]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/ipv4/tcp_input.c
7d0958785bfb6e05f78b4cf8aa1f2d699a5ae481
[linux-2.6-omap-h63xx.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 /*
24  * Changes:
25  *              Pedro Roque     :       Fast Retransmit/Recovery.
26  *                                      Two receive queues.
27  *                                      Retransmit queue handled by TCP.
28  *                                      Better retransmit timer handling.
29  *                                      New congestion avoidance.
30  *                                      Header prediction.
31  *                                      Variable renaming.
32  *
33  *              Eric            :       Fast Retransmit.
34  *              Randy Scott     :       MSS option defines.
35  *              Eric Schenk     :       Fixes to slow start algorithm.
36  *              Eric Schenk     :       Yet another double ACK bug.
37  *              Eric Schenk     :       Delayed ACK bug fixes.
38  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
39  *              David S. Miller :       Don't allow zero congestion window.
40  *              Eric Schenk     :       Fix retransmitter so that it sends
41  *                                      next packet on ack of previous packet.
42  *              Andi Kleen      :       Moved open_request checking here
43  *                                      and process RSTs for open_requests.
44  *              Andi Kleen      :       Better prune_queue, and other fixes.
45  *              Andrey Savochkin:       Fix RTT measurements in the presence of
46  *                                      timestamps.
47  *              Andrey Savochkin:       Check sequence numbers correctly when
48  *                                      removing SACKs due to in sequence incoming
49  *                                      data segments.
50  *              Andi Kleen:             Make sure we never ack data there is not
51  *                                      enough room for. Also make this condition
52  *                                      a fatal error if it might still happen.
53  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
54  *                                      connections with MSS<min(MTU,ann. MSS)
55  *                                      work without delayed acks.
56  *              Andi Kleen:             Process packets with PSH set in the
57  *                                      fast path.
58  *              J Hadi Salim:           ECN support
59  *              Andrei Gurtov,
60  *              Pasi Sarolahti,
61  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
62  *                                      engine. Lots of bugs are found.
63  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
64  */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
96 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
97 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
99 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
100 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
101 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
102 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
103 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
109
110 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115
116 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117
118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120
121 /* Adapt the MSS value used to make delayed ack decision to the
122  * real world.
123  */
124 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
125 {
126         struct inet_connection_sock *icsk = inet_csk(sk);
127         const unsigned int lss = icsk->icsk_ack.last_seg_size;
128         unsigned int len;
129
130         icsk->icsk_ack.last_seg_size = 0;
131
132         /* skb->len may jitter because of SACKs, even if peer
133          * sends good full-sized frames.
134          */
135         len = skb_shinfo(skb)->gso_size ? : skb->len;
136         if (len >= icsk->icsk_ack.rcv_mss) {
137                 icsk->icsk_ack.rcv_mss = len;
138         } else {
139                 /* Otherwise, we make more careful check taking into account,
140                  * that SACKs block is variable.
141                  *
142                  * "len" is invariant segment length, including TCP header.
143                  */
144                 len += skb->data - skb_transport_header(skb);
145                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146                     /* If PSH is not set, packet should be
147                      * full sized, provided peer TCP is not badly broken.
148                      * This observation (if it is correct 8)) allows
149                      * to handle super-low mtu links fairly.
150                      */
151                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153                         /* Subtract also invariant (if peer is RFC compliant),
154                          * tcp header plus fixed timestamp option length.
155                          * Resulting "len" is MSS free of SACK jitter.
156                          */
157                         len -= tcp_sk(sk)->tcp_header_len;
158                         icsk->icsk_ack.last_seg_size = len;
159                         if (len == lss) {
160                                 icsk->icsk_ack.rcv_mss = len;
161                                 return;
162                         }
163                 }
164                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167         }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172         struct inet_connection_sock *icsk = inet_csk(sk);
173         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175         if (quickacks == 0)
176                 quickacks = 2;
177         if (quickacks > icsk->icsk_ack.quick)
178                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183         struct inet_connection_sock *icsk = inet_csk(sk);
184         tcp_incr_quickack(sk);
185         icsk->icsk_ack.pingpong = 0;
186         icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195         const struct inet_connection_sock *icsk = inet_csk(sk);
196         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201         if (tp->ecn_flags & TCP_ECN_OK)
202                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207         if (tcp_hdr(skb)->cwr)
208                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218         if (tp->ecn_flags & TCP_ECN_OK) {
219                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221                 /* Funny extension: if ECT is not set on a segment,
222                  * it is surely retransmit. It is not in ECN RFC,
223                  * but Linux follows this rule. */
224                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225                         tcp_enter_quickack_mode((struct sock *)tp);
226         }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
232                 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
238                 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
244                 return 1;
245         return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256                      sizeof(struct sk_buff);
257
258         if (sk->sk_sndbuf < 3 * sndmem)
259                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290         struct tcp_sock *tp = tcp_sk(sk);
291         /* Optimize this! */
292         int truesize = tcp_win_from_space(skb->truesize) >> 1;
293         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
294
295         while (tp->rcv_ssthresh <= window) {
296                 if (truesize <= skb->len)
297                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299                 truesize >>= 1;
300                 window >>= 1;
301         }
302         return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
306 {
307         struct tcp_sock *tp = tcp_sk(sk);
308
309         /* Check #1 */
310         if (tp->rcv_ssthresh < tp->window_clamp &&
311             (int)tp->rcv_ssthresh < tcp_space(sk) &&
312             !tcp_memory_pressure) {
313                 int incr;
314
315                 /* Check #2. Increase window, if skb with such overhead
316                  * will fit to rcvbuf in future.
317                  */
318                 if (tcp_win_from_space(skb->truesize) <= skb->len)
319                         incr = 2 * tp->advmss;
320                 else
321                         incr = __tcp_grow_window(sk, skb);
322
323                 if (incr) {
324                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
325                                                tp->window_clamp);
326                         inet_csk(sk)->icsk_ack.quick |= 1;
327                 }
328         }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335         struct tcp_sock *tp = tcp_sk(sk);
336         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338         /* Try to select rcvbuf so that 4 mss-sized segments
339          * will fit to window and corresponding skbs will fit to our rcvbuf.
340          * (was 3; 4 is minimum to allow fast retransmit to work.)
341          */
342         while (tcp_win_from_space(rcvmem) < tp->advmss)
343                 rcvmem += 128;
344         if (sk->sk_rcvbuf < 4 * rcvmem)
345                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353         struct tcp_sock *tp = tcp_sk(sk);
354         int maxwin;
355
356         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357                 tcp_fixup_rcvbuf(sk);
358         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359                 tcp_fixup_sndbuf(sk);
360
361         tp->rcvq_space.space = tp->rcv_wnd;
362
363         maxwin = tcp_full_space(sk);
364
365         if (tp->window_clamp >= maxwin) {
366                 tp->window_clamp = maxwin;
367
368                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369                         tp->window_clamp = max(maxwin -
370                                                (maxwin >> sysctl_tcp_app_win),
371                                                4 * tp->advmss);
372         }
373
374         /* Force reservation of one segment. */
375         if (sysctl_tcp_app_win &&
376             tp->window_clamp > 2 * tp->advmss &&
377             tp->window_clamp + tp->advmss > maxwin)
378                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381         tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387         struct tcp_sock *tp = tcp_sk(sk);
388         struct inet_connection_sock *icsk = inet_csk(sk);
389
390         icsk->icsk_ack.quick = 0;
391
392         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394             !tcp_memory_pressure &&
395             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397                                     sysctl_tcp_rmem[2]);
398         }
399         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401 }
402
403 /* Initialize RCV_MSS value.
404  * RCV_MSS is an our guess about MSS used by the peer.
405  * We haven't any direct information about the MSS.
406  * It's better to underestimate the RCV_MSS rather than overestimate.
407  * Overestimations make us ACKing less frequently than needed.
408  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409  */
410 void tcp_initialize_rcv_mss(struct sock *sk)
411 {
412         struct tcp_sock *tp = tcp_sk(sk);
413         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
414
415         hint = min(hint, tp->rcv_wnd / 2);
416         hint = min(hint, TCP_MIN_RCVMSS);
417         hint = max(hint, TCP_MIN_MSS);
418
419         inet_csk(sk)->icsk_ack.rcv_mss = hint;
420 }
421
422 /* Receiver "autotuning" code.
423  *
424  * The algorithm for RTT estimation w/o timestamps is based on
425  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427  *
428  * More detail on this code can be found at
429  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430  * though this reference is out of date.  A new paper
431  * is pending.
432  */
433 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
434 {
435         u32 new_sample = tp->rcv_rtt_est.rtt;
436         long m = sample;
437
438         if (m == 0)
439                 m = 1;
440
441         if (new_sample != 0) {
442                 /* If we sample in larger samples in the non-timestamp
443                  * case, we could grossly overestimate the RTT especially
444                  * with chatty applications or bulk transfer apps which
445                  * are stalled on filesystem I/O.
446                  *
447                  * Also, since we are only going for a minimum in the
448                  * non-timestamp case, we do not smooth things out
449                  * else with timestamps disabled convergence takes too
450                  * long.
451                  */
452                 if (!win_dep) {
453                         m -= (new_sample >> 3);
454                         new_sample += m;
455                 } else if (m < new_sample)
456                         new_sample = m << 3;
457         } else {
458                 /* No previous measure. */
459                 new_sample = m << 3;
460         }
461
462         if (tp->rcv_rtt_est.rtt != new_sample)
463                 tp->rcv_rtt_est.rtt = new_sample;
464 }
465
466 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
467 {
468         if (tp->rcv_rtt_est.time == 0)
469                 goto new_measure;
470         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471                 return;
472         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
473
474 new_measure:
475         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
476         tp->rcv_rtt_est.time = tcp_time_stamp;
477 }
478
479 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
480                                           const struct sk_buff *skb)
481 {
482         struct tcp_sock *tp = tcp_sk(sk);
483         if (tp->rx_opt.rcv_tsecr &&
484             (TCP_SKB_CB(skb)->end_seq -
485              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
486                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 }
488
489 /*
490  * This function should be called every time data is copied to user space.
491  * It calculates the appropriate TCP receive buffer space.
492  */
493 void tcp_rcv_space_adjust(struct sock *sk)
494 {
495         struct tcp_sock *tp = tcp_sk(sk);
496         int time;
497         int space;
498
499         if (tp->rcvq_space.time == 0)
500                 goto new_measure;
501
502         time = tcp_time_stamp - tp->rcvq_space.time;
503         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
504                 return;
505
506         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
507
508         space = max(tp->rcvq_space.space, space);
509
510         if (tp->rcvq_space.space != space) {
511                 int rcvmem;
512
513                 tp->rcvq_space.space = space;
514
515                 if (sysctl_tcp_moderate_rcvbuf &&
516                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
517                         int new_clamp = space;
518
519                         /* Receive space grows, normalize in order to
520                          * take into account packet headers and sk_buff
521                          * structure overhead.
522                          */
523                         space /= tp->advmss;
524                         if (!space)
525                                 space = 1;
526                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
527                                   16 + sizeof(struct sk_buff));
528                         while (tcp_win_from_space(rcvmem) < tp->advmss)
529                                 rcvmem += 128;
530                         space *= rcvmem;
531                         space = min(space, sysctl_tcp_rmem[2]);
532                         if (space > sk->sk_rcvbuf) {
533                                 sk->sk_rcvbuf = space;
534
535                                 /* Make the window clamp follow along.  */
536                                 tp->window_clamp = new_clamp;
537                         }
538                 }
539         }
540
541 new_measure:
542         tp->rcvq_space.seq = tp->copied_seq;
543         tp->rcvq_space.time = tcp_time_stamp;
544 }
545
546 /* There is something which you must keep in mind when you analyze the
547  * behavior of the tp->ato delayed ack timeout interval.  When a
548  * connection starts up, we want to ack as quickly as possible.  The
549  * problem is that "good" TCP's do slow start at the beginning of data
550  * transmission.  The means that until we send the first few ACK's the
551  * sender will sit on his end and only queue most of his data, because
552  * he can only send snd_cwnd unacked packets at any given time.  For
553  * each ACK we send, he increments snd_cwnd and transmits more of his
554  * queue.  -DaveM
555  */
556 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
557 {
558         struct tcp_sock *tp = tcp_sk(sk);
559         struct inet_connection_sock *icsk = inet_csk(sk);
560         u32 now;
561
562         inet_csk_schedule_ack(sk);
563
564         tcp_measure_rcv_mss(sk, skb);
565
566         tcp_rcv_rtt_measure(tp);
567
568         now = tcp_time_stamp;
569
570         if (!icsk->icsk_ack.ato) {
571                 /* The _first_ data packet received, initialize
572                  * delayed ACK engine.
573                  */
574                 tcp_incr_quickack(sk);
575                 icsk->icsk_ack.ato = TCP_ATO_MIN;
576         } else {
577                 int m = now - icsk->icsk_ack.lrcvtime;
578
579                 if (m <= TCP_ATO_MIN / 2) {
580                         /* The fastest case is the first. */
581                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
582                 } else if (m < icsk->icsk_ack.ato) {
583                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
584                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
585                                 icsk->icsk_ack.ato = icsk->icsk_rto;
586                 } else if (m > icsk->icsk_rto) {
587                         /* Too long gap. Apparently sender failed to
588                          * restart window, so that we send ACKs quickly.
589                          */
590                         tcp_incr_quickack(sk);
591                         sk_mem_reclaim(sk);
592                 }
593         }
594         icsk->icsk_ack.lrcvtime = now;
595
596         TCP_ECN_check_ce(tp, skb);
597
598         if (skb->len >= 128)
599                 tcp_grow_window(sk, skb);
600 }
601
602 static u32 tcp_rto_min(struct sock *sk)
603 {
604         struct dst_entry *dst = __sk_dst_get(sk);
605         u32 rto_min = TCP_RTO_MIN;
606
607         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
608                 rto_min = dst->metrics[RTAX_RTO_MIN - 1];
609         return rto_min;
610 }
611
612 /* Called to compute a smoothed rtt estimate. The data fed to this
613  * routine either comes from timestamps, or from segments that were
614  * known _not_ to have been retransmitted [see Karn/Partridge
615  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
616  * piece by Van Jacobson.
617  * NOTE: the next three routines used to be one big routine.
618  * To save cycles in the RFC 1323 implementation it was better to break
619  * it up into three procedures. -- erics
620  */
621 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
622 {
623         struct tcp_sock *tp = tcp_sk(sk);
624         long m = mrtt; /* RTT */
625
626         /*      The following amusing code comes from Jacobson's
627          *      article in SIGCOMM '88.  Note that rtt and mdev
628          *      are scaled versions of rtt and mean deviation.
629          *      This is designed to be as fast as possible
630          *      m stands for "measurement".
631          *
632          *      On a 1990 paper the rto value is changed to:
633          *      RTO = rtt + 4 * mdev
634          *
635          * Funny. This algorithm seems to be very broken.
636          * These formulae increase RTO, when it should be decreased, increase
637          * too slowly, when it should be increased quickly, decrease too quickly
638          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
639          * does not matter how to _calculate_ it. Seems, it was trap
640          * that VJ failed to avoid. 8)
641          */
642         if (m == 0)
643                 m = 1;
644         if (tp->srtt != 0) {
645                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
646                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
647                 if (m < 0) {
648                         m = -m;         /* m is now abs(error) */
649                         m -= (tp->mdev >> 2);   /* similar update on mdev */
650                         /* This is similar to one of Eifel findings.
651                          * Eifel blocks mdev updates when rtt decreases.
652                          * This solution is a bit different: we use finer gain
653                          * for mdev in this case (alpha*beta).
654                          * Like Eifel it also prevents growth of rto,
655                          * but also it limits too fast rto decreases,
656                          * happening in pure Eifel.
657                          */
658                         if (m > 0)
659                                 m >>= 3;
660                 } else {
661                         m -= (tp->mdev >> 2);   /* similar update on mdev */
662                 }
663                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
664                 if (tp->mdev > tp->mdev_max) {
665                         tp->mdev_max = tp->mdev;
666                         if (tp->mdev_max > tp->rttvar)
667                                 tp->rttvar = tp->mdev_max;
668                 }
669                 if (after(tp->snd_una, tp->rtt_seq)) {
670                         if (tp->mdev_max < tp->rttvar)
671                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
672                         tp->rtt_seq = tp->snd_nxt;
673                         tp->mdev_max = tcp_rto_min(sk);
674                 }
675         } else {
676                 /* no previous measure. */
677                 tp->srtt = m << 3;      /* take the measured time to be rtt */
678                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
679                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
680                 tp->rtt_seq = tp->snd_nxt;
681         }
682 }
683
684 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
685  * routine referred to above.
686  */
687 static inline void tcp_set_rto(struct sock *sk)
688 {
689         const struct tcp_sock *tp = tcp_sk(sk);
690         /* Old crap is replaced with new one. 8)
691          *
692          * More seriously:
693          * 1. If rtt variance happened to be less 50msec, it is hallucination.
694          *    It cannot be less due to utterly erratic ACK generation made
695          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
696          *    to do with delayed acks, because at cwnd>2 true delack timeout
697          *    is invisible. Actually, Linux-2.4 also generates erratic
698          *    ACKs in some circumstances.
699          */
700         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
701
702         /* 2. Fixups made earlier cannot be right.
703          *    If we do not estimate RTO correctly without them,
704          *    all the algo is pure shit and should be replaced
705          *    with correct one. It is exactly, which we pretend to do.
706          */
707 }
708
709 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
710  * guarantees that rto is higher.
711  */
712 static inline void tcp_bound_rto(struct sock *sk)
713 {
714         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
715                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
716 }
717
718 /* Save metrics learned by this TCP session.
719    This function is called only, when TCP finishes successfully
720    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
721  */
722 void tcp_update_metrics(struct sock *sk)
723 {
724         struct tcp_sock *tp = tcp_sk(sk);
725         struct dst_entry *dst = __sk_dst_get(sk);
726
727         if (sysctl_tcp_nometrics_save)
728                 return;
729
730         dst_confirm(dst);
731
732         if (dst && (dst->flags & DST_HOST)) {
733                 const struct inet_connection_sock *icsk = inet_csk(sk);
734                 int m;
735
736                 if (icsk->icsk_backoff || !tp->srtt) {
737                         /* This session failed to estimate rtt. Why?
738                          * Probably, no packets returned in time.
739                          * Reset our results.
740                          */
741                         if (!(dst_metric_locked(dst, RTAX_RTT)))
742                                 dst->metrics[RTAX_RTT - 1] = 0;
743                         return;
744                 }
745
746                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
747
748                 /* If newly calculated rtt larger than stored one,
749                  * store new one. Otherwise, use EWMA. Remember,
750                  * rtt overestimation is always better than underestimation.
751                  */
752                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
753                         if (m <= 0)
754                                 dst->metrics[RTAX_RTT - 1] = tp->srtt;
755                         else
756                                 dst->metrics[RTAX_RTT - 1] -= (m >> 3);
757                 }
758
759                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         if (m >= dst_metric(dst, RTAX_RTTVAR))
769                                 dst->metrics[RTAX_RTTVAR - 1] = m;
770                         else
771                                 dst->metrics[RTAX_RTTVAR-1] -=
772                                         (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
773                 }
774
775                 if (tp->snd_ssthresh >= 0xFFFF) {
776                         /* Slow start still did not finish. */
777                         if (dst_metric(dst, RTAX_SSTHRESH) &&
778                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781                         if (!dst_metric_locked(dst, RTAX_CWND) &&
782                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
785                            icsk->icsk_ca_state == TCP_CA_Open) {
786                         /* Cong. avoidance phase, cwnd is reliable. */
787                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788                                 dst->metrics[RTAX_SSTHRESH-1] =
789                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790                         if (!dst_metric_locked(dst, RTAX_CWND))
791                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
792                 } else {
793                         /* Else slow start did not finish, cwnd is non-sense,
794                            ssthresh may be also invalid.
795                          */
796                         if (!dst_metric_locked(dst, RTAX_CWND))
797                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
798                         if (dst->metrics[RTAX_SSTHRESH-1] &&
799                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800                             tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
801                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802                 }
803
804                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805                         if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
806                             tp->reordering != sysctl_tcp_reordering)
807                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808                 }
809         }
810 }
811
812 /* Numbers are taken from RFC3390.
813  *
814  * John Heffner states:
815  *
816  *      The RFC specifies a window of no more than 4380 bytes
817  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
818  *      is a bit misleading because they use a clamp at 4380 bytes
819  *      rather than use a multiplier in the relevant range.
820  */
821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822 {
823         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824
825         if (!cwnd) {
826                 if (tp->mss_cache > 1460)
827                         cwnd = 2;
828                 else
829                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830         }
831         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832 }
833
834 /* Set slow start threshold and cwnd not falling to slow start */
835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
836 {
837         struct tcp_sock *tp = tcp_sk(sk);
838         const struct inet_connection_sock *icsk = inet_csk(sk);
839
840         tp->prior_ssthresh = 0;
841         tp->bytes_acked = 0;
842         if (icsk->icsk_ca_state < TCP_CA_CWR) {
843                 tp->undo_marker = 0;
844                 if (set_ssthresh)
845                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846                 tp->snd_cwnd = min(tp->snd_cwnd,
847                                    tcp_packets_in_flight(tp) + 1U);
848                 tp->snd_cwnd_cnt = 0;
849                 tp->high_seq = tp->snd_nxt;
850                 tp->snd_cwnd_stamp = tcp_time_stamp;
851                 TCP_ECN_queue_cwr(tp);
852
853                 tcp_set_ca_state(sk, TCP_CA_CWR);
854         }
855 }
856
857 /*
858  * Packet counting of FACK is based on in-order assumptions, therefore TCP
859  * disables it when reordering is detected
860  */
861 static void tcp_disable_fack(struct tcp_sock *tp)
862 {
863         /* RFC3517 uses different metric in lost marker => reset on change */
864         if (tcp_is_fack(tp))
865                 tp->lost_skb_hint = NULL;
866         tp->rx_opt.sack_ok &= ~2;
867 }
868
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872         tp->rx_opt.sack_ok |= 4;
873 }
874
875 /* Initialize metrics on socket. */
876
877 static void tcp_init_metrics(struct sock *sk)
878 {
879         struct tcp_sock *tp = tcp_sk(sk);
880         struct dst_entry *dst = __sk_dst_get(sk);
881
882         if (dst == NULL)
883                 goto reset;
884
885         dst_confirm(dst);
886
887         if (dst_metric_locked(dst, RTAX_CWND))
888                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889         if (dst_metric(dst, RTAX_SSTHRESH)) {
890                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
893         }
894         if (dst_metric(dst, RTAX_REORDERING) &&
895             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896                 tcp_disable_fack(tp);
897                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898         }
899
900         if (dst_metric(dst, RTAX_RTT) == 0)
901                 goto reset;
902
903         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904                 goto reset;
905
906         /* Initial rtt is determined from SYN,SYN-ACK.
907          * The segment is small and rtt may appear much
908          * less than real one. Use per-dst memory
909          * to make it more realistic.
910          *
911          * A bit of theory. RTT is time passed after "normal" sized packet
912          * is sent until it is ACKed. In normal circumstances sending small
913          * packets force peer to delay ACKs and calculation is correct too.
914          * The algorithm is adaptive and, provided we follow specs, it
915          * NEVER underestimate RTT. BUT! If peer tries to make some clever
916          * tricks sort of "quick acks" for time long enough to decrease RTT
917          * to low value, and then abruptly stops to do it and starts to delay
918          * ACKs, wait for troubles.
919          */
920         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921                 tp->srtt = dst_metric(dst, RTAX_RTT);
922                 tp->rtt_seq = tp->snd_nxt;
923         }
924         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927         }
928         tcp_set_rto(sk);
929         tcp_bound_rto(sk);
930         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931                 goto reset;
932         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933         tp->snd_cwnd_stamp = tcp_time_stamp;
934         return;
935
936 reset:
937         /* Play conservative. If timestamps are not
938          * supported, TCP will fail to recalculate correct
939          * rtt, if initial rto is too small. FORGET ALL AND RESET!
940          */
941         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942                 tp->srtt = 0;
943                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945         }
946 }
947
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949                                   const int ts)
950 {
951         struct tcp_sock *tp = tcp_sk(sk);
952         if (metric > tp->reordering) {
953                 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955                 /* This exciting event is worth to be remembered. 8) */
956                 if (ts)
957                         NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958                 else if (tcp_is_reno(tp))
959                         NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960                 else if (tcp_is_fack(tp))
961                         NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962                 else
963                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967                        tp->reordering,
968                        tp->fackets_out,
969                        tp->sacked_out,
970                        tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972                 tcp_disable_fack(tp);
973         }
974 }
975
976 /* This procedure tags the retransmission queue when SACKs arrive.
977  *
978  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979  * Packets in queue with these bits set are counted in variables
980  * sacked_out, retrans_out and lost_out, correspondingly.
981  *
982  * Valid combinations are:
983  * Tag  InFlight        Description
984  * 0    1               - orig segment is in flight.
985  * S    0               - nothing flies, orig reached receiver.
986  * L    0               - nothing flies, orig lost by net.
987  * R    2               - both orig and retransmit are in flight.
988  * L|R  1               - orig is lost, retransmit is in flight.
989  * S|R  1               - orig reached receiver, retrans is still in flight.
990  * (L|S|R is logically valid, it could occur when L|R is sacked,
991  *  but it is equivalent to plain S and code short-curcuits it to S.
992  *  L|S is logically invalid, it would mean -1 packet in flight 8))
993  *
994  * These 6 states form finite state machine, controlled by the following events:
995  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997  * 3. Loss detection event of one of three flavors:
998  *      A. Scoreboard estimator decided the packet is lost.
999  *         A'. Reno "three dupacks" marks head of queue lost.
1000  *         A''. Its FACK modfication, head until snd.fack is lost.
1001  *      B. SACK arrives sacking data transmitted after never retransmitted
1002  *         hole was sent out.
1003  *      C. SACK arrives sacking SND.NXT at the moment, when the
1004  *         segment was retransmitted.
1005  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006  *
1007  * It is pleasant to note, that state diagram turns out to be commutative,
1008  * so that we are allowed not to be bothered by order of our actions,
1009  * when multiple events arrive simultaneously. (see the function below).
1010  *
1011  * Reordering detection.
1012  * --------------------
1013  * Reordering metric is maximal distance, which a packet can be displaced
1014  * in packet stream. With SACKs we can estimate it:
1015  *
1016  * 1. SACK fills old hole and the corresponding segment was not
1017  *    ever retransmitted -> reordering. Alas, we cannot use it
1018  *    when segment was retransmitted.
1019  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020  *    for retransmitted and already SACKed segment -> reordering..
1021  * Both of these heuristics are not used in Loss state, when we cannot
1022  * account for retransmits accurately.
1023  *
1024  * SACK block validation.
1025  * ----------------------
1026  *
1027  * SACK block range validation checks that the received SACK block fits to
1028  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029  * Note that SND.UNA is not included to the range though being valid because
1030  * it means that the receiver is rather inconsistent with itself reporting
1031  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032  * perfectly valid, however, in light of RFC2018 which explicitly states
1033  * that "SACK block MUST reflect the newest segment.  Even if the newest
1034  * segment is going to be discarded ...", not that it looks very clever
1035  * in case of head skb. Due to potentional receiver driven attacks, we
1036  * choose to avoid immediate execution of a walk in write queue due to
1037  * reneging and defer head skb's loss recovery to standard loss recovery
1038  * procedure that will eventually trigger (nothing forbids us doing this).
1039  *
1040  * Implements also blockage to start_seq wrap-around. Problem lies in the
1041  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042  * there's no guarantee that it will be before snd_nxt (n). The problem
1043  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044  * wrap (s_w):
1045  *
1046  *         <- outs wnd ->                          <- wrapzone ->
1047  *         u     e      n                         u_w   e_w  s n_w
1048  *         |     |      |                          |     |   |  |
1049  * |<------------+------+----- TCP seqno space --------------+---------->|
1050  * ...-- <2^31 ->|                                           |<--------...
1051  * ...---- >2^31 ------>|                                    |<--------...
1052  *
1053  * Current code wouldn't be vulnerable but it's better still to discard such
1054  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057  * equal to the ideal case (infinite seqno space without wrap caused issues).
1058  *
1059  * With D-SACK the lower bound is extended to cover sequence space below
1060  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061  * again, D-SACK block must not to go across snd_una (for the same reason as
1062  * for the normal SACK blocks, explained above). But there all simplicity
1063  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064  * fully below undo_marker they do not affect behavior in anyway and can
1065  * therefore be safely ignored. In rare cases (which are more or less
1066  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067  * fragmentation and packet reordering past skb's retransmission. To consider
1068  * them correctly, the acceptable range must be extended even more though
1069  * the exact amount is rather hard to quantify. However, tp->max_window can
1070  * be used as an exaggerated estimate.
1071  */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073                                   u32 start_seq, u32 end_seq)
1074 {
1075         /* Too far in future, or reversed (interpretation is ambiguous) */
1076         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077                 return 0;
1078
1079         /* Nasty start_seq wrap-around check (see comments above) */
1080         if (!before(start_seq, tp->snd_nxt))
1081                 return 0;
1082
1083         /* In outstanding window? ...This is valid exit for D-SACKs too.
1084          * start_seq == snd_una is non-sensical (see comments above)
1085          */
1086         if (after(start_seq, tp->snd_una))
1087                 return 1;
1088
1089         if (!is_dsack || !tp->undo_marker)
1090                 return 0;
1091
1092         /* ...Then it's D-SACK, and must reside below snd_una completely */
1093         if (!after(end_seq, tp->snd_una))
1094                 return 0;
1095
1096         if (!before(start_seq, tp->undo_marker))
1097                 return 1;
1098
1099         /* Too old */
1100         if (!after(end_seq, tp->undo_marker))
1101                 return 0;
1102
1103         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104          *   start_seq < undo_marker and end_seq >= undo_marker.
1105          */
1106         return !before(start_seq, end_seq - tp->max_window);
1107 }
1108
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110  * Event "C". Later note: FACK people cheated me again 8), we have to account
1111  * for reordering! Ugly, but should help.
1112  *
1113  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114  * less than what is now known to be received by the other end (derived from
1115  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1116  * retransmitted skbs to avoid some costly processing per ACKs.
1117  */
1118 static void tcp_mark_lost_retrans(struct sock *sk)
1119 {
1120         const struct inet_connection_sock *icsk = inet_csk(sk);
1121         struct tcp_sock *tp = tcp_sk(sk);
1122         struct sk_buff *skb;
1123         int cnt = 0;
1124         u32 new_low_seq = tp->snd_nxt;
1125         u32 received_upto = tcp_highest_sack_seq(tp);
1126
1127         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1128             !after(received_upto, tp->lost_retrans_low) ||
1129             icsk->icsk_ca_state != TCP_CA_Recovery)
1130                 return;
1131
1132         tcp_for_write_queue(skb, sk) {
1133                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1134
1135                 if (skb == tcp_send_head(sk))
1136                         break;
1137                 if (cnt == tp->retrans_out)
1138                         break;
1139                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1140                         continue;
1141
1142                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1143                         continue;
1144
1145                 if (after(received_upto, ack_seq) &&
1146                     (tcp_is_fack(tp) ||
1147                      !before(received_upto,
1148                              ack_seq + tp->reordering * tp->mss_cache))) {
1149                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1150                         tp->retrans_out -= tcp_skb_pcount(skb);
1151
1152                         /* clear lost hint */
1153                         tp->retransmit_skb_hint = NULL;
1154
1155                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1156                                 tp->lost_out += tcp_skb_pcount(skb);
1157                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1158                         }
1159                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1160                 } else {
1161                         if (before(ack_seq, new_low_seq))
1162                                 new_low_seq = ack_seq;
1163                         cnt += tcp_skb_pcount(skb);
1164                 }
1165         }
1166
1167         if (tp->retrans_out)
1168                 tp->lost_retrans_low = new_low_seq;
1169 }
1170
1171 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1172                            struct tcp_sack_block_wire *sp, int num_sacks,
1173                            u32 prior_snd_una)
1174 {
1175         u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1176         u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1177         int dup_sack = 0;
1178
1179         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1180                 dup_sack = 1;
1181                 tcp_dsack_seen(tp);
1182                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1183         } else if (num_sacks > 1) {
1184                 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1185                 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1186
1187                 if (!after(end_seq_0, end_seq_1) &&
1188                     !before(start_seq_0, start_seq_1)) {
1189                         dup_sack = 1;
1190                         tcp_dsack_seen(tp);
1191                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1192                 }
1193         }
1194
1195         /* D-SACK for already forgotten data... Do dumb counting. */
1196         if (dup_sack &&
1197             !after(end_seq_0, prior_snd_una) &&
1198             after(end_seq_0, tp->undo_marker))
1199                 tp->undo_retrans--;
1200
1201         return dup_sack;
1202 }
1203
1204 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1205  * the incoming SACK may not exactly match but we can find smaller MSS
1206  * aligned portion of it that matches. Therefore we might need to fragment
1207  * which may fail and creates some hassle (caller must handle error case
1208  * returns).
1209  */
1210 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1211                                  u32 start_seq, u32 end_seq)
1212 {
1213         int in_sack, err;
1214         unsigned int pkt_len;
1215
1216         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1217                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1218
1219         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1220             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1221
1222                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1223
1224                 if (!in_sack)
1225                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1226                 else
1227                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1228                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1229                 if (err < 0)
1230                         return err;
1231         }
1232
1233         return in_sack;
1234 }
1235
1236 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1237                            int *reord, int dup_sack, int fack_count)
1238 {
1239         struct tcp_sock *tp = tcp_sk(sk);
1240         u8 sacked = TCP_SKB_CB(skb)->sacked;
1241         int flag = 0;
1242
1243         /* Account D-SACK for retransmitted packet. */
1244         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1245                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1246                         tp->undo_retrans--;
1247                 if (sacked & TCPCB_SACKED_ACKED)
1248                         *reord = min(fack_count, *reord);
1249         }
1250
1251         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1252         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1253                 return flag;
1254
1255         if (!(sacked & TCPCB_SACKED_ACKED)) {
1256                 if (sacked & TCPCB_SACKED_RETRANS) {
1257                         /* If the segment is not tagged as lost,
1258                          * we do not clear RETRANS, believing
1259                          * that retransmission is still in flight.
1260                          */
1261                         if (sacked & TCPCB_LOST) {
1262                                 TCP_SKB_CB(skb)->sacked &=
1263                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1264                                 tp->lost_out -= tcp_skb_pcount(skb);
1265                                 tp->retrans_out -= tcp_skb_pcount(skb);
1266
1267                                 /* clear lost hint */
1268                                 tp->retransmit_skb_hint = NULL;
1269                         }
1270                 } else {
1271                         if (!(sacked & TCPCB_RETRANS)) {
1272                                 /* New sack for not retransmitted frame,
1273                                  * which was in hole. It is reordering.
1274                                  */
1275                                 if (before(TCP_SKB_CB(skb)->seq,
1276                                            tcp_highest_sack_seq(tp)))
1277                                         *reord = min(fack_count, *reord);
1278
1279                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1280                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1281                                         flag |= FLAG_ONLY_ORIG_SACKED;
1282                         }
1283
1284                         if (sacked & TCPCB_LOST) {
1285                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1286                                 tp->lost_out -= tcp_skb_pcount(skb);
1287
1288                                 /* clear lost hint */
1289                                 tp->retransmit_skb_hint = NULL;
1290                         }
1291                 }
1292
1293                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1294                 flag |= FLAG_DATA_SACKED;
1295                 tp->sacked_out += tcp_skb_pcount(skb);
1296
1297                 fack_count += tcp_skb_pcount(skb);
1298
1299                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1300                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1301                     before(TCP_SKB_CB(skb)->seq,
1302                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1303                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1304
1305                 if (fack_count > tp->fackets_out)
1306                         tp->fackets_out = fack_count;
1307
1308                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1309                         tcp_advance_highest_sack(sk, skb);
1310         }
1311
1312         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1313          * frames and clear it. undo_retrans is decreased above, L|R frames
1314          * are accounted above as well.
1315          */
1316         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1317                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1318                 tp->retrans_out -= tcp_skb_pcount(skb);
1319                 tp->retransmit_skb_hint = NULL;
1320         }
1321
1322         return flag;
1323 }
1324
1325 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1326                                         struct tcp_sack_block *next_dup,
1327                                         u32 start_seq, u32 end_seq,
1328                                         int dup_sack_in, int *fack_count,
1329                                         int *reord, int *flag)
1330 {
1331         tcp_for_write_queue_from(skb, sk) {
1332                 int in_sack = 0;
1333                 int dup_sack = dup_sack_in;
1334
1335                 if (skb == tcp_send_head(sk))
1336                         break;
1337
1338                 /* queue is in-order => we can short-circuit the walk early */
1339                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1340                         break;
1341
1342                 if ((next_dup != NULL) &&
1343                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1344                         in_sack = tcp_match_skb_to_sack(sk, skb,
1345                                                         next_dup->start_seq,
1346                                                         next_dup->end_seq);
1347                         if (in_sack > 0)
1348                                 dup_sack = 1;
1349                 }
1350
1351                 if (in_sack <= 0)
1352                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1353                                                         end_seq);
1354                 if (unlikely(in_sack < 0))
1355                         break;
1356
1357                 if (in_sack)
1358                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1359                                                  *fack_count);
1360
1361                 *fack_count += tcp_skb_pcount(skb);
1362         }
1363         return skb;
1364 }
1365
1366 /* Avoid all extra work that is being done by sacktag while walking in
1367  * a normal way
1368  */
1369 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1370                                         u32 skip_to_seq, int *fack_count)
1371 {
1372         tcp_for_write_queue_from(skb, sk) {
1373                 if (skb == tcp_send_head(sk))
1374                         break;
1375
1376                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1377                         break;
1378
1379                 *fack_count += tcp_skb_pcount(skb);
1380         }
1381         return skb;
1382 }
1383
1384 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1385                                                 struct sock *sk,
1386                                                 struct tcp_sack_block *next_dup,
1387                                                 u32 skip_to_seq,
1388                                                 int *fack_count, int *reord,
1389                                                 int *flag)
1390 {
1391         if (next_dup == NULL)
1392                 return skb;
1393
1394         if (before(next_dup->start_seq, skip_to_seq)) {
1395                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1396                 tcp_sacktag_walk(skb, sk, NULL,
1397                                  next_dup->start_seq, next_dup->end_seq,
1398                                  1, fack_count, reord, flag);
1399         }
1400
1401         return skb;
1402 }
1403
1404 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1405 {
1406         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1407 }
1408
1409 static int
1410 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1411                         u32 prior_snd_una)
1412 {
1413         const struct inet_connection_sock *icsk = inet_csk(sk);
1414         struct tcp_sock *tp = tcp_sk(sk);
1415         unsigned char *ptr = (skb_transport_header(ack_skb) +
1416                               TCP_SKB_CB(ack_skb)->sacked);
1417         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1418         struct tcp_sack_block sp[4];
1419         struct tcp_sack_block *cache;
1420         struct sk_buff *skb;
1421         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1422         int used_sacks;
1423         int reord = tp->packets_out;
1424         int flag = 0;
1425         int found_dup_sack = 0;
1426         int fack_count;
1427         int i, j;
1428         int first_sack_index;
1429
1430         if (!tp->sacked_out) {
1431                 if (WARN_ON(tp->fackets_out))
1432                         tp->fackets_out = 0;
1433                 tcp_highest_sack_reset(sk);
1434         }
1435
1436         found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1437                                          num_sacks, prior_snd_una);
1438         if (found_dup_sack)
1439                 flag |= FLAG_DSACKING_ACK;
1440
1441         /* Eliminate too old ACKs, but take into
1442          * account more or less fresh ones, they can
1443          * contain valid SACK info.
1444          */
1445         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1446                 return 0;
1447
1448         if (!tp->packets_out)
1449                 goto out;
1450
1451         used_sacks = 0;
1452         first_sack_index = 0;
1453         for (i = 0; i < num_sacks; i++) {
1454                 int dup_sack = !i && found_dup_sack;
1455
1456                 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1457                 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1458
1459                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1460                                             sp[used_sacks].start_seq,
1461                                             sp[used_sacks].end_seq)) {
1462                         if (dup_sack) {
1463                                 if (!tp->undo_marker)
1464                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1465                                 else
1466                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1467                         } else {
1468                                 /* Don't count olds caused by ACK reordering */
1469                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1470                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1471                                         continue;
1472                                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1473                         }
1474                         if (i == 0)
1475                                 first_sack_index = -1;
1476                         continue;
1477                 }
1478
1479                 /* Ignore very old stuff early */
1480                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1481                         continue;
1482
1483                 used_sacks++;
1484         }
1485
1486         /* order SACK blocks to allow in order walk of the retrans queue */
1487         for (i = used_sacks - 1; i > 0; i--) {
1488                 for (j = 0; j < i; j++) {
1489                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1490                                 struct tcp_sack_block tmp;
1491
1492                                 tmp = sp[j];
1493                                 sp[j] = sp[j + 1];
1494                                 sp[j + 1] = tmp;
1495
1496                                 /* Track where the first SACK block goes to */
1497                                 if (j == first_sack_index)
1498                                         first_sack_index = j + 1;
1499                         }
1500                 }
1501         }
1502
1503         skb = tcp_write_queue_head(sk);
1504         fack_count = 0;
1505         i = 0;
1506
1507         if (!tp->sacked_out) {
1508                 /* It's already past, so skip checking against it */
1509                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1510         } else {
1511                 cache = tp->recv_sack_cache;
1512                 /* Skip empty blocks in at head of the cache */
1513                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1514                        !cache->end_seq)
1515                         cache++;
1516         }
1517
1518         while (i < used_sacks) {
1519                 u32 start_seq = sp[i].start_seq;
1520                 u32 end_seq = sp[i].end_seq;
1521                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1522                 struct tcp_sack_block *next_dup = NULL;
1523
1524                 if (found_dup_sack && ((i + 1) == first_sack_index))
1525                         next_dup = &sp[i + 1];
1526
1527                 /* Event "B" in the comment above. */
1528                 if (after(end_seq, tp->high_seq))
1529                         flag |= FLAG_DATA_LOST;
1530
1531                 /* Skip too early cached blocks */
1532                 while (tcp_sack_cache_ok(tp, cache) &&
1533                        !before(start_seq, cache->end_seq))
1534                         cache++;
1535
1536                 /* Can skip some work by looking recv_sack_cache? */
1537                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1538                     after(end_seq, cache->start_seq)) {
1539
1540                         /* Head todo? */
1541                         if (before(start_seq, cache->start_seq)) {
1542                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1543                                                        &fack_count);
1544                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1545                                                        start_seq,
1546                                                        cache->start_seq,
1547                                                        dup_sack, &fack_count,
1548                                                        &reord, &flag);
1549                         }
1550
1551                         /* Rest of the block already fully processed? */
1552                         if (!after(end_seq, cache->end_seq))
1553                                 goto advance_sp;
1554
1555                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1556                                                        cache->end_seq,
1557                                                        &fack_count, &reord,
1558                                                        &flag);
1559
1560                         /* ...tail remains todo... */
1561                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1562                                 /* ...but better entrypoint exists! */
1563                                 skb = tcp_highest_sack(sk);
1564                                 if (skb == NULL)
1565                                         break;
1566                                 fack_count = tp->fackets_out;
1567                                 cache++;
1568                                 goto walk;
1569                         }
1570
1571                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1572                                                &fack_count);
1573                         /* Check overlap against next cached too (past this one already) */
1574                         cache++;
1575                         continue;
1576                 }
1577
1578                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1579                         skb = tcp_highest_sack(sk);
1580                         if (skb == NULL)
1581                                 break;
1582                         fack_count = tp->fackets_out;
1583                 }
1584                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1585
1586 walk:
1587                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1588                                        dup_sack, &fack_count, &reord, &flag);
1589
1590 advance_sp:
1591                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1592                  * due to in-order walk
1593                  */
1594                 if (after(end_seq, tp->frto_highmark))
1595                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1596
1597                 i++;
1598         }
1599
1600         /* Clear the head of the cache sack blocks so we can skip it next time */
1601         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1602                 tp->recv_sack_cache[i].start_seq = 0;
1603                 tp->recv_sack_cache[i].end_seq = 0;
1604         }
1605         for (j = 0; j < used_sacks; j++)
1606                 tp->recv_sack_cache[i++] = sp[j];
1607
1608         tcp_mark_lost_retrans(sk);
1609
1610         tcp_verify_left_out(tp);
1611
1612         if ((reord < tp->fackets_out) &&
1613             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1614             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1615                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1616
1617 out:
1618
1619 #if FASTRETRANS_DEBUG > 0
1620         BUG_TRAP((int)tp->sacked_out >= 0);
1621         BUG_TRAP((int)tp->lost_out >= 0);
1622         BUG_TRAP((int)tp->retrans_out >= 0);
1623         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1624 #endif
1625         return flag;
1626 }
1627
1628 /* If we receive more dupacks than we expected counting segments
1629  * in assumption of absent reordering, interpret this as reordering.
1630  * The only another reason could be bug in receiver TCP.
1631  */
1632 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1633 {
1634         struct tcp_sock *tp = tcp_sk(sk);
1635         u32 holes;
1636
1637         holes = max(tp->lost_out, 1U);
1638         holes = min(holes, tp->packets_out);
1639
1640         if ((tp->sacked_out + holes) > tp->packets_out) {
1641                 tp->sacked_out = tp->packets_out - holes;
1642                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1643         }
1644 }
1645
1646 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1647
1648 static void tcp_add_reno_sack(struct sock *sk)
1649 {
1650         struct tcp_sock *tp = tcp_sk(sk);
1651         tp->sacked_out++;
1652         tcp_check_reno_reordering(sk, 0);
1653         tcp_verify_left_out(tp);
1654 }
1655
1656 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1657
1658 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1659 {
1660         struct tcp_sock *tp = tcp_sk(sk);
1661
1662         if (acked > 0) {
1663                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1664                 if (acked - 1 >= tp->sacked_out)
1665                         tp->sacked_out = 0;
1666                 else
1667                         tp->sacked_out -= acked - 1;
1668         }
1669         tcp_check_reno_reordering(sk, acked);
1670         tcp_verify_left_out(tp);
1671 }
1672
1673 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1674 {
1675         tp->sacked_out = 0;
1676 }
1677
1678 /* F-RTO can only be used if TCP has never retransmitted anything other than
1679  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1680  */
1681 int tcp_use_frto(struct sock *sk)
1682 {
1683         const struct tcp_sock *tp = tcp_sk(sk);
1684         struct sk_buff *skb;
1685
1686         if (!sysctl_tcp_frto)
1687                 return 0;
1688
1689         if (IsSackFrto())
1690                 return 1;
1691
1692         /* Avoid expensive walking of rexmit queue if possible */
1693         if (tp->retrans_out > 1)
1694                 return 0;
1695
1696         skb = tcp_write_queue_head(sk);
1697         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1698         tcp_for_write_queue_from(skb, sk) {
1699                 if (skb == tcp_send_head(sk))
1700                         break;
1701                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1702                         return 0;
1703                 /* Short-circuit when first non-SACKed skb has been checked */
1704                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1705                         break;
1706         }
1707         return 1;
1708 }
1709
1710 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1711  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1712  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1713  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1714  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1715  * bits are handled if the Loss state is really to be entered (in
1716  * tcp_enter_frto_loss).
1717  *
1718  * Do like tcp_enter_loss() would; when RTO expires the second time it
1719  * does:
1720  *  "Reduce ssthresh if it has not yet been made inside this window."
1721  */
1722 void tcp_enter_frto(struct sock *sk)
1723 {
1724         const struct inet_connection_sock *icsk = inet_csk(sk);
1725         struct tcp_sock *tp = tcp_sk(sk);
1726         struct sk_buff *skb;
1727
1728         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1729             tp->snd_una == tp->high_seq ||
1730             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1731              !icsk->icsk_retransmits)) {
1732                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1733                 /* Our state is too optimistic in ssthresh() call because cwnd
1734                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1735                  * recovery has not yet completed. Pattern would be this: RTO,
1736                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1737                  * up here twice).
1738                  * RFC4138 should be more specific on what to do, even though
1739                  * RTO is quite unlikely to occur after the first Cumulative ACK
1740                  * due to back-off and complexity of triggering events ...
1741                  */
1742                 if (tp->frto_counter) {
1743                         u32 stored_cwnd;
1744                         stored_cwnd = tp->snd_cwnd;
1745                         tp->snd_cwnd = 2;
1746                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1747                         tp->snd_cwnd = stored_cwnd;
1748                 } else {
1749                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1750                 }
1751                 /* ... in theory, cong.control module could do "any tricks" in
1752                  * ssthresh(), which means that ca_state, lost bits and lost_out
1753                  * counter would have to be faked before the call occurs. We
1754                  * consider that too expensive, unlikely and hacky, so modules
1755                  * using these in ssthresh() must deal these incompatibility
1756                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1757                  */
1758                 tcp_ca_event(sk, CA_EVENT_FRTO);
1759         }
1760
1761         tp->undo_marker = tp->snd_una;
1762         tp->undo_retrans = 0;
1763
1764         skb = tcp_write_queue_head(sk);
1765         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1766                 tp->undo_marker = 0;
1767         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1768                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1769                 tp->retrans_out -= tcp_skb_pcount(skb);
1770         }
1771         tcp_verify_left_out(tp);
1772
1773         /* Too bad if TCP was application limited */
1774         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1775
1776         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1777          * The last condition is necessary at least in tp->frto_counter case.
1778          */
1779         if (IsSackFrto() && (tp->frto_counter ||
1780             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1781             after(tp->high_seq, tp->snd_una)) {
1782                 tp->frto_highmark = tp->high_seq;
1783         } else {
1784                 tp->frto_highmark = tp->snd_nxt;
1785         }
1786         tcp_set_ca_state(sk, TCP_CA_Disorder);
1787         tp->high_seq = tp->snd_nxt;
1788         tp->frto_counter = 1;
1789 }
1790
1791 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1792  * which indicates that we should follow the traditional RTO recovery,
1793  * i.e. mark everything lost and do go-back-N retransmission.
1794  */
1795 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1796 {
1797         struct tcp_sock *tp = tcp_sk(sk);
1798         struct sk_buff *skb;
1799
1800         tp->lost_out = 0;
1801         tp->retrans_out = 0;
1802         if (tcp_is_reno(tp))
1803                 tcp_reset_reno_sack(tp);
1804
1805         tcp_for_write_queue(skb, sk) {
1806                 if (skb == tcp_send_head(sk))
1807                         break;
1808
1809                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1810                 /*
1811                  * Count the retransmission made on RTO correctly (only when
1812                  * waiting for the first ACK and did not get it)...
1813                  */
1814                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1815                         /* For some reason this R-bit might get cleared? */
1816                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1817                                 tp->retrans_out += tcp_skb_pcount(skb);
1818                         /* ...enter this if branch just for the first segment */
1819                         flag |= FLAG_DATA_ACKED;
1820                 } else {
1821                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1822                                 tp->undo_marker = 0;
1823                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1824                 }
1825
1826                 /* Don't lost mark skbs that were fwd transmitted after RTO */
1827                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) &&
1828                     !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1829                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1830                         tp->lost_out += tcp_skb_pcount(skb);
1831                 }
1832         }
1833         tcp_verify_left_out(tp);
1834
1835         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1836         tp->snd_cwnd_cnt = 0;
1837         tp->snd_cwnd_stamp = tcp_time_stamp;
1838         tp->frto_counter = 0;
1839         tp->bytes_acked = 0;
1840
1841         tp->reordering = min_t(unsigned int, tp->reordering,
1842                                sysctl_tcp_reordering);
1843         tcp_set_ca_state(sk, TCP_CA_Loss);
1844         tp->high_seq = tp->frto_highmark;
1845         TCP_ECN_queue_cwr(tp);
1846
1847         tcp_clear_retrans_hints_partial(tp);
1848 }
1849
1850 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1851 {
1852         tp->retrans_out = 0;
1853         tp->lost_out = 0;
1854
1855         tp->undo_marker = 0;
1856         tp->undo_retrans = 0;
1857 }
1858
1859 void tcp_clear_retrans(struct tcp_sock *tp)
1860 {
1861         tcp_clear_retrans_partial(tp);
1862
1863         tp->fackets_out = 0;
1864         tp->sacked_out = 0;
1865 }
1866
1867 /* Enter Loss state. If "how" is not zero, forget all SACK information
1868  * and reset tags completely, otherwise preserve SACKs. If receiver
1869  * dropped its ofo queue, we will know this due to reneging detection.
1870  */
1871 void tcp_enter_loss(struct sock *sk, int how)
1872 {
1873         const struct inet_connection_sock *icsk = inet_csk(sk);
1874         struct tcp_sock *tp = tcp_sk(sk);
1875         struct sk_buff *skb;
1876
1877         /* Reduce ssthresh if it has not yet been made inside this window. */
1878         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1879             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1880                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1881                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1882                 tcp_ca_event(sk, CA_EVENT_LOSS);
1883         }
1884         tp->snd_cwnd       = 1;
1885         tp->snd_cwnd_cnt   = 0;
1886         tp->snd_cwnd_stamp = tcp_time_stamp;
1887
1888         tp->bytes_acked = 0;
1889         tcp_clear_retrans_partial(tp);
1890
1891         if (tcp_is_reno(tp))
1892                 tcp_reset_reno_sack(tp);
1893
1894         if (!how) {
1895                 /* Push undo marker, if it was plain RTO and nothing
1896                  * was retransmitted. */
1897                 tp->undo_marker = tp->snd_una;
1898                 tcp_clear_retrans_hints_partial(tp);
1899         } else {
1900                 tp->sacked_out = 0;
1901                 tp->fackets_out = 0;
1902                 tcp_clear_all_retrans_hints(tp);
1903         }
1904
1905         tcp_for_write_queue(skb, sk) {
1906                 if (skb == tcp_send_head(sk))
1907                         break;
1908
1909                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1910                         tp->undo_marker = 0;
1911                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1912                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1913                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1914                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1915                         tp->lost_out += tcp_skb_pcount(skb);
1916                 }
1917         }
1918         tcp_verify_left_out(tp);
1919
1920         tp->reordering = min_t(unsigned int, tp->reordering,
1921                                sysctl_tcp_reordering);
1922         tcp_set_ca_state(sk, TCP_CA_Loss);
1923         tp->high_seq = tp->snd_nxt;
1924         TCP_ECN_queue_cwr(tp);
1925         /* Abort F-RTO algorithm if one is in progress */
1926         tp->frto_counter = 0;
1927 }
1928
1929 /* If ACK arrived pointing to a remembered SACK, it means that our
1930  * remembered SACKs do not reflect real state of receiver i.e.
1931  * receiver _host_ is heavily congested (or buggy).
1932  *
1933  * Do processing similar to RTO timeout.
1934  */
1935 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1936 {
1937         if (flag & FLAG_SACK_RENEGING) {
1938                 struct inet_connection_sock *icsk = inet_csk(sk);
1939                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1940
1941                 tcp_enter_loss(sk, 1);
1942                 icsk->icsk_retransmits++;
1943                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1944                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1945                                           icsk->icsk_rto, TCP_RTO_MAX);
1946                 return 1;
1947         }
1948         return 0;
1949 }
1950
1951 static inline int tcp_fackets_out(struct tcp_sock *tp)
1952 {
1953         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1954 }
1955
1956 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1957  * counter when SACK is enabled (without SACK, sacked_out is used for
1958  * that purpose).
1959  *
1960  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1961  * segments up to the highest received SACK block so far and holes in
1962  * between them.
1963  *
1964  * With reordering, holes may still be in flight, so RFC3517 recovery
1965  * uses pure sacked_out (total number of SACKed segments) even though
1966  * it violates the RFC that uses duplicate ACKs, often these are equal
1967  * but when e.g. out-of-window ACKs or packet duplication occurs,
1968  * they differ. Since neither occurs due to loss, TCP should really
1969  * ignore them.
1970  */
1971 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1972 {
1973         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1974 }
1975
1976 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1977 {
1978         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1979 }
1980
1981 static inline int tcp_head_timedout(struct sock *sk)
1982 {
1983         struct tcp_sock *tp = tcp_sk(sk);
1984
1985         return tp->packets_out &&
1986                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1987 }
1988
1989 /* Linux NewReno/SACK/FACK/ECN state machine.
1990  * --------------------------------------
1991  *
1992  * "Open"       Normal state, no dubious events, fast path.
1993  * "Disorder"   In all the respects it is "Open",
1994  *              but requires a bit more attention. It is entered when
1995  *              we see some SACKs or dupacks. It is split of "Open"
1996  *              mainly to move some processing from fast path to slow one.
1997  * "CWR"        CWND was reduced due to some Congestion Notification event.
1998  *              It can be ECN, ICMP source quench, local device congestion.
1999  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2000  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2001  *
2002  * tcp_fastretrans_alert() is entered:
2003  * - each incoming ACK, if state is not "Open"
2004  * - when arrived ACK is unusual, namely:
2005  *      * SACK
2006  *      * Duplicate ACK.
2007  *      * ECN ECE.
2008  *
2009  * Counting packets in flight is pretty simple.
2010  *
2011  *      in_flight = packets_out - left_out + retrans_out
2012  *
2013  *      packets_out is SND.NXT-SND.UNA counted in packets.
2014  *
2015  *      retrans_out is number of retransmitted segments.
2016  *
2017  *      left_out is number of segments left network, but not ACKed yet.
2018  *
2019  *              left_out = sacked_out + lost_out
2020  *
2021  *     sacked_out: Packets, which arrived to receiver out of order
2022  *                 and hence not ACKed. With SACKs this number is simply
2023  *                 amount of SACKed data. Even without SACKs
2024  *                 it is easy to give pretty reliable estimate of this number,
2025  *                 counting duplicate ACKs.
2026  *
2027  *       lost_out: Packets lost by network. TCP has no explicit
2028  *                 "loss notification" feedback from network (for now).
2029  *                 It means that this number can be only _guessed_.
2030  *                 Actually, it is the heuristics to predict lossage that
2031  *                 distinguishes different algorithms.
2032  *
2033  *      F.e. after RTO, when all the queue is considered as lost,
2034  *      lost_out = packets_out and in_flight = retrans_out.
2035  *
2036  *              Essentially, we have now two algorithms counting
2037  *              lost packets.
2038  *
2039  *              FACK: It is the simplest heuristics. As soon as we decided
2040  *              that something is lost, we decide that _all_ not SACKed
2041  *              packets until the most forward SACK are lost. I.e.
2042  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2043  *              It is absolutely correct estimate, if network does not reorder
2044  *              packets. And it loses any connection to reality when reordering
2045  *              takes place. We use FACK by default until reordering
2046  *              is suspected on the path to this destination.
2047  *
2048  *              NewReno: when Recovery is entered, we assume that one segment
2049  *              is lost (classic Reno). While we are in Recovery and
2050  *              a partial ACK arrives, we assume that one more packet
2051  *              is lost (NewReno). This heuristics are the same in NewReno
2052  *              and SACK.
2053  *
2054  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2055  *  deflation etc. CWND is real congestion window, never inflated, changes
2056  *  only according to classic VJ rules.
2057  *
2058  * Really tricky (and requiring careful tuning) part of algorithm
2059  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2060  * The first determines the moment _when_ we should reduce CWND and,
2061  * hence, slow down forward transmission. In fact, it determines the moment
2062  * when we decide that hole is caused by loss, rather than by a reorder.
2063  *
2064  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2065  * holes, caused by lost packets.
2066  *
2067  * And the most logically complicated part of algorithm is undo
2068  * heuristics. We detect false retransmits due to both too early
2069  * fast retransmit (reordering) and underestimated RTO, analyzing
2070  * timestamps and D-SACKs. When we detect that some segments were
2071  * retransmitted by mistake and CWND reduction was wrong, we undo
2072  * window reduction and abort recovery phase. This logic is hidden
2073  * inside several functions named tcp_try_undo_<something>.
2074  */
2075
2076 /* This function decides, when we should leave Disordered state
2077  * and enter Recovery phase, reducing congestion window.
2078  *
2079  * Main question: may we further continue forward transmission
2080  * with the same cwnd?
2081  */
2082 static int tcp_time_to_recover(struct sock *sk)
2083 {
2084         struct tcp_sock *tp = tcp_sk(sk);
2085         __u32 packets_out;
2086
2087         /* Do not perform any recovery during F-RTO algorithm */
2088         if (tp->frto_counter)
2089                 return 0;
2090
2091         /* Trick#1: The loss is proven. */
2092         if (tp->lost_out)
2093                 return 1;
2094
2095         /* Not-A-Trick#2 : Classic rule... */
2096         if (tcp_dupack_heurestics(tp) > tp->reordering)
2097                 return 1;
2098
2099         /* Trick#3 : when we use RFC2988 timer restart, fast
2100          * retransmit can be triggered by timeout of queue head.
2101          */
2102         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2103                 return 1;
2104
2105         /* Trick#4: It is still not OK... But will it be useful to delay
2106          * recovery more?
2107          */
2108         packets_out = tp->packets_out;
2109         if (packets_out <= tp->reordering &&
2110             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2111             !tcp_may_send_now(sk)) {
2112                 /* We have nothing to send. This connection is limited
2113                  * either by receiver window or by application.
2114                  */
2115                 return 1;
2116         }
2117
2118         return 0;
2119 }
2120
2121 /* RFC: This is from the original, I doubt that this is necessary at all:
2122  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2123  * retransmitted past LOST markings in the first place? I'm not fully sure
2124  * about undo and end of connection cases, which can cause R without L?
2125  */
2126 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2127 {
2128         if ((tp->retransmit_skb_hint != NULL) &&
2129             before(TCP_SKB_CB(skb)->seq,
2130                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2131                 tp->retransmit_skb_hint = NULL;
2132 }
2133
2134 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2135  * is against sacked "cnt", otherwise it's against facked "cnt"
2136  */
2137 static void tcp_mark_head_lost(struct sock *sk, int packets)
2138 {
2139         struct tcp_sock *tp = tcp_sk(sk);
2140         struct sk_buff *skb;
2141         int cnt, oldcnt;
2142         int err;
2143         unsigned int mss;
2144
2145         BUG_TRAP(packets <= tp->packets_out);
2146         if (tp->lost_skb_hint) {
2147                 skb = tp->lost_skb_hint;
2148                 cnt = tp->lost_cnt_hint;
2149         } else {
2150                 skb = tcp_write_queue_head(sk);
2151                 cnt = 0;
2152         }
2153
2154         tcp_for_write_queue_from(skb, sk) {
2155                 if (skb == tcp_send_head(sk))
2156                         break;
2157                 /* TODO: do this better */
2158                 /* this is not the most efficient way to do this... */
2159                 tp->lost_skb_hint = skb;
2160                 tp->lost_cnt_hint = cnt;
2161
2162                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2163                         break;
2164
2165                 oldcnt = cnt;
2166                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2167                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2168                         cnt += tcp_skb_pcount(skb);
2169
2170                 if (cnt > packets) {
2171                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2172                                 break;
2173
2174                         mss = skb_shinfo(skb)->gso_size;
2175                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2176                         if (err < 0)
2177                                 break;
2178                         cnt = packets;
2179                 }
2180
2181                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2182                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2183                         tp->lost_out += tcp_skb_pcount(skb);
2184                         tcp_verify_retransmit_hint(tp, skb);
2185                 }
2186         }
2187         tcp_verify_left_out(tp);
2188 }
2189
2190 /* Account newly detected lost packet(s) */
2191
2192 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2193 {
2194         struct tcp_sock *tp = tcp_sk(sk);
2195
2196         if (tcp_is_reno(tp)) {
2197                 tcp_mark_head_lost(sk, 1);
2198         } else if (tcp_is_fack(tp)) {
2199                 int lost = tp->fackets_out - tp->reordering;
2200                 if (lost <= 0)
2201                         lost = 1;
2202                 tcp_mark_head_lost(sk, lost);
2203         } else {
2204                 int sacked_upto = tp->sacked_out - tp->reordering;
2205                 if (sacked_upto < fast_rexmit)
2206                         sacked_upto = fast_rexmit;
2207                 tcp_mark_head_lost(sk, sacked_upto);
2208         }
2209
2210         /* New heuristics: it is possible only after we switched
2211          * to restart timer each time when something is ACKed.
2212          * Hence, we can detect timed out packets during fast
2213          * retransmit without falling to slow start.
2214          */
2215         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2216                 struct sk_buff *skb;
2217
2218                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2219                         : tcp_write_queue_head(sk);
2220
2221                 tcp_for_write_queue_from(skb, sk) {
2222                         if (skb == tcp_send_head(sk))
2223                                 break;
2224                         if (!tcp_skb_timedout(sk, skb))
2225                                 break;
2226
2227                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2228                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2229                                 tp->lost_out += tcp_skb_pcount(skb);
2230                                 tcp_verify_retransmit_hint(tp, skb);
2231                         }
2232                 }
2233
2234                 tp->scoreboard_skb_hint = skb;
2235
2236                 tcp_verify_left_out(tp);
2237         }
2238 }
2239
2240 /* CWND moderation, preventing bursts due to too big ACKs
2241  * in dubious situations.
2242  */
2243 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2244 {
2245         tp->snd_cwnd = min(tp->snd_cwnd,
2246                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2247         tp->snd_cwnd_stamp = tcp_time_stamp;
2248 }
2249
2250 /* Lower bound on congestion window is slow start threshold
2251  * unless congestion avoidance choice decides to overide it.
2252  */
2253 static inline u32 tcp_cwnd_min(const struct sock *sk)
2254 {
2255         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2256
2257         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2258 }
2259
2260 /* Decrease cwnd each second ack. */
2261 static void tcp_cwnd_down(struct sock *sk, int flag)
2262 {
2263         struct tcp_sock *tp = tcp_sk(sk);
2264         int decr = tp->snd_cwnd_cnt + 1;
2265
2266         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2267             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2268                 tp->snd_cwnd_cnt = decr & 1;
2269                 decr >>= 1;
2270
2271                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2272                         tp->snd_cwnd -= decr;
2273
2274                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2275                 tp->snd_cwnd_stamp = tcp_time_stamp;
2276         }
2277 }
2278
2279 /* Nothing was retransmitted or returned timestamp is less
2280  * than timestamp of the first retransmission.
2281  */
2282 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2283 {
2284         return !tp->retrans_stamp ||
2285                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2286                  (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2287 }
2288
2289 /* Undo procedures. */
2290
2291 #if FASTRETRANS_DEBUG > 1
2292 static void DBGUNDO(struct sock *sk, const char *msg)
2293 {
2294         struct tcp_sock *tp = tcp_sk(sk);
2295         struct inet_sock *inet = inet_sk(sk);
2296
2297         printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2298                msg,
2299                NIPQUAD(inet->daddr), ntohs(inet->dport),
2300                tp->snd_cwnd, tcp_left_out(tp),
2301                tp->snd_ssthresh, tp->prior_ssthresh,
2302                tp->packets_out);
2303 }
2304 #else
2305 #define DBGUNDO(x...) do { } while (0)
2306 #endif
2307
2308 static void tcp_undo_cwr(struct sock *sk, const int undo)
2309 {
2310         struct tcp_sock *tp = tcp_sk(sk);
2311
2312         if (tp->prior_ssthresh) {
2313                 const struct inet_connection_sock *icsk = inet_csk(sk);
2314
2315                 if (icsk->icsk_ca_ops->undo_cwnd)
2316                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2317                 else
2318                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2319
2320                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2321                         tp->snd_ssthresh = tp->prior_ssthresh;
2322                         TCP_ECN_withdraw_cwr(tp);
2323                 }
2324         } else {
2325                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2326         }
2327         tcp_moderate_cwnd(tp);
2328         tp->snd_cwnd_stamp = tcp_time_stamp;
2329
2330         /* There is something screwy going on with the retrans hints after
2331            an undo */
2332         tcp_clear_all_retrans_hints(tp);
2333 }
2334
2335 static inline int tcp_may_undo(struct tcp_sock *tp)
2336 {
2337         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2338 }
2339
2340 /* People celebrate: "We love our President!" */
2341 static int tcp_try_undo_recovery(struct sock *sk)
2342 {
2343         struct tcp_sock *tp = tcp_sk(sk);
2344
2345         if (tcp_may_undo(tp)) {
2346                 /* Happy end! We did not retransmit anything
2347                  * or our original transmission succeeded.
2348                  */
2349                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2350                 tcp_undo_cwr(sk, 1);
2351                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2352                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2353                 else
2354                         NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2355                 tp->undo_marker = 0;
2356         }
2357         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2358                 /* Hold old state until something *above* high_seq
2359                  * is ACKed. For Reno it is MUST to prevent false
2360                  * fast retransmits (RFC2582). SACK TCP is safe. */
2361                 tcp_moderate_cwnd(tp);
2362                 return 1;
2363         }
2364         tcp_set_ca_state(sk, TCP_CA_Open);
2365         return 0;
2366 }
2367
2368 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2369 static void tcp_try_undo_dsack(struct sock *sk)
2370 {
2371         struct tcp_sock *tp = tcp_sk(sk);
2372
2373         if (tp->undo_marker && !tp->undo_retrans) {
2374                 DBGUNDO(sk, "D-SACK");
2375                 tcp_undo_cwr(sk, 1);
2376                 tp->undo_marker = 0;
2377                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2378         }
2379 }
2380
2381 /* Undo during fast recovery after partial ACK. */
2382
2383 static int tcp_try_undo_partial(struct sock *sk, int acked)
2384 {
2385         struct tcp_sock *tp = tcp_sk(sk);
2386         /* Partial ACK arrived. Force Hoe's retransmit. */
2387         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2388
2389         if (tcp_may_undo(tp)) {
2390                 /* Plain luck! Hole if filled with delayed
2391                  * packet, rather than with a retransmit.
2392                  */
2393                 if (tp->retrans_out == 0)
2394                         tp->retrans_stamp = 0;
2395
2396                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2397
2398                 DBGUNDO(sk, "Hoe");
2399                 tcp_undo_cwr(sk, 0);
2400                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2401
2402                 /* So... Do not make Hoe's retransmit yet.
2403                  * If the first packet was delayed, the rest
2404                  * ones are most probably delayed as well.
2405                  */
2406                 failed = 0;
2407         }
2408         return failed;
2409 }
2410
2411 /* Undo during loss recovery after partial ACK. */
2412 static int tcp_try_undo_loss(struct sock *sk)
2413 {
2414         struct tcp_sock *tp = tcp_sk(sk);
2415
2416         if (tcp_may_undo(tp)) {
2417                 struct sk_buff *skb;
2418                 tcp_for_write_queue(skb, sk) {
2419                         if (skb == tcp_send_head(sk))
2420                                 break;
2421                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2422                 }
2423
2424                 tcp_clear_all_retrans_hints(tp);
2425
2426                 DBGUNDO(sk, "partial loss");
2427                 tp->lost_out = 0;
2428                 tcp_undo_cwr(sk, 1);
2429                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2430                 inet_csk(sk)->icsk_retransmits = 0;
2431                 tp->undo_marker = 0;
2432                 if (tcp_is_sack(tp))
2433                         tcp_set_ca_state(sk, TCP_CA_Open);
2434                 return 1;
2435         }
2436         return 0;
2437 }
2438
2439 static inline void tcp_complete_cwr(struct sock *sk)
2440 {
2441         struct tcp_sock *tp = tcp_sk(sk);
2442         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2443         tp->snd_cwnd_stamp = tcp_time_stamp;
2444         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2445 }
2446
2447 static void tcp_try_to_open(struct sock *sk, int flag)
2448 {
2449         struct tcp_sock *tp = tcp_sk(sk);
2450
2451         tcp_verify_left_out(tp);
2452
2453         if (tp->retrans_out == 0)
2454                 tp->retrans_stamp = 0;
2455
2456         if (flag & FLAG_ECE)
2457                 tcp_enter_cwr(sk, 1);
2458
2459         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2460                 int state = TCP_CA_Open;
2461
2462                 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2463                         state = TCP_CA_Disorder;
2464
2465                 if (inet_csk(sk)->icsk_ca_state != state) {
2466                         tcp_set_ca_state(sk, state);
2467                         tp->high_seq = tp->snd_nxt;
2468                 }
2469                 tcp_moderate_cwnd(tp);
2470         } else {
2471                 tcp_cwnd_down(sk, flag);
2472         }
2473 }
2474
2475 static void tcp_mtup_probe_failed(struct sock *sk)
2476 {
2477         struct inet_connection_sock *icsk = inet_csk(sk);
2478
2479         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2480         icsk->icsk_mtup.probe_size = 0;
2481 }
2482
2483 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2484 {
2485         struct tcp_sock *tp = tcp_sk(sk);
2486         struct inet_connection_sock *icsk = inet_csk(sk);
2487
2488         /* FIXME: breaks with very large cwnd */
2489         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2490         tp->snd_cwnd = tp->snd_cwnd *
2491                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2492                        icsk->icsk_mtup.probe_size;
2493         tp->snd_cwnd_cnt = 0;
2494         tp->snd_cwnd_stamp = tcp_time_stamp;
2495         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2496
2497         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2498         icsk->icsk_mtup.probe_size = 0;
2499         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2500 }
2501
2502 /* Process an event, which can update packets-in-flight not trivially.
2503  * Main goal of this function is to calculate new estimate for left_out,
2504  * taking into account both packets sitting in receiver's buffer and
2505  * packets lost by network.
2506  *
2507  * Besides that it does CWND reduction, when packet loss is detected
2508  * and changes state of machine.
2509  *
2510  * It does _not_ decide what to send, it is made in function
2511  * tcp_xmit_retransmit_queue().
2512  */
2513 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2514 {
2515         struct inet_connection_sock *icsk = inet_csk(sk);
2516         struct tcp_sock *tp = tcp_sk(sk);
2517         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2518         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2519                                     (tcp_fackets_out(tp) > tp->reordering));
2520         int fast_rexmit = 0;
2521
2522         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2523                 tp->sacked_out = 0;
2524         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2525                 tp->fackets_out = 0;
2526
2527         /* Now state machine starts.
2528          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2529         if (flag & FLAG_ECE)
2530                 tp->prior_ssthresh = 0;
2531
2532         /* B. In all the states check for reneging SACKs. */
2533         if (tcp_check_sack_reneging(sk, flag))
2534                 return;
2535
2536         /* C. Process data loss notification, provided it is valid. */
2537         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2538             before(tp->snd_una, tp->high_seq) &&
2539             icsk->icsk_ca_state != TCP_CA_Open &&
2540             tp->fackets_out > tp->reordering) {
2541                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2542                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2543         }
2544
2545         /* D. Check consistency of the current state. */
2546         tcp_verify_left_out(tp);
2547
2548         /* E. Check state exit conditions. State can be terminated
2549          *    when high_seq is ACKed. */
2550         if (icsk->icsk_ca_state == TCP_CA_Open) {
2551                 BUG_TRAP(tp->retrans_out == 0);
2552                 tp->retrans_stamp = 0;
2553         } else if (!before(tp->snd_una, tp->high_seq)) {
2554                 switch (icsk->icsk_ca_state) {
2555                 case TCP_CA_Loss:
2556                         icsk->icsk_retransmits = 0;
2557                         if (tcp_try_undo_recovery(sk))
2558                                 return;
2559                         break;
2560
2561                 case TCP_CA_CWR:
2562                         /* CWR is to be held something *above* high_seq
2563                          * is ACKed for CWR bit to reach receiver. */
2564                         if (tp->snd_una != tp->high_seq) {
2565                                 tcp_complete_cwr(sk);
2566                                 tcp_set_ca_state(sk, TCP_CA_Open);
2567                         }
2568                         break;
2569
2570                 case TCP_CA_Disorder:
2571                         tcp_try_undo_dsack(sk);
2572                         if (!tp->undo_marker ||
2573                             /* For SACK case do not Open to allow to undo
2574                              * catching for all duplicate ACKs. */
2575                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2576                                 tp->undo_marker = 0;
2577                                 tcp_set_ca_state(sk, TCP_CA_Open);
2578                         }
2579                         break;
2580
2581                 case TCP_CA_Recovery:
2582                         if (tcp_is_reno(tp))
2583                                 tcp_reset_reno_sack(tp);
2584                         if (tcp_try_undo_recovery(sk))
2585                                 return;
2586                         tcp_complete_cwr(sk);
2587                         break;
2588                 }
2589         }
2590
2591         /* F. Process state. */
2592         switch (icsk->icsk_ca_state) {
2593         case TCP_CA_Recovery:
2594                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2595                         if (tcp_is_reno(tp) && is_dupack)
2596                                 tcp_add_reno_sack(sk);
2597                 } else
2598                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2599                 break;
2600         case TCP_CA_Loss:
2601                 if (flag & FLAG_DATA_ACKED)
2602                         icsk->icsk_retransmits = 0;
2603                 if (!tcp_try_undo_loss(sk)) {
2604                         tcp_moderate_cwnd(tp);
2605                         tcp_xmit_retransmit_queue(sk);
2606                         return;
2607                 }
2608                 if (icsk->icsk_ca_state != TCP_CA_Open)
2609                         return;
2610                 /* Loss is undone; fall through to processing in Open state. */
2611         default:
2612                 if (tcp_is_reno(tp)) {
2613                         if (flag & FLAG_SND_UNA_ADVANCED)
2614                                 tcp_reset_reno_sack(tp);
2615                         if (is_dupack)
2616                                 tcp_add_reno_sack(sk);
2617                 }
2618
2619                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2620                         tcp_try_undo_dsack(sk);
2621
2622                 if (!tcp_time_to_recover(sk)) {
2623                         tcp_try_to_open(sk, flag);
2624                         return;
2625                 }
2626
2627                 /* MTU probe failure: don't reduce cwnd */
2628                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2629                     icsk->icsk_mtup.probe_size &&
2630                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2631                         tcp_mtup_probe_failed(sk);
2632                         /* Restores the reduction we did in tcp_mtup_probe() */
2633                         tp->snd_cwnd++;
2634                         tcp_simple_retransmit(sk);
2635                         return;
2636                 }
2637
2638                 /* Otherwise enter Recovery state */
2639
2640                 if (tcp_is_reno(tp))
2641                         NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2642                 else
2643                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2644
2645                 tp->high_seq = tp->snd_nxt;
2646                 tp->prior_ssthresh = 0;
2647                 tp->undo_marker = tp->snd_una;
2648                 tp->undo_retrans = tp->retrans_out;
2649
2650                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2651                         if (!(flag & FLAG_ECE))
2652                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2653                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2654                         TCP_ECN_queue_cwr(tp);
2655                 }
2656
2657                 tp->bytes_acked = 0;
2658                 tp->snd_cwnd_cnt = 0;
2659                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2660                 fast_rexmit = 1;
2661         }
2662
2663         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2664                 tcp_update_scoreboard(sk, fast_rexmit);
2665         tcp_cwnd_down(sk, flag);
2666         tcp_xmit_retransmit_queue(sk);
2667 }
2668
2669 /* Read draft-ietf-tcplw-high-performance before mucking
2670  * with this code. (Supersedes RFC1323)
2671  */
2672 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2673 {
2674         /* RTTM Rule: A TSecr value received in a segment is used to
2675          * update the averaged RTT measurement only if the segment
2676          * acknowledges some new data, i.e., only if it advances the
2677          * left edge of the send window.
2678          *
2679          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2680          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2681          *
2682          * Changed: reset backoff as soon as we see the first valid sample.
2683          * If we do not, we get strongly overestimated rto. With timestamps
2684          * samples are accepted even from very old segments: f.e., when rtt=1
2685          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2686          * answer arrives rto becomes 120 seconds! If at least one of segments
2687          * in window is lost... Voila.                          --ANK (010210)
2688          */
2689         struct tcp_sock *tp = tcp_sk(sk);
2690         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2691         tcp_rtt_estimator(sk, seq_rtt);
2692         tcp_set_rto(sk);
2693         inet_csk(sk)->icsk_backoff = 0;
2694         tcp_bound_rto(sk);
2695 }
2696
2697 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2698 {
2699         /* We don't have a timestamp. Can only use
2700          * packets that are not retransmitted to determine
2701          * rtt estimates. Also, we must not reset the
2702          * backoff for rto until we get a non-retransmitted
2703          * packet. This allows us to deal with a situation
2704          * where the network delay has increased suddenly.
2705          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2706          */
2707
2708         if (flag & FLAG_RETRANS_DATA_ACKED)
2709                 return;
2710
2711         tcp_rtt_estimator(sk, seq_rtt);
2712         tcp_set_rto(sk);
2713         inet_csk(sk)->icsk_backoff = 0;
2714         tcp_bound_rto(sk);
2715 }
2716
2717 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2718                                       const s32 seq_rtt)
2719 {
2720         const struct tcp_sock *tp = tcp_sk(sk);
2721         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2722         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2723                 tcp_ack_saw_tstamp(sk, flag);
2724         else if (seq_rtt >= 0)
2725                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2726 }
2727
2728 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2729 {
2730         const struct inet_connection_sock *icsk = inet_csk(sk);
2731         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2732         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2733 }
2734
2735 /* Restart timer after forward progress on connection.
2736  * RFC2988 recommends to restart timer to now+rto.
2737  */
2738 static void tcp_rearm_rto(struct sock *sk)
2739 {
2740         struct tcp_sock *tp = tcp_sk(sk);
2741
2742         if (!tp->packets_out) {
2743                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2744         } else {
2745                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2746                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2747         }
2748 }
2749
2750 /* If we get here, the whole TSO packet has not been acked. */
2751 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2752 {
2753         struct tcp_sock *tp = tcp_sk(sk);
2754         u32 packets_acked;
2755
2756         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2757
2758         packets_acked = tcp_skb_pcount(skb);
2759         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2760                 return 0;
2761         packets_acked -= tcp_skb_pcount(skb);
2762
2763         if (packets_acked) {
2764                 BUG_ON(tcp_skb_pcount(skb) == 0);
2765                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2766         }
2767
2768         return packets_acked;
2769 }
2770
2771 /* Remove acknowledged frames from the retransmission queue. If our packet
2772  * is before the ack sequence we can discard it as it's confirmed to have
2773  * arrived at the other end.
2774  */
2775 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2776 {
2777         struct tcp_sock *tp = tcp_sk(sk);
2778         const struct inet_connection_sock *icsk = inet_csk(sk);
2779         struct sk_buff *skb;
2780         u32 now = tcp_time_stamp;
2781         int fully_acked = 1;
2782         int flag = 0;
2783         u32 pkts_acked = 0;
2784         u32 reord = tp->packets_out;
2785         s32 seq_rtt = -1;
2786         s32 ca_seq_rtt = -1;
2787         ktime_t last_ackt = net_invalid_timestamp();
2788
2789         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2790                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2791                 u32 end_seq;
2792                 u32 acked_pcount;
2793                 u8 sacked = scb->sacked;
2794
2795                 /* Determine how many packets and what bytes were acked, tso and else */
2796                 if (after(scb->end_seq, tp->snd_una)) {
2797                         if (tcp_skb_pcount(skb) == 1 ||
2798                             !after(tp->snd_una, scb->seq))
2799                                 break;
2800
2801                         acked_pcount = tcp_tso_acked(sk, skb);
2802                         if (!acked_pcount)
2803                                 break;
2804
2805                         fully_acked = 0;
2806                         end_seq = tp->snd_una;
2807                 } else {
2808                         acked_pcount = tcp_skb_pcount(skb);
2809                         end_seq = scb->end_seq;
2810                 }
2811
2812                 /* MTU probing checks */
2813                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2814                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2815                         tcp_mtup_probe_success(sk, skb);
2816                 }
2817
2818                 if (sacked & TCPCB_RETRANS) {
2819                         if (sacked & TCPCB_SACKED_RETRANS)
2820                                 tp->retrans_out -= acked_pcount;
2821                         flag |= FLAG_RETRANS_DATA_ACKED;
2822                         ca_seq_rtt = -1;
2823                         seq_rtt = -1;
2824                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2825                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2826                 } else {
2827                         ca_seq_rtt = now - scb->when;
2828                         last_ackt = skb->tstamp;
2829                         if (seq_rtt < 0) {
2830                                 seq_rtt = ca_seq_rtt;
2831                         }
2832                         if (!(sacked & TCPCB_SACKED_ACKED))
2833                                 reord = min(pkts_acked, reord);
2834                 }
2835
2836                 if (sacked & TCPCB_SACKED_ACKED)
2837                         tp->sacked_out -= acked_pcount;
2838                 if (sacked & TCPCB_LOST)
2839                         tp->lost_out -= acked_pcount;
2840
2841                 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2842                         tp->urg_mode = 0;
2843
2844                 tp->packets_out -= acked_pcount;
2845                 pkts_acked += acked_pcount;
2846
2847                 /* Initial outgoing SYN's get put onto the write_queue
2848                  * just like anything else we transmit.  It is not
2849                  * true data, and if we misinform our callers that
2850                  * this ACK acks real data, we will erroneously exit
2851                  * connection startup slow start one packet too
2852                  * quickly.  This is severely frowned upon behavior.
2853                  */
2854                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2855                         flag |= FLAG_DATA_ACKED;
2856                 } else {
2857                         flag |= FLAG_SYN_ACKED;
2858                         tp->retrans_stamp = 0;
2859                 }
2860
2861                 if (!fully_acked)
2862                         break;
2863
2864                 tcp_unlink_write_queue(skb, sk);
2865                 sk_wmem_free_skb(sk, skb);
2866                 tcp_clear_all_retrans_hints(tp);
2867         }
2868
2869         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2870                 flag |= FLAG_SACK_RENEGING;
2871
2872         if (flag & FLAG_ACKED) {
2873                 const struct tcp_congestion_ops *ca_ops
2874                         = inet_csk(sk)->icsk_ca_ops;
2875
2876                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2877                 tcp_rearm_rto(sk);
2878
2879                 if (tcp_is_reno(tp)) {
2880                         tcp_remove_reno_sacks(sk, pkts_acked);
2881                 } else {
2882                         /* Non-retransmitted hole got filled? That's reordering */
2883                         if (reord < prior_fackets)
2884                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2885                 }
2886
2887                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2888
2889                 if (ca_ops->pkts_acked) {
2890                         s32 rtt_us = -1;
2891
2892                         /* Is the ACK triggering packet unambiguous? */
2893                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2894                                 /* High resolution needed and available? */
2895                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2896                                     !ktime_equal(last_ackt,
2897                                                  net_invalid_timestamp()))
2898                                         rtt_us = ktime_us_delta(ktime_get_real(),
2899                                                                 last_ackt);
2900                                 else if (ca_seq_rtt > 0)
2901                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2902                         }
2903
2904                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2905                 }
2906         }
2907
2908 #if FASTRETRANS_DEBUG > 0
2909         BUG_TRAP((int)tp->sacked_out >= 0);
2910         BUG_TRAP((int)tp->lost_out >= 0);
2911         BUG_TRAP((int)tp->retrans_out >= 0);
2912         if (!tp->packets_out && tcp_is_sack(tp)) {
2913                 icsk = inet_csk(sk);
2914                 if (tp->lost_out) {
2915                         printk(KERN_DEBUG "Leak l=%u %d\n",
2916                                tp->lost_out, icsk->icsk_ca_state);
2917                         tp->lost_out = 0;
2918                 }
2919                 if (tp->sacked_out) {
2920                         printk(KERN_DEBUG "Leak s=%u %d\n",
2921                                tp->sacked_out, icsk->icsk_ca_state);
2922                         tp->sacked_out = 0;
2923                 }
2924                 if (tp->retrans_out) {
2925                         printk(KERN_DEBUG "Leak r=%u %d\n",
2926                                tp->retrans_out, icsk->icsk_ca_state);
2927                         tp->retrans_out = 0;
2928                 }
2929         }
2930 #endif
2931         return flag;
2932 }
2933
2934 static void tcp_ack_probe(struct sock *sk)
2935 {
2936         const struct tcp_sock *tp = tcp_sk(sk);
2937         struct inet_connection_sock *icsk = inet_csk(sk);
2938
2939         /* Was it a usable window open? */
2940
2941         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2942                 icsk->icsk_backoff = 0;
2943                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2944                 /* Socket must be waked up by subsequent tcp_data_snd_check().
2945                  * This function is not for random using!
2946                  */
2947         } else {
2948                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2949                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2950                                           TCP_RTO_MAX);
2951         }
2952 }
2953
2954 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2955 {
2956         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2957                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2958 }
2959
2960 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2961 {
2962         const struct tcp_sock *tp = tcp_sk(sk);
2963         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2964                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2965 }
2966
2967 /* Check that window update is acceptable.
2968  * The function assumes that snd_una<=ack<=snd_next.
2969  */
2970 static inline int tcp_may_update_window(const struct tcp_sock *tp,
2971                                         const u32 ack, const u32 ack_seq,
2972                                         const u32 nwin)
2973 {
2974         return (after(ack, tp->snd_una) ||
2975                 after(ack_seq, tp->snd_wl1) ||
2976                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2977 }
2978
2979 /* Update our send window.
2980  *
2981  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2982  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2983  */
2984 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2985                                  u32 ack_seq)
2986 {
2987         struct tcp_sock *tp = tcp_sk(sk);
2988         int flag = 0;
2989         u32 nwin = ntohs(tcp_hdr(skb)->window);
2990
2991         if (likely(!tcp_hdr(skb)->syn))
2992                 nwin <<= tp->rx_opt.snd_wscale;
2993
2994         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2995                 flag |= FLAG_WIN_UPDATE;
2996                 tcp_update_wl(tp, ack, ack_seq);
2997
2998                 if (tp->snd_wnd != nwin) {
2999                         tp->snd_wnd = nwin;
3000
3001                         /* Note, it is the only place, where
3002                          * fast path is recovered for sending TCP.
3003                          */
3004                         tp->pred_flags = 0;
3005                         tcp_fast_path_check(sk);
3006
3007                         if (nwin > tp->max_window) {
3008                                 tp->max_window = nwin;
3009                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3010                         }
3011                 }
3012         }
3013
3014         tp->snd_una = ack;
3015
3016         return flag;
3017 }
3018
3019 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3020  * continue in congestion avoidance.
3021  */
3022 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3023 {
3024         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3025         tp->snd_cwnd_cnt = 0;
3026         tp->bytes_acked = 0;
3027         TCP_ECN_queue_cwr(tp);
3028         tcp_moderate_cwnd(tp);
3029 }
3030
3031 /* A conservative spurious RTO response algorithm: reduce cwnd using
3032  * rate halving and continue in congestion avoidance.
3033  */
3034 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3035 {
3036         tcp_enter_cwr(sk, 0);
3037 }
3038
3039 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3040 {
3041         if (flag & FLAG_ECE)
3042                 tcp_ratehalving_spur_to_response(sk);
3043         else
3044                 tcp_undo_cwr(sk, 1);
3045 }
3046
3047 /* F-RTO spurious RTO detection algorithm (RFC4138)
3048  *
3049  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3050  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3051  * window (but not to or beyond highest sequence sent before RTO):
3052  *   On First ACK,  send two new segments out.
3053  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3054  *                  algorithm is not part of the F-RTO detection algorithm
3055  *                  given in RFC4138 but can be selected separately).
3056  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3057  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3058  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3059  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3060  *
3061  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3062  * original window even after we transmit two new data segments.
3063  *
3064  * SACK version:
3065  *   on first step, wait until first cumulative ACK arrives, then move to
3066  *   the second step. In second step, the next ACK decides.
3067  *
3068  * F-RTO is implemented (mainly) in four functions:
3069  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3070  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3071  *     called when tcp_use_frto() showed green light
3072  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3073  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3074  *     to prove that the RTO is indeed spurious. It transfers the control
3075  *     from F-RTO to the conventional RTO recovery
3076  */
3077 static int tcp_process_frto(struct sock *sk, int flag)
3078 {
3079         struct tcp_sock *tp = tcp_sk(sk);
3080
3081         tcp_verify_left_out(tp);
3082
3083         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3084         if (flag & FLAG_DATA_ACKED)
3085                 inet_csk(sk)->icsk_retransmits = 0;
3086
3087         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3088             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3089                 tp->undo_marker = 0;
3090
3091         if (!before(tp->snd_una, tp->frto_highmark)) {
3092                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3093                 return 1;
3094         }
3095
3096         if (!IsSackFrto() || tcp_is_reno(tp)) {
3097                 /* RFC4138 shortcoming in step 2; should also have case c):
3098                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3099                  * data, winupdate
3100                  */
3101                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3102                         return 1;
3103
3104                 if (!(flag & FLAG_DATA_ACKED)) {
3105                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3106                                             flag);
3107                         return 1;
3108                 }
3109         } else {
3110                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3111                         /* Prevent sending of new data. */
3112                         tp->snd_cwnd = min(tp->snd_cwnd,
3113                                            tcp_packets_in_flight(tp));
3114                         return 1;
3115                 }
3116
3117                 if ((tp->frto_counter >= 2) &&
3118                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3119                      ((flag & FLAG_DATA_SACKED) &&
3120                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3121                         /* RFC4138 shortcoming (see comment above) */
3122                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3123                             (flag & FLAG_NOT_DUP))
3124                                 return 1;
3125
3126                         tcp_enter_frto_loss(sk, 3, flag);
3127                         return 1;
3128                 }
3129         }
3130
3131         if (tp->frto_counter == 1) {
3132                 /* tcp_may_send_now needs to see updated state */
3133                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3134                 tp->frto_counter = 2;
3135
3136                 if (!tcp_may_send_now(sk))
3137                         tcp_enter_frto_loss(sk, 2, flag);
3138
3139                 return 1;
3140         } else {
3141                 switch (sysctl_tcp_frto_response) {
3142                 case 2:
3143                         tcp_undo_spur_to_response(sk, flag);
3144                         break;
3145                 case 1:
3146                         tcp_conservative_spur_to_response(tp);
3147                         break;
3148                 default:
3149                         tcp_ratehalving_spur_to_response(sk);
3150                         break;
3151                 }
3152                 tp->frto_counter = 0;
3153                 tp->undo_marker = 0;
3154                 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3155         }
3156         return 0;
3157 }
3158
3159 /* This routine deals with incoming acks, but not outgoing ones. */
3160 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3161 {
3162         struct inet_connection_sock *icsk = inet_csk(sk);
3163         struct tcp_sock *tp = tcp_sk(sk);
3164         u32 prior_snd_una = tp->snd_una;
3165         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3166         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3167         u32 prior_in_flight;
3168         u32 prior_fackets;
3169         int prior_packets;
3170         int frto_cwnd = 0;
3171
3172         /* If the ack is newer than sent or older than previous acks
3173          * then we can probably ignore it.
3174          */
3175         if (after(ack, tp->snd_nxt))
3176                 goto uninteresting_ack;
3177
3178         if (before(ack, prior_snd_una))
3179                 goto old_ack;
3180
3181         if (after(ack, prior_snd_una))
3182                 flag |= FLAG_SND_UNA_ADVANCED;
3183
3184         if (sysctl_tcp_abc) {
3185                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3186                         tp->bytes_acked += ack - prior_snd_una;
3187                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3188                         /* we assume just one segment left network */
3189                         tp->bytes_acked += min(ack - prior_snd_una,
3190                                                tp->mss_cache);
3191         }
3192
3193         prior_fackets = tp->fackets_out;
3194         prior_in_flight = tcp_packets_in_flight(tp);
3195
3196         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3197                 /* Window is constant, pure forward advance.
3198                  * No more checks are required.
3199                  * Note, we use the fact that SND.UNA>=SND.WL2.
3200                  */
3201                 tcp_update_wl(tp, ack, ack_seq);
3202                 tp->snd_una = ack;
3203                 flag |= FLAG_WIN_UPDATE;
3204
3205                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3206
3207                 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3208         } else {
3209                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3210                         flag |= FLAG_DATA;
3211                 else
3212                         NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3213
3214                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3215
3216                 if (TCP_SKB_CB(skb)->sacked)
3217                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3218
3219                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3220                         flag |= FLAG_ECE;
3221
3222                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3223         }
3224
3225         /* We passed data and got it acked, remove any soft error
3226          * log. Something worked...
3227          */
3228         sk->sk_err_soft = 0;
3229         tp->rcv_tstamp = tcp_time_stamp;
3230         prior_packets = tp->packets_out;
3231         if (!prior_packets)
3232                 goto no_queue;
3233
3234         /* See if we can take anything off of the retransmit queue. */
3235         flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3236
3237         if (tp->frto_counter)
3238                 frto_cwnd = tcp_process_frto(sk, flag);
3239         /* Guarantee sacktag reordering detection against wrap-arounds */
3240         if (before(tp->frto_highmark, tp->snd_una))
3241                 tp->frto_highmark = 0;
3242
3243         if (tcp_ack_is_dubious(sk, flag)) {
3244                 /* Advance CWND, if state allows this. */
3245                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3246                     tcp_may_raise_cwnd(sk, flag))
3247                         tcp_cong_avoid(sk, ack, prior_in_flight);
3248                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3249                                       flag);
3250         } else {
3251                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3252                         tcp_cong_avoid(sk, ack, prior_in_flight);
3253         }
3254
3255         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3256                 dst_confirm(sk->sk_dst_cache);
3257
3258         return 1;
3259
3260 no_queue:
3261         icsk->icsk_probes_out = 0;
3262
3263         /* If this ack opens up a zero window, clear backoff.  It was
3264          * being used to time the probes, and is probably far higher than
3265          * it needs to be for normal retransmission.
3266          */
3267         if (tcp_send_head(sk))
3268                 tcp_ack_probe(sk);
3269         return 1;
3270
3271 old_ack:
3272         if (TCP_SKB_CB(skb)->sacked)
3273                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3274
3275 uninteresting_ack:
3276         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3277         return 0;
3278 }
3279
3280 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3281  * But, this can also be called on packets in the established flow when
3282  * the fast version below fails.
3283  */
3284 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3285                        int estab)
3286 {
3287         unsigned char *ptr;
3288         struct tcphdr *th = tcp_hdr(skb);
3289         int length = (th->doff * 4) - sizeof(struct tcphdr);
3290
3291         ptr = (unsigned char *)(th + 1);
3292         opt_rx->saw_tstamp = 0;
3293
3294         while (length > 0) {
3295                 int opcode = *ptr++;
3296                 int opsize;
3297
3298                 switch (opcode) {
3299                 case TCPOPT_EOL:
3300                         return;
3301                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3302                         length--;
3303                         continue;
3304                 default:
3305                         opsize = *ptr++;
3306                         if (opsize < 2) /* "silly options" */
3307                                 return;
3308                         if (opsize > length)
3309                                 return; /* don't parse partial options */
3310                         switch (opcode) {
3311                         case TCPOPT_MSS:
3312                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3313                                         u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3314                                         if (in_mss) {
3315                                                 if (opt_rx->user_mss &&
3316                                                     opt_rx->user_mss < in_mss)
3317                                                         in_mss = opt_rx->user_mss;
3318                                                 opt_rx->mss_clamp = in_mss;
3319                                         }
3320                                 }
3321                                 break;
3322                         case TCPOPT_WINDOW:
3323                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3324                                     !estab && sysctl_tcp_window_scaling) {
3325                                         __u8 snd_wscale = *(__u8 *)ptr;
3326                                         opt_rx->wscale_ok = 1;
3327                                         if (snd_wscale > 14) {
3328                                                 if (net_ratelimit())
3329                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3330                                                                "scaling value %d >14 received.\n",
3331                                                                snd_wscale);
3332                                                 snd_wscale = 14;
3333                                         }
3334                                         opt_rx->snd_wscale = snd_wscale;
3335                                 }
3336                                 break;
3337                         case TCPOPT_TIMESTAMP:
3338                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3339                                     ((estab && opt_rx->tstamp_ok) ||
3340                                      (!estab && sysctl_tcp_timestamps))) {
3341                                         opt_rx->saw_tstamp = 1;
3342                                         opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3343                                         opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3344                                 }
3345                                 break;
3346                         case TCPOPT_SACK_PERM:
3347                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3348                                     !estab && sysctl_tcp_sack) {
3349                                         opt_rx->sack_ok = 1;
3350                                         tcp_sack_reset(opt_rx);
3351                                 }
3352                                 break;
3353
3354                         case TCPOPT_SACK:
3355                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3356                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3357                                    opt_rx->sack_ok) {
3358                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3359                                 }
3360                                 break;
3361 #ifdef CONFIG_TCP_MD5SIG
3362                         case TCPOPT_MD5SIG:
3363                                 /*
3364                                  * The MD5 Hash has already been
3365                                  * checked (see tcp_v{4,6}_do_rcv()).
3366                                  */
3367                                 break;
3368 #endif
3369                         }
3370
3371                         ptr += opsize-2;
3372                         length -= opsize;
3373                 }
3374         }
3375 }
3376
3377 /* Fast parse options. This hopes to only see timestamps.
3378  * If it is wrong it falls back on tcp_parse_options().
3379  */
3380 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3381                                   struct tcp_sock *tp)
3382 {
3383         if (th->doff == sizeof(struct tcphdr) >> 2) {
3384                 tp->rx_opt.saw_tstamp = 0;
3385                 return 0;
3386         } else if (tp->rx_opt.tstamp_ok &&
3387                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3388                 __be32 *ptr = (__be32 *)(th + 1);
3389                 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3390                                   | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3391                         tp->rx_opt.saw_tstamp = 1;
3392                         ++ptr;
3393                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
3394                         ++ptr;
3395                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3396                         return 1;
3397                 }
3398         }
3399         tcp_parse_options(skb, &tp->rx_opt, 1);
3400         return 1;
3401 }
3402
3403 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3404 {
3405         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3406         tp->rx_opt.ts_recent_stamp = get_seconds();
3407 }
3408
3409 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3410 {
3411         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3412                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3413                  * extra check below makes sure this can only happen
3414                  * for pure ACK frames.  -DaveM
3415                  *
3416                  * Not only, also it occurs for expired timestamps.
3417                  */
3418
3419                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3420                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3421                         tcp_store_ts_recent(tp);
3422         }
3423 }
3424
3425 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3426  *
3427  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3428  * it can pass through stack. So, the following predicate verifies that
3429  * this segment is not used for anything but congestion avoidance or
3430  * fast retransmit. Moreover, we even are able to eliminate most of such
3431  * second order effects, if we apply some small "replay" window (~RTO)
3432  * to timestamp space.
3433  *
3434  * All these measures still do not guarantee that we reject wrapped ACKs
3435  * on networks with high bandwidth, when sequence space is recycled fastly,
3436  * but it guarantees that such events will be very rare and do not affect
3437  * connection seriously. This doesn't look nice, but alas, PAWS is really
3438  * buggy extension.
3439  *
3440  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3441  * states that events when retransmit arrives after original data are rare.
3442  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3443  * the biggest problem on large power networks even with minor reordering.
3444  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3445  * up to bandwidth of 18Gigabit/sec. 8) ]
3446  */
3447
3448 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3449 {
3450         struct tcp_sock *tp = tcp_sk(sk);
3451         struct tcphdr *th = tcp_hdr(skb);
3452         u32 seq = TCP_SKB_CB(skb)->seq;
3453         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3454
3455         return (/* 1. Pure ACK with correct sequence number. */
3456                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3457
3458                 /* 2. ... and duplicate ACK. */
3459                 ack == tp->snd_una &&
3460
3461                 /* 3. ... and does not update window. */
3462                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3463
3464                 /* 4. ... and sits in replay window. */
3465                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3466 }
3467
3468 static inline int tcp_paws_discard(const struct sock *sk,
3469                                    const struct sk_buff *skb)
3470 {
3471         const struct tcp_sock *tp = tcp_sk(sk);
3472         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3473                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3474                 !tcp_disordered_ack(sk, skb));
3475 }
3476
3477 /* Check segment sequence number for validity.
3478  *
3479  * Segment controls are considered valid, if the segment
3480  * fits to the window after truncation to the window. Acceptability
3481  * of data (and SYN, FIN, of course) is checked separately.
3482  * See tcp_data_queue(), for example.
3483  *
3484  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3485  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3486  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3487  * (borrowed from freebsd)
3488  */
3489
3490 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3491 {
3492         return  !before(end_seq, tp->rcv_wup) &&
3493                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3494 }
3495
3496 /* When we get a reset we do this. */
3497 static void tcp_reset(struct sock *sk)
3498 {
3499         /* We want the right error as BSD sees it (and indeed as we do). */
3500         switch (sk->sk_state) {
3501         case TCP_SYN_SENT:
3502                 sk->sk_err = ECONNREFUSED;
3503                 break;
3504         case TCP_CLOSE_WAIT:
3505                 sk->sk_err = EPIPE;
3506                 break;
3507         case TCP_CLOSE:
3508                 return;
3509         default:
3510                 sk->sk_err = ECONNRESET;
3511         }
3512
3513         if (!sock_flag(sk, SOCK_DEAD))
3514                 sk->sk_error_report(sk);
3515
3516         tcp_done(sk);
3517 }
3518
3519 /*
3520  *      Process the FIN bit. This now behaves as it is supposed to work
3521  *      and the FIN takes effect when it is validly part of sequence
3522  *      space. Not before when we get holes.
3523  *
3524  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3525  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3526  *      TIME-WAIT)
3527  *
3528  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3529  *      close and we go into CLOSING (and later onto TIME-WAIT)
3530  *
3531  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3532  */
3533 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3534 {
3535         struct tcp_sock *tp = tcp_sk(sk);
3536
3537         inet_csk_schedule_ack(sk);
3538
3539         sk->sk_shutdown |= RCV_SHUTDOWN;
3540         sock_set_flag(sk, SOCK_DONE);
3541
3542         switch (sk->sk_state) {
3543         case TCP_SYN_RECV:
3544         case TCP_ESTABLISHED:
3545                 /* Move to CLOSE_WAIT */
3546                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3547                 inet_csk(sk)->icsk_ack.pingpong = 1;
3548                 break;
3549
3550         case TCP_CLOSE_WAIT:
3551         case TCP_CLOSING:
3552                 /* Received a retransmission of the FIN, do
3553                  * nothing.
3554                  */
3555                 break;
3556         case TCP_LAST_ACK:
3557                 /* RFC793: Remain in the LAST-ACK state. */
3558                 break;
3559
3560         case TCP_FIN_WAIT1:
3561                 /* This case occurs when a simultaneous close
3562                  * happens, we must ack the received FIN and
3563                  * enter the CLOSING state.
3564                  */
3565                 tcp_send_ack(sk);
3566                 tcp_set_state(sk, TCP_CLOSING);
3567                 break;
3568         case TCP_FIN_WAIT2:
3569                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3570                 tcp_send_ack(sk);
3571                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3572                 break;
3573         default:
3574                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3575                  * cases we should never reach this piece of code.
3576                  */
3577                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3578                        __FUNCTION__, sk->sk_state);
3579                 break;
3580         }
3581
3582         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3583          * Probably, we should reset in this case. For now drop them.
3584          */
3585         __skb_queue_purge(&tp->out_of_order_queue);
3586         if (tcp_is_sack(tp))
3587                 tcp_sack_reset(&tp->rx_opt);
3588         sk_mem_reclaim(sk);
3589
3590         if (!sock_flag(sk, SOCK_DEAD)) {
3591                 sk->sk_state_change(sk);
3592
3593                 /* Do not send POLL_HUP for half duplex close. */
3594                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3595                     sk->sk_state == TCP_CLOSE)
3596                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3597                 else
3598                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3599         }
3600 }
3601
3602 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3603                                   u32 end_seq)
3604 {
3605         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3606                 if (before(seq, sp->start_seq))
3607                         sp->start_seq = seq;
3608                 if (after(end_seq, sp->end_seq))
3609                         sp->end_seq = end_seq;
3610                 return 1;
3611         }
3612         return 0;
3613 }
3614
3615 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3616 {
3617         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3618                 if (before(seq, tp->rcv_nxt))
3619                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3620                 else
3621                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3622
3623                 tp->rx_opt.dsack = 1;
3624                 tp->duplicate_sack[0].start_seq = seq;
3625                 tp->duplicate_sack[0].end_seq = end_seq;
3626                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3627                                            4 - tp->rx_opt.tstamp_ok);
3628         }
3629 }
3630
3631 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3632 {
3633         if (!tp->rx_opt.dsack)
3634                 tcp_dsack_set(tp, seq, end_seq);
3635         else
3636                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3637 }
3638
3639 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3640 {
3641         struct tcp_sock *tp = tcp_sk(sk);
3642
3643         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3644             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3645                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3646                 tcp_enter_quickack_mode(sk);
3647
3648                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3649                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3650
3651                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3652                                 end_seq = tp->rcv_nxt;
3653                         tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3654                 }
3655         }
3656
3657         tcp_send_ack(sk);
3658 }
3659
3660 /* These routines update the SACK block as out-of-order packets arrive or
3661  * in-order packets close up the sequence space.
3662  */
3663 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3664 {
3665         int this_sack;
3666         struct tcp_sack_block *sp = &tp->selective_acks[0];
3667         struct tcp_sack_block *swalk = sp + 1;
3668
3669         /* See if the recent change to the first SACK eats into
3670          * or hits the sequence space of other SACK blocks, if so coalesce.
3671          */
3672         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3673                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3674                         int i;
3675
3676                         /* Zap SWALK, by moving every further SACK up by one slot.
3677                          * Decrease num_sacks.
3678                          */
3679                         tp->rx_opt.num_sacks--;
3680                         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3681                                                    tp->rx_opt.dsack,
3682                                                    4 - tp->rx_opt.tstamp_ok);
3683                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3684                                 sp[i] = sp[i + 1];
3685                         continue;
3686                 }
3687                 this_sack++, swalk++;
3688         }
3689 }
3690
3691 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3692                                  struct tcp_sack_block *sack2)
3693 {
3694         __u32 tmp;
3695
3696         tmp = sack1->start_seq;
3697         sack1->start_seq = sack2->start_seq;
3698         sack2->start_seq = tmp;
3699
3700         tmp = sack1->end_seq;
3701         sack1->end_seq = sack2->end_seq;
3702         sack2->end_seq = tmp;
3703 }
3704
3705 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3706 {
3707         struct tcp_sock *tp = tcp_sk(sk);
3708         struct tcp_sack_block *sp = &tp->selective_acks[0];
3709         int cur_sacks = tp->rx_opt.num_sacks;
3710         int this_sack;
3711
3712         if (!cur_sacks)
3713                 goto new_sack;
3714
3715         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3716                 if (tcp_sack_extend(sp, seq, end_seq)) {
3717                         /* Rotate this_sack to the first one. */
3718                         for (; this_sack > 0; this_sack--, sp--)
3719                                 tcp_sack_swap(sp, sp - 1);
3720                         if (cur_sacks > 1)
3721                                 tcp_sack_maybe_coalesce(tp);
3722                         return;
3723                 }
3724         }
3725
3726         /* Could not find an adjacent existing SACK, build a new one,
3727          * put it at the front, and shift everyone else down.  We
3728          * always know there is at least one SACK present already here.
3729          *
3730          * If the sack array is full, forget about the last one.
3731          */
3732         if (this_sack >= 4) {
3733                 this_sack--;
3734                 tp->rx_opt.num_sacks--;
3735                 sp--;
3736         }
3737         for (; this_sack > 0; this_sack--, sp--)
3738                 *sp = *(sp - 1);
3739
3740 new_sack:
3741         /* Build the new head SACK, and we're done. */
3742         sp->start_seq = seq;
3743         sp->end_seq = end_seq;
3744         tp->rx_opt.num_sacks++;
3745         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3746                                    4 - tp->rx_opt.tstamp_ok);
3747 }
3748
3749 /* RCV.NXT advances, some SACKs should be eaten. */
3750
3751 static void tcp_sack_remove(struct tcp_sock *tp)
3752 {
3753         struct tcp_sack_block *sp = &tp->selective_acks[0];
3754         int num_sacks = tp->rx_opt.num_sacks;
3755         int this_sack;
3756
3757         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3758         if (skb_queue_empty(&tp->out_of_order_queue)) {
3759                 tp->rx_opt.num_sacks = 0;
3760                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3761                 return;
3762         }
3763
3764         for (this_sack = 0; this_sack < num_sacks;) {
3765                 /* Check if the start of the sack is covered by RCV.NXT. */
3766                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3767                         int i;
3768
3769                         /* RCV.NXT must cover all the block! */
3770                         BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3771
3772                         /* Zap this SACK, by moving forward any other SACKS. */
3773                         for (i=this_sack+1; i < num_sacks; i++)
3774                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3775                         num_sacks--;
3776                         continue;
3777                 }
3778                 this_sack++;
3779                 sp++;
3780         }
3781         if (num_sacks != tp->rx_opt.num_sacks) {
3782                 tp->rx_opt.num_sacks = num_sacks;
3783                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3784                                            tp->rx_opt.dsack,
3785                                            4 - tp->rx_opt.tstamp_ok);
3786         }
3787 }
3788
3789 /* This one checks to see if we can put data from the
3790  * out_of_order queue into the receive_queue.
3791  */
3792 static void tcp_ofo_queue(struct sock *sk)
3793 {
3794         struct tcp_sock *tp = tcp_sk(sk);
3795         __u32 dsack_high = tp->rcv_nxt;
3796         struct sk_buff *skb;
3797
3798         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3799                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3800                         break;
3801
3802                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3803                         __u32 dsack = dsack_high;
3804                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3805                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3806                         tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3807                 }
3808
3809                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3810                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3811                         __skb_unlink(skb, &tp->out_of_order_queue);
3812                         __kfree_skb(skb);
3813                         continue;
3814                 }
3815                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3816                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3817                            TCP_SKB_CB(skb)->end_seq);
3818
3819                 __skb_unlink(skb, &tp->out_of_order_queue);
3820                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3821                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3822                 if (tcp_hdr(skb)->fin)
3823                         tcp_fin(skb, sk, tcp_hdr(skb));
3824         }
3825 }
3826
3827 static int tcp_prune_queue(struct sock *sk);
3828
3829 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3830 {
3831         struct tcphdr *th = tcp_hdr(skb);
3832         struct tcp_sock *tp = tcp_sk(sk);
3833         int eaten = -1;
3834
3835         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3836                 goto drop;
3837
3838         __skb_pull(skb, th->doff * 4);
3839
3840         TCP_ECN_accept_cwr(tp, skb);
3841
3842         if (tp->rx_opt.dsack) {
3843                 tp->rx_opt.dsack = 0;
3844                 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3845                                              4 - tp->rx_opt.tstamp_ok);
3846         }
3847
3848         /*  Queue data for delivery to the user.
3849          *  Packets in sequence go to the receive queue.
3850          *  Out of sequence packets to the out_of_order_queue.
3851          */
3852         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3853                 if (tcp_receive_window(tp) == 0)
3854                         goto out_of_window;
3855
3856                 /* Ok. In sequence. In window. */
3857                 if (tp->ucopy.task == current &&
3858                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3859                     sock_owned_by_user(sk) && !tp->urg_data) {
3860                         int chunk = min_t(unsigned int, skb->len,
3861                                           tp->ucopy.len);
3862
3863                         __set_current_state(TASK_RUNNING);
3864
3865                         local_bh_enable();
3866                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3867                                 tp->ucopy.len -= chunk;
3868                                 tp->copied_seq += chunk;
3869                                 eaten = (chunk == skb->len && !th->fin);
3870                                 tcp_rcv_space_adjust(sk);
3871                         }
3872                         local_bh_disable();
3873                 }
3874
3875                 if (eaten <= 0) {
3876 queue_and_out:
3877                         if (eaten < 0 &&
3878                             (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3879                              !sk_rmem_schedule(sk, skb->truesize))) {
3880                                 if (tcp_prune_queue(sk) < 0 ||
3881                                     !sk_rmem_schedule(sk, skb->truesize))
3882                                         goto drop;
3883                         }
3884                         skb_set_owner_r(skb, sk);
3885                         __skb_queue_tail(&sk->sk_receive_queue, skb);
3886                 }
3887                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3888                 if (skb->len)
3889                         tcp_event_data_recv(sk, skb);
3890                 if (th->fin)
3891                         tcp_fin(skb, sk, th);
3892
3893                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3894                         tcp_ofo_queue(sk);
3895
3896                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
3897                          * gap in queue is filled.
3898                          */
3899                         if (skb_queue_empty(&tp->out_of_order_queue))
3900                                 inet_csk(sk)->icsk_ack.pingpong = 0;
3901                 }
3902
3903                 if (tp->rx_opt.num_sacks)
3904                         tcp_sack_remove(tp);
3905
3906                 tcp_fast_path_check(sk);
3907
3908                 if (eaten > 0)
3909                         __kfree_skb(skb);
3910                 else if (!sock_flag(sk, SOCK_DEAD))
3911                         sk->sk_data_ready(sk, 0);
3912                 return;
3913         }
3914
3915         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3916                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
3917                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3918                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3919
3920 out_of_window:
3921                 tcp_enter_quickack_mode(sk);
3922                 inet_csk_schedule_ack(sk);
3923 drop:
3924                 __kfree_skb(skb);
3925                 return;
3926         }
3927
3928         /* Out of window. F.e. zero window probe. */
3929         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3930                 goto out_of_window;
3931
3932         tcp_enter_quickack_mode(sk);
3933
3934         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3935                 /* Partial packet, seq < rcv_next < end_seq */
3936                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3937                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3938                            TCP_SKB_CB(skb)->end_seq);
3939
3940                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3941
3942                 /* If window is closed, drop tail of packet. But after
3943                  * remembering D-SACK for its head made in previous line.
3944                  */
3945                 if (!tcp_receive_window(tp))
3946                         goto out_of_window;
3947                 goto queue_and_out;
3948         }
3949
3950         TCP_ECN_check_ce(tp, skb);
3951
3952         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3953             !sk_rmem_schedule(sk, skb->truesize)) {
3954                 if (tcp_prune_queue(sk) < 0 ||
3955                     !sk_rmem_schedule(sk, skb->truesize))
3956                         goto drop;
3957         }
3958
3959         /* Disable header prediction. */
3960         tp->pred_flags = 0;
3961         inet_csk_schedule_ack(sk);
3962
3963         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3964                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3965
3966         skb_set_owner_r(skb, sk);
3967
3968         if (!skb_peek(&tp->out_of_order_queue)) {
3969                 /* Initial out of order segment, build 1 SACK. */
3970                 if (tcp_is_sack(tp)) {
3971                         tp->rx_opt.num_sacks = 1;
3972                         tp->rx_opt.dsack     = 0;
3973                         tp->rx_opt.eff_sacks = 1;
3974                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3975                         tp->selective_acks[0].end_seq =
3976                                                 TCP_SKB_CB(skb)->end_seq;
3977                 }
3978                 __skb_queue_head(&tp->out_of_order_queue, skb);
3979         } else {
3980                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3981                 u32 seq = TCP_SKB_CB(skb)->seq;
3982                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3983
3984                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3985                         __skb_append(skb1, skb, &tp->out_of_order_queue);
3986
3987                         if (!tp->rx_opt.num_sacks ||
3988                             tp->selective_acks[0].end_seq != seq)
3989                                 goto add_sack;
3990
3991                         /* Common case: data arrive in order after hole. */
3992                         tp->selective_acks[0].end_seq = end_seq;
3993                         return;
3994                 }
3995
3996                 /* Find place to insert this segment. */
3997                 do {
3998                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
3999                                 break;
4000                 } while ((skb1 = skb1->prev) !=
4001                          (struct sk_buff *)&tp->out_of_order_queue);
4002
4003                 /* Do skb overlap to previous one? */
4004                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4005                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4006                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4007                                 /* All the bits are present. Drop. */
4008                                 __kfree_skb(skb);
4009                                 tcp_dsack_set(tp, seq, end_seq);
4010                                 goto add_sack;
4011                         }
4012                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4013                                 /* Partial overlap. */
4014                                 tcp_dsack_set(tp, seq,
4015                                               TCP_SKB_CB(skb1)->end_seq);
4016                         } else {
4017                                 skb1 = skb1->prev;
4018                         }
4019                 }
4020                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4021
4022                 /* And clean segments covered by new one as whole. */
4023                 while ((skb1 = skb->next) !=
4024                        (struct sk_buff *)&tp->out_of_order_queue &&
4025                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4026                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4027                                 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4028                                                  end_seq);
4029                                 break;
4030                         }
4031                         __skb_unlink(skb1, &tp->out_of_order_queue);
4032                         tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4033                                          TCP_SKB_CB(skb1)->end_seq);
4034                         __kfree_skb(skb1);
4035                 }
4036
4037 add_sack:
4038                 if (tcp_is_sack(tp))
4039                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4040         }
4041 }
4042
4043 /* Collapse contiguous sequence of skbs head..tail with
4044  * sequence numbers start..end.
4045  * Segments with FIN/SYN are not collapsed (only because this
4046  * simplifies code)
4047  */
4048 static void
4049 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4050              struct sk_buff *head, struct sk_buff *tail,
4051              u32 start, u32 end)
4052 {
4053         struct sk_buff *skb;
4054
4055         /* First, check that queue is collapsible and find
4056          * the point where collapsing can be useful. */
4057         for (skb = head; skb != tail;) {
4058                 /* No new bits? It is possible on ofo queue. */
4059                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4060                         struct sk_buff *next = skb->next;
4061                         __skb_unlink(skb, list);
4062                         __kfree_skb(skb);
4063                         NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4064                         skb = next;
4065                         continue;
4066                 }
4067
4068                 /* The first skb to collapse is:
4069                  * - not SYN/FIN and
4070                  * - bloated or contains data before "start" or
4071                  *   overlaps to the next one.
4072                  */
4073                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4074                     (tcp_win_from_space(skb->truesize) > skb->len ||
4075                      before(TCP_SKB_CB(skb)->seq, start) ||
4076                      (skb->next != tail &&
4077                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4078                         break;
4079
4080                 /* Decided to skip this, advance start seq. */
4081                 start = TCP_SKB_CB(skb)->end_seq;
4082                 skb = skb->next;
4083         }
4084         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4085                 return;
4086
4087         while (before(start, end)) {
4088                 struct sk_buff *nskb;
4089                 unsigned int header = skb_headroom(skb);
4090                 int copy = SKB_MAX_ORDER(header, 0);
4091
4092                 /* Too big header? This can happen with IPv6. */
4093                 if (copy < 0)
4094                         return;
4095                 if (end - start < copy)
4096                         copy = end - start;
4097                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4098                 if (!nskb)
4099                         return;
4100
4101                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4102                 skb_set_network_header(nskb, (skb_network_header(skb) -
4103                                               skb->head));
4104                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4105                                                 skb->head));
4106                 skb_reserve(nskb, header);
4107                 memcpy(nskb->head, skb->head, header);
4108                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4109                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4110                 __skb_insert(nskb, skb->prev, skb, list);
4111                 skb_set_owner_r(nskb, sk);
4112
4113                 /* Copy data, releasing collapsed skbs. */
4114                 while (copy > 0) {
4115                         int offset = start - TCP_SKB_CB(skb)->seq;
4116                         int size = TCP_SKB_CB(skb)->end_seq - start;
4117
4118                         BUG_ON(offset < 0);
4119                         if (size > 0) {
4120                                 size = min(copy, size);
4121                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4122                                         BUG();
4123                                 TCP_SKB_CB(nskb)->end_seq += size;
4124                                 copy -= size;
4125                                 start += size;
4126                         }
4127                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4128                                 struct sk_buff *next = skb->next;
4129                                 __skb_unlink(skb, list);
4130                                 __kfree_skb(skb);
4131                                 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4132                                 skb = next;
4133                                 if (skb == tail ||
4134                                     tcp_hdr(skb)->syn ||
4135                                     tcp_hdr(skb)->fin)
4136                                         return;
4137                         }
4138                 }
4139         }
4140 }
4141
4142 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4143  * and tcp_collapse() them until all the queue is collapsed.
4144  */
4145 static void tcp_collapse_ofo_queue(struct sock *sk)
4146 {
4147         struct tcp_sock *tp = tcp_sk(sk);
4148         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4149         struct sk_buff *head;
4150         u32 start, end;
4151
4152         if (skb == NULL)
4153                 return;
4154
4155         start = TCP_SKB_CB(skb)->seq;
4156         end = TCP_SKB_CB(skb)->end_seq;
4157         head = skb;
4158
4159         for (;;) {
4160                 skb = skb->next;
4161
4162                 /* Segment is terminated when we see gap or when
4163                  * we are at the end of all the queue. */
4164                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4165                     after(TCP_SKB_CB(skb)->seq, end) ||
4166                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4167                         tcp_collapse(sk, &tp->out_of_order_queue,
4168                                      head, skb, start, end);
4169                         head = skb;
4170                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4171                                 break;
4172                         /* Start new segment */
4173                         start = TCP_SKB_CB(skb)->seq;
4174                         end = TCP_SKB_CB(skb)->end_seq;
4175                 } else {
4176                         if (before(TCP_SKB_CB(skb)->seq, start))
4177                                 start = TCP_SKB_CB(skb)->seq;
4178                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4179                                 end = TCP_SKB_CB(skb)->end_seq;
4180                 }
4181         }
4182 }
4183
4184 /* Reduce allocated memory if we can, trying to get
4185  * the socket within its memory limits again.
4186  *
4187  * Return less than zero if we should start dropping frames
4188  * until the socket owning process reads some of the data
4189  * to stabilize the situation.
4190  */
4191 static int tcp_prune_queue(struct sock *sk)
4192 {
4193         struct tcp_sock *tp = tcp_sk(sk);
4194
4195         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4196
4197         NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4198
4199         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4200                 tcp_clamp_window(sk);
4201         else if (tcp_memory_pressure)
4202                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4203
4204         tcp_collapse_ofo_queue(sk);
4205         tcp_collapse(sk, &sk->sk_receive_queue,
4206                      sk->sk_receive_queue.next,
4207                      (struct sk_buff *)&sk->sk_receive_queue,
4208                      tp->copied_seq, tp->rcv_nxt);
4209         sk_mem_reclaim(sk);
4210
4211         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4212                 return 0;
4213
4214         /* Collapsing did not help, destructive actions follow.
4215          * This must not ever occur. */
4216
4217         /* First, purge the out_of_order queue. */
4218         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4219                 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4220                 __skb_queue_purge(&tp->out_of_order_queue);
4221
4222                 /* Reset SACK state.  A conforming SACK implementation will
4223                  * do the same at a timeout based retransmit.  When a connection
4224                  * is in a sad state like this, we care only about integrity
4225                  * of the connection not performance.
4226                  */
4227                 if (tcp_is_sack(tp))
4228                         tcp_sack_reset(&tp->rx_opt);
4229                 sk_mem_reclaim(sk);
4230         }
4231
4232         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4233                 return 0;
4234
4235         /* If we are really being abused, tell the caller to silently
4236          * drop receive data on the floor.  It will get retransmitted
4237          * and hopefully then we'll have sufficient space.
4238          */
4239         NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4240
4241         /* Massive buffer overcommit. */
4242         tp->pred_flags = 0;
4243         return -1;
4244 }
4245
4246 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4247  * As additional protections, we do not touch cwnd in retransmission phases,
4248  * and if application hit its sndbuf limit recently.
4249  */
4250 void tcp_cwnd_application_limited(struct sock *sk)
4251 {
4252         struct tcp_sock *tp = tcp_sk(sk);
4253
4254         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4255             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4256                 /* Limited by application or receiver window. */
4257                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4258                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4259                 if (win_used < tp->snd_cwnd) {
4260                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4261                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4262                 }
4263                 tp->snd_cwnd_used = 0;
4264         }
4265         tp->snd_cwnd_stamp = tcp_time_stamp;
4266 }
4267
4268 static int tcp_should_expand_sndbuf(struct sock *sk)
4269 {
4270         struct tcp_sock *tp = tcp_sk(sk);
4271
4272         /* If the user specified a specific send buffer setting, do
4273          * not modify it.
4274          */
4275         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4276                 return 0;
4277
4278         /* If we are under global TCP memory pressure, do not expand.  */
4279         if (tcp_memory_pressure)
4280                 return 0;
4281
4282         /* If we are under soft global TCP memory pressure, do not expand.  */
4283         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4284                 return 0;
4285
4286         /* If we filled the congestion window, do not expand.  */
4287         if (tp->packets_out >= tp->snd_cwnd)
4288                 return 0;
4289
4290         return 1;
4291 }
4292
4293 /* When incoming ACK allowed to free some skb from write_queue,
4294  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4295  * on the exit from tcp input handler.
4296  *
4297  * PROBLEM: sndbuf expansion does not work well with largesend.
4298  */
4299 static void tcp_new_space(struct sock *sk)
4300 {
4301         struct tcp_sock *tp = tcp_sk(sk);
4302
4303         if (tcp_should_expand_sndbuf(sk)) {
4304                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4305                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4306                     demanded = max_t(unsigned int, tp->snd_cwnd,
4307                                      tp->reordering + 1);
4308                 sndmem *= 2 * demanded;
4309                 if (sndmem > sk->sk_sndbuf)
4310                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4311                 tp->snd_cwnd_stamp = tcp_time_stamp;
4312         }
4313
4314         sk->sk_write_space(sk);
4315 }
4316
4317 static void tcp_check_space(struct sock *sk)
4318 {
4319         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4320                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4321                 if (sk->sk_socket &&
4322                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4323                         tcp_new_space(sk);
4324         }
4325 }
4326
4327 static inline void tcp_data_snd_check(struct sock *sk)
4328 {
4329         tcp_push_pending_frames(sk);
4330         tcp_check_space(sk);
4331 }
4332
4333 /*
4334  * Check if sending an ack is needed.
4335  */
4336 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4337 {
4338         struct tcp_sock *tp = tcp_sk(sk);
4339
4340             /* More than one full frame received... */
4341         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4342              /* ... and right edge of window advances far enough.
4343               * (tcp_recvmsg() will send ACK otherwise). Or...
4344               */
4345              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4346             /* We ACK each frame or... */
4347             tcp_in_quickack_mode(sk) ||
4348             /* We have out of order data. */
4349             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4350                 /* Then ack it now */
4351                 tcp_send_ack(sk);
4352         } else {
4353                 /* Else, send delayed ack. */
4354                 tcp_send_delayed_ack(sk);
4355         }
4356 }
4357
4358 static inline void tcp_ack_snd_check(struct sock *sk)
4359 {
4360         if (!inet_csk_ack_scheduled(sk)) {
4361                 /* We sent a data segment already. */
4362                 return;
4363         }
4364         __tcp_ack_snd_check(sk, 1);
4365 }
4366
4367 /*
4368  *      This routine is only called when we have urgent data
4369  *      signaled. Its the 'slow' part of tcp_urg. It could be
4370  *      moved inline now as tcp_urg is only called from one
4371  *      place. We handle URGent data wrong. We have to - as
4372  *      BSD still doesn't use the correction from RFC961.
4373  *      For 1003.1g we should support a new option TCP_STDURG to permit
4374  *      either form (or just set the sysctl tcp_stdurg).
4375  */
4376
4377 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4378 {
4379         struct tcp_sock *tp = tcp_sk(sk);
4380         u32 ptr = ntohs(th->urg_ptr);
4381
4382         if (ptr && !sysctl_tcp_stdurg)
4383                 ptr--;
4384         ptr += ntohl(th->seq);
4385
4386         /* Ignore urgent data that we've already seen and read. */
4387         if (after(tp->copied_seq, ptr))
4388                 return;
4389
4390         /* Do not replay urg ptr.
4391          *
4392          * NOTE: interesting situation not covered by specs.
4393          * Misbehaving sender may send urg ptr, pointing to segment,
4394          * which we already have in ofo queue. We are not able to fetch
4395          * such data and will stay in TCP_URG_NOTYET until will be eaten
4396          * by recvmsg(). Seems, we are not obliged to handle such wicked
4397          * situations. But it is worth to think about possibility of some
4398          * DoSes using some hypothetical application level deadlock.
4399          */
4400         if (before(ptr, tp->rcv_nxt))
4401                 return;
4402
4403         /* Do we already have a newer (or duplicate) urgent pointer? */
4404         if (tp->urg_data && !after(ptr, tp->urg_seq))
4405                 return;
4406
4407         /* Tell the world about our new urgent pointer. */
4408         sk_send_sigurg(sk);
4409
4410         /* We may be adding urgent data when the last byte read was
4411          * urgent. To do this requires some care. We cannot just ignore
4412          * tp->copied_seq since we would read the last urgent byte again
4413          * as data, nor can we alter copied_seq until this data arrives
4414          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4415          *
4416          * NOTE. Double Dutch. Rendering to plain English: author of comment
4417          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4418          * and expect that both A and B disappear from stream. This is _wrong_.
4419          * Though this happens in BSD with high probability, this is occasional.
4420          * Any application relying on this is buggy. Note also, that fix "works"
4421          * only in this artificial test. Insert some normal data between A and B and we will
4422          * decline of BSD again. Verdict: it is better to remove to trap
4423          * buggy users.
4424          */
4425         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4426             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4427                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4428                 tp->copied_seq++;
4429                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4430                         __skb_unlink(skb, &sk->sk_receive_queue);
4431                         __kfree_skb(skb);
4432                 }
4433         }
4434
4435         tp->urg_data = TCP_URG_NOTYET;
4436         tp->urg_seq = ptr;
4437
4438         /* Disable header prediction. */
4439         tp->pred_flags = 0;
4440 }
4441
4442 /* This is the 'fast' part of urgent handling. */
4443 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4444 {
4445         struct tcp_sock *tp = tcp_sk(sk);
4446
4447         /* Check if we get a new urgent pointer - normally not. */
4448         if (th->urg)
4449                 tcp_check_urg(sk, th);
4450
4451         /* Do we wait for any urgent data? - normally not... */
4452         if (tp->urg_data == TCP_URG_NOTYET) {
4453                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4454                           th->syn;
4455
4456                 /* Is the urgent pointer pointing into this packet? */
4457                 if (ptr < skb->len) {
4458                         u8 tmp;
4459                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4460                                 BUG();
4461                         tp->urg_data = TCP_URG_VALID | tmp;
4462                         if (!sock_flag(sk, SOCK_DEAD))
4463                                 sk->sk_data_ready(sk, 0);
4464                 }
4465         }
4466 }
4467
4468 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4469 {
4470         struct tcp_sock *tp = tcp_sk(sk);
4471         int chunk = skb->len - hlen;
4472         int err;
4473
4474         local_bh_enable();
4475         if (skb_csum_unnecessary(skb))
4476                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4477         else
4478                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4479                                                        tp->ucopy.iov);
4480
4481         if (!err) {
4482                 tp->ucopy.len -= chunk;
4483                 tp->copied_seq += chunk;
4484                 tcp_rcv_space_adjust(sk);
4485         }
4486
4487         local_bh_disable();
4488         return err;
4489 }
4490
4491 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4492                                             struct sk_buff *skb)
4493 {
4494         __sum16 result;
4495
4496         if (sock_owned_by_user(sk)) {
4497                 local_bh_enable();
4498                 result = __tcp_checksum_complete(skb);
4499                 local_bh_disable();
4500         } else {
4501                 result = __tcp_checksum_complete(skb);
4502         }
4503         return result;
4504 }
4505
4506 static inline int tcp_checksum_complete_user(struct sock *sk,
4507                                              struct sk_buff *skb)
4508 {
4509         return !skb_csum_unnecessary(skb) &&
4510                __tcp_checksum_complete_user(sk, skb);
4511 }
4512
4513 #ifdef CONFIG_NET_DMA
4514 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4515                                   int hlen)
4516 {
4517         struct tcp_sock *tp = tcp_sk(sk);
4518         int chunk = skb->len - hlen;
4519         int dma_cookie;
4520         int copied_early = 0;
4521
4522         if (tp->ucopy.wakeup)
4523                 return 0;
4524
4525         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4526                 tp->ucopy.dma_chan = get_softnet_dma();
4527
4528         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4529
4530                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4531                                                          skb, hlen,
4532                                                          tp->ucopy.iov, chunk,
4533                                                          tp->ucopy.pinned_list);
4534
4535                 if (dma_cookie < 0)
4536                         goto out;
4537
4538                 tp->ucopy.dma_cookie = dma_cookie;
4539                 copied_early = 1;
4540
4541                 tp->ucopy.len -= chunk;
4542                 tp->copied_seq += chunk;
4543                 tcp_rcv_space_adjust(sk);
4544
4545                 if ((tp->ucopy.len == 0) ||
4546                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4547                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4548                         tp->ucopy.wakeup = 1;
4549                         sk->sk_data_ready(sk, 0);
4550                 }
4551         } else if (chunk > 0) {
4552                 tp->ucopy.wakeup = 1;
4553                 sk->sk_data_ready(sk, 0);
4554         }
4555 out:
4556         return copied_early;
4557 }
4558 #endif /* CONFIG_NET_DMA */
4559
4560 /*
4561  *      TCP receive function for the ESTABLISHED state.
4562  *
4563  *      It is split into a fast path and a slow path. The fast path is
4564  *      disabled when:
4565  *      - A zero window was announced from us - zero window probing
4566  *        is only handled properly in the slow path.
4567  *      - Out of order segments arrived.
4568  *      - Urgent data is expected.
4569  *      - There is no buffer space left
4570  *      - Unexpected TCP flags/window values/header lengths are received
4571  *        (detected by checking the TCP header against pred_flags)
4572  *      - Data is sent in both directions. Fast path only supports pure senders
4573  *        or pure receivers (this means either the sequence number or the ack
4574  *        value must stay constant)
4575  *      - Unexpected TCP option.
4576  *
4577  *      When these conditions are not satisfied it drops into a standard
4578  *      receive procedure patterned after RFC793 to handle all cases.
4579  *      The first three cases are guaranteed by proper pred_flags setting,
4580  *      the rest is checked inline. Fast processing is turned on in
4581  *      tcp_data_queue when everything is OK.
4582  */
4583 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4584                         struct tcphdr *th, unsigned len)
4585 {
4586         struct tcp_sock *tp = tcp_sk(sk);
4587
4588         /*
4589          *      Header prediction.
4590          *      The code loosely follows the one in the famous
4591          *      "30 instruction TCP receive" Van Jacobson mail.
4592          *
4593          *      Van's trick is to deposit buffers into socket queue
4594          *      on a device interrupt, to call tcp_recv function
4595          *      on the receive process context and checksum and copy
4596          *      the buffer to user space. smart...
4597          *
4598          *      Our current scheme is not silly either but we take the
4599          *      extra cost of the net_bh soft interrupt processing...
4600          *      We do checksum and copy also but from device to kernel.
4601          */
4602
4603         tp->rx_opt.saw_tstamp = 0;
4604
4605         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4606          *      if header_prediction is to be made
4607          *      'S' will always be tp->tcp_header_len >> 2
4608          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4609          *  turn it off (when there are holes in the receive
4610          *       space for instance)
4611          *      PSH flag is ignored.
4612          */
4613
4614         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4615             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4616                 int tcp_header_len = tp->tcp_header_len;
4617
4618                 /* Timestamp header prediction: tcp_header_len
4619                  * is automatically equal to th->doff*4 due to pred_flags
4620                  * match.
4621                  */
4622
4623                 /* Check timestamp */
4624                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4625                         __be32 *ptr = (__be32 *)(th + 1);
4626
4627                         /* No? Slow path! */
4628                         if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4629                                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4630                                 goto slow_path;
4631
4632                         tp->rx_opt.saw_tstamp = 1;
4633                         ++ptr;
4634                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
4635                         ++ptr;
4636                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4637
4638                         /* If PAWS failed, check it more carefully in slow path */
4639                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4640                                 goto slow_path;
4641
4642                         /* DO NOT update ts_recent here, if checksum fails
4643                          * and timestamp was corrupted part, it will result
4644                          * in a hung connection since we will drop all
4645                          * future packets due to the PAWS test.
4646                          */
4647                 }
4648
4649                 if (len <= tcp_header_len) {
4650                         /* Bulk data transfer: sender */
4651                         if (len == tcp_header_len) {
4652                                 /* Predicted packet is in window by definition.
4653                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4654                                  * Hence, check seq<=rcv_wup reduces to:
4655                                  */
4656                                 if (tcp_header_len ==
4657                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4658                                     tp->rcv_nxt == tp->rcv_wup)
4659                                         tcp_store_ts_recent(tp);
4660
4661                                 /* We know that such packets are checksummed
4662                                  * on entry.
4663                                  */
4664                                 tcp_ack(sk, skb, 0);
4665                                 __kfree_skb(skb);
4666                                 tcp_data_snd_check(sk);
4667                                 return 0;
4668                         } else { /* Header too small */
4669                                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4670                                 goto discard;
4671                         }
4672                 } else {
4673                         int eaten = 0;
4674                         int copied_early = 0;
4675
4676                         if (tp->copied_seq == tp->rcv_nxt &&
4677                             len - tcp_header_len <= tp->ucopy.len) {
4678 #ifdef CONFIG_NET_DMA
4679                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4680                                         copied_early = 1;
4681                                         eaten = 1;
4682                                 }
4683 #endif
4684                                 if (tp->ucopy.task == current &&
4685                                     sock_owned_by_user(sk) && !copied_early) {
4686                                         __set_current_state(TASK_RUNNING);
4687
4688                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4689                                                 eaten = 1;
4690                                 }
4691                                 if (eaten) {
4692                                         /* Predicted packet is in window by definition.
4693                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4694                                          * Hence, check seq<=rcv_wup reduces to:
4695                                          */
4696                                         if (tcp_header_len ==
4697                                             (sizeof(struct tcphdr) +
4698                                              TCPOLEN_TSTAMP_ALIGNED) &&
4699                                             tp->rcv_nxt == tp->rcv_wup)
4700                                                 tcp_store_ts_recent(tp);
4701
4702                                         tcp_rcv_rtt_measure_ts(sk, skb);
4703
4704                                         __skb_pull(skb, tcp_header_len);
4705                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4706                                         NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4707                                 }
4708                                 if (copied_early)
4709                                         tcp_cleanup_rbuf(sk, skb->len);
4710                         }
4711                         if (!eaten) {
4712                                 if (tcp_checksum_complete_user(sk, skb))
4713                                         goto csum_error;
4714
4715                                 /* Predicted packet is in window by definition.
4716                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4717                                  * Hence, check seq<=rcv_wup reduces to:
4718                                  */
4719                                 if (tcp_header_len ==
4720                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4721                                     tp->rcv_nxt == tp->rcv_wup)
4722                                         tcp_store_ts_recent(tp);
4723
4724                                 tcp_rcv_rtt_measure_ts(sk, skb);
4725
4726                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4727                                         goto step5;
4728
4729                                 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4730
4731                                 /* Bulk data transfer: receiver */
4732                                 __skb_pull(skb, tcp_header_len);
4733                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4734                                 skb_set_owner_r(skb, sk);
4735                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4736                         }
4737
4738                         tcp_event_data_recv(sk, skb);
4739
4740                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4741                                 /* Well, only one small jumplet in fast path... */
4742                                 tcp_ack(sk, skb, FLAG_DATA);
4743                                 tcp_data_snd_check(sk);
4744                                 if (!inet_csk_ack_scheduled(sk))
4745                                         goto no_ack;
4746                         }
4747
4748                         __tcp_ack_snd_check(sk, 0);
4749 no_ack:
4750 #ifdef CONFIG_NET_DMA
4751                         if (copied_early)
4752                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4753                         else
4754 #endif
4755                         if (eaten)
4756                                 __kfree_skb(skb);
4757                         else
4758                                 sk->sk_data_ready(sk, 0);
4759                         return 0;
4760                 }
4761         }
4762
4763 slow_path:
4764         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4765                 goto csum_error;
4766
4767         /*
4768          * RFC1323: H1. Apply PAWS check first.
4769          */
4770         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4771             tcp_paws_discard(sk, skb)) {
4772                 if (!th->rst) {
4773                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4774                         tcp_send_dupack(sk, skb);
4775                         goto discard;
4776                 }
4777                 /* Resets are accepted even if PAWS failed.
4778
4779                    ts_recent update must be made after we are sure
4780                    that the packet is in window.
4781                  */
4782         }
4783
4784         /*
4785          *      Standard slow path.
4786          */
4787
4788         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4789                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4790                  * (RST) segments are validated by checking their SEQ-fields."
4791                  * And page 69: "If an incoming segment is not acceptable,
4792                  * an acknowledgment should be sent in reply (unless the RST bit
4793                  * is set, if so drop the segment and return)".
4794                  */
4795                 if (!th->rst)
4796                         tcp_send_dupack(sk, skb);
4797                 goto discard;
4798         }
4799
4800         if (th->rst) {
4801                 tcp_reset(sk);
4802                 goto discard;
4803         }
4804
4805         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4806
4807         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4808                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4809                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4810                 tcp_reset(sk);
4811                 return 1;
4812         }
4813
4814 step5:
4815         if (th->ack)
4816                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4817
4818         tcp_rcv_rtt_measure_ts(sk, skb);
4819
4820         /* Process urgent data. */
4821         tcp_urg(sk, skb, th);
4822
4823         /* step 7: process the segment text */
4824         tcp_data_queue(sk, skb);
4825
4826         tcp_data_snd_check(sk);
4827         tcp_ack_snd_check(sk);
4828         return 0;
4829
4830 csum_error:
4831         TCP_INC_STATS_BH(TCP_MIB_INERRS);
4832
4833 discard:
4834         __kfree_skb(skb);
4835         return 0;
4836 }
4837
4838 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4839                                          struct tcphdr *th, unsigned len)
4840 {
4841         struct tcp_sock *tp = tcp_sk(sk);
4842         struct inet_connection_sock *icsk = inet_csk(sk);
4843         int saved_clamp = tp->rx_opt.mss_clamp;
4844
4845         tcp_parse_options(skb, &tp->rx_opt, 0);
4846
4847         if (th->ack) {
4848                 /* rfc793:
4849                  * "If the state is SYN-SENT then
4850                  *    first check the ACK bit
4851                  *      If the ACK bit is set
4852                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4853                  *        a reset (unless the RST bit is set, if so drop
4854                  *        the segment and return)"
4855                  *
4856                  *  We do not send data with SYN, so that RFC-correct
4857                  *  test reduces to:
4858                  */
4859                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4860                         goto reset_and_undo;
4861
4862                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4863                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4864                              tcp_time_stamp)) {
4865                         NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4866                         goto reset_and_undo;
4867                 }
4868
4869                 /* Now ACK is acceptable.
4870                  *
4871                  * "If the RST bit is set
4872                  *    If the ACK was acceptable then signal the user "error:
4873                  *    connection reset", drop the segment, enter CLOSED state,
4874                  *    delete TCB, and return."
4875                  */
4876
4877                 if (th->rst) {
4878                         tcp_reset(sk);
4879                         goto discard;
4880                 }
4881
4882                 /* rfc793:
4883                  *   "fifth, if neither of the SYN or RST bits is set then
4884                  *    drop the segment and return."
4885                  *
4886                  *    See note below!
4887                  *                                        --ANK(990513)
4888                  */
4889                 if (!th->syn)
4890                         goto discard_and_undo;
4891
4892                 /* rfc793:
4893                  *   "If the SYN bit is on ...
4894                  *    are acceptable then ...
4895                  *    (our SYN has been ACKed), change the connection
4896                  *    state to ESTABLISHED..."
4897                  */
4898
4899                 TCP_ECN_rcv_synack(tp, th);
4900
4901                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4902                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4903
4904                 /* Ok.. it's good. Set up sequence numbers and
4905                  * move to established.
4906                  */
4907                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4908                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4909
4910                 /* RFC1323: The window in SYN & SYN/ACK segments is
4911                  * never scaled.
4912                  */
4913                 tp->snd_wnd = ntohs(th->window);
4914                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4915
4916                 if (!tp->rx_opt.wscale_ok) {
4917                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4918                         tp->window_clamp = min(tp->window_clamp, 65535U);
4919                 }
4920
4921                 if (tp->rx_opt.saw_tstamp) {
4922                         tp->rx_opt.tstamp_ok       = 1;
4923                         tp->tcp_header_len =
4924                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4925                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
4926                         tcp_store_ts_recent(tp);
4927                 } else {
4928                         tp->tcp_header_len = sizeof(struct tcphdr);
4929                 }
4930
4931                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4932                         tcp_enable_fack(tp);
4933
4934                 tcp_mtup_init(sk);
4935                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4936                 tcp_initialize_rcv_mss(sk);
4937
4938                 /* Remember, tcp_poll() does not lock socket!
4939                  * Change state from SYN-SENT only after copied_seq
4940                  * is initialized. */
4941                 tp->copied_seq = tp->rcv_nxt;
4942                 smp_mb();
4943                 tcp_set_state(sk, TCP_ESTABLISHED);
4944
4945                 security_inet_conn_established(sk, skb);
4946
4947                 /* Make sure socket is routed, for correct metrics.  */
4948                 icsk->icsk_af_ops->rebuild_header(sk);
4949
4950                 tcp_init_metrics(sk);
4951
4952                 tcp_init_congestion_control(sk);
4953
4954                 /* Prevent spurious tcp_cwnd_restart() on first data
4955                  * packet.
4956                  */
4957                 tp->lsndtime = tcp_time_stamp;
4958
4959                 tcp_init_buffer_space(sk);
4960
4961                 if (sock_flag(sk, SOCK_KEEPOPEN))
4962                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4963
4964                 if (!tp->rx_opt.snd_wscale)
4965                         __tcp_fast_path_on(tp, tp->snd_wnd);
4966                 else
4967                         tp->pred_flags = 0;
4968
4969                 if (!sock_flag(sk, SOCK_DEAD)) {
4970                         sk->sk_state_change(sk);
4971                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
4972                 }
4973
4974                 if (sk->sk_write_pending ||
4975                     icsk->icsk_accept_queue.rskq_defer_accept ||
4976                     icsk->icsk_ack.pingpong) {
4977                         /* Save one ACK. Data will be ready after
4978                          * several ticks, if write_pending is set.
4979                          *
4980                          * It may be deleted, but with this feature tcpdumps
4981                          * look so _wonderfully_ clever, that I was not able
4982                          * to stand against the temptation 8)     --ANK
4983                          */
4984                         inet_csk_schedule_ack(sk);
4985                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4986                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
4987                         tcp_incr_quickack(sk);
4988                         tcp_enter_quickack_mode(sk);
4989                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4990                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
4991
4992 discard:
4993                         __kfree_skb(skb);
4994                         return 0;
4995                 } else {
4996                         tcp_send_ack(sk);
4997                 }
4998                 return -1;
4999         }
5000
5001         /* No ACK in the segment */
5002
5003         if (th->rst) {
5004                 /* rfc793:
5005                  * "If the RST bit is set
5006                  *
5007                  *      Otherwise (no ACK) drop the segment and return."
5008                  */
5009
5010                 goto discard_and_undo;
5011         }
5012
5013         /* PAWS check. */
5014         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5015             tcp_paws_check(&tp->rx_opt, 0))
5016                 goto discard_and_undo;
5017
5018         if (th->syn) {
5019                 /* We see SYN without ACK. It is attempt of
5020                  * simultaneous connect with crossed SYNs.
5021                  * Particularly, it can be connect to self.
5022                  */
5023                 tcp_set_state(sk, TCP_SYN_RECV);
5024
5025                 if (tp->rx_opt.saw_tstamp) {
5026                         tp->rx_opt.tstamp_ok = 1;
5027                         tcp_store_ts_recent(tp);
5028                         tp->tcp_header_len =
5029                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5030                 } else {
5031                         tp->tcp_header_len = sizeof(struct tcphdr);
5032                 }
5033
5034                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5035                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5036
5037                 /* RFC1323: The window in SYN & SYN/ACK segments is
5038                  * never scaled.
5039                  */
5040                 tp->snd_wnd    = ntohs(th->window);
5041                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5042                 tp->max_window = tp->snd_wnd;
5043
5044                 TCP_ECN_rcv_syn(tp, th);
5045
5046                 tcp_mtup_init(sk);
5047                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5048                 tcp_initialize_rcv_mss(sk);
5049
5050                 tcp_send_synack(sk);
5051 #if 0
5052                 /* Note, we could accept data and URG from this segment.
5053                  * There are no obstacles to make this.
5054                  *
5055                  * However, if we ignore data in ACKless segments sometimes,
5056                  * we have no reasons to accept it sometimes.
5057                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5058                  * is not flawless. So, discard packet for sanity.
5059                  * Uncomment this return to process the data.
5060                  */
5061                 return -1;
5062 #else
5063                 goto discard;
5064 #endif
5065         }
5066         /* "fifth, if neither of the SYN or RST bits is set then
5067          * drop the segment and return."
5068          */
5069
5070 discard_and_undo:
5071         tcp_clear_options(&tp->rx_opt);
5072         tp->rx_opt.mss_clamp = saved_clamp;
5073         goto discard;
5074
5075 reset_and_undo:
5076         tcp_clear_options(&tp->rx_opt);
5077         tp->rx_opt.mss_clamp = saved_clamp;
5078         return 1;
5079 }
5080
5081 /*
5082  *      This function implements the receiving procedure of RFC 793 for
5083  *      all states except ESTABLISHED and TIME_WAIT.
5084  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5085  *      address independent.
5086  */
5087
5088 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5089                           struct tcphdr *th, unsigned len)
5090 {
5091         struct tcp_sock *tp = tcp_sk(sk);
5092         struct inet_connection_sock *icsk = inet_csk(sk);
5093         int queued = 0;
5094
5095         tp->rx_opt.saw_tstamp = 0;
5096
5097         switch (sk->sk_state) {
5098         case TCP_CLOSE:
5099                 goto discard;
5100
5101         case TCP_LISTEN:
5102                 if (th->ack)
5103                         return 1;
5104
5105                 if (th->rst)
5106                         goto discard;
5107
5108                 if (th->syn) {
5109                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5110                                 return 1;
5111
5112                         /* Now we have several options: In theory there is
5113                          * nothing else in the frame. KA9Q has an option to
5114                          * send data with the syn, BSD accepts data with the
5115                          * syn up to the [to be] advertised window and
5116                          * Solaris 2.1 gives you a protocol error. For now
5117                          * we just ignore it, that fits the spec precisely
5118                          * and avoids incompatibilities. It would be nice in
5119                          * future to drop through and process the data.
5120                          *
5121                          * Now that TTCP is starting to be used we ought to
5122                          * queue this data.
5123                          * But, this leaves one open to an easy denial of
5124                          * service attack, and SYN cookies can't defend
5125                          * against this problem. So, we drop the data
5126                          * in the interest of security over speed unless
5127                          * it's still in use.
5128                          */
5129                         kfree_skb(skb);
5130                         return 0;
5131                 }
5132                 goto discard;
5133
5134         case TCP_SYN_SENT:
5135                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5136                 if (queued >= 0)
5137                         return queued;
5138
5139                 /* Do step6 onward by hand. */
5140                 tcp_urg(sk, skb, th);
5141                 __kfree_skb(skb);
5142                 tcp_data_snd_check(sk);
5143                 return 0;
5144         }
5145
5146         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5147             tcp_paws_discard(sk, skb)) {
5148                 if (!th->rst) {
5149                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5150                         tcp_send_dupack(sk, skb);
5151                         goto discard;
5152                 }
5153                 /* Reset is accepted even if it did not pass PAWS. */
5154         }
5155
5156         /* step 1: check sequence number */
5157         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5158                 if (!th->rst)
5159                         tcp_send_dupack(sk, skb);
5160                 goto discard;
5161         }
5162
5163         /* step 2: check RST bit */
5164         if (th->rst) {
5165                 tcp_reset(sk);
5166                 goto discard;
5167         }
5168
5169         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5170
5171         /* step 3: check security and precedence [ignored] */
5172
5173         /*      step 4:
5174          *
5175          *      Check for a SYN in window.
5176          */
5177         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5178                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5179                 tcp_reset(sk);
5180                 return 1;
5181         }
5182
5183         /* step 5: check the ACK field */
5184         if (th->ack) {
5185                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5186
5187                 switch (sk->sk_state) {
5188                 case TCP_SYN_RECV:
5189                         if (acceptable) {
5190                                 tp->copied_seq = tp->rcv_nxt;
5191                                 smp_mb();
5192                                 tcp_set_state(sk, TCP_ESTABLISHED);
5193                                 sk->sk_state_change(sk);
5194
5195                                 /* Note, that this wakeup is only for marginal
5196                                  * crossed SYN case. Passively open sockets
5197                                  * are not waked up, because sk->sk_sleep ==
5198                                  * NULL and sk->sk_socket == NULL.
5199                                  */
5200                                 if (sk->sk_socket)
5201                                         sk_wake_async(sk,
5202                                                       SOCK_WAKE_IO, POLL_OUT);
5203
5204                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5205                                 tp->snd_wnd = ntohs(th->window) <<
5206                                               tp->rx_opt.snd_wscale;
5207                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5208                                             TCP_SKB_CB(skb)->seq);
5209
5210                                 /* tcp_ack considers this ACK as duplicate
5211                                  * and does not calculate rtt.
5212                                  * Fix it at least with timestamps.
5213                                  */
5214                                 if (tp->rx_opt.saw_tstamp &&
5215                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5216                                         tcp_ack_saw_tstamp(sk, 0);
5217
5218                                 if (tp->rx_opt.tstamp_ok)
5219                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5220
5221                                 /* Make sure socket is routed, for
5222                                  * correct metrics.
5223                                  */
5224                                 icsk->icsk_af_ops->rebuild_header(sk);
5225
5226                                 tcp_init_metrics(sk);
5227
5228                                 tcp_init_congestion_control(sk);
5229
5230                                 /* Prevent spurious tcp_cwnd_restart() on
5231                                  * first data packet.
5232                                  */
5233                                 tp->lsndtime = tcp_time_stamp;
5234
5235                                 tcp_mtup_init(sk);
5236                                 tcp_initialize_rcv_mss(sk);
5237                                 tcp_init_buffer_space(sk);
5238                                 tcp_fast_path_on(tp);
5239                         } else {
5240                                 return 1;
5241                         }
5242                         break;
5243
5244                 case TCP_FIN_WAIT1:
5245                         if (tp->snd_una == tp->write_seq) {
5246                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5247                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5248                                 dst_confirm(sk->sk_dst_cache);
5249
5250                                 if (!sock_flag(sk, SOCK_DEAD))
5251                                         /* Wake up lingering close() */
5252                                         sk->sk_state_change(sk);
5253                                 else {
5254                                         int tmo;
5255
5256                                         if (tp->linger2 < 0 ||
5257                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5258                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5259                                                 tcp_done(sk);
5260                                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5261                                                 return 1;
5262                                         }
5263
5264                                         tmo = tcp_fin_time(sk);
5265                                         if (tmo > TCP_TIMEWAIT_LEN) {
5266                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5267                                         } else if (th->fin || sock_owned_by_user(sk)) {
5268                                                 /* Bad case. We could lose such FIN otherwise.
5269                                                  * It is not a big problem, but it looks confusing
5270                                                  * and not so rare event. We still can lose it now,
5271                                                  * if it spins in bh_lock_sock(), but it is really
5272                                                  * marginal case.
5273                                                  */
5274                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5275                                         } else {
5276                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5277                                                 goto discard;
5278                                         }
5279                                 }
5280                         }
5281                         break;
5282
5283                 case TCP_CLOSING:
5284                         if (tp->snd_una == tp->write_seq) {
5285                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5286                                 goto discard;
5287                         }
5288                         break;
5289
5290                 case TCP_LAST_ACK:
5291                         if (tp->snd_una == tp->write_seq) {
5292                                 tcp_update_metrics(sk);
5293                                 tcp_done(sk);
5294                                 goto discard;
5295                         }
5296                         break;
5297                 }
5298         } else
5299                 goto discard;
5300
5301         /* step 6: check the URG bit */
5302         tcp_urg(sk, skb, th);
5303
5304         /* step 7: process the segment text */
5305         switch (sk->sk_state) {
5306         case TCP_CLOSE_WAIT:
5307         case TCP_CLOSING:
5308         case TCP_LAST_ACK:
5309                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5310                         break;
5311         case TCP_FIN_WAIT1:
5312         case TCP_FIN_WAIT2:
5313                 /* RFC 793 says to queue data in these states,
5314                  * RFC 1122 says we MUST send a reset.
5315                  * BSD 4.4 also does reset.
5316                  */
5317                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5318                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5319                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5320                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5321                                 tcp_reset(sk);
5322                                 return 1;
5323                         }
5324                 }
5325                 /* Fall through */
5326         case TCP_ESTABLISHED:
5327                 tcp_data_queue(sk, skb);
5328                 queued = 1;
5329                 break;
5330         }
5331
5332         /* tcp_data could move socket to TIME-WAIT */
5333         if (sk->sk_state != TCP_CLOSE) {
5334                 tcp_data_snd_check(sk);
5335                 tcp_ack_snd_check(sk);
5336         }
5337
5338         if (!queued) {
5339 discard:
5340                 __kfree_skb(skb);
5341         }
5342         return 0;
5343 }
5344
5345 EXPORT_SYMBOL(sysctl_tcp_ecn);
5346 EXPORT_SYMBOL(sysctl_tcp_reordering);
5347 EXPORT_SYMBOL(tcp_parse_options);
5348 EXPORT_SYMBOL(tcp_rcv_established);
5349 EXPORT_SYMBOL(tcp_rcv_state_process);
5350 EXPORT_SYMBOL(tcp_initialize_rcv_mss);