]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/ipv4/tcp_input.c
871110842809d0c61dcc30eb1084b4763c8b927a
[linux-2.6-omap-h63xx.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 /*
24  * Changes:
25  *              Pedro Roque     :       Fast Retransmit/Recovery.
26  *                                      Two receive queues.
27  *                                      Retransmit queue handled by TCP.
28  *                                      Better retransmit timer handling.
29  *                                      New congestion avoidance.
30  *                                      Header prediction.
31  *                                      Variable renaming.
32  *
33  *              Eric            :       Fast Retransmit.
34  *              Randy Scott     :       MSS option defines.
35  *              Eric Schenk     :       Fixes to slow start algorithm.
36  *              Eric Schenk     :       Yet another double ACK bug.
37  *              Eric Schenk     :       Delayed ACK bug fixes.
38  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
39  *              David S. Miller :       Don't allow zero congestion window.
40  *              Eric Schenk     :       Fix retransmitter so that it sends
41  *                                      next packet on ack of previous packet.
42  *              Andi Kleen      :       Moved open_request checking here
43  *                                      and process RSTs for open_requests.
44  *              Andi Kleen      :       Better prune_queue, and other fixes.
45  *              Andrey Savochkin:       Fix RTT measurements in the presence of
46  *                                      timestamps.
47  *              Andrey Savochkin:       Check sequence numbers correctly when
48  *                                      removing SACKs due to in sequence incoming
49  *                                      data segments.
50  *              Andi Kleen:             Make sure we never ack data there is not
51  *                                      enough room for. Also make this condition
52  *                                      a fatal error if it might still happen.
53  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
54  *                                      connections with MSS<min(MTU,ann. MSS)
55  *                                      work without delayed acks.
56  *              Andi Kleen:             Process packets with PSH set in the
57  *                                      fast path.
58  *              J Hadi Salim:           ECN support
59  *              Andrei Gurtov,
60  *              Pasi Sarolahti,
61  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
62  *                                      engine. Lots of bugs are found.
63  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
64  */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
96 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
97 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
99 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
100 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
101 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
102 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
103 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121  * real world.
122  */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124                                 const struct sk_buff *skb)
125 {
126         struct inet_connection_sock *icsk = inet_csk(sk);
127         const unsigned int lss = icsk->icsk_ack.last_seg_size;
128         unsigned int len;
129
130         icsk->icsk_ack.last_seg_size = 0;
131
132         /* skb->len may jitter because of SACKs, even if peer
133          * sends good full-sized frames.
134          */
135         len = skb_shinfo(skb)->gso_size ?: skb->len;
136         if (len >= icsk->icsk_ack.rcv_mss) {
137                 icsk->icsk_ack.rcv_mss = len;
138         } else {
139                 /* Otherwise, we make more careful check taking into account,
140                  * that SACKs block is variable.
141                  *
142                  * "len" is invariant segment length, including TCP header.
143                  */
144                 len += skb->data - skb_transport_header(skb);
145                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146                     /* If PSH is not set, packet should be
147                      * full sized, provided peer TCP is not badly broken.
148                      * This observation (if it is correct 8)) allows
149                      * to handle super-low mtu links fairly.
150                      */
151                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153                         /* Subtract also invariant (if peer is RFC compliant),
154                          * tcp header plus fixed timestamp option length.
155                          * Resulting "len" is MSS free of SACK jitter.
156                          */
157                         len -= tcp_sk(sk)->tcp_header_len;
158                         icsk->icsk_ack.last_seg_size = len;
159                         if (len == lss) {
160                                 icsk->icsk_ack.rcv_mss = len;
161                                 return;
162                         }
163                 }
164                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167         }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172         struct inet_connection_sock *icsk = inet_csk(sk);
173         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175         if (quickacks==0)
176                 quickacks=2;
177         if (quickacks > icsk->icsk_ack.quick)
178                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183         struct inet_connection_sock *icsk = inet_csk(sk);
184         tcp_incr_quickack(sk);
185         icsk->icsk_ack.pingpong = 0;
186         icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195         const struct inet_connection_sock *icsk = inet_csk(sk);
196         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201         if (tp->ecn_flags&TCP_ECN_OK)
202                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207         if (tcp_hdr(skb)->cwr)
208                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218         if (tp->ecn_flags&TCP_ECN_OK) {
219                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221                 /* Funny extension: if ECT is not set on a segment,
222                  * it is surely retransmit. It is not in ECN RFC,
223                  * but Linux follows this rule. */
224                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225                         tcp_enter_quickack_mode((struct sock *)tp);
226         }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231         if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232                 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237         if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238                 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243         if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244                 return 1;
245         return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256                      sizeof(struct sk_buff);
257
258         if (sk->sk_sndbuf < 3 * sndmem)
259                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290         struct tcp_sock *tp = tcp_sk(sk);
291         /* Optimize this! */
292         int truesize = tcp_win_from_space(skb->truesize)/2;
293         int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295         while (tp->rcv_ssthresh <= window) {
296                 if (truesize <= skb->len)
297                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299                 truesize >>= 1;
300                 window >>= 1;
301         }
302         return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306                             struct sk_buff *skb)
307 {
308         struct tcp_sock *tp = tcp_sk(sk);
309
310         /* Check #1 */
311         if (tp->rcv_ssthresh < tp->window_clamp &&
312             (int)tp->rcv_ssthresh < tcp_space(sk) &&
313             !tcp_memory_pressure) {
314                 int incr;
315
316                 /* Check #2. Increase window, if skb with such overhead
317                  * will fit to rcvbuf in future.
318                  */
319                 if (tcp_win_from_space(skb->truesize) <= skb->len)
320                         incr = 2*tp->advmss;
321                 else
322                         incr = __tcp_grow_window(sk, skb);
323
324                 if (incr) {
325                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326                         inet_csk(sk)->icsk_ack.quick |= 1;
327                 }
328         }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335         struct tcp_sock *tp = tcp_sk(sk);
336         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338         /* Try to select rcvbuf so that 4 mss-sized segments
339          * will fit to window and corresponding skbs will fit to our rcvbuf.
340          * (was 3; 4 is minimum to allow fast retransmit to work.)
341          */
342         while (tcp_win_from_space(rcvmem) < tp->advmss)
343                 rcvmem += 128;
344         if (sk->sk_rcvbuf < 4 * rcvmem)
345                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353         struct tcp_sock *tp = tcp_sk(sk);
354         int maxwin;
355
356         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357                 tcp_fixup_rcvbuf(sk);
358         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359                 tcp_fixup_sndbuf(sk);
360
361         tp->rcvq_space.space = tp->rcv_wnd;
362
363         maxwin = tcp_full_space(sk);
364
365         if (tp->window_clamp >= maxwin) {
366                 tp->window_clamp = maxwin;
367
368                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369                         tp->window_clamp = max(maxwin -
370                                                (maxwin >> sysctl_tcp_app_win),
371                                                4 * tp->advmss);
372         }
373
374         /* Force reservation of one segment. */
375         if (sysctl_tcp_app_win &&
376             tp->window_clamp > 2 * tp->advmss &&
377             tp->window_clamp + tp->advmss > maxwin)
378                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381         tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387         struct tcp_sock *tp = tcp_sk(sk);
388         struct inet_connection_sock *icsk = inet_csk(sk);
389
390         icsk->icsk_ack.quick = 0;
391
392         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394             !tcp_memory_pressure &&
395             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397                                     sysctl_tcp_rmem[2]);
398         }
399         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400                 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405  * RCV_MSS is an our guess about MSS used by the peer.
406  * We haven't any direct information about the MSS.
407  * It's better to underestimate the RCV_MSS rather than overestimate.
408  * Overestimations make us ACKing less frequently than needed.
409  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410  */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413         struct tcp_sock *tp = tcp_sk(sk);
414         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416         hint = min(hint, tp->rcv_wnd/2);
417         hint = min(hint, TCP_MIN_RCVMSS);
418         hint = max(hint, TCP_MIN_MSS);
419
420         inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424  *
425  * The algorithm for RTT estimation w/o timestamps is based on
426  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428  *
429  * More detail on this code can be found at
430  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431  * though this reference is out of date.  A new paper
432  * is pending.
433  */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436         u32 new_sample = tp->rcv_rtt_est.rtt;
437         long m = sample;
438
439         if (m == 0)
440                 m = 1;
441
442         if (new_sample != 0) {
443                 /* If we sample in larger samples in the non-timestamp
444                  * case, we could grossly overestimate the RTT especially
445                  * with chatty applications or bulk transfer apps which
446                  * are stalled on filesystem I/O.
447                  *
448                  * Also, since we are only going for a minimum in the
449                  * non-timestamp case, we do not smooth things out
450                  * else with timestamps disabled convergence takes too
451                  * long.
452                  */
453                 if (!win_dep) {
454                         m -= (new_sample >> 3);
455                         new_sample += m;
456                 } else if (m < new_sample)
457                         new_sample = m << 3;
458         } else {
459                 /* No previous measure. */
460                 new_sample = m << 3;
461         }
462
463         if (tp->rcv_rtt_est.rtt != new_sample)
464                 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469         if (tp->rcv_rtt_est.time == 0)
470                 goto new_measure;
471         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472                 return;
473         tcp_rcv_rtt_update(tp,
474                            jiffies - tp->rcv_rtt_est.time,
475                            1);
476
477 new_measure:
478         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479         tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484         struct tcp_sock *tp = tcp_sk(sk);
485         if (tp->rx_opt.rcv_tsecr &&
486             (TCP_SKB_CB(skb)->end_seq -
487              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492  * This function should be called every time data is copied to user space.
493  * It calculates the appropriate TCP receive buffer space.
494  */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497         struct tcp_sock *tp = tcp_sk(sk);
498         int time;
499         int space;
500
501         if (tp->rcvq_space.time == 0)
502                 goto new_measure;
503
504         time = tcp_time_stamp - tp->rcvq_space.time;
505         if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506             tp->rcv_rtt_est.rtt == 0)
507                 return;
508
509         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511         space = max(tp->rcvq_space.space, space);
512
513         if (tp->rcvq_space.space != space) {
514                 int rcvmem;
515
516                 tp->rcvq_space.space = space;
517
518                 if (sysctl_tcp_moderate_rcvbuf &&
519                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520                         int new_clamp = space;
521
522                         /* Receive space grows, normalize in order to
523                          * take into account packet headers and sk_buff
524                          * structure overhead.
525                          */
526                         space /= tp->advmss;
527                         if (!space)
528                                 space = 1;
529                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
530                                   16 + sizeof(struct sk_buff));
531                         while (tcp_win_from_space(rcvmem) < tp->advmss)
532                                 rcvmem += 128;
533                         space *= rcvmem;
534                         space = min(space, sysctl_tcp_rmem[2]);
535                         if (space > sk->sk_rcvbuf) {
536                                 sk->sk_rcvbuf = space;
537
538                                 /* Make the window clamp follow along.  */
539                                 tp->window_clamp = new_clamp;
540                         }
541                 }
542         }
543
544 new_measure:
545         tp->rcvq_space.seq = tp->copied_seq;
546         tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550  * behavior of the tp->ato delayed ack timeout interval.  When a
551  * connection starts up, we want to ack as quickly as possible.  The
552  * problem is that "good" TCP's do slow start at the beginning of data
553  * transmission.  The means that until we send the first few ACK's the
554  * sender will sit on his end and only queue most of his data, because
555  * he can only send snd_cwnd unacked packets at any given time.  For
556  * each ACK we send, he increments snd_cwnd and transmits more of his
557  * queue.  -DaveM
558  */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561         struct tcp_sock *tp = tcp_sk(sk);
562         struct inet_connection_sock *icsk = inet_csk(sk);
563         u32 now;
564
565         inet_csk_schedule_ack(sk);
566
567         tcp_measure_rcv_mss(sk, skb);
568
569         tcp_rcv_rtt_measure(tp);
570
571         now = tcp_time_stamp;
572
573         if (!icsk->icsk_ack.ato) {
574                 /* The _first_ data packet received, initialize
575                  * delayed ACK engine.
576                  */
577                 tcp_incr_quickack(sk);
578                 icsk->icsk_ack.ato = TCP_ATO_MIN;
579         } else {
580                 int m = now - icsk->icsk_ack.lrcvtime;
581
582                 if (m <= TCP_ATO_MIN/2) {
583                         /* The fastest case is the first. */
584                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585                 } else if (m < icsk->icsk_ack.ato) {
586                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
588                                 icsk->icsk_ack.ato = icsk->icsk_rto;
589                 } else if (m > icsk->icsk_rto) {
590                         /* Too long gap. Apparently sender failed to
591                          * restart window, so that we send ACKs quickly.
592                          */
593                         tcp_incr_quickack(sk);
594                         sk_stream_mem_reclaim(sk);
595                 }
596         }
597         icsk->icsk_ack.lrcvtime = now;
598
599         TCP_ECN_check_ce(tp, skb);
600
601         if (skb->len >= 128)
602                 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607         struct dst_entry *dst = __sk_dst_get(sk);
608         u32 rto_min = TCP_RTO_MIN;
609
610         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611                 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612         return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616  * routine either comes from timestamps, or from segments that were
617  * known _not_ to have been retransmitted [see Karn/Partridge
618  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619  * piece by Van Jacobson.
620  * NOTE: the next three routines used to be one big routine.
621  * To save cycles in the RFC 1323 implementation it was better to break
622  * it up into three procedures. -- erics
623  */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626         struct tcp_sock *tp = tcp_sk(sk);
627         long m = mrtt; /* RTT */
628
629         /*      The following amusing code comes from Jacobson's
630          *      article in SIGCOMM '88.  Note that rtt and mdev
631          *      are scaled versions of rtt and mean deviation.
632          *      This is designed to be as fast as possible
633          *      m stands for "measurement".
634          *
635          *      On a 1990 paper the rto value is changed to:
636          *      RTO = rtt + 4 * mdev
637          *
638          * Funny. This algorithm seems to be very broken.
639          * These formulae increase RTO, when it should be decreased, increase
640          * too slowly, when it should be increased quickly, decrease too quickly
641          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642          * does not matter how to _calculate_ it. Seems, it was trap
643          * that VJ failed to avoid. 8)
644          */
645         if (m == 0)
646                 m = 1;
647         if (tp->srtt != 0) {
648                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
649                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
650                 if (m < 0) {
651                         m = -m;         /* m is now abs(error) */
652                         m -= (tp->mdev >> 2);   /* similar update on mdev */
653                         /* This is similar to one of Eifel findings.
654                          * Eifel blocks mdev updates when rtt decreases.
655                          * This solution is a bit different: we use finer gain
656                          * for mdev in this case (alpha*beta).
657                          * Like Eifel it also prevents growth of rto,
658                          * but also it limits too fast rto decreases,
659                          * happening in pure Eifel.
660                          */
661                         if (m > 0)
662                                 m >>= 3;
663                 } else {
664                         m -= (tp->mdev >> 2);   /* similar update on mdev */
665                 }
666                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
667                 if (tp->mdev > tp->mdev_max) {
668                         tp->mdev_max = tp->mdev;
669                         if (tp->mdev_max > tp->rttvar)
670                                 tp->rttvar = tp->mdev_max;
671                 }
672                 if (after(tp->snd_una, tp->rtt_seq)) {
673                         if (tp->mdev_max < tp->rttvar)
674                                 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675                         tp->rtt_seq = tp->snd_nxt;
676                         tp->mdev_max = tcp_rto_min(sk);
677                 }
678         } else {
679                 /* no previous measure. */
680                 tp->srtt = m<<3;        /* take the measured time to be rtt */
681                 tp->mdev = m<<1;        /* make sure rto = 3*rtt */
682                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683                 tp->rtt_seq = tp->snd_nxt;
684         }
685 }
686
687 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
688  * routine referred to above.
689  */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692         const struct tcp_sock *tp = tcp_sk(sk);
693         /* Old crap is replaced with new one. 8)
694          *
695          * More seriously:
696          * 1. If rtt variance happened to be less 50msec, it is hallucination.
697          *    It cannot be less due to utterly erratic ACK generation made
698          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699          *    to do with delayed acks, because at cwnd>2 true delack timeout
700          *    is invisible. Actually, Linux-2.4 also generates erratic
701          *    ACKs in some circumstances.
702          */
703         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705         /* 2. Fixups made earlier cannot be right.
706          *    If we do not estimate RTO correctly without them,
707          *    all the algo is pure shit and should be replaced
708          *    with correct one. It is exactly, which we pretend to do.
709          */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713  * guarantees that rto is higher.
714  */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722    This function is called only, when TCP finishes successfully
723    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724  */
725 void tcp_update_metrics(struct sock *sk)
726 {
727         struct tcp_sock *tp = tcp_sk(sk);
728         struct dst_entry *dst = __sk_dst_get(sk);
729
730         if (sysctl_tcp_nometrics_save)
731                 return;
732
733         dst_confirm(dst);
734
735         if (dst && (dst->flags&DST_HOST)) {
736                 const struct inet_connection_sock *icsk = inet_csk(sk);
737                 int m;
738
739                 if (icsk->icsk_backoff || !tp->srtt) {
740                         /* This session failed to estimate rtt. Why?
741                          * Probably, no packets returned in time.
742                          * Reset our results.
743                          */
744                         if (!(dst_metric_locked(dst, RTAX_RTT)))
745                                 dst->metrics[RTAX_RTT-1] = 0;
746                         return;
747                 }
748
749                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751                 /* If newly calculated rtt larger than stored one,
752                  * store new one. Otherwise, use EWMA. Remember,
753                  * rtt overestimation is always better than underestimation.
754                  */
755                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756                         if (m <= 0)
757                                 dst->metrics[RTAX_RTT-1] = tp->srtt;
758                         else
759                                 dst->metrics[RTAX_RTT-1] -= (m>>3);
760                 }
761
762                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763                         if (m < 0)
764                                 m = -m;
765
766                         /* Scale deviation to rttvar fixed point */
767                         m >>= 1;
768                         if (m < tp->mdev)
769                                 m = tp->mdev;
770
771                         if (m >= dst_metric(dst, RTAX_RTTVAR))
772                                 dst->metrics[RTAX_RTTVAR-1] = m;
773                         else
774                                 dst->metrics[RTAX_RTTVAR-1] -=
775                                         (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776                 }
777
778                 if (tp->snd_ssthresh >= 0xFFFF) {
779                         /* Slow start still did not finish. */
780                         if (dst_metric(dst, RTAX_SSTHRESH) &&
781                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784                         if (!dst_metric_locked(dst, RTAX_CWND) &&
785                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786                                 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788                            icsk->icsk_ca_state == TCP_CA_Open) {
789                         /* Cong. avoidance phase, cwnd is reliable. */
790                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791                                 dst->metrics[RTAX_SSTHRESH-1] =
792                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793                         if (!dst_metric_locked(dst, RTAX_CWND))
794                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795                 } else {
796                         /* Else slow start did not finish, cwnd is non-sense,
797                            ssthresh may be also invalid.
798                          */
799                         if (!dst_metric_locked(dst, RTAX_CWND))
800                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801                         if (dst->metrics[RTAX_SSTHRESH-1] &&
802                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803                             tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805                 }
806
807                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808                         if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809                             tp->reordering != sysctl_tcp_reordering)
810                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811                 }
812         }
813 }
814
815 /* Numbers are taken from RFC3390.
816  *
817  * John Heffner states:
818  *
819  *      The RFC specifies a window of no more than 4380 bytes
820  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
821  *      is a bit misleading because they use a clamp at 4380 bytes
822  *      rather than use a multiplier in the relevant range.
823  */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828         if (!cwnd) {
829                 if (tp->mss_cache > 1460)
830                         cwnd = 2;
831                 else
832                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833         }
834         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840         struct tcp_sock *tp = tcp_sk(sk);
841         const struct inet_connection_sock *icsk = inet_csk(sk);
842
843         tp->prior_ssthresh = 0;
844         tp->bytes_acked = 0;
845         if (icsk->icsk_ca_state < TCP_CA_CWR) {
846                 tp->undo_marker = 0;
847                 if (set_ssthresh)
848                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849                 tp->snd_cwnd = min(tp->snd_cwnd,
850                                    tcp_packets_in_flight(tp) + 1U);
851                 tp->snd_cwnd_cnt = 0;
852                 tp->high_seq = tp->snd_nxt;
853                 tp->snd_cwnd_stamp = tcp_time_stamp;
854                 TCP_ECN_queue_cwr(tp);
855
856                 tcp_set_ca_state(sk, TCP_CA_CWR);
857         }
858 }
859
860 /*
861  * Packet counting of FACK is based on in-order assumptions, therefore TCP
862  * disables it when reordering is detected
863  */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866         /* RFC3517 uses different metric in lost marker => reset on change */
867         if (tcp_is_fack(tp))
868                 tp->lost_skb_hint = NULL;
869         tp->rx_opt.sack_ok &= ~2;
870 }
871
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875         tp->rx_opt.sack_ok |= 4;
876 }
877
878 /* Initialize metrics on socket. */
879
880 static void tcp_init_metrics(struct sock *sk)
881 {
882         struct tcp_sock *tp = tcp_sk(sk);
883         struct dst_entry *dst = __sk_dst_get(sk);
884
885         if (dst == NULL)
886                 goto reset;
887
888         dst_confirm(dst);
889
890         if (dst_metric_locked(dst, RTAX_CWND))
891                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
892         if (dst_metric(dst, RTAX_SSTHRESH)) {
893                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
894                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
895                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
896         }
897         if (dst_metric(dst, RTAX_REORDERING) &&
898             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
899                 tcp_disable_fack(tp);
900                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
901         }
902
903         if (dst_metric(dst, RTAX_RTT) == 0)
904                 goto reset;
905
906         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
907                 goto reset;
908
909         /* Initial rtt is determined from SYN,SYN-ACK.
910          * The segment is small and rtt may appear much
911          * less than real one. Use per-dst memory
912          * to make it more realistic.
913          *
914          * A bit of theory. RTT is time passed after "normal" sized packet
915          * is sent until it is ACKed. In normal circumstances sending small
916          * packets force peer to delay ACKs and calculation is correct too.
917          * The algorithm is adaptive and, provided we follow specs, it
918          * NEVER underestimate RTT. BUT! If peer tries to make some clever
919          * tricks sort of "quick acks" for time long enough to decrease RTT
920          * to low value, and then abruptly stops to do it and starts to delay
921          * ACKs, wait for troubles.
922          */
923         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
924                 tp->srtt = dst_metric(dst, RTAX_RTT);
925                 tp->rtt_seq = tp->snd_nxt;
926         }
927         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
928                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
929                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930         }
931         tcp_set_rto(sk);
932         tcp_bound_rto(sk);
933         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
934                 goto reset;
935         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
936         tp->snd_cwnd_stamp = tcp_time_stamp;
937         return;
938
939 reset:
940         /* Play conservative. If timestamps are not
941          * supported, TCP will fail to recalculate correct
942          * rtt, if initial rto is too small. FORGET ALL AND RESET!
943          */
944         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
945                 tp->srtt = 0;
946                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
947                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
948         }
949 }
950
951 static void tcp_update_reordering(struct sock *sk, const int metric,
952                                   const int ts)
953 {
954         struct tcp_sock *tp = tcp_sk(sk);
955         if (metric > tp->reordering) {
956                 tp->reordering = min(TCP_MAX_REORDERING, metric);
957
958                 /* This exciting event is worth to be remembered. 8) */
959                 if (ts)
960                         NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
961                 else if (tcp_is_reno(tp))
962                         NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
963                 else if (tcp_is_fack(tp))
964                         NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
965                 else
966                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
967 #if FASTRETRANS_DEBUG > 1
968                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
970                        tp->reordering,
971                        tp->fackets_out,
972                        tp->sacked_out,
973                        tp->undo_marker ? tp->undo_retrans : 0);
974 #endif
975                 tcp_disable_fack(tp);
976         }
977 }
978
979 /* This procedure tags the retransmission queue when SACKs arrive.
980  *
981  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982  * Packets in queue with these bits set are counted in variables
983  * sacked_out, retrans_out and lost_out, correspondingly.
984  *
985  * Valid combinations are:
986  * Tag  InFlight        Description
987  * 0    1               - orig segment is in flight.
988  * S    0               - nothing flies, orig reached receiver.
989  * L    0               - nothing flies, orig lost by net.
990  * R    2               - both orig and retransmit are in flight.
991  * L|R  1               - orig is lost, retransmit is in flight.
992  * S|R  1               - orig reached receiver, retrans is still in flight.
993  * (L|S|R is logically valid, it could occur when L|R is sacked,
994  *  but it is equivalent to plain S and code short-curcuits it to S.
995  *  L|S is logically invalid, it would mean -1 packet in flight 8))
996  *
997  * These 6 states form finite state machine, controlled by the following events:
998  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000  * 3. Loss detection event of one of three flavors:
1001  *      A. Scoreboard estimator decided the packet is lost.
1002  *         A'. Reno "three dupacks" marks head of queue lost.
1003  *         A''. Its FACK modfication, head until snd.fack is lost.
1004  *      B. SACK arrives sacking data transmitted after never retransmitted
1005  *         hole was sent out.
1006  *      C. SACK arrives sacking SND.NXT at the moment, when the
1007  *         segment was retransmitted.
1008  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1009  *
1010  * It is pleasant to note, that state diagram turns out to be commutative,
1011  * so that we are allowed not to be bothered by order of our actions,
1012  * when multiple events arrive simultaneously. (see the function below).
1013  *
1014  * Reordering detection.
1015  * --------------------
1016  * Reordering metric is maximal distance, which a packet can be displaced
1017  * in packet stream. With SACKs we can estimate it:
1018  *
1019  * 1. SACK fills old hole and the corresponding segment was not
1020  *    ever retransmitted -> reordering. Alas, we cannot use it
1021  *    when segment was retransmitted.
1022  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1023  *    for retransmitted and already SACKed segment -> reordering..
1024  * Both of these heuristics are not used in Loss state, when we cannot
1025  * account for retransmits accurately.
1026  *
1027  * SACK block validation.
1028  * ----------------------
1029  *
1030  * SACK block range validation checks that the received SACK block fits to
1031  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1032  * Note that SND.UNA is not included to the range though being valid because
1033  * it means that the receiver is rather inconsistent with itself reporting
1034  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1035  * perfectly valid, however, in light of RFC2018 which explicitly states
1036  * that "SACK block MUST reflect the newest segment.  Even if the newest
1037  * segment is going to be discarded ...", not that it looks very clever
1038  * in case of head skb. Due to potentional receiver driven attacks, we
1039  * choose to avoid immediate execution of a walk in write queue due to
1040  * reneging and defer head skb's loss recovery to standard loss recovery
1041  * procedure that will eventually trigger (nothing forbids us doing this).
1042  *
1043  * Implements also blockage to start_seq wrap-around. Problem lies in the
1044  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1045  * there's no guarantee that it will be before snd_nxt (n). The problem
1046  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1047  * wrap (s_w):
1048  *
1049  *         <- outs wnd ->                          <- wrapzone ->
1050  *         u     e      n                         u_w   e_w  s n_w
1051  *         |     |      |                          |     |   |  |
1052  * |<------------+------+----- TCP seqno space --------------+---------->|
1053  * ...-- <2^31 ->|                                           |<--------...
1054  * ...---- >2^31 ------>|                                    |<--------...
1055  *
1056  * Current code wouldn't be vulnerable but it's better still to discard such
1057  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1058  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1059  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1060  * equal to the ideal case (infinite seqno space without wrap caused issues).
1061  *
1062  * With D-SACK the lower bound is extended to cover sequence space below
1063  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1064  * again, D-SACK block must not to go across snd_una (for the same reason as
1065  * for the normal SACK blocks, explained above). But there all simplicity
1066  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1067  * fully below undo_marker they do not affect behavior in anyway and can
1068  * therefore be safely ignored. In rare cases (which are more or less
1069  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1070  * fragmentation and packet reordering past skb's retransmission. To consider
1071  * them correctly, the acceptable range must be extended even more though
1072  * the exact amount is rather hard to quantify. However, tp->max_window can
1073  * be used as an exaggerated estimate.
1074  */
1075 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1076                                   u32 start_seq, u32 end_seq)
1077 {
1078         /* Too far in future, or reversed (interpretation is ambiguous) */
1079         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1080                 return 0;
1081
1082         /* Nasty start_seq wrap-around check (see comments above) */
1083         if (!before(start_seq, tp->snd_nxt))
1084                 return 0;
1085
1086         /* In outstanding window? ...This is valid exit for D-SACKs too.
1087          * start_seq == snd_una is non-sensical (see comments above)
1088          */
1089         if (after(start_seq, tp->snd_una))
1090                 return 1;
1091
1092         if (!is_dsack || !tp->undo_marker)
1093                 return 0;
1094
1095         /* ...Then it's D-SACK, and must reside below snd_una completely */
1096         if (!after(end_seq, tp->snd_una))
1097                 return 0;
1098
1099         if (!before(start_seq, tp->undo_marker))
1100                 return 1;
1101
1102         /* Too old */
1103         if (!after(end_seq, tp->undo_marker))
1104                 return 0;
1105
1106         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1107          *   start_seq < undo_marker and end_seq >= undo_marker.
1108          */
1109         return !before(start_seq, end_seq - tp->max_window);
1110 }
1111
1112 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1113  * Event "C". Later note: FACK people cheated me again 8), we have to account
1114  * for reordering! Ugly, but should help.
1115  *
1116  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1117  * less than what is now known to be received by the other end (derived from
1118  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1119  * retransmitted skbs to avoid some costly processing per ACKs.
1120  */
1121 static void tcp_mark_lost_retrans(struct sock *sk)
1122 {
1123         const struct inet_connection_sock *icsk = inet_csk(sk);
1124         struct tcp_sock *tp = tcp_sk(sk);
1125         struct sk_buff *skb;
1126         int cnt = 0;
1127         u32 new_low_seq = tp->snd_nxt;
1128         u32 received_upto = TCP_SKB_CB(tp->highest_sack)->end_seq;
1129
1130         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1131             !after(received_upto, tp->lost_retrans_low) ||
1132             icsk->icsk_ca_state != TCP_CA_Recovery)
1133                 return;
1134
1135         tcp_for_write_queue(skb, sk) {
1136                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1137
1138                 if (skb == tcp_send_head(sk))
1139                         break;
1140                 if (cnt == tp->retrans_out)
1141                         break;
1142                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1143                         continue;
1144
1145                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1146                         continue;
1147
1148                 if (after(received_upto, ack_seq) &&
1149                     (tcp_is_fack(tp) ||
1150                      !before(received_upto,
1151                              ack_seq + tp->reordering * tp->mss_cache))) {
1152                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1153                         tp->retrans_out -= tcp_skb_pcount(skb);
1154
1155                         /* clear lost hint */
1156                         tp->retransmit_skb_hint = NULL;
1157
1158                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1159                                 tp->lost_out += tcp_skb_pcount(skb);
1160                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1161                         }
1162                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1163                 } else {
1164                         if (before(ack_seq, new_low_seq))
1165                                 new_low_seq = ack_seq;
1166                         cnt += tcp_skb_pcount(skb);
1167                 }
1168         }
1169
1170         if (tp->retrans_out)
1171                 tp->lost_retrans_low = new_low_seq;
1172 }
1173
1174 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1175                            struct tcp_sack_block_wire *sp, int num_sacks,
1176                            u32 prior_snd_una)
1177 {
1178         u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1179         u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1180         int dup_sack = 0;
1181
1182         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1183                 dup_sack = 1;
1184                 tcp_dsack_seen(tp);
1185                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1186         } else if (num_sacks > 1) {
1187                 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1188                 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1189
1190                 if (!after(end_seq_0, end_seq_1) &&
1191                     !before(start_seq_0, start_seq_1)) {
1192                         dup_sack = 1;
1193                         tcp_dsack_seen(tp);
1194                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1195                 }
1196         }
1197
1198         /* D-SACK for already forgotten data... Do dumb counting. */
1199         if (dup_sack &&
1200             !after(end_seq_0, prior_snd_una) &&
1201             after(end_seq_0, tp->undo_marker))
1202                 tp->undo_retrans--;
1203
1204         return dup_sack;
1205 }
1206
1207 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1208  * the incoming SACK may not exactly match but we can find smaller MSS
1209  * aligned portion of it that matches. Therefore we might need to fragment
1210  * which may fail and creates some hassle (caller must handle error case
1211  * returns).
1212  */
1213 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1214                                  u32 start_seq, u32 end_seq)
1215 {
1216         int in_sack, err;
1217         unsigned int pkt_len;
1218
1219         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1220                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1221
1222         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1223             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1224
1225                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1226
1227                 if (!in_sack)
1228                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1229                 else
1230                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1231                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1232                 if (err < 0)
1233                         return err;
1234         }
1235
1236         return in_sack;
1237 }
1238
1239 static int tcp_sacktag_one(struct sk_buff *skb, struct tcp_sock *tp,
1240                            int *reord, int dup_sack, int fack_count)
1241 {
1242         u8 sacked = TCP_SKB_CB(skb)->sacked;
1243         int flag = 0;
1244
1245         /* Account D-SACK for retransmitted packet. */
1246         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1247                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1248                         tp->undo_retrans--;
1249                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una) &&
1250                     (sacked & TCPCB_SACKED_ACKED))
1251                         *reord = min(fack_count, *reord);
1252         }
1253
1254         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1255         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1256                 return flag;
1257
1258         if (!(sacked & TCPCB_SACKED_ACKED)) {
1259                 if (sacked & TCPCB_SACKED_RETRANS) {
1260                         /* If the segment is not tagged as lost,
1261                          * we do not clear RETRANS, believing
1262                          * that retransmission is still in flight.
1263                          */
1264                         if (sacked & TCPCB_LOST) {
1265                                 TCP_SKB_CB(skb)->sacked &=
1266                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1267                                 tp->lost_out -= tcp_skb_pcount(skb);
1268                                 tp->retrans_out -= tcp_skb_pcount(skb);
1269
1270                                 /* clear lost hint */
1271                                 tp->retransmit_skb_hint = NULL;
1272                         }
1273                 } else {
1274                         if (!(sacked & TCPCB_RETRANS)) {
1275                                 /* New sack for not retransmitted frame,
1276                                  * which was in hole. It is reordering.
1277                                  */
1278                                 if (before(TCP_SKB_CB(skb)->seq,
1279                                            tcp_highest_sack_seq(tp)))
1280                                         *reord = min(fack_count, *reord);
1281
1282                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1283                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1284                                         flag |= FLAG_ONLY_ORIG_SACKED;
1285                         }
1286
1287                         if (sacked & TCPCB_LOST) {
1288                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1289                                 tp->lost_out -= tcp_skb_pcount(skb);
1290
1291                                 /* clear lost hint */
1292                                 tp->retransmit_skb_hint = NULL;
1293                         }
1294                 }
1295
1296                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1297                 flag |= FLAG_DATA_SACKED;
1298                 tp->sacked_out += tcp_skb_pcount(skb);
1299
1300                 fack_count += tcp_skb_pcount(skb);
1301
1302                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1303                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1304                     before(TCP_SKB_CB(skb)->seq,
1305                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1306                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1307
1308                 if (fack_count > tp->fackets_out)
1309                         tp->fackets_out = fack_count;
1310
1311                 if (after(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1312                         tp->highest_sack = skb;
1313
1314         } else {
1315                 if (dup_sack && (sacked & TCPCB_RETRANS))
1316                         *reord = min(fack_count, *reord);
1317         }
1318
1319         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1320          * frames and clear it. undo_retrans is decreased above, L|R frames
1321          * are accounted above as well.
1322          */
1323         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1324                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1325                 tp->retrans_out -= tcp_skb_pcount(skb);
1326                 tp->retransmit_skb_hint = NULL;
1327         }
1328
1329         return flag;
1330 }
1331
1332 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1333                                         struct tcp_sack_block *next_dup,
1334                                         u32 start_seq, u32 end_seq,
1335                                         int dup_sack_in, int *fack_count,
1336                                         int *reord, int *flag)
1337 {
1338         struct tcp_sock *tp = tcp_sk(sk);
1339
1340         tcp_for_write_queue_from(skb, sk) {
1341                 int in_sack = 0;
1342                 int dup_sack = dup_sack_in;
1343
1344                 if (skb == tcp_send_head(sk))
1345                         break;
1346
1347                 /* queue is in-order => we can short-circuit the walk early */
1348                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1349                         break;
1350
1351                 if ((next_dup != NULL) &&
1352                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1353                         in_sack = tcp_match_skb_to_sack(sk, skb,
1354                                                         next_dup->start_seq,
1355                                                         next_dup->end_seq);
1356                         if (in_sack > 0)
1357                                 dup_sack = 1;
1358                 }
1359
1360                 if (in_sack <= 0)
1361                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1362                 if (unlikely(in_sack < 0))
1363                         break;
1364
1365                 if (in_sack)
1366                         *flag |= tcp_sacktag_one(skb, tp, reord, dup_sack, *fack_count);
1367
1368                 *fack_count += tcp_skb_pcount(skb);
1369         }
1370         return skb;
1371 }
1372
1373 /* Avoid all extra work that is being done by sacktag while walking in
1374  * a normal way
1375  */
1376 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1377                                         u32 skip_to_seq)
1378 {
1379         tcp_for_write_queue_from(skb, sk) {
1380                 if (skb == tcp_send_head(sk))
1381                         break;
1382
1383                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1384                         break;
1385         }
1386         return skb;
1387 }
1388
1389 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1390                                                 struct sock *sk,
1391                                                 struct tcp_sack_block *next_dup,
1392                                                 u32 skip_to_seq,
1393                                                 int *fack_count, int *reord,
1394                                                 int *flag)
1395 {
1396         if (next_dup == NULL)
1397                 return skb;
1398
1399         if (before(next_dup->start_seq, skip_to_seq)) {
1400                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1401                 tcp_sacktag_walk(skb, sk, NULL,
1402                                  next_dup->start_seq, next_dup->end_seq,
1403                                  1, fack_count, reord, flag);
1404         }
1405
1406         return skb;
1407 }
1408
1409 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1410 {
1411         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1412 }
1413
1414 static int
1415 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1416 {
1417         const struct inet_connection_sock *icsk = inet_csk(sk);
1418         struct tcp_sock *tp = tcp_sk(sk);
1419         unsigned char *ptr = (skb_transport_header(ack_skb) +
1420                               TCP_SKB_CB(ack_skb)->sacked);
1421         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1422         struct tcp_sack_block sp[4];
1423         struct tcp_sack_block *cache;
1424         struct sk_buff *skb;
1425         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1426         int used_sacks;
1427         int reord = tp->packets_out;
1428         int flag = 0;
1429         int found_dup_sack = 0;
1430         int fack_count;
1431         int i, j;
1432         int first_sack_index;
1433
1434         if (!tp->sacked_out) {
1435                 if (WARN_ON(tp->fackets_out))
1436                         tp->fackets_out = 0;
1437                 tp->highest_sack = tcp_write_queue_head(sk);
1438         }
1439
1440         found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1441                                          num_sacks, prior_snd_una);
1442         if (found_dup_sack)
1443                 flag |= FLAG_DSACKING_ACK;
1444
1445         /* Eliminate too old ACKs, but take into
1446          * account more or less fresh ones, they can
1447          * contain valid SACK info.
1448          */
1449         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1450                 return 0;
1451
1452         if (!tp->packets_out)
1453                 goto out;
1454
1455         used_sacks = 0;
1456         first_sack_index = 0;
1457         for (i = 0; i < num_sacks; i++) {
1458                 int dup_sack = !i && found_dup_sack;
1459
1460                 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1461                 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1462
1463                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1464                                             sp[used_sacks].start_seq,
1465                                             sp[used_sacks].end_seq)) {
1466                         if (dup_sack) {
1467                                 if (!tp->undo_marker)
1468                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1469                                 else
1470                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1471                         } else {
1472                                 /* Don't count olds caused by ACK reordering */
1473                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1474                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1475                                         continue;
1476                                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1477                         }
1478                         if (i == 0)
1479                                 first_sack_index = -1;
1480                         continue;
1481                 }
1482
1483                 /* Ignore very old stuff early */
1484                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1485                         continue;
1486
1487                 used_sacks++;
1488         }
1489
1490         /* order SACK blocks to allow in order walk of the retrans queue */
1491         for (i = used_sacks - 1; i > 0; i--) {
1492                 for (j = 0; j < i; j++){
1493                         if (after(sp[j].start_seq, sp[j+1].start_seq)) {
1494                                 struct tcp_sack_block tmp;
1495
1496                                 tmp = sp[j];
1497                                 sp[j] = sp[j+1];
1498                                 sp[j+1] = tmp;
1499
1500                                 /* Track where the first SACK block goes to */
1501                                 if (j == first_sack_index)
1502                                         first_sack_index = j+1;
1503                         }
1504                 }
1505         }
1506
1507         skb = tcp_write_queue_head(sk);
1508         fack_count = 0;
1509         i = 0;
1510
1511         if (!tp->sacked_out) {
1512                 /* It's already past, so skip checking against it */
1513                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1514         } else {
1515                 cache = tp->recv_sack_cache;
1516                 /* Skip empty blocks in at head of the cache */
1517                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1518                        !cache->end_seq)
1519                         cache++;
1520         }
1521
1522         while (i < used_sacks) {
1523                 u32 start_seq = sp[i].start_seq;
1524                 u32 end_seq = sp[i].end_seq;
1525                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1526                 struct tcp_sack_block *next_dup = NULL;
1527
1528                 if (found_dup_sack && ((i + 1) == first_sack_index))
1529                         next_dup = &sp[i + 1];
1530
1531                 /* Event "B" in the comment above. */
1532                 if (after(end_seq, tp->high_seq))
1533                         flag |= FLAG_DATA_LOST;
1534
1535                 /* Skip too early cached blocks */
1536                 while (tcp_sack_cache_ok(tp, cache) &&
1537                        !before(start_seq, cache->end_seq))
1538                         cache++;
1539
1540                 /* Can skip some work by looking recv_sack_cache? */
1541                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1542                     after(end_seq, cache->start_seq)) {
1543
1544                         /* Head todo? */
1545                         if (before(start_seq, cache->start_seq)) {
1546                                 skb = tcp_sacktag_skip(skb, sk, start_seq);
1547                                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq,
1548                                                        cache->start_seq, dup_sack,
1549                                                        &fack_count, &reord, &flag);
1550                         }
1551
1552                         /* Rest of the block already fully processed? */
1553                         if (!after(end_seq, cache->end_seq))
1554                                 goto advance_sp;
1555
1556                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, cache->end_seq,
1557                                                        &fack_count, &reord, &flag);
1558
1559                         /* ...tail remains todo... */
1560                         if (TCP_SKB_CB(tp->highest_sack)->end_seq == cache->end_seq) {
1561                                 /* ...but better entrypoint exists! */
1562                                 skb = tcp_write_queue_next(sk, tp->highest_sack);
1563                                 fack_count = tp->fackets_out;
1564                                 cache++;
1565                                 goto walk;
1566                         }
1567
1568                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1569                         /* Check overlap against next cached too (past this one already) */
1570                         cache++;
1571                         continue;
1572                 }
1573
1574                 if (tp->sacked_out && !before(start_seq, tcp_highest_sack_seq(tp))) {
1575                         skb = tcp_write_queue_next(sk, tp->highest_sack);
1576                         fack_count = tp->fackets_out;
1577                 }
1578                 skb = tcp_sacktag_skip(skb, sk, start_seq);
1579
1580 walk:
1581                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1582                                        dup_sack, &fack_count, &reord, &flag);
1583
1584 advance_sp:
1585                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1586                  * due to in-order walk
1587                  */
1588                 if (after(end_seq, tp->frto_highmark))
1589                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1590
1591                 i++;
1592         }
1593
1594         /* Clear the head of the cache sack blocks so we can skip it next time */
1595         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1596                 tp->recv_sack_cache[i].start_seq = 0;
1597                 tp->recv_sack_cache[i].end_seq = 0;
1598         }
1599         for (j = 0; j < used_sacks; j++)
1600                 tp->recv_sack_cache[i++] = sp[j];
1601
1602         tcp_mark_lost_retrans(sk);
1603
1604         tcp_verify_left_out(tp);
1605
1606         if ((reord < tp->fackets_out) &&
1607             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1608             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1609                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1610
1611 out:
1612
1613 #if FASTRETRANS_DEBUG > 0
1614         BUG_TRAP((int)tp->sacked_out >= 0);
1615         BUG_TRAP((int)tp->lost_out >= 0);
1616         BUG_TRAP((int)tp->retrans_out >= 0);
1617         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1618 #endif
1619         return flag;
1620 }
1621
1622 /* If we receive more dupacks than we expected counting segments
1623  * in assumption of absent reordering, interpret this as reordering.
1624  * The only another reason could be bug in receiver TCP.
1625  */
1626 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1627 {
1628         struct tcp_sock *tp = tcp_sk(sk);
1629         u32 holes;
1630
1631         holes = max(tp->lost_out, 1U);
1632         holes = min(holes, tp->packets_out);
1633
1634         if ((tp->sacked_out + holes) > tp->packets_out) {
1635                 tp->sacked_out = tp->packets_out - holes;
1636                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1637         }
1638 }
1639
1640 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1641
1642 static void tcp_add_reno_sack(struct sock *sk)
1643 {
1644         struct tcp_sock *tp = tcp_sk(sk);
1645         tp->sacked_out++;
1646         tcp_check_reno_reordering(sk, 0);
1647         tcp_verify_left_out(tp);
1648 }
1649
1650 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1651
1652 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1653 {
1654         struct tcp_sock *tp = tcp_sk(sk);
1655
1656         if (acked > 0) {
1657                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1658                 if (acked-1 >= tp->sacked_out)
1659                         tp->sacked_out = 0;
1660                 else
1661                         tp->sacked_out -= acked-1;
1662         }
1663         tcp_check_reno_reordering(sk, acked);
1664         tcp_verify_left_out(tp);
1665 }
1666
1667 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1668 {
1669         tp->sacked_out = 0;
1670 }
1671
1672 /* F-RTO can only be used if TCP has never retransmitted anything other than
1673  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1674  */
1675 int tcp_use_frto(struct sock *sk)
1676 {
1677         const struct tcp_sock *tp = tcp_sk(sk);
1678         struct sk_buff *skb;
1679
1680         if (!sysctl_tcp_frto)
1681                 return 0;
1682
1683         if (IsSackFrto())
1684                 return 1;
1685
1686         /* Avoid expensive walking of rexmit queue if possible */
1687         if (tp->retrans_out > 1)
1688                 return 0;
1689
1690         skb = tcp_write_queue_head(sk);
1691         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1692         tcp_for_write_queue_from(skb, sk) {
1693                 if (skb == tcp_send_head(sk))
1694                         break;
1695                 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1696                         return 0;
1697                 /* Short-circuit when first non-SACKed skb has been checked */
1698                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1699                         break;
1700         }
1701         return 1;
1702 }
1703
1704 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1705  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1706  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1707  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1708  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1709  * bits are handled if the Loss state is really to be entered (in
1710  * tcp_enter_frto_loss).
1711  *
1712  * Do like tcp_enter_loss() would; when RTO expires the second time it
1713  * does:
1714  *  "Reduce ssthresh if it has not yet been made inside this window."
1715  */
1716 void tcp_enter_frto(struct sock *sk)
1717 {
1718         const struct inet_connection_sock *icsk = inet_csk(sk);
1719         struct tcp_sock *tp = tcp_sk(sk);
1720         struct sk_buff *skb;
1721
1722         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1723             tp->snd_una == tp->high_seq ||
1724             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1725              !icsk->icsk_retransmits)) {
1726                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1727                 /* Our state is too optimistic in ssthresh() call because cwnd
1728                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1729                  * recovery has not yet completed. Pattern would be this: RTO,
1730                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1731                  * up here twice).
1732                  * RFC4138 should be more specific on what to do, even though
1733                  * RTO is quite unlikely to occur after the first Cumulative ACK
1734                  * due to back-off and complexity of triggering events ...
1735                  */
1736                 if (tp->frto_counter) {
1737                         u32 stored_cwnd;
1738                         stored_cwnd = tp->snd_cwnd;
1739                         tp->snd_cwnd = 2;
1740                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1741                         tp->snd_cwnd = stored_cwnd;
1742                 } else {
1743                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1744                 }
1745                 /* ... in theory, cong.control module could do "any tricks" in
1746                  * ssthresh(), which means that ca_state, lost bits and lost_out
1747                  * counter would have to be faked before the call occurs. We
1748                  * consider that too expensive, unlikely and hacky, so modules
1749                  * using these in ssthresh() must deal these incompatibility
1750                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1751                  */
1752                 tcp_ca_event(sk, CA_EVENT_FRTO);
1753         }
1754
1755         tp->undo_marker = tp->snd_una;
1756         tp->undo_retrans = 0;
1757
1758         skb = tcp_write_queue_head(sk);
1759         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1760                 tp->undo_marker = 0;
1761         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1762                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1763                 tp->retrans_out -= tcp_skb_pcount(skb);
1764         }
1765         tcp_verify_left_out(tp);
1766
1767         /* Too bad if TCP was application limited */
1768         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1769
1770         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1771          * The last condition is necessary at least in tp->frto_counter case.
1772          */
1773         if (IsSackFrto() && (tp->frto_counter ||
1774             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1775             after(tp->high_seq, tp->snd_una)) {
1776                 tp->frto_highmark = tp->high_seq;
1777         } else {
1778                 tp->frto_highmark = tp->snd_nxt;
1779         }
1780         tcp_set_ca_state(sk, TCP_CA_Disorder);
1781         tp->high_seq = tp->snd_nxt;
1782         tp->frto_counter = 1;
1783 }
1784
1785 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1786  * which indicates that we should follow the traditional RTO recovery,
1787  * i.e. mark everything lost and do go-back-N retransmission.
1788  */
1789 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1790 {
1791         struct tcp_sock *tp = tcp_sk(sk);
1792         struct sk_buff *skb;
1793
1794         tp->lost_out = 0;
1795         tp->retrans_out = 0;
1796         if (tcp_is_reno(tp))
1797                 tcp_reset_reno_sack(tp);
1798
1799         tcp_for_write_queue(skb, sk) {
1800                 if (skb == tcp_send_head(sk))
1801                         break;
1802
1803                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1804                 /*
1805                  * Count the retransmission made on RTO correctly (only when
1806                  * waiting for the first ACK and did not get it)...
1807                  */
1808                 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1809                         /* For some reason this R-bit might get cleared? */
1810                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1811                                 tp->retrans_out += tcp_skb_pcount(skb);
1812                         /* ...enter this if branch just for the first segment */
1813                         flag |= FLAG_DATA_ACKED;
1814                 } else {
1815                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1816                                 tp->undo_marker = 0;
1817                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1818                 }
1819
1820                 /* Don't lost mark skbs that were fwd transmitted after RTO */
1821                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1822                     !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1823                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1824                         tp->lost_out += tcp_skb_pcount(skb);
1825                 }
1826         }
1827         tcp_verify_left_out(tp);
1828
1829         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1830         tp->snd_cwnd_cnt = 0;
1831         tp->snd_cwnd_stamp = tcp_time_stamp;
1832         tp->frto_counter = 0;
1833         tp->bytes_acked = 0;
1834
1835         tp->reordering = min_t(unsigned int, tp->reordering,
1836                                              sysctl_tcp_reordering);
1837         tcp_set_ca_state(sk, TCP_CA_Loss);
1838         tp->high_seq = tp->frto_highmark;
1839         TCP_ECN_queue_cwr(tp);
1840
1841         tcp_clear_retrans_hints_partial(tp);
1842 }
1843
1844 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1845 {
1846         tp->retrans_out = 0;
1847         tp->lost_out = 0;
1848
1849         tp->undo_marker = 0;
1850         tp->undo_retrans = 0;
1851 }
1852
1853 void tcp_clear_retrans(struct tcp_sock *tp)
1854 {
1855         tcp_clear_retrans_partial(tp);
1856
1857         tp->fackets_out = 0;
1858         tp->sacked_out = 0;
1859 }
1860
1861 /* Enter Loss state. If "how" is not zero, forget all SACK information
1862  * and reset tags completely, otherwise preserve SACKs. If receiver
1863  * dropped its ofo queue, we will know this due to reneging detection.
1864  */
1865 void tcp_enter_loss(struct sock *sk, int how)
1866 {
1867         const struct inet_connection_sock *icsk = inet_csk(sk);
1868         struct tcp_sock *tp = tcp_sk(sk);
1869         struct sk_buff *skb;
1870
1871         /* Reduce ssthresh if it has not yet been made inside this window. */
1872         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1873             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1874                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1875                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1876                 tcp_ca_event(sk, CA_EVENT_LOSS);
1877         }
1878         tp->snd_cwnd       = 1;
1879         tp->snd_cwnd_cnt   = 0;
1880         tp->snd_cwnd_stamp = tcp_time_stamp;
1881
1882         tp->bytes_acked = 0;
1883         tcp_clear_retrans_partial(tp);
1884
1885         if (tcp_is_reno(tp))
1886                 tcp_reset_reno_sack(tp);
1887
1888         if (!how) {
1889                 /* Push undo marker, if it was plain RTO and nothing
1890                  * was retransmitted. */
1891                 tp->undo_marker = tp->snd_una;
1892                 tcp_clear_retrans_hints_partial(tp);
1893         } else {
1894                 tp->sacked_out = 0;
1895                 tp->fackets_out = 0;
1896                 tcp_clear_all_retrans_hints(tp);
1897         }
1898
1899         tcp_for_write_queue(skb, sk) {
1900                 if (skb == tcp_send_head(sk))
1901                         break;
1902
1903                 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1904                         tp->undo_marker = 0;
1905                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1906                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1907                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1908                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1909                         tp->lost_out += tcp_skb_pcount(skb);
1910                 }
1911         }
1912         tcp_verify_left_out(tp);
1913
1914         tp->reordering = min_t(unsigned int, tp->reordering,
1915                                              sysctl_tcp_reordering);
1916         tcp_set_ca_state(sk, TCP_CA_Loss);
1917         tp->high_seq = tp->snd_nxt;
1918         TCP_ECN_queue_cwr(tp);
1919         /* Abort F-RTO algorithm if one is in progress */
1920         tp->frto_counter = 0;
1921 }
1922
1923 static int tcp_check_sack_reneging(struct sock *sk)
1924 {
1925         struct sk_buff *skb;
1926
1927         /* If ACK arrived pointing to a remembered SACK,
1928          * it means that our remembered SACKs do not reflect
1929          * real state of receiver i.e.
1930          * receiver _host_ is heavily congested (or buggy).
1931          * Do processing similar to RTO timeout.
1932          */
1933         if ((skb = tcp_write_queue_head(sk)) != NULL &&
1934             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1935                 struct inet_connection_sock *icsk = inet_csk(sk);
1936                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1937
1938                 tcp_enter_loss(sk, 1);
1939                 icsk->icsk_retransmits++;
1940                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1941                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1942                                           icsk->icsk_rto, TCP_RTO_MAX);
1943                 return 1;
1944         }
1945         return 0;
1946 }
1947
1948 static inline int tcp_fackets_out(struct tcp_sock *tp)
1949 {
1950         return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1951 }
1952
1953 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1954  * counter when SACK is enabled (without SACK, sacked_out is used for
1955  * that purpose).
1956  *
1957  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1958  * segments up to the highest received SACK block so far and holes in
1959  * between them.
1960  *
1961  * With reordering, holes may still be in flight, so RFC3517 recovery
1962  * uses pure sacked_out (total number of SACKed segments) even though
1963  * it violates the RFC that uses duplicate ACKs, often these are equal
1964  * but when e.g. out-of-window ACKs or packet duplication occurs,
1965  * they differ. Since neither occurs due to loss, TCP should really
1966  * ignore them.
1967  */
1968 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1969 {
1970         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1971 }
1972
1973 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1974 {
1975         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1976 }
1977
1978 static inline int tcp_head_timedout(struct sock *sk)
1979 {
1980         struct tcp_sock *tp = tcp_sk(sk);
1981
1982         return tp->packets_out &&
1983                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1984 }
1985
1986 /* Linux NewReno/SACK/FACK/ECN state machine.
1987  * --------------------------------------
1988  *
1989  * "Open"       Normal state, no dubious events, fast path.
1990  * "Disorder"   In all the respects it is "Open",
1991  *              but requires a bit more attention. It is entered when
1992  *              we see some SACKs or dupacks. It is split of "Open"
1993  *              mainly to move some processing from fast path to slow one.
1994  * "CWR"        CWND was reduced due to some Congestion Notification event.
1995  *              It can be ECN, ICMP source quench, local device congestion.
1996  * "Recovery"   CWND was reduced, we are fast-retransmitting.
1997  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
1998  *
1999  * tcp_fastretrans_alert() is entered:
2000  * - each incoming ACK, if state is not "Open"
2001  * - when arrived ACK is unusual, namely:
2002  *      * SACK
2003  *      * Duplicate ACK.
2004  *      * ECN ECE.
2005  *
2006  * Counting packets in flight is pretty simple.
2007  *
2008  *      in_flight = packets_out - left_out + retrans_out
2009  *
2010  *      packets_out is SND.NXT-SND.UNA counted in packets.
2011  *
2012  *      retrans_out is number of retransmitted segments.
2013  *
2014  *      left_out is number of segments left network, but not ACKed yet.
2015  *
2016  *              left_out = sacked_out + lost_out
2017  *
2018  *     sacked_out: Packets, which arrived to receiver out of order
2019  *                 and hence not ACKed. With SACKs this number is simply
2020  *                 amount of SACKed data. Even without SACKs
2021  *                 it is easy to give pretty reliable estimate of this number,
2022  *                 counting duplicate ACKs.
2023  *
2024  *       lost_out: Packets lost by network. TCP has no explicit
2025  *                 "loss notification" feedback from network (for now).
2026  *                 It means that this number can be only _guessed_.
2027  *                 Actually, it is the heuristics to predict lossage that
2028  *                 distinguishes different algorithms.
2029  *
2030  *      F.e. after RTO, when all the queue is considered as lost,
2031  *      lost_out = packets_out and in_flight = retrans_out.
2032  *
2033  *              Essentially, we have now two algorithms counting
2034  *              lost packets.
2035  *
2036  *              FACK: It is the simplest heuristics. As soon as we decided
2037  *              that something is lost, we decide that _all_ not SACKed
2038  *              packets until the most forward SACK are lost. I.e.
2039  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2040  *              It is absolutely correct estimate, if network does not reorder
2041  *              packets. And it loses any connection to reality when reordering
2042  *              takes place. We use FACK by default until reordering
2043  *              is suspected on the path to this destination.
2044  *
2045  *              NewReno: when Recovery is entered, we assume that one segment
2046  *              is lost (classic Reno). While we are in Recovery and
2047  *              a partial ACK arrives, we assume that one more packet
2048  *              is lost (NewReno). This heuristics are the same in NewReno
2049  *              and SACK.
2050  *
2051  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2052  *  deflation etc. CWND is real congestion window, never inflated, changes
2053  *  only according to classic VJ rules.
2054  *
2055  * Really tricky (and requiring careful tuning) part of algorithm
2056  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2057  * The first determines the moment _when_ we should reduce CWND and,
2058  * hence, slow down forward transmission. In fact, it determines the moment
2059  * when we decide that hole is caused by loss, rather than by a reorder.
2060  *
2061  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2062  * holes, caused by lost packets.
2063  *
2064  * And the most logically complicated part of algorithm is undo
2065  * heuristics. We detect false retransmits due to both too early
2066  * fast retransmit (reordering) and underestimated RTO, analyzing
2067  * timestamps and D-SACKs. When we detect that some segments were
2068  * retransmitted by mistake and CWND reduction was wrong, we undo
2069  * window reduction and abort recovery phase. This logic is hidden
2070  * inside several functions named tcp_try_undo_<something>.
2071  */
2072
2073 /* This function decides, when we should leave Disordered state
2074  * and enter Recovery phase, reducing congestion window.
2075  *
2076  * Main question: may we further continue forward transmission
2077  * with the same cwnd?
2078  */
2079 static int tcp_time_to_recover(struct sock *sk)
2080 {
2081         struct tcp_sock *tp = tcp_sk(sk);
2082         __u32 packets_out;
2083
2084         /* Do not perform any recovery during F-RTO algorithm */
2085         if (tp->frto_counter)
2086                 return 0;
2087
2088         /* Trick#1: The loss is proven. */
2089         if (tp->lost_out)
2090                 return 1;
2091
2092         /* Not-A-Trick#2 : Classic rule... */
2093         if (tcp_dupack_heurestics(tp) > tp->reordering)
2094                 return 1;
2095
2096         /* Trick#3 : when we use RFC2988 timer restart, fast
2097          * retransmit can be triggered by timeout of queue head.
2098          */
2099         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2100                 return 1;
2101
2102         /* Trick#4: It is still not OK... But will it be useful to delay
2103          * recovery more?
2104          */
2105         packets_out = tp->packets_out;
2106         if (packets_out <= tp->reordering &&
2107             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2108             !tcp_may_send_now(sk)) {
2109                 /* We have nothing to send. This connection is limited
2110                  * either by receiver window or by application.
2111                  */
2112                 return 1;
2113         }
2114
2115         return 0;
2116 }
2117
2118 /* RFC: This is from the original, I doubt that this is necessary at all:
2119  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2120  * retransmitted past LOST markings in the first place? I'm not fully sure
2121  * about undo and end of connection cases, which can cause R without L?
2122  */
2123 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2124                                        struct sk_buff *skb)
2125 {
2126         if ((tp->retransmit_skb_hint != NULL) &&
2127             before(TCP_SKB_CB(skb)->seq,
2128             TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2129                 tp->retransmit_skb_hint = NULL;
2130 }
2131
2132 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2133  * is against sacked "cnt", otherwise it's against facked "cnt"
2134  */
2135 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2136 {
2137         struct tcp_sock *tp = tcp_sk(sk);
2138         struct sk_buff *skb;
2139         int cnt;
2140
2141         BUG_TRAP(packets <= tp->packets_out);
2142         if (tp->lost_skb_hint) {
2143                 skb = tp->lost_skb_hint;
2144                 cnt = tp->lost_cnt_hint;
2145         } else {
2146                 skb = tcp_write_queue_head(sk);
2147                 cnt = 0;
2148         }
2149
2150         tcp_for_write_queue_from(skb, sk) {
2151                 if (skb == tcp_send_head(sk))
2152                         break;
2153                 /* TODO: do this better */
2154                 /* this is not the most efficient way to do this... */
2155                 tp->lost_skb_hint = skb;
2156                 tp->lost_cnt_hint = cnt;
2157
2158                 if (tcp_is_fack(tp) ||
2159                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2160                         cnt += tcp_skb_pcount(skb);
2161
2162                 if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2163                      after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2164                         break;
2165                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2166                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2167                         tp->lost_out += tcp_skb_pcount(skb);
2168                         tcp_verify_retransmit_hint(tp, skb);
2169                 }
2170         }
2171         tcp_verify_left_out(tp);
2172 }
2173
2174 /* Account newly detected lost packet(s) */
2175
2176 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2177 {
2178         struct tcp_sock *tp = tcp_sk(sk);
2179
2180         if (tcp_is_reno(tp)) {
2181                 tcp_mark_head_lost(sk, 1, fast_rexmit);
2182         } else if (tcp_is_fack(tp)) {
2183                 int lost = tp->fackets_out - tp->reordering;
2184                 if (lost <= 0)
2185                         lost = 1;
2186                 tcp_mark_head_lost(sk, lost, fast_rexmit);
2187         } else {
2188                 int sacked_upto = tp->sacked_out - tp->reordering;
2189                 if (sacked_upto < 0)
2190                         sacked_upto = 0;
2191                 tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2192         }
2193
2194         /* New heuristics: it is possible only after we switched
2195          * to restart timer each time when something is ACKed.
2196          * Hence, we can detect timed out packets during fast
2197          * retransmit without falling to slow start.
2198          */
2199         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2200                 struct sk_buff *skb;
2201
2202                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2203                         : tcp_write_queue_head(sk);
2204
2205                 tcp_for_write_queue_from(skb, sk) {
2206                         if (skb == tcp_send_head(sk))
2207                                 break;
2208                         if (!tcp_skb_timedout(sk, skb))
2209                                 break;
2210
2211                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2212                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2213                                 tp->lost_out += tcp_skb_pcount(skb);
2214                                 tcp_verify_retransmit_hint(tp, skb);
2215                         }
2216                 }
2217
2218                 tp->scoreboard_skb_hint = skb;
2219
2220                 tcp_verify_left_out(tp);
2221         }
2222 }
2223
2224 /* CWND moderation, preventing bursts due to too big ACKs
2225  * in dubious situations.
2226  */
2227 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2228 {
2229         tp->snd_cwnd = min(tp->snd_cwnd,
2230                            tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2231         tp->snd_cwnd_stamp = tcp_time_stamp;
2232 }
2233
2234 /* Lower bound on congestion window is slow start threshold
2235  * unless congestion avoidance choice decides to overide it.
2236  */
2237 static inline u32 tcp_cwnd_min(const struct sock *sk)
2238 {
2239         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2240
2241         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2242 }
2243
2244 /* Decrease cwnd each second ack. */
2245 static void tcp_cwnd_down(struct sock *sk, int flag)
2246 {
2247         struct tcp_sock *tp = tcp_sk(sk);
2248         int decr = tp->snd_cwnd_cnt + 1;
2249
2250         if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2251             (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2252                 tp->snd_cwnd_cnt = decr&1;
2253                 decr >>= 1;
2254
2255                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2256                         tp->snd_cwnd -= decr;
2257
2258                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2259                 tp->snd_cwnd_stamp = tcp_time_stamp;
2260         }
2261 }
2262
2263 /* Nothing was retransmitted or returned timestamp is less
2264  * than timestamp of the first retransmission.
2265  */
2266 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2267 {
2268         return !tp->retrans_stamp ||
2269                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2270                  (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2271 }
2272
2273 /* Undo procedures. */
2274
2275 #if FASTRETRANS_DEBUG > 1
2276 static void DBGUNDO(struct sock *sk, const char *msg)
2277 {
2278         struct tcp_sock *tp = tcp_sk(sk);
2279         struct inet_sock *inet = inet_sk(sk);
2280
2281         printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2282                msg,
2283                NIPQUAD(inet->daddr), ntohs(inet->dport),
2284                tp->snd_cwnd, tcp_left_out(tp),
2285                tp->snd_ssthresh, tp->prior_ssthresh,
2286                tp->packets_out);
2287 }
2288 #else
2289 #define DBGUNDO(x...) do { } while (0)
2290 #endif
2291
2292 static void tcp_undo_cwr(struct sock *sk, const int undo)
2293 {
2294         struct tcp_sock *tp = tcp_sk(sk);
2295
2296         if (tp->prior_ssthresh) {
2297                 const struct inet_connection_sock *icsk = inet_csk(sk);
2298
2299                 if (icsk->icsk_ca_ops->undo_cwnd)
2300                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2301                 else
2302                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2303
2304                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2305                         tp->snd_ssthresh = tp->prior_ssthresh;
2306                         TCP_ECN_withdraw_cwr(tp);
2307                 }
2308         } else {
2309                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2310         }
2311         tcp_moderate_cwnd(tp);
2312         tp->snd_cwnd_stamp = tcp_time_stamp;
2313
2314         /* There is something screwy going on with the retrans hints after
2315            an undo */
2316         tcp_clear_all_retrans_hints(tp);
2317 }
2318
2319 static inline int tcp_may_undo(struct tcp_sock *tp)
2320 {
2321         return tp->undo_marker &&
2322                 (!tp->undo_retrans || tcp_packet_delayed(tp));
2323 }
2324
2325 /* People celebrate: "We love our President!" */
2326 static int tcp_try_undo_recovery(struct sock *sk)
2327 {
2328         struct tcp_sock *tp = tcp_sk(sk);
2329
2330         if (tcp_may_undo(tp)) {
2331                 /* Happy end! We did not retransmit anything
2332                  * or our original transmission succeeded.
2333                  */
2334                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2335                 tcp_undo_cwr(sk, 1);
2336                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2337                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2338                 else
2339                         NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2340                 tp->undo_marker = 0;
2341         }
2342         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2343                 /* Hold old state until something *above* high_seq
2344                  * is ACKed. For Reno it is MUST to prevent false
2345                  * fast retransmits (RFC2582). SACK TCP is safe. */
2346                 tcp_moderate_cwnd(tp);
2347                 return 1;
2348         }
2349         tcp_set_ca_state(sk, TCP_CA_Open);
2350         return 0;
2351 }
2352
2353 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2354 static void tcp_try_undo_dsack(struct sock *sk)
2355 {
2356         struct tcp_sock *tp = tcp_sk(sk);
2357
2358         if (tp->undo_marker && !tp->undo_retrans) {
2359                 DBGUNDO(sk, "D-SACK");
2360                 tcp_undo_cwr(sk, 1);
2361                 tp->undo_marker = 0;
2362                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2363         }
2364 }
2365
2366 /* Undo during fast recovery after partial ACK. */
2367
2368 static int tcp_try_undo_partial(struct sock *sk, int acked)
2369 {
2370         struct tcp_sock *tp = tcp_sk(sk);
2371         /* Partial ACK arrived. Force Hoe's retransmit. */
2372         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2373
2374         if (tcp_may_undo(tp)) {
2375                 /* Plain luck! Hole if filled with delayed
2376                  * packet, rather than with a retransmit.
2377                  */
2378                 if (tp->retrans_out == 0)
2379                         tp->retrans_stamp = 0;
2380
2381                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2382
2383                 DBGUNDO(sk, "Hoe");
2384                 tcp_undo_cwr(sk, 0);
2385                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2386
2387                 /* So... Do not make Hoe's retransmit yet.
2388                  * If the first packet was delayed, the rest
2389                  * ones are most probably delayed as well.
2390                  */
2391                 failed = 0;
2392         }
2393         return failed;
2394 }
2395
2396 /* Undo during loss recovery after partial ACK. */
2397 static int tcp_try_undo_loss(struct sock *sk)
2398 {
2399         struct tcp_sock *tp = tcp_sk(sk);
2400
2401         if (tcp_may_undo(tp)) {
2402                 struct sk_buff *skb;
2403                 tcp_for_write_queue(skb, sk) {
2404                         if (skb == tcp_send_head(sk))
2405                                 break;
2406                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2407                 }
2408
2409                 tcp_clear_all_retrans_hints(tp);
2410
2411                 DBGUNDO(sk, "partial loss");
2412                 tp->lost_out = 0;
2413                 tcp_undo_cwr(sk, 1);
2414                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2415                 inet_csk(sk)->icsk_retransmits = 0;
2416                 tp->undo_marker = 0;
2417                 if (tcp_is_sack(tp))
2418                         tcp_set_ca_state(sk, TCP_CA_Open);
2419                 return 1;
2420         }
2421         return 0;
2422 }
2423
2424 static inline void tcp_complete_cwr(struct sock *sk)
2425 {
2426         struct tcp_sock *tp = tcp_sk(sk);
2427         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2428         tp->snd_cwnd_stamp = tcp_time_stamp;
2429         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2430 }
2431
2432 static void tcp_try_to_open(struct sock *sk, int flag)
2433 {
2434         struct tcp_sock *tp = tcp_sk(sk);
2435
2436         tcp_verify_left_out(tp);
2437
2438         if (tp->retrans_out == 0)
2439                 tp->retrans_stamp = 0;
2440
2441         if (flag&FLAG_ECE)
2442                 tcp_enter_cwr(sk, 1);
2443
2444         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2445                 int state = TCP_CA_Open;
2446
2447                 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2448                         state = TCP_CA_Disorder;
2449
2450                 if (inet_csk(sk)->icsk_ca_state != state) {
2451                         tcp_set_ca_state(sk, state);
2452                         tp->high_seq = tp->snd_nxt;
2453                 }
2454                 tcp_moderate_cwnd(tp);
2455         } else {
2456                 tcp_cwnd_down(sk, flag);
2457         }
2458 }
2459
2460 static void tcp_mtup_probe_failed(struct sock *sk)
2461 {
2462         struct inet_connection_sock *icsk = inet_csk(sk);
2463
2464         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2465         icsk->icsk_mtup.probe_size = 0;
2466 }
2467
2468 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2469 {
2470         struct tcp_sock *tp = tcp_sk(sk);
2471         struct inet_connection_sock *icsk = inet_csk(sk);
2472
2473         /* FIXME: breaks with very large cwnd */
2474         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2475         tp->snd_cwnd = tp->snd_cwnd *
2476                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2477                        icsk->icsk_mtup.probe_size;
2478         tp->snd_cwnd_cnt = 0;
2479         tp->snd_cwnd_stamp = tcp_time_stamp;
2480         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2481
2482         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2483         icsk->icsk_mtup.probe_size = 0;
2484         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2485 }
2486
2487
2488 /* Process an event, which can update packets-in-flight not trivially.
2489  * Main goal of this function is to calculate new estimate for left_out,
2490  * taking into account both packets sitting in receiver's buffer and
2491  * packets lost by network.
2492  *
2493  * Besides that it does CWND reduction, when packet loss is detected
2494  * and changes state of machine.
2495  *
2496  * It does _not_ decide what to send, it is made in function
2497  * tcp_xmit_retransmit_queue().
2498  */
2499 static void
2500 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2501 {
2502         struct inet_connection_sock *icsk = inet_csk(sk);
2503         struct tcp_sock *tp = tcp_sk(sk);
2504         int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2505         int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2506                                     (tcp_fackets_out(tp) > tp->reordering));
2507         int fast_rexmit = 0;
2508
2509         /* Some technical things:
2510          * 1. Reno does not count dupacks (sacked_out) automatically. */
2511         if (!tp->packets_out)
2512                 tp->sacked_out = 0;
2513
2514         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2515                 tp->fackets_out = 0;
2516
2517         /* Now state machine starts.
2518          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2519         if (flag&FLAG_ECE)
2520                 tp->prior_ssthresh = 0;
2521
2522         /* B. In all the states check for reneging SACKs. */
2523         if (tp->sacked_out && tcp_check_sack_reneging(sk))
2524                 return;
2525
2526         /* C. Process data loss notification, provided it is valid. */
2527         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2528             before(tp->snd_una, tp->high_seq) &&
2529             icsk->icsk_ca_state != TCP_CA_Open &&
2530             tp->fackets_out > tp->reordering) {
2531                 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, 0);
2532                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2533         }
2534
2535         /* D. Check consistency of the current state. */
2536         tcp_verify_left_out(tp);
2537
2538         /* E. Check state exit conditions. State can be terminated
2539          *    when high_seq is ACKed. */
2540         if (icsk->icsk_ca_state == TCP_CA_Open) {
2541                 BUG_TRAP(tp->retrans_out == 0);
2542                 tp->retrans_stamp = 0;
2543         } else if (!before(tp->snd_una, tp->high_seq)) {
2544                 switch (icsk->icsk_ca_state) {
2545                 case TCP_CA_Loss:
2546                         icsk->icsk_retransmits = 0;
2547                         if (tcp_try_undo_recovery(sk))
2548                                 return;
2549                         break;
2550
2551                 case TCP_CA_CWR:
2552                         /* CWR is to be held something *above* high_seq
2553                          * is ACKed for CWR bit to reach receiver. */
2554                         if (tp->snd_una != tp->high_seq) {
2555                                 tcp_complete_cwr(sk);
2556                                 tcp_set_ca_state(sk, TCP_CA_Open);
2557                         }
2558                         break;
2559
2560                 case TCP_CA_Disorder:
2561                         tcp_try_undo_dsack(sk);
2562                         if (!tp->undo_marker ||
2563                             /* For SACK case do not Open to allow to undo
2564                              * catching for all duplicate ACKs. */
2565                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2566                                 tp->undo_marker = 0;
2567                                 tcp_set_ca_state(sk, TCP_CA_Open);
2568                         }
2569                         break;
2570
2571                 case TCP_CA_Recovery:
2572                         if (tcp_is_reno(tp))
2573                                 tcp_reset_reno_sack(tp);
2574                         if (tcp_try_undo_recovery(sk))
2575                                 return;
2576                         tcp_complete_cwr(sk);
2577                         break;
2578                 }
2579         }
2580
2581         /* F. Process state. */
2582         switch (icsk->icsk_ca_state) {
2583         case TCP_CA_Recovery:
2584                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2585                         if (tcp_is_reno(tp) && is_dupack)
2586                                 tcp_add_reno_sack(sk);
2587                 } else
2588                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2589                 break;
2590         case TCP_CA_Loss:
2591                 if (flag&FLAG_DATA_ACKED)
2592                         icsk->icsk_retransmits = 0;
2593                 if (!tcp_try_undo_loss(sk)) {
2594                         tcp_moderate_cwnd(tp);
2595                         tcp_xmit_retransmit_queue(sk);
2596                         return;
2597                 }
2598                 if (icsk->icsk_ca_state != TCP_CA_Open)
2599                         return;
2600                 /* Loss is undone; fall through to processing in Open state. */
2601         default:
2602                 if (tcp_is_reno(tp)) {
2603                         if (flag & FLAG_SND_UNA_ADVANCED)
2604                                 tcp_reset_reno_sack(tp);
2605                         if (is_dupack)
2606                                 tcp_add_reno_sack(sk);
2607                 }
2608
2609                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2610                         tcp_try_undo_dsack(sk);
2611
2612                 if (!tcp_time_to_recover(sk)) {
2613                         tcp_try_to_open(sk, flag);
2614                         return;
2615                 }
2616
2617                 /* MTU probe failure: don't reduce cwnd */
2618                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2619                     icsk->icsk_mtup.probe_size &&
2620                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2621                         tcp_mtup_probe_failed(sk);
2622                         /* Restores the reduction we did in tcp_mtup_probe() */
2623                         tp->snd_cwnd++;
2624                         tcp_simple_retransmit(sk);
2625                         return;
2626                 }
2627
2628                 /* Otherwise enter Recovery state */
2629
2630                 if (tcp_is_reno(tp))
2631                         NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2632                 else
2633                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2634
2635                 tp->high_seq = tp->snd_nxt;
2636                 tp->prior_ssthresh = 0;
2637                 tp->undo_marker = tp->snd_una;
2638                 tp->undo_retrans = tp->retrans_out;
2639
2640                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2641                         if (!(flag&FLAG_ECE))
2642                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2643                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2644                         TCP_ECN_queue_cwr(tp);
2645                 }
2646
2647                 tp->bytes_acked = 0;
2648                 tp->snd_cwnd_cnt = 0;
2649                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2650                 fast_rexmit = 1;
2651         }
2652
2653         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2654                 tcp_update_scoreboard(sk, fast_rexmit);
2655         tcp_cwnd_down(sk, flag);
2656         tcp_xmit_retransmit_queue(sk);
2657 }
2658
2659 /* Read draft-ietf-tcplw-high-performance before mucking
2660  * with this code. (Supersedes RFC1323)
2661  */
2662 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2663 {
2664         /* RTTM Rule: A TSecr value received in a segment is used to
2665          * update the averaged RTT measurement only if the segment
2666          * acknowledges some new data, i.e., only if it advances the
2667          * left edge of the send window.
2668          *
2669          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2670          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2671          *
2672          * Changed: reset backoff as soon as we see the first valid sample.
2673          * If we do not, we get strongly overestimated rto. With timestamps
2674          * samples are accepted even from very old segments: f.e., when rtt=1
2675          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2676          * answer arrives rto becomes 120 seconds! If at least one of segments
2677          * in window is lost... Voila.                          --ANK (010210)
2678          */
2679         struct tcp_sock *tp = tcp_sk(sk);
2680         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2681         tcp_rtt_estimator(sk, seq_rtt);
2682         tcp_set_rto(sk);
2683         inet_csk(sk)->icsk_backoff = 0;
2684         tcp_bound_rto(sk);
2685 }
2686
2687 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2688 {
2689         /* We don't have a timestamp. Can only use
2690          * packets that are not retransmitted to determine
2691          * rtt estimates. Also, we must not reset the
2692          * backoff for rto until we get a non-retransmitted
2693          * packet. This allows us to deal with a situation
2694          * where the network delay has increased suddenly.
2695          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2696          */
2697
2698         if (flag & FLAG_RETRANS_DATA_ACKED)
2699                 return;
2700
2701         tcp_rtt_estimator(sk, seq_rtt);
2702         tcp_set_rto(sk);
2703         inet_csk(sk)->icsk_backoff = 0;
2704         tcp_bound_rto(sk);
2705 }
2706
2707 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2708                                       const s32 seq_rtt)
2709 {
2710         const struct tcp_sock *tp = tcp_sk(sk);
2711         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2712         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2713                 tcp_ack_saw_tstamp(sk, flag);
2714         else if (seq_rtt >= 0)
2715                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2716 }
2717
2718 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2719                            u32 in_flight, int good)
2720 {
2721         const struct inet_connection_sock *icsk = inet_csk(sk);
2722         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2723         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2724 }
2725
2726 /* Restart timer after forward progress on connection.
2727  * RFC2988 recommends to restart timer to now+rto.
2728  */
2729 static void tcp_rearm_rto(struct sock *sk)
2730 {
2731         struct tcp_sock *tp = tcp_sk(sk);
2732
2733         if (!tp->packets_out) {
2734                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2735         } else {
2736                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2737         }
2738 }
2739
2740 /* If we get here, the whole TSO packet has not been acked. */
2741 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2742 {
2743         struct tcp_sock *tp = tcp_sk(sk);
2744         u32 packets_acked;
2745
2746         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2747
2748         packets_acked = tcp_skb_pcount(skb);
2749         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2750                 return 0;
2751         packets_acked -= tcp_skb_pcount(skb);
2752
2753         if (packets_acked) {
2754                 BUG_ON(tcp_skb_pcount(skb) == 0);
2755                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2756         }
2757
2758         return packets_acked;
2759 }
2760
2761 /* Remove acknowledged frames from the retransmission queue. If our packet
2762  * is before the ack sequence we can discard it as it's confirmed to have
2763  * arrived at the other end.
2764  */
2765 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2766                                int prior_fackets)
2767 {
2768         struct tcp_sock *tp = tcp_sk(sk);
2769         const struct inet_connection_sock *icsk = inet_csk(sk);
2770         struct sk_buff *skb;
2771         u32 now = tcp_time_stamp;
2772         int fully_acked = 1;
2773         int flag = 0;
2774         int prior_packets = tp->packets_out;
2775         u32 cnt = 0;
2776         u32 reord = tp->packets_out;
2777         s32 seq_rtt = -1;
2778         s32 ca_seq_rtt = -1;
2779         ktime_t last_ackt = net_invalid_timestamp();
2780
2781         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2782                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2783                 u32 end_seq;
2784                 u32 packets_acked;
2785                 u8 sacked = scb->sacked;
2786
2787                 /* Determine how many packets and what bytes were acked, tso and else */
2788                 if (after(scb->end_seq, tp->snd_una)) {
2789                         if (tcp_skb_pcount(skb) == 1 ||
2790                             !after(tp->snd_una, scb->seq))
2791                                 break;
2792
2793                         packets_acked = tcp_tso_acked(sk, skb);
2794                         if (!packets_acked)
2795                                 break;
2796
2797                         fully_acked = 0;
2798                         end_seq = tp->snd_una;
2799                 } else {
2800                         packets_acked = tcp_skb_pcount(skb);
2801                         end_seq = scb->end_seq;
2802                 }
2803
2804                 /* MTU probing checks */
2805                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2806                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2807                         tcp_mtup_probe_success(sk, skb);
2808                 }
2809
2810                 if (sacked) {
2811                         if (sacked & TCPCB_RETRANS) {
2812                                 if (sacked & TCPCB_SACKED_RETRANS)
2813                                         tp->retrans_out -= packets_acked;
2814                                 flag |= FLAG_RETRANS_DATA_ACKED;
2815                                 ca_seq_rtt = -1;
2816                                 seq_rtt = -1;
2817                                 if ((flag & FLAG_DATA_ACKED) ||
2818                                     (packets_acked > 1))
2819                                         flag |= FLAG_NONHEAD_RETRANS_ACKED;
2820                         } else {
2821                                 ca_seq_rtt = now - scb->when;
2822                                 last_ackt = skb->tstamp;
2823                                 if (seq_rtt < 0) {
2824                                         seq_rtt = ca_seq_rtt;
2825                                 }
2826                                 if (!(sacked & TCPCB_SACKED_ACKED))
2827                                         reord = min(cnt, reord);
2828                         }
2829
2830                         if (sacked & TCPCB_SACKED_ACKED)
2831                                 tp->sacked_out -= packets_acked;
2832                         if (sacked & TCPCB_LOST)
2833                                 tp->lost_out -= packets_acked;
2834
2835                         if ((sacked & TCPCB_URG) && tp->urg_mode &&
2836                             !before(end_seq, tp->snd_up))
2837                                 tp->urg_mode = 0;
2838                 } else {
2839                         ca_seq_rtt = now - scb->when;
2840                         last_ackt = skb->tstamp;
2841                         if (seq_rtt < 0) {
2842                                 seq_rtt = ca_seq_rtt;
2843                         }
2844                         reord = min(cnt, reord);
2845                 }
2846                 tp->packets_out -= packets_acked;
2847                 cnt += packets_acked;
2848
2849                 /* Initial outgoing SYN's get put onto the write_queue
2850                  * just like anything else we transmit.  It is not
2851                  * true data, and if we misinform our callers that
2852                  * this ACK acks real data, we will erroneously exit
2853                  * connection startup slow start one packet too
2854                  * quickly.  This is severely frowned upon behavior.
2855                  */
2856                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2857                         flag |= FLAG_DATA_ACKED;
2858                 } else {
2859                         flag |= FLAG_SYN_ACKED;
2860                         tp->retrans_stamp = 0;
2861                 }
2862
2863                 if (!fully_acked)
2864                         break;
2865
2866                 tcp_unlink_write_queue(skb, sk);
2867                 sk_stream_free_skb(sk, skb);
2868                 tcp_clear_all_retrans_hints(tp);
2869         }
2870
2871         if (flag & FLAG_ACKED) {
2872                 u32 pkts_acked = prior_packets - tp->packets_out;
2873                 const struct tcp_congestion_ops *ca_ops
2874                         = inet_csk(sk)->icsk_ca_ops;
2875
2876                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2877                 tcp_rearm_rto(sk);
2878
2879                 if (tcp_is_reno(tp)) {
2880                         tcp_remove_reno_sacks(sk, pkts_acked);
2881                 } else {
2882                         /* Non-retransmitted hole got filled? That's reordering */
2883                         if (reord < prior_fackets)
2884                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2885                 }
2886
2887                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2888
2889                 if (ca_ops->pkts_acked) {
2890                         s32 rtt_us = -1;
2891
2892                         /* Is the ACK triggering packet unambiguous? */
2893                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2894                                 /* High resolution needed and available? */
2895                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2896                                     !ktime_equal(last_ackt,
2897                                                  net_invalid_timestamp()))
2898                                         rtt_us = ktime_us_delta(ktime_get_real(),
2899                                                                 last_ackt);
2900                                 else if (ca_seq_rtt > 0)
2901                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2902                         }
2903
2904                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2905                 }
2906         }
2907
2908 #if FASTRETRANS_DEBUG > 0
2909         BUG_TRAP((int)tp->sacked_out >= 0);
2910         BUG_TRAP((int)tp->lost_out >= 0);
2911         BUG_TRAP((int)tp->retrans_out >= 0);
2912         if (!tp->packets_out && tcp_is_sack(tp)) {
2913                 icsk = inet_csk(sk);
2914                 if (tp->lost_out) {
2915                         printk(KERN_DEBUG "Leak l=%u %d\n",
2916                                tp->lost_out, icsk->icsk_ca_state);
2917                         tp->lost_out = 0;
2918                 }
2919                 if (tp->sacked_out) {
2920                         printk(KERN_DEBUG "Leak s=%u %d\n",
2921                                tp->sacked_out, icsk->icsk_ca_state);
2922                         tp->sacked_out = 0;
2923                 }
2924                 if (tp->retrans_out) {
2925                         printk(KERN_DEBUG "Leak r=%u %d\n",
2926                                tp->retrans_out, icsk->icsk_ca_state);
2927                         tp->retrans_out = 0;
2928                 }
2929         }
2930 #endif
2931         *seq_rtt_p = seq_rtt;
2932         return flag;
2933 }
2934
2935 static void tcp_ack_probe(struct sock *sk)
2936 {
2937         const struct tcp_sock *tp = tcp_sk(sk);
2938         struct inet_connection_sock *icsk = inet_csk(sk);
2939
2940         /* Was it a usable window open? */
2941
2942         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2943                    tp->snd_una + tp->snd_wnd)) {
2944                 icsk->icsk_backoff = 0;
2945                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2946                 /* Socket must be waked up by subsequent tcp_data_snd_check().
2947                  * This function is not for random using!
2948                  */
2949         } else {
2950                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2951                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2952                                           TCP_RTO_MAX);
2953         }
2954 }
2955
2956 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2957 {
2958         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2959                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2960 }
2961
2962 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2963 {
2964         const struct tcp_sock *tp = tcp_sk(sk);
2965         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2966                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2967 }
2968
2969 /* Check that window update is acceptable.
2970  * The function assumes that snd_una<=ack<=snd_next.
2971  */
2972 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2973                                         const u32 ack_seq, const u32 nwin)
2974 {
2975         return (after(ack, tp->snd_una) ||
2976                 after(ack_seq, tp->snd_wl1) ||
2977                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2978 }
2979
2980 /* Update our send window.
2981  *
2982  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2983  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2984  */
2985 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2986                                  u32 ack_seq)
2987 {
2988         struct tcp_sock *tp = tcp_sk(sk);
2989         int flag = 0;
2990         u32 nwin = ntohs(tcp_hdr(skb)->window);
2991
2992         if (likely(!tcp_hdr(skb)->syn))
2993                 nwin <<= tp->rx_opt.snd_wscale;
2994
2995         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2996                 flag |= FLAG_WIN_UPDATE;
2997                 tcp_update_wl(tp, ack, ack_seq);
2998
2999                 if (tp->snd_wnd != nwin) {
3000                         tp->snd_wnd = nwin;
3001
3002                         /* Note, it is the only place, where
3003                          * fast path is recovered for sending TCP.
3004                          */
3005                         tp->pred_flags = 0;
3006                         tcp_fast_path_check(sk);
3007
3008                         if (nwin > tp->max_window) {
3009                                 tp->max_window = nwin;
3010                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3011                         }
3012                 }
3013         }
3014
3015         tp->snd_una = ack;
3016
3017         return flag;
3018 }
3019
3020 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3021  * continue in congestion avoidance.
3022  */
3023 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3024 {
3025         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3026         tp->snd_cwnd_cnt = 0;
3027         tp->bytes_acked = 0;
3028         TCP_ECN_queue_cwr(tp);
3029         tcp_moderate_cwnd(tp);
3030 }
3031
3032 /* A conservative spurious RTO response algorithm: reduce cwnd using
3033  * rate halving and continue in congestion avoidance.
3034  */
3035 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3036 {
3037         tcp_enter_cwr(sk, 0);
3038 }
3039
3040 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3041 {
3042         if (flag&FLAG_ECE)
3043                 tcp_ratehalving_spur_to_response(sk);
3044         else
3045                 tcp_undo_cwr(sk, 1);
3046 }
3047
3048 /* F-RTO spurious RTO detection algorithm (RFC4138)
3049  *
3050  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3051  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3052  * window (but not to or beyond highest sequence sent before RTO):
3053  *   On First ACK,  send two new segments out.
3054  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3055  *                  algorithm is not part of the F-RTO detection algorithm
3056  *                  given in RFC4138 but can be selected separately).
3057  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3058  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3059  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3060  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3061  *
3062  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3063  * original window even after we transmit two new data segments.
3064  *
3065  * SACK version:
3066  *   on first step, wait until first cumulative ACK arrives, then move to
3067  *   the second step. In second step, the next ACK decides.
3068  *
3069  * F-RTO is implemented (mainly) in four functions:
3070  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3071  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3072  *     called when tcp_use_frto() showed green light
3073  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3074  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3075  *     to prove that the RTO is indeed spurious. It transfers the control
3076  *     from F-RTO to the conventional RTO recovery
3077  */
3078 static int tcp_process_frto(struct sock *sk, int flag)
3079 {
3080         struct tcp_sock *tp = tcp_sk(sk);
3081
3082         tcp_verify_left_out(tp);
3083
3084         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3085         if (flag&FLAG_DATA_ACKED)
3086                 inet_csk(sk)->icsk_retransmits = 0;
3087
3088         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3089             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3090                 tp->undo_marker = 0;
3091
3092         if (!before(tp->snd_una, tp->frto_highmark)) {
3093                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3094                 return 1;
3095         }
3096
3097         if (!IsSackFrto() || tcp_is_reno(tp)) {
3098                 /* RFC4138 shortcoming in step 2; should also have case c):
3099                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3100                  * data, winupdate
3101                  */
3102                 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
3103                         return 1;
3104
3105                 if (!(flag&FLAG_DATA_ACKED)) {
3106                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3107                                             flag);
3108                         return 1;
3109                 }
3110         } else {
3111                 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3112                         /* Prevent sending of new data. */
3113                         tp->snd_cwnd = min(tp->snd_cwnd,
3114                                            tcp_packets_in_flight(tp));
3115                         return 1;
3116                 }
3117
3118                 if ((tp->frto_counter >= 2) &&
3119                     (!(flag&FLAG_FORWARD_PROGRESS) ||
3120                      ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
3121                         /* RFC4138 shortcoming (see comment above) */
3122                         if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
3123                                 return 1;
3124
3125                         tcp_enter_frto_loss(sk, 3, flag);
3126                         return 1;
3127                 }
3128         }
3129
3130         if (tp->frto_counter == 1) {
3131                 /* tcp_may_send_now needs to see updated state */
3132                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3133                 tp->frto_counter = 2;
3134
3135                 if (!tcp_may_send_now(sk))
3136                         tcp_enter_frto_loss(sk, 2, flag);
3137
3138                 return 1;
3139         } else {
3140                 switch (sysctl_tcp_frto_response) {
3141                 case 2:
3142                         tcp_undo_spur_to_response(sk, flag);
3143                         break;
3144                 case 1:
3145                         tcp_conservative_spur_to_response(tp);
3146                         break;
3147                 default:
3148                         tcp_ratehalving_spur_to_response(sk);
3149                         break;
3150                 }
3151                 tp->frto_counter = 0;
3152                 tp->undo_marker = 0;
3153                 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3154         }
3155         return 0;
3156 }
3157
3158 /* This routine deals with incoming acks, but not outgoing ones. */
3159 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3160 {
3161         struct inet_connection_sock *icsk = inet_csk(sk);
3162         struct tcp_sock *tp = tcp_sk(sk);
3163         u32 prior_snd_una = tp->snd_una;
3164         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3165         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3166         u32 prior_in_flight;
3167         u32 prior_fackets;
3168         s32 seq_rtt;
3169         int prior_packets;
3170         int frto_cwnd = 0;
3171
3172         /* If the ack is newer than sent or older than previous acks
3173          * then we can probably ignore it.
3174          */
3175         if (after(ack, tp->snd_nxt))
3176                 goto uninteresting_ack;
3177
3178         if (before(ack, prior_snd_una))
3179                 goto old_ack;
3180
3181         if (after(ack, prior_snd_una))
3182                 flag |= FLAG_SND_UNA_ADVANCED;
3183
3184         if (sysctl_tcp_abc) {
3185                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3186                         tp->bytes_acked += ack - prior_snd_una;
3187                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3188                         /* we assume just one segment left network */
3189                         tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3190         }
3191
3192         prior_fackets = tp->fackets_out;
3193         prior_in_flight = tcp_packets_in_flight(tp);
3194
3195         if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3196                 /* Window is constant, pure forward advance.
3197                  * No more checks are required.
3198                  * Note, we use the fact that SND.UNA>=SND.WL2.
3199                  */
3200                 tcp_update_wl(tp, ack, ack_seq);
3201                 tp->snd_una = ack;
3202                 flag |= FLAG_WIN_UPDATE;
3203
3204                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3205
3206                 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3207         } else {
3208                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3209                         flag |= FLAG_DATA;
3210                 else
3211                         NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3212
3213                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3214
3215                 if (TCP_SKB_CB(skb)->sacked)
3216                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3217
3218                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3219                         flag |= FLAG_ECE;
3220
3221                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3222         }
3223
3224         /* We passed data and got it acked, remove any soft error
3225          * log. Something worked...
3226          */
3227         sk->sk_err_soft = 0;
3228         tp->rcv_tstamp = tcp_time_stamp;
3229         prior_packets = tp->packets_out;
3230         if (!prior_packets)
3231                 goto no_queue;
3232
3233         /* See if we can take anything off of the retransmit queue. */
3234         flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
3235
3236         if (tp->frto_counter)
3237                 frto_cwnd = tcp_process_frto(sk, flag);
3238         /* Guarantee sacktag reordering detection against wrap-arounds */
3239         if (before(tp->frto_highmark, tp->snd_una))
3240                 tp->frto_highmark = 0;
3241
3242         if (tcp_ack_is_dubious(sk, flag)) {
3243                 /* Advance CWND, if state allows this. */
3244                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3245                     tcp_may_raise_cwnd(sk, flag))
3246                         tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3247                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3248         } else {
3249                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3250                         tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3251         }
3252
3253         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3254                 dst_confirm(sk->sk_dst_cache);
3255
3256         return 1;
3257
3258 no_queue:
3259         icsk->icsk_probes_out = 0;
3260
3261         /* If this ack opens up a zero window, clear backoff.  It was
3262          * being used to time the probes, and is probably far higher than
3263          * it needs to be for normal retransmission.
3264          */
3265         if (tcp_send_head(sk))
3266                 tcp_ack_probe(sk);
3267         return 1;
3268
3269 old_ack:
3270         if (TCP_SKB_CB(skb)->sacked)
3271                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3272
3273 uninteresting_ack:
3274         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3275         return 0;
3276 }
3277
3278
3279 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3280  * But, this can also be called on packets in the established flow when
3281  * the fast version below fails.
3282  */
3283 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3284 {
3285         unsigned char *ptr;
3286         struct tcphdr *th = tcp_hdr(skb);
3287         int length=(th->doff*4)-sizeof(struct tcphdr);
3288
3289         ptr = (unsigned char *)(th + 1);
3290         opt_rx->saw_tstamp = 0;
3291
3292         while (length > 0) {
3293                 int opcode=*ptr++;
3294                 int opsize;
3295
3296                 switch (opcode) {
3297                         case TCPOPT_EOL:
3298                                 return;
3299                         case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3300                                 length--;
3301                                 continue;
3302                         default:
3303                                 opsize=*ptr++;
3304                                 if (opsize < 2) /* "silly options" */
3305                                         return;
3306                                 if (opsize > length)
3307                                         return; /* don't parse partial options */
3308                                 switch (opcode) {
3309                                 case TCPOPT_MSS:
3310                                         if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3311                                                 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3312                                                 if (in_mss) {
3313                                                         if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3314                                                                 in_mss = opt_rx->user_mss;
3315                                                         opt_rx->mss_clamp = in_mss;
3316                                                 }
3317                                         }
3318                                         break;
3319                                 case TCPOPT_WINDOW:
3320                                         if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3321                                                 if (sysctl_tcp_window_scaling) {
3322                                                         __u8 snd_wscale = *(__u8 *) ptr;
3323                                                         opt_rx->wscale_ok = 1;
3324                                                         if (snd_wscale > 14) {
3325                                                                 if (net_ratelimit())
3326                                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3327                                                                                "scaling value %d >14 received.\n",
3328                                                                                snd_wscale);
3329                                                                 snd_wscale = 14;
3330                                                         }
3331                                                         opt_rx->snd_wscale = snd_wscale;
3332                                                 }
3333                                         break;
3334                                 case TCPOPT_TIMESTAMP:
3335                                         if (opsize==TCPOLEN_TIMESTAMP) {
3336                                                 if ((estab && opt_rx->tstamp_ok) ||
3337                                                     (!estab && sysctl_tcp_timestamps)) {
3338                                                         opt_rx->saw_tstamp = 1;
3339                                                         opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3340                                                         opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3341                                                 }
3342                                         }
3343                                         break;
3344                                 case TCPOPT_SACK_PERM:
3345                                         if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3346                                                 if (sysctl_tcp_sack) {
3347                                                         opt_rx->sack_ok = 1;
3348                                                         tcp_sack_reset(opt_rx);
3349                                                 }
3350                                         }
3351                                         break;
3352
3353                                 case TCPOPT_SACK:
3354                                         if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3355                                            !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3356                                            opt_rx->sack_ok) {
3357                                                 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3358                                         }
3359                                         break;
3360 #ifdef CONFIG_TCP_MD5SIG
3361                                 case TCPOPT_MD5SIG:
3362                                         /*
3363                                          * The MD5 Hash has already been
3364                                          * checked (see tcp_v{4,6}_do_rcv()).
3365                                          */
3366                                         break;
3367 #endif
3368                                 }
3369
3370                                 ptr+=opsize-2;
3371                                 length-=opsize;
3372                 }
3373         }
3374 }
3375
3376 /* Fast parse options. This hopes to only see timestamps.
3377  * If it is wrong it falls back on tcp_parse_options().
3378  */
3379 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3380                                   struct tcp_sock *tp)
3381 {
3382         if (th->doff == sizeof(struct tcphdr)>>2) {
3383                 tp->rx_opt.saw_tstamp = 0;
3384                 return 0;
3385         } else if (tp->rx_opt.tstamp_ok &&
3386                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3387                 __be32 *ptr = (__be32 *)(th + 1);
3388                 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3389                                   | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3390                         tp->rx_opt.saw_tstamp = 1;
3391                         ++ptr;
3392                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
3393                         ++ptr;
3394                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3395                         return 1;
3396                 }
3397         }
3398         tcp_parse_options(skb, &tp->rx_opt, 1);
3399         return 1;
3400 }
3401
3402 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3403 {
3404         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3405         tp->rx_opt.ts_recent_stamp = get_seconds();
3406 }
3407
3408 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3409 {
3410         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3411                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3412                  * extra check below makes sure this can only happen
3413                  * for pure ACK frames.  -DaveM
3414                  *
3415                  * Not only, also it occurs for expired timestamps.
3416                  */
3417
3418                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3419                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3420                         tcp_store_ts_recent(tp);
3421         }
3422 }
3423
3424 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3425  *
3426  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3427  * it can pass through stack. So, the following predicate verifies that
3428  * this segment is not used for anything but congestion avoidance or
3429  * fast retransmit. Moreover, we even are able to eliminate most of such
3430  * second order effects, if we apply some small "replay" window (~RTO)
3431  * to timestamp space.
3432  *
3433  * All these measures still do not guarantee that we reject wrapped ACKs
3434  * on networks with high bandwidth, when sequence space is recycled fastly,
3435  * but it guarantees that such events will be very rare and do not affect
3436  * connection seriously. This doesn't look nice, but alas, PAWS is really
3437  * buggy extension.
3438  *
3439  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3440  * states that events when retransmit arrives after original data are rare.
3441  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3442  * the biggest problem on large power networks even with minor reordering.
3443  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3444  * up to bandwidth of 18Gigabit/sec. 8) ]
3445  */
3446
3447 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3448 {
3449         struct tcp_sock *tp = tcp_sk(sk);
3450         struct tcphdr *th = tcp_hdr(skb);
3451         u32 seq = TCP_SKB_CB(skb)->seq;
3452         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3453
3454         return (/* 1. Pure ACK with correct sequence number. */
3455                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3456
3457                 /* 2. ... and duplicate ACK. */
3458                 ack == tp->snd_una &&
3459
3460                 /* 3. ... and does not update window. */
3461                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3462
3463                 /* 4. ... and sits in replay window. */
3464                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3465 }
3466
3467 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3468 {
3469         const struct tcp_sock *tp = tcp_sk(sk);
3470         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3471                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3472                 !tcp_disordered_ack(sk, skb));
3473 }
3474
3475 /* Check segment sequence number for validity.
3476  *
3477  * Segment controls are considered valid, if the segment
3478  * fits to the window after truncation to the window. Acceptability
3479  * of data (and SYN, FIN, of course) is checked separately.
3480  * See tcp_data_queue(), for example.
3481  *
3482  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3483  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3484  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3485  * (borrowed from freebsd)
3486  */
3487
3488 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3489 {
3490         return  !before(end_seq, tp->rcv_wup) &&
3491                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3492 }
3493
3494 /* When we get a reset we do this. */
3495 static void tcp_reset(struct sock *sk)
3496 {
3497         /* We want the right error as BSD sees it (and indeed as we do). */
3498         switch (sk->sk_state) {
3499                 case TCP_SYN_SENT:
3500                         sk->sk_err = ECONNREFUSED;
3501                         break;
3502                 case TCP_CLOSE_WAIT:
3503                         sk->sk_err = EPIPE;
3504                         break;
3505                 case TCP_CLOSE:
3506                         return;
3507                 default:
3508                         sk->sk_err = ECONNRESET;
3509         }
3510
3511         if (!sock_flag(sk, SOCK_DEAD))
3512                 sk->sk_error_report(sk);
3513
3514         tcp_done(sk);
3515 }
3516
3517 /*
3518  *      Process the FIN bit. This now behaves as it is supposed to work
3519  *      and the FIN takes effect when it is validly part of sequence
3520  *      space. Not before when we get holes.
3521  *
3522  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3523  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3524  *      TIME-WAIT)
3525  *
3526  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3527  *      close and we go into CLOSING (and later onto TIME-WAIT)
3528  *
3529  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3530  */
3531 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3532 {
3533         struct tcp_sock *tp = tcp_sk(sk);
3534
3535         inet_csk_schedule_ack(sk);
3536
3537         sk->sk_shutdown |= RCV_SHUTDOWN;
3538         sock_set_flag(sk, SOCK_DONE);
3539
3540         switch (sk->sk_state) {
3541                 case TCP_SYN_RECV:
3542                 case TCP_ESTABLISHED:
3543                         /* Move to CLOSE_WAIT */
3544                         tcp_set_state(sk, TCP_CLOSE_WAIT);
3545                         inet_csk(sk)->icsk_ack.pingpong = 1;
3546                         break;
3547
3548                 case TCP_CLOSE_WAIT:
3549                 case TCP_CLOSING:
3550                         /* Received a retransmission of the FIN, do
3551                          * nothing.
3552                          */
3553                         break;
3554                 case TCP_LAST_ACK:
3555                         /* RFC793: Remain in the LAST-ACK state. */
3556                         break;
3557
3558                 case TCP_FIN_WAIT1:
3559                         /* This case occurs when a simultaneous close
3560                          * happens, we must ack the received FIN and
3561                          * enter the CLOSING state.
3562                          */
3563                         tcp_send_ack(sk);
3564                         tcp_set_state(sk, TCP_CLOSING);
3565                         break;
3566                 case TCP_FIN_WAIT2:
3567                         /* Received a FIN -- send ACK and enter TIME_WAIT. */
3568                         tcp_send_ack(sk);
3569                         tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3570                         break;
3571                 default:
3572                         /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3573                          * cases we should never reach this piece of code.
3574                          */
3575                         printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3576                                __FUNCTION__, sk->sk_state);
3577                         break;
3578         }
3579
3580         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3581          * Probably, we should reset in this case. For now drop them.
3582          */
3583         __skb_queue_purge(&tp->out_of_order_queue);
3584         if (tcp_is_sack(tp))
3585                 tcp_sack_reset(&tp->rx_opt);
3586         sk_stream_mem_reclaim(sk);
3587
3588         if (!sock_flag(sk, SOCK_DEAD)) {
3589                 sk->sk_state_change(sk);
3590
3591                 /* Do not send POLL_HUP for half duplex close. */
3592                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3593                     sk->sk_state == TCP_CLOSE)
3594                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3595                 else
3596                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3597         }
3598 }
3599
3600 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3601 {
3602         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3603                 if (before(seq, sp->start_seq))
3604                         sp->start_seq = seq;
3605                 if (after(end_seq, sp->end_seq))
3606                         sp->end_seq = end_seq;
3607                 return 1;
3608         }
3609         return 0;
3610 }
3611
3612 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3613 {
3614         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3615                 if (before(seq, tp->rcv_nxt))
3616                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3617                 else
3618                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3619
3620                 tp->rx_opt.dsack = 1;
3621                 tp->duplicate_sack[0].start_seq = seq;
3622                 tp->duplicate_sack[0].end_seq = end_seq;
3623                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3624         }
3625 }
3626
3627 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3628 {
3629         if (!tp->rx_opt.dsack)
3630                 tcp_dsack_set(tp, seq, end_seq);
3631         else
3632                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3633 }
3634
3635 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3636 {
3637         struct tcp_sock *tp = tcp_sk(sk);
3638
3639         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3640             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3641                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3642                 tcp_enter_quickack_mode(sk);
3643
3644                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3645                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3646
3647                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3648                                 end_seq = tp->rcv_nxt;
3649                         tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3650                 }
3651         }
3652
3653         tcp_send_ack(sk);
3654 }
3655
3656 /* These routines update the SACK block as out-of-order packets arrive or
3657  * in-order packets close up the sequence space.
3658  */
3659 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3660 {
3661         int this_sack;
3662         struct tcp_sack_block *sp = &tp->selective_acks[0];
3663         struct tcp_sack_block *swalk = sp+1;
3664
3665         /* See if the recent change to the first SACK eats into
3666          * or hits the sequence space of other SACK blocks, if so coalesce.
3667          */
3668         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3669                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3670                         int i;
3671
3672                         /* Zap SWALK, by moving every further SACK up by one slot.
3673                          * Decrease num_sacks.
3674                          */
3675                         tp->rx_opt.num_sacks--;
3676                         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3677                         for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3678                                 sp[i] = sp[i+1];
3679                         continue;
3680                 }
3681                 this_sack++, swalk++;
3682         }
3683 }
3684
3685 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3686 {
3687         __u32 tmp;
3688
3689         tmp = sack1->start_seq;
3690         sack1->start_seq = sack2->start_seq;
3691         sack2->start_seq = tmp;
3692
3693         tmp = sack1->end_seq;
3694         sack1->end_seq = sack2->end_seq;
3695         sack2->end_seq = tmp;
3696 }
3697
3698 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3699 {
3700         struct tcp_sock *tp = tcp_sk(sk);
3701         struct tcp_sack_block *sp = &tp->selective_acks[0];
3702         int cur_sacks = tp->rx_opt.num_sacks;
3703         int this_sack;
3704
3705         if (!cur_sacks)
3706                 goto new_sack;
3707
3708         for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3709                 if (tcp_sack_extend(sp, seq, end_seq)) {
3710                         /* Rotate this_sack to the first one. */
3711                         for (; this_sack>0; this_sack--, sp--)
3712                                 tcp_sack_swap(sp, sp-1);
3713                         if (cur_sacks > 1)
3714                                 tcp_sack_maybe_coalesce(tp);
3715                         return;
3716                 }
3717         }
3718
3719         /* Could not find an adjacent existing SACK, build a new one,
3720          * put it at the front, and shift everyone else down.  We
3721          * always know there is at least one SACK present already here.
3722          *
3723          * If the sack array is full, forget about the last one.
3724          */
3725         if (this_sack >= 4) {
3726                 this_sack--;
3727                 tp->rx_opt.num_sacks--;
3728                 sp--;
3729         }
3730         for (; this_sack > 0; this_sack--, sp--)
3731                 *sp = *(sp-1);
3732
3733 new_sack:
3734         /* Build the new head SACK, and we're done. */
3735         sp->start_seq = seq;
3736         sp->end_seq = end_seq;
3737         tp->rx_opt.num_sacks++;
3738         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3739 }
3740
3741 /* RCV.NXT advances, some SACKs should be eaten. */
3742
3743 static void tcp_sack_remove(struct tcp_sock *tp)
3744 {
3745         struct tcp_sack_block *sp = &tp->selective_acks[0];
3746         int num_sacks = tp->rx_opt.num_sacks;
3747         int this_sack;
3748
3749         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3750         if (skb_queue_empty(&tp->out_of_order_queue)) {
3751                 tp->rx_opt.num_sacks = 0;
3752                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3753                 return;
3754         }
3755
3756         for (this_sack = 0; this_sack < num_sacks; ) {
3757                 /* Check if the start of the sack is covered by RCV.NXT. */
3758                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3759                         int i;
3760
3761                         /* RCV.NXT must cover all the block! */
3762                         BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3763
3764                         /* Zap this SACK, by moving forward any other SACKS. */
3765                         for (i=this_sack+1; i < num_sacks; i++)
3766                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3767                         num_sacks--;
3768                         continue;
3769                 }
3770                 this_sack++;
3771                 sp++;
3772         }
3773         if (num_sacks != tp->rx_opt.num_sacks) {
3774                 tp->rx_opt.num_sacks = num_sacks;
3775                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3776         }
3777 }
3778
3779 /* This one checks to see if we can put data from the
3780  * out_of_order queue into the receive_queue.
3781  */
3782 static void tcp_ofo_queue(struct sock *sk)
3783 {
3784         struct tcp_sock *tp = tcp_sk(sk);
3785         __u32 dsack_high = tp->rcv_nxt;
3786         struct sk_buff *skb;
3787
3788         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3789                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3790                         break;
3791
3792                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3793                         __u32 dsack = dsack_high;
3794                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3795                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3796                         tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3797                 }
3798
3799                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3800                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3801                         __skb_unlink(skb, &tp->out_of_order_queue);
3802                         __kfree_skb(skb);
3803                         continue;
3804                 }
3805                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3806                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3807                            TCP_SKB_CB(skb)->end_seq);
3808
3809                 __skb_unlink(skb, &tp->out_of_order_queue);
3810                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3811                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3812                 if (tcp_hdr(skb)->fin)
3813                         tcp_fin(skb, sk, tcp_hdr(skb));
3814         }
3815 }
3816
3817 static int tcp_prune_queue(struct sock *sk);
3818
3819 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3820 {
3821         struct tcphdr *th = tcp_hdr(skb);
3822         struct tcp_sock *tp = tcp_sk(sk);
3823         int eaten = -1;
3824
3825         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3826                 goto drop;
3827
3828         __skb_pull(skb, th->doff*4);
3829
3830         TCP_ECN_accept_cwr(tp, skb);
3831
3832         if (tp->rx_opt.dsack) {
3833                 tp->rx_opt.dsack = 0;
3834                 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3835                                                     4 - tp->rx_opt.tstamp_ok);
3836         }
3837
3838         /*  Queue data for delivery to the user.
3839          *  Packets in sequence go to the receive queue.
3840          *  Out of sequence packets to the out_of_order_queue.
3841          */
3842         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3843                 if (tcp_receive_window(tp) == 0)
3844                         goto out_of_window;
3845
3846                 /* Ok. In sequence. In window. */
3847                 if (tp->ucopy.task == current &&
3848                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3849                     sock_owned_by_user(sk) && !tp->urg_data) {
3850                         int chunk = min_t(unsigned int, skb->len,
3851                                                         tp->ucopy.len);
3852
3853                         __set_current_state(TASK_RUNNING);
3854
3855                         local_bh_enable();
3856                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3857                                 tp->ucopy.len -= chunk;
3858                                 tp->copied_seq += chunk;
3859                                 eaten = (chunk == skb->len && !th->fin);
3860                                 tcp_rcv_space_adjust(sk);
3861                         }
3862                         local_bh_disable();
3863                 }
3864
3865                 if (eaten <= 0) {
3866 queue_and_out:
3867                         if (eaten < 0 &&
3868                             (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3869                              !sk_stream_rmem_schedule(sk, skb))) {
3870                                 if (tcp_prune_queue(sk) < 0 ||
3871                                     !sk_stream_rmem_schedule(sk, skb))
3872                                         goto drop;
3873                         }
3874                         sk_stream_set_owner_r(skb, sk);
3875                         __skb_queue_tail(&sk->sk_receive_queue, skb);
3876                 }
3877                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3878                 if (skb->len)
3879                         tcp_event_data_recv(sk, skb);
3880                 if (th->fin)
3881                         tcp_fin(skb, sk, th);
3882
3883                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3884                         tcp_ofo_queue(sk);
3885
3886                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
3887                          * gap in queue is filled.
3888                          */
3889                         if (skb_queue_empty(&tp->out_of_order_queue))
3890                                 inet_csk(sk)->icsk_ack.pingpong = 0;
3891                 }
3892
3893                 if (tp->rx_opt.num_sacks)
3894                         tcp_sack_remove(tp);
3895
3896                 tcp_fast_path_check(sk);
3897
3898                 if (eaten > 0)
3899                         __kfree_skb(skb);
3900                 else if (!sock_flag(sk, SOCK_DEAD))
3901                         sk->sk_data_ready(sk, 0);
3902                 return;
3903         }
3904
3905         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3906                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
3907                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3908                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3909
3910 out_of_window:
3911                 tcp_enter_quickack_mode(sk);
3912                 inet_csk_schedule_ack(sk);
3913 drop:
3914                 __kfree_skb(skb);
3915                 return;
3916         }
3917
3918         /* Out of window. F.e. zero window probe. */
3919         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3920                 goto out_of_window;
3921
3922         tcp_enter_quickack_mode(sk);
3923
3924         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3925                 /* Partial packet, seq < rcv_next < end_seq */
3926                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3927                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3928                            TCP_SKB_CB(skb)->end_seq);
3929
3930                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3931
3932                 /* If window is closed, drop tail of packet. But after
3933                  * remembering D-SACK for its head made in previous line.
3934                  */
3935                 if (!tcp_receive_window(tp))
3936                         goto out_of_window;
3937                 goto queue_and_out;
3938         }
3939
3940         TCP_ECN_check_ce(tp, skb);
3941
3942         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3943             !sk_stream_rmem_schedule(sk, skb)) {
3944                 if (tcp_prune_queue(sk) < 0 ||
3945                     !sk_stream_rmem_schedule(sk, skb))
3946                         goto drop;
3947         }
3948
3949         /* Disable header prediction. */
3950         tp->pred_flags = 0;
3951         inet_csk_schedule_ack(sk);
3952
3953         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3954                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3955
3956         sk_stream_set_owner_r(skb, sk);
3957
3958         if (!skb_peek(&tp->out_of_order_queue)) {
3959                 /* Initial out of order segment, build 1 SACK. */
3960                 if (tcp_is_sack(tp)) {
3961                         tp->rx_opt.num_sacks = 1;
3962                         tp->rx_opt.dsack     = 0;
3963                         tp->rx_opt.eff_sacks = 1;
3964                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3965                         tp->selective_acks[0].end_seq =
3966                                                 TCP_SKB_CB(skb)->end_seq;
3967                 }
3968                 __skb_queue_head(&tp->out_of_order_queue,skb);
3969         } else {
3970                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3971                 u32 seq = TCP_SKB_CB(skb)->seq;
3972                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3973
3974                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3975                         __skb_append(skb1, skb, &tp->out_of_order_queue);
3976
3977                         if (!tp->rx_opt.num_sacks ||
3978                             tp->selective_acks[0].end_seq != seq)
3979                                 goto add_sack;
3980
3981                         /* Common case: data arrive in order after hole. */
3982                         tp->selective_acks[0].end_seq = end_seq;
3983                         return;
3984                 }
3985
3986                 /* Find place to insert this segment. */
3987                 do {
3988                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
3989                                 break;
3990                 } while ((skb1 = skb1->prev) !=
3991                          (struct sk_buff*)&tp->out_of_order_queue);
3992
3993                 /* Do skb overlap to previous one? */
3994                 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3995                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3996                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3997                                 /* All the bits are present. Drop. */
3998                                 __kfree_skb(skb);
3999                                 tcp_dsack_set(tp, seq, end_seq);
4000                                 goto add_sack;
4001                         }
4002                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4003                                 /* Partial overlap. */
4004                                 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
4005                         } else {
4006                                 skb1 = skb1->prev;
4007                         }
4008                 }
4009                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4010
4011                 /* And clean segments covered by new one as whole. */
4012                 while ((skb1 = skb->next) !=
4013                        (struct sk_buff*)&tp->out_of_order_queue &&
4014                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4015                        if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4016                                tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
4017                                break;
4018                        }
4019                        __skb_unlink(skb1, &tp->out_of_order_queue);
4020                        tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
4021                        __kfree_skb(skb1);
4022                 }
4023
4024 add_sack:
4025                 if (tcp_is_sack(tp))
4026                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4027         }
4028 }
4029
4030 /* Collapse contiguous sequence of skbs head..tail with
4031  * sequence numbers start..end.
4032  * Segments with FIN/SYN are not collapsed (only because this
4033  * simplifies code)
4034  */
4035 static void
4036 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4037              struct sk_buff *head, struct sk_buff *tail,
4038              u32 start, u32 end)
4039 {
4040         struct sk_buff *skb;
4041
4042         /* First, check that queue is collapsible and find
4043          * the point where collapsing can be useful. */
4044         for (skb = head; skb != tail; ) {
4045                 /* No new bits? It is possible on ofo queue. */
4046                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4047                         struct sk_buff *next = skb->next;
4048                         __skb_unlink(skb, list);
4049                         __kfree_skb(skb);
4050                         NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4051                         skb = next;
4052                         continue;
4053                 }
4054
4055                 /* The first skb to collapse is:
4056                  * - not SYN/FIN and
4057                  * - bloated or contains data before "start" or
4058                  *   overlaps to the next one.
4059                  */
4060                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4061                     (tcp_win_from_space(skb->truesize) > skb->len ||
4062                      before(TCP_SKB_CB(skb)->seq, start) ||
4063                      (skb->next != tail &&
4064                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4065                         break;
4066
4067                 /* Decided to skip this, advance start seq. */
4068                 start = TCP_SKB_CB(skb)->end_seq;
4069                 skb = skb->next;
4070         }
4071         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4072                 return;
4073
4074         while (before(start, end)) {
4075                 struct sk_buff *nskb;
4076                 unsigned int header = skb_headroom(skb);
4077                 int copy = SKB_MAX_ORDER(header, 0);
4078
4079                 /* Too big header? This can happen with IPv6. */
4080                 if (copy < 0)
4081                         return;
4082                 if (end-start < copy)
4083                         copy = end-start;
4084                 nskb = alloc_skb(copy+header, GFP_ATOMIC);
4085                 if (!nskb)
4086                         return;
4087
4088                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4089                 skb_set_network_header(nskb, (skb_network_header(skb) -
4090                                               skb->head));
4091                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4092                                                 skb->head));
4093                 skb_reserve(nskb, header);
4094                 memcpy(nskb->head, skb->head, header);
4095                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4096                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4097                 __skb_insert(nskb, skb->prev, skb, list);
4098                 sk_stream_set_owner_r(nskb, sk);
4099
4100                 /* Copy data, releasing collapsed skbs. */
4101                 while (copy > 0) {
4102                         int offset = start - TCP_SKB_CB(skb)->seq;
4103                         int size = TCP_SKB_CB(skb)->end_seq - start;
4104
4105                         BUG_ON(offset < 0);
4106                         if (size > 0) {
4107                                 size = min(copy, size);
4108                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4109                                         BUG();
4110                                 TCP_SKB_CB(nskb)->end_seq += size;
4111                                 copy -= size;
4112                                 start += size;
4113                         }
4114                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4115                                 struct sk_buff *next = skb->next;
4116                                 __skb_unlink(skb, list);
4117                                 __kfree_skb(skb);
4118                                 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4119                                 skb = next;
4120                                 if (skb == tail ||
4121                                     tcp_hdr(skb)->syn ||
4122                                     tcp_hdr(skb)->fin)
4123                                         return;
4124                         }
4125                 }
4126         }
4127 }
4128
4129 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4130  * and tcp_collapse() them until all the queue is collapsed.
4131  */
4132 static void tcp_collapse_ofo_queue(struct sock *sk)
4133 {
4134         struct tcp_sock *tp = tcp_sk(sk);
4135         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4136         struct sk_buff *head;
4137         u32 start, end;
4138
4139         if (skb == NULL)
4140                 return;
4141
4142         start = TCP_SKB_CB(skb)->seq;
4143         end = TCP_SKB_CB(skb)->end_seq;
4144         head = skb;
4145
4146         for (;;) {
4147                 skb = skb->next;
4148
4149                 /* Segment is terminated when we see gap or when
4150                  * we are at the end of all the queue. */
4151                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4152                     after(TCP_SKB_CB(skb)->seq, end) ||
4153                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4154                         tcp_collapse(sk, &tp->out_of_order_queue,
4155                                      head, skb, start, end);
4156                         head = skb;
4157                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4158                                 break;
4159                         /* Start new segment */
4160                         start = TCP_SKB_CB(skb)->seq;
4161                         end = TCP_SKB_CB(skb)->end_seq;
4162                 } else {
4163                         if (before(TCP_SKB_CB(skb)->seq, start))
4164                                 start = TCP_SKB_CB(skb)->seq;
4165                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4166                                 end = TCP_SKB_CB(skb)->end_seq;
4167                 }
4168         }
4169 }
4170
4171 /* Reduce allocated memory if we can, trying to get
4172  * the socket within its memory limits again.
4173  *
4174  * Return less than zero if we should start dropping frames
4175  * until the socket owning process reads some of the data
4176  * to stabilize the situation.
4177  */
4178 static int tcp_prune_queue(struct sock *sk)
4179 {
4180         struct tcp_sock *tp = tcp_sk(sk);
4181
4182         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4183
4184         NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4185
4186         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4187                 tcp_clamp_window(sk);
4188         else if (tcp_memory_pressure)
4189                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4190
4191         tcp_collapse_ofo_queue(sk);
4192         tcp_collapse(sk, &sk->sk_receive_queue,
4193                      sk->sk_receive_queue.next,
4194                      (struct sk_buff*)&sk->sk_receive_queue,
4195                      tp->copied_seq, tp->rcv_nxt);
4196         sk_stream_mem_reclaim(sk);
4197
4198         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4199                 return 0;
4200
4201         /* Collapsing did not help, destructive actions follow.
4202          * This must not ever occur. */
4203
4204         /* First, purge the out_of_order queue. */
4205         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4206                 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4207                 __skb_queue_purge(&tp->out_of_order_queue);
4208
4209                 /* Reset SACK state.  A conforming SACK implementation will
4210                  * do the same at a timeout based retransmit.  When a connection
4211                  * is in a sad state like this, we care only about integrity
4212                  * of the connection not performance.
4213                  */
4214                 if (tcp_is_sack(tp))
4215                         tcp_sack_reset(&tp->rx_opt);
4216                 sk_stream_mem_reclaim(sk);
4217         }
4218
4219         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4220                 return 0;
4221
4222         /* If we are really being abused, tell the caller to silently
4223          * drop receive data on the floor.  It will get retransmitted
4224          * and hopefully then we'll have sufficient space.
4225          */
4226         NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4227
4228         /* Massive buffer overcommit. */
4229         tp->pred_flags = 0;
4230         return -1;
4231 }
4232
4233
4234 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4235  * As additional protections, we do not touch cwnd in retransmission phases,
4236  * and if application hit its sndbuf limit recently.
4237  */
4238 void tcp_cwnd_application_limited(struct sock *sk)
4239 {
4240         struct tcp_sock *tp = tcp_sk(sk);
4241
4242         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4243             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4244                 /* Limited by application or receiver window. */
4245                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4246                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4247                 if (win_used < tp->snd_cwnd) {
4248                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4249                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4250                 }
4251                 tp->snd_cwnd_used = 0;
4252         }
4253         tp->snd_cwnd_stamp = tcp_time_stamp;
4254 }
4255
4256 static int tcp_should_expand_sndbuf(struct sock *sk)
4257 {
4258         struct tcp_sock *tp = tcp_sk(sk);
4259
4260         /* If the user specified a specific send buffer setting, do
4261          * not modify it.
4262          */
4263         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4264                 return 0;
4265
4266         /* If we are under global TCP memory pressure, do not expand.  */
4267         if (tcp_memory_pressure)
4268                 return 0;
4269
4270         /* If we are under soft global TCP memory pressure, do not expand.  */
4271         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4272                 return 0;
4273
4274         /* If we filled the congestion window, do not expand.  */
4275         if (tp->packets_out >= tp->snd_cwnd)
4276                 return 0;
4277
4278         return 1;
4279 }
4280
4281 /* When incoming ACK allowed to free some skb from write_queue,
4282  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4283  * on the exit from tcp input handler.
4284  *
4285  * PROBLEM: sndbuf expansion does not work well with largesend.
4286  */
4287 static void tcp_new_space(struct sock *sk)
4288 {
4289         struct tcp_sock *tp = tcp_sk(sk);
4290
4291         if (tcp_should_expand_sndbuf(sk)) {
4292                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4293                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4294                     demanded = max_t(unsigned int, tp->snd_cwnd,
4295                                                    tp->reordering + 1);
4296                 sndmem *= 2*demanded;
4297                 if (sndmem > sk->sk_sndbuf)
4298                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4299                 tp->snd_cwnd_stamp = tcp_time_stamp;
4300         }
4301
4302         sk->sk_write_space(sk);
4303 }
4304
4305 static void tcp_check_space(struct sock *sk)
4306 {
4307         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4308                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4309                 if (sk->sk_socket &&
4310                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4311                         tcp_new_space(sk);
4312         }
4313 }
4314
4315 static inline void tcp_data_snd_check(struct sock *sk)
4316 {
4317         tcp_push_pending_frames(sk);
4318         tcp_check_space(sk);
4319 }
4320
4321 /*
4322  * Check if sending an ack is needed.
4323  */
4324 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4325 {
4326         struct tcp_sock *tp = tcp_sk(sk);
4327
4328             /* More than one full frame received... */
4329         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4330              /* ... and right edge of window advances far enough.
4331               * (tcp_recvmsg() will send ACK otherwise). Or...
4332               */
4333              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4334             /* We ACK each frame or... */
4335             tcp_in_quickack_mode(sk) ||
4336             /* We have out of order data. */
4337             (ofo_possible &&
4338              skb_peek(&tp->out_of_order_queue))) {
4339                 /* Then ack it now */
4340                 tcp_send_ack(sk);
4341         } else {
4342                 /* Else, send delayed ack. */
4343                 tcp_send_delayed_ack(sk);
4344         }
4345 }
4346
4347 static inline void tcp_ack_snd_check(struct sock *sk)
4348 {
4349         if (!inet_csk_ack_scheduled(sk)) {
4350                 /* We sent a data segment already. */
4351                 return;
4352         }
4353         __tcp_ack_snd_check(sk, 1);
4354 }
4355
4356 /*
4357  *      This routine is only called when we have urgent data
4358  *      signaled. Its the 'slow' part of tcp_urg. It could be
4359  *      moved inline now as tcp_urg is only called from one
4360  *      place. We handle URGent data wrong. We have to - as
4361  *      BSD still doesn't use the correction from RFC961.
4362  *      For 1003.1g we should support a new option TCP_STDURG to permit
4363  *      either form (or just set the sysctl tcp_stdurg).
4364  */
4365
4366 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4367 {
4368         struct tcp_sock *tp = tcp_sk(sk);
4369         u32 ptr = ntohs(th->urg_ptr);
4370
4371         if (ptr && !sysctl_tcp_stdurg)
4372                 ptr--;
4373         ptr += ntohl(th->seq);
4374
4375         /* Ignore urgent data that we've already seen and read. */
4376         if (after(tp->copied_seq, ptr))
4377                 return;
4378
4379         /* Do not replay urg ptr.
4380          *
4381          * NOTE: interesting situation not covered by specs.
4382          * Misbehaving sender may send urg ptr, pointing to segment,
4383          * which we already have in ofo queue. We are not able to fetch
4384          * such data and will stay in TCP_URG_NOTYET until will be eaten
4385          * by recvmsg(). Seems, we are not obliged to handle such wicked
4386          * situations. But it is worth to think about possibility of some
4387          * DoSes using some hypothetical application level deadlock.
4388          */
4389         if (before(ptr, tp->rcv_nxt))
4390                 return;
4391
4392         /* Do we already have a newer (or duplicate) urgent pointer? */
4393         if (tp->urg_data && !after(ptr, tp->urg_seq))
4394                 return;
4395
4396         /* Tell the world about our new urgent pointer. */
4397         sk_send_sigurg(sk);
4398
4399         /* We may be adding urgent data when the last byte read was
4400          * urgent. To do this requires some care. We cannot just ignore
4401          * tp->copied_seq since we would read the last urgent byte again
4402          * as data, nor can we alter copied_seq until this data arrives
4403          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4404          *
4405          * NOTE. Double Dutch. Rendering to plain English: author of comment
4406          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4407          * and expect that both A and B disappear from stream. This is _wrong_.
4408          * Though this happens in BSD with high probability, this is occasional.
4409          * Any application relying on this is buggy. Note also, that fix "works"
4410          * only in this artificial test. Insert some normal data between A and B and we will
4411          * decline of BSD again. Verdict: it is better to remove to trap
4412          * buggy users.
4413          */
4414         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4415             !sock_flag(sk, SOCK_URGINLINE) &&
4416             tp->copied_seq != tp->rcv_nxt) {
4417                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4418                 tp->copied_seq++;
4419                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4420                         __skb_unlink(skb, &sk->sk_receive_queue);
4421                         __kfree_skb(skb);
4422                 }
4423         }
4424
4425         tp->urg_data   = TCP_URG_NOTYET;
4426         tp->urg_seq    = ptr;
4427
4428         /* Disable header prediction. */
4429         tp->pred_flags = 0;
4430 }
4431
4432 /* This is the 'fast' part of urgent handling. */
4433 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4434 {
4435         struct tcp_sock *tp = tcp_sk(sk);
4436
4437         /* Check if we get a new urgent pointer - normally not. */
4438         if (th->urg)
4439                 tcp_check_urg(sk,th);
4440
4441         /* Do we wait for any urgent data? - normally not... */
4442         if (tp->urg_data == TCP_URG_NOTYET) {
4443                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4444                           th->syn;
4445
4446                 /* Is the urgent pointer pointing into this packet? */
4447                 if (ptr < skb->len) {
4448                         u8 tmp;
4449                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4450                                 BUG();
4451                         tp->urg_data = TCP_URG_VALID | tmp;
4452                         if (!sock_flag(sk, SOCK_DEAD))
4453                                 sk->sk_data_ready(sk, 0);
4454                 }
4455         }
4456 }
4457
4458 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4459 {
4460         struct tcp_sock *tp = tcp_sk(sk);
4461         int chunk = skb->len - hlen;
4462         int err;
4463
4464         local_bh_enable();
4465         if (skb_csum_unnecessary(skb))
4466                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4467         else
4468                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4469                                                        tp->ucopy.iov);
4470
4471         if (!err) {
4472                 tp->ucopy.len -= chunk;
4473                 tp->copied_seq += chunk;
4474                 tcp_rcv_space_adjust(sk);
4475         }
4476
4477         local_bh_disable();
4478         return err;
4479 }
4480
4481 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4482 {
4483         __sum16 result;
4484
4485         if (sock_owned_by_user(sk)) {
4486                 local_bh_enable();
4487                 result = __tcp_checksum_complete(skb);
4488                 local_bh_disable();
4489         } else {
4490                 result = __tcp_checksum_complete(skb);
4491         }
4492         return result;
4493 }
4494
4495 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4496 {
4497         return !skb_csum_unnecessary(skb) &&
4498                 __tcp_checksum_complete_user(sk, skb);
4499 }
4500
4501 #ifdef CONFIG_NET_DMA
4502 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4503 {
4504         struct tcp_sock *tp = tcp_sk(sk);
4505         int chunk = skb->len - hlen;
4506         int dma_cookie;
4507         int copied_early = 0;
4508
4509         if (tp->ucopy.wakeup)
4510                 return 0;
4511
4512         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4513                 tp->ucopy.dma_chan = get_softnet_dma();
4514
4515         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4516
4517                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4518                         skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4519
4520                 if (dma_cookie < 0)
4521                         goto out;
4522
4523                 tp->ucopy.dma_cookie = dma_cookie;
4524                 copied_early = 1;
4525
4526                 tp->ucopy.len -= chunk;
4527                 tp->copied_seq += chunk;
4528                 tcp_rcv_space_adjust(sk);
4529
4530                 if ((tp->ucopy.len == 0) ||
4531                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4532                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4533                         tp->ucopy.wakeup = 1;
4534                         sk->sk_data_ready(sk, 0);
4535                 }
4536         } else if (chunk > 0) {
4537                 tp->ucopy.wakeup = 1;
4538                 sk->sk_data_ready(sk, 0);
4539         }
4540 out:
4541         return copied_early;
4542 }
4543 #endif /* CONFIG_NET_DMA */
4544
4545 /*
4546  *      TCP receive function for the ESTABLISHED state.
4547  *
4548  *      It is split into a fast path and a slow path. The fast path is
4549  *      disabled when:
4550  *      - A zero window was announced from us - zero window probing
4551  *        is only handled properly in the slow path.
4552  *      - Out of order segments arrived.
4553  *      - Urgent data is expected.
4554  *      - There is no buffer space left
4555  *      - Unexpected TCP flags/window values/header lengths are received
4556  *        (detected by checking the TCP header against pred_flags)
4557  *      - Data is sent in both directions. Fast path only supports pure senders
4558  *        or pure receivers (this means either the sequence number or the ack
4559  *        value must stay constant)
4560  *      - Unexpected TCP option.
4561  *
4562  *      When these conditions are not satisfied it drops into a standard
4563  *      receive procedure patterned after RFC793 to handle all cases.
4564  *      The first three cases are guaranteed by proper pred_flags setting,
4565  *      the rest is checked inline. Fast processing is turned on in
4566  *      tcp_data_queue when everything is OK.
4567  */
4568 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4569                         struct tcphdr *th, unsigned len)
4570 {
4571         struct tcp_sock *tp = tcp_sk(sk);
4572
4573         /*
4574          *      Header prediction.
4575          *      The code loosely follows the one in the famous
4576          *      "30 instruction TCP receive" Van Jacobson mail.
4577          *
4578          *      Van's trick is to deposit buffers into socket queue
4579          *      on a device interrupt, to call tcp_recv function
4580          *      on the receive process context and checksum and copy
4581          *      the buffer to user space. smart...
4582          *
4583          *      Our current scheme is not silly either but we take the
4584          *      extra cost of the net_bh soft interrupt processing...
4585          *      We do checksum and copy also but from device to kernel.
4586          */
4587
4588         tp->rx_opt.saw_tstamp = 0;
4589
4590         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4591          *      if header_prediction is to be made
4592          *      'S' will always be tp->tcp_header_len >> 2
4593          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4594          *  turn it off (when there are holes in the receive
4595          *       space for instance)
4596          *      PSH flag is ignored.
4597          */
4598
4599         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4600                 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4601                 int tcp_header_len = tp->tcp_header_len;
4602
4603                 /* Timestamp header prediction: tcp_header_len
4604                  * is automatically equal to th->doff*4 due to pred_flags
4605                  * match.
4606                  */
4607
4608                 /* Check timestamp */
4609                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4610                         __be32 *ptr = (__be32 *)(th + 1);
4611
4612                         /* No? Slow path! */
4613                         if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4614                                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4615                                 goto slow_path;
4616
4617                         tp->rx_opt.saw_tstamp = 1;
4618                         ++ptr;
4619                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
4620                         ++ptr;
4621                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4622
4623                         /* If PAWS failed, check it more carefully in slow path */
4624                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4625                                 goto slow_path;
4626
4627                         /* DO NOT update ts_recent here, if checksum fails
4628                          * and timestamp was corrupted part, it will result
4629                          * in a hung connection since we will drop all
4630                          * future packets due to the PAWS test.
4631                          */
4632                 }
4633
4634                 if (len <= tcp_header_len) {
4635                         /* Bulk data transfer: sender */
4636                         if (len == tcp_header_len) {
4637                                 /* Predicted packet is in window by definition.
4638                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4639                                  * Hence, check seq<=rcv_wup reduces to:
4640                                  */
4641                                 if (tcp_header_len ==
4642                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4643                                     tp->rcv_nxt == tp->rcv_wup)
4644                                         tcp_store_ts_recent(tp);
4645
4646                                 /* We know that such packets are checksummed
4647                                  * on entry.
4648                                  */
4649                                 tcp_ack(sk, skb, 0);
4650                                 __kfree_skb(skb);
4651                                 tcp_data_snd_check(sk);
4652                                 return 0;
4653                         } else { /* Header too small */
4654                                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4655                                 goto discard;
4656                         }
4657                 } else {
4658                         int eaten = 0;
4659                         int copied_early = 0;
4660
4661                         if (tp->copied_seq == tp->rcv_nxt &&
4662                             len - tcp_header_len <= tp->ucopy.len) {
4663 #ifdef CONFIG_NET_DMA
4664                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4665                                         copied_early = 1;
4666                                         eaten = 1;
4667                                 }
4668 #endif
4669                                 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4670                                         __set_current_state(TASK_RUNNING);
4671
4672                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4673                                                 eaten = 1;
4674                                 }
4675                                 if (eaten) {
4676                                         /* Predicted packet is in window by definition.
4677                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4678                                          * Hence, check seq<=rcv_wup reduces to:
4679                                          */
4680                                         if (tcp_header_len ==
4681                                             (sizeof(struct tcphdr) +
4682                                              TCPOLEN_TSTAMP_ALIGNED) &&
4683                                             tp->rcv_nxt == tp->rcv_wup)
4684                                                 tcp_store_ts_recent(tp);
4685
4686                                         tcp_rcv_rtt_measure_ts(sk, skb);
4687
4688                                         __skb_pull(skb, tcp_header_len);
4689                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4690                                         NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4691                                 }
4692                                 if (copied_early)
4693                                         tcp_cleanup_rbuf(sk, skb->len);
4694                         }
4695                         if (!eaten) {
4696                                 if (tcp_checksum_complete_user(sk, skb))
4697                                         goto csum_error;
4698
4699                                 /* Predicted packet is in window by definition.
4700                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4701                                  * Hence, check seq<=rcv_wup reduces to:
4702                                  */
4703                                 if (tcp_header_len ==
4704                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4705                                     tp->rcv_nxt == tp->rcv_wup)
4706                                         tcp_store_ts_recent(tp);
4707
4708                                 tcp_rcv_rtt_measure_ts(sk, skb);
4709
4710                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4711                                         goto step5;
4712
4713                                 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4714
4715                                 /* Bulk data transfer: receiver */
4716                                 __skb_pull(skb,tcp_header_len);
4717                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4718                                 sk_stream_set_owner_r(skb, sk);
4719                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4720                         }
4721
4722                         tcp_event_data_recv(sk, skb);
4723
4724                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4725                                 /* Well, only one small jumplet in fast path... */
4726                                 tcp_ack(sk, skb, FLAG_DATA);
4727                                 tcp_data_snd_check(sk);
4728                                 if (!inet_csk_ack_scheduled(sk))
4729                                         goto no_ack;
4730                         }
4731
4732                         __tcp_ack_snd_check(sk, 0);
4733 no_ack:
4734 #ifdef CONFIG_NET_DMA
4735                         if (copied_early)
4736                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4737                         else
4738 #endif
4739                         if (eaten)
4740                                 __kfree_skb(skb);
4741                         else
4742                                 sk->sk_data_ready(sk, 0);
4743                         return 0;
4744                 }
4745         }
4746
4747 slow_path:
4748         if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4749                 goto csum_error;
4750
4751         /*
4752          * RFC1323: H1. Apply PAWS check first.
4753          */
4754         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4755             tcp_paws_discard(sk, skb)) {
4756                 if (!th->rst) {
4757                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4758                         tcp_send_dupack(sk, skb);
4759                         goto discard;
4760                 }
4761                 /* Resets are accepted even if PAWS failed.
4762
4763                    ts_recent update must be made after we are sure
4764                    that the packet is in window.
4765                  */
4766         }
4767
4768         /*
4769          *      Standard slow path.
4770          */
4771
4772         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4773                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4774                  * (RST) segments are validated by checking their SEQ-fields."
4775                  * And page 69: "If an incoming segment is not acceptable,
4776                  * an acknowledgment should be sent in reply (unless the RST bit
4777                  * is set, if so drop the segment and return)".
4778                  */
4779                 if (!th->rst)
4780                         tcp_send_dupack(sk, skb);
4781                 goto discard;
4782         }
4783
4784         if (th->rst) {
4785                 tcp_reset(sk);
4786                 goto discard;
4787         }
4788
4789         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4790
4791         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4792                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4793                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4794                 tcp_reset(sk);
4795                 return 1;
4796         }
4797
4798 step5:
4799         if (th->ack)
4800                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4801
4802         tcp_rcv_rtt_measure_ts(sk, skb);
4803
4804         /* Process urgent data. */
4805         tcp_urg(sk, skb, th);
4806
4807         /* step 7: process the segment text */
4808         tcp_data_queue(sk, skb);
4809
4810         tcp_data_snd_check(sk);
4811         tcp_ack_snd_check(sk);
4812         return 0;
4813
4814 csum_error:
4815         TCP_INC_STATS_BH(TCP_MIB_INERRS);
4816
4817 discard:
4818         __kfree_skb(skb);
4819         return 0;
4820 }
4821
4822 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4823                                          struct tcphdr *th, unsigned len)
4824 {
4825         struct tcp_sock *tp = tcp_sk(sk);
4826         struct inet_connection_sock *icsk = inet_csk(sk);
4827         int saved_clamp = tp->rx_opt.mss_clamp;
4828
4829         tcp_parse_options(skb, &tp->rx_opt, 0);
4830
4831         if (th->ack) {
4832                 /* rfc793:
4833                  * "If the state is SYN-SENT then
4834                  *    first check the ACK bit
4835                  *      If the ACK bit is set
4836                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4837                  *        a reset (unless the RST bit is set, if so drop
4838                  *        the segment and return)"
4839                  *
4840                  *  We do not send data with SYN, so that RFC-correct
4841                  *  test reduces to:
4842                  */
4843                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4844                         goto reset_and_undo;
4845
4846                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4847                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4848                              tcp_time_stamp)) {
4849                         NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4850                         goto reset_and_undo;
4851                 }
4852
4853                 /* Now ACK is acceptable.
4854                  *
4855                  * "If the RST bit is set
4856                  *    If the ACK was acceptable then signal the user "error:
4857                  *    connection reset", drop the segment, enter CLOSED state,
4858                  *    delete TCB, and return."
4859                  */
4860
4861                 if (th->rst) {
4862                         tcp_reset(sk);
4863                         goto discard;
4864                 }
4865
4866                 /* rfc793:
4867                  *   "fifth, if neither of the SYN or RST bits is set then
4868                  *    drop the segment and return."
4869                  *
4870                  *    See note below!
4871                  *                                        --ANK(990513)
4872                  */
4873                 if (!th->syn)
4874                         goto discard_and_undo;
4875
4876                 /* rfc793:
4877                  *   "If the SYN bit is on ...
4878                  *    are acceptable then ...
4879                  *    (our SYN has been ACKed), change the connection
4880                  *    state to ESTABLISHED..."
4881                  */
4882
4883                 TCP_ECN_rcv_synack(tp, th);
4884
4885                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4886                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4887
4888                 /* Ok.. it's good. Set up sequence numbers and
4889                  * move to established.
4890                  */
4891                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4892                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4893
4894                 /* RFC1323: The window in SYN & SYN/ACK segments is
4895                  * never scaled.
4896                  */
4897                 tp->snd_wnd = ntohs(th->window);
4898                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4899
4900                 if (!tp->rx_opt.wscale_ok) {
4901                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4902                         tp->window_clamp = min(tp->window_clamp, 65535U);
4903                 }
4904
4905                 if (tp->rx_opt.saw_tstamp) {
4906                         tp->rx_opt.tstamp_ok       = 1;
4907                         tp->tcp_header_len =
4908                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4909                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
4910                         tcp_store_ts_recent(tp);
4911                 } else {
4912                         tp->tcp_header_len = sizeof(struct tcphdr);
4913                 }
4914
4915                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4916                         tcp_enable_fack(tp);
4917
4918                 tcp_mtup_init(sk);
4919                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4920                 tcp_initialize_rcv_mss(sk);
4921
4922                 /* Remember, tcp_poll() does not lock socket!
4923                  * Change state from SYN-SENT only after copied_seq
4924                  * is initialized. */
4925                 tp->copied_seq = tp->rcv_nxt;
4926                 smp_mb();
4927                 tcp_set_state(sk, TCP_ESTABLISHED);
4928
4929                 security_inet_conn_established(sk, skb);
4930
4931                 /* Make sure socket is routed, for correct metrics.  */
4932                 icsk->icsk_af_ops->rebuild_header(sk);
4933
4934                 tcp_init_metrics(sk);
4935
4936                 tcp_init_congestion_control(sk);
4937
4938                 /* Prevent spurious tcp_cwnd_restart() on first data
4939                  * packet.
4940                  */
4941                 tp->lsndtime = tcp_time_stamp;
4942
4943                 tcp_init_buffer_space(sk);
4944
4945                 if (sock_flag(sk, SOCK_KEEPOPEN))
4946                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4947
4948                 if (!tp->rx_opt.snd_wscale)
4949                         __tcp_fast_path_on(tp, tp->snd_wnd);
4950                 else
4951                         tp->pred_flags = 0;
4952
4953                 if (!sock_flag(sk, SOCK_DEAD)) {
4954                         sk->sk_state_change(sk);
4955                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
4956                 }
4957
4958                 if (sk->sk_write_pending ||
4959                     icsk->icsk_accept_queue.rskq_defer_accept ||
4960                     icsk->icsk_ack.pingpong) {
4961                         /* Save one ACK. Data will be ready after
4962                          * several ticks, if write_pending is set.
4963                          *
4964                          * It may be deleted, but with this feature tcpdumps
4965                          * look so _wonderfully_ clever, that I was not able
4966                          * to stand against the temptation 8)     --ANK
4967                          */
4968                         inet_csk_schedule_ack(sk);
4969                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4970                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
4971                         tcp_incr_quickack(sk);
4972                         tcp_enter_quickack_mode(sk);
4973                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4974                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
4975
4976 discard:
4977                         __kfree_skb(skb);
4978                         return 0;
4979                 } else {
4980                         tcp_send_ack(sk);
4981                 }
4982                 return -1;
4983         }
4984
4985         /* No ACK in the segment */
4986
4987         if (th->rst) {
4988                 /* rfc793:
4989                  * "If the RST bit is set
4990                  *
4991                  *      Otherwise (no ACK) drop the segment and return."
4992                  */
4993
4994                 goto discard_and_undo;
4995         }
4996
4997         /* PAWS check. */
4998         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4999                 goto discard_and_undo;
5000
5001         if (th->syn) {
5002                 /* We see SYN without ACK. It is attempt of
5003                  * simultaneous connect with crossed SYNs.
5004                  * Particularly, it can be connect to self.
5005                  */
5006                 tcp_set_state(sk, TCP_SYN_RECV);
5007
5008                 if (tp->rx_opt.saw_tstamp) {
5009                         tp->rx_opt.tstamp_ok = 1;
5010                         tcp_store_ts_recent(tp);
5011                         tp->tcp_header_len =
5012                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5013                 } else {
5014                         tp->tcp_header_len = sizeof(struct tcphdr);
5015                 }
5016
5017                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5018                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5019
5020                 /* RFC1323: The window in SYN & SYN/ACK segments is
5021                  * never scaled.
5022                  */
5023                 tp->snd_wnd    = ntohs(th->window);
5024                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5025                 tp->max_window = tp->snd_wnd;
5026
5027                 TCP_ECN_rcv_syn(tp, th);
5028
5029                 tcp_mtup_init(sk);
5030                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5031                 tcp_initialize_rcv_mss(sk);
5032
5033
5034                 tcp_send_synack(sk);
5035 #if 0
5036                 /* Note, we could accept data and URG from this segment.
5037                  * There are no obstacles to make this.
5038                  *
5039                  * However, if we ignore data in ACKless segments sometimes,
5040                  * we have no reasons to accept it sometimes.
5041                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5042                  * is not flawless. So, discard packet for sanity.
5043                  * Uncomment this return to process the data.
5044                  */
5045                 return -1;
5046 #else
5047                 goto discard;
5048 #endif
5049         }
5050         /* "fifth, if neither of the SYN or RST bits is set then
5051          * drop the segment and return."
5052          */
5053
5054 discard_and_undo:
5055         tcp_clear_options(&tp->rx_opt);
5056         tp->rx_opt.mss_clamp = saved_clamp;
5057         goto discard;
5058
5059 reset_and_undo:
5060         tcp_clear_options(&tp->rx_opt);
5061         tp->rx_opt.mss_clamp = saved_clamp;
5062         return 1;
5063 }
5064
5065
5066 /*
5067  *      This function implements the receiving procedure of RFC 793 for
5068  *      all states except ESTABLISHED and TIME_WAIT.
5069  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5070  *      address independent.
5071  */
5072
5073 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5074                           struct tcphdr *th, unsigned len)
5075 {
5076         struct tcp_sock *tp = tcp_sk(sk);
5077         struct inet_connection_sock *icsk = inet_csk(sk);
5078         int queued = 0;
5079
5080         tp->rx_opt.saw_tstamp = 0;
5081
5082         switch (sk->sk_state) {
5083         case TCP_CLOSE:
5084                 goto discard;
5085
5086         case TCP_LISTEN:
5087                 if (th->ack)
5088                         return 1;
5089
5090                 if (th->rst)
5091                         goto discard;
5092
5093                 if (th->syn) {
5094                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5095                                 return 1;
5096
5097                         /* Now we have several options: In theory there is
5098                          * nothing else in the frame. KA9Q has an option to
5099                          * send data with the syn, BSD accepts data with the
5100                          * syn up to the [to be] advertised window and
5101                          * Solaris 2.1 gives you a protocol error. For now
5102                          * we just ignore it, that fits the spec precisely
5103                          * and avoids incompatibilities. It would be nice in
5104                          * future to drop through and process the data.
5105                          *
5106                          * Now that TTCP is starting to be used we ought to
5107                          * queue this data.
5108                          * But, this leaves one open to an easy denial of
5109                          * service attack, and SYN cookies can't defend
5110                          * against this problem. So, we drop the data
5111                          * in the interest of security over speed unless
5112                          * it's still in use.
5113                          */
5114                         kfree_skb(skb);
5115                         return 0;
5116                 }
5117                 goto discard;
5118
5119         case TCP_SYN_SENT:
5120                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5121                 if (queued >= 0)
5122                         return queued;
5123
5124                 /* Do step6 onward by hand. */
5125                 tcp_urg(sk, skb, th);
5126                 __kfree_skb(skb);
5127                 tcp_data_snd_check(sk);
5128                 return 0;
5129         }
5130
5131         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5132             tcp_paws_discard(sk, skb)) {
5133                 if (!th->rst) {
5134                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5135                         tcp_send_dupack(sk, skb);
5136                         goto discard;
5137                 }
5138                 /* Reset is accepted even if it did not pass PAWS. */
5139         }
5140
5141         /* step 1: check sequence number */
5142         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5143                 if (!th->rst)
5144                         tcp_send_dupack(sk, skb);
5145                 goto discard;
5146         }
5147
5148         /* step 2: check RST bit */
5149         if (th->rst) {
5150                 tcp_reset(sk);
5151                 goto discard;
5152         }
5153
5154         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5155
5156         /* step 3: check security and precedence [ignored] */
5157
5158         /*      step 4:
5159          *
5160          *      Check for a SYN in window.
5161          */
5162         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5163                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5164                 tcp_reset(sk);
5165                 return 1;
5166         }
5167
5168         /* step 5: check the ACK field */
5169         if (th->ack) {
5170                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5171
5172                 switch (sk->sk_state) {
5173                 case TCP_SYN_RECV:
5174                         if (acceptable) {
5175                                 tp->copied_seq = tp->rcv_nxt;
5176                                 smp_mb();
5177                                 tcp_set_state(sk, TCP_ESTABLISHED);
5178                                 sk->sk_state_change(sk);
5179
5180                                 /* Note, that this wakeup is only for marginal
5181                                  * crossed SYN case. Passively open sockets
5182                                  * are not waked up, because sk->sk_sleep ==
5183                                  * NULL and sk->sk_socket == NULL.
5184                                  */
5185                                 if (sk->sk_socket)
5186                                         sk_wake_async(sk,
5187                                                         SOCK_WAKE_IO, POLL_OUT);
5188
5189                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5190                                 tp->snd_wnd = ntohs(th->window) <<
5191                                               tp->rx_opt.snd_wscale;
5192                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5193                                             TCP_SKB_CB(skb)->seq);
5194
5195                                 /* tcp_ack considers this ACK as duplicate
5196                                  * and does not calculate rtt.
5197                                  * Fix it at least with timestamps.
5198                                  */
5199                                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5200                                     !tp->srtt)
5201                                         tcp_ack_saw_tstamp(sk, 0);
5202
5203                                 if (tp->rx_opt.tstamp_ok)
5204                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5205
5206                                 /* Make sure socket is routed, for
5207                                  * correct metrics.
5208                                  */
5209                                 icsk->icsk_af_ops->rebuild_header(sk);
5210
5211                                 tcp_init_metrics(sk);
5212
5213                                 tcp_init_congestion_control(sk);
5214
5215                                 /* Prevent spurious tcp_cwnd_restart() on
5216                                  * first data packet.
5217                                  */
5218                                 tp->lsndtime = tcp_time_stamp;
5219
5220                                 tcp_mtup_init(sk);
5221                                 tcp_initialize_rcv_mss(sk);
5222                                 tcp_init_buffer_space(sk);
5223                                 tcp_fast_path_on(tp);
5224                         } else {
5225                                 return 1;
5226                         }
5227                         break;
5228
5229                 case TCP_FIN_WAIT1:
5230                         if (tp->snd_una == tp->write_seq) {
5231                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5232                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5233                                 dst_confirm(sk->sk_dst_cache);
5234
5235                                 if (!sock_flag(sk, SOCK_DEAD))
5236                                         /* Wake up lingering close() */
5237                                         sk->sk_state_change(sk);
5238                                 else {
5239                                         int tmo;
5240
5241                                         if (tp->linger2 < 0 ||
5242                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5243                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5244                                                 tcp_done(sk);
5245                                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5246                                                 return 1;
5247                                         }
5248
5249                                         tmo = tcp_fin_time(sk);
5250                                         if (tmo > TCP_TIMEWAIT_LEN) {
5251                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5252                                         } else if (th->fin || sock_owned_by_user(sk)) {
5253                                                 /* Bad case. We could lose such FIN otherwise.
5254                                                  * It is not a big problem, but it looks confusing
5255                                                  * and not so rare event. We still can lose it now,
5256                                                  * if it spins in bh_lock_sock(), but it is really
5257                                                  * marginal case.
5258                                                  */
5259                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5260                                         } else {
5261                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5262                                                 goto discard;
5263                                         }
5264                                 }
5265                         }
5266                         break;
5267
5268                 case TCP_CLOSING:
5269                         if (tp->snd_una == tp->write_seq) {
5270                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5271                                 goto discard;
5272                         }
5273                         break;
5274
5275                 case TCP_LAST_ACK:
5276                         if (tp->snd_una == tp->write_seq) {
5277                                 tcp_update_metrics(sk);
5278                                 tcp_done(sk);
5279                                 goto discard;
5280                         }
5281                         break;
5282                 }
5283         } else
5284                 goto discard;
5285
5286         /* step 6: check the URG bit */
5287         tcp_urg(sk, skb, th);
5288
5289         /* step 7: process the segment text */
5290         switch (sk->sk_state) {
5291         case TCP_CLOSE_WAIT:
5292         case TCP_CLOSING:
5293         case TCP_LAST_ACK:
5294                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5295                         break;
5296         case TCP_FIN_WAIT1:
5297         case TCP_FIN_WAIT2:
5298                 /* RFC 793 says to queue data in these states,
5299                  * RFC 1122 says we MUST send a reset.
5300                  * BSD 4.4 also does reset.
5301                  */
5302                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5303                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5304                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5305                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5306                                 tcp_reset(sk);
5307                                 return 1;
5308                         }
5309                 }
5310                 /* Fall through */
5311         case TCP_ESTABLISHED:
5312                 tcp_data_queue(sk, skb);
5313                 queued = 1;
5314                 break;
5315         }
5316
5317         /* tcp_data could move socket to TIME-WAIT */
5318         if (sk->sk_state != TCP_CLOSE) {
5319                 tcp_data_snd_check(sk);
5320                 tcp_ack_snd_check(sk);
5321         }
5322
5323         if (!queued) {
5324 discard:
5325                 __kfree_skb(skb);
5326         }
5327         return 0;
5328 }
5329
5330 EXPORT_SYMBOL(sysctl_tcp_ecn);
5331 EXPORT_SYMBOL(sysctl_tcp_reordering);
5332 EXPORT_SYMBOL(tcp_parse_options);
5333 EXPORT_SYMBOL(tcp_rcv_established);
5334 EXPORT_SYMBOL(tcp_rcv_state_process);
5335 EXPORT_SYMBOL(tcp_initialize_rcv_mss);