]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/ipv4/tcp_input.c
a287747e9dd6fe0a3b55bd19501ec8587fac70f6
[linux-2.6-omap-h63xx.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 /*
24  * Changes:
25  *              Pedro Roque     :       Fast Retransmit/Recovery.
26  *                                      Two receive queues.
27  *                                      Retransmit queue handled by TCP.
28  *                                      Better retransmit timer handling.
29  *                                      New congestion avoidance.
30  *                                      Header prediction.
31  *                                      Variable renaming.
32  *
33  *              Eric            :       Fast Retransmit.
34  *              Randy Scott     :       MSS option defines.
35  *              Eric Schenk     :       Fixes to slow start algorithm.
36  *              Eric Schenk     :       Yet another double ACK bug.
37  *              Eric Schenk     :       Delayed ACK bug fixes.
38  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
39  *              David S. Miller :       Don't allow zero congestion window.
40  *              Eric Schenk     :       Fix retransmitter so that it sends
41  *                                      next packet on ack of previous packet.
42  *              Andi Kleen      :       Moved open_request checking here
43  *                                      and process RSTs for open_requests.
44  *              Andi Kleen      :       Better prune_queue, and other fixes.
45  *              Andrey Savochkin:       Fix RTT measurements in the presence of
46  *                                      timestamps.
47  *              Andrey Savochkin:       Check sequence numbers correctly when
48  *                                      removing SACKs due to in sequence incoming
49  *                                      data segments.
50  *              Andi Kleen:             Make sure we never ack data there is not
51  *                                      enough room for. Also make this condition
52  *                                      a fatal error if it might still happen.
53  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
54  *                                      connections with MSS<min(MTU,ann. MSS)
55  *                                      work without delayed acks.
56  *              Andi Kleen:             Process packets with PSH set in the
57  *                                      fast path.
58  *              J Hadi Salim:           ECN support
59  *              Andrei Gurtov,
60  *              Pasi Sarolahti,
61  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
62  *                                      engine. Lots of bugs are found.
63  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
64  */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
96 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
97 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
99 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
100 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
101 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
102 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
103 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121  * real world.
122  */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124                                 const struct sk_buff *skb)
125 {
126         struct inet_connection_sock *icsk = inet_csk(sk);
127         const unsigned int lss = icsk->icsk_ack.last_seg_size;
128         unsigned int len;
129
130         icsk->icsk_ack.last_seg_size = 0;
131
132         /* skb->len may jitter because of SACKs, even if peer
133          * sends good full-sized frames.
134          */
135         len = skb_shinfo(skb)->gso_size ?: skb->len;
136         if (len >= icsk->icsk_ack.rcv_mss) {
137                 icsk->icsk_ack.rcv_mss = len;
138         } else {
139                 /* Otherwise, we make more careful check taking into account,
140                  * that SACKs block is variable.
141                  *
142                  * "len" is invariant segment length, including TCP header.
143                  */
144                 len += skb->data - skb_transport_header(skb);
145                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146                     /* If PSH is not set, packet should be
147                      * full sized, provided peer TCP is not badly broken.
148                      * This observation (if it is correct 8)) allows
149                      * to handle super-low mtu links fairly.
150                      */
151                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153                         /* Subtract also invariant (if peer is RFC compliant),
154                          * tcp header plus fixed timestamp option length.
155                          * Resulting "len" is MSS free of SACK jitter.
156                          */
157                         len -= tcp_sk(sk)->tcp_header_len;
158                         icsk->icsk_ack.last_seg_size = len;
159                         if (len == lss) {
160                                 icsk->icsk_ack.rcv_mss = len;
161                                 return;
162                         }
163                 }
164                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167         }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172         struct inet_connection_sock *icsk = inet_csk(sk);
173         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175         if (quickacks==0)
176                 quickacks=2;
177         if (quickacks > icsk->icsk_ack.quick)
178                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183         struct inet_connection_sock *icsk = inet_csk(sk);
184         tcp_incr_quickack(sk);
185         icsk->icsk_ack.pingpong = 0;
186         icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195         const struct inet_connection_sock *icsk = inet_csk(sk);
196         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201         if (tp->ecn_flags&TCP_ECN_OK)
202                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207         if (tcp_hdr(skb)->cwr)
208                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218         if (tp->ecn_flags&TCP_ECN_OK) {
219                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221                 /* Funny extension: if ECT is not set on a segment,
222                  * it is surely retransmit. It is not in ECN RFC,
223                  * but Linux follows this rule. */
224                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225                         tcp_enter_quickack_mode((struct sock *)tp);
226         }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231         if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232                 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237         if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238                 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243         if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244                 return 1;
245         return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256                      sizeof(struct sk_buff);
257
258         if (sk->sk_sndbuf < 3 * sndmem)
259                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290         struct tcp_sock *tp = tcp_sk(sk);
291         /* Optimize this! */
292         int truesize = tcp_win_from_space(skb->truesize)/2;
293         int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295         while (tp->rcv_ssthresh <= window) {
296                 if (truesize <= skb->len)
297                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299                 truesize >>= 1;
300                 window >>= 1;
301         }
302         return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306                             struct sk_buff *skb)
307 {
308         struct tcp_sock *tp = tcp_sk(sk);
309
310         /* Check #1 */
311         if (tp->rcv_ssthresh < tp->window_clamp &&
312             (int)tp->rcv_ssthresh < tcp_space(sk) &&
313             !tcp_memory_pressure) {
314                 int incr;
315
316                 /* Check #2. Increase window, if skb with such overhead
317                  * will fit to rcvbuf in future.
318                  */
319                 if (tcp_win_from_space(skb->truesize) <= skb->len)
320                         incr = 2*tp->advmss;
321                 else
322                         incr = __tcp_grow_window(sk, skb);
323
324                 if (incr) {
325                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326                         inet_csk(sk)->icsk_ack.quick |= 1;
327                 }
328         }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335         struct tcp_sock *tp = tcp_sk(sk);
336         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338         /* Try to select rcvbuf so that 4 mss-sized segments
339          * will fit to window and corresponding skbs will fit to our rcvbuf.
340          * (was 3; 4 is minimum to allow fast retransmit to work.)
341          */
342         while (tcp_win_from_space(rcvmem) < tp->advmss)
343                 rcvmem += 128;
344         if (sk->sk_rcvbuf < 4 * rcvmem)
345                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353         struct tcp_sock *tp = tcp_sk(sk);
354         int maxwin;
355
356         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357                 tcp_fixup_rcvbuf(sk);
358         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359                 tcp_fixup_sndbuf(sk);
360
361         tp->rcvq_space.space = tp->rcv_wnd;
362
363         maxwin = tcp_full_space(sk);
364
365         if (tp->window_clamp >= maxwin) {
366                 tp->window_clamp = maxwin;
367
368                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369                         tp->window_clamp = max(maxwin -
370                                                (maxwin >> sysctl_tcp_app_win),
371                                                4 * tp->advmss);
372         }
373
374         /* Force reservation of one segment. */
375         if (sysctl_tcp_app_win &&
376             tp->window_clamp > 2 * tp->advmss &&
377             tp->window_clamp + tp->advmss > maxwin)
378                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381         tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387         struct tcp_sock *tp = tcp_sk(sk);
388         struct inet_connection_sock *icsk = inet_csk(sk);
389
390         icsk->icsk_ack.quick = 0;
391
392         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394             !tcp_memory_pressure &&
395             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397                                     sysctl_tcp_rmem[2]);
398         }
399         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400                 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405  * RCV_MSS is an our guess about MSS used by the peer.
406  * We haven't any direct information about the MSS.
407  * It's better to underestimate the RCV_MSS rather than overestimate.
408  * Overestimations make us ACKing less frequently than needed.
409  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410  */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413         struct tcp_sock *tp = tcp_sk(sk);
414         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416         hint = min(hint, tp->rcv_wnd/2);
417         hint = min(hint, TCP_MIN_RCVMSS);
418         hint = max(hint, TCP_MIN_MSS);
419
420         inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424  *
425  * The algorithm for RTT estimation w/o timestamps is based on
426  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428  *
429  * More detail on this code can be found at
430  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431  * though this reference is out of date.  A new paper
432  * is pending.
433  */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436         u32 new_sample = tp->rcv_rtt_est.rtt;
437         long m = sample;
438
439         if (m == 0)
440                 m = 1;
441
442         if (new_sample != 0) {
443                 /* If we sample in larger samples in the non-timestamp
444                  * case, we could grossly overestimate the RTT especially
445                  * with chatty applications or bulk transfer apps which
446                  * are stalled on filesystem I/O.
447                  *
448                  * Also, since we are only going for a minimum in the
449                  * non-timestamp case, we do not smooth things out
450                  * else with timestamps disabled convergence takes too
451                  * long.
452                  */
453                 if (!win_dep) {
454                         m -= (new_sample >> 3);
455                         new_sample += m;
456                 } else if (m < new_sample)
457                         new_sample = m << 3;
458         } else {
459                 /* No previous measure. */
460                 new_sample = m << 3;
461         }
462
463         if (tp->rcv_rtt_est.rtt != new_sample)
464                 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469         if (tp->rcv_rtt_est.time == 0)
470                 goto new_measure;
471         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472                 return;
473         tcp_rcv_rtt_update(tp,
474                            jiffies - tp->rcv_rtt_est.time,
475                            1);
476
477 new_measure:
478         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479         tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484         struct tcp_sock *tp = tcp_sk(sk);
485         if (tp->rx_opt.rcv_tsecr &&
486             (TCP_SKB_CB(skb)->end_seq -
487              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492  * This function should be called every time data is copied to user space.
493  * It calculates the appropriate TCP receive buffer space.
494  */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497         struct tcp_sock *tp = tcp_sk(sk);
498         int time;
499         int space;
500
501         if (tp->rcvq_space.time == 0)
502                 goto new_measure;
503
504         time = tcp_time_stamp - tp->rcvq_space.time;
505         if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506             tp->rcv_rtt_est.rtt == 0)
507                 return;
508
509         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511         space = max(tp->rcvq_space.space, space);
512
513         if (tp->rcvq_space.space != space) {
514                 int rcvmem;
515
516                 tp->rcvq_space.space = space;
517
518                 if (sysctl_tcp_moderate_rcvbuf &&
519                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520                         int new_clamp = space;
521
522                         /* Receive space grows, normalize in order to
523                          * take into account packet headers and sk_buff
524                          * structure overhead.
525                          */
526                         space /= tp->advmss;
527                         if (!space)
528                                 space = 1;
529                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
530                                   16 + sizeof(struct sk_buff));
531                         while (tcp_win_from_space(rcvmem) < tp->advmss)
532                                 rcvmem += 128;
533                         space *= rcvmem;
534                         space = min(space, sysctl_tcp_rmem[2]);
535                         if (space > sk->sk_rcvbuf) {
536                                 sk->sk_rcvbuf = space;
537
538                                 /* Make the window clamp follow along.  */
539                                 tp->window_clamp = new_clamp;
540                         }
541                 }
542         }
543
544 new_measure:
545         tp->rcvq_space.seq = tp->copied_seq;
546         tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550  * behavior of the tp->ato delayed ack timeout interval.  When a
551  * connection starts up, we want to ack as quickly as possible.  The
552  * problem is that "good" TCP's do slow start at the beginning of data
553  * transmission.  The means that until we send the first few ACK's the
554  * sender will sit on his end and only queue most of his data, because
555  * he can only send snd_cwnd unacked packets at any given time.  For
556  * each ACK we send, he increments snd_cwnd and transmits more of his
557  * queue.  -DaveM
558  */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561         struct tcp_sock *tp = tcp_sk(sk);
562         struct inet_connection_sock *icsk = inet_csk(sk);
563         u32 now;
564
565         inet_csk_schedule_ack(sk);
566
567         tcp_measure_rcv_mss(sk, skb);
568
569         tcp_rcv_rtt_measure(tp);
570
571         now = tcp_time_stamp;
572
573         if (!icsk->icsk_ack.ato) {
574                 /* The _first_ data packet received, initialize
575                  * delayed ACK engine.
576                  */
577                 tcp_incr_quickack(sk);
578                 icsk->icsk_ack.ato = TCP_ATO_MIN;
579         } else {
580                 int m = now - icsk->icsk_ack.lrcvtime;
581
582                 if (m <= TCP_ATO_MIN/2) {
583                         /* The fastest case is the first. */
584                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585                 } else if (m < icsk->icsk_ack.ato) {
586                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
588                                 icsk->icsk_ack.ato = icsk->icsk_rto;
589                 } else if (m > icsk->icsk_rto) {
590                         /* Too long gap. Apparently sender failed to
591                          * restart window, so that we send ACKs quickly.
592                          */
593                         tcp_incr_quickack(sk);
594                         sk_stream_mem_reclaim(sk);
595                 }
596         }
597         icsk->icsk_ack.lrcvtime = now;
598
599         TCP_ECN_check_ce(tp, skb);
600
601         if (skb->len >= 128)
602                 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607         struct dst_entry *dst = __sk_dst_get(sk);
608         u32 rto_min = TCP_RTO_MIN;
609
610         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611                 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612         return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616  * routine either comes from timestamps, or from segments that were
617  * known _not_ to have been retransmitted [see Karn/Partridge
618  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619  * piece by Van Jacobson.
620  * NOTE: the next three routines used to be one big routine.
621  * To save cycles in the RFC 1323 implementation it was better to break
622  * it up into three procedures. -- erics
623  */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626         struct tcp_sock *tp = tcp_sk(sk);
627         long m = mrtt; /* RTT */
628
629         /*      The following amusing code comes from Jacobson's
630          *      article in SIGCOMM '88.  Note that rtt and mdev
631          *      are scaled versions of rtt and mean deviation.
632          *      This is designed to be as fast as possible
633          *      m stands for "measurement".
634          *
635          *      On a 1990 paper the rto value is changed to:
636          *      RTO = rtt + 4 * mdev
637          *
638          * Funny. This algorithm seems to be very broken.
639          * These formulae increase RTO, when it should be decreased, increase
640          * too slowly, when it should be increased quickly, decrease too quickly
641          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642          * does not matter how to _calculate_ it. Seems, it was trap
643          * that VJ failed to avoid. 8)
644          */
645         if (m == 0)
646                 m = 1;
647         if (tp->srtt != 0) {
648                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
649                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
650                 if (m < 0) {
651                         m = -m;         /* m is now abs(error) */
652                         m -= (tp->mdev >> 2);   /* similar update on mdev */
653                         /* This is similar to one of Eifel findings.
654                          * Eifel blocks mdev updates when rtt decreases.
655                          * This solution is a bit different: we use finer gain
656                          * for mdev in this case (alpha*beta).
657                          * Like Eifel it also prevents growth of rto,
658                          * but also it limits too fast rto decreases,
659                          * happening in pure Eifel.
660                          */
661                         if (m > 0)
662                                 m >>= 3;
663                 } else {
664                         m -= (tp->mdev >> 2);   /* similar update on mdev */
665                 }
666                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
667                 if (tp->mdev > tp->mdev_max) {
668                         tp->mdev_max = tp->mdev;
669                         if (tp->mdev_max > tp->rttvar)
670                                 tp->rttvar = tp->mdev_max;
671                 }
672                 if (after(tp->snd_una, tp->rtt_seq)) {
673                         if (tp->mdev_max < tp->rttvar)
674                                 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675                         tp->rtt_seq = tp->snd_nxt;
676                         tp->mdev_max = tcp_rto_min(sk);
677                 }
678         } else {
679                 /* no previous measure. */
680                 tp->srtt = m<<3;        /* take the measured time to be rtt */
681                 tp->mdev = m<<1;        /* make sure rto = 3*rtt */
682                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683                 tp->rtt_seq = tp->snd_nxt;
684         }
685 }
686
687 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
688  * routine referred to above.
689  */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692         const struct tcp_sock *tp = tcp_sk(sk);
693         /* Old crap is replaced with new one. 8)
694          *
695          * More seriously:
696          * 1. If rtt variance happened to be less 50msec, it is hallucination.
697          *    It cannot be less due to utterly erratic ACK generation made
698          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699          *    to do with delayed acks, because at cwnd>2 true delack timeout
700          *    is invisible. Actually, Linux-2.4 also generates erratic
701          *    ACKs in some circumstances.
702          */
703         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705         /* 2. Fixups made earlier cannot be right.
706          *    If we do not estimate RTO correctly without them,
707          *    all the algo is pure shit and should be replaced
708          *    with correct one. It is exactly, which we pretend to do.
709          */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713  * guarantees that rto is higher.
714  */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722    This function is called only, when TCP finishes successfully
723    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724  */
725 void tcp_update_metrics(struct sock *sk)
726 {
727         struct tcp_sock *tp = tcp_sk(sk);
728         struct dst_entry *dst = __sk_dst_get(sk);
729
730         if (sysctl_tcp_nometrics_save)
731                 return;
732
733         dst_confirm(dst);
734
735         if (dst && (dst->flags&DST_HOST)) {
736                 const struct inet_connection_sock *icsk = inet_csk(sk);
737                 int m;
738
739                 if (icsk->icsk_backoff || !tp->srtt) {
740                         /* This session failed to estimate rtt. Why?
741                          * Probably, no packets returned in time.
742                          * Reset our results.
743                          */
744                         if (!(dst_metric_locked(dst, RTAX_RTT)))
745                                 dst->metrics[RTAX_RTT-1] = 0;
746                         return;
747                 }
748
749                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751                 /* If newly calculated rtt larger than stored one,
752                  * store new one. Otherwise, use EWMA. Remember,
753                  * rtt overestimation is always better than underestimation.
754                  */
755                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756                         if (m <= 0)
757                                 dst->metrics[RTAX_RTT-1] = tp->srtt;
758                         else
759                                 dst->metrics[RTAX_RTT-1] -= (m>>3);
760                 }
761
762                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763                         if (m < 0)
764                                 m = -m;
765
766                         /* Scale deviation to rttvar fixed point */
767                         m >>= 1;
768                         if (m < tp->mdev)
769                                 m = tp->mdev;
770
771                         if (m >= dst_metric(dst, RTAX_RTTVAR))
772                                 dst->metrics[RTAX_RTTVAR-1] = m;
773                         else
774                                 dst->metrics[RTAX_RTTVAR-1] -=
775                                         (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776                 }
777
778                 if (tp->snd_ssthresh >= 0xFFFF) {
779                         /* Slow start still did not finish. */
780                         if (dst_metric(dst, RTAX_SSTHRESH) &&
781                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784                         if (!dst_metric_locked(dst, RTAX_CWND) &&
785                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786                                 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788                            icsk->icsk_ca_state == TCP_CA_Open) {
789                         /* Cong. avoidance phase, cwnd is reliable. */
790                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791                                 dst->metrics[RTAX_SSTHRESH-1] =
792                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793                         if (!dst_metric_locked(dst, RTAX_CWND))
794                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795                 } else {
796                         /* Else slow start did not finish, cwnd is non-sense,
797                            ssthresh may be also invalid.
798                          */
799                         if (!dst_metric_locked(dst, RTAX_CWND))
800                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801                         if (dst->metrics[RTAX_SSTHRESH-1] &&
802                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803                             tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805                 }
806
807                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808                         if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809                             tp->reordering != sysctl_tcp_reordering)
810                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811                 }
812         }
813 }
814
815 /* Numbers are taken from RFC3390.
816  *
817  * John Heffner states:
818  *
819  *      The RFC specifies a window of no more than 4380 bytes
820  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
821  *      is a bit misleading because they use a clamp at 4380 bytes
822  *      rather than use a multiplier in the relevant range.
823  */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828         if (!cwnd) {
829                 if (tp->mss_cache > 1460)
830                         cwnd = 2;
831                 else
832                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833         }
834         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840         struct tcp_sock *tp = tcp_sk(sk);
841         const struct inet_connection_sock *icsk = inet_csk(sk);
842
843         tp->prior_ssthresh = 0;
844         tp->bytes_acked = 0;
845         if (icsk->icsk_ca_state < TCP_CA_CWR) {
846                 tp->undo_marker = 0;
847                 if (set_ssthresh)
848                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849                 tp->snd_cwnd = min(tp->snd_cwnd,
850                                    tcp_packets_in_flight(tp) + 1U);
851                 tp->snd_cwnd_cnt = 0;
852                 tp->high_seq = tp->snd_nxt;
853                 tp->snd_cwnd_stamp = tcp_time_stamp;
854                 TCP_ECN_queue_cwr(tp);
855
856                 tcp_set_ca_state(sk, TCP_CA_CWR);
857         }
858 }
859
860 /*
861  * Packet counting of FACK is based on in-order assumptions, therefore TCP
862  * disables it when reordering is detected
863  */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866         /* RFC3517 uses different metric in lost marker => reset on change */
867         if (tcp_is_fack(tp))
868                 tp->lost_skb_hint = NULL;
869         tp->rx_opt.sack_ok &= ~2;
870 }
871
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875         tp->rx_opt.sack_ok |= 4;
876 }
877
878 /* Initialize metrics on socket. */
879
880 static void tcp_init_metrics(struct sock *sk)
881 {
882         struct tcp_sock *tp = tcp_sk(sk);
883         struct dst_entry *dst = __sk_dst_get(sk);
884
885         if (dst == NULL)
886                 goto reset;
887
888         dst_confirm(dst);
889
890         if (dst_metric_locked(dst, RTAX_CWND))
891                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
892         if (dst_metric(dst, RTAX_SSTHRESH)) {
893                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
894                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
895                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
896         }
897         if (dst_metric(dst, RTAX_REORDERING) &&
898             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
899                 tcp_disable_fack(tp);
900                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
901         }
902
903         if (dst_metric(dst, RTAX_RTT) == 0)
904                 goto reset;
905
906         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
907                 goto reset;
908
909         /* Initial rtt is determined from SYN,SYN-ACK.
910          * The segment is small and rtt may appear much
911          * less than real one. Use per-dst memory
912          * to make it more realistic.
913          *
914          * A bit of theory. RTT is time passed after "normal" sized packet
915          * is sent until it is ACKed. In normal circumstances sending small
916          * packets force peer to delay ACKs and calculation is correct too.
917          * The algorithm is adaptive and, provided we follow specs, it
918          * NEVER underestimate RTT. BUT! If peer tries to make some clever
919          * tricks sort of "quick acks" for time long enough to decrease RTT
920          * to low value, and then abruptly stops to do it and starts to delay
921          * ACKs, wait for troubles.
922          */
923         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
924                 tp->srtt = dst_metric(dst, RTAX_RTT);
925                 tp->rtt_seq = tp->snd_nxt;
926         }
927         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
928                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
929                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930         }
931         tcp_set_rto(sk);
932         tcp_bound_rto(sk);
933         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
934                 goto reset;
935         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
936         tp->snd_cwnd_stamp = tcp_time_stamp;
937         return;
938
939 reset:
940         /* Play conservative. If timestamps are not
941          * supported, TCP will fail to recalculate correct
942          * rtt, if initial rto is too small. FORGET ALL AND RESET!
943          */
944         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
945                 tp->srtt = 0;
946                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
947                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
948         }
949 }
950
951 static void tcp_update_reordering(struct sock *sk, const int metric,
952                                   const int ts)
953 {
954         struct tcp_sock *tp = tcp_sk(sk);
955         if (metric > tp->reordering) {
956                 tp->reordering = min(TCP_MAX_REORDERING, metric);
957
958                 /* This exciting event is worth to be remembered. 8) */
959                 if (ts)
960                         NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
961                 else if (tcp_is_reno(tp))
962                         NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
963                 else if (tcp_is_fack(tp))
964                         NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
965                 else
966                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
967 #if FASTRETRANS_DEBUG > 1
968                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
970                        tp->reordering,
971                        tp->fackets_out,
972                        tp->sacked_out,
973                        tp->undo_marker ? tp->undo_retrans : 0);
974 #endif
975                 tcp_disable_fack(tp);
976         }
977 }
978
979 /* This procedure tags the retransmission queue when SACKs arrive.
980  *
981  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982  * Packets in queue with these bits set are counted in variables
983  * sacked_out, retrans_out and lost_out, correspondingly.
984  *
985  * Valid combinations are:
986  * Tag  InFlight        Description
987  * 0    1               - orig segment is in flight.
988  * S    0               - nothing flies, orig reached receiver.
989  * L    0               - nothing flies, orig lost by net.
990  * R    2               - both orig and retransmit are in flight.
991  * L|R  1               - orig is lost, retransmit is in flight.
992  * S|R  1               - orig reached receiver, retrans is still in flight.
993  * (L|S|R is logically valid, it could occur when L|R is sacked,
994  *  but it is equivalent to plain S and code short-curcuits it to S.
995  *  L|S is logically invalid, it would mean -1 packet in flight 8))
996  *
997  * These 6 states form finite state machine, controlled by the following events:
998  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000  * 3. Loss detection event of one of three flavors:
1001  *      A. Scoreboard estimator decided the packet is lost.
1002  *         A'. Reno "three dupacks" marks head of queue lost.
1003  *         A''. Its FACK modfication, head until snd.fack is lost.
1004  *      B. SACK arrives sacking data transmitted after never retransmitted
1005  *         hole was sent out.
1006  *      C. SACK arrives sacking SND.NXT at the moment, when the
1007  *         segment was retransmitted.
1008  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1009  *
1010  * It is pleasant to note, that state diagram turns out to be commutative,
1011  * so that we are allowed not to be bothered by order of our actions,
1012  * when multiple events arrive simultaneously. (see the function below).
1013  *
1014  * Reordering detection.
1015  * --------------------
1016  * Reordering metric is maximal distance, which a packet can be displaced
1017  * in packet stream. With SACKs we can estimate it:
1018  *
1019  * 1. SACK fills old hole and the corresponding segment was not
1020  *    ever retransmitted -> reordering. Alas, we cannot use it
1021  *    when segment was retransmitted.
1022  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1023  *    for retransmitted and already SACKed segment -> reordering..
1024  * Both of these heuristics are not used in Loss state, when we cannot
1025  * account for retransmits accurately.
1026  *
1027  * SACK block validation.
1028  * ----------------------
1029  *
1030  * SACK block range validation checks that the received SACK block fits to
1031  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1032  * Note that SND.UNA is not included to the range though being valid because
1033  * it means that the receiver is rather inconsistent with itself reporting
1034  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1035  * perfectly valid, however, in light of RFC2018 which explicitly states
1036  * that "SACK block MUST reflect the newest segment.  Even if the newest
1037  * segment is going to be discarded ...", not that it looks very clever
1038  * in case of head skb. Due to potentional receiver driven attacks, we
1039  * choose to avoid immediate execution of a walk in write queue due to
1040  * reneging and defer head skb's loss recovery to standard loss recovery
1041  * procedure that will eventually trigger (nothing forbids us doing this).
1042  *
1043  * Implements also blockage to start_seq wrap-around. Problem lies in the
1044  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1045  * there's no guarantee that it will be before snd_nxt (n). The problem
1046  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1047  * wrap (s_w):
1048  *
1049  *         <- outs wnd ->                          <- wrapzone ->
1050  *         u     e      n                         u_w   e_w  s n_w
1051  *         |     |      |                          |     |   |  |
1052  * |<------------+------+----- TCP seqno space --------------+---------->|
1053  * ...-- <2^31 ->|                                           |<--------...
1054  * ...---- >2^31 ------>|                                    |<--------...
1055  *
1056  * Current code wouldn't be vulnerable but it's better still to discard such
1057  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1058  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1059  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1060  * equal to the ideal case (infinite seqno space without wrap caused issues).
1061  *
1062  * With D-SACK the lower bound is extended to cover sequence space below
1063  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1064  * again, D-SACK block must not to go across snd_una (for the same reason as
1065  * for the normal SACK blocks, explained above). But there all simplicity
1066  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1067  * fully below undo_marker they do not affect behavior in anyway and can
1068  * therefore be safely ignored. In rare cases (which are more or less
1069  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1070  * fragmentation and packet reordering past skb's retransmission. To consider
1071  * them correctly, the acceptable range must be extended even more though
1072  * the exact amount is rather hard to quantify. However, tp->max_window can
1073  * be used as an exaggerated estimate.
1074  */
1075 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1076                                   u32 start_seq, u32 end_seq)
1077 {
1078         /* Too far in future, or reversed (interpretation is ambiguous) */
1079         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1080                 return 0;
1081
1082         /* Nasty start_seq wrap-around check (see comments above) */
1083         if (!before(start_seq, tp->snd_nxt))
1084                 return 0;
1085
1086         /* In outstanding window? ...This is valid exit for D-SACKs too.
1087          * start_seq == snd_una is non-sensical (see comments above)
1088          */
1089         if (after(start_seq, tp->snd_una))
1090                 return 1;
1091
1092         if (!is_dsack || !tp->undo_marker)
1093                 return 0;
1094
1095         /* ...Then it's D-SACK, and must reside below snd_una completely */
1096         if (!after(end_seq, tp->snd_una))
1097                 return 0;
1098
1099         if (!before(start_seq, tp->undo_marker))
1100                 return 1;
1101
1102         /* Too old */
1103         if (!after(end_seq, tp->undo_marker))
1104                 return 0;
1105
1106         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1107          *   start_seq < undo_marker and end_seq >= undo_marker.
1108          */
1109         return !before(start_seq, end_seq - tp->max_window);
1110 }
1111
1112 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1113  * Event "C". Later note: FACK people cheated me again 8), we have to account
1114  * for reordering! Ugly, but should help.
1115  *
1116  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1117  * less than what is now known to be received by the other end (derived from
1118  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1119  * retransmitted skbs to avoid some costly processing per ACKs.
1120  */
1121 static int tcp_mark_lost_retrans(struct sock *sk)
1122 {
1123         const struct inet_connection_sock *icsk = inet_csk(sk);
1124         struct tcp_sock *tp = tcp_sk(sk);
1125         struct sk_buff *skb;
1126         int flag = 0;
1127         int cnt = 0;
1128         u32 new_low_seq = tp->snd_nxt;
1129         u32 received_upto = TCP_SKB_CB(tp->highest_sack)->end_seq;
1130
1131         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1132             !after(received_upto, tp->lost_retrans_low) ||
1133             icsk->icsk_ca_state != TCP_CA_Recovery)
1134                 return flag;
1135
1136         tcp_for_write_queue(skb, sk) {
1137                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1138
1139                 if (skb == tcp_send_head(sk))
1140                         break;
1141                 if (cnt == tp->retrans_out)
1142                         break;
1143                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1144                         continue;
1145
1146                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1147                         continue;
1148
1149                 if (after(received_upto, ack_seq) &&
1150                     (tcp_is_fack(tp) ||
1151                      !before(received_upto,
1152                              ack_seq + tp->reordering * tp->mss_cache))) {
1153                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1154                         tp->retrans_out -= tcp_skb_pcount(skb);
1155
1156                         /* clear lost hint */
1157                         tp->retransmit_skb_hint = NULL;
1158
1159                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1160                                 tp->lost_out += tcp_skb_pcount(skb);
1161                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1162                                 flag |= FLAG_DATA_SACKED;
1163                                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1164                         }
1165                 } else {
1166                         if (before(ack_seq, new_low_seq))
1167                                 new_low_seq = ack_seq;
1168                         cnt += tcp_skb_pcount(skb);
1169                 }
1170         }
1171
1172         if (tp->retrans_out)
1173                 tp->lost_retrans_low = new_low_seq;
1174
1175         return flag;
1176 }
1177
1178 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1179                            struct tcp_sack_block_wire *sp, int num_sacks,
1180                            u32 prior_snd_una)
1181 {
1182         u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1183         u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1184         int dup_sack = 0;
1185
1186         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1187                 dup_sack = 1;
1188                 tcp_dsack_seen(tp);
1189                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1190         } else if (num_sacks > 1) {
1191                 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1192                 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1193
1194                 if (!after(end_seq_0, end_seq_1) &&
1195                     !before(start_seq_0, start_seq_1)) {
1196                         dup_sack = 1;
1197                         tcp_dsack_seen(tp);
1198                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1199                 }
1200         }
1201
1202         /* D-SACK for already forgotten data... Do dumb counting. */
1203         if (dup_sack &&
1204             !after(end_seq_0, prior_snd_una) &&
1205             after(end_seq_0, tp->undo_marker))
1206                 tp->undo_retrans--;
1207
1208         return dup_sack;
1209 }
1210
1211 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1212  * the incoming SACK may not exactly match but we can find smaller MSS
1213  * aligned portion of it that matches. Therefore we might need to fragment
1214  * which may fail and creates some hassle (caller must handle error case
1215  * returns).
1216  */
1217 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1218                                  u32 start_seq, u32 end_seq)
1219 {
1220         int in_sack, err;
1221         unsigned int pkt_len;
1222
1223         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1224                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1225
1226         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1227             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1228
1229                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1230
1231                 if (!in_sack)
1232                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1233                 else
1234                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1235                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1236                 if (err < 0)
1237                         return err;
1238         }
1239
1240         return in_sack;
1241 }
1242
1243 static int tcp_sacktag_one(struct sk_buff *skb, struct tcp_sock *tp,
1244                            int *reord, int dup_sack, int fack_count)
1245 {
1246         u8 sacked = TCP_SKB_CB(skb)->sacked;
1247         int flag = 0;
1248
1249         /* Account D-SACK for retransmitted packet. */
1250         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1251                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1252                         tp->undo_retrans--;
1253                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una) &&
1254                     (sacked & TCPCB_SACKED_ACKED))
1255                         *reord = min(fack_count, *reord);
1256         }
1257
1258         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1259         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1260                 return flag;
1261
1262         if (!(sacked & TCPCB_SACKED_ACKED)) {
1263                 if (sacked & TCPCB_SACKED_RETRANS) {
1264                         /* If the segment is not tagged as lost,
1265                          * we do not clear RETRANS, believing
1266                          * that retransmission is still in flight.
1267                          */
1268                         if (sacked & TCPCB_LOST) {
1269                                 TCP_SKB_CB(skb)->sacked &=
1270                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1271                                 tp->lost_out -= tcp_skb_pcount(skb);
1272                                 tp->retrans_out -= tcp_skb_pcount(skb);
1273
1274                                 /* clear lost hint */
1275                                 tp->retransmit_skb_hint = NULL;
1276                         }
1277                 } else {
1278                         if (!(sacked & TCPCB_RETRANS)) {
1279                                 /* New sack for not retransmitted frame,
1280                                  * which was in hole. It is reordering.
1281                                  */
1282                                 if (before(TCP_SKB_CB(skb)->seq,
1283                                            tcp_highest_sack_seq(tp)))
1284                                         *reord = min(fack_count, *reord);
1285
1286                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1287                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1288                                         flag |= FLAG_ONLY_ORIG_SACKED;
1289                         }
1290
1291                         if (sacked & TCPCB_LOST) {
1292                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1293                                 tp->lost_out -= tcp_skb_pcount(skb);
1294
1295                                 /* clear lost hint */
1296                                 tp->retransmit_skb_hint = NULL;
1297                         }
1298                 }
1299
1300                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1301                 flag |= FLAG_DATA_SACKED;
1302                 tp->sacked_out += tcp_skb_pcount(skb);
1303
1304                 fack_count += tcp_skb_pcount(skb);
1305
1306                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1307                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1308                     before(TCP_SKB_CB(skb)->seq,
1309                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1310                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1311
1312                 if (fack_count > tp->fackets_out)
1313                         tp->fackets_out = fack_count;
1314
1315                 if (after(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1316                         tp->highest_sack = skb;
1317
1318         } else {
1319                 if (dup_sack && (sacked & TCPCB_RETRANS))
1320                         *reord = min(fack_count, *reord);
1321         }
1322
1323         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1324          * frames and clear it. undo_retrans is decreased above, L|R frames
1325          * are accounted above as well.
1326          */
1327         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1328                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1329                 tp->retrans_out -= tcp_skb_pcount(skb);
1330                 tp->retransmit_skb_hint = NULL;
1331         }
1332
1333         return flag;
1334 }
1335
1336 static int
1337 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1338 {
1339         const struct inet_connection_sock *icsk = inet_csk(sk);
1340         struct tcp_sock *tp = tcp_sk(sk);
1341         unsigned char *ptr = (skb_transport_header(ack_skb) +
1342                               TCP_SKB_CB(ack_skb)->sacked);
1343         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1344         struct tcp_sack_block sp[4];
1345         struct sk_buff *cached_skb;
1346         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1347         int used_sacks;
1348         int reord = tp->packets_out;
1349         int flag = 0;
1350         int found_dup_sack = 0;
1351         int cached_fack_count;
1352         int i;
1353         int first_sack_index;
1354         int force_one_sack;
1355
1356         if (!tp->sacked_out) {
1357                 if (WARN_ON(tp->fackets_out))
1358                         tp->fackets_out = 0;
1359                 tp->highest_sack = tcp_write_queue_head(sk);
1360         }
1361
1362         found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1363                                          num_sacks, prior_snd_una);
1364         if (found_dup_sack)
1365                 flag |= FLAG_DSACKING_ACK;
1366
1367         /* Eliminate too old ACKs, but take into
1368          * account more or less fresh ones, they can
1369          * contain valid SACK info.
1370          */
1371         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1372                 return 0;
1373
1374         if (!tp->packets_out)
1375                 goto out;
1376
1377         used_sacks = 0;
1378         first_sack_index = 0;
1379         for (i = 0; i < num_sacks; i++) {
1380                 int dup_sack = !i && found_dup_sack;
1381
1382                 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1383                 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1384
1385                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1386                                             sp[used_sacks].start_seq,
1387                                             sp[used_sacks].end_seq)) {
1388                         if (dup_sack) {
1389                                 if (!tp->undo_marker)
1390                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1391                                 else
1392                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1393                         } else {
1394                                 /* Don't count olds caused by ACK reordering */
1395                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1396                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1397                                         continue;
1398                                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1399                         }
1400                         if (i == 0)
1401                                 first_sack_index = -1;
1402                         continue;
1403                 }
1404
1405                 /* Ignore very old stuff early */
1406                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1407                         continue;
1408
1409                 used_sacks++;
1410         }
1411
1412         /* SACK fastpath:
1413          * if the only SACK change is the increase of the end_seq of
1414          * the first block then only apply that SACK block
1415          * and use retrans queue hinting otherwise slowpath */
1416         force_one_sack = 1;
1417         for (i = 0; i < used_sacks; i++) {
1418                 u32 start_seq = sp[i].start_seq;
1419                 u32 end_seq = sp[i].end_seq;
1420
1421                 if (i == 0) {
1422                         if (tp->recv_sack_cache[i].start_seq != start_seq)
1423                                 force_one_sack = 0;
1424                 } else {
1425                         if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1426                             (tp->recv_sack_cache[i].end_seq != end_seq))
1427                                 force_one_sack = 0;
1428                 }
1429                 tp->recv_sack_cache[i].start_seq = start_seq;
1430                 tp->recv_sack_cache[i].end_seq = end_seq;
1431         }
1432         /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1433         for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1434                 tp->recv_sack_cache[i].start_seq = 0;
1435                 tp->recv_sack_cache[i].end_seq = 0;
1436         }
1437
1438         if (force_one_sack)
1439                 used_sacks = 1;
1440         else {
1441                 int j;
1442                 tp->fastpath_skb_hint = NULL;
1443
1444                 /* order SACK blocks to allow in order walk of the retrans queue */
1445                 for (i = used_sacks - 1; i > 0; i--) {
1446                         for (j = 0; j < i; j++){
1447                                 if (after(sp[j].start_seq, sp[j+1].start_seq)) {
1448                                         struct tcp_sack_block tmp;
1449
1450                                         tmp = sp[j];
1451                                         sp[j] = sp[j+1];
1452                                         sp[j+1] = tmp;
1453
1454                                         /* Track where the first SACK block goes to */
1455                                         if (j == first_sack_index)
1456                                                 first_sack_index = j+1;
1457                                 }
1458
1459                         }
1460                 }
1461         }
1462
1463         /* Use SACK fastpath hint if valid */
1464         cached_skb = tp->fastpath_skb_hint;
1465         cached_fack_count = tp->fastpath_cnt_hint;
1466         if (!cached_skb) {
1467                 cached_skb = tcp_write_queue_head(sk);
1468                 cached_fack_count = 0;
1469         }
1470
1471         for (i = 0; i < used_sacks; i++) {
1472                 struct sk_buff *skb;
1473                 u32 start_seq = sp[i].start_seq;
1474                 u32 end_seq = sp[i].end_seq;
1475                 int fack_count;
1476                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1477                 int next_dup = (found_dup_sack && (i+1 == first_sack_index));
1478
1479                 skb = cached_skb;
1480                 fack_count = cached_fack_count;
1481
1482                 /* Event "B" in the comment above. */
1483                 if (after(end_seq, tp->high_seq))
1484                         flag |= FLAG_DATA_LOST;
1485
1486                 tcp_for_write_queue_from(skb, sk) {
1487                         int in_sack = 0;
1488
1489                         if (skb == tcp_send_head(sk))
1490                                 break;
1491
1492                         cached_skb = skb;
1493                         cached_fack_count = fack_count;
1494                         if (i == first_sack_index) {
1495                                 tp->fastpath_skb_hint = skb;
1496                                 tp->fastpath_cnt_hint = fack_count;
1497                         }
1498
1499                         /* The retransmission queue is always in order, so
1500                          * we can short-circuit the walk early.
1501                          */
1502                         if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1503                                 break;
1504
1505                         dup_sack = (found_dup_sack && (i == first_sack_index));
1506
1507                         /* Due to sorting DSACK may reside within this SACK block! */
1508                         if (next_dup) {
1509                                 u32 dup_start = sp[i+1].start_seq;
1510                                 u32 dup_end = sp[i+1].end_seq;
1511
1512                                 if (before(TCP_SKB_CB(skb)->seq, dup_end)) {
1513                                         in_sack = tcp_match_skb_to_sack(sk, skb, dup_start, dup_end);
1514                                         if (in_sack > 0)
1515                                                 dup_sack = 1;
1516                                 }
1517                         }
1518
1519                         /* DSACK info lost if out-of-mem, try SACK still */
1520                         if (in_sack <= 0)
1521                                 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1522                         if (unlikely(in_sack < 0))
1523                                 break;
1524
1525                         if (in_sack)
1526                                 flag |= tcp_sacktag_one(skb, tp, &reord, dup_sack, fack_count);
1527
1528                         fack_count += tcp_skb_pcount(skb);
1529                 }
1530
1531                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1532                  * due to in-order walk
1533                  */
1534                 if (after(end_seq, tp->frto_highmark))
1535                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1536         }
1537
1538         flag |= tcp_mark_lost_retrans(sk);
1539
1540         tcp_verify_left_out(tp);
1541
1542         if ((reord < tp->fackets_out) &&
1543             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1544             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1545                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1546
1547 out:
1548
1549 #if FASTRETRANS_DEBUG > 0
1550         BUG_TRAP((int)tp->sacked_out >= 0);
1551         BUG_TRAP((int)tp->lost_out >= 0);
1552         BUG_TRAP((int)tp->retrans_out >= 0);
1553         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1554 #endif
1555         return flag;
1556 }
1557
1558 /* If we receive more dupacks than we expected counting segments
1559  * in assumption of absent reordering, interpret this as reordering.
1560  * The only another reason could be bug in receiver TCP.
1561  */
1562 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1563 {
1564         struct tcp_sock *tp = tcp_sk(sk);
1565         u32 holes;
1566
1567         holes = max(tp->lost_out, 1U);
1568         holes = min(holes, tp->packets_out);
1569
1570         if ((tp->sacked_out + holes) > tp->packets_out) {
1571                 tp->sacked_out = tp->packets_out - holes;
1572                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1573         }
1574 }
1575
1576 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1577
1578 static void tcp_add_reno_sack(struct sock *sk)
1579 {
1580         struct tcp_sock *tp = tcp_sk(sk);
1581         tp->sacked_out++;
1582         tcp_check_reno_reordering(sk, 0);
1583         tcp_verify_left_out(tp);
1584 }
1585
1586 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1587
1588 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1589 {
1590         struct tcp_sock *tp = tcp_sk(sk);
1591
1592         if (acked > 0) {
1593                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1594                 if (acked-1 >= tp->sacked_out)
1595                         tp->sacked_out = 0;
1596                 else
1597                         tp->sacked_out -= acked-1;
1598         }
1599         tcp_check_reno_reordering(sk, acked);
1600         tcp_verify_left_out(tp);
1601 }
1602
1603 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1604 {
1605         tp->sacked_out = 0;
1606 }
1607
1608 /* F-RTO can only be used if TCP has never retransmitted anything other than
1609  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1610  */
1611 int tcp_use_frto(struct sock *sk)
1612 {
1613         const struct tcp_sock *tp = tcp_sk(sk);
1614         struct sk_buff *skb;
1615
1616         if (!sysctl_tcp_frto)
1617                 return 0;
1618
1619         if (IsSackFrto())
1620                 return 1;
1621
1622         /* Avoid expensive walking of rexmit queue if possible */
1623         if (tp->retrans_out > 1)
1624                 return 0;
1625
1626         skb = tcp_write_queue_head(sk);
1627         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1628         tcp_for_write_queue_from(skb, sk) {
1629                 if (skb == tcp_send_head(sk))
1630                         break;
1631                 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1632                         return 0;
1633                 /* Short-circuit when first non-SACKed skb has been checked */
1634                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1635                         break;
1636         }
1637         return 1;
1638 }
1639
1640 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1641  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1642  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1643  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1644  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1645  * bits are handled if the Loss state is really to be entered (in
1646  * tcp_enter_frto_loss).
1647  *
1648  * Do like tcp_enter_loss() would; when RTO expires the second time it
1649  * does:
1650  *  "Reduce ssthresh if it has not yet been made inside this window."
1651  */
1652 void tcp_enter_frto(struct sock *sk)
1653 {
1654         const struct inet_connection_sock *icsk = inet_csk(sk);
1655         struct tcp_sock *tp = tcp_sk(sk);
1656         struct sk_buff *skb;
1657
1658         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1659             tp->snd_una == tp->high_seq ||
1660             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1661              !icsk->icsk_retransmits)) {
1662                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1663                 /* Our state is too optimistic in ssthresh() call because cwnd
1664                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1665                  * recovery has not yet completed. Pattern would be this: RTO,
1666                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1667                  * up here twice).
1668                  * RFC4138 should be more specific on what to do, even though
1669                  * RTO is quite unlikely to occur after the first Cumulative ACK
1670                  * due to back-off and complexity of triggering events ...
1671                  */
1672                 if (tp->frto_counter) {
1673                         u32 stored_cwnd;
1674                         stored_cwnd = tp->snd_cwnd;
1675                         tp->snd_cwnd = 2;
1676                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1677                         tp->snd_cwnd = stored_cwnd;
1678                 } else {
1679                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1680                 }
1681                 /* ... in theory, cong.control module could do "any tricks" in
1682                  * ssthresh(), which means that ca_state, lost bits and lost_out
1683                  * counter would have to be faked before the call occurs. We
1684                  * consider that too expensive, unlikely and hacky, so modules
1685                  * using these in ssthresh() must deal these incompatibility
1686                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1687                  */
1688                 tcp_ca_event(sk, CA_EVENT_FRTO);
1689         }
1690
1691         tp->undo_marker = tp->snd_una;
1692         tp->undo_retrans = 0;
1693
1694         skb = tcp_write_queue_head(sk);
1695         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1696                 tp->undo_marker = 0;
1697         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1698                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1699                 tp->retrans_out -= tcp_skb_pcount(skb);
1700         }
1701         tcp_verify_left_out(tp);
1702
1703         /* Too bad if TCP was application limited */
1704         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1705
1706         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1707          * The last condition is necessary at least in tp->frto_counter case.
1708          */
1709         if (IsSackFrto() && (tp->frto_counter ||
1710             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1711             after(tp->high_seq, tp->snd_una)) {
1712                 tp->frto_highmark = tp->high_seq;
1713         } else {
1714                 tp->frto_highmark = tp->snd_nxt;
1715         }
1716         tcp_set_ca_state(sk, TCP_CA_Disorder);
1717         tp->high_seq = tp->snd_nxt;
1718         tp->frto_counter = 1;
1719 }
1720
1721 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1722  * which indicates that we should follow the traditional RTO recovery,
1723  * i.e. mark everything lost and do go-back-N retransmission.
1724  */
1725 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1726 {
1727         struct tcp_sock *tp = tcp_sk(sk);
1728         struct sk_buff *skb;
1729
1730         tp->lost_out = 0;
1731         tp->retrans_out = 0;
1732         if (tcp_is_reno(tp))
1733                 tcp_reset_reno_sack(tp);
1734
1735         tcp_for_write_queue(skb, sk) {
1736                 if (skb == tcp_send_head(sk))
1737                         break;
1738
1739                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1740                 /*
1741                  * Count the retransmission made on RTO correctly (only when
1742                  * waiting for the first ACK and did not get it)...
1743                  */
1744                 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1745                         /* For some reason this R-bit might get cleared? */
1746                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1747                                 tp->retrans_out += tcp_skb_pcount(skb);
1748                         /* ...enter this if branch just for the first segment */
1749                         flag |= FLAG_DATA_ACKED;
1750                 } else {
1751                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1752                                 tp->undo_marker = 0;
1753                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1754                 }
1755
1756                 /* Don't lost mark skbs that were fwd transmitted after RTO */
1757                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1758                     !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1759                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1760                         tp->lost_out += tcp_skb_pcount(skb);
1761                 }
1762         }
1763         tcp_verify_left_out(tp);
1764
1765         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1766         tp->snd_cwnd_cnt = 0;
1767         tp->snd_cwnd_stamp = tcp_time_stamp;
1768         tp->frto_counter = 0;
1769         tp->bytes_acked = 0;
1770
1771         tp->reordering = min_t(unsigned int, tp->reordering,
1772                                              sysctl_tcp_reordering);
1773         tcp_set_ca_state(sk, TCP_CA_Loss);
1774         tp->high_seq = tp->frto_highmark;
1775         TCP_ECN_queue_cwr(tp);
1776
1777         tcp_clear_retrans_hints_partial(tp);
1778 }
1779
1780 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1781 {
1782         tp->retrans_out = 0;
1783         tp->lost_out = 0;
1784
1785         tp->undo_marker = 0;
1786         tp->undo_retrans = 0;
1787 }
1788
1789 void tcp_clear_retrans(struct tcp_sock *tp)
1790 {
1791         tcp_clear_retrans_partial(tp);
1792
1793         tp->fackets_out = 0;
1794         tp->sacked_out = 0;
1795 }
1796
1797 /* Enter Loss state. If "how" is not zero, forget all SACK information
1798  * and reset tags completely, otherwise preserve SACKs. If receiver
1799  * dropped its ofo queue, we will know this due to reneging detection.
1800  */
1801 void tcp_enter_loss(struct sock *sk, int how)
1802 {
1803         const struct inet_connection_sock *icsk = inet_csk(sk);
1804         struct tcp_sock *tp = tcp_sk(sk);
1805         struct sk_buff *skb;
1806
1807         /* Reduce ssthresh if it has not yet been made inside this window. */
1808         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1809             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1810                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1811                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1812                 tcp_ca_event(sk, CA_EVENT_LOSS);
1813         }
1814         tp->snd_cwnd       = 1;
1815         tp->snd_cwnd_cnt   = 0;
1816         tp->snd_cwnd_stamp = tcp_time_stamp;
1817
1818         tp->bytes_acked = 0;
1819         tcp_clear_retrans_partial(tp);
1820
1821         if (tcp_is_reno(tp))
1822                 tcp_reset_reno_sack(tp);
1823
1824         if (!how) {
1825                 /* Push undo marker, if it was plain RTO and nothing
1826                  * was retransmitted. */
1827                 tp->undo_marker = tp->snd_una;
1828                 tcp_clear_retrans_hints_partial(tp);
1829         } else {
1830                 tp->sacked_out = 0;
1831                 tp->fackets_out = 0;
1832                 tcp_clear_all_retrans_hints(tp);
1833         }
1834
1835         tcp_for_write_queue(skb, sk) {
1836                 if (skb == tcp_send_head(sk))
1837                         break;
1838
1839                 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1840                         tp->undo_marker = 0;
1841                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1842                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1843                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1844                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1845                         tp->lost_out += tcp_skb_pcount(skb);
1846                 }
1847         }
1848         tcp_verify_left_out(tp);
1849
1850         tp->reordering = min_t(unsigned int, tp->reordering,
1851                                              sysctl_tcp_reordering);
1852         tcp_set_ca_state(sk, TCP_CA_Loss);
1853         tp->high_seq = tp->snd_nxt;
1854         TCP_ECN_queue_cwr(tp);
1855         /* Abort F-RTO algorithm if one is in progress */
1856         tp->frto_counter = 0;
1857 }
1858
1859 static int tcp_check_sack_reneging(struct sock *sk)
1860 {
1861         struct sk_buff *skb;
1862
1863         /* If ACK arrived pointing to a remembered SACK,
1864          * it means that our remembered SACKs do not reflect
1865          * real state of receiver i.e.
1866          * receiver _host_ is heavily congested (or buggy).
1867          * Do processing similar to RTO timeout.
1868          */
1869         if ((skb = tcp_write_queue_head(sk)) != NULL &&
1870             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1871                 struct inet_connection_sock *icsk = inet_csk(sk);
1872                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1873
1874                 tcp_enter_loss(sk, 1);
1875                 icsk->icsk_retransmits++;
1876                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1877                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1878                                           icsk->icsk_rto, TCP_RTO_MAX);
1879                 return 1;
1880         }
1881         return 0;
1882 }
1883
1884 static inline int tcp_fackets_out(struct tcp_sock *tp)
1885 {
1886         return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1887 }
1888
1889 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1890  * counter when SACK is enabled (without SACK, sacked_out is used for
1891  * that purpose).
1892  *
1893  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1894  * segments up to the highest received SACK block so far and holes in
1895  * between them.
1896  *
1897  * With reordering, holes may still be in flight, so RFC3517 recovery
1898  * uses pure sacked_out (total number of SACKed segments) even though
1899  * it violates the RFC that uses duplicate ACKs, often these are equal
1900  * but when e.g. out-of-window ACKs or packet duplication occurs,
1901  * they differ. Since neither occurs due to loss, TCP should really
1902  * ignore them.
1903  */
1904 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1905 {
1906         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1907 }
1908
1909 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1910 {
1911         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1912 }
1913
1914 static inline int tcp_head_timedout(struct sock *sk)
1915 {
1916         struct tcp_sock *tp = tcp_sk(sk);
1917
1918         return tp->packets_out &&
1919                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1920 }
1921
1922 /* Linux NewReno/SACK/FACK/ECN state machine.
1923  * --------------------------------------
1924  *
1925  * "Open"       Normal state, no dubious events, fast path.
1926  * "Disorder"   In all the respects it is "Open",
1927  *              but requires a bit more attention. It is entered when
1928  *              we see some SACKs or dupacks. It is split of "Open"
1929  *              mainly to move some processing from fast path to slow one.
1930  * "CWR"        CWND was reduced due to some Congestion Notification event.
1931  *              It can be ECN, ICMP source quench, local device congestion.
1932  * "Recovery"   CWND was reduced, we are fast-retransmitting.
1933  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
1934  *
1935  * tcp_fastretrans_alert() is entered:
1936  * - each incoming ACK, if state is not "Open"
1937  * - when arrived ACK is unusual, namely:
1938  *      * SACK
1939  *      * Duplicate ACK.
1940  *      * ECN ECE.
1941  *
1942  * Counting packets in flight is pretty simple.
1943  *
1944  *      in_flight = packets_out - left_out + retrans_out
1945  *
1946  *      packets_out is SND.NXT-SND.UNA counted in packets.
1947  *
1948  *      retrans_out is number of retransmitted segments.
1949  *
1950  *      left_out is number of segments left network, but not ACKed yet.
1951  *
1952  *              left_out = sacked_out + lost_out
1953  *
1954  *     sacked_out: Packets, which arrived to receiver out of order
1955  *                 and hence not ACKed. With SACKs this number is simply
1956  *                 amount of SACKed data. Even without SACKs
1957  *                 it is easy to give pretty reliable estimate of this number,
1958  *                 counting duplicate ACKs.
1959  *
1960  *       lost_out: Packets lost by network. TCP has no explicit
1961  *                 "loss notification" feedback from network (for now).
1962  *                 It means that this number can be only _guessed_.
1963  *                 Actually, it is the heuristics to predict lossage that
1964  *                 distinguishes different algorithms.
1965  *
1966  *      F.e. after RTO, when all the queue is considered as lost,
1967  *      lost_out = packets_out and in_flight = retrans_out.
1968  *
1969  *              Essentially, we have now two algorithms counting
1970  *              lost packets.
1971  *
1972  *              FACK: It is the simplest heuristics. As soon as we decided
1973  *              that something is lost, we decide that _all_ not SACKed
1974  *              packets until the most forward SACK are lost. I.e.
1975  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
1976  *              It is absolutely correct estimate, if network does not reorder
1977  *              packets. And it loses any connection to reality when reordering
1978  *              takes place. We use FACK by default until reordering
1979  *              is suspected on the path to this destination.
1980  *
1981  *              NewReno: when Recovery is entered, we assume that one segment
1982  *              is lost (classic Reno). While we are in Recovery and
1983  *              a partial ACK arrives, we assume that one more packet
1984  *              is lost (NewReno). This heuristics are the same in NewReno
1985  *              and SACK.
1986  *
1987  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1988  *  deflation etc. CWND is real congestion window, never inflated, changes
1989  *  only according to classic VJ rules.
1990  *
1991  * Really tricky (and requiring careful tuning) part of algorithm
1992  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1993  * The first determines the moment _when_ we should reduce CWND and,
1994  * hence, slow down forward transmission. In fact, it determines the moment
1995  * when we decide that hole is caused by loss, rather than by a reorder.
1996  *
1997  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1998  * holes, caused by lost packets.
1999  *
2000  * And the most logically complicated part of algorithm is undo
2001  * heuristics. We detect false retransmits due to both too early
2002  * fast retransmit (reordering) and underestimated RTO, analyzing
2003  * timestamps and D-SACKs. When we detect that some segments were
2004  * retransmitted by mistake and CWND reduction was wrong, we undo
2005  * window reduction and abort recovery phase. This logic is hidden
2006  * inside several functions named tcp_try_undo_<something>.
2007  */
2008
2009 /* This function decides, when we should leave Disordered state
2010  * and enter Recovery phase, reducing congestion window.
2011  *
2012  * Main question: may we further continue forward transmission
2013  * with the same cwnd?
2014  */
2015 static int tcp_time_to_recover(struct sock *sk)
2016 {
2017         struct tcp_sock *tp = tcp_sk(sk);
2018         __u32 packets_out;
2019
2020         /* Do not perform any recovery during F-RTO algorithm */
2021         if (tp->frto_counter)
2022                 return 0;
2023
2024         /* Trick#1: The loss is proven. */
2025         if (tp->lost_out)
2026                 return 1;
2027
2028         /* Not-A-Trick#2 : Classic rule... */
2029         if (tcp_dupack_heurestics(tp) > tp->reordering)
2030                 return 1;
2031
2032         /* Trick#3 : when we use RFC2988 timer restart, fast
2033          * retransmit can be triggered by timeout of queue head.
2034          */
2035         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2036                 return 1;
2037
2038         /* Trick#4: It is still not OK... But will it be useful to delay
2039          * recovery more?
2040          */
2041         packets_out = tp->packets_out;
2042         if (packets_out <= tp->reordering &&
2043             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2044             !tcp_may_send_now(sk)) {
2045                 /* We have nothing to send. This connection is limited
2046                  * either by receiver window or by application.
2047                  */
2048                 return 1;
2049         }
2050
2051         return 0;
2052 }
2053
2054 /* RFC: This is from the original, I doubt that this is necessary at all:
2055  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2056  * retransmitted past LOST markings in the first place? I'm not fully sure
2057  * about undo and end of connection cases, which can cause R without L?
2058  */
2059 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2060                                        struct sk_buff *skb)
2061 {
2062         if ((tp->retransmit_skb_hint != NULL) &&
2063             before(TCP_SKB_CB(skb)->seq,
2064             TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2065                 tp->retransmit_skb_hint = NULL;
2066 }
2067
2068 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2069  * is against sacked "cnt", otherwise it's against facked "cnt"
2070  */
2071 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2072 {
2073         struct tcp_sock *tp = tcp_sk(sk);
2074         struct sk_buff *skb;
2075         int cnt;
2076
2077         BUG_TRAP(packets <= tp->packets_out);
2078         if (tp->lost_skb_hint) {
2079                 skb = tp->lost_skb_hint;
2080                 cnt = tp->lost_cnt_hint;
2081         } else {
2082                 skb = tcp_write_queue_head(sk);
2083                 cnt = 0;
2084         }
2085
2086         tcp_for_write_queue_from(skb, sk) {
2087                 if (skb == tcp_send_head(sk))
2088                         break;
2089                 /* TODO: do this better */
2090                 /* this is not the most efficient way to do this... */
2091                 tp->lost_skb_hint = skb;
2092                 tp->lost_cnt_hint = cnt;
2093
2094                 if (tcp_is_fack(tp) ||
2095                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2096                         cnt += tcp_skb_pcount(skb);
2097
2098                 if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2099                      after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2100                         break;
2101                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2102                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2103                         tp->lost_out += tcp_skb_pcount(skb);
2104                         tcp_verify_retransmit_hint(tp, skb);
2105                 }
2106         }
2107         tcp_verify_left_out(tp);
2108 }
2109
2110 /* Account newly detected lost packet(s) */
2111
2112 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2113 {
2114         struct tcp_sock *tp = tcp_sk(sk);
2115
2116         if (tcp_is_reno(tp)) {
2117                 tcp_mark_head_lost(sk, 1, fast_rexmit);
2118         } else if (tcp_is_fack(tp)) {
2119                 int lost = tp->fackets_out - tp->reordering;
2120                 if (lost <= 0)
2121                         lost = 1;
2122                 tcp_mark_head_lost(sk, lost, fast_rexmit);
2123         } else {
2124                 int sacked_upto = tp->sacked_out - tp->reordering;
2125                 if (sacked_upto < 0)
2126                         sacked_upto = 0;
2127                 tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2128         }
2129
2130         /* New heuristics: it is possible only after we switched
2131          * to restart timer each time when something is ACKed.
2132          * Hence, we can detect timed out packets during fast
2133          * retransmit without falling to slow start.
2134          */
2135         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2136                 struct sk_buff *skb;
2137
2138                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2139                         : tcp_write_queue_head(sk);
2140
2141                 tcp_for_write_queue_from(skb, sk) {
2142                         if (skb == tcp_send_head(sk))
2143                                 break;
2144                         if (!tcp_skb_timedout(sk, skb))
2145                                 break;
2146
2147                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2148                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2149                                 tp->lost_out += tcp_skb_pcount(skb);
2150                                 tcp_verify_retransmit_hint(tp, skb);
2151                         }
2152                 }
2153
2154                 tp->scoreboard_skb_hint = skb;
2155
2156                 tcp_verify_left_out(tp);
2157         }
2158 }
2159
2160 /* CWND moderation, preventing bursts due to too big ACKs
2161  * in dubious situations.
2162  */
2163 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2164 {
2165         tp->snd_cwnd = min(tp->snd_cwnd,
2166                            tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2167         tp->snd_cwnd_stamp = tcp_time_stamp;
2168 }
2169
2170 /* Lower bound on congestion window is slow start threshold
2171  * unless congestion avoidance choice decides to overide it.
2172  */
2173 static inline u32 tcp_cwnd_min(const struct sock *sk)
2174 {
2175         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2176
2177         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2178 }
2179
2180 /* Decrease cwnd each second ack. */
2181 static void tcp_cwnd_down(struct sock *sk, int flag)
2182 {
2183         struct tcp_sock *tp = tcp_sk(sk);
2184         int decr = tp->snd_cwnd_cnt + 1;
2185
2186         if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2187             (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2188                 tp->snd_cwnd_cnt = decr&1;
2189                 decr >>= 1;
2190
2191                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2192                         tp->snd_cwnd -= decr;
2193
2194                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2195                 tp->snd_cwnd_stamp = tcp_time_stamp;
2196         }
2197 }
2198
2199 /* Nothing was retransmitted or returned timestamp is less
2200  * than timestamp of the first retransmission.
2201  */
2202 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2203 {
2204         return !tp->retrans_stamp ||
2205                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2206                  (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2207 }
2208
2209 /* Undo procedures. */
2210
2211 #if FASTRETRANS_DEBUG > 1
2212 static void DBGUNDO(struct sock *sk, const char *msg)
2213 {
2214         struct tcp_sock *tp = tcp_sk(sk);
2215         struct inet_sock *inet = inet_sk(sk);
2216
2217         printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2218                msg,
2219                NIPQUAD(inet->daddr), ntohs(inet->dport),
2220                tp->snd_cwnd, tcp_left_out(tp),
2221                tp->snd_ssthresh, tp->prior_ssthresh,
2222                tp->packets_out);
2223 }
2224 #else
2225 #define DBGUNDO(x...) do { } while (0)
2226 #endif
2227
2228 static void tcp_undo_cwr(struct sock *sk, const int undo)
2229 {
2230         struct tcp_sock *tp = tcp_sk(sk);
2231
2232         if (tp->prior_ssthresh) {
2233                 const struct inet_connection_sock *icsk = inet_csk(sk);
2234
2235                 if (icsk->icsk_ca_ops->undo_cwnd)
2236                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2237                 else
2238                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2239
2240                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2241                         tp->snd_ssthresh = tp->prior_ssthresh;
2242                         TCP_ECN_withdraw_cwr(tp);
2243                 }
2244         } else {
2245                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2246         }
2247         tcp_moderate_cwnd(tp);
2248         tp->snd_cwnd_stamp = tcp_time_stamp;
2249
2250         /* There is something screwy going on with the retrans hints after
2251            an undo */
2252         tcp_clear_all_retrans_hints(tp);
2253 }
2254
2255 static inline int tcp_may_undo(struct tcp_sock *tp)
2256 {
2257         return tp->undo_marker &&
2258                 (!tp->undo_retrans || tcp_packet_delayed(tp));
2259 }
2260
2261 /* People celebrate: "We love our President!" */
2262 static int tcp_try_undo_recovery(struct sock *sk)
2263 {
2264         struct tcp_sock *tp = tcp_sk(sk);
2265
2266         if (tcp_may_undo(tp)) {
2267                 /* Happy end! We did not retransmit anything
2268                  * or our original transmission succeeded.
2269                  */
2270                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2271                 tcp_undo_cwr(sk, 1);
2272                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2273                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2274                 else
2275                         NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2276                 tp->undo_marker = 0;
2277         }
2278         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2279                 /* Hold old state until something *above* high_seq
2280                  * is ACKed. For Reno it is MUST to prevent false
2281                  * fast retransmits (RFC2582). SACK TCP is safe. */
2282                 tcp_moderate_cwnd(tp);
2283                 return 1;
2284         }
2285         tcp_set_ca_state(sk, TCP_CA_Open);
2286         return 0;
2287 }
2288
2289 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2290 static void tcp_try_undo_dsack(struct sock *sk)
2291 {
2292         struct tcp_sock *tp = tcp_sk(sk);
2293
2294         if (tp->undo_marker && !tp->undo_retrans) {
2295                 DBGUNDO(sk, "D-SACK");
2296                 tcp_undo_cwr(sk, 1);
2297                 tp->undo_marker = 0;
2298                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2299         }
2300 }
2301
2302 /* Undo during fast recovery after partial ACK. */
2303
2304 static int tcp_try_undo_partial(struct sock *sk, int acked)
2305 {
2306         struct tcp_sock *tp = tcp_sk(sk);
2307         /* Partial ACK arrived. Force Hoe's retransmit. */
2308         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2309
2310         if (tcp_may_undo(tp)) {
2311                 /* Plain luck! Hole if filled with delayed
2312                  * packet, rather than with a retransmit.
2313                  */
2314                 if (tp->retrans_out == 0)
2315                         tp->retrans_stamp = 0;
2316
2317                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2318
2319                 DBGUNDO(sk, "Hoe");
2320                 tcp_undo_cwr(sk, 0);
2321                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2322
2323                 /* So... Do not make Hoe's retransmit yet.
2324                  * If the first packet was delayed, the rest
2325                  * ones are most probably delayed as well.
2326                  */
2327                 failed = 0;
2328         }
2329         return failed;
2330 }
2331
2332 /* Undo during loss recovery after partial ACK. */
2333 static int tcp_try_undo_loss(struct sock *sk)
2334 {
2335         struct tcp_sock *tp = tcp_sk(sk);
2336
2337         if (tcp_may_undo(tp)) {
2338                 struct sk_buff *skb;
2339                 tcp_for_write_queue(skb, sk) {
2340                         if (skb == tcp_send_head(sk))
2341                                 break;
2342                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2343                 }
2344
2345                 tcp_clear_all_retrans_hints(tp);
2346
2347                 DBGUNDO(sk, "partial loss");
2348                 tp->lost_out = 0;
2349                 tcp_undo_cwr(sk, 1);
2350                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2351                 inet_csk(sk)->icsk_retransmits = 0;
2352                 tp->undo_marker = 0;
2353                 if (tcp_is_sack(tp))
2354                         tcp_set_ca_state(sk, TCP_CA_Open);
2355                 return 1;
2356         }
2357         return 0;
2358 }
2359
2360 static inline void tcp_complete_cwr(struct sock *sk)
2361 {
2362         struct tcp_sock *tp = tcp_sk(sk);
2363         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2364         tp->snd_cwnd_stamp = tcp_time_stamp;
2365         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2366 }
2367
2368 static void tcp_try_to_open(struct sock *sk, int flag)
2369 {
2370         struct tcp_sock *tp = tcp_sk(sk);
2371
2372         tcp_verify_left_out(tp);
2373
2374         if (tp->retrans_out == 0)
2375                 tp->retrans_stamp = 0;
2376
2377         if (flag&FLAG_ECE)
2378                 tcp_enter_cwr(sk, 1);
2379
2380         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2381                 int state = TCP_CA_Open;
2382
2383                 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2384                         state = TCP_CA_Disorder;
2385
2386                 if (inet_csk(sk)->icsk_ca_state != state) {
2387                         tcp_set_ca_state(sk, state);
2388                         tp->high_seq = tp->snd_nxt;
2389                 }
2390                 tcp_moderate_cwnd(tp);
2391         } else {
2392                 tcp_cwnd_down(sk, flag);
2393         }
2394 }
2395
2396 static void tcp_mtup_probe_failed(struct sock *sk)
2397 {
2398         struct inet_connection_sock *icsk = inet_csk(sk);
2399
2400         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2401         icsk->icsk_mtup.probe_size = 0;
2402 }
2403
2404 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2405 {
2406         struct tcp_sock *tp = tcp_sk(sk);
2407         struct inet_connection_sock *icsk = inet_csk(sk);
2408
2409         /* FIXME: breaks with very large cwnd */
2410         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2411         tp->snd_cwnd = tp->snd_cwnd *
2412                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2413                        icsk->icsk_mtup.probe_size;
2414         tp->snd_cwnd_cnt = 0;
2415         tp->snd_cwnd_stamp = tcp_time_stamp;
2416         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2417
2418         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2419         icsk->icsk_mtup.probe_size = 0;
2420         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2421 }
2422
2423
2424 /* Process an event, which can update packets-in-flight not trivially.
2425  * Main goal of this function is to calculate new estimate for left_out,
2426  * taking into account both packets sitting in receiver's buffer and
2427  * packets lost by network.
2428  *
2429  * Besides that it does CWND reduction, when packet loss is detected
2430  * and changes state of machine.
2431  *
2432  * It does _not_ decide what to send, it is made in function
2433  * tcp_xmit_retransmit_queue().
2434  */
2435 static void
2436 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2437 {
2438         struct inet_connection_sock *icsk = inet_csk(sk);
2439         struct tcp_sock *tp = tcp_sk(sk);
2440         int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2441         int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2442                                     (tcp_fackets_out(tp) > tp->reordering));
2443         int fast_rexmit = 0;
2444
2445         /* Some technical things:
2446          * 1. Reno does not count dupacks (sacked_out) automatically. */
2447         if (!tp->packets_out)
2448                 tp->sacked_out = 0;
2449
2450         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2451                 tp->fackets_out = 0;
2452
2453         /* Now state machine starts.
2454          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2455         if (flag&FLAG_ECE)
2456                 tp->prior_ssthresh = 0;
2457
2458         /* B. In all the states check for reneging SACKs. */
2459         if (tp->sacked_out && tcp_check_sack_reneging(sk))
2460                 return;
2461
2462         /* C. Process data loss notification, provided it is valid. */
2463         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2464             before(tp->snd_una, tp->high_seq) &&
2465             icsk->icsk_ca_state != TCP_CA_Open &&
2466             tp->fackets_out > tp->reordering) {
2467                 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, 0);
2468                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2469         }
2470
2471         /* D. Check consistency of the current state. */
2472         tcp_verify_left_out(tp);
2473
2474         /* E. Check state exit conditions. State can be terminated
2475          *    when high_seq is ACKed. */
2476         if (icsk->icsk_ca_state == TCP_CA_Open) {
2477                 BUG_TRAP(tp->retrans_out == 0);
2478                 tp->retrans_stamp = 0;
2479         } else if (!before(tp->snd_una, tp->high_seq)) {
2480                 switch (icsk->icsk_ca_state) {
2481                 case TCP_CA_Loss:
2482                         icsk->icsk_retransmits = 0;
2483                         if (tcp_try_undo_recovery(sk))
2484                                 return;
2485                         break;
2486
2487                 case TCP_CA_CWR:
2488                         /* CWR is to be held something *above* high_seq
2489                          * is ACKed for CWR bit to reach receiver. */
2490                         if (tp->snd_una != tp->high_seq) {
2491                                 tcp_complete_cwr(sk);
2492                                 tcp_set_ca_state(sk, TCP_CA_Open);
2493                         }
2494                         break;
2495
2496                 case TCP_CA_Disorder:
2497                         tcp_try_undo_dsack(sk);
2498                         if (!tp->undo_marker ||
2499                             /* For SACK case do not Open to allow to undo
2500                              * catching for all duplicate ACKs. */
2501                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2502                                 tp->undo_marker = 0;
2503                                 tcp_set_ca_state(sk, TCP_CA_Open);
2504                         }
2505                         break;
2506
2507                 case TCP_CA_Recovery:
2508                         if (tcp_is_reno(tp))
2509                                 tcp_reset_reno_sack(tp);
2510                         if (tcp_try_undo_recovery(sk))
2511                                 return;
2512                         tcp_complete_cwr(sk);
2513                         break;
2514                 }
2515         }
2516
2517         /* F. Process state. */
2518         switch (icsk->icsk_ca_state) {
2519         case TCP_CA_Recovery:
2520                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2521                         if (tcp_is_reno(tp) && is_dupack)
2522                                 tcp_add_reno_sack(sk);
2523                 } else
2524                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2525                 break;
2526         case TCP_CA_Loss:
2527                 if (flag&FLAG_DATA_ACKED)
2528                         icsk->icsk_retransmits = 0;
2529                 if (!tcp_try_undo_loss(sk)) {
2530                         tcp_moderate_cwnd(tp);
2531                         tcp_xmit_retransmit_queue(sk);
2532                         return;
2533                 }
2534                 if (icsk->icsk_ca_state != TCP_CA_Open)
2535                         return;
2536                 /* Loss is undone; fall through to processing in Open state. */
2537         default:
2538                 if (tcp_is_reno(tp)) {
2539                         if (flag & FLAG_SND_UNA_ADVANCED)
2540                                 tcp_reset_reno_sack(tp);
2541                         if (is_dupack)
2542                                 tcp_add_reno_sack(sk);
2543                 }
2544
2545                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2546                         tcp_try_undo_dsack(sk);
2547
2548                 if (!tcp_time_to_recover(sk)) {
2549                         tcp_try_to_open(sk, flag);
2550                         return;
2551                 }
2552
2553                 /* MTU probe failure: don't reduce cwnd */
2554                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2555                     icsk->icsk_mtup.probe_size &&
2556                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2557                         tcp_mtup_probe_failed(sk);
2558                         /* Restores the reduction we did in tcp_mtup_probe() */
2559                         tp->snd_cwnd++;
2560                         tcp_simple_retransmit(sk);
2561                         return;
2562                 }
2563
2564                 /* Otherwise enter Recovery state */
2565
2566                 if (tcp_is_reno(tp))
2567                         NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2568                 else
2569                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2570
2571                 tp->high_seq = tp->snd_nxt;
2572                 tp->prior_ssthresh = 0;
2573                 tp->undo_marker = tp->snd_una;
2574                 tp->undo_retrans = tp->retrans_out;
2575
2576                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2577                         if (!(flag&FLAG_ECE))
2578                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2579                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2580                         TCP_ECN_queue_cwr(tp);
2581                 }
2582
2583                 tp->bytes_acked = 0;
2584                 tp->snd_cwnd_cnt = 0;
2585                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2586                 fast_rexmit = 1;
2587         }
2588
2589         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2590                 tcp_update_scoreboard(sk, fast_rexmit);
2591         tcp_cwnd_down(sk, flag);
2592         tcp_xmit_retransmit_queue(sk);
2593 }
2594
2595 /* Read draft-ietf-tcplw-high-performance before mucking
2596  * with this code. (Supersedes RFC1323)
2597  */
2598 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2599 {
2600         /* RTTM Rule: A TSecr value received in a segment is used to
2601          * update the averaged RTT measurement only if the segment
2602          * acknowledges some new data, i.e., only if it advances the
2603          * left edge of the send window.
2604          *
2605          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2606          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2607          *
2608          * Changed: reset backoff as soon as we see the first valid sample.
2609          * If we do not, we get strongly overestimated rto. With timestamps
2610          * samples are accepted even from very old segments: f.e., when rtt=1
2611          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2612          * answer arrives rto becomes 120 seconds! If at least one of segments
2613          * in window is lost... Voila.                          --ANK (010210)
2614          */
2615         struct tcp_sock *tp = tcp_sk(sk);
2616         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2617         tcp_rtt_estimator(sk, seq_rtt);
2618         tcp_set_rto(sk);
2619         inet_csk(sk)->icsk_backoff = 0;
2620         tcp_bound_rto(sk);
2621 }
2622
2623 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2624 {
2625         /* We don't have a timestamp. Can only use
2626          * packets that are not retransmitted to determine
2627          * rtt estimates. Also, we must not reset the
2628          * backoff for rto until we get a non-retransmitted
2629          * packet. This allows us to deal with a situation
2630          * where the network delay has increased suddenly.
2631          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2632          */
2633
2634         if (flag & FLAG_RETRANS_DATA_ACKED)
2635                 return;
2636
2637         tcp_rtt_estimator(sk, seq_rtt);
2638         tcp_set_rto(sk);
2639         inet_csk(sk)->icsk_backoff = 0;
2640         tcp_bound_rto(sk);
2641 }
2642
2643 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2644                                       const s32 seq_rtt)
2645 {
2646         const struct tcp_sock *tp = tcp_sk(sk);
2647         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2648         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2649                 tcp_ack_saw_tstamp(sk, flag);
2650         else if (seq_rtt >= 0)
2651                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2652 }
2653
2654 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2655                            u32 in_flight, int good)
2656 {
2657         const struct inet_connection_sock *icsk = inet_csk(sk);
2658         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2659         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2660 }
2661
2662 /* Restart timer after forward progress on connection.
2663  * RFC2988 recommends to restart timer to now+rto.
2664  */
2665 static void tcp_rearm_rto(struct sock *sk)
2666 {
2667         struct tcp_sock *tp = tcp_sk(sk);
2668
2669         if (!tp->packets_out) {
2670                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2671         } else {
2672                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2673         }
2674 }
2675
2676 /* If we get here, the whole TSO packet has not been acked. */
2677 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2678 {
2679         struct tcp_sock *tp = tcp_sk(sk);
2680         u32 packets_acked;
2681
2682         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2683
2684         packets_acked = tcp_skb_pcount(skb);
2685         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2686                 return 0;
2687         packets_acked -= tcp_skb_pcount(skb);
2688
2689         if (packets_acked) {
2690                 BUG_ON(tcp_skb_pcount(skb) == 0);
2691                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2692         }
2693
2694         return packets_acked;
2695 }
2696
2697 /* Remove acknowledged frames from the retransmission queue. If our packet
2698  * is before the ack sequence we can discard it as it's confirmed to have
2699  * arrived at the other end.
2700  */
2701 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2702                                int prior_fackets)
2703 {
2704         struct tcp_sock *tp = tcp_sk(sk);
2705         const struct inet_connection_sock *icsk = inet_csk(sk);
2706         struct sk_buff *skb;
2707         u32 now = tcp_time_stamp;
2708         int fully_acked = 1;
2709         int flag = 0;
2710         int prior_packets = tp->packets_out;
2711         u32 cnt = 0;
2712         u32 reord = tp->packets_out;
2713         s32 seq_rtt = -1;
2714         s32 ca_seq_rtt = -1;
2715         ktime_t last_ackt = net_invalid_timestamp();
2716
2717         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2718                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2719                 u32 end_seq;
2720                 u32 packets_acked;
2721                 u8 sacked = scb->sacked;
2722
2723                 /* Determine how many packets and what bytes were acked, tso and else */
2724                 if (after(scb->end_seq, tp->snd_una)) {
2725                         if (tcp_skb_pcount(skb) == 1 ||
2726                             !after(tp->snd_una, scb->seq))
2727                                 break;
2728
2729                         packets_acked = tcp_tso_acked(sk, skb);
2730                         if (!packets_acked)
2731                                 break;
2732
2733                         fully_acked = 0;
2734                         end_seq = tp->snd_una;
2735                 } else {
2736                         packets_acked = tcp_skb_pcount(skb);
2737                         end_seq = scb->end_seq;
2738                 }
2739
2740                 /* MTU probing checks */
2741                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2742                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2743                         tcp_mtup_probe_success(sk, skb);
2744                 }
2745
2746                 if (sacked) {
2747                         if (sacked & TCPCB_RETRANS) {
2748                                 if (sacked & TCPCB_SACKED_RETRANS)
2749                                         tp->retrans_out -= packets_acked;
2750                                 flag |= FLAG_RETRANS_DATA_ACKED;
2751                                 ca_seq_rtt = -1;
2752                                 seq_rtt = -1;
2753                                 if ((flag & FLAG_DATA_ACKED) ||
2754                                     (packets_acked > 1))
2755                                         flag |= FLAG_NONHEAD_RETRANS_ACKED;
2756                         } else {
2757                                 ca_seq_rtt = now - scb->when;
2758                                 last_ackt = skb->tstamp;
2759                                 if (seq_rtt < 0) {
2760                                         seq_rtt = ca_seq_rtt;
2761                                 }
2762                                 if (!(sacked & TCPCB_SACKED_ACKED))
2763                                         reord = min(cnt, reord);
2764                         }
2765
2766                         if (sacked & TCPCB_SACKED_ACKED)
2767                                 tp->sacked_out -= packets_acked;
2768                         if (sacked & TCPCB_LOST)
2769                                 tp->lost_out -= packets_acked;
2770
2771                         if ((sacked & TCPCB_URG) && tp->urg_mode &&
2772                             !before(end_seq, tp->snd_up))
2773                                 tp->urg_mode = 0;
2774                 } else {
2775                         ca_seq_rtt = now - scb->when;
2776                         last_ackt = skb->tstamp;
2777                         if (seq_rtt < 0) {
2778                                 seq_rtt = ca_seq_rtt;
2779                         }
2780                         reord = min(cnt, reord);
2781                 }
2782                 tp->packets_out -= packets_acked;
2783                 cnt += packets_acked;
2784
2785                 /* Initial outgoing SYN's get put onto the write_queue
2786                  * just like anything else we transmit.  It is not
2787                  * true data, and if we misinform our callers that
2788                  * this ACK acks real data, we will erroneously exit
2789                  * connection startup slow start one packet too
2790                  * quickly.  This is severely frowned upon behavior.
2791                  */
2792                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2793                         flag |= FLAG_DATA_ACKED;
2794                 } else {
2795                         flag |= FLAG_SYN_ACKED;
2796                         tp->retrans_stamp = 0;
2797                 }
2798
2799                 if (!fully_acked)
2800                         break;
2801
2802                 tcp_unlink_write_queue(skb, sk);
2803                 sk_stream_free_skb(sk, skb);
2804                 tcp_clear_all_retrans_hints(tp);
2805         }
2806
2807         if (flag & FLAG_ACKED) {
2808                 u32 pkts_acked = prior_packets - tp->packets_out;
2809                 const struct tcp_congestion_ops *ca_ops
2810                         = inet_csk(sk)->icsk_ca_ops;
2811
2812                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2813                 tcp_rearm_rto(sk);
2814
2815                 if (tcp_is_reno(tp)) {
2816                         tcp_remove_reno_sacks(sk, pkts_acked);
2817                 } else {
2818                         /* Non-retransmitted hole got filled? That's reordering */
2819                         if (reord < prior_fackets)
2820                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2821                 }
2822
2823                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2824                 /* hint's skb might be NULL but we don't need to care */
2825                 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2826                                                tp->fastpath_cnt_hint);
2827                 if (ca_ops->pkts_acked) {
2828                         s32 rtt_us = -1;
2829
2830                         /* Is the ACK triggering packet unambiguous? */
2831                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2832                                 /* High resolution needed and available? */
2833                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2834                                     !ktime_equal(last_ackt,
2835                                                  net_invalid_timestamp()))
2836                                         rtt_us = ktime_us_delta(ktime_get_real(),
2837                                                                 last_ackt);
2838                                 else if (ca_seq_rtt > 0)
2839                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2840                         }
2841
2842                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2843                 }
2844         }
2845
2846 #if FASTRETRANS_DEBUG > 0
2847         BUG_TRAP((int)tp->sacked_out >= 0);
2848         BUG_TRAP((int)tp->lost_out >= 0);
2849         BUG_TRAP((int)tp->retrans_out >= 0);
2850         if (!tp->packets_out && tcp_is_sack(tp)) {
2851                 icsk = inet_csk(sk);
2852                 if (tp->lost_out) {
2853                         printk(KERN_DEBUG "Leak l=%u %d\n",
2854                                tp->lost_out, icsk->icsk_ca_state);
2855                         tp->lost_out = 0;
2856                 }
2857                 if (tp->sacked_out) {
2858                         printk(KERN_DEBUG "Leak s=%u %d\n",
2859                                tp->sacked_out, icsk->icsk_ca_state);
2860                         tp->sacked_out = 0;
2861                 }
2862                 if (tp->retrans_out) {
2863                         printk(KERN_DEBUG "Leak r=%u %d\n",
2864                                tp->retrans_out, icsk->icsk_ca_state);
2865                         tp->retrans_out = 0;
2866                 }
2867         }
2868 #endif
2869         *seq_rtt_p = seq_rtt;
2870         return flag;
2871 }
2872
2873 static void tcp_ack_probe(struct sock *sk)
2874 {
2875         const struct tcp_sock *tp = tcp_sk(sk);
2876         struct inet_connection_sock *icsk = inet_csk(sk);
2877
2878         /* Was it a usable window open? */
2879
2880         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2881                    tp->snd_una + tp->snd_wnd)) {
2882                 icsk->icsk_backoff = 0;
2883                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2884                 /* Socket must be waked up by subsequent tcp_data_snd_check().
2885                  * This function is not for random using!
2886                  */
2887         } else {
2888                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2889                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2890                                           TCP_RTO_MAX);
2891         }
2892 }
2893
2894 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2895 {
2896         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2897                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2898 }
2899
2900 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2901 {
2902         const struct tcp_sock *tp = tcp_sk(sk);
2903         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2904                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2905 }
2906
2907 /* Check that window update is acceptable.
2908  * The function assumes that snd_una<=ack<=snd_next.
2909  */
2910 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2911                                         const u32 ack_seq, const u32 nwin)
2912 {
2913         return (after(ack, tp->snd_una) ||
2914                 after(ack_seq, tp->snd_wl1) ||
2915                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2916 }
2917
2918 /* Update our send window.
2919  *
2920  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2921  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2922  */
2923 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2924                                  u32 ack_seq)
2925 {
2926         struct tcp_sock *tp = tcp_sk(sk);
2927         int flag = 0;
2928         u32 nwin = ntohs(tcp_hdr(skb)->window);
2929
2930         if (likely(!tcp_hdr(skb)->syn))
2931                 nwin <<= tp->rx_opt.snd_wscale;
2932
2933         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2934                 flag |= FLAG_WIN_UPDATE;
2935                 tcp_update_wl(tp, ack, ack_seq);
2936
2937                 if (tp->snd_wnd != nwin) {
2938                         tp->snd_wnd = nwin;
2939
2940                         /* Note, it is the only place, where
2941                          * fast path is recovered for sending TCP.
2942                          */
2943                         tp->pred_flags = 0;
2944                         tcp_fast_path_check(sk);
2945
2946                         if (nwin > tp->max_window) {
2947                                 tp->max_window = nwin;
2948                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2949                         }
2950                 }
2951         }
2952
2953         tp->snd_una = ack;
2954
2955         return flag;
2956 }
2957
2958 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2959  * continue in congestion avoidance.
2960  */
2961 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2962 {
2963         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2964         tp->snd_cwnd_cnt = 0;
2965         tp->bytes_acked = 0;
2966         TCP_ECN_queue_cwr(tp);
2967         tcp_moderate_cwnd(tp);
2968 }
2969
2970 /* A conservative spurious RTO response algorithm: reduce cwnd using
2971  * rate halving and continue in congestion avoidance.
2972  */
2973 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2974 {
2975         tcp_enter_cwr(sk, 0);
2976 }
2977
2978 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2979 {
2980         if (flag&FLAG_ECE)
2981                 tcp_ratehalving_spur_to_response(sk);
2982         else
2983                 tcp_undo_cwr(sk, 1);
2984 }
2985
2986 /* F-RTO spurious RTO detection algorithm (RFC4138)
2987  *
2988  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2989  * comments). State (ACK number) is kept in frto_counter. When ACK advances
2990  * window (but not to or beyond highest sequence sent before RTO):
2991  *   On First ACK,  send two new segments out.
2992  *   On Second ACK, RTO was likely spurious. Do spurious response (response
2993  *                  algorithm is not part of the F-RTO detection algorithm
2994  *                  given in RFC4138 but can be selected separately).
2995  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2996  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2997  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2998  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2999  *
3000  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3001  * original window even after we transmit two new data segments.
3002  *
3003  * SACK version:
3004  *   on first step, wait until first cumulative ACK arrives, then move to
3005  *   the second step. In second step, the next ACK decides.
3006  *
3007  * F-RTO is implemented (mainly) in four functions:
3008  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3009  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3010  *     called when tcp_use_frto() showed green light
3011  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3012  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3013  *     to prove that the RTO is indeed spurious. It transfers the control
3014  *     from F-RTO to the conventional RTO recovery
3015  */
3016 static int tcp_process_frto(struct sock *sk, int flag)
3017 {
3018         struct tcp_sock *tp = tcp_sk(sk);
3019
3020         tcp_verify_left_out(tp);
3021
3022         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3023         if (flag&FLAG_DATA_ACKED)
3024                 inet_csk(sk)->icsk_retransmits = 0;
3025
3026         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3027             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3028                 tp->undo_marker = 0;
3029
3030         if (!before(tp->snd_una, tp->frto_highmark)) {
3031                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3032                 return 1;
3033         }
3034
3035         if (!IsSackFrto() || tcp_is_reno(tp)) {
3036                 /* RFC4138 shortcoming in step 2; should also have case c):
3037                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3038                  * data, winupdate
3039                  */
3040                 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
3041                         return 1;
3042
3043                 if (!(flag&FLAG_DATA_ACKED)) {
3044                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3045                                             flag);
3046                         return 1;
3047                 }
3048         } else {
3049                 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3050                         /* Prevent sending of new data. */
3051                         tp->snd_cwnd = min(tp->snd_cwnd,
3052                                            tcp_packets_in_flight(tp));
3053                         return 1;
3054                 }
3055
3056                 if ((tp->frto_counter >= 2) &&
3057                     (!(flag&FLAG_FORWARD_PROGRESS) ||
3058                      ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
3059                         /* RFC4138 shortcoming (see comment above) */
3060                         if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
3061                                 return 1;
3062
3063                         tcp_enter_frto_loss(sk, 3, flag);
3064                         return 1;
3065                 }
3066         }
3067
3068         if (tp->frto_counter == 1) {
3069                 /* tcp_may_send_now needs to see updated state */
3070                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3071                 tp->frto_counter = 2;
3072
3073                 if (!tcp_may_send_now(sk))
3074                         tcp_enter_frto_loss(sk, 2, flag);
3075
3076                 return 1;
3077         } else {
3078                 switch (sysctl_tcp_frto_response) {
3079                 case 2:
3080                         tcp_undo_spur_to_response(sk, flag);
3081                         break;
3082                 case 1:
3083                         tcp_conservative_spur_to_response(tp);
3084                         break;
3085                 default:
3086                         tcp_ratehalving_spur_to_response(sk);
3087                         break;
3088                 }
3089                 tp->frto_counter = 0;
3090                 tp->undo_marker = 0;
3091                 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3092         }
3093         return 0;
3094 }
3095
3096 /* This routine deals with incoming acks, but not outgoing ones. */
3097 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3098 {
3099         struct inet_connection_sock *icsk = inet_csk(sk);
3100         struct tcp_sock *tp = tcp_sk(sk);
3101         u32 prior_snd_una = tp->snd_una;
3102         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3103         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3104         u32 prior_in_flight;
3105         u32 prior_fackets;
3106         s32 seq_rtt;
3107         int prior_packets;
3108         int frto_cwnd = 0;
3109
3110         /* If the ack is newer than sent or older than previous acks
3111          * then we can probably ignore it.
3112          */
3113         if (after(ack, tp->snd_nxt))
3114                 goto uninteresting_ack;
3115
3116         if (before(ack, prior_snd_una))
3117                 goto old_ack;
3118
3119         if (after(ack, prior_snd_una))
3120                 flag |= FLAG_SND_UNA_ADVANCED;
3121
3122         if (sysctl_tcp_abc) {
3123                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3124                         tp->bytes_acked += ack - prior_snd_una;
3125                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3126                         /* we assume just one segment left network */
3127                         tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3128         }
3129
3130         prior_fackets = tp->fackets_out;
3131         prior_in_flight = tcp_packets_in_flight(tp);
3132
3133         if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3134                 /* Window is constant, pure forward advance.
3135                  * No more checks are required.
3136                  * Note, we use the fact that SND.UNA>=SND.WL2.
3137                  */
3138                 tcp_update_wl(tp, ack, ack_seq);
3139                 tp->snd_una = ack;
3140                 flag |= FLAG_WIN_UPDATE;
3141
3142                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3143
3144                 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3145         } else {
3146                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3147                         flag |= FLAG_DATA;
3148                 else
3149                         NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3150
3151                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3152
3153                 if (TCP_SKB_CB(skb)->sacked)
3154                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3155
3156                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3157                         flag |= FLAG_ECE;
3158
3159                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3160         }
3161
3162         /* We passed data and got it acked, remove any soft error
3163          * log. Something worked...
3164          */
3165         sk->sk_err_soft = 0;
3166         tp->rcv_tstamp = tcp_time_stamp;
3167         prior_packets = tp->packets_out;
3168         if (!prior_packets)
3169                 goto no_queue;
3170
3171         /* See if we can take anything off of the retransmit queue. */
3172         flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
3173
3174         if (tp->frto_counter)
3175                 frto_cwnd = tcp_process_frto(sk, flag);
3176         /* Guarantee sacktag reordering detection against wrap-arounds */
3177         if (before(tp->frto_highmark, tp->snd_una))
3178                 tp->frto_highmark = 0;
3179
3180         if (tcp_ack_is_dubious(sk, flag)) {
3181                 /* Advance CWND, if state allows this. */
3182                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3183                     tcp_may_raise_cwnd(sk, flag))
3184                         tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3185                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3186         } else {
3187                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3188                         tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3189         }
3190
3191         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3192                 dst_confirm(sk->sk_dst_cache);
3193
3194         return 1;
3195
3196 no_queue:
3197         icsk->icsk_probes_out = 0;
3198
3199         /* If this ack opens up a zero window, clear backoff.  It was
3200          * being used to time the probes, and is probably far higher than
3201          * it needs to be for normal retransmission.
3202          */
3203         if (tcp_send_head(sk))
3204                 tcp_ack_probe(sk);
3205         return 1;
3206
3207 old_ack:
3208         if (TCP_SKB_CB(skb)->sacked)
3209                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3210
3211 uninteresting_ack:
3212         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3213         return 0;
3214 }
3215
3216
3217 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3218  * But, this can also be called on packets in the established flow when
3219  * the fast version below fails.
3220  */
3221 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3222 {
3223         unsigned char *ptr;
3224         struct tcphdr *th = tcp_hdr(skb);
3225         int length=(th->doff*4)-sizeof(struct tcphdr);
3226
3227         ptr = (unsigned char *)(th + 1);
3228         opt_rx->saw_tstamp = 0;
3229
3230         while (length > 0) {
3231                 int opcode=*ptr++;
3232                 int opsize;
3233
3234                 switch (opcode) {
3235                         case TCPOPT_EOL:
3236                                 return;
3237                         case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3238                                 length--;
3239                                 continue;
3240                         default:
3241                                 opsize=*ptr++;
3242                                 if (opsize < 2) /* "silly options" */
3243                                         return;
3244                                 if (opsize > length)
3245                                         return; /* don't parse partial options */
3246                                 switch (opcode) {
3247                                 case TCPOPT_MSS:
3248                                         if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3249                                                 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3250                                                 if (in_mss) {
3251                                                         if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3252                                                                 in_mss = opt_rx->user_mss;
3253                                                         opt_rx->mss_clamp = in_mss;
3254                                                 }
3255                                         }
3256                                         break;
3257                                 case TCPOPT_WINDOW:
3258                                         if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3259                                                 if (sysctl_tcp_window_scaling) {
3260                                                         __u8 snd_wscale = *(__u8 *) ptr;
3261                                                         opt_rx->wscale_ok = 1;
3262                                                         if (snd_wscale > 14) {
3263                                                                 if (net_ratelimit())
3264                                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3265                                                                                "scaling value %d >14 received.\n",
3266                                                                                snd_wscale);
3267                                                                 snd_wscale = 14;
3268                                                         }
3269                                                         opt_rx->snd_wscale = snd_wscale;
3270                                                 }
3271                                         break;
3272                                 case TCPOPT_TIMESTAMP:
3273                                         if (opsize==TCPOLEN_TIMESTAMP) {
3274                                                 if ((estab && opt_rx->tstamp_ok) ||
3275                                                     (!estab && sysctl_tcp_timestamps)) {
3276                                                         opt_rx->saw_tstamp = 1;
3277                                                         opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3278                                                         opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3279                                                 }
3280                                         }
3281                                         break;
3282                                 case TCPOPT_SACK_PERM:
3283                                         if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3284                                                 if (sysctl_tcp_sack) {
3285                                                         opt_rx->sack_ok = 1;
3286                                                         tcp_sack_reset(opt_rx);
3287                                                 }
3288                                         }
3289                                         break;
3290
3291                                 case TCPOPT_SACK:
3292                                         if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3293                                            !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3294                                            opt_rx->sack_ok) {
3295                                                 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3296                                         }
3297                                         break;
3298 #ifdef CONFIG_TCP_MD5SIG
3299                                 case TCPOPT_MD5SIG:
3300                                         /*
3301                                          * The MD5 Hash has already been
3302                                          * checked (see tcp_v{4,6}_do_rcv()).
3303                                          */
3304                                         break;
3305 #endif
3306                                 }
3307
3308                                 ptr+=opsize-2;
3309                                 length-=opsize;
3310                 }
3311         }
3312 }
3313
3314 /* Fast parse options. This hopes to only see timestamps.
3315  * If it is wrong it falls back on tcp_parse_options().
3316  */
3317 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3318                                   struct tcp_sock *tp)
3319 {
3320         if (th->doff == sizeof(struct tcphdr)>>2) {
3321                 tp->rx_opt.saw_tstamp = 0;
3322                 return 0;
3323         } else if (tp->rx_opt.tstamp_ok &&
3324                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3325                 __be32 *ptr = (__be32 *)(th + 1);
3326                 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3327                                   | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3328                         tp->rx_opt.saw_tstamp = 1;
3329                         ++ptr;
3330                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
3331                         ++ptr;
3332                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3333                         return 1;
3334                 }
3335         }
3336         tcp_parse_options(skb, &tp->rx_opt, 1);
3337         return 1;
3338 }
3339
3340 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3341 {
3342         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3343         tp->rx_opt.ts_recent_stamp = get_seconds();
3344 }
3345
3346 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3347 {
3348         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3349                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3350                  * extra check below makes sure this can only happen
3351                  * for pure ACK frames.  -DaveM
3352                  *
3353                  * Not only, also it occurs for expired timestamps.
3354                  */
3355
3356                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3357                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3358                         tcp_store_ts_recent(tp);
3359         }
3360 }
3361
3362 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3363  *
3364  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3365  * it can pass through stack. So, the following predicate verifies that
3366  * this segment is not used for anything but congestion avoidance or
3367  * fast retransmit. Moreover, we even are able to eliminate most of such
3368  * second order effects, if we apply some small "replay" window (~RTO)
3369  * to timestamp space.
3370  *
3371  * All these measures still do not guarantee that we reject wrapped ACKs
3372  * on networks with high bandwidth, when sequence space is recycled fastly,
3373  * but it guarantees that such events will be very rare and do not affect
3374  * connection seriously. This doesn't look nice, but alas, PAWS is really
3375  * buggy extension.
3376  *
3377  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3378  * states that events when retransmit arrives after original data are rare.
3379  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3380  * the biggest problem on large power networks even with minor reordering.
3381  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3382  * up to bandwidth of 18Gigabit/sec. 8) ]
3383  */
3384
3385 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3386 {
3387         struct tcp_sock *tp = tcp_sk(sk);
3388         struct tcphdr *th = tcp_hdr(skb);
3389         u32 seq = TCP_SKB_CB(skb)->seq;
3390         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3391
3392         return (/* 1. Pure ACK with correct sequence number. */
3393                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3394
3395                 /* 2. ... and duplicate ACK. */
3396                 ack == tp->snd_una &&
3397
3398                 /* 3. ... and does not update window. */
3399                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3400
3401                 /* 4. ... and sits in replay window. */
3402                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3403 }
3404
3405 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3406 {
3407         const struct tcp_sock *tp = tcp_sk(sk);
3408         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3409                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3410                 !tcp_disordered_ack(sk, skb));
3411 }
3412
3413 /* Check segment sequence number for validity.
3414  *
3415  * Segment controls are considered valid, if the segment
3416  * fits to the window after truncation to the window. Acceptability
3417  * of data (and SYN, FIN, of course) is checked separately.
3418  * See tcp_data_queue(), for example.
3419  *
3420  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3421  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3422  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3423  * (borrowed from freebsd)
3424  */
3425
3426 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3427 {
3428         return  !before(end_seq, tp->rcv_wup) &&
3429                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3430 }
3431
3432 /* When we get a reset we do this. */
3433 static void tcp_reset(struct sock *sk)
3434 {
3435         /* We want the right error as BSD sees it (and indeed as we do). */
3436         switch (sk->sk_state) {
3437                 case TCP_SYN_SENT:
3438                         sk->sk_err = ECONNREFUSED;
3439                         break;
3440                 case TCP_CLOSE_WAIT:
3441                         sk->sk_err = EPIPE;
3442                         break;
3443                 case TCP_CLOSE:
3444                         return;
3445                 default:
3446                         sk->sk_err = ECONNRESET;
3447         }
3448
3449         if (!sock_flag(sk, SOCK_DEAD))
3450                 sk->sk_error_report(sk);
3451
3452         tcp_done(sk);
3453 }
3454
3455 /*
3456  *      Process the FIN bit. This now behaves as it is supposed to work
3457  *      and the FIN takes effect when it is validly part of sequence
3458  *      space. Not before when we get holes.
3459  *
3460  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3461  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3462  *      TIME-WAIT)
3463  *
3464  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3465  *      close and we go into CLOSING (and later onto TIME-WAIT)
3466  *
3467  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3468  */
3469 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3470 {
3471         struct tcp_sock *tp = tcp_sk(sk);
3472
3473         inet_csk_schedule_ack(sk);
3474
3475         sk->sk_shutdown |= RCV_SHUTDOWN;
3476         sock_set_flag(sk, SOCK_DONE);
3477
3478         switch (sk->sk_state) {
3479                 case TCP_SYN_RECV:
3480                 case TCP_ESTABLISHED:
3481                         /* Move to CLOSE_WAIT */
3482                         tcp_set_state(sk, TCP_CLOSE_WAIT);
3483                         inet_csk(sk)->icsk_ack.pingpong = 1;
3484                         break;
3485
3486                 case TCP_CLOSE_WAIT:
3487                 case TCP_CLOSING:
3488                         /* Received a retransmission of the FIN, do
3489                          * nothing.
3490                          */
3491                         break;
3492                 case TCP_LAST_ACK:
3493                         /* RFC793: Remain in the LAST-ACK state. */
3494                         break;
3495
3496                 case TCP_FIN_WAIT1:
3497                         /* This case occurs when a simultaneous close
3498                          * happens, we must ack the received FIN and
3499                          * enter the CLOSING state.
3500                          */
3501                         tcp_send_ack(sk);
3502                         tcp_set_state(sk, TCP_CLOSING);
3503                         break;
3504                 case TCP_FIN_WAIT2:
3505                         /* Received a FIN -- send ACK and enter TIME_WAIT. */
3506                         tcp_send_ack(sk);
3507                         tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3508                         break;
3509                 default:
3510                         /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3511                          * cases we should never reach this piece of code.
3512                          */
3513                         printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3514                                __FUNCTION__, sk->sk_state);
3515                         break;
3516         }
3517
3518         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3519          * Probably, we should reset in this case. For now drop them.
3520          */
3521         __skb_queue_purge(&tp->out_of_order_queue);
3522         if (tcp_is_sack(tp))
3523                 tcp_sack_reset(&tp->rx_opt);
3524         sk_stream_mem_reclaim(sk);
3525
3526         if (!sock_flag(sk, SOCK_DEAD)) {
3527                 sk->sk_state_change(sk);
3528
3529                 /* Do not send POLL_HUP for half duplex close. */
3530                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3531                     sk->sk_state == TCP_CLOSE)
3532                         sk_wake_async(sk, 1, POLL_HUP);
3533                 else
3534                         sk_wake_async(sk, 1, POLL_IN);
3535         }
3536 }
3537
3538 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3539 {
3540         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3541                 if (before(seq, sp->start_seq))
3542                         sp->start_seq = seq;
3543                 if (after(end_seq, sp->end_seq))
3544                         sp->end_seq = end_seq;
3545                 return 1;
3546         }
3547         return 0;
3548 }
3549
3550 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3551 {
3552         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3553                 if (before(seq, tp->rcv_nxt))
3554                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3555                 else
3556                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3557
3558                 tp->rx_opt.dsack = 1;
3559                 tp->duplicate_sack[0].start_seq = seq;
3560                 tp->duplicate_sack[0].end_seq = end_seq;
3561                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3562         }
3563 }
3564
3565 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3566 {
3567         if (!tp->rx_opt.dsack)
3568                 tcp_dsack_set(tp, seq, end_seq);
3569         else
3570                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3571 }
3572
3573 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3574 {
3575         struct tcp_sock *tp = tcp_sk(sk);
3576
3577         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3578             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3579                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3580                 tcp_enter_quickack_mode(sk);
3581
3582                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3583                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3584
3585                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3586                                 end_seq = tp->rcv_nxt;
3587                         tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3588                 }
3589         }
3590
3591         tcp_send_ack(sk);
3592 }
3593
3594 /* These routines update the SACK block as out-of-order packets arrive or
3595  * in-order packets close up the sequence space.
3596  */
3597 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3598 {
3599         int this_sack;
3600         struct tcp_sack_block *sp = &tp->selective_acks[0];
3601         struct tcp_sack_block *swalk = sp+1;
3602
3603         /* See if the recent change to the first SACK eats into
3604          * or hits the sequence space of other SACK blocks, if so coalesce.
3605          */
3606         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3607                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3608                         int i;
3609
3610                         /* Zap SWALK, by moving every further SACK up by one slot.
3611                          * Decrease num_sacks.
3612                          */
3613                         tp->rx_opt.num_sacks--;
3614                         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3615                         for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3616                                 sp[i] = sp[i+1];
3617                         continue;
3618                 }
3619                 this_sack++, swalk++;
3620         }
3621 }
3622
3623 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3624 {
3625         __u32 tmp;
3626
3627         tmp = sack1->start_seq;
3628         sack1->start_seq = sack2->start_seq;
3629         sack2->start_seq = tmp;
3630
3631         tmp = sack1->end_seq;
3632         sack1->end_seq = sack2->end_seq;
3633         sack2->end_seq = tmp;
3634 }
3635
3636 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3637 {
3638         struct tcp_sock *tp = tcp_sk(sk);
3639         struct tcp_sack_block *sp = &tp->selective_acks[0];
3640         int cur_sacks = tp->rx_opt.num_sacks;
3641         int this_sack;
3642
3643         if (!cur_sacks)
3644                 goto new_sack;
3645
3646         for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3647                 if (tcp_sack_extend(sp, seq, end_seq)) {
3648                         /* Rotate this_sack to the first one. */
3649                         for (; this_sack>0; this_sack--, sp--)
3650                                 tcp_sack_swap(sp, sp-1);
3651                         if (cur_sacks > 1)
3652                                 tcp_sack_maybe_coalesce(tp);
3653                         return;
3654                 }
3655         }
3656
3657         /* Could not find an adjacent existing SACK, build a new one,
3658          * put it at the front, and shift everyone else down.  We
3659          * always know there is at least one SACK present already here.
3660          *
3661          * If the sack array is full, forget about the last one.
3662          */
3663         if (this_sack >= 4) {
3664                 this_sack--;
3665                 tp->rx_opt.num_sacks--;
3666                 sp--;
3667         }
3668         for (; this_sack > 0; this_sack--, sp--)
3669                 *sp = *(sp-1);
3670
3671 new_sack:
3672         /* Build the new head SACK, and we're done. */
3673         sp->start_seq = seq;
3674         sp->end_seq = end_seq;
3675         tp->rx_opt.num_sacks++;
3676         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3677 }
3678
3679 /* RCV.NXT advances, some SACKs should be eaten. */
3680
3681 static void tcp_sack_remove(struct tcp_sock *tp)
3682 {
3683         struct tcp_sack_block *sp = &tp->selective_acks[0];
3684         int num_sacks = tp->rx_opt.num_sacks;
3685         int this_sack;
3686
3687         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3688         if (skb_queue_empty(&tp->out_of_order_queue)) {
3689                 tp->rx_opt.num_sacks = 0;
3690                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3691                 return;
3692         }
3693
3694         for (this_sack = 0; this_sack < num_sacks; ) {
3695                 /* Check if the start of the sack is covered by RCV.NXT. */
3696                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3697                         int i;
3698
3699                         /* RCV.NXT must cover all the block! */
3700                         BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3701
3702                         /* Zap this SACK, by moving forward any other SACKS. */
3703                         for (i=this_sack+1; i < num_sacks; i++)
3704                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3705                         num_sacks--;
3706                         continue;
3707                 }
3708                 this_sack++;
3709                 sp++;
3710         }
3711         if (num_sacks != tp->rx_opt.num_sacks) {
3712                 tp->rx_opt.num_sacks = num_sacks;
3713                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3714         }
3715 }
3716
3717 /* This one checks to see if we can put data from the
3718  * out_of_order queue into the receive_queue.
3719  */
3720 static void tcp_ofo_queue(struct sock *sk)
3721 {
3722         struct tcp_sock *tp = tcp_sk(sk);
3723         __u32 dsack_high = tp->rcv_nxt;
3724         struct sk_buff *skb;
3725
3726         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3727                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3728                         break;
3729
3730                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3731                         __u32 dsack = dsack_high;
3732                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3733                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3734                         tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3735                 }
3736
3737                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3738                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3739                         __skb_unlink(skb, &tp->out_of_order_queue);
3740                         __kfree_skb(skb);
3741                         continue;
3742                 }
3743                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3744                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3745                            TCP_SKB_CB(skb)->end_seq);
3746
3747                 __skb_unlink(skb, &tp->out_of_order_queue);
3748                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3749                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3750                 if (tcp_hdr(skb)->fin)
3751                         tcp_fin(skb, sk, tcp_hdr(skb));
3752         }
3753 }
3754
3755 static int tcp_prune_queue(struct sock *sk);
3756
3757 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3758 {
3759         struct tcphdr *th = tcp_hdr(skb);
3760         struct tcp_sock *tp = tcp_sk(sk);
3761         int eaten = -1;
3762
3763         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3764                 goto drop;
3765
3766         __skb_pull(skb, th->doff*4);
3767
3768         TCP_ECN_accept_cwr(tp, skb);
3769
3770         if (tp->rx_opt.dsack) {
3771                 tp->rx_opt.dsack = 0;
3772                 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3773                                                     4 - tp->rx_opt.tstamp_ok);
3774         }
3775
3776         /*  Queue data for delivery to the user.
3777          *  Packets in sequence go to the receive queue.
3778          *  Out of sequence packets to the out_of_order_queue.
3779          */
3780         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3781                 if (tcp_receive_window(tp) == 0)
3782                         goto out_of_window;
3783
3784                 /* Ok. In sequence. In window. */
3785                 if (tp->ucopy.task == current &&
3786                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3787                     sock_owned_by_user(sk) && !tp->urg_data) {
3788                         int chunk = min_t(unsigned int, skb->len,
3789                                                         tp->ucopy.len);
3790
3791                         __set_current_state(TASK_RUNNING);
3792
3793                         local_bh_enable();
3794                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3795                                 tp->ucopy.len -= chunk;
3796                                 tp->copied_seq += chunk;
3797                                 eaten = (chunk == skb->len && !th->fin);
3798                                 tcp_rcv_space_adjust(sk);
3799                         }
3800                         local_bh_disable();
3801                 }
3802
3803                 if (eaten <= 0) {
3804 queue_and_out:
3805                         if (eaten < 0 &&
3806                             (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3807                              !sk_stream_rmem_schedule(sk, skb))) {
3808                                 if (tcp_prune_queue(sk) < 0 ||
3809                                     !sk_stream_rmem_schedule(sk, skb))
3810                                         goto drop;
3811                         }
3812                         sk_stream_set_owner_r(skb, sk);
3813                         __skb_queue_tail(&sk->sk_receive_queue, skb);
3814                 }
3815                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3816                 if (skb->len)
3817                         tcp_event_data_recv(sk, skb);
3818                 if (th->fin)
3819                         tcp_fin(skb, sk, th);
3820
3821                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3822                         tcp_ofo_queue(sk);
3823
3824                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
3825                          * gap in queue is filled.
3826                          */
3827                         if (skb_queue_empty(&tp->out_of_order_queue))
3828                                 inet_csk(sk)->icsk_ack.pingpong = 0;
3829                 }
3830
3831                 if (tp->rx_opt.num_sacks)
3832                         tcp_sack_remove(tp);
3833
3834                 tcp_fast_path_check(sk);
3835
3836                 if (eaten > 0)
3837                         __kfree_skb(skb);
3838                 else if (!sock_flag(sk, SOCK_DEAD))
3839                         sk->sk_data_ready(sk, 0);
3840                 return;
3841         }
3842
3843         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3844                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
3845                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3846                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3847
3848 out_of_window:
3849                 tcp_enter_quickack_mode(sk);
3850                 inet_csk_schedule_ack(sk);
3851 drop:
3852                 __kfree_skb(skb);
3853                 return;
3854         }
3855
3856         /* Out of window. F.e. zero window probe. */
3857         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3858                 goto out_of_window;
3859
3860         tcp_enter_quickack_mode(sk);
3861
3862         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3863                 /* Partial packet, seq < rcv_next < end_seq */
3864                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3865                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3866                            TCP_SKB_CB(skb)->end_seq);
3867
3868                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3869
3870                 /* If window is closed, drop tail of packet. But after
3871                  * remembering D-SACK for its head made in previous line.
3872                  */
3873                 if (!tcp_receive_window(tp))
3874                         goto out_of_window;
3875                 goto queue_and_out;
3876         }
3877
3878         TCP_ECN_check_ce(tp, skb);
3879
3880         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3881             !sk_stream_rmem_schedule(sk, skb)) {
3882                 if (tcp_prune_queue(sk) < 0 ||
3883                     !sk_stream_rmem_schedule(sk, skb))
3884                         goto drop;
3885         }
3886
3887         /* Disable header prediction. */
3888         tp->pred_flags = 0;
3889         inet_csk_schedule_ack(sk);
3890
3891         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3892                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3893
3894         sk_stream_set_owner_r(skb, sk);
3895
3896         if (!skb_peek(&tp->out_of_order_queue)) {
3897                 /* Initial out of order segment, build 1 SACK. */
3898                 if (tcp_is_sack(tp)) {
3899                         tp->rx_opt.num_sacks = 1;
3900                         tp->rx_opt.dsack     = 0;
3901                         tp->rx_opt.eff_sacks = 1;
3902                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3903                         tp->selective_acks[0].end_seq =
3904                                                 TCP_SKB_CB(skb)->end_seq;
3905                 }
3906                 __skb_queue_head(&tp->out_of_order_queue,skb);
3907         } else {
3908                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3909                 u32 seq = TCP_SKB_CB(skb)->seq;
3910                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3911
3912                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3913                         __skb_append(skb1, skb, &tp->out_of_order_queue);
3914
3915                         if (!tp->rx_opt.num_sacks ||
3916                             tp->selective_acks[0].end_seq != seq)
3917                                 goto add_sack;
3918
3919                         /* Common case: data arrive in order after hole. */
3920                         tp->selective_acks[0].end_seq = end_seq;
3921                         return;
3922                 }
3923
3924                 /* Find place to insert this segment. */
3925                 do {
3926                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
3927                                 break;
3928                 } while ((skb1 = skb1->prev) !=
3929                          (struct sk_buff*)&tp->out_of_order_queue);
3930
3931                 /* Do skb overlap to previous one? */
3932                 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3933                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3934                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3935                                 /* All the bits are present. Drop. */
3936                                 __kfree_skb(skb);
3937                                 tcp_dsack_set(tp, seq, end_seq);
3938                                 goto add_sack;
3939                         }
3940                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3941                                 /* Partial overlap. */
3942                                 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3943                         } else {
3944                                 skb1 = skb1->prev;
3945                         }
3946                 }
3947                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3948
3949                 /* And clean segments covered by new one as whole. */
3950                 while ((skb1 = skb->next) !=
3951                        (struct sk_buff*)&tp->out_of_order_queue &&
3952                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3953                        if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3954                                tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3955                                break;
3956                        }
3957                        __skb_unlink(skb1, &tp->out_of_order_queue);
3958                        tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3959                        __kfree_skb(skb1);
3960                 }
3961
3962 add_sack:
3963                 if (tcp_is_sack(tp))
3964                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
3965         }
3966 }
3967
3968 /* Collapse contiguous sequence of skbs head..tail with
3969  * sequence numbers start..end.
3970  * Segments with FIN/SYN are not collapsed (only because this
3971  * simplifies code)
3972  */
3973 static void
3974 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3975              struct sk_buff *head, struct sk_buff *tail,
3976              u32 start, u32 end)
3977 {
3978         struct sk_buff *skb;
3979
3980         /* First, check that queue is collapsible and find
3981          * the point where collapsing can be useful. */
3982         for (skb = head; skb != tail; ) {
3983                 /* No new bits? It is possible on ofo queue. */
3984                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3985                         struct sk_buff *next = skb->next;
3986                         __skb_unlink(skb, list);
3987                         __kfree_skb(skb);
3988                         NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3989                         skb = next;
3990                         continue;
3991                 }
3992
3993                 /* The first skb to collapse is:
3994                  * - not SYN/FIN and
3995                  * - bloated or contains data before "start" or
3996                  *   overlaps to the next one.
3997                  */
3998                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3999                     (tcp_win_from_space(skb->truesize) > skb->len ||
4000                      before(TCP_SKB_CB(skb)->seq, start) ||
4001                      (skb->next != tail &&
4002                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4003                         break;
4004
4005                 /* Decided to skip this, advance start seq. */
4006                 start = TCP_SKB_CB(skb)->end_seq;
4007                 skb = skb->next;
4008         }
4009         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4010                 return;
4011
4012         while (before(start, end)) {
4013                 struct sk_buff *nskb;
4014                 unsigned int header = skb_headroom(skb);
4015                 int copy = SKB_MAX_ORDER(header, 0);
4016
4017                 /* Too big header? This can happen with IPv6. */
4018                 if (copy < 0)
4019                         return;
4020                 if (end-start < copy)
4021                         copy = end-start;
4022                 nskb = alloc_skb(copy+header, GFP_ATOMIC);
4023                 if (!nskb)
4024                         return;
4025
4026                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4027                 skb_set_network_header(nskb, (skb_network_header(skb) -
4028                                               skb->head));
4029                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4030                                                 skb->head));
4031                 skb_reserve(nskb, header);
4032                 memcpy(nskb->head, skb->head, header);
4033                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4034                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4035                 __skb_insert(nskb, skb->prev, skb, list);
4036                 sk_stream_set_owner_r(nskb, sk);
4037
4038                 /* Copy data, releasing collapsed skbs. */
4039                 while (copy > 0) {
4040                         int offset = start - TCP_SKB_CB(skb)->seq;
4041                         int size = TCP_SKB_CB(skb)->end_seq - start;
4042
4043                         BUG_ON(offset < 0);
4044                         if (size > 0) {
4045                                 size = min(copy, size);
4046                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4047                                         BUG();
4048                                 TCP_SKB_CB(nskb)->end_seq += size;
4049                                 copy -= size;
4050                                 start += size;
4051                         }
4052                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4053                                 struct sk_buff *next = skb->next;
4054                                 __skb_unlink(skb, list);
4055                                 __kfree_skb(skb);
4056                                 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4057                                 skb = next;
4058                                 if (skb == tail ||
4059                                     tcp_hdr(skb)->syn ||
4060                                     tcp_hdr(skb)->fin)
4061                                         return;
4062                         }
4063                 }
4064         }
4065 }
4066
4067 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4068  * and tcp_collapse() them until all the queue is collapsed.
4069  */
4070 static void tcp_collapse_ofo_queue(struct sock *sk)
4071 {
4072         struct tcp_sock *tp = tcp_sk(sk);
4073         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4074         struct sk_buff *head;
4075         u32 start, end;
4076
4077         if (skb == NULL)
4078                 return;
4079
4080         start = TCP_SKB_CB(skb)->seq;
4081         end = TCP_SKB_CB(skb)->end_seq;
4082         head = skb;
4083
4084         for (;;) {
4085                 skb = skb->next;
4086
4087                 /* Segment is terminated when we see gap or when
4088                  * we are at the end of all the queue. */
4089                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4090                     after(TCP_SKB_CB(skb)->seq, end) ||
4091                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4092                         tcp_collapse(sk, &tp->out_of_order_queue,
4093                                      head, skb, start, end);
4094                         head = skb;
4095                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4096                                 break;
4097                         /* Start new segment */
4098                         start = TCP_SKB_CB(skb)->seq;
4099                         end = TCP_SKB_CB(skb)->end_seq;
4100                 } else {
4101                         if (before(TCP_SKB_CB(skb)->seq, start))
4102                                 start = TCP_SKB_CB(skb)->seq;
4103                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4104                                 end = TCP_SKB_CB(skb)->end_seq;
4105                 }
4106         }
4107 }
4108
4109 /* Reduce allocated memory if we can, trying to get
4110  * the socket within its memory limits again.
4111  *
4112  * Return less than zero if we should start dropping frames
4113  * until the socket owning process reads some of the data
4114  * to stabilize the situation.
4115  */
4116 static int tcp_prune_queue(struct sock *sk)
4117 {
4118         struct tcp_sock *tp = tcp_sk(sk);
4119
4120         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4121
4122         NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4123
4124         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4125                 tcp_clamp_window(sk);
4126         else if (tcp_memory_pressure)
4127                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4128
4129         tcp_collapse_ofo_queue(sk);
4130         tcp_collapse(sk, &sk->sk_receive_queue,
4131                      sk->sk_receive_queue.next,
4132                      (struct sk_buff*)&sk->sk_receive_queue,
4133                      tp->copied_seq, tp->rcv_nxt);
4134         sk_stream_mem_reclaim(sk);
4135
4136         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4137                 return 0;
4138
4139         /* Collapsing did not help, destructive actions follow.
4140          * This must not ever occur. */
4141
4142         /* First, purge the out_of_order queue. */
4143         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4144                 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4145                 __skb_queue_purge(&tp->out_of_order_queue);
4146
4147                 /* Reset SACK state.  A conforming SACK implementation will
4148                  * do the same at a timeout based retransmit.  When a connection
4149                  * is in a sad state like this, we care only about integrity
4150                  * of the connection not performance.
4151                  */
4152                 if (tcp_is_sack(tp))
4153                         tcp_sack_reset(&tp->rx_opt);
4154                 sk_stream_mem_reclaim(sk);
4155         }
4156
4157         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4158                 return 0;
4159
4160         /* If we are really being abused, tell the caller to silently
4161          * drop receive data on the floor.  It will get retransmitted
4162          * and hopefully then we'll have sufficient space.
4163          */
4164         NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4165
4166         /* Massive buffer overcommit. */
4167         tp->pred_flags = 0;
4168         return -1;
4169 }
4170
4171
4172 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4173  * As additional protections, we do not touch cwnd in retransmission phases,
4174  * and if application hit its sndbuf limit recently.
4175  */
4176 void tcp_cwnd_application_limited(struct sock *sk)
4177 {
4178         struct tcp_sock *tp = tcp_sk(sk);
4179
4180         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4181             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4182                 /* Limited by application or receiver window. */
4183                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4184                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4185                 if (win_used < tp->snd_cwnd) {
4186                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4187                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4188                 }
4189                 tp->snd_cwnd_used = 0;
4190         }
4191         tp->snd_cwnd_stamp = tcp_time_stamp;
4192 }
4193
4194 static int tcp_should_expand_sndbuf(struct sock *sk)
4195 {
4196         struct tcp_sock *tp = tcp_sk(sk);
4197
4198         /* If the user specified a specific send buffer setting, do
4199          * not modify it.
4200          */
4201         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4202                 return 0;
4203
4204         /* If we are under global TCP memory pressure, do not expand.  */
4205         if (tcp_memory_pressure)
4206                 return 0;
4207
4208         /* If we are under soft global TCP memory pressure, do not expand.  */
4209         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4210                 return 0;
4211
4212         /* If we filled the congestion window, do not expand.  */
4213         if (tp->packets_out >= tp->snd_cwnd)
4214                 return 0;
4215
4216         return 1;
4217 }
4218
4219 /* When incoming ACK allowed to free some skb from write_queue,
4220  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4221  * on the exit from tcp input handler.
4222  *
4223  * PROBLEM: sndbuf expansion does not work well with largesend.
4224  */
4225 static void tcp_new_space(struct sock *sk)
4226 {
4227         struct tcp_sock *tp = tcp_sk(sk);
4228
4229         if (tcp_should_expand_sndbuf(sk)) {
4230                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4231                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4232                     demanded = max_t(unsigned int, tp->snd_cwnd,
4233                                                    tp->reordering + 1);
4234                 sndmem *= 2*demanded;
4235                 if (sndmem > sk->sk_sndbuf)
4236                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4237                 tp->snd_cwnd_stamp = tcp_time_stamp;
4238         }
4239
4240         sk->sk_write_space(sk);
4241 }
4242
4243 static void tcp_check_space(struct sock *sk)
4244 {
4245         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4246                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4247                 if (sk->sk_socket &&
4248                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4249                         tcp_new_space(sk);
4250         }
4251 }
4252
4253 static inline void tcp_data_snd_check(struct sock *sk)
4254 {
4255         tcp_push_pending_frames(sk);
4256         tcp_check_space(sk);
4257 }
4258
4259 /*
4260  * Check if sending an ack is needed.
4261  */
4262 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4263 {
4264         struct tcp_sock *tp = tcp_sk(sk);
4265
4266             /* More than one full frame received... */
4267         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4268              /* ... and right edge of window advances far enough.
4269               * (tcp_recvmsg() will send ACK otherwise). Or...
4270               */
4271              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4272             /* We ACK each frame or... */
4273             tcp_in_quickack_mode(sk) ||
4274             /* We have out of order data. */
4275             (ofo_possible &&
4276              skb_peek(&tp->out_of_order_queue))) {
4277                 /* Then ack it now */
4278                 tcp_send_ack(sk);
4279         } else {
4280                 /* Else, send delayed ack. */
4281                 tcp_send_delayed_ack(sk);
4282         }
4283 }
4284
4285 static inline void tcp_ack_snd_check(struct sock *sk)
4286 {
4287         if (!inet_csk_ack_scheduled(sk)) {
4288                 /* We sent a data segment already. */
4289                 return;
4290         }
4291         __tcp_ack_snd_check(sk, 1);
4292 }
4293
4294 /*
4295  *      This routine is only called when we have urgent data
4296  *      signaled. Its the 'slow' part of tcp_urg. It could be
4297  *      moved inline now as tcp_urg is only called from one
4298  *      place. We handle URGent data wrong. We have to - as
4299  *      BSD still doesn't use the correction from RFC961.
4300  *      For 1003.1g we should support a new option TCP_STDURG to permit
4301  *      either form (or just set the sysctl tcp_stdurg).
4302  */
4303
4304 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4305 {
4306         struct tcp_sock *tp = tcp_sk(sk);
4307         u32 ptr = ntohs(th->urg_ptr);
4308
4309         if (ptr && !sysctl_tcp_stdurg)
4310                 ptr--;
4311         ptr += ntohl(th->seq);
4312
4313         /* Ignore urgent data that we've already seen and read. */
4314         if (after(tp->copied_seq, ptr))
4315                 return;
4316
4317         /* Do not replay urg ptr.
4318          *
4319          * NOTE: interesting situation not covered by specs.
4320          * Misbehaving sender may send urg ptr, pointing to segment,
4321          * which we already have in ofo queue. We are not able to fetch
4322          * such data and will stay in TCP_URG_NOTYET until will be eaten
4323          * by recvmsg(). Seems, we are not obliged to handle such wicked
4324          * situations. But it is worth to think about possibility of some
4325          * DoSes using some hypothetical application level deadlock.
4326          */
4327         if (before(ptr, tp->rcv_nxt))
4328                 return;
4329
4330         /* Do we already have a newer (or duplicate) urgent pointer? */
4331         if (tp->urg_data && !after(ptr, tp->urg_seq))
4332                 return;
4333
4334         /* Tell the world about our new urgent pointer. */
4335         sk_send_sigurg(sk);
4336
4337         /* We may be adding urgent data when the last byte read was
4338          * urgent. To do this requires some care. We cannot just ignore
4339          * tp->copied_seq since we would read the last urgent byte again
4340          * as data, nor can we alter copied_seq until this data arrives
4341          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4342          *
4343          * NOTE. Double Dutch. Rendering to plain English: author of comment
4344          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4345          * and expect that both A and B disappear from stream. This is _wrong_.
4346          * Though this happens in BSD with high probability, this is occasional.
4347          * Any application relying on this is buggy. Note also, that fix "works"
4348          * only in this artificial test. Insert some normal data between A and B and we will
4349          * decline of BSD again. Verdict: it is better to remove to trap
4350          * buggy users.
4351          */
4352         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4353             !sock_flag(sk, SOCK_URGINLINE) &&
4354             tp->copied_seq != tp->rcv_nxt) {
4355                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4356                 tp->copied_seq++;
4357                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4358                         __skb_unlink(skb, &sk->sk_receive_queue);
4359                         __kfree_skb(skb);
4360                 }
4361         }
4362
4363         tp->urg_data   = TCP_URG_NOTYET;
4364         tp->urg_seq    = ptr;
4365
4366         /* Disable header prediction. */
4367         tp->pred_flags = 0;
4368 }
4369
4370 /* This is the 'fast' part of urgent handling. */
4371 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4372 {
4373         struct tcp_sock *tp = tcp_sk(sk);
4374
4375         /* Check if we get a new urgent pointer - normally not. */
4376         if (th->urg)
4377                 tcp_check_urg(sk,th);
4378
4379         /* Do we wait for any urgent data? - normally not... */
4380         if (tp->urg_data == TCP_URG_NOTYET) {
4381                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4382                           th->syn;
4383
4384                 /* Is the urgent pointer pointing into this packet? */
4385                 if (ptr < skb->len) {
4386                         u8 tmp;
4387                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4388                                 BUG();
4389                         tp->urg_data = TCP_URG_VALID | tmp;
4390                         if (!sock_flag(sk, SOCK_DEAD))
4391                                 sk->sk_data_ready(sk, 0);
4392                 }
4393         }
4394 }
4395
4396 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4397 {
4398         struct tcp_sock *tp = tcp_sk(sk);
4399         int chunk = skb->len - hlen;
4400         int err;
4401
4402         local_bh_enable();
4403         if (skb_csum_unnecessary(skb))
4404                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4405         else
4406                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4407                                                        tp->ucopy.iov);
4408
4409         if (!err) {
4410                 tp->ucopy.len -= chunk;
4411                 tp->copied_seq += chunk;
4412                 tcp_rcv_space_adjust(sk);
4413         }
4414
4415         local_bh_disable();
4416         return err;
4417 }
4418
4419 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4420 {
4421         __sum16 result;
4422
4423         if (sock_owned_by_user(sk)) {
4424                 local_bh_enable();
4425                 result = __tcp_checksum_complete(skb);
4426                 local_bh_disable();
4427         } else {
4428                 result = __tcp_checksum_complete(skb);
4429         }
4430         return result;
4431 }
4432
4433 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4434 {
4435         return !skb_csum_unnecessary(skb) &&
4436                 __tcp_checksum_complete_user(sk, skb);
4437 }
4438
4439 #ifdef CONFIG_NET_DMA
4440 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4441 {
4442         struct tcp_sock *tp = tcp_sk(sk);
4443         int chunk = skb->len - hlen;
4444         int dma_cookie;
4445         int copied_early = 0;
4446
4447         if (tp->ucopy.wakeup)
4448                 return 0;
4449
4450         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4451                 tp->ucopy.dma_chan = get_softnet_dma();
4452
4453         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4454
4455                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4456                         skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4457
4458                 if (dma_cookie < 0)
4459                         goto out;
4460
4461                 tp->ucopy.dma_cookie = dma_cookie;
4462                 copied_early = 1;
4463
4464                 tp->ucopy.len -= chunk;
4465                 tp->copied_seq += chunk;
4466                 tcp_rcv_space_adjust(sk);
4467
4468                 if ((tp->ucopy.len == 0) ||
4469                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4470                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4471                         tp->ucopy.wakeup = 1;
4472                         sk->sk_data_ready(sk, 0);
4473                 }
4474         } else if (chunk > 0) {
4475                 tp->ucopy.wakeup = 1;
4476                 sk->sk_data_ready(sk, 0);
4477         }
4478 out:
4479         return copied_early;
4480 }
4481 #endif /* CONFIG_NET_DMA */
4482
4483 /*
4484  *      TCP receive function for the ESTABLISHED state.
4485  *
4486  *      It is split into a fast path and a slow path. The fast path is
4487  *      disabled when:
4488  *      - A zero window was announced from us - zero window probing
4489  *        is only handled properly in the slow path.
4490  *      - Out of order segments arrived.
4491  *      - Urgent data is expected.
4492  *      - There is no buffer space left
4493  *      - Unexpected TCP flags/window values/header lengths are received
4494  *        (detected by checking the TCP header against pred_flags)
4495  *      - Data is sent in both directions. Fast path only supports pure senders
4496  *        or pure receivers (this means either the sequence number or the ack
4497  *        value must stay constant)
4498  *      - Unexpected TCP option.
4499  *
4500  *      When these conditions are not satisfied it drops into a standard
4501  *      receive procedure patterned after RFC793 to handle all cases.
4502  *      The first three cases are guaranteed by proper pred_flags setting,
4503  *      the rest is checked inline. Fast processing is turned on in
4504  *      tcp_data_queue when everything is OK.
4505  */
4506 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4507                         struct tcphdr *th, unsigned len)
4508 {
4509         struct tcp_sock *tp = tcp_sk(sk);
4510
4511         /*
4512          *      Header prediction.
4513          *      The code loosely follows the one in the famous
4514          *      "30 instruction TCP receive" Van Jacobson mail.
4515          *
4516          *      Van's trick is to deposit buffers into socket queue
4517          *      on a device interrupt, to call tcp_recv function
4518          *      on the receive process context and checksum and copy
4519          *      the buffer to user space. smart...
4520          *
4521          *      Our current scheme is not silly either but we take the
4522          *      extra cost of the net_bh soft interrupt processing...
4523          *      We do checksum and copy also but from device to kernel.
4524          */
4525
4526         tp->rx_opt.saw_tstamp = 0;
4527
4528         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4529          *      if header_prediction is to be made
4530          *      'S' will always be tp->tcp_header_len >> 2
4531          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4532          *  turn it off (when there are holes in the receive
4533          *       space for instance)
4534          *      PSH flag is ignored.
4535          */
4536
4537         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4538                 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4539                 int tcp_header_len = tp->tcp_header_len;
4540
4541                 /* Timestamp header prediction: tcp_header_len
4542                  * is automatically equal to th->doff*4 due to pred_flags
4543                  * match.
4544                  */
4545
4546                 /* Check timestamp */
4547                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4548                         __be32 *ptr = (__be32 *)(th + 1);
4549
4550                         /* No? Slow path! */
4551                         if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4552                                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4553                                 goto slow_path;
4554
4555                         tp->rx_opt.saw_tstamp = 1;
4556                         ++ptr;
4557                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
4558                         ++ptr;
4559                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4560
4561                         /* If PAWS failed, check it more carefully in slow path */
4562                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4563                                 goto slow_path;
4564
4565                         /* DO NOT update ts_recent here, if checksum fails
4566                          * and timestamp was corrupted part, it will result
4567                          * in a hung connection since we will drop all
4568                          * future packets due to the PAWS test.
4569                          */
4570                 }
4571
4572                 if (len <= tcp_header_len) {
4573                         /* Bulk data transfer: sender */
4574                         if (len == tcp_header_len) {
4575                                 /* Predicted packet is in window by definition.
4576                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4577                                  * Hence, check seq<=rcv_wup reduces to:
4578                                  */
4579                                 if (tcp_header_len ==
4580                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4581                                     tp->rcv_nxt == tp->rcv_wup)
4582                                         tcp_store_ts_recent(tp);
4583
4584                                 /* We know that such packets are checksummed
4585                                  * on entry.
4586                                  */
4587                                 tcp_ack(sk, skb, 0);
4588                                 __kfree_skb(skb);
4589                                 tcp_data_snd_check(sk);
4590                                 return 0;
4591                         } else { /* Header too small */
4592                                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4593                                 goto discard;
4594                         }
4595                 } else {
4596                         int eaten = 0;
4597                         int copied_early = 0;
4598
4599                         if (tp->copied_seq == tp->rcv_nxt &&
4600                             len - tcp_header_len <= tp->ucopy.len) {
4601 #ifdef CONFIG_NET_DMA
4602                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4603                                         copied_early = 1;
4604                                         eaten = 1;
4605                                 }
4606 #endif
4607                                 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4608                                         __set_current_state(TASK_RUNNING);
4609
4610                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4611                                                 eaten = 1;
4612                                 }
4613                                 if (eaten) {
4614                                         /* Predicted packet is in window by definition.
4615                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4616                                          * Hence, check seq<=rcv_wup reduces to:
4617                                          */
4618                                         if (tcp_header_len ==
4619                                             (sizeof(struct tcphdr) +
4620                                              TCPOLEN_TSTAMP_ALIGNED) &&
4621                                             tp->rcv_nxt == tp->rcv_wup)
4622                                                 tcp_store_ts_recent(tp);
4623
4624                                         tcp_rcv_rtt_measure_ts(sk, skb);
4625
4626                                         __skb_pull(skb, tcp_header_len);
4627                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4628                                         NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4629                                 }
4630                                 if (copied_early)
4631                                         tcp_cleanup_rbuf(sk, skb->len);
4632                         }
4633                         if (!eaten) {
4634                                 if (tcp_checksum_complete_user(sk, skb))
4635                                         goto csum_error;
4636
4637                                 /* Predicted packet is in window by definition.
4638                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4639                                  * Hence, check seq<=rcv_wup reduces to:
4640                                  */
4641                                 if (tcp_header_len ==
4642                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4643                                     tp->rcv_nxt == tp->rcv_wup)
4644                                         tcp_store_ts_recent(tp);
4645
4646                                 tcp_rcv_rtt_measure_ts(sk, skb);
4647
4648                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4649                                         goto step5;
4650
4651                                 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4652
4653                                 /* Bulk data transfer: receiver */
4654                                 __skb_pull(skb,tcp_header_len);
4655                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4656                                 sk_stream_set_owner_r(skb, sk);
4657                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4658                         }
4659
4660                         tcp_event_data_recv(sk, skb);
4661
4662                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4663                                 /* Well, only one small jumplet in fast path... */
4664                                 tcp_ack(sk, skb, FLAG_DATA);
4665                                 tcp_data_snd_check(sk);
4666                                 if (!inet_csk_ack_scheduled(sk))
4667                                         goto no_ack;
4668                         }
4669
4670                         __tcp_ack_snd_check(sk, 0);
4671 no_ack:
4672 #ifdef CONFIG_NET_DMA
4673                         if (copied_early)
4674                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4675                         else
4676 #endif
4677                         if (eaten)
4678                                 __kfree_skb(skb);
4679                         else
4680                                 sk->sk_data_ready(sk, 0);
4681                         return 0;
4682                 }
4683         }
4684
4685 slow_path:
4686         if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4687                 goto csum_error;
4688
4689         /*
4690          * RFC1323: H1. Apply PAWS check first.
4691          */
4692         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4693             tcp_paws_discard(sk, skb)) {
4694                 if (!th->rst) {
4695                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4696                         tcp_send_dupack(sk, skb);
4697                         goto discard;
4698                 }
4699                 /* Resets are accepted even if PAWS failed.
4700
4701                    ts_recent update must be made after we are sure
4702                    that the packet is in window.
4703                  */
4704         }
4705
4706         /*
4707          *      Standard slow path.
4708          */
4709
4710         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4711                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4712                  * (RST) segments are validated by checking their SEQ-fields."
4713                  * And page 69: "If an incoming segment is not acceptable,
4714                  * an acknowledgment should be sent in reply (unless the RST bit
4715                  * is set, if so drop the segment and return)".
4716                  */
4717                 if (!th->rst)
4718                         tcp_send_dupack(sk, skb);
4719                 goto discard;
4720         }
4721
4722         if (th->rst) {
4723                 tcp_reset(sk);
4724                 goto discard;
4725         }
4726
4727         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4728
4729         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4730                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4731                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4732                 tcp_reset(sk);
4733                 return 1;
4734         }
4735
4736 step5:
4737         if (th->ack)
4738                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4739
4740         tcp_rcv_rtt_measure_ts(sk, skb);
4741
4742         /* Process urgent data. */
4743         tcp_urg(sk, skb, th);
4744
4745         /* step 7: process the segment text */
4746         tcp_data_queue(sk, skb);
4747
4748         tcp_data_snd_check(sk);
4749         tcp_ack_snd_check(sk);
4750         return 0;
4751
4752 csum_error:
4753         TCP_INC_STATS_BH(TCP_MIB_INERRS);
4754
4755 discard:
4756         __kfree_skb(skb);
4757         return 0;
4758 }
4759
4760 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4761                                          struct tcphdr *th, unsigned len)
4762 {
4763         struct tcp_sock *tp = tcp_sk(sk);
4764         struct inet_connection_sock *icsk = inet_csk(sk);
4765         int saved_clamp = tp->rx_opt.mss_clamp;
4766
4767         tcp_parse_options(skb, &tp->rx_opt, 0);
4768
4769         if (th->ack) {
4770                 /* rfc793:
4771                  * "If the state is SYN-SENT then
4772                  *    first check the ACK bit
4773                  *      If the ACK bit is set
4774                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4775                  *        a reset (unless the RST bit is set, if so drop
4776                  *        the segment and return)"
4777                  *
4778                  *  We do not send data with SYN, so that RFC-correct
4779                  *  test reduces to:
4780                  */
4781                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4782                         goto reset_and_undo;
4783
4784                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4785                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4786                              tcp_time_stamp)) {
4787                         NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4788                         goto reset_and_undo;
4789                 }
4790
4791                 /* Now ACK is acceptable.
4792                  *
4793                  * "If the RST bit is set
4794                  *    If the ACK was acceptable then signal the user "error:
4795                  *    connection reset", drop the segment, enter CLOSED state,
4796                  *    delete TCB, and return."
4797                  */
4798
4799                 if (th->rst) {
4800                         tcp_reset(sk);
4801                         goto discard;
4802                 }
4803
4804                 /* rfc793:
4805                  *   "fifth, if neither of the SYN or RST bits is set then
4806                  *    drop the segment and return."
4807                  *
4808                  *    See note below!
4809                  *                                        --ANK(990513)
4810                  */
4811                 if (!th->syn)
4812                         goto discard_and_undo;
4813
4814                 /* rfc793:
4815                  *   "If the SYN bit is on ...
4816                  *    are acceptable then ...
4817                  *    (our SYN has been ACKed), change the connection
4818                  *    state to ESTABLISHED..."
4819                  */
4820
4821                 TCP_ECN_rcv_synack(tp, th);
4822
4823                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4824                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4825
4826                 /* Ok.. it's good. Set up sequence numbers and
4827                  * move to established.
4828                  */
4829                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4830                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4831
4832                 /* RFC1323: The window in SYN & SYN/ACK segments is
4833                  * never scaled.
4834                  */
4835                 tp->snd_wnd = ntohs(th->window);
4836                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4837
4838                 if (!tp->rx_opt.wscale_ok) {
4839                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4840                         tp->window_clamp = min(tp->window_clamp, 65535U);
4841                 }
4842
4843                 if (tp->rx_opt.saw_tstamp) {
4844                         tp->rx_opt.tstamp_ok       = 1;
4845                         tp->tcp_header_len =
4846                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4847                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
4848                         tcp_store_ts_recent(tp);
4849                 } else {
4850                         tp->tcp_header_len = sizeof(struct tcphdr);
4851                 }
4852
4853                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4854                         tcp_enable_fack(tp);
4855
4856                 tcp_mtup_init(sk);
4857                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4858                 tcp_initialize_rcv_mss(sk);
4859
4860                 /* Remember, tcp_poll() does not lock socket!
4861                  * Change state from SYN-SENT only after copied_seq
4862                  * is initialized. */
4863                 tp->copied_seq = tp->rcv_nxt;
4864                 smp_mb();
4865                 tcp_set_state(sk, TCP_ESTABLISHED);
4866
4867                 security_inet_conn_established(sk, skb);
4868
4869                 /* Make sure socket is routed, for correct metrics.  */
4870                 icsk->icsk_af_ops->rebuild_header(sk);
4871
4872                 tcp_init_metrics(sk);
4873
4874                 tcp_init_congestion_control(sk);
4875
4876                 /* Prevent spurious tcp_cwnd_restart() on first data
4877                  * packet.
4878                  */
4879                 tp->lsndtime = tcp_time_stamp;
4880
4881                 tcp_init_buffer_space(sk);
4882
4883                 if (sock_flag(sk, SOCK_KEEPOPEN))
4884                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4885
4886                 if (!tp->rx_opt.snd_wscale)
4887                         __tcp_fast_path_on(tp, tp->snd_wnd);
4888                 else
4889                         tp->pred_flags = 0;
4890
4891                 if (!sock_flag(sk, SOCK_DEAD)) {
4892                         sk->sk_state_change(sk);
4893                         sk_wake_async(sk, 0, POLL_OUT);
4894                 }
4895
4896                 if (sk->sk_write_pending ||
4897                     icsk->icsk_accept_queue.rskq_defer_accept ||
4898                     icsk->icsk_ack.pingpong) {
4899                         /* Save one ACK. Data will be ready after
4900                          * several ticks, if write_pending is set.
4901                          *
4902                          * It may be deleted, but with this feature tcpdumps
4903                          * look so _wonderfully_ clever, that I was not able
4904                          * to stand against the temptation 8)     --ANK
4905                          */
4906                         inet_csk_schedule_ack(sk);
4907                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4908                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
4909                         tcp_incr_quickack(sk);
4910                         tcp_enter_quickack_mode(sk);
4911                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4912                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
4913
4914 discard:
4915                         __kfree_skb(skb);
4916                         return 0;
4917                 } else {
4918                         tcp_send_ack(sk);
4919                 }
4920                 return -1;
4921         }
4922
4923         /* No ACK in the segment */
4924
4925         if (th->rst) {
4926                 /* rfc793:
4927                  * "If the RST bit is set
4928                  *
4929                  *      Otherwise (no ACK) drop the segment and return."
4930                  */
4931
4932                 goto discard_and_undo;
4933         }
4934
4935         /* PAWS check. */
4936         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4937                 goto discard_and_undo;
4938
4939         if (th->syn) {
4940                 /* We see SYN without ACK. It is attempt of
4941                  * simultaneous connect with crossed SYNs.
4942                  * Particularly, it can be connect to self.
4943                  */
4944                 tcp_set_state(sk, TCP_SYN_RECV);
4945
4946                 if (tp->rx_opt.saw_tstamp) {
4947                         tp->rx_opt.tstamp_ok = 1;
4948                         tcp_store_ts_recent(tp);
4949                         tp->tcp_header_len =
4950                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4951                 } else {
4952                         tp->tcp_header_len = sizeof(struct tcphdr);
4953                 }
4954
4955                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4956                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4957
4958                 /* RFC1323: The window in SYN & SYN/ACK segments is
4959                  * never scaled.
4960                  */
4961                 tp->snd_wnd    = ntohs(th->window);
4962                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4963                 tp->max_window = tp->snd_wnd;
4964
4965                 TCP_ECN_rcv_syn(tp, th);
4966
4967                 tcp_mtup_init(sk);
4968                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4969                 tcp_initialize_rcv_mss(sk);
4970
4971
4972                 tcp_send_synack(sk);
4973 #if 0
4974                 /* Note, we could accept data and URG from this segment.
4975                  * There are no obstacles to make this.
4976                  *
4977                  * However, if we ignore data in ACKless segments sometimes,
4978                  * we have no reasons to accept it sometimes.
4979                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
4980                  * is not flawless. So, discard packet for sanity.
4981                  * Uncomment this return to process the data.
4982                  */
4983                 return -1;
4984 #else
4985                 goto discard;
4986 #endif
4987         }
4988         /* "fifth, if neither of the SYN or RST bits is set then
4989          * drop the segment and return."
4990          */
4991
4992 discard_and_undo:
4993         tcp_clear_options(&tp->rx_opt);
4994         tp->rx_opt.mss_clamp = saved_clamp;
4995         goto discard;
4996
4997 reset_and_undo:
4998         tcp_clear_options(&tp->rx_opt);
4999         tp->rx_opt.mss_clamp = saved_clamp;
5000         return 1;
5001 }
5002
5003
5004 /*
5005  *      This function implements the receiving procedure of RFC 793 for
5006  *      all states except ESTABLISHED and TIME_WAIT.
5007  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5008  *      address independent.
5009  */
5010
5011 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5012                           struct tcphdr *th, unsigned len)
5013 {
5014         struct tcp_sock *tp = tcp_sk(sk);
5015         struct inet_connection_sock *icsk = inet_csk(sk);
5016         int queued = 0;
5017
5018         tp->rx_opt.saw_tstamp = 0;
5019
5020         switch (sk->sk_state) {
5021         case TCP_CLOSE:
5022                 goto discard;
5023
5024         case TCP_LISTEN:
5025                 if (th->ack)
5026                         return 1;
5027
5028                 if (th->rst)
5029                         goto discard;
5030
5031                 if (th->syn) {
5032                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5033                                 return 1;
5034
5035                         /* Now we have several options: In theory there is
5036                          * nothing else in the frame. KA9Q has an option to
5037                          * send data with the syn, BSD accepts data with the
5038                          * syn up to the [to be] advertised window and
5039                          * Solaris 2.1 gives you a protocol error. For now
5040                          * we just ignore it, that fits the spec precisely
5041                          * and avoids incompatibilities. It would be nice in
5042                          * future to drop through and process the data.
5043                          *
5044                          * Now that TTCP is starting to be used we ought to
5045                          * queue this data.
5046                          * But, this leaves one open to an easy denial of
5047                          * service attack, and SYN cookies can't defend
5048                          * against this problem. So, we drop the data
5049                          * in the interest of security over speed unless
5050                          * it's still in use.
5051                          */
5052                         kfree_skb(skb);
5053                         return 0;
5054                 }
5055                 goto discard;
5056
5057         case TCP_SYN_SENT:
5058                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5059                 if (queued >= 0)
5060                         return queued;
5061
5062                 /* Do step6 onward by hand. */
5063                 tcp_urg(sk, skb, th);
5064                 __kfree_skb(skb);
5065                 tcp_data_snd_check(sk);
5066                 return 0;
5067         }
5068
5069         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5070             tcp_paws_discard(sk, skb)) {
5071                 if (!th->rst) {
5072                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5073                         tcp_send_dupack(sk, skb);
5074                         goto discard;
5075                 }
5076                 /* Reset is accepted even if it did not pass PAWS. */
5077         }
5078
5079         /* step 1: check sequence number */
5080         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5081                 if (!th->rst)
5082                         tcp_send_dupack(sk, skb);
5083                 goto discard;
5084         }
5085
5086         /* step 2: check RST bit */
5087         if (th->rst) {
5088                 tcp_reset(sk);
5089                 goto discard;
5090         }
5091
5092         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5093
5094         /* step 3: check security and precedence [ignored] */
5095
5096         /*      step 4:
5097          *
5098          *      Check for a SYN in window.
5099          */
5100         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5101                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5102                 tcp_reset(sk);
5103                 return 1;
5104         }
5105
5106         /* step 5: check the ACK field */
5107         if (th->ack) {
5108                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5109
5110                 switch (sk->sk_state) {
5111                 case TCP_SYN_RECV:
5112                         if (acceptable) {
5113                                 tp->copied_seq = tp->rcv_nxt;
5114                                 smp_mb();
5115                                 tcp_set_state(sk, TCP_ESTABLISHED);
5116                                 sk->sk_state_change(sk);
5117
5118                                 /* Note, that this wakeup is only for marginal
5119                                  * crossed SYN case. Passively open sockets
5120                                  * are not waked up, because sk->sk_sleep ==
5121                                  * NULL and sk->sk_socket == NULL.
5122                                  */
5123                                 if (sk->sk_socket) {
5124                                         sk_wake_async(sk,0,POLL_OUT);
5125                                 }
5126
5127                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5128                                 tp->snd_wnd = ntohs(th->window) <<
5129                                               tp->rx_opt.snd_wscale;
5130                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5131                                             TCP_SKB_CB(skb)->seq);
5132
5133                                 /* tcp_ack considers this ACK as duplicate
5134                                  * and does not calculate rtt.
5135                                  * Fix it at least with timestamps.
5136                                  */
5137                                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5138                                     !tp->srtt)
5139                                         tcp_ack_saw_tstamp(sk, 0);
5140
5141                                 if (tp->rx_opt.tstamp_ok)
5142                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5143
5144                                 /* Make sure socket is routed, for
5145                                  * correct metrics.
5146                                  */
5147                                 icsk->icsk_af_ops->rebuild_header(sk);
5148
5149                                 tcp_init_metrics(sk);
5150
5151                                 tcp_init_congestion_control(sk);
5152
5153                                 /* Prevent spurious tcp_cwnd_restart() on
5154                                  * first data packet.
5155                                  */
5156                                 tp->lsndtime = tcp_time_stamp;
5157
5158                                 tcp_mtup_init(sk);
5159                                 tcp_initialize_rcv_mss(sk);
5160                                 tcp_init_buffer_space(sk);
5161                                 tcp_fast_path_on(tp);
5162                         } else {
5163                                 return 1;
5164                         }
5165                         break;
5166
5167                 case TCP_FIN_WAIT1:
5168                         if (tp->snd_una == tp->write_seq) {
5169                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5170                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5171                                 dst_confirm(sk->sk_dst_cache);
5172
5173                                 if (!sock_flag(sk, SOCK_DEAD))
5174                                         /* Wake up lingering close() */
5175                                         sk->sk_state_change(sk);
5176                                 else {
5177                                         int tmo;
5178
5179                                         if (tp->linger2 < 0 ||
5180                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5181                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5182                                                 tcp_done(sk);
5183                                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5184                                                 return 1;
5185                                         }
5186
5187                                         tmo = tcp_fin_time(sk);
5188                                         if (tmo > TCP_TIMEWAIT_LEN) {
5189                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5190                                         } else if (th->fin || sock_owned_by_user(sk)) {
5191                                                 /* Bad case. We could lose such FIN otherwise.
5192                                                  * It is not a big problem, but it looks confusing
5193                                                  * and not so rare event. We still can lose it now,
5194                                                  * if it spins in bh_lock_sock(), but it is really
5195                                                  * marginal case.
5196                                                  */
5197                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5198                                         } else {
5199                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5200                                                 goto discard;
5201                                         }
5202                                 }
5203                         }
5204                         break;
5205
5206                 case TCP_CLOSING:
5207                         if (tp->snd_una == tp->write_seq) {
5208                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5209                                 goto discard;
5210                         }
5211                         break;
5212
5213                 case TCP_LAST_ACK:
5214                         if (tp->snd_una == tp->write_seq) {
5215                                 tcp_update_metrics(sk);
5216                                 tcp_done(sk);
5217                                 goto discard;
5218                         }
5219                         break;
5220                 }
5221         } else
5222                 goto discard;
5223
5224         /* step 6: check the URG bit */
5225         tcp_urg(sk, skb, th);
5226
5227         /* step 7: process the segment text */
5228         switch (sk->sk_state) {
5229         case TCP_CLOSE_WAIT:
5230         case TCP_CLOSING:
5231         case TCP_LAST_ACK:
5232                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5233                         break;
5234         case TCP_FIN_WAIT1:
5235         case TCP_FIN_WAIT2:
5236                 /* RFC 793 says to queue data in these states,
5237                  * RFC 1122 says we MUST send a reset.
5238                  * BSD 4.4 also does reset.
5239                  */
5240                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5241                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5242                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5243                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5244                                 tcp_reset(sk);
5245                                 return 1;
5246                         }
5247                 }
5248                 /* Fall through */
5249         case TCP_ESTABLISHED:
5250                 tcp_data_queue(sk, skb);
5251                 queued = 1;
5252                 break;
5253         }
5254
5255         /* tcp_data could move socket to TIME-WAIT */
5256         if (sk->sk_state != TCP_CLOSE) {
5257                 tcp_data_snd_check(sk);
5258                 tcp_ack_snd_check(sk);
5259         }
5260
5261         if (!queued) {
5262 discard:
5263                 __kfree_skb(skb);
5264         }
5265         return 0;
5266 }
5267
5268 EXPORT_SYMBOL(sysctl_tcp_ecn);
5269 EXPORT_SYMBOL(sysctl_tcp_reordering);
5270 EXPORT_SYMBOL(tcp_parse_options);
5271 EXPORT_SYMBOL(tcp_rcv_established);
5272 EXPORT_SYMBOL(tcp_rcv_state_process);
5273 EXPORT_SYMBOL(tcp_initialize_rcv_mss);