]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/ipv4/tcp_input.c
8ac15a604e086b766552b3ff8a646ca3a8d44f08
[linux-2.6-omap-h63xx.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 /*
24  * Changes:
25  *              Pedro Roque     :       Fast Retransmit/Recovery.
26  *                                      Two receive queues.
27  *                                      Retransmit queue handled by TCP.
28  *                                      Better retransmit timer handling.
29  *                                      New congestion avoidance.
30  *                                      Header prediction.
31  *                                      Variable renaming.
32  *
33  *              Eric            :       Fast Retransmit.
34  *              Randy Scott     :       MSS option defines.
35  *              Eric Schenk     :       Fixes to slow start algorithm.
36  *              Eric Schenk     :       Yet another double ACK bug.
37  *              Eric Schenk     :       Delayed ACK bug fixes.
38  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
39  *              David S. Miller :       Don't allow zero congestion window.
40  *              Eric Schenk     :       Fix retransmitter so that it sends
41  *                                      next packet on ack of previous packet.
42  *              Andi Kleen      :       Moved open_request checking here
43  *                                      and process RSTs for open_requests.
44  *              Andi Kleen      :       Better prune_queue, and other fixes.
45  *              Andrey Savochkin:       Fix RTT measurements in the presence of
46  *                                      timestamps.
47  *              Andrey Savochkin:       Check sequence numbers correctly when
48  *                                      removing SACKs due to in sequence incoming
49  *                                      data segments.
50  *              Andi Kleen:             Make sure we never ack data there is not
51  *                                      enough room for. Also make this condition
52  *                                      a fatal error if it might still happen.
53  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
54  *                                      connections with MSS<min(MTU,ann. MSS)
55  *                                      work without delayed acks.
56  *              Andi Kleen:             Process packets with PSH set in the
57  *                                      fast path.
58  *              J Hadi Salim:           ECN support
59  *              Andrei Gurtov,
60  *              Pasi Sarolahti,
61  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
62  *                                      engine. Lots of bugs are found.
63  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
64  */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 int sysctl_tcp_ecn __read_mostly;
82 int sysctl_tcp_dsack __read_mostly = 1;
83 int sysctl_tcp_app_win __read_mostly = 31;
84 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85
86 int sysctl_tcp_stdurg __read_mostly;
87 int sysctl_tcp_rfc1337 __read_mostly;
88 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
89 int sysctl_tcp_frto __read_mostly = 2;
90 int sysctl_tcp_frto_response __read_mostly;
91 int sysctl_tcp_nometrics_save __read_mostly;
92
93 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
94 int sysctl_tcp_abc __read_mostly;
95
96 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
97 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
98 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
99 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
100 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
101 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
102 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
103 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
104 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
105 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
106 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
107 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
108 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
109 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
110
111 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
112 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
113 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
114 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
115 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
116
117 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
118
119 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
120 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
121
122 /* Adapt the MSS value used to make delayed ack decision to the
123  * real world.
124  */
125 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
126 {
127         struct inet_connection_sock *icsk = inet_csk(sk);
128         const unsigned int lss = icsk->icsk_ack.last_seg_size;
129         unsigned int len;
130
131         icsk->icsk_ack.last_seg_size = 0;
132
133         /* skb->len may jitter because of SACKs, even if peer
134          * sends good full-sized frames.
135          */
136         len = skb_shinfo(skb)->gso_size ? : skb->len;
137         if (len >= icsk->icsk_ack.rcv_mss) {
138                 icsk->icsk_ack.rcv_mss = len;
139         } else {
140                 /* Otherwise, we make more careful check taking into account,
141                  * that SACKs block is variable.
142                  *
143                  * "len" is invariant segment length, including TCP header.
144                  */
145                 len += skb->data - skb_transport_header(skb);
146                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
147                     /* If PSH is not set, packet should be
148                      * full sized, provided peer TCP is not badly broken.
149                      * This observation (if it is correct 8)) allows
150                      * to handle super-low mtu links fairly.
151                      */
152                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
153                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
154                         /* Subtract also invariant (if peer is RFC compliant),
155                          * tcp header plus fixed timestamp option length.
156                          * Resulting "len" is MSS free of SACK jitter.
157                          */
158                         len -= tcp_sk(sk)->tcp_header_len;
159                         icsk->icsk_ack.last_seg_size = len;
160                         if (len == lss) {
161                                 icsk->icsk_ack.rcv_mss = len;
162                                 return;
163                         }
164                 }
165                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
166                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
167                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
168         }
169 }
170
171 static void tcp_incr_quickack(struct sock *sk)
172 {
173         struct inet_connection_sock *icsk = inet_csk(sk);
174         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
175
176         if (quickacks == 0)
177                 quickacks = 2;
178         if (quickacks > icsk->icsk_ack.quick)
179                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
180 }
181
182 void tcp_enter_quickack_mode(struct sock *sk)
183 {
184         struct inet_connection_sock *icsk = inet_csk(sk);
185         tcp_incr_quickack(sk);
186         icsk->icsk_ack.pingpong = 0;
187         icsk->icsk_ack.ato = TCP_ATO_MIN;
188 }
189
190 /* Send ACKs quickly, if "quick" count is not exhausted
191  * and the session is not interactive.
192  */
193
194 static inline int tcp_in_quickack_mode(const struct sock *sk)
195 {
196         const struct inet_connection_sock *icsk = inet_csk(sk);
197         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
198 }
199
200 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
201 {
202         if (tp->ecn_flags & TCP_ECN_OK)
203                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
204 }
205
206 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
207 {
208         if (tcp_hdr(skb)->cwr)
209                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
210 }
211
212 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
213 {
214         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216
217 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
218 {
219         if (tp->ecn_flags & TCP_ECN_OK) {
220                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
221                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
222                 /* Funny extension: if ECT is not set on a segment,
223                  * it is surely retransmit. It is not in ECN RFC,
224                  * but Linux follows this rule. */
225                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
226                         tcp_enter_quickack_mode((struct sock *)tp);
227         }
228 }
229
230 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
231 {
232         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
233                 tp->ecn_flags &= ~TCP_ECN_OK;
234 }
235
236 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
237 {
238         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
239                 tp->ecn_flags &= ~TCP_ECN_OK;
240 }
241
242 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
243 {
244         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
245                 return 1;
246         return 0;
247 }
248
249 /* Buffer size and advertised window tuning.
250  *
251  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
252  */
253
254 static void tcp_fixup_sndbuf(struct sock *sk)
255 {
256         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
257                      sizeof(struct sk_buff);
258
259         if (sk->sk_sndbuf < 3 * sndmem)
260                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
261 }
262
263 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
264  *
265  * All tcp_full_space() is split to two parts: "network" buffer, allocated
266  * forward and advertised in receiver window (tp->rcv_wnd) and
267  * "application buffer", required to isolate scheduling/application
268  * latencies from network.
269  * window_clamp is maximal advertised window. It can be less than
270  * tcp_full_space(), in this case tcp_full_space() - window_clamp
271  * is reserved for "application" buffer. The less window_clamp is
272  * the smoother our behaviour from viewpoint of network, but the lower
273  * throughput and the higher sensitivity of the connection to losses. 8)
274  *
275  * rcv_ssthresh is more strict window_clamp used at "slow start"
276  * phase to predict further behaviour of this connection.
277  * It is used for two goals:
278  * - to enforce header prediction at sender, even when application
279  *   requires some significant "application buffer". It is check #1.
280  * - to prevent pruning of receive queue because of misprediction
281  *   of receiver window. Check #2.
282  *
283  * The scheme does not work when sender sends good segments opening
284  * window and then starts to feed us spaghetti. But it should work
285  * in common situations. Otherwise, we have to rely on queue collapsing.
286  */
287
288 /* Slow part of check#2. */
289 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
290 {
291         struct tcp_sock *tp = tcp_sk(sk);
292         /* Optimize this! */
293         int truesize = tcp_win_from_space(skb->truesize) >> 1;
294         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
295
296         while (tp->rcv_ssthresh <= window) {
297                 if (truesize <= skb->len)
298                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
299
300                 truesize >>= 1;
301                 window >>= 1;
302         }
303         return 0;
304 }
305
306 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
307 {
308         struct tcp_sock *tp = tcp_sk(sk);
309
310         /* Check #1 */
311         if (tp->rcv_ssthresh < tp->window_clamp &&
312             (int)tp->rcv_ssthresh < tcp_space(sk) &&
313             !tcp_memory_pressure) {
314                 int incr;
315
316                 /* Check #2. Increase window, if skb with such overhead
317                  * will fit to rcvbuf in future.
318                  */
319                 if (tcp_win_from_space(skb->truesize) <= skb->len)
320                         incr = 2 * tp->advmss;
321                 else
322                         incr = __tcp_grow_window(sk, skb);
323
324                 if (incr) {
325                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
326                                                tp->window_clamp);
327                         inet_csk(sk)->icsk_ack.quick |= 1;
328                 }
329         }
330 }
331
332 /* 3. Tuning rcvbuf, when connection enters established state. */
333
334 static void tcp_fixup_rcvbuf(struct sock *sk)
335 {
336         struct tcp_sock *tp = tcp_sk(sk);
337         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
338
339         /* Try to select rcvbuf so that 4 mss-sized segments
340          * will fit to window and corresponding skbs will fit to our rcvbuf.
341          * (was 3; 4 is minimum to allow fast retransmit to work.)
342          */
343         while (tcp_win_from_space(rcvmem) < tp->advmss)
344                 rcvmem += 128;
345         if (sk->sk_rcvbuf < 4 * rcvmem)
346                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
347 }
348
349 /* 4. Try to fixup all. It is made immediately after connection enters
350  *    established state.
351  */
352 static void tcp_init_buffer_space(struct sock *sk)
353 {
354         struct tcp_sock *tp = tcp_sk(sk);
355         int maxwin;
356
357         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
358                 tcp_fixup_rcvbuf(sk);
359         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
360                 tcp_fixup_sndbuf(sk);
361
362         tp->rcvq_space.space = tp->rcv_wnd;
363
364         maxwin = tcp_full_space(sk);
365
366         if (tp->window_clamp >= maxwin) {
367                 tp->window_clamp = maxwin;
368
369                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
370                         tp->window_clamp = max(maxwin -
371                                                (maxwin >> sysctl_tcp_app_win),
372                                                4 * tp->advmss);
373         }
374
375         /* Force reservation of one segment. */
376         if (sysctl_tcp_app_win &&
377             tp->window_clamp > 2 * tp->advmss &&
378             tp->window_clamp + tp->advmss > maxwin)
379                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
380
381         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
382         tp->snd_cwnd_stamp = tcp_time_stamp;
383 }
384
385 /* 5. Recalculate window clamp after socket hit its memory bounds. */
386 static void tcp_clamp_window(struct sock *sk)
387 {
388         struct tcp_sock *tp = tcp_sk(sk);
389         struct inet_connection_sock *icsk = inet_csk(sk);
390
391         icsk->icsk_ack.quick = 0;
392
393         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
394             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
395             !tcp_memory_pressure &&
396             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
397                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
398                                     sysctl_tcp_rmem[2]);
399         }
400         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
401                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
402 }
403
404 /* Initialize RCV_MSS value.
405  * RCV_MSS is an our guess about MSS used by the peer.
406  * We haven't any direct information about the MSS.
407  * It's better to underestimate the RCV_MSS rather than overestimate.
408  * Overestimations make us ACKing less frequently than needed.
409  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410  */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413         struct tcp_sock *tp = tcp_sk(sk);
414         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416         hint = min(hint, tp->rcv_wnd / 2);
417         hint = min(hint, TCP_MIN_RCVMSS);
418         hint = max(hint, TCP_MIN_MSS);
419
420         inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424  *
425  * The algorithm for RTT estimation w/o timestamps is based on
426  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428  *
429  * More detail on this code can be found at
430  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431  * though this reference is out of date.  A new paper
432  * is pending.
433  */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436         u32 new_sample = tp->rcv_rtt_est.rtt;
437         long m = sample;
438
439         if (m == 0)
440                 m = 1;
441
442         if (new_sample != 0) {
443                 /* If we sample in larger samples in the non-timestamp
444                  * case, we could grossly overestimate the RTT especially
445                  * with chatty applications or bulk transfer apps which
446                  * are stalled on filesystem I/O.
447                  *
448                  * Also, since we are only going for a minimum in the
449                  * non-timestamp case, we do not smooth things out
450                  * else with timestamps disabled convergence takes too
451                  * long.
452                  */
453                 if (!win_dep) {
454                         m -= (new_sample >> 3);
455                         new_sample += m;
456                 } else if (m < new_sample)
457                         new_sample = m << 3;
458         } else {
459                 /* No previous measure. */
460                 new_sample = m << 3;
461         }
462
463         if (tp->rcv_rtt_est.rtt != new_sample)
464                 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469         if (tp->rcv_rtt_est.time == 0)
470                 goto new_measure;
471         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472                 return;
473         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
474
475 new_measure:
476         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
477         tp->rcv_rtt_est.time = tcp_time_stamp;
478 }
479
480 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
481                                           const struct sk_buff *skb)
482 {
483         struct tcp_sock *tp = tcp_sk(sk);
484         if (tp->rx_opt.rcv_tsecr &&
485             (TCP_SKB_CB(skb)->end_seq -
486              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
487                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
488 }
489
490 /*
491  * This function should be called every time data is copied to user space.
492  * It calculates the appropriate TCP receive buffer space.
493  */
494 void tcp_rcv_space_adjust(struct sock *sk)
495 {
496         struct tcp_sock *tp = tcp_sk(sk);
497         int time;
498         int space;
499
500         if (tp->rcvq_space.time == 0)
501                 goto new_measure;
502
503         time = tcp_time_stamp - tp->rcvq_space.time;
504         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
505                 return;
506
507         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
508
509         space = max(tp->rcvq_space.space, space);
510
511         if (tp->rcvq_space.space != space) {
512                 int rcvmem;
513
514                 tp->rcvq_space.space = space;
515
516                 if (sysctl_tcp_moderate_rcvbuf &&
517                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
518                         int new_clamp = space;
519
520                         /* Receive space grows, normalize in order to
521                          * take into account packet headers and sk_buff
522                          * structure overhead.
523                          */
524                         space /= tp->advmss;
525                         if (!space)
526                                 space = 1;
527                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
528                                   16 + sizeof(struct sk_buff));
529                         while (tcp_win_from_space(rcvmem) < tp->advmss)
530                                 rcvmem += 128;
531                         space *= rcvmem;
532                         space = min(space, sysctl_tcp_rmem[2]);
533                         if (space > sk->sk_rcvbuf) {
534                                 sk->sk_rcvbuf = space;
535
536                                 /* Make the window clamp follow along.  */
537                                 tp->window_clamp = new_clamp;
538                         }
539                 }
540         }
541
542 new_measure:
543         tp->rcvq_space.seq = tp->copied_seq;
544         tp->rcvq_space.time = tcp_time_stamp;
545 }
546
547 /* There is something which you must keep in mind when you analyze the
548  * behavior of the tp->ato delayed ack timeout interval.  When a
549  * connection starts up, we want to ack as quickly as possible.  The
550  * problem is that "good" TCP's do slow start at the beginning of data
551  * transmission.  The means that until we send the first few ACK's the
552  * sender will sit on his end and only queue most of his data, because
553  * he can only send snd_cwnd unacked packets at any given time.  For
554  * each ACK we send, he increments snd_cwnd and transmits more of his
555  * queue.  -DaveM
556  */
557 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
558 {
559         struct tcp_sock *tp = tcp_sk(sk);
560         struct inet_connection_sock *icsk = inet_csk(sk);
561         u32 now;
562
563         inet_csk_schedule_ack(sk);
564
565         tcp_measure_rcv_mss(sk, skb);
566
567         tcp_rcv_rtt_measure(tp);
568
569         now = tcp_time_stamp;
570
571         if (!icsk->icsk_ack.ato) {
572                 /* The _first_ data packet received, initialize
573                  * delayed ACK engine.
574                  */
575                 tcp_incr_quickack(sk);
576                 icsk->icsk_ack.ato = TCP_ATO_MIN;
577         } else {
578                 int m = now - icsk->icsk_ack.lrcvtime;
579
580                 if (m <= TCP_ATO_MIN / 2) {
581                         /* The fastest case is the first. */
582                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
583                 } else if (m < icsk->icsk_ack.ato) {
584                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
585                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
586                                 icsk->icsk_ack.ato = icsk->icsk_rto;
587                 } else if (m > icsk->icsk_rto) {
588                         /* Too long gap. Apparently sender failed to
589                          * restart window, so that we send ACKs quickly.
590                          */
591                         tcp_incr_quickack(sk);
592                         sk_mem_reclaim(sk);
593                 }
594         }
595         icsk->icsk_ack.lrcvtime = now;
596
597         TCP_ECN_check_ce(tp, skb);
598
599         if (skb->len >= 128)
600                 tcp_grow_window(sk, skb);
601 }
602
603 static u32 tcp_rto_min(struct sock *sk)
604 {
605         struct dst_entry *dst = __sk_dst_get(sk);
606         u32 rto_min = TCP_RTO_MIN;
607
608         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
609                 rto_min = dst_metric(dst, RTAX_RTO_MIN);
610         return rto_min;
611 }
612
613 /* Called to compute a smoothed rtt estimate. The data fed to this
614  * routine either comes from timestamps, or from segments that were
615  * known _not_ to have been retransmitted [see Karn/Partridge
616  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
617  * piece by Van Jacobson.
618  * NOTE: the next three routines used to be one big routine.
619  * To save cycles in the RFC 1323 implementation it was better to break
620  * it up into three procedures. -- erics
621  */
622 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
623 {
624         struct tcp_sock *tp = tcp_sk(sk);
625         long m = mrtt; /* RTT */
626
627         /*      The following amusing code comes from Jacobson's
628          *      article in SIGCOMM '88.  Note that rtt and mdev
629          *      are scaled versions of rtt and mean deviation.
630          *      This is designed to be as fast as possible
631          *      m stands for "measurement".
632          *
633          *      On a 1990 paper the rto value is changed to:
634          *      RTO = rtt + 4 * mdev
635          *
636          * Funny. This algorithm seems to be very broken.
637          * These formulae increase RTO, when it should be decreased, increase
638          * too slowly, when it should be increased quickly, decrease too quickly
639          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
640          * does not matter how to _calculate_ it. Seems, it was trap
641          * that VJ failed to avoid. 8)
642          */
643         if (m == 0)
644                 m = 1;
645         if (tp->srtt != 0) {
646                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
647                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
648                 if (m < 0) {
649                         m = -m;         /* m is now abs(error) */
650                         m -= (tp->mdev >> 2);   /* similar update on mdev */
651                         /* This is similar to one of Eifel findings.
652                          * Eifel blocks mdev updates when rtt decreases.
653                          * This solution is a bit different: we use finer gain
654                          * for mdev in this case (alpha*beta).
655                          * Like Eifel it also prevents growth of rto,
656                          * but also it limits too fast rto decreases,
657                          * happening in pure Eifel.
658                          */
659                         if (m > 0)
660                                 m >>= 3;
661                 } else {
662                         m -= (tp->mdev >> 2);   /* similar update on mdev */
663                 }
664                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
665                 if (tp->mdev > tp->mdev_max) {
666                         tp->mdev_max = tp->mdev;
667                         if (tp->mdev_max > tp->rttvar)
668                                 tp->rttvar = tp->mdev_max;
669                 }
670                 if (after(tp->snd_una, tp->rtt_seq)) {
671                         if (tp->mdev_max < tp->rttvar)
672                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
673                         tp->rtt_seq = tp->snd_nxt;
674                         tp->mdev_max = tcp_rto_min(sk);
675                 }
676         } else {
677                 /* no previous measure. */
678                 tp->srtt = m << 3;      /* take the measured time to be rtt */
679                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
680                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
681                 tp->rtt_seq = tp->snd_nxt;
682         }
683 }
684
685 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
686  * routine referred to above.
687  */
688 static inline void tcp_set_rto(struct sock *sk)
689 {
690         const struct tcp_sock *tp = tcp_sk(sk);
691         /* Old crap is replaced with new one. 8)
692          *
693          * More seriously:
694          * 1. If rtt variance happened to be less 50msec, it is hallucination.
695          *    It cannot be less due to utterly erratic ACK generation made
696          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
697          *    to do with delayed acks, because at cwnd>2 true delack timeout
698          *    is invisible. Actually, Linux-2.4 also generates erratic
699          *    ACKs in some circumstances.
700          */
701         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
702
703         /* 2. Fixups made earlier cannot be right.
704          *    If we do not estimate RTO correctly without them,
705          *    all the algo is pure shit and should be replaced
706          *    with correct one. It is exactly, which we pretend to do.
707          */
708 }
709
710 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
711  * guarantees that rto is higher.
712  */
713 static inline void tcp_bound_rto(struct sock *sk)
714 {
715         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
716                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
717 }
718
719 /* Save metrics learned by this TCP session.
720    This function is called only, when TCP finishes successfully
721    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
722  */
723 void tcp_update_metrics(struct sock *sk)
724 {
725         struct tcp_sock *tp = tcp_sk(sk);
726         struct dst_entry *dst = __sk_dst_get(sk);
727
728         if (sysctl_tcp_nometrics_save)
729                 return;
730
731         dst_confirm(dst);
732
733         if (dst && (dst->flags & DST_HOST)) {
734                 const struct inet_connection_sock *icsk = inet_csk(sk);
735                 int m;
736
737                 if (icsk->icsk_backoff || !tp->srtt) {
738                         /* This session failed to estimate rtt. Why?
739                          * Probably, no packets returned in time.
740                          * Reset our results.
741                          */
742                         if (!(dst_metric_locked(dst, RTAX_RTT)))
743                                 dst->metrics[RTAX_RTT - 1] = 0;
744                         return;
745                 }
746
747                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
748
749                 /* If newly calculated rtt larger than stored one,
750                  * store new one. Otherwise, use EWMA. Remember,
751                  * rtt overestimation is always better than underestimation.
752                  */
753                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
754                         if (m <= 0)
755                                 dst->metrics[RTAX_RTT - 1] = tp->srtt;
756                         else
757                                 dst->metrics[RTAX_RTT - 1] -= (m >> 3);
758                 }
759
760                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
761                         if (m < 0)
762                                 m = -m;
763
764                         /* Scale deviation to rttvar fixed point */
765                         m >>= 1;
766                         if (m < tp->mdev)
767                                 m = tp->mdev;
768
769                         if (m >= dst_metric(dst, RTAX_RTTVAR))
770                                 dst->metrics[RTAX_RTTVAR - 1] = m;
771                         else
772                                 dst->metrics[RTAX_RTTVAR-1] -=
773                                         (dst_metric(dst, RTAX_RTTVAR) - m)>>2;
774                 }
775
776                 if (tp->snd_ssthresh >= 0xFFFF) {
777                         /* Slow start still did not finish. */
778                         if (dst_metric(dst, RTAX_SSTHRESH) &&
779                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
780                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
781                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
782                         if (!dst_metric_locked(dst, RTAX_CWND) &&
783                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
784                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
785                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
786                            icsk->icsk_ca_state == TCP_CA_Open) {
787                         /* Cong. avoidance phase, cwnd is reliable. */
788                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
789                                 dst->metrics[RTAX_SSTHRESH-1] =
790                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
791                         if (!dst_metric_locked(dst, RTAX_CWND))
792                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
793                 } else {
794                         /* Else slow start did not finish, cwnd is non-sense,
795                            ssthresh may be also invalid.
796                          */
797                         if (!dst_metric_locked(dst, RTAX_CWND))
798                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
799                         if (dst_metric(dst, RTAX_SSTHRESH) &&
800                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
801                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
802                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
803                 }
804
805                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
806                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
807                             tp->reordering != sysctl_tcp_reordering)
808                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
809                 }
810         }
811 }
812
813 /* Numbers are taken from RFC3390.
814  *
815  * John Heffner states:
816  *
817  *      The RFC specifies a window of no more than 4380 bytes
818  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
819  *      is a bit misleading because they use a clamp at 4380 bytes
820  *      rather than use a multiplier in the relevant range.
821  */
822 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
823 {
824         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
825
826         if (!cwnd) {
827                 if (tp->mss_cache > 1460)
828                         cwnd = 2;
829                 else
830                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
831         }
832         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834
835 /* Set slow start threshold and cwnd not falling to slow start */
836 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
837 {
838         struct tcp_sock *tp = tcp_sk(sk);
839         const struct inet_connection_sock *icsk = inet_csk(sk);
840
841         tp->prior_ssthresh = 0;
842         tp->bytes_acked = 0;
843         if (icsk->icsk_ca_state < TCP_CA_CWR) {
844                 tp->undo_marker = 0;
845                 if (set_ssthresh)
846                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
847                 tp->snd_cwnd = min(tp->snd_cwnd,
848                                    tcp_packets_in_flight(tp) + 1U);
849                 tp->snd_cwnd_cnt = 0;
850                 tp->high_seq = tp->snd_nxt;
851                 tp->snd_cwnd_stamp = tcp_time_stamp;
852                 TCP_ECN_queue_cwr(tp);
853
854                 tcp_set_ca_state(sk, TCP_CA_CWR);
855         }
856 }
857
858 /*
859  * Packet counting of FACK is based on in-order assumptions, therefore TCP
860  * disables it when reordering is detected
861  */
862 static void tcp_disable_fack(struct tcp_sock *tp)
863 {
864         /* RFC3517 uses different metric in lost marker => reset on change */
865         if (tcp_is_fack(tp))
866                 tp->lost_skb_hint = NULL;
867         tp->rx_opt.sack_ok &= ~2;
868 }
869
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock *tp)
872 {
873         tp->rx_opt.sack_ok |= 4;
874 }
875
876 /* Initialize metrics on socket. */
877
878 static void tcp_init_metrics(struct sock *sk)
879 {
880         struct tcp_sock *tp = tcp_sk(sk);
881         struct dst_entry *dst = __sk_dst_get(sk);
882
883         if (dst == NULL)
884                 goto reset;
885
886         dst_confirm(dst);
887
888         if (dst_metric_locked(dst, RTAX_CWND))
889                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
890         if (dst_metric(dst, RTAX_SSTHRESH)) {
891                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
892                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
893                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
894         }
895         if (dst_metric(dst, RTAX_REORDERING) &&
896             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
897                 tcp_disable_fack(tp);
898                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
899         }
900
901         if (dst_metric(dst, RTAX_RTT) == 0)
902                 goto reset;
903
904         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
905                 goto reset;
906
907         /* Initial rtt is determined from SYN,SYN-ACK.
908          * The segment is small and rtt may appear much
909          * less than real one. Use per-dst memory
910          * to make it more realistic.
911          *
912          * A bit of theory. RTT is time passed after "normal" sized packet
913          * is sent until it is ACKed. In normal circumstances sending small
914          * packets force peer to delay ACKs and calculation is correct too.
915          * The algorithm is adaptive and, provided we follow specs, it
916          * NEVER underestimate RTT. BUT! If peer tries to make some clever
917          * tricks sort of "quick acks" for time long enough to decrease RTT
918          * to low value, and then abruptly stops to do it and starts to delay
919          * ACKs, wait for troubles.
920          */
921         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
922                 tp->srtt = dst_metric(dst, RTAX_RTT);
923                 tp->rtt_seq = tp->snd_nxt;
924         }
925         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
926                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
927                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
928         }
929         tcp_set_rto(sk);
930         tcp_bound_rto(sk);
931         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
932                 goto reset;
933         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
934         tp->snd_cwnd_stamp = tcp_time_stamp;
935         return;
936
937 reset:
938         /* Play conservative. If timestamps are not
939          * supported, TCP will fail to recalculate correct
940          * rtt, if initial rto is too small. FORGET ALL AND RESET!
941          */
942         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
943                 tp->srtt = 0;
944                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
945                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
946         }
947 }
948
949 static void tcp_update_reordering(struct sock *sk, const int metric,
950                                   const int ts)
951 {
952         struct tcp_sock *tp = tcp_sk(sk);
953         if (metric > tp->reordering) {
954                 tp->reordering = min(TCP_MAX_REORDERING, metric);
955
956                 /* This exciting event is worth to be remembered. 8) */
957                 if (ts)
958                         NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
959                 else if (tcp_is_reno(tp))
960                         NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
961                 else if (tcp_is_fack(tp))
962                         NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
963                 else
964                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
965 #if FASTRETRANS_DEBUG > 1
966                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
967                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
968                        tp->reordering,
969                        tp->fackets_out,
970                        tp->sacked_out,
971                        tp->undo_marker ? tp->undo_retrans : 0);
972 #endif
973                 tcp_disable_fack(tp);
974         }
975 }
976
977 /* This procedure tags the retransmission queue when SACKs arrive.
978  *
979  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
980  * Packets in queue with these bits set are counted in variables
981  * sacked_out, retrans_out and lost_out, correspondingly.
982  *
983  * Valid combinations are:
984  * Tag  InFlight        Description
985  * 0    1               - orig segment is in flight.
986  * S    0               - nothing flies, orig reached receiver.
987  * L    0               - nothing flies, orig lost by net.
988  * R    2               - both orig and retransmit are in flight.
989  * L|R  1               - orig is lost, retransmit is in flight.
990  * S|R  1               - orig reached receiver, retrans is still in flight.
991  * (L|S|R is logically valid, it could occur when L|R is sacked,
992  *  but it is equivalent to plain S and code short-curcuits it to S.
993  *  L|S is logically invalid, it would mean -1 packet in flight 8))
994  *
995  * These 6 states form finite state machine, controlled by the following events:
996  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
997  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
998  * 3. Loss detection event of one of three flavors:
999  *      A. Scoreboard estimator decided the packet is lost.
1000  *         A'. Reno "three dupacks" marks head of queue lost.
1001  *         A''. Its FACK modfication, head until snd.fack is lost.
1002  *      B. SACK arrives sacking data transmitted after never retransmitted
1003  *         hole was sent out.
1004  *      C. SACK arrives sacking SND.NXT at the moment, when the
1005  *         segment was retransmitted.
1006  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1007  *
1008  * It is pleasant to note, that state diagram turns out to be commutative,
1009  * so that we are allowed not to be bothered by order of our actions,
1010  * when multiple events arrive simultaneously. (see the function below).
1011  *
1012  * Reordering detection.
1013  * --------------------
1014  * Reordering metric is maximal distance, which a packet can be displaced
1015  * in packet stream. With SACKs we can estimate it:
1016  *
1017  * 1. SACK fills old hole and the corresponding segment was not
1018  *    ever retransmitted -> reordering. Alas, we cannot use it
1019  *    when segment was retransmitted.
1020  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1021  *    for retransmitted and already SACKed segment -> reordering..
1022  * Both of these heuristics are not used in Loss state, when we cannot
1023  * account for retransmits accurately.
1024  *
1025  * SACK block validation.
1026  * ----------------------
1027  *
1028  * SACK block range validation checks that the received SACK block fits to
1029  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1030  * Note that SND.UNA is not included to the range though being valid because
1031  * it means that the receiver is rather inconsistent with itself reporting
1032  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1033  * perfectly valid, however, in light of RFC2018 which explicitly states
1034  * that "SACK block MUST reflect the newest segment.  Even if the newest
1035  * segment is going to be discarded ...", not that it looks very clever
1036  * in case of head skb. Due to potentional receiver driven attacks, we
1037  * choose to avoid immediate execution of a walk in write queue due to
1038  * reneging and defer head skb's loss recovery to standard loss recovery
1039  * procedure that will eventually trigger (nothing forbids us doing this).
1040  *
1041  * Implements also blockage to start_seq wrap-around. Problem lies in the
1042  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1043  * there's no guarantee that it will be before snd_nxt (n). The problem
1044  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1045  * wrap (s_w):
1046  *
1047  *         <- outs wnd ->                          <- wrapzone ->
1048  *         u     e      n                         u_w   e_w  s n_w
1049  *         |     |      |                          |     |   |  |
1050  * |<------------+------+----- TCP seqno space --------------+---------->|
1051  * ...-- <2^31 ->|                                           |<--------...
1052  * ...---- >2^31 ------>|                                    |<--------...
1053  *
1054  * Current code wouldn't be vulnerable but it's better still to discard such
1055  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1056  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1057  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1058  * equal to the ideal case (infinite seqno space without wrap caused issues).
1059  *
1060  * With D-SACK the lower bound is extended to cover sequence space below
1061  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1062  * again, D-SACK block must not to go across snd_una (for the same reason as
1063  * for the normal SACK blocks, explained above). But there all simplicity
1064  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1065  * fully below undo_marker they do not affect behavior in anyway and can
1066  * therefore be safely ignored. In rare cases (which are more or less
1067  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1068  * fragmentation and packet reordering past skb's retransmission. To consider
1069  * them correctly, the acceptable range must be extended even more though
1070  * the exact amount is rather hard to quantify. However, tp->max_window can
1071  * be used as an exaggerated estimate.
1072  */
1073 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1074                                   u32 start_seq, u32 end_seq)
1075 {
1076         /* Too far in future, or reversed (interpretation is ambiguous) */
1077         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1078                 return 0;
1079
1080         /* Nasty start_seq wrap-around check (see comments above) */
1081         if (!before(start_seq, tp->snd_nxt))
1082                 return 0;
1083
1084         /* In outstanding window? ...This is valid exit for D-SACKs too.
1085          * start_seq == snd_una is non-sensical (see comments above)
1086          */
1087         if (after(start_seq, tp->snd_una))
1088                 return 1;
1089
1090         if (!is_dsack || !tp->undo_marker)
1091                 return 0;
1092
1093         /* ...Then it's D-SACK, and must reside below snd_una completely */
1094         if (!after(end_seq, tp->snd_una))
1095                 return 0;
1096
1097         if (!before(start_seq, tp->undo_marker))
1098                 return 1;
1099
1100         /* Too old */
1101         if (!after(end_seq, tp->undo_marker))
1102                 return 0;
1103
1104         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1105          *   start_seq < undo_marker and end_seq >= undo_marker.
1106          */
1107         return !before(start_seq, end_seq - tp->max_window);
1108 }
1109
1110 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1111  * Event "C". Later note: FACK people cheated me again 8), we have to account
1112  * for reordering! Ugly, but should help.
1113  *
1114  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1115  * less than what is now known to be received by the other end (derived from
1116  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1117  * retransmitted skbs to avoid some costly processing per ACKs.
1118  */
1119 static void tcp_mark_lost_retrans(struct sock *sk)
1120 {
1121         const struct inet_connection_sock *icsk = inet_csk(sk);
1122         struct tcp_sock *tp = tcp_sk(sk);
1123         struct sk_buff *skb;
1124         int cnt = 0;
1125         u32 new_low_seq = tp->snd_nxt;
1126         u32 received_upto = tcp_highest_sack_seq(tp);
1127
1128         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1129             !after(received_upto, tp->lost_retrans_low) ||
1130             icsk->icsk_ca_state != TCP_CA_Recovery)
1131                 return;
1132
1133         tcp_for_write_queue(skb, sk) {
1134                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1135
1136                 if (skb == tcp_send_head(sk))
1137                         break;
1138                 if (cnt == tp->retrans_out)
1139                         break;
1140                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1141                         continue;
1142
1143                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1144                         continue;
1145
1146                 if (after(received_upto, ack_seq) &&
1147                     (tcp_is_fack(tp) ||
1148                      !before(received_upto,
1149                              ack_seq + tp->reordering * tp->mss_cache))) {
1150                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1151                         tp->retrans_out -= tcp_skb_pcount(skb);
1152
1153                         /* clear lost hint */
1154                         tp->retransmit_skb_hint = NULL;
1155
1156                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1157                                 tp->lost_out += tcp_skb_pcount(skb);
1158                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1159                         }
1160                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1161                 } else {
1162                         if (before(ack_seq, new_low_seq))
1163                                 new_low_seq = ack_seq;
1164                         cnt += tcp_skb_pcount(skb);
1165                 }
1166         }
1167
1168         if (tp->retrans_out)
1169                 tp->lost_retrans_low = new_low_seq;
1170 }
1171
1172 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1173                            struct tcp_sack_block_wire *sp, int num_sacks,
1174                            u32 prior_snd_una)
1175 {
1176         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1177         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1178         int dup_sack = 0;
1179
1180         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1181                 dup_sack = 1;
1182                 tcp_dsack_seen(tp);
1183                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1184         } else if (num_sacks > 1) {
1185                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1186                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1187
1188                 if (!after(end_seq_0, end_seq_1) &&
1189                     !before(start_seq_0, start_seq_1)) {
1190                         dup_sack = 1;
1191                         tcp_dsack_seen(tp);
1192                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1193                 }
1194         }
1195
1196         /* D-SACK for already forgotten data... Do dumb counting. */
1197         if (dup_sack &&
1198             !after(end_seq_0, prior_snd_una) &&
1199             after(end_seq_0, tp->undo_marker))
1200                 tp->undo_retrans--;
1201
1202         return dup_sack;
1203 }
1204
1205 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1206  * the incoming SACK may not exactly match but we can find smaller MSS
1207  * aligned portion of it that matches. Therefore we might need to fragment
1208  * which may fail and creates some hassle (caller must handle error case
1209  * returns).
1210  */
1211 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1212                                  u32 start_seq, u32 end_seq)
1213 {
1214         int in_sack, err;
1215         unsigned int pkt_len;
1216
1217         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1218                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1219
1220         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1221             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1222
1223                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1224
1225                 if (!in_sack)
1226                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1227                 else
1228                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1229                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1230                 if (err < 0)
1231                         return err;
1232         }
1233
1234         return in_sack;
1235 }
1236
1237 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1238                            int *reord, int dup_sack, int fack_count)
1239 {
1240         struct tcp_sock *tp = tcp_sk(sk);
1241         u8 sacked = TCP_SKB_CB(skb)->sacked;
1242         int flag = 0;
1243
1244         /* Account D-SACK for retransmitted packet. */
1245         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1246                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1247                         tp->undo_retrans--;
1248                 if (sacked & TCPCB_SACKED_ACKED)
1249                         *reord = min(fack_count, *reord);
1250         }
1251
1252         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1253         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1254                 return flag;
1255
1256         if (!(sacked & TCPCB_SACKED_ACKED)) {
1257                 if (sacked & TCPCB_SACKED_RETRANS) {
1258                         /* If the segment is not tagged as lost,
1259                          * we do not clear RETRANS, believing
1260                          * that retransmission is still in flight.
1261                          */
1262                         if (sacked & TCPCB_LOST) {
1263                                 TCP_SKB_CB(skb)->sacked &=
1264                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1265                                 tp->lost_out -= tcp_skb_pcount(skb);
1266                                 tp->retrans_out -= tcp_skb_pcount(skb);
1267
1268                                 /* clear lost hint */
1269                                 tp->retransmit_skb_hint = NULL;
1270                         }
1271                 } else {
1272                         if (!(sacked & TCPCB_RETRANS)) {
1273                                 /* New sack for not retransmitted frame,
1274                                  * which was in hole. It is reordering.
1275                                  */
1276                                 if (before(TCP_SKB_CB(skb)->seq,
1277                                            tcp_highest_sack_seq(tp)))
1278                                         *reord = min(fack_count, *reord);
1279
1280                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1281                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1282                                         flag |= FLAG_ONLY_ORIG_SACKED;
1283                         }
1284
1285                         if (sacked & TCPCB_LOST) {
1286                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1287                                 tp->lost_out -= tcp_skb_pcount(skb);
1288
1289                                 /* clear lost hint */
1290                                 tp->retransmit_skb_hint = NULL;
1291                         }
1292                 }
1293
1294                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1295                 flag |= FLAG_DATA_SACKED;
1296                 tp->sacked_out += tcp_skb_pcount(skb);
1297
1298                 fack_count += tcp_skb_pcount(skb);
1299
1300                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1301                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1302                     before(TCP_SKB_CB(skb)->seq,
1303                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1304                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1305
1306                 if (fack_count > tp->fackets_out)
1307                         tp->fackets_out = fack_count;
1308
1309                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1310                         tcp_advance_highest_sack(sk, skb);
1311         }
1312
1313         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1314          * frames and clear it. undo_retrans is decreased above, L|R frames
1315          * are accounted above as well.
1316          */
1317         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1318                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1319                 tp->retrans_out -= tcp_skb_pcount(skb);
1320                 tp->retransmit_skb_hint = NULL;
1321         }
1322
1323         return flag;
1324 }
1325
1326 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1327                                         struct tcp_sack_block *next_dup,
1328                                         u32 start_seq, u32 end_seq,
1329                                         int dup_sack_in, int *fack_count,
1330                                         int *reord, int *flag)
1331 {
1332         tcp_for_write_queue_from(skb, sk) {
1333                 int in_sack = 0;
1334                 int dup_sack = dup_sack_in;
1335
1336                 if (skb == tcp_send_head(sk))
1337                         break;
1338
1339                 /* queue is in-order => we can short-circuit the walk early */
1340                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1341                         break;
1342
1343                 if ((next_dup != NULL) &&
1344                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1345                         in_sack = tcp_match_skb_to_sack(sk, skb,
1346                                                         next_dup->start_seq,
1347                                                         next_dup->end_seq);
1348                         if (in_sack > 0)
1349                                 dup_sack = 1;
1350                 }
1351
1352                 if (in_sack <= 0)
1353                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1354                                                         end_seq);
1355                 if (unlikely(in_sack < 0))
1356                         break;
1357
1358                 if (in_sack)
1359                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1360                                                  *fack_count);
1361
1362                 *fack_count += tcp_skb_pcount(skb);
1363         }
1364         return skb;
1365 }
1366
1367 /* Avoid all extra work that is being done by sacktag while walking in
1368  * a normal way
1369  */
1370 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1371                                         u32 skip_to_seq, int *fack_count)
1372 {
1373         tcp_for_write_queue_from(skb, sk) {
1374                 if (skb == tcp_send_head(sk))
1375                         break;
1376
1377                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1378                         break;
1379
1380                 *fack_count += tcp_skb_pcount(skb);
1381         }
1382         return skb;
1383 }
1384
1385 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1386                                                 struct sock *sk,
1387                                                 struct tcp_sack_block *next_dup,
1388                                                 u32 skip_to_seq,
1389                                                 int *fack_count, int *reord,
1390                                                 int *flag)
1391 {
1392         if (next_dup == NULL)
1393                 return skb;
1394
1395         if (before(next_dup->start_seq, skip_to_seq)) {
1396                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1397                 tcp_sacktag_walk(skb, sk, NULL,
1398                                  next_dup->start_seq, next_dup->end_seq,
1399                                  1, fack_count, reord, flag);
1400         }
1401
1402         return skb;
1403 }
1404
1405 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1406 {
1407         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1408 }
1409
1410 static int
1411 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1412                         u32 prior_snd_una)
1413 {
1414         const struct inet_connection_sock *icsk = inet_csk(sk);
1415         struct tcp_sock *tp = tcp_sk(sk);
1416         unsigned char *ptr = (skb_transport_header(ack_skb) +
1417                               TCP_SKB_CB(ack_skb)->sacked);
1418         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1419         struct tcp_sack_block sp[4];
1420         struct tcp_sack_block *cache;
1421         struct sk_buff *skb;
1422         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1423         int used_sacks;
1424         int reord = tp->packets_out;
1425         int flag = 0;
1426         int found_dup_sack = 0;
1427         int fack_count;
1428         int i, j;
1429         int first_sack_index;
1430
1431         if (!tp->sacked_out) {
1432                 if (WARN_ON(tp->fackets_out))
1433                         tp->fackets_out = 0;
1434                 tcp_highest_sack_reset(sk);
1435         }
1436
1437         found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1438                                          num_sacks, prior_snd_una);
1439         if (found_dup_sack)
1440                 flag |= FLAG_DSACKING_ACK;
1441
1442         /* Eliminate too old ACKs, but take into
1443          * account more or less fresh ones, they can
1444          * contain valid SACK info.
1445          */
1446         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1447                 return 0;
1448
1449         if (!tp->packets_out)
1450                 goto out;
1451
1452         used_sacks = 0;
1453         first_sack_index = 0;
1454         for (i = 0; i < num_sacks; i++) {
1455                 int dup_sack = !i && found_dup_sack;
1456
1457                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1458                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1459
1460                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1461                                             sp[used_sacks].start_seq,
1462                                             sp[used_sacks].end_seq)) {
1463                         if (dup_sack) {
1464                                 if (!tp->undo_marker)
1465                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1466                                 else
1467                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1468                         } else {
1469                                 /* Don't count olds caused by ACK reordering */
1470                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1471                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1472                                         continue;
1473                                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1474                         }
1475                         if (i == 0)
1476                                 first_sack_index = -1;
1477                         continue;
1478                 }
1479
1480                 /* Ignore very old stuff early */
1481                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1482                         continue;
1483
1484                 used_sacks++;
1485         }
1486
1487         /* order SACK blocks to allow in order walk of the retrans queue */
1488         for (i = used_sacks - 1; i > 0; i--) {
1489                 for (j = 0; j < i; j++) {
1490                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1491                                 struct tcp_sack_block tmp;
1492
1493                                 tmp = sp[j];
1494                                 sp[j] = sp[j + 1];
1495                                 sp[j + 1] = tmp;
1496
1497                                 /* Track where the first SACK block goes to */
1498                                 if (j == first_sack_index)
1499                                         first_sack_index = j + 1;
1500                         }
1501                 }
1502         }
1503
1504         skb = tcp_write_queue_head(sk);
1505         fack_count = 0;
1506         i = 0;
1507
1508         if (!tp->sacked_out) {
1509                 /* It's already past, so skip checking against it */
1510                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1511         } else {
1512                 cache = tp->recv_sack_cache;
1513                 /* Skip empty blocks in at head of the cache */
1514                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1515                        !cache->end_seq)
1516                         cache++;
1517         }
1518
1519         while (i < used_sacks) {
1520                 u32 start_seq = sp[i].start_seq;
1521                 u32 end_seq = sp[i].end_seq;
1522                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1523                 struct tcp_sack_block *next_dup = NULL;
1524
1525                 if (found_dup_sack && ((i + 1) == first_sack_index))
1526                         next_dup = &sp[i + 1];
1527
1528                 /* Event "B" in the comment above. */
1529                 if (after(end_seq, tp->high_seq))
1530                         flag |= FLAG_DATA_LOST;
1531
1532                 /* Skip too early cached blocks */
1533                 while (tcp_sack_cache_ok(tp, cache) &&
1534                        !before(start_seq, cache->end_seq))
1535                         cache++;
1536
1537                 /* Can skip some work by looking recv_sack_cache? */
1538                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1539                     after(end_seq, cache->start_seq)) {
1540
1541                         /* Head todo? */
1542                         if (before(start_seq, cache->start_seq)) {
1543                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1544                                                        &fack_count);
1545                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1546                                                        start_seq,
1547                                                        cache->start_seq,
1548                                                        dup_sack, &fack_count,
1549                                                        &reord, &flag);
1550                         }
1551
1552                         /* Rest of the block already fully processed? */
1553                         if (!after(end_seq, cache->end_seq))
1554                                 goto advance_sp;
1555
1556                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1557                                                        cache->end_seq,
1558                                                        &fack_count, &reord,
1559                                                        &flag);
1560
1561                         /* ...tail remains todo... */
1562                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1563                                 /* ...but better entrypoint exists! */
1564                                 skb = tcp_highest_sack(sk);
1565                                 if (skb == NULL)
1566                                         break;
1567                                 fack_count = tp->fackets_out;
1568                                 cache++;
1569                                 goto walk;
1570                         }
1571
1572                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1573                                                &fack_count);
1574                         /* Check overlap against next cached too (past this one already) */
1575                         cache++;
1576                         continue;
1577                 }
1578
1579                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1580                         skb = tcp_highest_sack(sk);
1581                         if (skb == NULL)
1582                                 break;
1583                         fack_count = tp->fackets_out;
1584                 }
1585                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1586
1587 walk:
1588                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1589                                        dup_sack, &fack_count, &reord, &flag);
1590
1591 advance_sp:
1592                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1593                  * due to in-order walk
1594                  */
1595                 if (after(end_seq, tp->frto_highmark))
1596                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1597
1598                 i++;
1599         }
1600
1601         /* Clear the head of the cache sack blocks so we can skip it next time */
1602         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1603                 tp->recv_sack_cache[i].start_seq = 0;
1604                 tp->recv_sack_cache[i].end_seq = 0;
1605         }
1606         for (j = 0; j < used_sacks; j++)
1607                 tp->recv_sack_cache[i++] = sp[j];
1608
1609         tcp_mark_lost_retrans(sk);
1610
1611         tcp_verify_left_out(tp);
1612
1613         if ((reord < tp->fackets_out) &&
1614             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1615             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1616                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1617
1618 out:
1619
1620 #if FASTRETRANS_DEBUG > 0
1621         BUG_TRAP((int)tp->sacked_out >= 0);
1622         BUG_TRAP((int)tp->lost_out >= 0);
1623         BUG_TRAP((int)tp->retrans_out >= 0);
1624         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1625 #endif
1626         return flag;
1627 }
1628
1629 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1630  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1631  */
1632 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1633 {
1634         u32 holes;
1635
1636         holes = max(tp->lost_out, 1U);
1637         holes = min(holes, tp->packets_out);
1638
1639         if ((tp->sacked_out + holes) > tp->packets_out) {
1640                 tp->sacked_out = tp->packets_out - holes;
1641                 return 1;
1642         }
1643         return 0;
1644 }
1645
1646 /* If we receive more dupacks than we expected counting segments
1647  * in assumption of absent reordering, interpret this as reordering.
1648  * The only another reason could be bug in receiver TCP.
1649  */
1650 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1651 {
1652         struct tcp_sock *tp = tcp_sk(sk);
1653         if (tcp_limit_reno_sacked(tp))
1654                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1655 }
1656
1657 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1658
1659 static void tcp_add_reno_sack(struct sock *sk)
1660 {
1661         struct tcp_sock *tp = tcp_sk(sk);
1662         tp->sacked_out++;
1663         tcp_check_reno_reordering(sk, 0);
1664         tcp_verify_left_out(tp);
1665 }
1666
1667 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1668
1669 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1670 {
1671         struct tcp_sock *tp = tcp_sk(sk);
1672
1673         if (acked > 0) {
1674                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1675                 if (acked - 1 >= tp->sacked_out)
1676                         tp->sacked_out = 0;
1677                 else
1678                         tp->sacked_out -= acked - 1;
1679         }
1680         tcp_check_reno_reordering(sk, acked);
1681         tcp_verify_left_out(tp);
1682 }
1683
1684 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1685 {
1686         tp->sacked_out = 0;
1687 }
1688
1689 /* F-RTO can only be used if TCP has never retransmitted anything other than
1690  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1691  */
1692 int tcp_use_frto(struct sock *sk)
1693 {
1694         const struct tcp_sock *tp = tcp_sk(sk);
1695         const struct inet_connection_sock *icsk = inet_csk(sk);
1696         struct sk_buff *skb;
1697
1698         if (!sysctl_tcp_frto)
1699                 return 0;
1700
1701         /* MTU probe and F-RTO won't really play nicely along currently */
1702         if (icsk->icsk_mtup.probe_size)
1703                 return 0;
1704
1705         if (IsSackFrto())
1706                 return 1;
1707
1708         /* Avoid expensive walking of rexmit queue if possible */
1709         if (tp->retrans_out > 1)
1710                 return 0;
1711
1712         skb = tcp_write_queue_head(sk);
1713         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1714         tcp_for_write_queue_from(skb, sk) {
1715                 if (skb == tcp_send_head(sk))
1716                         break;
1717                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1718                         return 0;
1719                 /* Short-circuit when first non-SACKed skb has been checked */
1720                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1721                         break;
1722         }
1723         return 1;
1724 }
1725
1726 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1727  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1728  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1729  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1730  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1731  * bits are handled if the Loss state is really to be entered (in
1732  * tcp_enter_frto_loss).
1733  *
1734  * Do like tcp_enter_loss() would; when RTO expires the second time it
1735  * does:
1736  *  "Reduce ssthresh if it has not yet been made inside this window."
1737  */
1738 void tcp_enter_frto(struct sock *sk)
1739 {
1740         const struct inet_connection_sock *icsk = inet_csk(sk);
1741         struct tcp_sock *tp = tcp_sk(sk);
1742         struct sk_buff *skb;
1743
1744         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1745             tp->snd_una == tp->high_seq ||
1746             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1747              !icsk->icsk_retransmits)) {
1748                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1749                 /* Our state is too optimistic in ssthresh() call because cwnd
1750                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1751                  * recovery has not yet completed. Pattern would be this: RTO,
1752                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1753                  * up here twice).
1754                  * RFC4138 should be more specific on what to do, even though
1755                  * RTO is quite unlikely to occur after the first Cumulative ACK
1756                  * due to back-off and complexity of triggering events ...
1757                  */
1758                 if (tp->frto_counter) {
1759                         u32 stored_cwnd;
1760                         stored_cwnd = tp->snd_cwnd;
1761                         tp->snd_cwnd = 2;
1762                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1763                         tp->snd_cwnd = stored_cwnd;
1764                 } else {
1765                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1766                 }
1767                 /* ... in theory, cong.control module could do "any tricks" in
1768                  * ssthresh(), which means that ca_state, lost bits and lost_out
1769                  * counter would have to be faked before the call occurs. We
1770                  * consider that too expensive, unlikely and hacky, so modules
1771                  * using these in ssthresh() must deal these incompatibility
1772                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1773                  */
1774                 tcp_ca_event(sk, CA_EVENT_FRTO);
1775         }
1776
1777         tp->undo_marker = tp->snd_una;
1778         tp->undo_retrans = 0;
1779
1780         skb = tcp_write_queue_head(sk);
1781         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1782                 tp->undo_marker = 0;
1783         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1784                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1785                 tp->retrans_out -= tcp_skb_pcount(skb);
1786         }
1787         tcp_verify_left_out(tp);
1788
1789         /* Too bad if TCP was application limited */
1790         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1791
1792         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1793          * The last condition is necessary at least in tp->frto_counter case.
1794          */
1795         if (IsSackFrto() && (tp->frto_counter ||
1796             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1797             after(tp->high_seq, tp->snd_una)) {
1798                 tp->frto_highmark = tp->high_seq;
1799         } else {
1800                 tp->frto_highmark = tp->snd_nxt;
1801         }
1802         tcp_set_ca_state(sk, TCP_CA_Disorder);
1803         tp->high_seq = tp->snd_nxt;
1804         tp->frto_counter = 1;
1805 }
1806
1807 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1808  * which indicates that we should follow the traditional RTO recovery,
1809  * i.e. mark everything lost and do go-back-N retransmission.
1810  */
1811 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1812 {
1813         struct tcp_sock *tp = tcp_sk(sk);
1814         struct sk_buff *skb;
1815
1816         tp->lost_out = 0;
1817         tp->retrans_out = 0;
1818         if (tcp_is_reno(tp))
1819                 tcp_reset_reno_sack(tp);
1820
1821         tcp_for_write_queue(skb, sk) {
1822                 if (skb == tcp_send_head(sk))
1823                         break;
1824
1825                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1826                 /*
1827                  * Count the retransmission made on RTO correctly (only when
1828                  * waiting for the first ACK and did not get it)...
1829                  */
1830                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1831                         /* For some reason this R-bit might get cleared? */
1832                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1833                                 tp->retrans_out += tcp_skb_pcount(skb);
1834                         /* ...enter this if branch just for the first segment */
1835                         flag |= FLAG_DATA_ACKED;
1836                 } else {
1837                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1838                                 tp->undo_marker = 0;
1839                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1840                 }
1841
1842                 /* Don't lost mark skbs that were fwd transmitted after RTO */
1843                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) &&
1844                     !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1845                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1846                         tp->lost_out += tcp_skb_pcount(skb);
1847                 }
1848         }
1849         tcp_verify_left_out(tp);
1850
1851         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1852         tp->snd_cwnd_cnt = 0;
1853         tp->snd_cwnd_stamp = tcp_time_stamp;
1854         tp->frto_counter = 0;
1855         tp->bytes_acked = 0;
1856
1857         tp->reordering = min_t(unsigned int, tp->reordering,
1858                                sysctl_tcp_reordering);
1859         tcp_set_ca_state(sk, TCP_CA_Loss);
1860         tp->high_seq = tp->frto_highmark;
1861         TCP_ECN_queue_cwr(tp);
1862
1863         tcp_clear_retrans_hints_partial(tp);
1864 }
1865
1866 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1867 {
1868         tp->retrans_out = 0;
1869         tp->lost_out = 0;
1870
1871         tp->undo_marker = 0;
1872         tp->undo_retrans = 0;
1873 }
1874
1875 void tcp_clear_retrans(struct tcp_sock *tp)
1876 {
1877         tcp_clear_retrans_partial(tp);
1878
1879         tp->fackets_out = 0;
1880         tp->sacked_out = 0;
1881 }
1882
1883 /* Enter Loss state. If "how" is not zero, forget all SACK information
1884  * and reset tags completely, otherwise preserve SACKs. If receiver
1885  * dropped its ofo queue, we will know this due to reneging detection.
1886  */
1887 void tcp_enter_loss(struct sock *sk, int how)
1888 {
1889         const struct inet_connection_sock *icsk = inet_csk(sk);
1890         struct tcp_sock *tp = tcp_sk(sk);
1891         struct sk_buff *skb;
1892
1893         /* Reduce ssthresh if it has not yet been made inside this window. */
1894         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1895             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1896                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1897                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1898                 tcp_ca_event(sk, CA_EVENT_LOSS);
1899         }
1900         tp->snd_cwnd       = 1;
1901         tp->snd_cwnd_cnt   = 0;
1902         tp->snd_cwnd_stamp = tcp_time_stamp;
1903
1904         tp->bytes_acked = 0;
1905         tcp_clear_retrans_partial(tp);
1906
1907         if (tcp_is_reno(tp))
1908                 tcp_reset_reno_sack(tp);
1909
1910         if (!how) {
1911                 /* Push undo marker, if it was plain RTO and nothing
1912                  * was retransmitted. */
1913                 tp->undo_marker = tp->snd_una;
1914                 tcp_clear_retrans_hints_partial(tp);
1915         } else {
1916                 tp->sacked_out = 0;
1917                 tp->fackets_out = 0;
1918                 tcp_clear_all_retrans_hints(tp);
1919         }
1920
1921         tcp_for_write_queue(skb, sk) {
1922                 if (skb == tcp_send_head(sk))
1923                         break;
1924
1925                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1926                         tp->undo_marker = 0;
1927                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1928                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1929                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1930                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1931                         tp->lost_out += tcp_skb_pcount(skb);
1932                 }
1933         }
1934         tcp_verify_left_out(tp);
1935
1936         tp->reordering = min_t(unsigned int, tp->reordering,
1937                                sysctl_tcp_reordering);
1938         tcp_set_ca_state(sk, TCP_CA_Loss);
1939         tp->high_seq = tp->snd_nxt;
1940         TCP_ECN_queue_cwr(tp);
1941         /* Abort F-RTO algorithm if one is in progress */
1942         tp->frto_counter = 0;
1943 }
1944
1945 /* If ACK arrived pointing to a remembered SACK, it means that our
1946  * remembered SACKs do not reflect real state of receiver i.e.
1947  * receiver _host_ is heavily congested (or buggy).
1948  *
1949  * Do processing similar to RTO timeout.
1950  */
1951 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1952 {
1953         if (flag & FLAG_SACK_RENEGING) {
1954                 struct inet_connection_sock *icsk = inet_csk(sk);
1955                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1956
1957                 tcp_enter_loss(sk, 1);
1958                 icsk->icsk_retransmits++;
1959                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1960                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1961                                           icsk->icsk_rto, TCP_RTO_MAX);
1962                 return 1;
1963         }
1964         return 0;
1965 }
1966
1967 static inline int tcp_fackets_out(struct tcp_sock *tp)
1968 {
1969         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1970 }
1971
1972 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1973  * counter when SACK is enabled (without SACK, sacked_out is used for
1974  * that purpose).
1975  *
1976  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1977  * segments up to the highest received SACK block so far and holes in
1978  * between them.
1979  *
1980  * With reordering, holes may still be in flight, so RFC3517 recovery
1981  * uses pure sacked_out (total number of SACKed segments) even though
1982  * it violates the RFC that uses duplicate ACKs, often these are equal
1983  * but when e.g. out-of-window ACKs or packet duplication occurs,
1984  * they differ. Since neither occurs due to loss, TCP should really
1985  * ignore them.
1986  */
1987 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1988 {
1989         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1990 }
1991
1992 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1993 {
1994         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1995 }
1996
1997 static inline int tcp_head_timedout(struct sock *sk)
1998 {
1999         struct tcp_sock *tp = tcp_sk(sk);
2000
2001         return tp->packets_out &&
2002                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2003 }
2004
2005 /* Linux NewReno/SACK/FACK/ECN state machine.
2006  * --------------------------------------
2007  *
2008  * "Open"       Normal state, no dubious events, fast path.
2009  * "Disorder"   In all the respects it is "Open",
2010  *              but requires a bit more attention. It is entered when
2011  *              we see some SACKs or dupacks. It is split of "Open"
2012  *              mainly to move some processing from fast path to slow one.
2013  * "CWR"        CWND was reduced due to some Congestion Notification event.
2014  *              It can be ECN, ICMP source quench, local device congestion.
2015  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2016  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2017  *
2018  * tcp_fastretrans_alert() is entered:
2019  * - each incoming ACK, if state is not "Open"
2020  * - when arrived ACK is unusual, namely:
2021  *      * SACK
2022  *      * Duplicate ACK.
2023  *      * ECN ECE.
2024  *
2025  * Counting packets in flight is pretty simple.
2026  *
2027  *      in_flight = packets_out - left_out + retrans_out
2028  *
2029  *      packets_out is SND.NXT-SND.UNA counted in packets.
2030  *
2031  *      retrans_out is number of retransmitted segments.
2032  *
2033  *      left_out is number of segments left network, but not ACKed yet.
2034  *
2035  *              left_out = sacked_out + lost_out
2036  *
2037  *     sacked_out: Packets, which arrived to receiver out of order
2038  *                 and hence not ACKed. With SACKs this number is simply
2039  *                 amount of SACKed data. Even without SACKs
2040  *                 it is easy to give pretty reliable estimate of this number,
2041  *                 counting duplicate ACKs.
2042  *
2043  *       lost_out: Packets lost by network. TCP has no explicit
2044  *                 "loss notification" feedback from network (for now).
2045  *                 It means that this number can be only _guessed_.
2046  *                 Actually, it is the heuristics to predict lossage that
2047  *                 distinguishes different algorithms.
2048  *
2049  *      F.e. after RTO, when all the queue is considered as lost,
2050  *      lost_out = packets_out and in_flight = retrans_out.
2051  *
2052  *              Essentially, we have now two algorithms counting
2053  *              lost packets.
2054  *
2055  *              FACK: It is the simplest heuristics. As soon as we decided
2056  *              that something is lost, we decide that _all_ not SACKed
2057  *              packets until the most forward SACK are lost. I.e.
2058  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2059  *              It is absolutely correct estimate, if network does not reorder
2060  *              packets. And it loses any connection to reality when reordering
2061  *              takes place. We use FACK by default until reordering
2062  *              is suspected on the path to this destination.
2063  *
2064  *              NewReno: when Recovery is entered, we assume that one segment
2065  *              is lost (classic Reno). While we are in Recovery and
2066  *              a partial ACK arrives, we assume that one more packet
2067  *              is lost (NewReno). This heuristics are the same in NewReno
2068  *              and SACK.
2069  *
2070  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2071  *  deflation etc. CWND is real congestion window, never inflated, changes
2072  *  only according to classic VJ rules.
2073  *
2074  * Really tricky (and requiring careful tuning) part of algorithm
2075  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2076  * The first determines the moment _when_ we should reduce CWND and,
2077  * hence, slow down forward transmission. In fact, it determines the moment
2078  * when we decide that hole is caused by loss, rather than by a reorder.
2079  *
2080  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2081  * holes, caused by lost packets.
2082  *
2083  * And the most logically complicated part of algorithm is undo
2084  * heuristics. We detect false retransmits due to both too early
2085  * fast retransmit (reordering) and underestimated RTO, analyzing
2086  * timestamps and D-SACKs. When we detect that some segments were
2087  * retransmitted by mistake and CWND reduction was wrong, we undo
2088  * window reduction and abort recovery phase. This logic is hidden
2089  * inside several functions named tcp_try_undo_<something>.
2090  */
2091
2092 /* This function decides, when we should leave Disordered state
2093  * and enter Recovery phase, reducing congestion window.
2094  *
2095  * Main question: may we further continue forward transmission
2096  * with the same cwnd?
2097  */
2098 static int tcp_time_to_recover(struct sock *sk)
2099 {
2100         struct tcp_sock *tp = tcp_sk(sk);
2101         __u32 packets_out;
2102
2103         /* Do not perform any recovery during F-RTO algorithm */
2104         if (tp->frto_counter)
2105                 return 0;
2106
2107         /* Trick#1: The loss is proven. */
2108         if (tp->lost_out)
2109                 return 1;
2110
2111         /* Not-A-Trick#2 : Classic rule... */
2112         if (tcp_dupack_heurestics(tp) > tp->reordering)
2113                 return 1;
2114
2115         /* Trick#3 : when we use RFC2988 timer restart, fast
2116          * retransmit can be triggered by timeout of queue head.
2117          */
2118         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2119                 return 1;
2120
2121         /* Trick#4: It is still not OK... But will it be useful to delay
2122          * recovery more?
2123          */
2124         packets_out = tp->packets_out;
2125         if (packets_out <= tp->reordering &&
2126             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2127             !tcp_may_send_now(sk)) {
2128                 /* We have nothing to send. This connection is limited
2129                  * either by receiver window or by application.
2130                  */
2131                 return 1;
2132         }
2133
2134         return 0;
2135 }
2136
2137 /* RFC: This is from the original, I doubt that this is necessary at all:
2138  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2139  * retransmitted past LOST markings in the first place? I'm not fully sure
2140  * about undo and end of connection cases, which can cause R without L?
2141  */
2142 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2143 {
2144         if ((tp->retransmit_skb_hint != NULL) &&
2145             before(TCP_SKB_CB(skb)->seq,
2146                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2147                 tp->retransmit_skb_hint = NULL;
2148 }
2149
2150 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2151  * is against sacked "cnt", otherwise it's against facked "cnt"
2152  */
2153 static void tcp_mark_head_lost(struct sock *sk, int packets)
2154 {
2155         struct tcp_sock *tp = tcp_sk(sk);
2156         struct sk_buff *skb;
2157         int cnt, oldcnt;
2158         int err;
2159         unsigned int mss;
2160
2161         BUG_TRAP(packets <= tp->packets_out);
2162         if (tp->lost_skb_hint) {
2163                 skb = tp->lost_skb_hint;
2164                 cnt = tp->lost_cnt_hint;
2165         } else {
2166                 skb = tcp_write_queue_head(sk);
2167                 cnt = 0;
2168         }
2169
2170         tcp_for_write_queue_from(skb, sk) {
2171                 if (skb == tcp_send_head(sk))
2172                         break;
2173                 /* TODO: do this better */
2174                 /* this is not the most efficient way to do this... */
2175                 tp->lost_skb_hint = skb;
2176                 tp->lost_cnt_hint = cnt;
2177
2178                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2179                         break;
2180
2181                 oldcnt = cnt;
2182                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2183                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2184                         cnt += tcp_skb_pcount(skb);
2185
2186                 if (cnt > packets) {
2187                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2188                                 break;
2189
2190                         mss = skb_shinfo(skb)->gso_size;
2191                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2192                         if (err < 0)
2193                                 break;
2194                         cnt = packets;
2195                 }
2196
2197                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2198                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2199                         tp->lost_out += tcp_skb_pcount(skb);
2200                         tcp_verify_retransmit_hint(tp, skb);
2201                 }
2202         }
2203         tcp_verify_left_out(tp);
2204 }
2205
2206 /* Account newly detected lost packet(s) */
2207
2208 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2209 {
2210         struct tcp_sock *tp = tcp_sk(sk);
2211
2212         if (tcp_is_reno(tp)) {
2213                 tcp_mark_head_lost(sk, 1);
2214         } else if (tcp_is_fack(tp)) {
2215                 int lost = tp->fackets_out - tp->reordering;
2216                 if (lost <= 0)
2217                         lost = 1;
2218                 tcp_mark_head_lost(sk, lost);
2219         } else {
2220                 int sacked_upto = tp->sacked_out - tp->reordering;
2221                 if (sacked_upto < fast_rexmit)
2222                         sacked_upto = fast_rexmit;
2223                 tcp_mark_head_lost(sk, sacked_upto);
2224         }
2225
2226         /* New heuristics: it is possible only after we switched
2227          * to restart timer each time when something is ACKed.
2228          * Hence, we can detect timed out packets during fast
2229          * retransmit without falling to slow start.
2230          */
2231         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2232                 struct sk_buff *skb;
2233
2234                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2235                         : tcp_write_queue_head(sk);
2236
2237                 tcp_for_write_queue_from(skb, sk) {
2238                         if (skb == tcp_send_head(sk))
2239                                 break;
2240                         if (!tcp_skb_timedout(sk, skb))
2241                                 break;
2242
2243                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2244                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2245                                 tp->lost_out += tcp_skb_pcount(skb);
2246                                 tcp_verify_retransmit_hint(tp, skb);
2247                         }
2248                 }
2249
2250                 tp->scoreboard_skb_hint = skb;
2251
2252                 tcp_verify_left_out(tp);
2253         }
2254 }
2255
2256 /* CWND moderation, preventing bursts due to too big ACKs
2257  * in dubious situations.
2258  */
2259 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2260 {
2261         tp->snd_cwnd = min(tp->snd_cwnd,
2262                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2263         tp->snd_cwnd_stamp = tcp_time_stamp;
2264 }
2265
2266 /* Lower bound on congestion window is slow start threshold
2267  * unless congestion avoidance choice decides to overide it.
2268  */
2269 static inline u32 tcp_cwnd_min(const struct sock *sk)
2270 {
2271         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2272
2273         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2274 }
2275
2276 /* Decrease cwnd each second ack. */
2277 static void tcp_cwnd_down(struct sock *sk, int flag)
2278 {
2279         struct tcp_sock *tp = tcp_sk(sk);
2280         int decr = tp->snd_cwnd_cnt + 1;
2281
2282         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2283             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2284                 tp->snd_cwnd_cnt = decr & 1;
2285                 decr >>= 1;
2286
2287                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2288                         tp->snd_cwnd -= decr;
2289
2290                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2291                 tp->snd_cwnd_stamp = tcp_time_stamp;
2292         }
2293 }
2294
2295 /* Nothing was retransmitted or returned timestamp is less
2296  * than timestamp of the first retransmission.
2297  */
2298 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2299 {
2300         return !tp->retrans_stamp ||
2301                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2302                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2303 }
2304
2305 /* Undo procedures. */
2306
2307 #if FASTRETRANS_DEBUG > 1
2308 static void DBGUNDO(struct sock *sk, const char *msg)
2309 {
2310         struct tcp_sock *tp = tcp_sk(sk);
2311         struct inet_sock *inet = inet_sk(sk);
2312
2313         if (sk->sk_family == AF_INET) {
2314                 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2315                        msg,
2316                        NIPQUAD(inet->daddr), ntohs(inet->dport),
2317                        tp->snd_cwnd, tcp_left_out(tp),
2318                        tp->snd_ssthresh, tp->prior_ssthresh,
2319                        tp->packets_out);
2320         }
2321 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2322         else if (sk->sk_family == AF_INET6) {
2323                 struct ipv6_pinfo *np = inet6_sk(sk);
2324                 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2325                        msg,
2326                        NIP6(np->daddr), ntohs(inet->dport),
2327                        tp->snd_cwnd, tcp_left_out(tp),
2328                        tp->snd_ssthresh, tp->prior_ssthresh,
2329                        tp->packets_out);
2330         }
2331 #endif
2332 }
2333 #else
2334 #define DBGUNDO(x...) do { } while (0)
2335 #endif
2336
2337 static void tcp_undo_cwr(struct sock *sk, const int undo)
2338 {
2339         struct tcp_sock *tp = tcp_sk(sk);
2340
2341         if (tp->prior_ssthresh) {
2342                 const struct inet_connection_sock *icsk = inet_csk(sk);
2343
2344                 if (icsk->icsk_ca_ops->undo_cwnd)
2345                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2346                 else
2347                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2348
2349                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2350                         tp->snd_ssthresh = tp->prior_ssthresh;
2351                         TCP_ECN_withdraw_cwr(tp);
2352                 }
2353         } else {
2354                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2355         }
2356         tcp_moderate_cwnd(tp);
2357         tp->snd_cwnd_stamp = tcp_time_stamp;
2358
2359         /* There is something screwy going on with the retrans hints after
2360            an undo */
2361         tcp_clear_all_retrans_hints(tp);
2362 }
2363
2364 static inline int tcp_may_undo(struct tcp_sock *tp)
2365 {
2366         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2367 }
2368
2369 /* People celebrate: "We love our President!" */
2370 static int tcp_try_undo_recovery(struct sock *sk)
2371 {
2372         struct tcp_sock *tp = tcp_sk(sk);
2373
2374         if (tcp_may_undo(tp)) {
2375                 /* Happy end! We did not retransmit anything
2376                  * or our original transmission succeeded.
2377                  */
2378                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2379                 tcp_undo_cwr(sk, 1);
2380                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2381                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2382                 else
2383                         NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2384                 tp->undo_marker = 0;
2385         }
2386         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2387                 /* Hold old state until something *above* high_seq
2388                  * is ACKed. For Reno it is MUST to prevent false
2389                  * fast retransmits (RFC2582). SACK TCP is safe. */
2390                 tcp_moderate_cwnd(tp);
2391                 return 1;
2392         }
2393         tcp_set_ca_state(sk, TCP_CA_Open);
2394         return 0;
2395 }
2396
2397 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2398 static void tcp_try_undo_dsack(struct sock *sk)
2399 {
2400         struct tcp_sock *tp = tcp_sk(sk);
2401
2402         if (tp->undo_marker && !tp->undo_retrans) {
2403                 DBGUNDO(sk, "D-SACK");
2404                 tcp_undo_cwr(sk, 1);
2405                 tp->undo_marker = 0;
2406                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2407         }
2408 }
2409
2410 /* Undo during fast recovery after partial ACK. */
2411
2412 static int tcp_try_undo_partial(struct sock *sk, int acked)
2413 {
2414         struct tcp_sock *tp = tcp_sk(sk);
2415         /* Partial ACK arrived. Force Hoe's retransmit. */
2416         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2417
2418         if (tcp_may_undo(tp)) {
2419                 /* Plain luck! Hole if filled with delayed
2420                  * packet, rather than with a retransmit.
2421                  */
2422                 if (tp->retrans_out == 0)
2423                         tp->retrans_stamp = 0;
2424
2425                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2426
2427                 DBGUNDO(sk, "Hoe");
2428                 tcp_undo_cwr(sk, 0);
2429                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2430
2431                 /* So... Do not make Hoe's retransmit yet.
2432                  * If the first packet was delayed, the rest
2433                  * ones are most probably delayed as well.
2434                  */
2435                 failed = 0;
2436         }
2437         return failed;
2438 }
2439
2440 /* Undo during loss recovery after partial ACK. */
2441 static int tcp_try_undo_loss(struct sock *sk)
2442 {
2443         struct tcp_sock *tp = tcp_sk(sk);
2444
2445         if (tcp_may_undo(tp)) {
2446                 struct sk_buff *skb;
2447                 tcp_for_write_queue(skb, sk) {
2448                         if (skb == tcp_send_head(sk))
2449                                 break;
2450                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2451                 }
2452
2453                 tcp_clear_all_retrans_hints(tp);
2454
2455                 DBGUNDO(sk, "partial loss");
2456                 tp->lost_out = 0;
2457                 tcp_undo_cwr(sk, 1);
2458                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2459                 inet_csk(sk)->icsk_retransmits = 0;
2460                 tp->undo_marker = 0;
2461                 if (tcp_is_sack(tp))
2462                         tcp_set_ca_state(sk, TCP_CA_Open);
2463                 return 1;
2464         }
2465         return 0;
2466 }
2467
2468 static inline void tcp_complete_cwr(struct sock *sk)
2469 {
2470         struct tcp_sock *tp = tcp_sk(sk);
2471         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2472         tp->snd_cwnd_stamp = tcp_time_stamp;
2473         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2474 }
2475
2476 static void tcp_try_to_open(struct sock *sk, int flag)
2477 {
2478         struct tcp_sock *tp = tcp_sk(sk);
2479
2480         tcp_verify_left_out(tp);
2481
2482         if (tp->retrans_out == 0)
2483                 tp->retrans_stamp = 0;
2484
2485         if (flag & FLAG_ECE)
2486                 tcp_enter_cwr(sk, 1);
2487
2488         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2489                 int state = TCP_CA_Open;
2490
2491                 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2492                         state = TCP_CA_Disorder;
2493
2494                 if (inet_csk(sk)->icsk_ca_state != state) {
2495                         tcp_set_ca_state(sk, state);
2496                         tp->high_seq = tp->snd_nxt;
2497                 }
2498                 tcp_moderate_cwnd(tp);
2499         } else {
2500                 tcp_cwnd_down(sk, flag);
2501         }
2502 }
2503
2504 static void tcp_mtup_probe_failed(struct sock *sk)
2505 {
2506         struct inet_connection_sock *icsk = inet_csk(sk);
2507
2508         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2509         icsk->icsk_mtup.probe_size = 0;
2510 }
2511
2512 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2513 {
2514         struct tcp_sock *tp = tcp_sk(sk);
2515         struct inet_connection_sock *icsk = inet_csk(sk);
2516
2517         /* FIXME: breaks with very large cwnd */
2518         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2519         tp->snd_cwnd = tp->snd_cwnd *
2520                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2521                        icsk->icsk_mtup.probe_size;
2522         tp->snd_cwnd_cnt = 0;
2523         tp->snd_cwnd_stamp = tcp_time_stamp;
2524         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2525
2526         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2527         icsk->icsk_mtup.probe_size = 0;
2528         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2529 }
2530
2531 /* Process an event, which can update packets-in-flight not trivially.
2532  * Main goal of this function is to calculate new estimate for left_out,
2533  * taking into account both packets sitting in receiver's buffer and
2534  * packets lost by network.
2535  *
2536  * Besides that it does CWND reduction, when packet loss is detected
2537  * and changes state of machine.
2538  *
2539  * It does _not_ decide what to send, it is made in function
2540  * tcp_xmit_retransmit_queue().
2541  */
2542 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2543 {
2544         struct inet_connection_sock *icsk = inet_csk(sk);
2545         struct tcp_sock *tp = tcp_sk(sk);
2546         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2547         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2548                                     (tcp_fackets_out(tp) > tp->reordering));
2549         int fast_rexmit = 0;
2550
2551         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2552                 tp->sacked_out = 0;
2553         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2554                 tp->fackets_out = 0;
2555
2556         /* Now state machine starts.
2557          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2558         if (flag & FLAG_ECE)
2559                 tp->prior_ssthresh = 0;
2560
2561         /* B. In all the states check for reneging SACKs. */
2562         if (tcp_check_sack_reneging(sk, flag))
2563                 return;
2564
2565         /* C. Process data loss notification, provided it is valid. */
2566         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2567             before(tp->snd_una, tp->high_seq) &&
2568             icsk->icsk_ca_state != TCP_CA_Open &&
2569             tp->fackets_out > tp->reordering) {
2570                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2571                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2572         }
2573
2574         /* D. Check consistency of the current state. */
2575         tcp_verify_left_out(tp);
2576
2577         /* E. Check state exit conditions. State can be terminated
2578          *    when high_seq is ACKed. */
2579         if (icsk->icsk_ca_state == TCP_CA_Open) {
2580                 BUG_TRAP(tp->retrans_out == 0);
2581                 tp->retrans_stamp = 0;
2582         } else if (!before(tp->snd_una, tp->high_seq)) {
2583                 switch (icsk->icsk_ca_state) {
2584                 case TCP_CA_Loss:
2585                         icsk->icsk_retransmits = 0;
2586                         if (tcp_try_undo_recovery(sk))
2587                                 return;
2588                         break;
2589
2590                 case TCP_CA_CWR:
2591                         /* CWR is to be held something *above* high_seq
2592                          * is ACKed for CWR bit to reach receiver. */
2593                         if (tp->snd_una != tp->high_seq) {
2594                                 tcp_complete_cwr(sk);
2595                                 tcp_set_ca_state(sk, TCP_CA_Open);
2596                         }
2597                         break;
2598
2599                 case TCP_CA_Disorder:
2600                         tcp_try_undo_dsack(sk);
2601                         if (!tp->undo_marker ||
2602                             /* For SACK case do not Open to allow to undo
2603                              * catching for all duplicate ACKs. */
2604                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2605                                 tp->undo_marker = 0;
2606                                 tcp_set_ca_state(sk, TCP_CA_Open);
2607                         }
2608                         break;
2609
2610                 case TCP_CA_Recovery:
2611                         if (tcp_is_reno(tp))
2612                                 tcp_reset_reno_sack(tp);
2613                         if (tcp_try_undo_recovery(sk))
2614                                 return;
2615                         tcp_complete_cwr(sk);
2616                         break;
2617                 }
2618         }
2619
2620         /* F. Process state. */
2621         switch (icsk->icsk_ca_state) {
2622         case TCP_CA_Recovery:
2623                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2624                         if (tcp_is_reno(tp) && is_dupack)
2625                                 tcp_add_reno_sack(sk);
2626                 } else
2627                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2628                 break;
2629         case TCP_CA_Loss:
2630                 if (flag & FLAG_DATA_ACKED)
2631                         icsk->icsk_retransmits = 0;
2632                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2633                         tcp_reset_reno_sack(tp);
2634                 if (!tcp_try_undo_loss(sk)) {
2635                         tcp_moderate_cwnd(tp);
2636                         tcp_xmit_retransmit_queue(sk);
2637                         return;
2638                 }
2639                 if (icsk->icsk_ca_state != TCP_CA_Open)
2640                         return;
2641                 /* Loss is undone; fall through to processing in Open state. */
2642         default:
2643                 if (tcp_is_reno(tp)) {
2644                         if (flag & FLAG_SND_UNA_ADVANCED)
2645                                 tcp_reset_reno_sack(tp);
2646                         if (is_dupack)
2647                                 tcp_add_reno_sack(sk);
2648                 }
2649
2650                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2651                         tcp_try_undo_dsack(sk);
2652
2653                 if (!tcp_time_to_recover(sk)) {
2654                         tcp_try_to_open(sk, flag);
2655                         return;
2656                 }
2657
2658                 /* MTU probe failure: don't reduce cwnd */
2659                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2660                     icsk->icsk_mtup.probe_size &&
2661                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2662                         tcp_mtup_probe_failed(sk);
2663                         /* Restores the reduction we did in tcp_mtup_probe() */
2664                         tp->snd_cwnd++;
2665                         tcp_simple_retransmit(sk);
2666                         return;
2667                 }
2668
2669                 /* Otherwise enter Recovery state */
2670
2671                 if (tcp_is_reno(tp))
2672                         NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2673                 else
2674                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2675
2676                 tp->high_seq = tp->snd_nxt;
2677                 tp->prior_ssthresh = 0;
2678                 tp->undo_marker = tp->snd_una;
2679                 tp->undo_retrans = tp->retrans_out;
2680
2681                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2682                         if (!(flag & FLAG_ECE))
2683                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2684                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2685                         TCP_ECN_queue_cwr(tp);
2686                 }
2687
2688                 tp->bytes_acked = 0;
2689                 tp->snd_cwnd_cnt = 0;
2690                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2691                 fast_rexmit = 1;
2692         }
2693
2694         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2695                 tcp_update_scoreboard(sk, fast_rexmit);
2696         tcp_cwnd_down(sk, flag);
2697         tcp_xmit_retransmit_queue(sk);
2698 }
2699
2700 /* Read draft-ietf-tcplw-high-performance before mucking
2701  * with this code. (Supersedes RFC1323)
2702  */
2703 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2704 {
2705         /* RTTM Rule: A TSecr value received in a segment is used to
2706          * update the averaged RTT measurement only if the segment
2707          * acknowledges some new data, i.e., only if it advances the
2708          * left edge of the send window.
2709          *
2710          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2711          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2712          *
2713          * Changed: reset backoff as soon as we see the first valid sample.
2714          * If we do not, we get strongly overestimated rto. With timestamps
2715          * samples are accepted even from very old segments: f.e., when rtt=1
2716          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2717          * answer arrives rto becomes 120 seconds! If at least one of segments
2718          * in window is lost... Voila.                          --ANK (010210)
2719          */
2720         struct tcp_sock *tp = tcp_sk(sk);
2721         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2722         tcp_rtt_estimator(sk, seq_rtt);
2723         tcp_set_rto(sk);
2724         inet_csk(sk)->icsk_backoff = 0;
2725         tcp_bound_rto(sk);
2726 }
2727
2728 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2729 {
2730         /* We don't have a timestamp. Can only use
2731          * packets that are not retransmitted to determine
2732          * rtt estimates. Also, we must not reset the
2733          * backoff for rto until we get a non-retransmitted
2734          * packet. This allows us to deal with a situation
2735          * where the network delay has increased suddenly.
2736          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2737          */
2738
2739         if (flag & FLAG_RETRANS_DATA_ACKED)
2740                 return;
2741
2742         tcp_rtt_estimator(sk, seq_rtt);
2743         tcp_set_rto(sk);
2744         inet_csk(sk)->icsk_backoff = 0;
2745         tcp_bound_rto(sk);
2746 }
2747
2748 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2749                                       const s32 seq_rtt)
2750 {
2751         const struct tcp_sock *tp = tcp_sk(sk);
2752         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2753         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2754                 tcp_ack_saw_tstamp(sk, flag);
2755         else if (seq_rtt >= 0)
2756                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2757 }
2758
2759 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2760 {
2761         const struct inet_connection_sock *icsk = inet_csk(sk);
2762         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2763         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2764 }
2765
2766 /* Restart timer after forward progress on connection.
2767  * RFC2988 recommends to restart timer to now+rto.
2768  */
2769 static void tcp_rearm_rto(struct sock *sk)
2770 {
2771         struct tcp_sock *tp = tcp_sk(sk);
2772
2773         if (!tp->packets_out) {
2774                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2775         } else {
2776                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2777                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2778         }
2779 }
2780
2781 /* If we get here, the whole TSO packet has not been acked. */
2782 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2783 {
2784         struct tcp_sock *tp = tcp_sk(sk);
2785         u32 packets_acked;
2786
2787         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2788
2789         packets_acked = tcp_skb_pcount(skb);
2790         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2791                 return 0;
2792         packets_acked -= tcp_skb_pcount(skb);
2793
2794         if (packets_acked) {
2795                 BUG_ON(tcp_skb_pcount(skb) == 0);
2796                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2797         }
2798
2799         return packets_acked;
2800 }
2801
2802 /* Remove acknowledged frames from the retransmission queue. If our packet
2803  * is before the ack sequence we can discard it as it's confirmed to have
2804  * arrived at the other end.
2805  */
2806 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2807 {
2808         struct tcp_sock *tp = tcp_sk(sk);
2809         const struct inet_connection_sock *icsk = inet_csk(sk);
2810         struct sk_buff *skb;
2811         u32 now = tcp_time_stamp;
2812         int fully_acked = 1;
2813         int flag = 0;
2814         u32 pkts_acked = 0;
2815         u32 reord = tp->packets_out;
2816         s32 seq_rtt = -1;
2817         s32 ca_seq_rtt = -1;
2818         ktime_t last_ackt = net_invalid_timestamp();
2819
2820         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2821                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2822                 u32 end_seq;
2823                 u32 acked_pcount;
2824                 u8 sacked = scb->sacked;
2825
2826                 /* Determine how many packets and what bytes were acked, tso and else */
2827                 if (after(scb->end_seq, tp->snd_una)) {
2828                         if (tcp_skb_pcount(skb) == 1 ||
2829                             !after(tp->snd_una, scb->seq))
2830                                 break;
2831
2832                         acked_pcount = tcp_tso_acked(sk, skb);
2833                         if (!acked_pcount)
2834                                 break;
2835
2836                         fully_acked = 0;
2837                         end_seq = tp->snd_una;
2838                 } else {
2839                         acked_pcount = tcp_skb_pcount(skb);
2840                         end_seq = scb->end_seq;
2841                 }
2842
2843                 /* MTU probing checks */
2844                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2845                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2846                         tcp_mtup_probe_success(sk, skb);
2847                 }
2848
2849                 if (sacked & TCPCB_RETRANS) {
2850                         if (sacked & TCPCB_SACKED_RETRANS)
2851                                 tp->retrans_out -= acked_pcount;
2852                         flag |= FLAG_RETRANS_DATA_ACKED;
2853                         ca_seq_rtt = -1;
2854                         seq_rtt = -1;
2855                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2856                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2857                 } else {
2858                         ca_seq_rtt = now - scb->when;
2859                         last_ackt = skb->tstamp;
2860                         if (seq_rtt < 0) {
2861                                 seq_rtt = ca_seq_rtt;
2862                         }
2863                         if (!(sacked & TCPCB_SACKED_ACKED))
2864                                 reord = min(pkts_acked, reord);
2865                 }
2866
2867                 if (sacked & TCPCB_SACKED_ACKED)
2868                         tp->sacked_out -= acked_pcount;
2869                 if (sacked & TCPCB_LOST)
2870                         tp->lost_out -= acked_pcount;
2871
2872                 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2873                         tp->urg_mode = 0;
2874
2875                 tp->packets_out -= acked_pcount;
2876                 pkts_acked += acked_pcount;
2877
2878                 /* Initial outgoing SYN's get put onto the write_queue
2879                  * just like anything else we transmit.  It is not
2880                  * true data, and if we misinform our callers that
2881                  * this ACK acks real data, we will erroneously exit
2882                  * connection startup slow start one packet too
2883                  * quickly.  This is severely frowned upon behavior.
2884                  */
2885                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2886                         flag |= FLAG_DATA_ACKED;
2887                 } else {
2888                         flag |= FLAG_SYN_ACKED;
2889                         tp->retrans_stamp = 0;
2890                 }
2891
2892                 if (!fully_acked)
2893                         break;
2894
2895                 tcp_unlink_write_queue(skb, sk);
2896                 sk_wmem_free_skb(sk, skb);
2897                 tcp_clear_all_retrans_hints(tp);
2898         }
2899
2900         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2901                 flag |= FLAG_SACK_RENEGING;
2902
2903         if (flag & FLAG_ACKED) {
2904                 const struct tcp_congestion_ops *ca_ops
2905                         = inet_csk(sk)->icsk_ca_ops;
2906
2907                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2908                 tcp_rearm_rto(sk);
2909
2910                 if (tcp_is_reno(tp)) {
2911                         tcp_remove_reno_sacks(sk, pkts_acked);
2912                 } else {
2913                         /* Non-retransmitted hole got filled? That's reordering */
2914                         if (reord < prior_fackets)
2915                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2916                 }
2917
2918                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2919
2920                 if (ca_ops->pkts_acked) {
2921                         s32 rtt_us = -1;
2922
2923                         /* Is the ACK triggering packet unambiguous? */
2924                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2925                                 /* High resolution needed and available? */
2926                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2927                                     !ktime_equal(last_ackt,
2928                                                  net_invalid_timestamp()))
2929                                         rtt_us = ktime_us_delta(ktime_get_real(),
2930                                                                 last_ackt);
2931                                 else if (ca_seq_rtt > 0)
2932                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2933                         }
2934
2935                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2936                 }
2937         }
2938
2939 #if FASTRETRANS_DEBUG > 0
2940         BUG_TRAP((int)tp->sacked_out >= 0);
2941         BUG_TRAP((int)tp->lost_out >= 0);
2942         BUG_TRAP((int)tp->retrans_out >= 0);
2943         if (!tp->packets_out && tcp_is_sack(tp)) {
2944                 icsk = inet_csk(sk);
2945                 if (tp->lost_out) {
2946                         printk(KERN_DEBUG "Leak l=%u %d\n",
2947                                tp->lost_out, icsk->icsk_ca_state);
2948                         tp->lost_out = 0;
2949                 }
2950                 if (tp->sacked_out) {
2951                         printk(KERN_DEBUG "Leak s=%u %d\n",
2952                                tp->sacked_out, icsk->icsk_ca_state);
2953                         tp->sacked_out = 0;
2954                 }
2955                 if (tp->retrans_out) {
2956                         printk(KERN_DEBUG "Leak r=%u %d\n",
2957                                tp->retrans_out, icsk->icsk_ca_state);
2958                         tp->retrans_out = 0;
2959                 }
2960         }
2961 #endif
2962         return flag;
2963 }
2964
2965 static void tcp_ack_probe(struct sock *sk)
2966 {
2967         const struct tcp_sock *tp = tcp_sk(sk);
2968         struct inet_connection_sock *icsk = inet_csk(sk);
2969
2970         /* Was it a usable window open? */
2971
2972         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2973                 icsk->icsk_backoff = 0;
2974                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2975                 /* Socket must be waked up by subsequent tcp_data_snd_check().
2976                  * This function is not for random using!
2977                  */
2978         } else {
2979                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2980                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2981                                           TCP_RTO_MAX);
2982         }
2983 }
2984
2985 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2986 {
2987         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2988                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2989 }
2990
2991 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2992 {
2993         const struct tcp_sock *tp = tcp_sk(sk);
2994         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2995                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2996 }
2997
2998 /* Check that window update is acceptable.
2999  * The function assumes that snd_una<=ack<=snd_next.
3000  */
3001 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3002                                         const u32 ack, const u32 ack_seq,
3003                                         const u32 nwin)
3004 {
3005         return (after(ack, tp->snd_una) ||
3006                 after(ack_seq, tp->snd_wl1) ||
3007                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3008 }
3009
3010 /* Update our send window.
3011  *
3012  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3013  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3014  */
3015 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3016                                  u32 ack_seq)
3017 {
3018         struct tcp_sock *tp = tcp_sk(sk);
3019         int flag = 0;
3020         u32 nwin = ntohs(tcp_hdr(skb)->window);
3021
3022         if (likely(!tcp_hdr(skb)->syn))
3023                 nwin <<= tp->rx_opt.snd_wscale;
3024
3025         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3026                 flag |= FLAG_WIN_UPDATE;
3027                 tcp_update_wl(tp, ack, ack_seq);
3028
3029                 if (tp->snd_wnd != nwin) {
3030                         tp->snd_wnd = nwin;
3031
3032                         /* Note, it is the only place, where
3033                          * fast path is recovered for sending TCP.
3034                          */
3035                         tp->pred_flags = 0;
3036                         tcp_fast_path_check(sk);
3037
3038                         if (nwin > tp->max_window) {
3039                                 tp->max_window = nwin;
3040                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3041                         }
3042                 }
3043         }
3044
3045         tp->snd_una = ack;
3046
3047         return flag;
3048 }
3049
3050 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3051  * continue in congestion avoidance.
3052  */
3053 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3054 {
3055         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3056         tp->snd_cwnd_cnt = 0;
3057         tp->bytes_acked = 0;
3058         TCP_ECN_queue_cwr(tp);
3059         tcp_moderate_cwnd(tp);
3060 }
3061
3062 /* A conservative spurious RTO response algorithm: reduce cwnd using
3063  * rate halving and continue in congestion avoidance.
3064  */
3065 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3066 {
3067         tcp_enter_cwr(sk, 0);
3068 }
3069
3070 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3071 {
3072         if (flag & FLAG_ECE)
3073                 tcp_ratehalving_spur_to_response(sk);
3074         else
3075                 tcp_undo_cwr(sk, 1);
3076 }
3077
3078 /* F-RTO spurious RTO detection algorithm (RFC4138)
3079  *
3080  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3081  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3082  * window (but not to or beyond highest sequence sent before RTO):
3083  *   On First ACK,  send two new segments out.
3084  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3085  *                  algorithm is not part of the F-RTO detection algorithm
3086  *                  given in RFC4138 but can be selected separately).
3087  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3088  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3089  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3090  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3091  *
3092  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3093  * original window even after we transmit two new data segments.
3094  *
3095  * SACK version:
3096  *   on first step, wait until first cumulative ACK arrives, then move to
3097  *   the second step. In second step, the next ACK decides.
3098  *
3099  * F-RTO is implemented (mainly) in four functions:
3100  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3101  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3102  *     called when tcp_use_frto() showed green light
3103  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3104  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3105  *     to prove that the RTO is indeed spurious. It transfers the control
3106  *     from F-RTO to the conventional RTO recovery
3107  */
3108 static int tcp_process_frto(struct sock *sk, int flag)
3109 {
3110         struct tcp_sock *tp = tcp_sk(sk);
3111
3112         tcp_verify_left_out(tp);
3113
3114         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3115         if (flag & FLAG_DATA_ACKED)
3116                 inet_csk(sk)->icsk_retransmits = 0;
3117
3118         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3119             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3120                 tp->undo_marker = 0;
3121
3122         if (!before(tp->snd_una, tp->frto_highmark)) {
3123                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3124                 return 1;
3125         }
3126
3127         if (!IsSackFrto() || tcp_is_reno(tp)) {
3128                 /* RFC4138 shortcoming in step 2; should also have case c):
3129                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3130                  * data, winupdate
3131                  */
3132                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3133                         return 1;
3134
3135                 if (!(flag & FLAG_DATA_ACKED)) {
3136                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3137                                             flag);
3138                         return 1;
3139                 }
3140         } else {
3141                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3142                         /* Prevent sending of new data. */
3143                         tp->snd_cwnd = min(tp->snd_cwnd,
3144                                            tcp_packets_in_flight(tp));
3145                         return 1;
3146                 }
3147
3148                 if ((tp->frto_counter >= 2) &&
3149                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3150                      ((flag & FLAG_DATA_SACKED) &&
3151                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3152                         /* RFC4138 shortcoming (see comment above) */
3153                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3154                             (flag & FLAG_NOT_DUP))
3155                                 return 1;
3156
3157                         tcp_enter_frto_loss(sk, 3, flag);
3158                         return 1;
3159                 }
3160         }
3161
3162         if (tp->frto_counter == 1) {
3163                 /* tcp_may_send_now needs to see updated state */
3164                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3165                 tp->frto_counter = 2;
3166
3167                 if (!tcp_may_send_now(sk))
3168                         tcp_enter_frto_loss(sk, 2, flag);
3169
3170                 return 1;
3171         } else {
3172                 switch (sysctl_tcp_frto_response) {
3173                 case 2:
3174                         tcp_undo_spur_to_response(sk, flag);
3175                         break;
3176                 case 1:
3177                         tcp_conservative_spur_to_response(tp);
3178                         break;
3179                 default:
3180                         tcp_ratehalving_spur_to_response(sk);
3181                         break;
3182                 }
3183                 tp->frto_counter = 0;
3184                 tp->undo_marker = 0;
3185                 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3186         }
3187         return 0;
3188 }
3189
3190 /* This routine deals with incoming acks, but not outgoing ones. */
3191 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3192 {
3193         struct inet_connection_sock *icsk = inet_csk(sk);
3194         struct tcp_sock *tp = tcp_sk(sk);
3195         u32 prior_snd_una = tp->snd_una;
3196         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3197         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3198         u32 prior_in_flight;
3199         u32 prior_fackets;
3200         int prior_packets;
3201         int frto_cwnd = 0;
3202
3203         /* If the ack is newer than sent or older than previous acks
3204          * then we can probably ignore it.
3205          */
3206         if (after(ack, tp->snd_nxt))
3207                 goto uninteresting_ack;
3208
3209         if (before(ack, prior_snd_una))
3210                 goto old_ack;
3211
3212         if (after(ack, prior_snd_una))
3213                 flag |= FLAG_SND_UNA_ADVANCED;
3214
3215         if (sysctl_tcp_abc) {
3216                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3217                         tp->bytes_acked += ack - prior_snd_una;
3218                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3219                         /* we assume just one segment left network */
3220                         tp->bytes_acked += min(ack - prior_snd_una,
3221                                                tp->mss_cache);
3222         }
3223
3224         prior_fackets = tp->fackets_out;
3225         prior_in_flight = tcp_packets_in_flight(tp);
3226
3227         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3228                 /* Window is constant, pure forward advance.
3229                  * No more checks are required.
3230                  * Note, we use the fact that SND.UNA>=SND.WL2.
3231                  */
3232                 tcp_update_wl(tp, ack, ack_seq);
3233                 tp->snd_una = ack;
3234                 flag |= FLAG_WIN_UPDATE;
3235
3236                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3237
3238                 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3239         } else {
3240                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3241                         flag |= FLAG_DATA;
3242                 else
3243                         NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3244
3245                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3246
3247                 if (TCP_SKB_CB(skb)->sacked)
3248                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3249
3250                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3251                         flag |= FLAG_ECE;
3252
3253                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3254         }
3255
3256         /* We passed data and got it acked, remove any soft error
3257          * log. Something worked...
3258          */
3259         sk->sk_err_soft = 0;
3260         tp->rcv_tstamp = tcp_time_stamp;
3261         prior_packets = tp->packets_out;
3262         if (!prior_packets)
3263                 goto no_queue;
3264
3265         /* See if we can take anything off of the retransmit queue. */
3266         flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3267
3268         if (tp->frto_counter)
3269                 frto_cwnd = tcp_process_frto(sk, flag);
3270         /* Guarantee sacktag reordering detection against wrap-arounds */
3271         if (before(tp->frto_highmark, tp->snd_una))
3272                 tp->frto_highmark = 0;
3273
3274         if (tcp_ack_is_dubious(sk, flag)) {
3275                 /* Advance CWND, if state allows this. */
3276                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3277                     tcp_may_raise_cwnd(sk, flag))
3278                         tcp_cong_avoid(sk, ack, prior_in_flight);
3279                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3280                                       flag);
3281         } else {
3282                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3283                         tcp_cong_avoid(sk, ack, prior_in_flight);
3284         }
3285
3286         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3287                 dst_confirm(sk->sk_dst_cache);
3288
3289         return 1;
3290
3291 no_queue:
3292         icsk->icsk_probes_out = 0;
3293
3294         /* If this ack opens up a zero window, clear backoff.  It was
3295          * being used to time the probes, and is probably far higher than
3296          * it needs to be for normal retransmission.
3297          */
3298         if (tcp_send_head(sk))
3299                 tcp_ack_probe(sk);
3300         return 1;
3301
3302 old_ack:
3303         if (TCP_SKB_CB(skb)->sacked)
3304                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3305
3306 uninteresting_ack:
3307         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3308         return 0;
3309 }
3310
3311 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3312  * But, this can also be called on packets in the established flow when
3313  * the fast version below fails.
3314  */
3315 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3316                        int estab)
3317 {
3318         unsigned char *ptr;
3319         struct tcphdr *th = tcp_hdr(skb);
3320         int length = (th->doff * 4) - sizeof(struct tcphdr);
3321
3322         ptr = (unsigned char *)(th + 1);
3323         opt_rx->saw_tstamp = 0;
3324
3325         while (length > 0) {
3326                 int opcode = *ptr++;
3327                 int opsize;
3328
3329                 switch (opcode) {
3330                 case TCPOPT_EOL:
3331                         return;
3332                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3333                         length--;
3334                         continue;
3335                 default:
3336                         opsize = *ptr++;
3337                         if (opsize < 2) /* "silly options" */
3338                                 return;
3339                         if (opsize > length)
3340                                 return; /* don't parse partial options */
3341                         switch (opcode) {
3342                         case TCPOPT_MSS:
3343                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3344                                         u16 in_mss = get_unaligned_be16(ptr);
3345                                         if (in_mss) {
3346                                                 if (opt_rx->user_mss &&
3347                                                     opt_rx->user_mss < in_mss)
3348                                                         in_mss = opt_rx->user_mss;
3349                                                 opt_rx->mss_clamp = in_mss;
3350                                         }
3351                                 }
3352                                 break;
3353                         case TCPOPT_WINDOW:
3354                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3355                                     !estab && sysctl_tcp_window_scaling) {
3356                                         __u8 snd_wscale = *(__u8 *)ptr;
3357                                         opt_rx->wscale_ok = 1;
3358                                         if (snd_wscale > 14) {
3359                                                 if (net_ratelimit())
3360                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3361                                                                "scaling value %d >14 received.\n",
3362                                                                snd_wscale);
3363                                                 snd_wscale = 14;
3364                                         }
3365                                         opt_rx->snd_wscale = snd_wscale;
3366                                 }
3367                                 break;
3368                         case TCPOPT_TIMESTAMP:
3369                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3370                                     ((estab && opt_rx->tstamp_ok) ||
3371                                      (!estab && sysctl_tcp_timestamps))) {
3372                                         opt_rx->saw_tstamp = 1;
3373                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3374                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3375                                 }
3376                                 break;
3377                         case TCPOPT_SACK_PERM:
3378                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3379                                     !estab && sysctl_tcp_sack) {
3380                                         opt_rx->sack_ok = 1;
3381                                         tcp_sack_reset(opt_rx);
3382                                 }
3383                                 break;
3384
3385                         case TCPOPT_SACK:
3386                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3387                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3388                                    opt_rx->sack_ok) {
3389                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3390                                 }
3391                                 break;
3392 #ifdef CONFIG_TCP_MD5SIG
3393                         case TCPOPT_MD5SIG:
3394                                 /*
3395                                  * The MD5 Hash has already been
3396                                  * checked (see tcp_v{4,6}_do_rcv()).
3397                                  */
3398                                 break;
3399 #endif
3400                         }
3401
3402                         ptr += opsize-2;
3403                         length -= opsize;
3404                 }
3405         }
3406 }
3407
3408 /* Fast parse options. This hopes to only see timestamps.
3409  * If it is wrong it falls back on tcp_parse_options().
3410  */
3411 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3412                                   struct tcp_sock *tp)
3413 {
3414         if (th->doff == sizeof(struct tcphdr) >> 2) {
3415                 tp->rx_opt.saw_tstamp = 0;
3416                 return 0;
3417         } else if (tp->rx_opt.tstamp_ok &&
3418                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3419                 __be32 *ptr = (__be32 *)(th + 1);
3420                 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3421                                   | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3422                         tp->rx_opt.saw_tstamp = 1;
3423                         ++ptr;
3424                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
3425                         ++ptr;
3426                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3427                         return 1;
3428                 }
3429         }
3430         tcp_parse_options(skb, &tp->rx_opt, 1);
3431         return 1;
3432 }
3433
3434 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3435 {
3436         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3437         tp->rx_opt.ts_recent_stamp = get_seconds();
3438 }
3439
3440 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3441 {
3442         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3443                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3444                  * extra check below makes sure this can only happen
3445                  * for pure ACK frames.  -DaveM
3446                  *
3447                  * Not only, also it occurs for expired timestamps.
3448                  */
3449
3450                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3451                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3452                         tcp_store_ts_recent(tp);
3453         }
3454 }
3455
3456 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3457  *
3458  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3459  * it can pass through stack. So, the following predicate verifies that
3460  * this segment is not used for anything but congestion avoidance or
3461  * fast retransmit. Moreover, we even are able to eliminate most of such
3462  * second order effects, if we apply some small "replay" window (~RTO)
3463  * to timestamp space.
3464  *
3465  * All these measures still do not guarantee that we reject wrapped ACKs
3466  * on networks with high bandwidth, when sequence space is recycled fastly,
3467  * but it guarantees that such events will be very rare and do not affect
3468  * connection seriously. This doesn't look nice, but alas, PAWS is really
3469  * buggy extension.
3470  *
3471  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3472  * states that events when retransmit arrives after original data are rare.
3473  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3474  * the biggest problem on large power networks even with minor reordering.
3475  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3476  * up to bandwidth of 18Gigabit/sec. 8) ]
3477  */
3478
3479 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3480 {
3481         struct tcp_sock *tp = tcp_sk(sk);
3482         struct tcphdr *th = tcp_hdr(skb);
3483         u32 seq = TCP_SKB_CB(skb)->seq;
3484         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3485
3486         return (/* 1. Pure ACK with correct sequence number. */
3487                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3488
3489                 /* 2. ... and duplicate ACK. */
3490                 ack == tp->snd_una &&
3491
3492                 /* 3. ... and does not update window. */
3493                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3494
3495                 /* 4. ... and sits in replay window. */
3496                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3497 }
3498
3499 static inline int tcp_paws_discard(const struct sock *sk,
3500                                    const struct sk_buff *skb)
3501 {
3502         const struct tcp_sock *tp = tcp_sk(sk);
3503         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3504                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3505                 !tcp_disordered_ack(sk, skb));
3506 }
3507
3508 /* Check segment sequence number for validity.
3509  *
3510  * Segment controls are considered valid, if the segment
3511  * fits to the window after truncation to the window. Acceptability
3512  * of data (and SYN, FIN, of course) is checked separately.
3513  * See tcp_data_queue(), for example.
3514  *
3515  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3516  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3517  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3518  * (borrowed from freebsd)
3519  */
3520
3521 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3522 {
3523         return  !before(end_seq, tp->rcv_wup) &&
3524                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3525 }
3526
3527 /* When we get a reset we do this. */
3528 static void tcp_reset(struct sock *sk)
3529 {
3530         /* We want the right error as BSD sees it (and indeed as we do). */
3531         switch (sk->sk_state) {
3532         case TCP_SYN_SENT:
3533                 sk->sk_err = ECONNREFUSED;
3534                 break;
3535         case TCP_CLOSE_WAIT:
3536                 sk->sk_err = EPIPE;
3537                 break;
3538         case TCP_CLOSE:
3539                 return;
3540         default:
3541                 sk->sk_err = ECONNRESET;
3542         }
3543
3544         if (!sock_flag(sk, SOCK_DEAD))
3545                 sk->sk_error_report(sk);
3546
3547         tcp_done(sk);
3548 }
3549
3550 /*
3551  *      Process the FIN bit. This now behaves as it is supposed to work
3552  *      and the FIN takes effect when it is validly part of sequence
3553  *      space. Not before when we get holes.
3554  *
3555  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3556  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3557  *      TIME-WAIT)
3558  *
3559  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3560  *      close and we go into CLOSING (and later onto TIME-WAIT)
3561  *
3562  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3563  */
3564 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3565 {
3566         struct tcp_sock *tp = tcp_sk(sk);
3567
3568         inet_csk_schedule_ack(sk);
3569
3570         sk->sk_shutdown |= RCV_SHUTDOWN;
3571         sock_set_flag(sk, SOCK_DONE);
3572
3573         switch (sk->sk_state) {
3574         case TCP_SYN_RECV:
3575         case TCP_ESTABLISHED:
3576                 /* Move to CLOSE_WAIT */
3577                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3578                 inet_csk(sk)->icsk_ack.pingpong = 1;
3579                 break;
3580
3581         case TCP_CLOSE_WAIT:
3582         case TCP_CLOSING:
3583                 /* Received a retransmission of the FIN, do
3584                  * nothing.
3585                  */
3586                 break;
3587         case TCP_LAST_ACK:
3588                 /* RFC793: Remain in the LAST-ACK state. */
3589                 break;
3590
3591         case TCP_FIN_WAIT1:
3592                 /* This case occurs when a simultaneous close
3593                  * happens, we must ack the received FIN and
3594                  * enter the CLOSING state.
3595                  */
3596                 tcp_send_ack(sk);
3597                 tcp_set_state(sk, TCP_CLOSING);
3598                 break;
3599         case TCP_FIN_WAIT2:
3600                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3601                 tcp_send_ack(sk);
3602                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3603                 break;
3604         default:
3605                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3606                  * cases we should never reach this piece of code.
3607                  */
3608                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3609                        __func__, sk->sk_state);
3610                 break;
3611         }
3612
3613         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3614          * Probably, we should reset in this case. For now drop them.
3615          */
3616         __skb_queue_purge(&tp->out_of_order_queue);
3617         if (tcp_is_sack(tp))
3618                 tcp_sack_reset(&tp->rx_opt);
3619         sk_mem_reclaim(sk);
3620
3621         if (!sock_flag(sk, SOCK_DEAD)) {
3622                 sk->sk_state_change(sk);
3623
3624                 /* Do not send POLL_HUP for half duplex close. */
3625                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3626                     sk->sk_state == TCP_CLOSE)
3627                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3628                 else
3629                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3630         }
3631 }
3632
3633 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3634                                   u32 end_seq)
3635 {
3636         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3637                 if (before(seq, sp->start_seq))
3638                         sp->start_seq = seq;
3639                 if (after(end_seq, sp->end_seq))
3640                         sp->end_seq = end_seq;
3641                 return 1;
3642         }
3643         return 0;
3644 }
3645
3646 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3647 {
3648         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3649                 if (before(seq, tp->rcv_nxt))
3650                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3651                 else
3652                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3653
3654                 tp->rx_opt.dsack = 1;
3655                 tp->duplicate_sack[0].start_seq = seq;
3656                 tp->duplicate_sack[0].end_seq = end_seq;
3657                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3658                                            4 - tp->rx_opt.tstamp_ok);
3659         }
3660 }
3661
3662 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3663 {
3664         if (!tp->rx_opt.dsack)
3665                 tcp_dsack_set(tp, seq, end_seq);
3666         else
3667                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3668 }
3669
3670 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3671 {
3672         struct tcp_sock *tp = tcp_sk(sk);
3673
3674         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3675             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3676                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3677                 tcp_enter_quickack_mode(sk);
3678
3679                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3680                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3681
3682                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3683                                 end_seq = tp->rcv_nxt;
3684                         tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3685                 }
3686         }
3687
3688         tcp_send_ack(sk);
3689 }
3690
3691 /* These routines update the SACK block as out-of-order packets arrive or
3692  * in-order packets close up the sequence space.
3693  */
3694 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3695 {
3696         int this_sack;
3697         struct tcp_sack_block *sp = &tp->selective_acks[0];
3698         struct tcp_sack_block *swalk = sp + 1;
3699
3700         /* See if the recent change to the first SACK eats into
3701          * or hits the sequence space of other SACK blocks, if so coalesce.
3702          */
3703         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3704                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3705                         int i;
3706
3707                         /* Zap SWALK, by moving every further SACK up by one slot.
3708                          * Decrease num_sacks.
3709                          */
3710                         tp->rx_opt.num_sacks--;
3711                         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3712                                                    tp->rx_opt.dsack,
3713                                                    4 - tp->rx_opt.tstamp_ok);
3714                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3715                                 sp[i] = sp[i + 1];
3716                         continue;
3717                 }
3718                 this_sack++, swalk++;
3719         }
3720 }
3721
3722 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3723                                  struct tcp_sack_block *sack2)
3724 {
3725         __u32 tmp;
3726
3727         tmp = sack1->start_seq;
3728         sack1->start_seq = sack2->start_seq;
3729         sack2->start_seq = tmp;
3730
3731         tmp = sack1->end_seq;
3732         sack1->end_seq = sack2->end_seq;
3733         sack2->end_seq = tmp;
3734 }
3735
3736 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3737 {
3738         struct tcp_sock *tp = tcp_sk(sk);
3739         struct tcp_sack_block *sp = &tp->selective_acks[0];
3740         int cur_sacks = tp->rx_opt.num_sacks;
3741         int this_sack;
3742
3743         if (!cur_sacks)
3744                 goto new_sack;
3745
3746         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3747                 if (tcp_sack_extend(sp, seq, end_seq)) {
3748                         /* Rotate this_sack to the first one. */
3749                         for (; this_sack > 0; this_sack--, sp--)
3750                                 tcp_sack_swap(sp, sp - 1);
3751                         if (cur_sacks > 1)
3752                                 tcp_sack_maybe_coalesce(tp);
3753                         return;
3754                 }
3755         }
3756
3757         /* Could not find an adjacent existing SACK, build a new one,
3758          * put it at the front, and shift everyone else down.  We
3759          * always know there is at least one SACK present already here.
3760          *
3761          * If the sack array is full, forget about the last one.
3762          */
3763         if (this_sack >= 4) {
3764                 this_sack--;
3765                 tp->rx_opt.num_sacks--;
3766                 sp--;
3767         }
3768         for (; this_sack > 0; this_sack--, sp--)
3769                 *sp = *(sp - 1);
3770
3771 new_sack:
3772         /* Build the new head SACK, and we're done. */
3773         sp->start_seq = seq;
3774         sp->end_seq = end_seq;
3775         tp->rx_opt.num_sacks++;
3776         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3777                                    4 - tp->rx_opt.tstamp_ok);
3778 }
3779
3780 /* RCV.NXT advances, some SACKs should be eaten. */
3781
3782 static void tcp_sack_remove(struct tcp_sock *tp)
3783 {
3784         struct tcp_sack_block *sp = &tp->selective_acks[0];
3785         int num_sacks = tp->rx_opt.num_sacks;
3786         int this_sack;
3787
3788         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3789         if (skb_queue_empty(&tp->out_of_order_queue)) {
3790                 tp->rx_opt.num_sacks = 0;
3791                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3792                 return;
3793         }
3794
3795         for (this_sack = 0; this_sack < num_sacks;) {
3796                 /* Check if the start of the sack is covered by RCV.NXT. */
3797                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3798                         int i;
3799
3800                         /* RCV.NXT must cover all the block! */
3801                         BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3802
3803                         /* Zap this SACK, by moving forward any other SACKS. */
3804                         for (i=this_sack+1; i < num_sacks; i++)
3805                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3806                         num_sacks--;
3807                         continue;
3808                 }
3809                 this_sack++;
3810                 sp++;
3811         }
3812         if (num_sacks != tp->rx_opt.num_sacks) {
3813                 tp->rx_opt.num_sacks = num_sacks;
3814                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3815                                            tp->rx_opt.dsack,
3816                                            4 - tp->rx_opt.tstamp_ok);
3817         }
3818 }
3819
3820 /* This one checks to see if we can put data from the
3821  * out_of_order queue into the receive_queue.
3822  */
3823 static void tcp_ofo_queue(struct sock *sk)
3824 {
3825         struct tcp_sock *tp = tcp_sk(sk);
3826         __u32 dsack_high = tp->rcv_nxt;
3827         struct sk_buff *skb;
3828
3829         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3830                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3831                         break;
3832
3833                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3834                         __u32 dsack = dsack_high;
3835                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3836                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3837                         tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3838                 }
3839
3840                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3841                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3842                         __skb_unlink(skb, &tp->out_of_order_queue);
3843                         __kfree_skb(skb);
3844                         continue;
3845                 }
3846                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3847                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3848                            TCP_SKB_CB(skb)->end_seq);
3849
3850                 __skb_unlink(skb, &tp->out_of_order_queue);
3851                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3852                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3853                 if (tcp_hdr(skb)->fin)
3854                         tcp_fin(skb, sk, tcp_hdr(skb));
3855         }
3856 }
3857
3858 static int tcp_prune_ofo_queue(struct sock *sk);
3859 static int tcp_prune_queue(struct sock *sk);
3860
3861 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3862 {
3863         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3864             !sk_rmem_schedule(sk, size)) {
3865
3866                 if (tcp_prune_queue(sk) < 0)
3867                         return -1;
3868
3869                 if (!sk_rmem_schedule(sk, size)) {
3870                         if (!tcp_prune_ofo_queue(sk))
3871                                 return -1;
3872
3873                         if (!sk_rmem_schedule(sk, size))
3874                                 return -1;
3875                 }
3876         }
3877         return 0;
3878 }
3879
3880 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3881 {
3882         struct tcphdr *th = tcp_hdr(skb);
3883         struct tcp_sock *tp = tcp_sk(sk);
3884         int eaten = -1;
3885
3886         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3887                 goto drop;
3888
3889         __skb_pull(skb, th->doff * 4);
3890
3891         TCP_ECN_accept_cwr(tp, skb);
3892
3893         if (tp->rx_opt.dsack) {
3894                 tp->rx_opt.dsack = 0;
3895                 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3896                                              4 - tp->rx_opt.tstamp_ok);
3897         }
3898
3899         /*  Queue data for delivery to the user.
3900          *  Packets in sequence go to the receive queue.
3901          *  Out of sequence packets to the out_of_order_queue.
3902          */
3903         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3904                 if (tcp_receive_window(tp) == 0)
3905                         goto out_of_window;
3906
3907                 /* Ok. In sequence. In window. */
3908                 if (tp->ucopy.task == current &&
3909                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3910                     sock_owned_by_user(sk) && !tp->urg_data) {
3911                         int chunk = min_t(unsigned int, skb->len,
3912                                           tp->ucopy.len);
3913
3914                         __set_current_state(TASK_RUNNING);
3915
3916                         local_bh_enable();
3917                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3918                                 tp->ucopy.len -= chunk;
3919                                 tp->copied_seq += chunk;
3920                                 eaten = (chunk == skb->len && !th->fin);
3921                                 tcp_rcv_space_adjust(sk);
3922                         }
3923                         local_bh_disable();
3924                 }
3925
3926                 if (eaten <= 0) {
3927 queue_and_out:
3928                         if (eaten < 0 &&
3929                             tcp_try_rmem_schedule(sk, skb->truesize))
3930                                 goto drop;
3931
3932                         skb_set_owner_r(skb, sk);
3933                         __skb_queue_tail(&sk->sk_receive_queue, skb);
3934                 }
3935                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3936                 if (skb->len)
3937                         tcp_event_data_recv(sk, skb);
3938                 if (th->fin)
3939                         tcp_fin(skb, sk, th);
3940
3941                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3942                         tcp_ofo_queue(sk);
3943
3944                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
3945                          * gap in queue is filled.
3946                          */
3947                         if (skb_queue_empty(&tp->out_of_order_queue))
3948                                 inet_csk(sk)->icsk_ack.pingpong = 0;
3949                 }
3950
3951                 if (tp->rx_opt.num_sacks)
3952                         tcp_sack_remove(tp);
3953
3954                 tcp_fast_path_check(sk);
3955
3956                 if (eaten > 0)
3957                         __kfree_skb(skb);
3958                 else if (!sock_flag(sk, SOCK_DEAD))
3959                         sk->sk_data_ready(sk, 0);
3960                 return;
3961         }
3962
3963         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3964                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
3965                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3966                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3967
3968 out_of_window:
3969                 tcp_enter_quickack_mode(sk);
3970                 inet_csk_schedule_ack(sk);
3971 drop:
3972                 __kfree_skb(skb);
3973                 return;
3974         }
3975
3976         /* Out of window. F.e. zero window probe. */
3977         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3978                 goto out_of_window;
3979
3980         tcp_enter_quickack_mode(sk);
3981
3982         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3983                 /* Partial packet, seq < rcv_next < end_seq */
3984                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3985                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3986                            TCP_SKB_CB(skb)->end_seq);
3987
3988                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3989
3990                 /* If window is closed, drop tail of packet. But after
3991                  * remembering D-SACK for its head made in previous line.
3992                  */
3993                 if (!tcp_receive_window(tp))
3994                         goto out_of_window;
3995                 goto queue_and_out;
3996         }
3997
3998         TCP_ECN_check_ce(tp, skb);
3999
4000         if (tcp_try_rmem_schedule(sk, skb->truesize))
4001                 goto drop;
4002
4003         /* Disable header prediction. */
4004         tp->pred_flags = 0;
4005         inet_csk_schedule_ack(sk);
4006
4007         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4008                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4009
4010         skb_set_owner_r(skb, sk);
4011
4012         if (!skb_peek(&tp->out_of_order_queue)) {
4013                 /* Initial out of order segment, build 1 SACK. */
4014                 if (tcp_is_sack(tp)) {
4015                         tp->rx_opt.num_sacks = 1;
4016                         tp->rx_opt.dsack     = 0;
4017                         tp->rx_opt.eff_sacks = 1;
4018                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4019                         tp->selective_acks[0].end_seq =
4020                                                 TCP_SKB_CB(skb)->end_seq;
4021                 }
4022                 __skb_queue_head(&tp->out_of_order_queue, skb);
4023         } else {
4024                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4025                 u32 seq = TCP_SKB_CB(skb)->seq;
4026                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4027
4028                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4029                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4030
4031                         if (!tp->rx_opt.num_sacks ||
4032                             tp->selective_acks[0].end_seq != seq)
4033                                 goto add_sack;
4034
4035                         /* Common case: data arrive in order after hole. */
4036                         tp->selective_acks[0].end_seq = end_seq;
4037                         return;
4038                 }
4039
4040                 /* Find place to insert this segment. */
4041                 do {
4042                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4043                                 break;
4044                 } while ((skb1 = skb1->prev) !=
4045                          (struct sk_buff *)&tp->out_of_order_queue);
4046
4047                 /* Do skb overlap to previous one? */
4048                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4049                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4050                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4051                                 /* All the bits are present. Drop. */
4052                                 __kfree_skb(skb);
4053                                 tcp_dsack_set(tp, seq, end_seq);
4054                                 goto add_sack;
4055                         }
4056                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4057                                 /* Partial overlap. */
4058                                 tcp_dsack_set(tp, seq,
4059                                               TCP_SKB_CB(skb1)->end_seq);
4060                         } else {
4061                                 skb1 = skb1->prev;
4062                         }
4063                 }
4064                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4065
4066                 /* And clean segments covered by new one as whole. */
4067                 while ((skb1 = skb->next) !=
4068                        (struct sk_buff *)&tp->out_of_order_queue &&
4069                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4070                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4071                                 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4072                                                  end_seq);
4073                                 break;
4074                         }
4075                         __skb_unlink(skb1, &tp->out_of_order_queue);
4076                         tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4077                                          TCP_SKB_CB(skb1)->end_seq);
4078                         __kfree_skb(skb1);
4079                 }
4080
4081 add_sack:
4082                 if (tcp_is_sack(tp))
4083                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4084         }
4085 }
4086
4087 /* Collapse contiguous sequence of skbs head..tail with
4088  * sequence numbers start..end.
4089  * Segments with FIN/SYN are not collapsed (only because this
4090  * simplifies code)
4091  */
4092 static void
4093 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4094              struct sk_buff *head, struct sk_buff *tail,
4095              u32 start, u32 end)
4096 {
4097         struct sk_buff *skb;
4098
4099         /* First, check that queue is collapsible and find
4100          * the point where collapsing can be useful. */
4101         for (skb = head; skb != tail;) {
4102                 /* No new bits? It is possible on ofo queue. */
4103                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4104                         struct sk_buff *next = skb->next;
4105                         __skb_unlink(skb, list);
4106                         __kfree_skb(skb);
4107                         NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4108                         skb = next;
4109                         continue;
4110                 }
4111
4112                 /* The first skb to collapse is:
4113                  * - not SYN/FIN and
4114                  * - bloated or contains data before "start" or
4115                  *   overlaps to the next one.
4116                  */
4117                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4118                     (tcp_win_from_space(skb->truesize) > skb->len ||
4119                      before(TCP_SKB_CB(skb)->seq, start) ||
4120                      (skb->next != tail &&
4121                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4122                         break;
4123
4124                 /* Decided to skip this, advance start seq. */
4125                 start = TCP_SKB_CB(skb)->end_seq;
4126                 skb = skb->next;
4127         }
4128         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4129                 return;
4130
4131         while (before(start, end)) {
4132                 struct sk_buff *nskb;
4133                 unsigned int header = skb_headroom(skb);
4134                 int copy = SKB_MAX_ORDER(header, 0);
4135
4136                 /* Too big header? This can happen with IPv6. */
4137                 if (copy < 0)
4138                         return;
4139                 if (end - start < copy)
4140                         copy = end - start;
4141                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4142                 if (!nskb)
4143                         return;
4144
4145                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4146                 skb_set_network_header(nskb, (skb_network_header(skb) -
4147                                               skb->head));
4148                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4149                                                 skb->head));
4150                 skb_reserve(nskb, header);
4151                 memcpy(nskb->head, skb->head, header);
4152                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4153                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4154                 __skb_insert(nskb, skb->prev, skb, list);
4155                 skb_set_owner_r(nskb, sk);
4156
4157                 /* Copy data, releasing collapsed skbs. */
4158                 while (copy > 0) {
4159                         int offset = start - TCP_SKB_CB(skb)->seq;
4160                         int size = TCP_SKB_CB(skb)->end_seq - start;
4161
4162                         BUG_ON(offset < 0);
4163                         if (size > 0) {
4164                                 size = min(copy, size);
4165                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4166                                         BUG();
4167                                 TCP_SKB_CB(nskb)->end_seq += size;
4168                                 copy -= size;
4169                                 start += size;
4170                         }
4171                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4172                                 struct sk_buff *next = skb->next;
4173                                 __skb_unlink(skb, list);
4174                                 __kfree_skb(skb);
4175                                 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4176                                 skb = next;
4177                                 if (skb == tail ||
4178                                     tcp_hdr(skb)->syn ||
4179                                     tcp_hdr(skb)->fin)
4180                                         return;
4181                         }
4182                 }
4183         }
4184 }
4185
4186 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4187  * and tcp_collapse() them until all the queue is collapsed.
4188  */
4189 static void tcp_collapse_ofo_queue(struct sock *sk)
4190 {
4191         struct tcp_sock *tp = tcp_sk(sk);
4192         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4193         struct sk_buff *head;
4194         u32 start, end;
4195
4196         if (skb == NULL)
4197                 return;
4198
4199         start = TCP_SKB_CB(skb)->seq;
4200         end = TCP_SKB_CB(skb)->end_seq;
4201         head = skb;
4202
4203         for (;;) {
4204                 skb = skb->next;
4205
4206                 /* Segment is terminated when we see gap or when
4207                  * we are at the end of all the queue. */
4208                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4209                     after(TCP_SKB_CB(skb)->seq, end) ||
4210                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4211                         tcp_collapse(sk, &tp->out_of_order_queue,
4212                                      head, skb, start, end);
4213                         head = skb;
4214                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4215                                 break;
4216                         /* Start new segment */
4217                         start = TCP_SKB_CB(skb)->seq;
4218                         end = TCP_SKB_CB(skb)->end_seq;
4219                 } else {
4220                         if (before(TCP_SKB_CB(skb)->seq, start))
4221                                 start = TCP_SKB_CB(skb)->seq;
4222                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4223                                 end = TCP_SKB_CB(skb)->end_seq;
4224                 }
4225         }
4226 }
4227
4228 /*
4229  * Purge the out-of-order queue.
4230  * Return true if queue was pruned.
4231  */
4232 static int tcp_prune_ofo_queue(struct sock *sk)
4233 {
4234         struct tcp_sock *tp = tcp_sk(sk);
4235         int res = 0;
4236
4237         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4238                 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4239                 __skb_queue_purge(&tp->out_of_order_queue);
4240
4241                 /* Reset SACK state.  A conforming SACK implementation will
4242                  * do the same at a timeout based retransmit.  When a connection
4243                  * is in a sad state like this, we care only about integrity
4244                  * of the connection not performance.
4245                  */
4246                 if (tp->rx_opt.sack_ok)
4247                         tcp_sack_reset(&tp->rx_opt);
4248                 sk_mem_reclaim(sk);
4249                 res = 1;
4250         }
4251         return res;
4252 }
4253
4254 /* Reduce allocated memory if we can, trying to get
4255  * the socket within its memory limits again.
4256  *
4257  * Return less than zero if we should start dropping frames
4258  * until the socket owning process reads some of the data
4259  * to stabilize the situation.
4260  */
4261 static int tcp_prune_queue(struct sock *sk)
4262 {
4263         struct tcp_sock *tp = tcp_sk(sk);
4264
4265         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4266
4267         NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4268
4269         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4270                 tcp_clamp_window(sk);
4271         else if (tcp_memory_pressure)
4272                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4273
4274         tcp_collapse_ofo_queue(sk);
4275         tcp_collapse(sk, &sk->sk_receive_queue,
4276                      sk->sk_receive_queue.next,
4277                      (struct sk_buff *)&sk->sk_receive_queue,
4278                      tp->copied_seq, tp->rcv_nxt);
4279         sk_mem_reclaim(sk);
4280
4281         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4282                 return 0;
4283
4284         /* Collapsing did not help, destructive actions follow.
4285          * This must not ever occur. */
4286
4287         tcp_prune_ofo_queue(sk);
4288
4289         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4290                 return 0;
4291
4292         /* If we are really being abused, tell the caller to silently
4293          * drop receive data on the floor.  It will get retransmitted
4294          * and hopefully then we'll have sufficient space.
4295          */
4296         NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4297
4298         /* Massive buffer overcommit. */
4299         tp->pred_flags = 0;
4300         return -1;
4301 }
4302
4303 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4304  * As additional protections, we do not touch cwnd in retransmission phases,
4305  * and if application hit its sndbuf limit recently.
4306  */
4307 void tcp_cwnd_application_limited(struct sock *sk)
4308 {
4309         struct tcp_sock *tp = tcp_sk(sk);
4310
4311         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4312             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4313                 /* Limited by application or receiver window. */
4314                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4315                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4316                 if (win_used < tp->snd_cwnd) {
4317                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4318                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4319                 }
4320                 tp->snd_cwnd_used = 0;
4321         }
4322         tp->snd_cwnd_stamp = tcp_time_stamp;
4323 }
4324
4325 static int tcp_should_expand_sndbuf(struct sock *sk)
4326 {
4327         struct tcp_sock *tp = tcp_sk(sk);
4328
4329         /* If the user specified a specific send buffer setting, do
4330          * not modify it.
4331          */
4332         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4333                 return 0;
4334
4335         /* If we are under global TCP memory pressure, do not expand.  */
4336         if (tcp_memory_pressure)
4337                 return 0;
4338
4339         /* If we are under soft global TCP memory pressure, do not expand.  */
4340         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4341                 return 0;
4342
4343         /* If we filled the congestion window, do not expand.  */
4344         if (tp->packets_out >= tp->snd_cwnd)
4345                 return 0;
4346
4347         return 1;
4348 }
4349
4350 /* When incoming ACK allowed to free some skb from write_queue,
4351  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4352  * on the exit from tcp input handler.
4353  *
4354  * PROBLEM: sndbuf expansion does not work well with largesend.
4355  */
4356 static void tcp_new_space(struct sock *sk)
4357 {
4358         struct tcp_sock *tp = tcp_sk(sk);
4359
4360         if (tcp_should_expand_sndbuf(sk)) {
4361                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4362                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4363                     demanded = max_t(unsigned int, tp->snd_cwnd,
4364                                      tp->reordering + 1);
4365                 sndmem *= 2 * demanded;
4366                 if (sndmem > sk->sk_sndbuf)
4367                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4368                 tp->snd_cwnd_stamp = tcp_time_stamp;
4369         }
4370
4371         sk->sk_write_space(sk);
4372 }
4373
4374 static void tcp_check_space(struct sock *sk)
4375 {
4376         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4377                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4378                 if (sk->sk_socket &&
4379                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4380                         tcp_new_space(sk);
4381         }
4382 }
4383
4384 static inline void tcp_data_snd_check(struct sock *sk)
4385 {
4386         tcp_push_pending_frames(sk);
4387         tcp_check_space(sk);
4388 }
4389
4390 /*
4391  * Check if sending an ack is needed.
4392  */
4393 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4394 {
4395         struct tcp_sock *tp = tcp_sk(sk);
4396
4397             /* More than one full frame received... */
4398         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4399              /* ... and right edge of window advances far enough.
4400               * (tcp_recvmsg() will send ACK otherwise). Or...
4401               */
4402              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4403             /* We ACK each frame or... */
4404             tcp_in_quickack_mode(sk) ||
4405             /* We have out of order data. */
4406             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4407                 /* Then ack it now */
4408                 tcp_send_ack(sk);
4409         } else {
4410                 /* Else, send delayed ack. */
4411                 tcp_send_delayed_ack(sk);
4412         }
4413 }
4414
4415 static inline void tcp_ack_snd_check(struct sock *sk)
4416 {
4417         if (!inet_csk_ack_scheduled(sk)) {
4418                 /* We sent a data segment already. */
4419                 return;
4420         }
4421         __tcp_ack_snd_check(sk, 1);
4422 }
4423
4424 /*
4425  *      This routine is only called when we have urgent data
4426  *      signaled. Its the 'slow' part of tcp_urg. It could be
4427  *      moved inline now as tcp_urg is only called from one
4428  *      place. We handle URGent data wrong. We have to - as
4429  *      BSD still doesn't use the correction from RFC961.
4430  *      For 1003.1g we should support a new option TCP_STDURG to permit
4431  *      either form (or just set the sysctl tcp_stdurg).
4432  */
4433
4434 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4435 {
4436         struct tcp_sock *tp = tcp_sk(sk);
4437         u32 ptr = ntohs(th->urg_ptr);
4438
4439         if (ptr && !sysctl_tcp_stdurg)
4440                 ptr--;
4441         ptr += ntohl(th->seq);
4442
4443         /* Ignore urgent data that we've already seen and read. */
4444         if (after(tp->copied_seq, ptr))
4445                 return;
4446
4447         /* Do not replay urg ptr.
4448          *
4449          * NOTE: interesting situation not covered by specs.
4450          * Misbehaving sender may send urg ptr, pointing to segment,
4451          * which we already have in ofo queue. We are not able to fetch
4452          * such data and will stay in TCP_URG_NOTYET until will be eaten
4453          * by recvmsg(). Seems, we are not obliged to handle such wicked
4454          * situations. But it is worth to think about possibility of some
4455          * DoSes using some hypothetical application level deadlock.
4456          */
4457         if (before(ptr, tp->rcv_nxt))
4458                 return;
4459
4460         /* Do we already have a newer (or duplicate) urgent pointer? */
4461         if (tp->urg_data && !after(ptr, tp->urg_seq))
4462                 return;
4463
4464         /* Tell the world about our new urgent pointer. */
4465         sk_send_sigurg(sk);
4466
4467         /* We may be adding urgent data when the last byte read was
4468          * urgent. To do this requires some care. We cannot just ignore
4469          * tp->copied_seq since we would read the last urgent byte again
4470          * as data, nor can we alter copied_seq until this data arrives
4471          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4472          *
4473          * NOTE. Double Dutch. Rendering to plain English: author of comment
4474          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4475          * and expect that both A and B disappear from stream. This is _wrong_.
4476          * Though this happens in BSD with high probability, this is occasional.
4477          * Any application relying on this is buggy. Note also, that fix "works"
4478          * only in this artificial test. Insert some normal data between A and B and we will
4479          * decline of BSD again. Verdict: it is better to remove to trap
4480          * buggy users.
4481          */
4482         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4483             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4484                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4485                 tp->copied_seq++;
4486                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4487                         __skb_unlink(skb, &sk->sk_receive_queue);
4488                         __kfree_skb(skb);
4489                 }
4490         }
4491
4492         tp->urg_data = TCP_URG_NOTYET;
4493         tp->urg_seq = ptr;
4494
4495         /* Disable header prediction. */
4496         tp->pred_flags = 0;
4497 }
4498
4499 /* This is the 'fast' part of urgent handling. */
4500 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4501 {
4502         struct tcp_sock *tp = tcp_sk(sk);
4503
4504         /* Check if we get a new urgent pointer - normally not. */
4505         if (th->urg)
4506                 tcp_check_urg(sk, th);
4507
4508         /* Do we wait for any urgent data? - normally not... */
4509         if (tp->urg_data == TCP_URG_NOTYET) {
4510                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4511                           th->syn;
4512
4513                 /* Is the urgent pointer pointing into this packet? */
4514                 if (ptr < skb->len) {
4515                         u8 tmp;
4516                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4517                                 BUG();
4518                         tp->urg_data = TCP_URG_VALID | tmp;
4519                         if (!sock_flag(sk, SOCK_DEAD))
4520                                 sk->sk_data_ready(sk, 0);
4521                 }
4522         }
4523 }
4524
4525 static int tcp_defer_accept_check(struct sock *sk)
4526 {
4527         struct tcp_sock *tp = tcp_sk(sk);
4528
4529         if (tp->defer_tcp_accept.request) {
4530                 int queued_data =  tp->rcv_nxt - tp->copied_seq;
4531                 int hasfin =  !skb_queue_empty(&sk->sk_receive_queue) ?
4532                         tcp_hdr((struct sk_buff *)
4533                                 sk->sk_receive_queue.prev)->fin : 0;
4534
4535                 if (queued_data && hasfin)
4536                         queued_data--;
4537
4538                 if (queued_data &&
4539                     tp->defer_tcp_accept.listen_sk->sk_state == TCP_LISTEN) {
4540                         if (sock_flag(sk, SOCK_KEEPOPEN)) {
4541                                 inet_csk_reset_keepalive_timer(sk,
4542                                                                keepalive_time_when(tp));
4543                         } else {
4544                                 inet_csk_delete_keepalive_timer(sk);
4545                         }
4546
4547                         inet_csk_reqsk_queue_add(
4548                                 tp->defer_tcp_accept.listen_sk,
4549                                 tp->defer_tcp_accept.request,
4550                                 sk);
4551
4552                         tp->defer_tcp_accept.listen_sk->sk_data_ready(
4553                                 tp->defer_tcp_accept.listen_sk, 0);
4554
4555                         sock_put(tp->defer_tcp_accept.listen_sk);
4556                         sock_put(sk);
4557                         tp->defer_tcp_accept.listen_sk = NULL;
4558                         tp->defer_tcp_accept.request = NULL;
4559                 } else if (hasfin ||
4560                            tp->defer_tcp_accept.listen_sk->sk_state != TCP_LISTEN) {
4561                         tcp_reset(sk);
4562                         return -1;
4563                 }
4564         }
4565         return 0;
4566 }
4567
4568 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4569 {
4570         struct tcp_sock *tp = tcp_sk(sk);
4571         int chunk = skb->len - hlen;
4572         int err;
4573
4574         local_bh_enable();
4575         if (skb_csum_unnecessary(skb))
4576                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4577         else
4578                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4579                                                        tp->ucopy.iov);
4580
4581         if (!err) {
4582                 tp->ucopy.len -= chunk;
4583                 tp->copied_seq += chunk;
4584                 tcp_rcv_space_adjust(sk);
4585         }
4586
4587         local_bh_disable();
4588         return err;
4589 }
4590
4591 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4592                                             struct sk_buff *skb)
4593 {
4594         __sum16 result;
4595
4596         if (sock_owned_by_user(sk)) {
4597                 local_bh_enable();
4598                 result = __tcp_checksum_complete(skb);
4599                 local_bh_disable();
4600         } else {
4601                 result = __tcp_checksum_complete(skb);
4602         }
4603         return result;
4604 }
4605
4606 static inline int tcp_checksum_complete_user(struct sock *sk,
4607                                              struct sk_buff *skb)
4608 {
4609         return !skb_csum_unnecessary(skb) &&
4610                __tcp_checksum_complete_user(sk, skb);
4611 }
4612
4613 #ifdef CONFIG_NET_DMA
4614 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4615                                   int hlen)
4616 {
4617         struct tcp_sock *tp = tcp_sk(sk);
4618         int chunk = skb->len - hlen;
4619         int dma_cookie;
4620         int copied_early = 0;
4621
4622         if (tp->ucopy.wakeup)
4623                 return 0;
4624
4625         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4626                 tp->ucopy.dma_chan = get_softnet_dma();
4627
4628         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4629
4630                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4631                                                          skb, hlen,
4632                                                          tp->ucopy.iov, chunk,
4633                                                          tp->ucopy.pinned_list);
4634
4635                 if (dma_cookie < 0)
4636                         goto out;
4637
4638                 tp->ucopy.dma_cookie = dma_cookie;
4639                 copied_early = 1;
4640
4641                 tp->ucopy.len -= chunk;
4642                 tp->copied_seq += chunk;
4643                 tcp_rcv_space_adjust(sk);
4644
4645                 if ((tp->ucopy.len == 0) ||
4646                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4647                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4648                         tp->ucopy.wakeup = 1;
4649                         sk->sk_data_ready(sk, 0);
4650                 }
4651         } else if (chunk > 0) {
4652                 tp->ucopy.wakeup = 1;
4653                 sk->sk_data_ready(sk, 0);
4654         }
4655 out:
4656         return copied_early;
4657 }
4658 #endif /* CONFIG_NET_DMA */
4659
4660 /*
4661  *      TCP receive function for the ESTABLISHED state.
4662  *
4663  *      It is split into a fast path and a slow path. The fast path is
4664  *      disabled when:
4665  *      - A zero window was announced from us - zero window probing
4666  *        is only handled properly in the slow path.
4667  *      - Out of order segments arrived.
4668  *      - Urgent data is expected.
4669  *      - There is no buffer space left
4670  *      - Unexpected TCP flags/window values/header lengths are received
4671  *        (detected by checking the TCP header against pred_flags)
4672  *      - Data is sent in both directions. Fast path only supports pure senders
4673  *        or pure receivers (this means either the sequence number or the ack
4674  *        value must stay constant)
4675  *      - Unexpected TCP option.
4676  *
4677  *      When these conditions are not satisfied it drops into a standard
4678  *      receive procedure patterned after RFC793 to handle all cases.
4679  *      The first three cases are guaranteed by proper pred_flags setting,
4680  *      the rest is checked inline. Fast processing is turned on in
4681  *      tcp_data_queue when everything is OK.
4682  */
4683 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4684                         struct tcphdr *th, unsigned len)
4685 {
4686         struct tcp_sock *tp = tcp_sk(sk);
4687
4688         /*
4689          *      Header prediction.
4690          *      The code loosely follows the one in the famous
4691          *      "30 instruction TCP receive" Van Jacobson mail.
4692          *
4693          *      Van's trick is to deposit buffers into socket queue
4694          *      on a device interrupt, to call tcp_recv function
4695          *      on the receive process context and checksum and copy
4696          *      the buffer to user space. smart...
4697          *
4698          *      Our current scheme is not silly either but we take the
4699          *      extra cost of the net_bh soft interrupt processing...
4700          *      We do checksum and copy also but from device to kernel.
4701          */
4702
4703         tp->rx_opt.saw_tstamp = 0;
4704
4705         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4706          *      if header_prediction is to be made
4707          *      'S' will always be tp->tcp_header_len >> 2
4708          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4709          *  turn it off (when there are holes in the receive
4710          *       space for instance)
4711          *      PSH flag is ignored.
4712          */
4713
4714         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4715             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4716                 int tcp_header_len = tp->tcp_header_len;
4717
4718                 /* Timestamp header prediction: tcp_header_len
4719                  * is automatically equal to th->doff*4 due to pred_flags
4720                  * match.
4721                  */
4722
4723                 /* Check timestamp */
4724                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4725                         __be32 *ptr = (__be32 *)(th + 1);
4726
4727                         /* No? Slow path! */
4728                         if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4729                                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4730                                 goto slow_path;
4731
4732                         tp->rx_opt.saw_tstamp = 1;
4733                         ++ptr;
4734                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
4735                         ++ptr;
4736                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4737
4738                         /* If PAWS failed, check it more carefully in slow path */
4739                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4740                                 goto slow_path;
4741
4742                         /* DO NOT update ts_recent here, if checksum fails
4743                          * and timestamp was corrupted part, it will result
4744                          * in a hung connection since we will drop all
4745                          * future packets due to the PAWS test.
4746                          */
4747                 }
4748
4749                 if (len <= tcp_header_len) {
4750                         /* Bulk data transfer: sender */
4751                         if (len == tcp_header_len) {
4752                                 /* Predicted packet is in window by definition.
4753                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4754                                  * Hence, check seq<=rcv_wup reduces to:
4755                                  */
4756                                 if (tcp_header_len ==
4757                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4758                                     tp->rcv_nxt == tp->rcv_wup)
4759                                         tcp_store_ts_recent(tp);
4760
4761                                 /* We know that such packets are checksummed
4762                                  * on entry.
4763                                  */
4764                                 tcp_ack(sk, skb, 0);
4765                                 __kfree_skb(skb);
4766                                 tcp_data_snd_check(sk);
4767                                 return 0;
4768                         } else { /* Header too small */
4769                                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4770                                 goto discard;
4771                         }
4772                 } else {
4773                         int eaten = 0;
4774                         int copied_early = 0;
4775
4776                         if (tp->copied_seq == tp->rcv_nxt &&
4777                             len - tcp_header_len <= tp->ucopy.len) {
4778 #ifdef CONFIG_NET_DMA
4779                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4780                                         copied_early = 1;
4781                                         eaten = 1;
4782                                 }
4783 #endif
4784                                 if (tp->ucopy.task == current &&
4785                                     sock_owned_by_user(sk) && !copied_early) {
4786                                         __set_current_state(TASK_RUNNING);
4787
4788                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4789                                                 eaten = 1;
4790                                 }
4791                                 if (eaten) {
4792                                         /* Predicted packet is in window by definition.
4793                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4794                                          * Hence, check seq<=rcv_wup reduces to:
4795                                          */
4796                                         if (tcp_header_len ==
4797                                             (sizeof(struct tcphdr) +
4798                                              TCPOLEN_TSTAMP_ALIGNED) &&
4799                                             tp->rcv_nxt == tp->rcv_wup)
4800                                                 tcp_store_ts_recent(tp);
4801
4802                                         tcp_rcv_rtt_measure_ts(sk, skb);
4803
4804                                         __skb_pull(skb, tcp_header_len);
4805                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4806                                         NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4807                                 }
4808                                 if (copied_early)
4809                                         tcp_cleanup_rbuf(sk, skb->len);
4810                         }
4811                         if (!eaten) {
4812                                 if (tcp_checksum_complete_user(sk, skb))
4813                                         goto csum_error;
4814
4815                                 /* Predicted packet is in window by definition.
4816                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4817                                  * Hence, check seq<=rcv_wup reduces to:
4818                                  */
4819                                 if (tcp_header_len ==
4820                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4821                                     tp->rcv_nxt == tp->rcv_wup)
4822                                         tcp_store_ts_recent(tp);
4823
4824                                 tcp_rcv_rtt_measure_ts(sk, skb);
4825
4826                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4827                                         goto step5;
4828
4829                                 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4830
4831                                 /* Bulk data transfer: receiver */
4832                                 __skb_pull(skb, tcp_header_len);
4833                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4834                                 skb_set_owner_r(skb, sk);
4835                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4836                         }
4837
4838                         tcp_event_data_recv(sk, skb);
4839
4840                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4841                                 /* Well, only one small jumplet in fast path... */
4842                                 tcp_ack(sk, skb, FLAG_DATA);
4843                                 tcp_data_snd_check(sk);
4844                                 if (!inet_csk_ack_scheduled(sk))
4845                                         goto no_ack;
4846                         }
4847
4848                         __tcp_ack_snd_check(sk, 0);
4849 no_ack:
4850 #ifdef CONFIG_NET_DMA
4851                         if (copied_early)
4852                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4853                         else
4854 #endif
4855                         if (eaten)
4856                                 __kfree_skb(skb);
4857                         else
4858                                 sk->sk_data_ready(sk, 0);
4859                         return 0;
4860                 }
4861         }
4862
4863 slow_path:
4864         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4865                 goto csum_error;
4866
4867         /*
4868          * RFC1323: H1. Apply PAWS check first.
4869          */
4870         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4871             tcp_paws_discard(sk, skb)) {
4872                 if (!th->rst) {
4873                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4874                         tcp_send_dupack(sk, skb);
4875                         goto discard;
4876                 }
4877                 /* Resets are accepted even if PAWS failed.
4878
4879                    ts_recent update must be made after we are sure
4880                    that the packet is in window.
4881                  */
4882         }
4883
4884         /*
4885          *      Standard slow path.
4886          */
4887
4888         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4889                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4890                  * (RST) segments are validated by checking their SEQ-fields."
4891                  * And page 69: "If an incoming segment is not acceptable,
4892                  * an acknowledgment should be sent in reply (unless the RST bit
4893                  * is set, if so drop the segment and return)".
4894                  */
4895                 if (!th->rst)
4896                         tcp_send_dupack(sk, skb);
4897                 goto discard;
4898         }
4899
4900         if (th->rst) {
4901                 tcp_reset(sk);
4902                 goto discard;
4903         }
4904
4905         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4906
4907         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4908                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4909                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4910                 tcp_reset(sk);
4911                 return 1;
4912         }
4913
4914 step5:
4915         if (th->ack)
4916                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4917
4918         tcp_rcv_rtt_measure_ts(sk, skb);
4919
4920         /* Process urgent data. */
4921         tcp_urg(sk, skb, th);
4922
4923         /* step 7: process the segment text */
4924         tcp_data_queue(sk, skb);
4925
4926         tcp_data_snd_check(sk);
4927         tcp_ack_snd_check(sk);
4928
4929         tcp_defer_accept_check(sk);
4930         return 0;
4931
4932 csum_error:
4933         TCP_INC_STATS_BH(TCP_MIB_INERRS);
4934
4935 discard:
4936         __kfree_skb(skb);
4937         return 0;
4938 }
4939
4940 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4941                                          struct tcphdr *th, unsigned len)
4942 {
4943         struct tcp_sock *tp = tcp_sk(sk);
4944         struct inet_connection_sock *icsk = inet_csk(sk);
4945         int saved_clamp = tp->rx_opt.mss_clamp;
4946
4947         tcp_parse_options(skb, &tp->rx_opt, 0);
4948
4949         if (th->ack) {
4950                 /* rfc793:
4951                  * "If the state is SYN-SENT then
4952                  *    first check the ACK bit
4953                  *      If the ACK bit is set
4954                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4955                  *        a reset (unless the RST bit is set, if so drop
4956                  *        the segment and return)"
4957                  *
4958                  *  We do not send data with SYN, so that RFC-correct
4959                  *  test reduces to:
4960                  */
4961                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4962                         goto reset_and_undo;
4963
4964                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4965                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4966                              tcp_time_stamp)) {
4967                         NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4968                         goto reset_and_undo;
4969                 }
4970
4971                 /* Now ACK is acceptable.
4972                  *
4973                  * "If the RST bit is set
4974                  *    If the ACK was acceptable then signal the user "error:
4975                  *    connection reset", drop the segment, enter CLOSED state,
4976                  *    delete TCB, and return."
4977                  */
4978
4979                 if (th->rst) {
4980                         tcp_reset(sk);
4981                         goto discard;
4982                 }
4983
4984                 /* rfc793:
4985                  *   "fifth, if neither of the SYN or RST bits is set then
4986                  *    drop the segment and return."
4987                  *
4988                  *    See note below!
4989                  *                                        --ANK(990513)
4990                  */
4991                 if (!th->syn)
4992                         goto discard_and_undo;
4993
4994                 /* rfc793:
4995                  *   "If the SYN bit is on ...
4996                  *    are acceptable then ...
4997                  *    (our SYN has been ACKed), change the connection
4998                  *    state to ESTABLISHED..."
4999                  */
5000
5001                 TCP_ECN_rcv_synack(tp, th);
5002
5003                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5004                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5005
5006                 /* Ok.. it's good. Set up sequence numbers and
5007                  * move to established.
5008                  */
5009                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5010                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5011
5012                 /* RFC1323: The window in SYN & SYN/ACK segments is
5013                  * never scaled.
5014                  */
5015                 tp->snd_wnd = ntohs(th->window);
5016                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5017
5018                 if (!tp->rx_opt.wscale_ok) {
5019                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5020                         tp->window_clamp = min(tp->window_clamp, 65535U);
5021                 }
5022
5023                 if (tp->rx_opt.saw_tstamp) {
5024                         tp->rx_opt.tstamp_ok       = 1;
5025                         tp->tcp_header_len =
5026                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5027                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5028                         tcp_store_ts_recent(tp);
5029                 } else {
5030                         tp->tcp_header_len = sizeof(struct tcphdr);
5031                 }
5032
5033                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5034                         tcp_enable_fack(tp);
5035
5036                 tcp_mtup_init(sk);
5037                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5038                 tcp_initialize_rcv_mss(sk);
5039
5040                 /* Remember, tcp_poll() does not lock socket!
5041                  * Change state from SYN-SENT only after copied_seq
5042                  * is initialized. */
5043                 tp->copied_seq = tp->rcv_nxt;
5044                 smp_mb();
5045                 tcp_set_state(sk, TCP_ESTABLISHED);
5046
5047                 security_inet_conn_established(sk, skb);
5048
5049                 /* Make sure socket is routed, for correct metrics.  */
5050                 icsk->icsk_af_ops->rebuild_header(sk);
5051
5052                 tcp_init_metrics(sk);
5053
5054                 tcp_init_congestion_control(sk);
5055
5056                 /* Prevent spurious tcp_cwnd_restart() on first data
5057                  * packet.
5058                  */
5059                 tp->lsndtime = tcp_time_stamp;
5060
5061                 tcp_init_buffer_space(sk);
5062
5063                 if (sock_flag(sk, SOCK_KEEPOPEN))
5064                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5065
5066                 if (!tp->rx_opt.snd_wscale)
5067                         __tcp_fast_path_on(tp, tp->snd_wnd);
5068                 else
5069                         tp->pred_flags = 0;
5070
5071                 if (!sock_flag(sk, SOCK_DEAD)) {
5072                         sk->sk_state_change(sk);
5073                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5074                 }
5075
5076                 if (sk->sk_write_pending ||
5077                     icsk->icsk_accept_queue.rskq_defer_accept ||
5078                     icsk->icsk_ack.pingpong) {
5079                         /* Save one ACK. Data will be ready after
5080                          * several ticks, if write_pending is set.
5081                          *
5082                          * It may be deleted, but with this feature tcpdumps
5083                          * look so _wonderfully_ clever, that I was not able
5084                          * to stand against the temptation 8)     --ANK
5085                          */
5086                         inet_csk_schedule_ack(sk);
5087                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5088                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5089                         tcp_incr_quickack(sk);
5090                         tcp_enter_quickack_mode(sk);
5091                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5092                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5093
5094 discard:
5095                         __kfree_skb(skb);
5096                         return 0;
5097                 } else {
5098                         tcp_send_ack(sk);
5099                 }
5100                 return -1;
5101         }
5102
5103         /* No ACK in the segment */
5104
5105         if (th->rst) {
5106                 /* rfc793:
5107                  * "If the RST bit is set
5108                  *
5109                  *      Otherwise (no ACK) drop the segment and return."
5110                  */
5111
5112                 goto discard_and_undo;
5113         }
5114
5115         /* PAWS check. */
5116         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5117             tcp_paws_check(&tp->rx_opt, 0))
5118                 goto discard_and_undo;
5119
5120         if (th->syn) {
5121                 /* We see SYN without ACK. It is attempt of
5122                  * simultaneous connect with crossed SYNs.
5123                  * Particularly, it can be connect to self.
5124                  */
5125                 tcp_set_state(sk, TCP_SYN_RECV);
5126
5127                 if (tp->rx_opt.saw_tstamp) {
5128                         tp->rx_opt.tstamp_ok = 1;
5129                         tcp_store_ts_recent(tp);
5130                         tp->tcp_header_len =
5131                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5132                 } else {
5133                         tp->tcp_header_len = sizeof(struct tcphdr);
5134                 }
5135
5136                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5137                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5138
5139                 /* RFC1323: The window in SYN & SYN/ACK segments is
5140                  * never scaled.
5141                  */
5142                 tp->snd_wnd    = ntohs(th->window);
5143                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5144                 tp->max_window = tp->snd_wnd;
5145
5146                 TCP_ECN_rcv_syn(tp, th);
5147
5148                 tcp_mtup_init(sk);
5149                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5150                 tcp_initialize_rcv_mss(sk);
5151
5152                 tcp_send_synack(sk);
5153 #if 0
5154                 /* Note, we could accept data and URG from this segment.
5155                  * There are no obstacles to make this.
5156                  *
5157                  * However, if we ignore data in ACKless segments sometimes,
5158                  * we have no reasons to accept it sometimes.
5159                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5160                  * is not flawless. So, discard packet for sanity.
5161                  * Uncomment this return to process the data.
5162                  */
5163                 return -1;
5164 #else
5165                 goto discard;
5166 #endif
5167         }
5168         /* "fifth, if neither of the SYN or RST bits is set then
5169          * drop the segment and return."
5170          */
5171
5172 discard_and_undo:
5173         tcp_clear_options(&tp->rx_opt);
5174         tp->rx_opt.mss_clamp = saved_clamp;
5175         goto discard;
5176
5177 reset_and_undo:
5178         tcp_clear_options(&tp->rx_opt);
5179         tp->rx_opt.mss_clamp = saved_clamp;
5180         return 1;
5181 }
5182
5183 /*
5184  *      This function implements the receiving procedure of RFC 793 for
5185  *      all states except ESTABLISHED and TIME_WAIT.
5186  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5187  *      address independent.
5188  */
5189
5190 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5191                           struct tcphdr *th, unsigned len)
5192 {
5193         struct tcp_sock *tp = tcp_sk(sk);
5194         struct inet_connection_sock *icsk = inet_csk(sk);
5195         int queued = 0;
5196
5197         tp->rx_opt.saw_tstamp = 0;
5198
5199         switch (sk->sk_state) {
5200         case TCP_CLOSE:
5201                 goto discard;
5202
5203         case TCP_LISTEN:
5204                 if (th->ack)
5205                         return 1;
5206
5207                 if (th->rst)
5208                         goto discard;
5209
5210                 if (th->syn) {
5211                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5212                                 return 1;
5213
5214                         /* Now we have several options: In theory there is
5215                          * nothing else in the frame. KA9Q has an option to
5216                          * send data with the syn, BSD accepts data with the
5217                          * syn up to the [to be] advertised window and
5218                          * Solaris 2.1 gives you a protocol error. For now
5219                          * we just ignore it, that fits the spec precisely
5220                          * and avoids incompatibilities. It would be nice in
5221                          * future to drop through and process the data.
5222                          *
5223                          * Now that TTCP is starting to be used we ought to
5224                          * queue this data.
5225                          * But, this leaves one open to an easy denial of
5226                          * service attack, and SYN cookies can't defend
5227                          * against this problem. So, we drop the data
5228                          * in the interest of security over speed unless
5229                          * it's still in use.
5230                          */
5231                         kfree_skb(skb);
5232                         return 0;
5233                 }
5234                 goto discard;
5235
5236         case TCP_SYN_SENT:
5237                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5238                 if (queued >= 0)
5239                         return queued;
5240
5241                 /* Do step6 onward by hand. */
5242                 tcp_urg(sk, skb, th);
5243                 __kfree_skb(skb);
5244                 tcp_data_snd_check(sk);
5245                 return 0;
5246         }
5247
5248         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5249             tcp_paws_discard(sk, skb)) {
5250                 if (!th->rst) {
5251                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5252                         tcp_send_dupack(sk, skb);
5253                         goto discard;
5254                 }
5255                 /* Reset is accepted even if it did not pass PAWS. */
5256         }
5257
5258         /* step 1: check sequence number */
5259         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5260                 if (!th->rst)
5261                         tcp_send_dupack(sk, skb);
5262                 goto discard;
5263         }
5264
5265         /* step 2: check RST bit */
5266         if (th->rst) {
5267                 tcp_reset(sk);
5268                 goto discard;
5269         }
5270
5271         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5272
5273         /* step 3: check security and precedence [ignored] */
5274
5275         /*      step 4:
5276          *
5277          *      Check for a SYN in window.
5278          */
5279         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5280                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5281                 tcp_reset(sk);
5282                 return 1;
5283         }
5284
5285         /* step 5: check the ACK field */
5286         if (th->ack) {
5287                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5288
5289                 switch (sk->sk_state) {
5290                 case TCP_SYN_RECV:
5291                         if (acceptable) {
5292                                 tp->copied_seq = tp->rcv_nxt;
5293                                 smp_mb();
5294                                 tcp_set_state(sk, TCP_ESTABLISHED);
5295                                 sk->sk_state_change(sk);
5296
5297                                 /* Note, that this wakeup is only for marginal
5298                                  * crossed SYN case. Passively open sockets
5299                                  * are not waked up, because sk->sk_sleep ==
5300                                  * NULL and sk->sk_socket == NULL.
5301                                  */
5302                                 if (sk->sk_socket)
5303                                         sk_wake_async(sk,
5304                                                       SOCK_WAKE_IO, POLL_OUT);
5305
5306                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5307                                 tp->snd_wnd = ntohs(th->window) <<
5308                                               tp->rx_opt.snd_wscale;
5309                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5310                                             TCP_SKB_CB(skb)->seq);
5311
5312                                 /* tcp_ack considers this ACK as duplicate
5313                                  * and does not calculate rtt.
5314                                  * Fix it at least with timestamps.
5315                                  */
5316                                 if (tp->rx_opt.saw_tstamp &&
5317                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5318                                         tcp_ack_saw_tstamp(sk, 0);
5319
5320                                 if (tp->rx_opt.tstamp_ok)
5321                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5322
5323                                 /* Make sure socket is routed, for
5324                                  * correct metrics.
5325                                  */
5326                                 icsk->icsk_af_ops->rebuild_header(sk);
5327
5328                                 tcp_init_metrics(sk);
5329
5330                                 tcp_init_congestion_control(sk);
5331
5332                                 /* Prevent spurious tcp_cwnd_restart() on
5333                                  * first data packet.
5334                                  */
5335                                 tp->lsndtime = tcp_time_stamp;
5336
5337                                 tcp_mtup_init(sk);
5338                                 tcp_initialize_rcv_mss(sk);
5339                                 tcp_init_buffer_space(sk);
5340                                 tcp_fast_path_on(tp);
5341                         } else {
5342                                 return 1;
5343                         }
5344                         break;
5345
5346                 case TCP_FIN_WAIT1:
5347                         if (tp->snd_una == tp->write_seq) {
5348                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5349                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5350                                 dst_confirm(sk->sk_dst_cache);
5351
5352                                 if (!sock_flag(sk, SOCK_DEAD))
5353                                         /* Wake up lingering close() */
5354                                         sk->sk_state_change(sk);
5355                                 else {
5356                                         int tmo;
5357
5358                                         if (tp->linger2 < 0 ||
5359                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5360                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5361                                                 tcp_done(sk);
5362                                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5363                                                 return 1;
5364                                         }
5365
5366                                         tmo = tcp_fin_time(sk);
5367                                         if (tmo > TCP_TIMEWAIT_LEN) {
5368                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5369                                         } else if (th->fin || sock_owned_by_user(sk)) {
5370                                                 /* Bad case. We could lose such FIN otherwise.
5371                                                  * It is not a big problem, but it looks confusing
5372                                                  * and not so rare event. We still can lose it now,
5373                                                  * if it spins in bh_lock_sock(), but it is really
5374                                                  * marginal case.
5375                                                  */
5376                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5377                                         } else {
5378                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5379                                                 goto discard;
5380                                         }
5381                                 }
5382                         }
5383                         break;
5384
5385                 case TCP_CLOSING:
5386                         if (tp->snd_una == tp->write_seq) {
5387                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5388                                 goto discard;
5389                         }
5390                         break;
5391
5392                 case TCP_LAST_ACK:
5393                         if (tp->snd_una == tp->write_seq) {
5394                                 tcp_update_metrics(sk);
5395                                 tcp_done(sk);
5396                                 goto discard;
5397                         }
5398                         break;
5399                 }
5400         } else
5401                 goto discard;
5402
5403         /* step 6: check the URG bit */
5404         tcp_urg(sk, skb, th);
5405
5406         /* step 7: process the segment text */
5407         switch (sk->sk_state) {
5408         case TCP_CLOSE_WAIT:
5409         case TCP_CLOSING:
5410         case TCP_LAST_ACK:
5411                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5412                         break;
5413         case TCP_FIN_WAIT1:
5414         case TCP_FIN_WAIT2:
5415                 /* RFC 793 says to queue data in these states,
5416                  * RFC 1122 says we MUST send a reset.
5417                  * BSD 4.4 also does reset.
5418                  */
5419                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5420                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5421                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5422                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5423                                 tcp_reset(sk);
5424                                 return 1;
5425                         }
5426                 }
5427                 /* Fall through */
5428         case TCP_ESTABLISHED:
5429                 tcp_data_queue(sk, skb);
5430                 queued = 1;
5431                 break;
5432         }
5433
5434         /* tcp_data could move socket to TIME-WAIT */
5435         if (sk->sk_state != TCP_CLOSE) {
5436                 tcp_data_snd_check(sk);
5437                 tcp_ack_snd_check(sk);
5438         }
5439
5440         if (!queued) {
5441 discard:
5442                 __kfree_skb(skb);
5443         }
5444         return 0;
5445 }
5446
5447 EXPORT_SYMBOL(sysctl_tcp_ecn);
5448 EXPORT_SYMBOL(sysctl_tcp_reordering);
5449 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5450 EXPORT_SYMBOL(tcp_parse_options);
5451 EXPORT_SYMBOL(tcp_rcv_established);
5452 EXPORT_SYMBOL(tcp_rcv_state_process);
5453 EXPORT_SYMBOL(tcp_initialize_rcv_mss);