in both directions. Fast path only supports pure senders
4683  *        or pure receivers (this means either the sequence number or the ack
4684  *        value must stay constant)
4685  *      - Unexpected TCP option.
4686  *
4687  *      When these conditions are not satisfied it drops into a standard
4688  *      receive procedure patterned after RFC793 to handle all cases.
4689  *      The first three cases are guaranteed by proper pred_flags setting,
4690  *      the rest is checked inline. Fast processing is turned on in
4691  *      tcp_data_queue when everything is OK.
4692  */
4693 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4694                         struct tcphdr *th, unsigned len)
4695 {
4696         struct tcp_sock *tp = tcp_sk(sk);
4697
4698         /*
4699          *      Header prediction.
4700          *      The code loosely follows the one in the famous
4701          *      "30 instruction TCP receive" Van Jacobson mail.
4702          *
4703          *      Van's trick is to deposit buffers into socket queue
4704          *      on a device interrupt, to call tcp_recv function
4705          *      on the receive process context and checksum and copy
4706          *      the buffer to user space. smart...
4707          *
4708          *      Our current scheme is not silly either but we take the
4709          *      extra cost of the net_bh soft interrupt processing...
4710          *      We do checksum and copy also but from device to kernel.
4711          */
4712
4713         tp->rx_opt.saw_tstamp = 0;
4714
4715         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4716          *      if header_prediction is to be made
4717          *      'S' will always be tp->tcp_header_len >> 2
4718          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4719          *  turn it off (when there are holes in the receive
4720          *       space for instance)
4721          *      PSH flag is ignored.
4722          */
4723
4724         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4725             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4726                 int tcp_header_len = tp->tcp_header_len;
4727
4728                 /* Timestamp header prediction: tcp_header_len
4729                  * is automatically equal to th->doff*4 due to pred_flags
4730                  * match.
4731                  */
4732
4733                 /* Check timestamp */
4734                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4735                         __be32 *ptr = (__be32 *)(th + 1);
4736
4737                         /* No? Slow path! */
4738                         if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4739                                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4740                                 goto slow_path;
4741
4742                         tp->rx_opt.saw_tstamp = 1;
4743                         ++ptr;
4744                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
4745                         ++ptr;
4746                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4747
4748                         /* If PAWS failed, check it more carefully in slow path */
4749                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4750                                 goto slow_path;
4751
4752                         /* DO NOT update ts_recent here, if checksum fails
4753                          * and timestamp was corrupted part, it will result
4754                          * in a hung connection since we will drop all
4755                          * future packets due to the PAWS test.
4756                          */
4757                 }
4758
4759                 if (len <= tcp_header_len) {
4760                         /* Bulk data transfer: sender */
4761                         if (len == tcp_header_len) {
4762                                 /* Predicted packet is in window by definition.
4763                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4764                                  * Hence, check seq<=rcv_wup reduces to:
4765                                  */
4766                                 if (tcp_header_len ==
4767                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4768                                     tp->rcv_nxt == tp->rcv_wup)
4769                                         tcp_store_ts_recent(tp);
4770
4771                                 /* We know that such packets are checksummed
4772                                  * on entry.
4773                                  */
4774                                 tcp_ack(sk, skb, 0);
4775                                 __kfree_skb(skb);
4776                                 tcp_data_snd_check(sk);
4777                                 return 0;
4778                         } else { /* Header too small */
4779                                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4780                                 goto discard;
4781                         }
4782                 } else {
4783                         int eaten = 0;
4784                         int copied_early = 0;
4785
4786                         if (tp->copied_seq == tp->rcv_nxt &&
4787                             len - tcp_header_len <= tp->ucopy.len) {
4788 #ifdef CONFIG_NET_DMA
4789                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4790                                         copied_early = 1;
4791                                         eaten = 1;
4792                                 }
4793 #endif
4794                                 if (tp->ucopy.task == current &&
4795                                     sock_owned_by_user(sk) && !copied_early) {
4796                                         __set_current_state(TASK_RUNNING);
4797
4798                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4799                                                 eaten = 1;
4800                                 }
4801                                 if (eaten) {
4802                                         /* Predicted packet is in window by definition.
4803                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4804                                          * Hence, check seq<=rcv_wup reduces to:
4805                                          */
4806                                         if (tcp_header_len ==
4807                                             (sizeof(struct tcphdr) +
4808                                              TCPOLEN_TSTAMP_ALIGNED) &&
4809                                             tp->rcv_nxt == tp->rcv_wup)
4810                                                 tcp_store_ts_recent(tp);
4811
4812                                         tcp_rcv_rtt_measure_ts(sk, skb);
4813
4814                                         __skb_pull(skb, tcp_header_len);
4815                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4816                                         NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4817                                 }
4818                                 if (copied_early)
4819                                         tcp_cleanup_rbuf(sk, skb->len);
4820                         }
4821                         if (!eaten) {
4822                                 if (tcp_checksum_complete_user(sk, skb))
4823                                         goto csum_error;
4824
4825                                 /* Predicted packet is in window by definition.
4826                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4827                                  * Hence, check seq<=rcv_wup reduces to:
4828                                  */
4829                                 if (tcp_header_len ==
4830                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4831                                     tp->rcv_nxt == tp->rcv_wup)
4832                                         tcp_store_ts_recent(tp);
4833
4834                                 tcp_rcv_rtt_measure_ts(sk, skb);
4835
4836                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4837                                         goto step5;
4838
4839                                 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4840
4841                                 /* Bulk data transfer: receiver */
4842                                 __skb_pull(skb, tcp_header_len);
4843                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4844                                 skb_set_owner_r(skb, sk);
4845                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4846                         }
4847
4848                         tcp_event_data_recv(sk, skb);
4849
4850                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4851                                 /* Well, only one small jumplet in fast path... */
4852                                 tcp_ack(sk, skb, FLAG_DATA);
4853                                 tcp_data_snd_check(sk);
4854                                 if (!inet_csk_ack_scheduled(sk))
4855                                         goto no_ack;
4856                         }
4857
4858                         __tcp_ack_snd_check(sk, 0);
4859 no_ack:
4860 #ifdef CONFIG_NET_DMA
4861                         if (copied_early)
4862                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4863                         else
4864 #endif
4865                         if (eaten)
4866                                 __kfree_skb(skb);
4867                         else
4868                                 sk->sk_data_ready(sk, 0);
4869                         return 0;
4870                 }
4871         }
4872
4873 slow_path:
4874         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4875                 goto csum_error;
4876
4877         /*
4878          * RFC1323: H1. Apply PAWS check first.
4879          */
4880         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4881             tcp_paws_discard(sk, skb)) {
4882                 if (!th->rst) {
4883                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4884                         tcp_send_dupack(sk, skb);
4885                         goto discard;
4886                 }
4887                 /* Resets are accepted even if PAWS failed.
4888
4889                    ts_recent update must be made after we are sure
4890                    that the packet is in window.
4891                  */
4892         }
4893
4894         /*
4895          *      Standard slow path.
4896          */
4897
4898         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4899                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4900                  * (RST) segments are validated by checking their SEQ-fields."
4901                  * And page 69: "If an incoming segment is not acceptable,
4902                  * an acknowledgment should be sent in reply (unless the RST bit
4903                  * is set, if so drop the segment and return)".
4904                  */
4905                 if (!th->rst)
4906                         tcp_send_dupack(sk, skb);
4907                 goto discard;
4908         }
4909
4910         if (th->rst) {
4911                 tcp_reset(sk);
4912                 goto discard;
4913         }
4914
4915         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4916
4917         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4918                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4919                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4920                 tcp_reset(sk);
4921                 return 1;
4922         }
4923
4924 step5:
4925         if (th->ack)
4926                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4927
4928         tcp_rcv_rtt_measure_ts(sk, skb);
4929
4930         /* Process urgent data. */
4931         tcp_urg(sk, skb, th);
4932
4933         /* step 7: process the segment text */
4934         tcp_data_queue(sk, skb);
4935
4936         tcp_data_snd_check(sk);
4937         tcp_ack_snd_check(sk);
4938
4939         tcp_defer_accept_check(sk);
4940         return 0;
4941
4942 csum_error:
4943         TCP_INC_STATS_BH(TCP_MIB_INERRS);
4944
4945 discard:
4946         __kfree_skb(skb);
4947         return 0;
4948 }
4949
4950 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4951                                          struct tcphdr *th, unsigned len)
4952 {
4953         struct tcp_sock *tp = tcp_sk(sk);
4954         struct inet_connection_sock *icsk = inet_csk(sk);
4955         int saved_clamp = tp->rx_opt.mss_clamp;
4956
4957         tcp_parse_options(skb, &tp->rx_opt, 0);
4958
4959         if (th->ack) {
4960                 /* rfc793:
4961                  * "If the state is SYN-SENT then
4962                  *    first check the ACK bit
4963                  *      If the ACK bit is set
4964                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4965                  *        a reset (unless the RST bit is set, if so drop
4966                  *        the segment and return)"
4967                  *
4968                  *  We do not send data with SYN, so that RFC-correct
4969                  *  test reduces to:
4970                  */
4971                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4972                         goto reset_and_undo;
4973
4974                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4975                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4976                              tcp_time_stamp)) {
4977                         NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4978                         goto reset_and_undo;
4979                 }
4980
4981                 /* Now ACK is acceptable.
4982                  *
4983                  * "If the RST bit is set
4984                  *    If the ACK was acceptable then signal the user "error:
4985                  *    connection reset", drop the segment, enter CLOSED state,
4986                  *    delete TCB, and return."
4987                  */
4988
4989                 if (th->rst) {
4990                         tcp_reset(sk);
4991                         goto discard;
4992                 }
4993
4994                 /* rfc793:
4995                  *   "fifth, if neither of the SYN or RST bits is set then
4996                  *    drop the segment and return."
4997                  *
4998                  *    See note below!
4999                  *                                        --ANK(990513)
5000                  */
5001                 if (!th->syn)
5002                         goto discard_and_undo;
5003
5004                 /* rfc793:
5005                  *   "If the SYN bit is on ...
5006                  *    are acceptable then ...
5007                  *    (our SYN has been ACKed), change the connection
5008                  *    state to ESTABLISHED..."
5009                  */
5010
5011                 TCP_ECN_rcv_synack(tp, th);
5012
5013                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5014                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5015
5016                 /* Ok.. it's good. Set up sequence numbers and
5017                  * move to established.
5018                  */
5019                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5020                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5021
5022                 /* RFC1323: The window in SYN & SYN/ACK segments is
5023                  * never scaled.
5024                  */
5025                 tp->snd_wnd = ntohs(th->window);
5026                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5027
5028                 if (!tp->rx_opt.wscale_ok) {
5029                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5030                         tp->window_clamp = min(tp->window_clamp, 65535U);
5031                 }
5032
5033                 if (tp->rx_opt.saw_tstamp) {
5034                         tp->rx_opt.tstamp_ok       = 1;
5035                         tp->tcp_header_len =
5036                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5037                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5038                         tcp_store_ts_recent(tp);
5039                 } else {
5040                         tp->tcp_header_len = sizeof(struct tcphdr);
5041                 }
5042
5043                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5044                         tcp_enable_fack(tp);
5045
5046                 tcp_mtup_init(sk);
5047                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5048                 tcp_initialize_rcv_mss(sk);
5049
5050                 /* Remember, tcp_poll() does not lock socket!
5051                  * Change state from SYN-SENT only after copied_seq
5052                  * is initialized. */
5053                 tp->copied_seq = tp->rcv_nxt;
5054                 smp_mb();
5055                 tcp_set_state(sk, TCP_ESTABLISHED);
5056
5057                 security_inet_conn_established(sk, skb);
5058
5059                 /* Make sure socket is routed, for correct metrics.  */
5060                 icsk->icsk_af_ops->rebuild_header(sk);
5061
5062                 tcp_init_metrics(sk);
5063
5064                 tcp_init_congestion_control(sk);
5065
5066                 /* Prevent spurious tcp_cwnd_restart() on first data
5067                  * packet.
5068                  */
5069                 tp->lsndtime = tcp_time_stamp;
5070
5071                 tcp_init_buffer_space(sk);
5072
5073                 if (sock_flag(sk, SOCK_KEEPOPEN))
5074                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5075
5076                 if (!tp->rx_opt.snd_wscale)
5077                         __tcp_fast_path_on(tp, tp->snd_wnd);
5078                 else
5079                         tp->pred_flags = 0;
5080
5081                 if (!sock_flag(sk, SOCK_DEAD)) {
5082                         sk->sk_state_change(sk);
5083                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5084                 }
5085
5086                 if (sk->sk_write_pending ||
5087                     icsk->icsk_accept_queue.rskq_defer_accept ||
5088                     icsk->icsk_ack.pingpong) {
5089                         /* Save one ACK. Data will be ready after
5090                          * several ticks, if write_pending is set.
5091                          *
5092                          * It may be deleted, but with this feature tcpdumps
5093                          * look so _wonderfully_ clever, that I was not able
5094                          * to stand against the temptation 8)     --ANK
5095                          */
5096                         inet_csk_schedule_ack(sk);
5097                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5098                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5099                         tcp_incr_quickack(sk);
5100                         tcp_enter_quickack_mode(sk);
5101                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5102                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5103
5104 discard:
5105                         __kfree_skb(skb);
5106                         return 0;
5107                 } else {
5108                         tcp_send_ack(sk);
5109                 }
5110                 return -1;
5111         }
5112
5113         /* No ACK in the segment */
5114
5115         if (th->rst) {
5116                 /* rfc793:
5117                  * "If the RST bit is set
5118                  *
5119                  *      Otherwise (no ACK) drop the segment and return."
5120                  */
5121
5122                 goto discard_and_undo;
5123         }
5124
5125         /* PAWS check. */
5126         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5127             tcp_paws_check(&tp->rx_opt, 0))
5128                 goto discard_and_undo;
5129
5130         if (th->syn) {
5131                 /* We see SYN without ACK. It is attempt of
5132                  * simultaneous connect with crossed SYNs.
5133                  * Particularly, it can be connect to self.
5134                  */
5135                 tcp_set_state(sk, TCP_SYN_RECV);
5136
5137                 if (tp->rx_opt.saw_tstamp) {
5138                         tp->rx_opt.tstamp_ok = 1;
5139                         tcp_store_ts_recent(tp);
5140                         tp->tcp_header_len =
5141                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5142                 } else {
5143                         tp->tcp_header_len = sizeof(struct tcphdr);
5144                 }
5145
5146                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5147                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5148
5149                 /* RFC1323: The window in SYN & SYN/ACK segments is
5150                  * never scaled.
5151                  */
5152                 tp->snd_wnd    = ntohs(th->window);
5153                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5154                 tp->max_window = tp->snd_wnd;
5155
5156                 TCP_ECN_rcv_syn(tp, th);
5157
5158                 tcp_mtup_init(sk);
5159                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5160                 tcp_initialize_rcv_mss(sk);
5161
5162                 tcp_send_synack(sk);
5163 #if 0
5164                 /* Note, we could accept data and URG from this segment.
5165                  * There are no obstacles to make this.
5166                  *
5167                  * However, if we ignore data in ACKless segments sometimes,
5168                  * we have no reasons to accept it sometimes.
5169                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5170                  * is not flawless. So, discard packet for sanity.
5171                  * Uncomment this return to process the data.
5172                  */
5173                 return -1;
5174 #else
5175                 goto discard;
5176 #endif
5177         }
5178         /* "fifth, if neither of the SYN or RST bits is set then
5179          * drop the segment and return."
5180          */
5181
5182 discard_and_undo:
5183         tcp_clear_options(&tp->rx_opt);
5184         tp->rx_opt.mss_clamp = saved_clamp;
5185         goto discard;
5186
5187 reset_and_undo:
5188         tcp_clear_options(&tp->rx_opt);
5189         tp->rx_opt.mss_clamp = saved_clamp;
5190         return 1;
5191 }
5192
5193 /*
5194  *      This function implements the receiving procedure of RFC 793 for
5195  *      all states except ESTABLISHED and TIME_WAIT.
5196  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5197  *      address independent.
5198  */
5199
5200 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5201                           struct tcphdr *th, unsigned len)
5202 {
5203         struct tcp_sock *tp = tcp_sk(sk);
5204         struct inet_connection_sock *icsk = inet_csk(sk);
5205         int queued = 0;
5206
5207         tp->rx_opt.saw_tstamp = 0;
5208
5209         switch (sk->sk_state) {
5210         case TCP_CLOSE:
5211                 goto discard;
5212
5213         case TCP_LISTEN:
5214                 if (th->ack)
5215                         return 1;
5216
5217                 if (th->rst)
5218                         goto discard;
5219
5220                 if (th->syn) {
5221                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5222                                 return 1;
5223
5224                         /* Now we have several options: In theory there is
5225                          * nothing else in the frame. KA9Q has an option to
5226                          * send data with the syn, BSD accepts data with the
5227                          * syn up to the [to be] advertised window and
5228                          * Solaris 2.1 gives you a protocol error. For now
5229                          * we just ignore it, that fits the spec precisely
5230                          * and avoids incompatibilities. It would be nice in
5231                          * future to drop through and process the data.
5232                          *
5233                          * Now that TTCP is starting to be used we ought to
5234                          * queue this data.
5235                          * But, this leaves one open to an easy denial of
5236                          * service attack, and SYN cookies can't defend
5237                          * against this problem. So, we drop the data
5238                          * in the interest of security over speed unless
5239                          * it's still in use.
5240                          */
5241                         kfree_skb(skb);
5242                         return 0;
5243                 }
5244                 goto discard;
5245
5246         case TCP_SYN_SENT:
5247                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5248                 if (queued >= 0)
5249                         return queued;
5250
5251                 /* Do step6 onward by hand. */
5252                 tcp_urg(sk, skb, th);
5253                 __kfree_skb(skb);
5254                 tcp_data_snd_check(sk);
5255                 return 0;
5256         }
5257
5258         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5259             tcp_paws_discard(sk, skb)) {
5260                 if (!th->rst) {
5261                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5262                         tcp_send_dupack(sk, skb);
5263                         goto discard;
5264                 }
5265                 /* Reset is accepted even if it did not pass PAWS. */
5266         }
5267
5268         /* step 1: check sequence number */
5269         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5270                 if (!th->rst)
5271                         tcp_send_dupack(sk, skb);
5272                 goto discard;
5273         }
5274
5275         /* step 2: check RST bit */
5276         if (th->rst) {
5277                 tcp_reset(sk);
5278                 goto discard;
5279         }
5280
5281         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5282
5283         /* step 3: check security and precedence [ignored] */
5284
5285         /*      step 4:
5286          *
5287          *      Check for a SYN in window.
5288          */
5289         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5290                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5291                 tcp_reset(sk);
5292                 return 1;
5293         }
5294
5295         /* step 5: check the ACK field */
5296         if (th->ack) {
5297                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5298
5299                 switch (sk->sk_state) {
5300                 case TCP_SYN_RECV:
5301                         if (acceptable) {
5302                                 tp->copied_seq = tp->rcv_nxt;
5303                                 smp_mb();
5304                                 tcp_set_state(sk, TCP_ESTABLISHED);
5305                                 sk->sk_state_change(sk);
5306
5307                                 /* Note, that this wakeup is only for marginal
5308                                  * crossed SYN case. Passively open sockets
5309                                  * are not waked up, because sk->sk_sleep ==
5310                                  * NULL and sk->sk_socket == NULL.
5311                                  */
5312                                 if (sk->sk_socket)
5313                                         sk_wake_async(sk,
5314                                                       SOCK_WAKE_IO, POLL_OUT);
5315
5316                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5317                                 tp->snd_wnd = ntohs(th->window) <<
5318                                               tp->rx_opt.snd_wscale;
5319                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5320                                             TCP_SKB_CB(skb)->seq);
5321
5322                                 /* tcp_ack considers this ACK as duplicate
5323                                  * and does not calculate rtt.
5324                                  * Fix it at least with timestamps.
5325                                  */
5326                                 if (tp->rx_opt.saw_tstamp &&
5327                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5328                                         tcp_ack_saw_tstamp(sk, 0);
5329
5330                                 if (tp->rx_opt.tstamp_ok)
5331                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5332
5333                                 /* Make sure socket is routed, for
5334                                  * correct metrics.
5335                                  */
5336                                 icsk->icsk_af_ops->rebuild_header(sk);
5337
5338                                 tcp_init_metrics(sk);
5339
5340                                 tcp_init_congestion_control(sk);
5341
5342                                 /* Prevent spurious tcp_cwnd_restart() on
5343                                  * first data packet.
5344                                  */
5345                                 tp->lsndtime = tcp_time_stamp;
5346
5347                                 tcp_mtup_init(sk);
5348                                 tcp_initialize_rcv_mss(sk);
5349                                 tcp_init_buffer_space(sk);
5350                                 tcp_fast_path_on(tp);
5351                         } else {
5352                                 return 1;
5353                         }
5354                         break;
5355
5356                 case TCP_FIN_WAIT1:
5357                         if (tp->snd_una == tp->write_seq) {
5358                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5359                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5360                                 dst_confirm(sk->sk_dst_cache);
5361
5362                                 if (!sock_flag(sk, SOCK_DEAD))
5363                                         /* Wake up lingering close() */
5364                                         sk->sk_state_change(sk);
5365                                 else {
5366                                         int tmo;
5367
5368                                         if (tp->linger2 < 0 ||
5369                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5370                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5371                                                 tcp_done(sk);
5372                                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5373                                                 return 1;
5374                                         }
5375
5376                                         tmo = tcp_fin_time(sk);
5377                                         if (tmo > TCP_TIMEWAIT_LEN) {
5378                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5379                                         } else if (th->fin || sock_owned_by_user(sk)) {
5380                                                 /* Bad case. We could lose such FIN otherwise.
5381                                                  * It is not a big problem, but it looks confusing
5382                                                  * and not so rare event. We still can lose it now,
5383                                                  * if it spins in bh_lock_sock(), but it is really
5384                                                  * marginal case.
5385                                                  */
5386                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5387                                         } else {
5388                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5389                                                 goto discard;
5390                                         }
5391                                 }
5392                         }
5393                         break;
5394
5395                 case TCP_CLOSING:
5396                         if (tp->snd_una == tp->write_seq) {
5397                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5398                                 goto discard;
5399                         }
5400                         break;
5401
5402                 case TCP_LAST_ACK:
5403                         if (tp->snd_una == tp->write_seq) {
5404                                 tcp_update_metrics(sk);
5405                                 tcp_done(sk);
5406                                 goto discard;
5407                         }
5408                         break;
5409                 }
5410         } else
5411                 goto discard;
5412
5413         /* step 6: check the URG bit */
5414         tcp_urg(sk, skb, th);
5415
5416         /* step 7: process the segment text */
5417         switch (sk->sk_state) {
5418         case TCP_CLOSE_WAIT:
5419         case TCP_CLOSING:
5420         case TCP_LAST_ACK:
5421                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5422                         break;
5423         case TCP_FIN_WAIT1:
5424         case TCP_FIN_WAIT2:
5425                 /* RFC 793 says to queue data in these states,
5426                  * RFC 1122 says we MUST send a reset.
5427                  * BSD 4.4 also does reset.
5428                  */
5429                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5430                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5431                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5432                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5433                                 tcp_reset(sk);
5434                                 return 1;
5435                         }
5436                 }
5437                 /* Fall through */
5438         case TCP_ESTABLISHED:
5439                 tcp_data_queue(sk, skb);
5440                 queued = 1;
5441                 break;
5442         }
5443
5444         /* tcp_data could move socket to TIME-WAIT */
5445         if (sk->sk_state != TCP_CLOSE) {
5446                 tcp_data_snd_check(sk);
5447                 tcp_ack_snd_check(sk);
5448         }
5449
5450         if (!queued) {
5451 discard:
5452                 __kfree_skb(skb);
5453         }
5454         return 0;
5455 }
5456
5457 EXPORT_SYMBOL(sysctl_tcp_ecn);
5458 EXPORT_SYMBOL(sysctl_tcp_reordering);
5459 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5460 EXPORT_SYMBOL(tcp_parse_options);
5461 EXPORT_SYMBOL(tcp_rcv_established);
5462 EXPORT_SYMBOL(tcp_rcv_state_process);
5463 EXPORT_SYMBOL(tcp_initialize_rcv_mss);