]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/ipv4/tcp_input.c
[TCP]: Restore 2.6.24 mark_head_lost behavior for newreno/fack
[linux-2.6-omap-h63xx.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 /*
24  * Changes:
25  *              Pedro Roque     :       Fast Retransmit/Recovery.
26  *                                      Two receive queues.
27  *                                      Retransmit queue handled by TCP.
28  *                                      Better retransmit timer handling.
29  *                                      New congestion avoidance.
30  *                                      Header prediction.
31  *                                      Variable renaming.
32  *
33  *              Eric            :       Fast Retransmit.
34  *              Randy Scott     :       MSS option defines.
35  *              Eric Schenk     :       Fixes to slow start algorithm.
36  *              Eric Schenk     :       Yet another double ACK bug.
37  *              Eric Schenk     :       Delayed ACK bug fixes.
38  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
39  *              David S. Miller :       Don't allow zero congestion window.
40  *              Eric Schenk     :       Fix retransmitter so that it sends
41  *                                      next packet on ack of previous packet.
42  *              Andi Kleen      :       Moved open_request checking here
43  *                                      and process RSTs for open_requests.
44  *              Andi Kleen      :       Better prune_queue, and other fixes.
45  *              Andrey Savochkin:       Fix RTT measurements in the presence of
46  *                                      timestamps.
47  *              Andrey Savochkin:       Check sequence numbers correctly when
48  *                                      removing SACKs due to in sequence incoming
49  *                                      data segments.
50  *              Andi Kleen:             Make sure we never ack data there is not
51  *                                      enough room for. Also make this condition
52  *                                      a fatal error if it might still happen.
53  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
54  *                                      connections with MSS<min(MTU,ann. MSS)
55  *                                      work without delayed acks.
56  *              Andi Kleen:             Process packets with PSH set in the
57  *                                      fast path.
58  *              J Hadi Salim:           ECN support
59  *              Andrei Gurtov,
60  *              Pasi Sarolahti,
61  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
62  *                                      engine. Lots of bugs are found.
63  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
64  */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
96 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
97 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
99 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
100 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
101 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
102 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
103 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
109
110 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115
116 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117
118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120
121 /* Adapt the MSS value used to make delayed ack decision to the
122  * real world.
123  */
124 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
125 {
126         struct inet_connection_sock *icsk = inet_csk(sk);
127         const unsigned int lss = icsk->icsk_ack.last_seg_size;
128         unsigned int len;
129
130         icsk->icsk_ack.last_seg_size = 0;
131
132         /* skb->len may jitter because of SACKs, even if peer
133          * sends good full-sized frames.
134          */
135         len = skb_shinfo(skb)->gso_size ? : skb->len;
136         if (len >= icsk->icsk_ack.rcv_mss) {
137                 icsk->icsk_ack.rcv_mss = len;
138         } else {
139                 /* Otherwise, we make more careful check taking into account,
140                  * that SACKs block is variable.
141                  *
142                  * "len" is invariant segment length, including TCP header.
143                  */
144                 len += skb->data - skb_transport_header(skb);
145                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146                     /* If PSH is not set, packet should be
147                      * full sized, provided peer TCP is not badly broken.
148                      * This observation (if it is correct 8)) allows
149                      * to handle super-low mtu links fairly.
150                      */
151                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153                         /* Subtract also invariant (if peer is RFC compliant),
154                          * tcp header plus fixed timestamp option length.
155                          * Resulting "len" is MSS free of SACK jitter.
156                          */
157                         len -= tcp_sk(sk)->tcp_header_len;
158                         icsk->icsk_ack.last_seg_size = len;
159                         if (len == lss) {
160                                 icsk->icsk_ack.rcv_mss = len;
161                                 return;
162                         }
163                 }
164                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167         }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172         struct inet_connection_sock *icsk = inet_csk(sk);
173         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175         if (quickacks == 0)
176                 quickacks = 2;
177         if (quickacks > icsk->icsk_ack.quick)
178                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183         struct inet_connection_sock *icsk = inet_csk(sk);
184         tcp_incr_quickack(sk);
185         icsk->icsk_ack.pingpong = 0;
186         icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195         const struct inet_connection_sock *icsk = inet_csk(sk);
196         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201         if (tp->ecn_flags & TCP_ECN_OK)
202                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207         if (tcp_hdr(skb)->cwr)
208                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218         if (tp->ecn_flags & TCP_ECN_OK) {
219                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221                 /* Funny extension: if ECT is not set on a segment,
222                  * it is surely retransmit. It is not in ECN RFC,
223                  * but Linux follows this rule. */
224                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225                         tcp_enter_quickack_mode((struct sock *)tp);
226         }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
232                 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
238                 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
244                 return 1;
245         return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256                      sizeof(struct sk_buff);
257
258         if (sk->sk_sndbuf < 3 * sndmem)
259                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290         struct tcp_sock *tp = tcp_sk(sk);
291         /* Optimize this! */
292         int truesize = tcp_win_from_space(skb->truesize) >> 1;
293         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
294
295         while (tp->rcv_ssthresh <= window) {
296                 if (truesize <= skb->len)
297                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299                 truesize >>= 1;
300                 window >>= 1;
301         }
302         return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
306 {
307         struct tcp_sock *tp = tcp_sk(sk);
308
309         /* Check #1 */
310         if (tp->rcv_ssthresh < tp->window_clamp &&
311             (int)tp->rcv_ssthresh < tcp_space(sk) &&
312             !tcp_memory_pressure) {
313                 int incr;
314
315                 /* Check #2. Increase window, if skb with such overhead
316                  * will fit to rcvbuf in future.
317                  */
318                 if (tcp_win_from_space(skb->truesize) <= skb->len)
319                         incr = 2 * tp->advmss;
320                 else
321                         incr = __tcp_grow_window(sk, skb);
322
323                 if (incr) {
324                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
325                                                tp->window_clamp);
326                         inet_csk(sk)->icsk_ack.quick |= 1;
327                 }
328         }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335         struct tcp_sock *tp = tcp_sk(sk);
336         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338         /* Try to select rcvbuf so that 4 mss-sized segments
339          * will fit to window and corresponding skbs will fit to our rcvbuf.
340          * (was 3; 4 is minimum to allow fast retransmit to work.)
341          */
342         while (tcp_win_from_space(rcvmem) < tp->advmss)
343                 rcvmem += 128;
344         if (sk->sk_rcvbuf < 4 * rcvmem)
345                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353         struct tcp_sock *tp = tcp_sk(sk);
354         int maxwin;
355
356         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357                 tcp_fixup_rcvbuf(sk);
358         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359                 tcp_fixup_sndbuf(sk);
360
361         tp->rcvq_space.space = tp->rcv_wnd;
362
363         maxwin = tcp_full_space(sk);
364
365         if (tp->window_clamp >= maxwin) {
366                 tp->window_clamp = maxwin;
367
368                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369                         tp->window_clamp = max(maxwin -
370                                                (maxwin >> sysctl_tcp_app_win),
371                                                4 * tp->advmss);
372         }
373
374         /* Force reservation of one segment. */
375         if (sysctl_tcp_app_win &&
376             tp->window_clamp > 2 * tp->advmss &&
377             tp->window_clamp + tp->advmss > maxwin)
378                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381         tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387         struct tcp_sock *tp = tcp_sk(sk);
388         struct inet_connection_sock *icsk = inet_csk(sk);
389
390         icsk->icsk_ack.quick = 0;
391
392         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394             !tcp_memory_pressure &&
395             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397                                     sysctl_tcp_rmem[2]);
398         }
399         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401 }
402
403 /* Initialize RCV_MSS value.
404  * RCV_MSS is an our guess about MSS used by the peer.
405  * We haven't any direct information about the MSS.
406  * It's better to underestimate the RCV_MSS rather than overestimate.
407  * Overestimations make us ACKing less frequently than needed.
408  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409  */
410 void tcp_initialize_rcv_mss(struct sock *sk)
411 {
412         struct tcp_sock *tp = tcp_sk(sk);
413         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
414
415         hint = min(hint, tp->rcv_wnd / 2);
416         hint = min(hint, TCP_MIN_RCVMSS);
417         hint = max(hint, TCP_MIN_MSS);
418
419         inet_csk(sk)->icsk_ack.rcv_mss = hint;
420 }
421
422 /* Receiver "autotuning" code.
423  *
424  * The algorithm for RTT estimation w/o timestamps is based on
425  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427  *
428  * More detail on this code can be found at
429  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430  * though this reference is out of date.  A new paper
431  * is pending.
432  */
433 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
434 {
435         u32 new_sample = tp->rcv_rtt_est.rtt;
436         long m = sample;
437
438         if (m == 0)
439                 m = 1;
440
441         if (new_sample != 0) {
442                 /* If we sample in larger samples in the non-timestamp
443                  * case, we could grossly overestimate the RTT especially
444                  * with chatty applications or bulk transfer apps which
445                  * are stalled on filesystem I/O.
446                  *
447                  * Also, since we are only going for a minimum in the
448                  * non-timestamp case, we do not smooth things out
449                  * else with timestamps disabled convergence takes too
450                  * long.
451                  */
452                 if (!win_dep) {
453                         m -= (new_sample >> 3);
454                         new_sample += m;
455                 } else if (m < new_sample)
456                         new_sample = m << 3;
457         } else {
458                 /* No previous measure. */
459                 new_sample = m << 3;
460         }
461
462         if (tp->rcv_rtt_est.rtt != new_sample)
463                 tp->rcv_rtt_est.rtt = new_sample;
464 }
465
466 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
467 {
468         if (tp->rcv_rtt_est.time == 0)
469                 goto new_measure;
470         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471                 return;
472         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
473
474 new_measure:
475         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
476         tp->rcv_rtt_est.time = tcp_time_stamp;
477 }
478
479 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
480                                           const struct sk_buff *skb)
481 {
482         struct tcp_sock *tp = tcp_sk(sk);
483         if (tp->rx_opt.rcv_tsecr &&
484             (TCP_SKB_CB(skb)->end_seq -
485              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
486                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 }
488
489 /*
490  * This function should be called every time data is copied to user space.
491  * It calculates the appropriate TCP receive buffer space.
492  */
493 void tcp_rcv_space_adjust(struct sock *sk)
494 {
495         struct tcp_sock *tp = tcp_sk(sk);
496         int time;
497         int space;
498
499         if (tp->rcvq_space.time == 0)
500                 goto new_measure;
501
502         time = tcp_time_stamp - tp->rcvq_space.time;
503         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
504                 return;
505
506         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
507
508         space = max(tp->rcvq_space.space, space);
509
510         if (tp->rcvq_space.space != space) {
511                 int rcvmem;
512
513                 tp->rcvq_space.space = space;
514
515                 if (sysctl_tcp_moderate_rcvbuf &&
516                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
517                         int new_clamp = space;
518
519                         /* Receive space grows, normalize in order to
520                          * take into account packet headers and sk_buff
521                          * structure overhead.
522                          */
523                         space /= tp->advmss;
524                         if (!space)
525                                 space = 1;
526                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
527                                   16 + sizeof(struct sk_buff));
528                         while (tcp_win_from_space(rcvmem) < tp->advmss)
529                                 rcvmem += 128;
530                         space *= rcvmem;
531                         space = min(space, sysctl_tcp_rmem[2]);
532                         if (space > sk->sk_rcvbuf) {
533                                 sk->sk_rcvbuf = space;
534
535                                 /* Make the window clamp follow along.  */
536                                 tp->window_clamp = new_clamp;
537                         }
538                 }
539         }
540
541 new_measure:
542         tp->rcvq_space.seq = tp->copied_seq;
543         tp->rcvq_space.time = tcp_time_stamp;
544 }
545
546 /* There is something which you must keep in mind when you analyze the
547  * behavior of the tp->ato delayed ack timeout interval.  When a
548  * connection starts up, we want to ack as quickly as possible.  The
549  * problem is that "good" TCP's do slow start at the beginning of data
550  * transmission.  The means that until we send the first few ACK's the
551  * sender will sit on his end and only queue most of his data, because
552  * he can only send snd_cwnd unacked packets at any given time.  For
553  * each ACK we send, he increments snd_cwnd and transmits more of his
554  * queue.  -DaveM
555  */
556 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
557 {
558         struct tcp_sock *tp = tcp_sk(sk);
559         struct inet_connection_sock *icsk = inet_csk(sk);
560         u32 now;
561
562         inet_csk_schedule_ack(sk);
563
564         tcp_measure_rcv_mss(sk, skb);
565
566         tcp_rcv_rtt_measure(tp);
567
568         now = tcp_time_stamp;
569
570         if (!icsk->icsk_ack.ato) {
571                 /* The _first_ data packet received, initialize
572                  * delayed ACK engine.
573                  */
574                 tcp_incr_quickack(sk);
575                 icsk->icsk_ack.ato = TCP_ATO_MIN;
576         } else {
577                 int m = now - icsk->icsk_ack.lrcvtime;
578
579                 if (m <= TCP_ATO_MIN / 2) {
580                         /* The fastest case is the first. */
581                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
582                 } else if (m < icsk->icsk_ack.ato) {
583                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
584                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
585                                 icsk->icsk_ack.ato = icsk->icsk_rto;
586                 } else if (m > icsk->icsk_rto) {
587                         /* Too long gap. Apparently sender failed to
588                          * restart window, so that we send ACKs quickly.
589                          */
590                         tcp_incr_quickack(sk);
591                         sk_mem_reclaim(sk);
592                 }
593         }
594         icsk->icsk_ack.lrcvtime = now;
595
596         TCP_ECN_check_ce(tp, skb);
597
598         if (skb->len >= 128)
599                 tcp_grow_window(sk, skb);
600 }
601
602 static u32 tcp_rto_min(struct sock *sk)
603 {
604         struct dst_entry *dst = __sk_dst_get(sk);
605         u32 rto_min = TCP_RTO_MIN;
606
607         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
608                 rto_min = dst->metrics[RTAX_RTO_MIN - 1];
609         return rto_min;
610 }
611
612 /* Called to compute a smoothed rtt estimate. The data fed to this
613  * routine either comes from timestamps, or from segments that were
614  * known _not_ to have been retransmitted [see Karn/Partridge
615  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
616  * piece by Van Jacobson.
617  * NOTE: the next three routines used to be one big routine.
618  * To save cycles in the RFC 1323 implementation it was better to break
619  * it up into three procedures. -- erics
620  */
621 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
622 {
623         struct tcp_sock *tp = tcp_sk(sk);
624         long m = mrtt; /* RTT */
625
626         /*      The following amusing code comes from Jacobson's
627          *      article in SIGCOMM '88.  Note that rtt and mdev
628          *      are scaled versions of rtt and mean deviation.
629          *      This is designed to be as fast as possible
630          *      m stands for "measurement".
631          *
632          *      On a 1990 paper the rto value is changed to:
633          *      RTO = rtt + 4 * mdev
634          *
635          * Funny. This algorithm seems to be very broken.
636          * These formulae increase RTO, when it should be decreased, increase
637          * too slowly, when it should be increased quickly, decrease too quickly
638          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
639          * does not matter how to _calculate_ it. Seems, it was trap
640          * that VJ failed to avoid. 8)
641          */
642         if (m == 0)
643                 m = 1;
644         if (tp->srtt != 0) {
645                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
646                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
647                 if (m < 0) {
648                         m = -m;         /* m is now abs(error) */
649                         m -= (tp->mdev >> 2);   /* similar update on mdev */
650                         /* This is similar to one of Eifel findings.
651                          * Eifel blocks mdev updates when rtt decreases.
652                          * This solution is a bit different: we use finer gain
653                          * for mdev in this case (alpha*beta).
654                          * Like Eifel it also prevents growth of rto,
655                          * but also it limits too fast rto decreases,
656                          * happening in pure Eifel.
657                          */
658                         if (m > 0)
659                                 m >>= 3;
660                 } else {
661                         m -= (tp->mdev >> 2);   /* similar update on mdev */
662                 }
663                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
664                 if (tp->mdev > tp->mdev_max) {
665                         tp->mdev_max = tp->mdev;
666                         if (tp->mdev_max > tp->rttvar)
667                                 tp->rttvar = tp->mdev_max;
668                 }
669                 if (after(tp->snd_una, tp->rtt_seq)) {
670                         if (tp->mdev_max < tp->rttvar)
671                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
672                         tp->rtt_seq = tp->snd_nxt;
673                         tp->mdev_max = tcp_rto_min(sk);
674                 }
675         } else {
676                 /* no previous measure. */
677                 tp->srtt = m << 3;      /* take the measured time to be rtt */
678                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
679                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
680                 tp->rtt_seq = tp->snd_nxt;
681         }
682 }
683
684 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
685  * routine referred to above.
686  */
687 static inline void tcp_set_rto(struct sock *sk)
688 {
689         const struct tcp_sock *tp = tcp_sk(sk);
690         /* Old crap is replaced with new one. 8)
691          *
692          * More seriously:
693          * 1. If rtt variance happened to be less 50msec, it is hallucination.
694          *    It cannot be less due to utterly erratic ACK generation made
695          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
696          *    to do with delayed acks, because at cwnd>2 true delack timeout
697          *    is invisible. Actually, Linux-2.4 also generates erratic
698          *    ACKs in some circumstances.
699          */
700         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
701
702         /* 2. Fixups made earlier cannot be right.
703          *    If we do not estimate RTO correctly without them,
704          *    all the algo is pure shit and should be replaced
705          *    with correct one. It is exactly, which we pretend to do.
706          */
707 }
708
709 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
710  * guarantees that rto is higher.
711  */
712 static inline void tcp_bound_rto(struct sock *sk)
713 {
714         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
715                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
716 }
717
718 /* Save metrics learned by this TCP session.
719    This function is called only, when TCP finishes successfully
720    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
721  */
722 void tcp_update_metrics(struct sock *sk)
723 {
724         struct tcp_sock *tp = tcp_sk(sk);
725         struct dst_entry *dst = __sk_dst_get(sk);
726
727         if (sysctl_tcp_nometrics_save)
728                 return;
729
730         dst_confirm(dst);
731
732         if (dst && (dst->flags & DST_HOST)) {
733                 const struct inet_connection_sock *icsk = inet_csk(sk);
734                 int m;
735
736                 if (icsk->icsk_backoff || !tp->srtt) {
737                         /* This session failed to estimate rtt. Why?
738                          * Probably, no packets returned in time.
739                          * Reset our results.
740                          */
741                         if (!(dst_metric_locked(dst, RTAX_RTT)))
742                                 dst->metrics[RTAX_RTT - 1] = 0;
743                         return;
744                 }
745
746                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
747
748                 /* If newly calculated rtt larger than stored one,
749                  * store new one. Otherwise, use EWMA. Remember,
750                  * rtt overestimation is always better than underestimation.
751                  */
752                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
753                         if (m <= 0)
754                                 dst->metrics[RTAX_RTT - 1] = tp->srtt;
755                         else
756                                 dst->metrics[RTAX_RTT - 1] -= (m >> 3);
757                 }
758
759                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         if (m >= dst_metric(dst, RTAX_RTTVAR))
769                                 dst->metrics[RTAX_RTTVAR - 1] = m;
770                         else
771                                 dst->metrics[RTAX_RTTVAR-1] -=
772                                         (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
773                 }
774
775                 if (tp->snd_ssthresh >= 0xFFFF) {
776                         /* Slow start still did not finish. */
777                         if (dst_metric(dst, RTAX_SSTHRESH) &&
778                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781                         if (!dst_metric_locked(dst, RTAX_CWND) &&
782                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
785                            icsk->icsk_ca_state == TCP_CA_Open) {
786                         /* Cong. avoidance phase, cwnd is reliable. */
787                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788                                 dst->metrics[RTAX_SSTHRESH-1] =
789                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790                         if (!dst_metric_locked(dst, RTAX_CWND))
791                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
792                 } else {
793                         /* Else slow start did not finish, cwnd is non-sense,
794                            ssthresh may be also invalid.
795                          */
796                         if (!dst_metric_locked(dst, RTAX_CWND))
797                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
798                         if (dst->metrics[RTAX_SSTHRESH-1] &&
799                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800                             tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
801                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802                 }
803
804                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805                         if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
806                             tp->reordering != sysctl_tcp_reordering)
807                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808                 }
809         }
810 }
811
812 /* Numbers are taken from RFC3390.
813  *
814  * John Heffner states:
815  *
816  *      The RFC specifies a window of no more than 4380 bytes
817  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
818  *      is a bit misleading because they use a clamp at 4380 bytes
819  *      rather than use a multiplier in the relevant range.
820  */
821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822 {
823         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824
825         if (!cwnd) {
826                 if (tp->mss_cache > 1460)
827                         cwnd = 2;
828                 else
829                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830         }
831         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832 }
833
834 /* Set slow start threshold and cwnd not falling to slow start */
835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
836 {
837         struct tcp_sock *tp = tcp_sk(sk);
838         const struct inet_connection_sock *icsk = inet_csk(sk);
839
840         tp->prior_ssthresh = 0;
841         tp->bytes_acked = 0;
842         if (icsk->icsk_ca_state < TCP_CA_CWR) {
843                 tp->undo_marker = 0;
844                 if (set_ssthresh)
845                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846                 tp->snd_cwnd = min(tp->snd_cwnd,
847                                    tcp_packets_in_flight(tp) + 1U);
848                 tp->snd_cwnd_cnt = 0;
849                 tp->high_seq = tp->snd_nxt;
850                 tp->snd_cwnd_stamp = tcp_time_stamp;
851                 TCP_ECN_queue_cwr(tp);
852
853                 tcp_set_ca_state(sk, TCP_CA_CWR);
854         }
855 }
856
857 /*
858  * Packet counting of FACK is based on in-order assumptions, therefore TCP
859  * disables it when reordering is detected
860  */
861 static void tcp_disable_fack(struct tcp_sock *tp)
862 {
863         /* RFC3517 uses different metric in lost marker => reset on change */
864         if (tcp_is_fack(tp))
865                 tp->lost_skb_hint = NULL;
866         tp->rx_opt.sack_ok &= ~2;
867 }
868
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872         tp->rx_opt.sack_ok |= 4;
873 }
874
875 /* Initialize metrics on socket. */
876
877 static void tcp_init_metrics(struct sock *sk)
878 {
879         struct tcp_sock *tp = tcp_sk(sk);
880         struct dst_entry *dst = __sk_dst_get(sk);
881
882         if (dst == NULL)
883                 goto reset;
884
885         dst_confirm(dst);
886
887         if (dst_metric_locked(dst, RTAX_CWND))
888                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889         if (dst_metric(dst, RTAX_SSTHRESH)) {
890                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
893         }
894         if (dst_metric(dst, RTAX_REORDERING) &&
895             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896                 tcp_disable_fack(tp);
897                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898         }
899
900         if (dst_metric(dst, RTAX_RTT) == 0)
901                 goto reset;
902
903         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904                 goto reset;
905
906         /* Initial rtt is determined from SYN,SYN-ACK.
907          * The segment is small and rtt may appear much
908          * less than real one. Use per-dst memory
909          * to make it more realistic.
910          *
911          * A bit of theory. RTT is time passed after "normal" sized packet
912          * is sent until it is ACKed. In normal circumstances sending small
913          * packets force peer to delay ACKs and calculation is correct too.
914          * The algorithm is adaptive and, provided we follow specs, it
915          * NEVER underestimate RTT. BUT! If peer tries to make some clever
916          * tricks sort of "quick acks" for time long enough to decrease RTT
917          * to low value, and then abruptly stops to do it and starts to delay
918          * ACKs, wait for troubles.
919          */
920         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921                 tp->srtt = dst_metric(dst, RTAX_RTT);
922                 tp->rtt_seq = tp->snd_nxt;
923         }
924         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927         }
928         tcp_set_rto(sk);
929         tcp_bound_rto(sk);
930         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931                 goto reset;
932         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933         tp->snd_cwnd_stamp = tcp_time_stamp;
934         return;
935
936 reset:
937         /* Play conservative. If timestamps are not
938          * supported, TCP will fail to recalculate correct
939          * rtt, if initial rto is too small. FORGET ALL AND RESET!
940          */
941         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942                 tp->srtt = 0;
943                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945         }
946 }
947
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949                                   const int ts)
950 {
951         struct tcp_sock *tp = tcp_sk(sk);
952         if (metric > tp->reordering) {
953                 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955                 /* This exciting event is worth to be remembered. 8) */
956                 if (ts)
957                         NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958                 else if (tcp_is_reno(tp))
959                         NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960                 else if (tcp_is_fack(tp))
961                         NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962                 else
963                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967                        tp->reordering,
968                        tp->fackets_out,
969                        tp->sacked_out,
970                        tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972                 tcp_disable_fack(tp);
973         }
974 }
975
976 /* This procedure tags the retransmission queue when SACKs arrive.
977  *
978  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979  * Packets in queue with these bits set are counted in variables
980  * sacked_out, retrans_out and lost_out, correspondingly.
981  *
982  * Valid combinations are:
983  * Tag  InFlight        Description
984  * 0    1               - orig segment is in flight.
985  * S    0               - nothing flies, orig reached receiver.
986  * L    0               - nothing flies, orig lost by net.
987  * R    2               - both orig and retransmit are in flight.
988  * L|R  1               - orig is lost, retransmit is in flight.
989  * S|R  1               - orig reached receiver, retrans is still in flight.
990  * (L|S|R is logically valid, it could occur when L|R is sacked,
991  *  but it is equivalent to plain S and code short-curcuits it to S.
992  *  L|S is logically invalid, it would mean -1 packet in flight 8))
993  *
994  * These 6 states form finite state machine, controlled by the following events:
995  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997  * 3. Loss detection event of one of three flavors:
998  *      A. Scoreboard estimator decided the packet is lost.
999  *         A'. Reno "three dupacks" marks head of queue lost.
1000  *         A''. Its FACK modfication, head until snd.fack is lost.
1001  *      B. SACK arrives sacking data transmitted after never retransmitted
1002  *         hole was sent out.
1003  *      C. SACK arrives sacking SND.NXT at the moment, when the
1004  *         segment was retransmitted.
1005  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006  *
1007  * It is pleasant to note, that state diagram turns out to be commutative,
1008  * so that we are allowed not to be bothered by order of our actions,
1009  * when multiple events arrive simultaneously. (see the function below).
1010  *
1011  * Reordering detection.
1012  * --------------------
1013  * Reordering metric is maximal distance, which a packet can be displaced
1014  * in packet stream. With SACKs we can estimate it:
1015  *
1016  * 1. SACK fills old hole and the corresponding segment was not
1017  *    ever retransmitted -> reordering. Alas, we cannot use it
1018  *    when segment was retransmitted.
1019  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020  *    for retransmitted and already SACKed segment -> reordering..
1021  * Both of these heuristics are not used in Loss state, when we cannot
1022  * account for retransmits accurately.
1023  *
1024  * SACK block validation.
1025  * ----------------------
1026  *
1027  * SACK block range validation checks that the received SACK block fits to
1028  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029  * Note that SND.UNA is not included to the range though being valid because
1030  * it means that the receiver is rather inconsistent with itself reporting
1031  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032  * perfectly valid, however, in light of RFC2018 which explicitly states
1033  * that "SACK block MUST reflect the newest segment.  Even if the newest
1034  * segment is going to be discarded ...", not that it looks very clever
1035  * in case of head skb. Due to potentional receiver driven attacks, we
1036  * choose to avoid immediate execution of a walk in write queue due to
1037  * reneging and defer head skb's loss recovery to standard loss recovery
1038  * procedure that will eventually trigger (nothing forbids us doing this).
1039  *
1040  * Implements also blockage to start_seq wrap-around. Problem lies in the
1041  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042  * there's no guarantee that it will be before snd_nxt (n). The problem
1043  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044  * wrap (s_w):
1045  *
1046  *         <- outs wnd ->                          <- wrapzone ->
1047  *         u     e      n                         u_w   e_w  s n_w
1048  *         |     |      |                          |     |   |  |
1049  * |<------------+------+----- TCP seqno space --------------+---------->|
1050  * ...-- <2^31 ->|                                           |<--------...
1051  * ...---- >2^31 ------>|                                    |<--------...
1052  *
1053  * Current code wouldn't be vulnerable but it's better still to discard such
1054  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057  * equal to the ideal case (infinite seqno space without wrap caused issues).
1058  *
1059  * With D-SACK the lower bound is extended to cover sequence space below
1060  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061  * again, D-SACK block must not to go across snd_una (for the same reason as
1062  * for the normal SACK blocks, explained above). But there all simplicity
1063  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064  * fully below undo_marker they do not affect behavior in anyway and can
1065  * therefore be safely ignored. In rare cases (which are more or less
1066  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067  * fragmentation and packet reordering past skb's retransmission. To consider
1068  * them correctly, the acceptable range must be extended even more though
1069  * the exact amount is rather hard to quantify. However, tp->max_window can
1070  * be used as an exaggerated estimate.
1071  */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073                                   u32 start_seq, u32 end_seq)
1074 {
1075         /* Too far in future, or reversed (interpretation is ambiguous) */
1076         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077                 return 0;
1078
1079         /* Nasty start_seq wrap-around check (see comments above) */
1080         if (!before(start_seq, tp->snd_nxt))
1081                 return 0;
1082
1083         /* In outstanding window? ...This is valid exit for D-SACKs too.
1084          * start_seq == snd_una is non-sensical (see comments above)
1085          */
1086         if (after(start_seq, tp->snd_una))
1087                 return 1;
1088
1089         if (!is_dsack || !tp->undo_marker)
1090                 return 0;
1091
1092         /* ...Then it's D-SACK, and must reside below snd_una completely */
1093         if (!after(end_seq, tp->snd_una))
1094                 return 0;
1095
1096         if (!before(start_seq, tp->undo_marker))
1097                 return 1;
1098
1099         /* Too old */
1100         if (!after(end_seq, tp->undo_marker))
1101                 return 0;
1102
1103         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104          *   start_seq < undo_marker and end_seq >= undo_marker.
1105          */
1106         return !before(start_seq, end_seq - tp->max_window);
1107 }
1108
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110  * Event "C". Later note: FACK people cheated me again 8), we have to account
1111  * for reordering! Ugly, but should help.
1112  *
1113  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114  * less than what is now known to be received by the other end (derived from
1115  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1116  * retransmitted skbs to avoid some costly processing per ACKs.
1117  */
1118 static void tcp_mark_lost_retrans(struct sock *sk)
1119 {
1120         const struct inet_connection_sock *icsk = inet_csk(sk);
1121         struct tcp_sock *tp = tcp_sk(sk);
1122         struct sk_buff *skb;
1123         int cnt = 0;
1124         u32 new_low_seq = tp->snd_nxt;
1125         u32 received_upto = tcp_highest_sack_seq(tp);
1126
1127         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1128             !after(received_upto, tp->lost_retrans_low) ||
1129             icsk->icsk_ca_state != TCP_CA_Recovery)
1130                 return;
1131
1132         tcp_for_write_queue(skb, sk) {
1133                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1134
1135                 if (skb == tcp_send_head(sk))
1136                         break;
1137                 if (cnt == tp->retrans_out)
1138                         break;
1139                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1140                         continue;
1141
1142                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1143                         continue;
1144
1145                 if (after(received_upto, ack_seq) &&
1146                     (tcp_is_fack(tp) ||
1147                      !before(received_upto,
1148                              ack_seq + tp->reordering * tp->mss_cache))) {
1149                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1150                         tp->retrans_out -= tcp_skb_pcount(skb);
1151
1152                         /* clear lost hint */
1153                         tp->retransmit_skb_hint = NULL;
1154
1155                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1156                                 tp->lost_out += tcp_skb_pcount(skb);
1157                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1158                         }
1159                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1160                 } else {
1161                         if (before(ack_seq, new_low_seq))
1162                                 new_low_seq = ack_seq;
1163                         cnt += tcp_skb_pcount(skb);
1164                 }
1165         }
1166
1167         if (tp->retrans_out)
1168                 tp->lost_retrans_low = new_low_seq;
1169 }
1170
1171 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1172                            struct tcp_sack_block_wire *sp, int num_sacks,
1173                            u32 prior_snd_una)
1174 {
1175         u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1176         u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1177         int dup_sack = 0;
1178
1179         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1180                 dup_sack = 1;
1181                 tcp_dsack_seen(tp);
1182                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1183         } else if (num_sacks > 1) {
1184                 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1185                 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1186
1187                 if (!after(end_seq_0, end_seq_1) &&
1188                     !before(start_seq_0, start_seq_1)) {
1189                         dup_sack = 1;
1190                         tcp_dsack_seen(tp);
1191                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1192                 }
1193         }
1194
1195         /* D-SACK for already forgotten data... Do dumb counting. */
1196         if (dup_sack &&
1197             !after(end_seq_0, prior_snd_una) &&
1198             after(end_seq_0, tp->undo_marker))
1199                 tp->undo_retrans--;
1200
1201         return dup_sack;
1202 }
1203
1204 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1205  * the incoming SACK may not exactly match but we can find smaller MSS
1206  * aligned portion of it that matches. Therefore we might need to fragment
1207  * which may fail and creates some hassle (caller must handle error case
1208  * returns).
1209  */
1210 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1211                                  u32 start_seq, u32 end_seq)
1212 {
1213         int in_sack, err;
1214         unsigned int pkt_len;
1215
1216         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1217                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1218
1219         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1220             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1221
1222                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1223
1224                 if (!in_sack)
1225                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1226                 else
1227                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1228                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1229                 if (err < 0)
1230                         return err;
1231         }
1232
1233         return in_sack;
1234 }
1235
1236 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1237                            int *reord, int dup_sack, int fack_count)
1238 {
1239         struct tcp_sock *tp = tcp_sk(sk);
1240         u8 sacked = TCP_SKB_CB(skb)->sacked;
1241         int flag = 0;
1242
1243         /* Account D-SACK for retransmitted packet. */
1244         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1245                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1246                         tp->undo_retrans--;
1247                 if (sacked & TCPCB_SACKED_ACKED)
1248                         *reord = min(fack_count, *reord);
1249         }
1250
1251         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1252         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1253                 return flag;
1254
1255         if (!(sacked & TCPCB_SACKED_ACKED)) {
1256                 if (sacked & TCPCB_SACKED_RETRANS) {
1257                         /* If the segment is not tagged as lost,
1258                          * we do not clear RETRANS, believing
1259                          * that retransmission is still in flight.
1260                          */
1261                         if (sacked & TCPCB_LOST) {
1262                                 TCP_SKB_CB(skb)->sacked &=
1263                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1264                                 tp->lost_out -= tcp_skb_pcount(skb);
1265                                 tp->retrans_out -= tcp_skb_pcount(skb);
1266
1267                                 /* clear lost hint */
1268                                 tp->retransmit_skb_hint = NULL;
1269                         }
1270                 } else {
1271                         if (!(sacked & TCPCB_RETRANS)) {
1272                                 /* New sack for not retransmitted frame,
1273                                  * which was in hole. It is reordering.
1274                                  */
1275                                 if (before(TCP_SKB_CB(skb)->seq,
1276                                            tcp_highest_sack_seq(tp)))
1277                                         *reord = min(fack_count, *reord);
1278
1279                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1280                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1281                                         flag |= FLAG_ONLY_ORIG_SACKED;
1282                         }
1283
1284                         if (sacked & TCPCB_LOST) {
1285                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1286                                 tp->lost_out -= tcp_skb_pcount(skb);
1287
1288                                 /* clear lost hint */
1289                                 tp->retransmit_skb_hint = NULL;
1290                         }
1291                 }
1292
1293                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1294                 flag |= FLAG_DATA_SACKED;
1295                 tp->sacked_out += tcp_skb_pcount(skb);
1296
1297                 fack_count += tcp_skb_pcount(skb);
1298
1299                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1300                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1301                     before(TCP_SKB_CB(skb)->seq,
1302                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1303                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1304
1305                 if (fack_count > tp->fackets_out)
1306                         tp->fackets_out = fack_count;
1307
1308                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1309                         tcp_advance_highest_sack(sk, skb);
1310         }
1311
1312         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1313          * frames and clear it. undo_retrans is decreased above, L|R frames
1314          * are accounted above as well.
1315          */
1316         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1317                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1318                 tp->retrans_out -= tcp_skb_pcount(skb);
1319                 tp->retransmit_skb_hint = NULL;
1320         }
1321
1322         return flag;
1323 }
1324
1325 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1326                                         struct tcp_sack_block *next_dup,
1327                                         u32 start_seq, u32 end_seq,
1328                                         int dup_sack_in, int *fack_count,
1329                                         int *reord, int *flag)
1330 {
1331         tcp_for_write_queue_from(skb, sk) {
1332                 int in_sack = 0;
1333                 int dup_sack = dup_sack_in;
1334
1335                 if (skb == tcp_send_head(sk))
1336                         break;
1337
1338                 /* queue is in-order => we can short-circuit the walk early */
1339                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1340                         break;
1341
1342                 if ((next_dup != NULL) &&
1343                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1344                         in_sack = tcp_match_skb_to_sack(sk, skb,
1345                                                         next_dup->start_seq,
1346                                                         next_dup->end_seq);
1347                         if (in_sack > 0)
1348                                 dup_sack = 1;
1349                 }
1350
1351                 if (in_sack <= 0)
1352                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1353                                                         end_seq);
1354                 if (unlikely(in_sack < 0))
1355                         break;
1356
1357                 if (in_sack)
1358                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1359                                                  *fack_count);
1360
1361                 *fack_count += tcp_skb_pcount(skb);
1362         }
1363         return skb;
1364 }
1365
1366 /* Avoid all extra work that is being done by sacktag while walking in
1367  * a normal way
1368  */
1369 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1370                                         u32 skip_to_seq, int *fack_count)
1371 {
1372         tcp_for_write_queue_from(skb, sk) {
1373                 if (skb == tcp_send_head(sk))
1374                         break;
1375
1376                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1377                         break;
1378
1379                 *fack_count += tcp_skb_pcount(skb);
1380         }
1381         return skb;
1382 }
1383
1384 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1385                                                 struct sock *sk,
1386                                                 struct tcp_sack_block *next_dup,
1387                                                 u32 skip_to_seq,
1388                                                 int *fack_count, int *reord,
1389                                                 int *flag)
1390 {
1391         if (next_dup == NULL)
1392                 return skb;
1393
1394         if (before(next_dup->start_seq, skip_to_seq)) {
1395                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1396                 tcp_sacktag_walk(skb, sk, NULL,
1397                                  next_dup->start_seq, next_dup->end_seq,
1398                                  1, fack_count, reord, flag);
1399         }
1400
1401         return skb;
1402 }
1403
1404 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1405 {
1406         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1407 }
1408
1409 static int
1410 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1411                         u32 prior_snd_una)
1412 {
1413         const struct inet_connection_sock *icsk = inet_csk(sk);
1414         struct tcp_sock *tp = tcp_sk(sk);
1415         unsigned char *ptr = (skb_transport_header(ack_skb) +
1416                               TCP_SKB_CB(ack_skb)->sacked);
1417         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1418         struct tcp_sack_block sp[4];
1419         struct tcp_sack_block *cache;
1420         struct sk_buff *skb;
1421         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1422         int used_sacks;
1423         int reord = tp->packets_out;
1424         int flag = 0;
1425         int found_dup_sack = 0;
1426         int fack_count;
1427         int i, j;
1428         int first_sack_index;
1429
1430         if (!tp->sacked_out) {
1431                 if (WARN_ON(tp->fackets_out))
1432                         tp->fackets_out = 0;
1433                 tcp_highest_sack_reset(sk);
1434         }
1435
1436         found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1437                                          num_sacks, prior_snd_una);
1438         if (found_dup_sack)
1439                 flag |= FLAG_DSACKING_ACK;
1440
1441         /* Eliminate too old ACKs, but take into
1442          * account more or less fresh ones, they can
1443          * contain valid SACK info.
1444          */
1445         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1446                 return 0;
1447
1448         if (!tp->packets_out)
1449                 goto out;
1450
1451         used_sacks = 0;
1452         first_sack_index = 0;
1453         for (i = 0; i < num_sacks; i++) {
1454                 int dup_sack = !i && found_dup_sack;
1455
1456                 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1457                 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1458
1459                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1460                                             sp[used_sacks].start_seq,
1461                                             sp[used_sacks].end_seq)) {
1462                         if (dup_sack) {
1463                                 if (!tp->undo_marker)
1464                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1465                                 else
1466                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1467                         } else {
1468                                 /* Don't count olds caused by ACK reordering */
1469                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1470                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1471                                         continue;
1472                                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1473                         }
1474                         if (i == 0)
1475                                 first_sack_index = -1;
1476                         continue;
1477                 }
1478
1479                 /* Ignore very old stuff early */
1480                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1481                         continue;
1482
1483                 used_sacks++;
1484         }
1485
1486         /* order SACK blocks to allow in order walk of the retrans queue */
1487         for (i = used_sacks - 1; i > 0; i--) {
1488                 for (j = 0; j < i; j++) {
1489                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1490                                 struct tcp_sack_block tmp;
1491
1492                                 tmp = sp[j];
1493                                 sp[j] = sp[j + 1];
1494                                 sp[j + 1] = tmp;
1495
1496                                 /* Track where the first SACK block goes to */
1497                                 if (j == first_sack_index)
1498                                         first_sack_index = j + 1;
1499                         }
1500                 }
1501         }
1502
1503         skb = tcp_write_queue_head(sk);
1504         fack_count = 0;
1505         i = 0;
1506
1507         if (!tp->sacked_out) {
1508                 /* It's already past, so skip checking against it */
1509                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1510         } else {
1511                 cache = tp->recv_sack_cache;
1512                 /* Skip empty blocks in at head of the cache */
1513                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1514                        !cache->end_seq)
1515                         cache++;
1516         }
1517
1518         while (i < used_sacks) {
1519                 u32 start_seq = sp[i].start_seq;
1520                 u32 end_seq = sp[i].end_seq;
1521                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1522                 struct tcp_sack_block *next_dup = NULL;
1523
1524                 if (found_dup_sack && ((i + 1) == first_sack_index))
1525                         next_dup = &sp[i + 1];
1526
1527                 /* Event "B" in the comment above. */
1528                 if (after(end_seq, tp->high_seq))
1529                         flag |= FLAG_DATA_LOST;
1530
1531                 /* Skip too early cached blocks */
1532                 while (tcp_sack_cache_ok(tp, cache) &&
1533                        !before(start_seq, cache->end_seq))
1534                         cache++;
1535
1536                 /* Can skip some work by looking recv_sack_cache? */
1537                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1538                     after(end_seq, cache->start_seq)) {
1539
1540                         /* Head todo? */
1541                         if (before(start_seq, cache->start_seq)) {
1542                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1543                                                        &fack_count);
1544                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1545                                                        start_seq,
1546                                                        cache->start_seq,
1547                                                        dup_sack, &fack_count,
1548                                                        &reord, &flag);
1549                         }
1550
1551                         /* Rest of the block already fully processed? */
1552                         if (!after(end_seq, cache->end_seq))
1553                                 goto advance_sp;
1554
1555                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1556                                                        cache->end_seq,
1557                                                        &fack_count, &reord,
1558                                                        &flag);
1559
1560                         /* ...tail remains todo... */
1561                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1562                                 /* ...but better entrypoint exists! */
1563                                 skb = tcp_highest_sack(sk);
1564                                 if (skb == NULL)
1565                                         break;
1566                                 fack_count = tp->fackets_out;
1567                                 cache++;
1568                                 goto walk;
1569                         }
1570
1571                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1572                                                &fack_count);
1573                         /* Check overlap against next cached too (past this one already) */
1574                         cache++;
1575                         continue;
1576                 }
1577
1578                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1579                         skb = tcp_highest_sack(sk);
1580                         if (skb == NULL)
1581                                 break;
1582                         fack_count = tp->fackets_out;
1583                 }
1584                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1585
1586 walk:
1587                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1588                                        dup_sack, &fack_count, &reord, &flag);
1589
1590 advance_sp:
1591                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1592                  * due to in-order walk
1593                  */
1594                 if (after(end_seq, tp->frto_highmark))
1595                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1596
1597                 i++;
1598         }
1599
1600         /* Clear the head of the cache sack blocks so we can skip it next time */
1601         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1602                 tp->recv_sack_cache[i].start_seq = 0;
1603                 tp->recv_sack_cache[i].end_seq = 0;
1604         }
1605         for (j = 0; j < used_sacks; j++)
1606                 tp->recv_sack_cache[i++] = sp[j];
1607
1608         tcp_mark_lost_retrans(sk);
1609
1610         tcp_verify_left_out(tp);
1611
1612         if ((reord < tp->fackets_out) &&
1613             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1614             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1615                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1616
1617 out:
1618
1619 #if FASTRETRANS_DEBUG > 0
1620         BUG_TRAP((int)tp->sacked_out >= 0);
1621         BUG_TRAP((int)tp->lost_out >= 0);
1622         BUG_TRAP((int)tp->retrans_out >= 0);
1623         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1624 #endif
1625         return flag;
1626 }
1627
1628 /* If we receive more dupacks than we expected counting segments
1629  * in assumption of absent reordering, interpret this as reordering.
1630  * The only another reason could be bug in receiver TCP.
1631  */
1632 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1633 {
1634         struct tcp_sock *tp = tcp_sk(sk);
1635         u32 holes;
1636
1637         holes = max(tp->lost_out, 1U);
1638         holes = min(holes, tp->packets_out);
1639
1640         if ((tp->sacked_out + holes) > tp->packets_out) {
1641                 tp->sacked_out = tp->packets_out - holes;
1642                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1643         }
1644 }
1645
1646 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1647
1648 static void tcp_add_reno_sack(struct sock *sk)
1649 {
1650         struct tcp_sock *tp = tcp_sk(sk);
1651         tp->sacked_out++;
1652         tcp_check_reno_reordering(sk, 0);
1653         tcp_verify_left_out(tp);
1654 }
1655
1656 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1657
1658 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1659 {
1660         struct tcp_sock *tp = tcp_sk(sk);
1661
1662         if (acked > 0) {
1663                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1664                 if (acked - 1 >= tp->sacked_out)
1665                         tp->sacked_out = 0;
1666                 else
1667                         tp->sacked_out -= acked - 1;
1668         }
1669         tcp_check_reno_reordering(sk, acked);
1670         tcp_verify_left_out(tp);
1671 }
1672
1673 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1674 {
1675         tp->sacked_out = 0;
1676 }
1677
1678 /* F-RTO can only be used if TCP has never retransmitted anything other than
1679  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1680  */
1681 int tcp_use_frto(struct sock *sk)
1682 {
1683         const struct tcp_sock *tp = tcp_sk(sk);
1684         struct sk_buff *skb;
1685
1686         if (!sysctl_tcp_frto)
1687                 return 0;
1688
1689         if (IsSackFrto())
1690                 return 1;
1691
1692         /* Avoid expensive walking of rexmit queue if possible */
1693         if (tp->retrans_out > 1)
1694                 return 0;
1695
1696         skb = tcp_write_queue_head(sk);
1697         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1698         tcp_for_write_queue_from(skb, sk) {
1699                 if (skb == tcp_send_head(sk))
1700                         break;
1701                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1702                         return 0;
1703                 /* Short-circuit when first non-SACKed skb has been checked */
1704                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1705                         break;
1706         }
1707         return 1;
1708 }
1709
1710 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1711  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1712  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1713  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1714  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1715  * bits are handled if the Loss state is really to be entered (in
1716  * tcp_enter_frto_loss).
1717  *
1718  * Do like tcp_enter_loss() would; when RTO expires the second time it
1719  * does:
1720  *  "Reduce ssthresh if it has not yet been made inside this window."
1721  */
1722 void tcp_enter_frto(struct sock *sk)
1723 {
1724         const struct inet_connection_sock *icsk = inet_csk(sk);
1725         struct tcp_sock *tp = tcp_sk(sk);
1726         struct sk_buff *skb;
1727
1728         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1729             tp->snd_una == tp->high_seq ||
1730             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1731              !icsk->icsk_retransmits)) {
1732                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1733                 /* Our state is too optimistic in ssthresh() call because cwnd
1734                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1735                  * recovery has not yet completed. Pattern would be this: RTO,
1736                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1737                  * up here twice).
1738                  * RFC4138 should be more specific on what to do, even though
1739                  * RTO is quite unlikely to occur after the first Cumulative ACK
1740                  * due to back-off and complexity of triggering events ...
1741                  */
1742                 if (tp->frto_counter) {
1743                         u32 stored_cwnd;
1744                         stored_cwnd = tp->snd_cwnd;
1745                         tp->snd_cwnd = 2;
1746                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1747                         tp->snd_cwnd = stored_cwnd;
1748                 } else {
1749                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1750                 }
1751                 /* ... in theory, cong.control module could do "any tricks" in
1752                  * ssthresh(), which means that ca_state, lost bits and lost_out
1753                  * counter would have to be faked before the call occurs. We
1754                  * consider that too expensive, unlikely and hacky, so modules
1755                  * using these in ssthresh() must deal these incompatibility
1756                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1757                  */
1758                 tcp_ca_event(sk, CA_EVENT_FRTO);
1759         }
1760
1761         tp->undo_marker = tp->snd_una;
1762         tp->undo_retrans = 0;
1763
1764         skb = tcp_write_queue_head(sk);
1765         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1766                 tp->undo_marker = 0;
1767         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1768                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1769                 tp->retrans_out -= tcp_skb_pcount(skb);
1770         }
1771         tcp_verify_left_out(tp);
1772
1773         /* Too bad if TCP was application limited */
1774         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1775
1776         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1777          * The last condition is necessary at least in tp->frto_counter case.
1778          */
1779         if (IsSackFrto() && (tp->frto_counter ||
1780             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1781             after(tp->high_seq, tp->snd_una)) {
1782                 tp->frto_highmark = tp->high_seq;
1783         } else {
1784                 tp->frto_highmark = tp->snd_nxt;
1785         }
1786         tcp_set_ca_state(sk, TCP_CA_Disorder);
1787         tp->high_seq = tp->snd_nxt;
1788         tp->frto_counter = 1;
1789 }
1790
1791 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1792  * which indicates that we should follow the traditional RTO recovery,
1793  * i.e. mark everything lost and do go-back-N retransmission.
1794  */
1795 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1796 {
1797         struct tcp_sock *tp = tcp_sk(sk);
1798         struct sk_buff *skb;
1799
1800         tp->lost_out = 0;
1801         tp->retrans_out = 0;
1802         if (tcp_is_reno(tp))
1803                 tcp_reset_reno_sack(tp);
1804
1805         tcp_for_write_queue(skb, sk) {
1806                 if (skb == tcp_send_head(sk))
1807                         break;
1808
1809                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1810                 /*
1811                  * Count the retransmission made on RTO correctly (only when
1812                  * waiting for the first ACK and did not get it)...
1813                  */
1814                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1815                         /* For some reason this R-bit might get cleared? */
1816                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1817                                 tp->retrans_out += tcp_skb_pcount(skb);
1818                         /* ...enter this if branch just for the first segment */
1819                         flag |= FLAG_DATA_ACKED;
1820                 } else {
1821                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1822                                 tp->undo_marker = 0;
1823                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1824                 }
1825
1826                 /* Don't lost mark skbs that were fwd transmitted after RTO */
1827                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) &&
1828                     !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1829                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1830                         tp->lost_out += tcp_skb_pcount(skb);
1831                 }
1832         }
1833         tcp_verify_left_out(tp);
1834
1835         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1836         tp->snd_cwnd_cnt = 0;
1837         tp->snd_cwnd_stamp = tcp_time_stamp;
1838         tp->frto_counter = 0;
1839         tp->bytes_acked = 0;
1840
1841         tp->reordering = min_t(unsigned int, tp->reordering,
1842                                sysctl_tcp_reordering);
1843         tcp_set_ca_state(sk, TCP_CA_Loss);
1844         tp->high_seq = tp->frto_highmark;
1845         TCP_ECN_queue_cwr(tp);
1846
1847         tcp_clear_retrans_hints_partial(tp);
1848 }
1849
1850 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1851 {
1852         tp->retrans_out = 0;
1853         tp->lost_out = 0;
1854
1855         tp->undo_marker = 0;
1856         tp->undo_retrans = 0;
1857 }
1858
1859 void tcp_clear_retrans(struct tcp_sock *tp)
1860 {
1861         tcp_clear_retrans_partial(tp);
1862
1863         tp->fackets_out = 0;
1864         tp->sacked_out = 0;
1865 }
1866
1867 /* Enter Loss state. If "how" is not zero, forget all SACK information
1868  * and reset tags completely, otherwise preserve SACKs. If receiver
1869  * dropped its ofo queue, we will know this due to reneging detection.
1870  */
1871 void tcp_enter_loss(struct sock *sk, int how)
1872 {
1873         const struct inet_connection_sock *icsk = inet_csk(sk);
1874         struct tcp_sock *tp = tcp_sk(sk);
1875         struct sk_buff *skb;
1876
1877         /* Reduce ssthresh if it has not yet been made inside this window. */
1878         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1879             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1880                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1881                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1882                 tcp_ca_event(sk, CA_EVENT_LOSS);
1883         }
1884         tp->snd_cwnd       = 1;
1885         tp->snd_cwnd_cnt   = 0;
1886         tp->snd_cwnd_stamp = tcp_time_stamp;
1887
1888         tp->bytes_acked = 0;
1889         tcp_clear_retrans_partial(tp);
1890
1891         if (tcp_is_reno(tp))
1892                 tcp_reset_reno_sack(tp);
1893
1894         if (!how) {
1895                 /* Push undo marker, if it was plain RTO and nothing
1896                  * was retransmitted. */
1897                 tp->undo_marker = tp->snd_una;
1898                 tcp_clear_retrans_hints_partial(tp);
1899         } else {
1900                 tp->sacked_out = 0;
1901                 tp->fackets_out = 0;
1902                 tcp_clear_all_retrans_hints(tp);
1903         }
1904
1905         tcp_for_write_queue(skb, sk) {
1906                 if (skb == tcp_send_head(sk))
1907                         break;
1908
1909                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1910                         tp->undo_marker = 0;
1911                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1912                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1913                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1914                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1915                         tp->lost_out += tcp_skb_pcount(skb);
1916                 }
1917         }
1918         tcp_verify_left_out(tp);
1919
1920         tp->reordering = min_t(unsigned int, tp->reordering,
1921                                sysctl_tcp_reordering);
1922         tcp_set_ca_state(sk, TCP_CA_Loss);
1923         tp->high_seq = tp->snd_nxt;
1924         TCP_ECN_queue_cwr(tp);
1925         /* Abort F-RTO algorithm if one is in progress */
1926         tp->frto_counter = 0;
1927 }
1928
1929 /* If ACK arrived pointing to a remembered SACK, it means that our
1930  * remembered SACKs do not reflect real state of receiver i.e.
1931  * receiver _host_ is heavily congested (or buggy).
1932  *
1933  * Do processing similar to RTO timeout.
1934  */
1935 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1936 {
1937         if (flag & FLAG_SACK_RENEGING) {
1938                 struct inet_connection_sock *icsk = inet_csk(sk);
1939                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1940
1941                 tcp_enter_loss(sk, 1);
1942                 icsk->icsk_retransmits++;
1943                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1944                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1945                                           icsk->icsk_rto, TCP_RTO_MAX);
1946                 return 1;
1947         }
1948         return 0;
1949 }
1950
1951 static inline int tcp_fackets_out(struct tcp_sock *tp)
1952 {
1953         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1954 }
1955
1956 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1957  * counter when SACK is enabled (without SACK, sacked_out is used for
1958  * that purpose).
1959  *
1960  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1961  * segments up to the highest received SACK block so far and holes in
1962  * between them.
1963  *
1964  * With reordering, holes may still be in flight, so RFC3517 recovery
1965  * uses pure sacked_out (total number of SACKed segments) even though
1966  * it violates the RFC that uses duplicate ACKs, often these are equal
1967  * but when e.g. out-of-window ACKs or packet duplication occurs,
1968  * they differ. Since neither occurs due to loss, TCP should really
1969  * ignore them.
1970  */
1971 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1972 {
1973         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1974 }
1975
1976 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1977 {
1978         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1979 }
1980
1981 static inline int tcp_head_timedout(struct sock *sk)
1982 {
1983         struct tcp_sock *tp = tcp_sk(sk);
1984
1985         return tp->packets_out &&
1986                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1987 }
1988
1989 /* Linux NewReno/SACK/FACK/ECN state machine.
1990  * --------------------------------------
1991  *
1992  * "Open"       Normal state, no dubious events, fast path.
1993  * "Disorder"   In all the respects it is "Open",
1994  *              but requires a bit more attention. It is entered when
1995  *              we see some SACKs or dupacks. It is split of "Open"
1996  *              mainly to move some processing from fast path to slow one.
1997  * "CWR"        CWND was reduced due to some Congestion Notification event.
1998  *              It can be ECN, ICMP source quench, local device congestion.
1999  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2000  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2001  *
2002  * tcp_fastretrans_alert() is entered:
2003  * - each incoming ACK, if state is not "Open"
2004  * - when arrived ACK is unusual, namely:
2005  *      * SACK
2006  *      * Duplicate ACK.
2007  *      * ECN ECE.
2008  *
2009  * Counting packets in flight is pretty simple.
2010  *
2011  *      in_flight = packets_out - left_out + retrans_out
2012  *
2013  *      packets_out is SND.NXT-SND.UNA counted in packets.
2014  *
2015  *      retrans_out is number of retransmitted segments.
2016  *
2017  *      left_out is number of segments left network, but not ACKed yet.
2018  *
2019  *              left_out = sacked_out + lost_out
2020  *
2021  *     sacked_out: Packets, which arrived to receiver out of order
2022  *                 and hence not ACKed. With SACKs this number is simply
2023  *                 amount of SACKed data. Even without SACKs
2024  *                 it is easy to give pretty reliable estimate of this number,
2025  *                 counting duplicate ACKs.
2026  *
2027  *       lost_out: Packets lost by network. TCP has no explicit
2028  *                 "loss notification" feedback from network (for now).
2029  *                 It means that this number can be only _guessed_.
2030  *                 Actually, it is the heuristics to predict lossage that
2031  *                 distinguishes different algorithms.
2032  *
2033  *      F.e. after RTO, when all the queue is considered as lost,
2034  *      lost_out = packets_out and in_flight = retrans_out.
2035  *
2036  *              Essentially, we have now two algorithms counting
2037  *              lost packets.
2038  *
2039  *              FACK: It is the simplest heuristics. As soon as we decided
2040  *              that something is lost, we decide that _all_ not SACKed
2041  *              packets until the most forward SACK are lost. I.e.
2042  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2043  *              It is absolutely correct estimate, if network does not reorder
2044  *              packets. And it loses any connection to reality when reordering
2045  *              takes place. We use FACK by default until reordering
2046  *              is suspected on the path to this destination.
2047  *
2048  *              NewReno: when Recovery is entered, we assume that one segment
2049  *              is lost (classic Reno). While we are in Recovery and
2050  *              a partial ACK arrives, we assume that one more packet
2051  *              is lost (NewReno). This heuristics are the same in NewReno
2052  *              and SACK.
2053  *
2054  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2055  *  deflation etc. CWND is real congestion window, never inflated, changes
2056  *  only according to classic VJ rules.
2057  *
2058  * Really tricky (and requiring careful tuning) part of algorithm
2059  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2060  * The first determines the moment _when_ we should reduce CWND and,
2061  * hence, slow down forward transmission. In fact, it determines the moment
2062  * when we decide that hole is caused by loss, rather than by a reorder.
2063  *
2064  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2065  * holes, caused by lost packets.
2066  *
2067  * And the most logically complicated part of algorithm is undo
2068  * heuristics. We detect false retransmits due to both too early
2069  * fast retransmit (reordering) and underestimated RTO, analyzing
2070  * timestamps and D-SACKs. When we detect that some segments were
2071  * retransmitted by mistake and CWND reduction was wrong, we undo
2072  * window reduction and abort recovery phase. This logic is hidden
2073  * inside several functions named tcp_try_undo_<something>.
2074  */
2075
2076 /* This function decides, when we should leave Disordered state
2077  * and enter Recovery phase, reducing congestion window.
2078  *
2079  * Main question: may we further continue forward transmission
2080  * with the same cwnd?
2081  */
2082 static int tcp_time_to_recover(struct sock *sk)
2083 {
2084         struct tcp_sock *tp = tcp_sk(sk);
2085         __u32 packets_out;
2086
2087         /* Do not perform any recovery during F-RTO algorithm */
2088         if (tp->frto_counter)
2089                 return 0;
2090
2091         /* Trick#1: The loss is proven. */
2092         if (tp->lost_out)
2093                 return 1;
2094
2095         /* Not-A-Trick#2 : Classic rule... */
2096         if (tcp_dupack_heurestics(tp) > tp->reordering)
2097                 return 1;
2098
2099         /* Trick#3 : when we use RFC2988 timer restart, fast
2100          * retransmit can be triggered by timeout of queue head.
2101          */
2102         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2103                 return 1;
2104
2105         /* Trick#4: It is still not OK... But will it be useful to delay
2106          * recovery more?
2107          */
2108         packets_out = tp->packets_out;
2109         if (packets_out <= tp->reordering &&
2110             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2111             !tcp_may_send_now(sk)) {
2112                 /* We have nothing to send. This connection is limited
2113                  * either by receiver window or by application.
2114                  */
2115                 return 1;
2116         }
2117
2118         return 0;
2119 }
2120
2121 /* RFC: This is from the original, I doubt that this is necessary at all:
2122  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2123  * retransmitted past LOST markings in the first place? I'm not fully sure
2124  * about undo and end of connection cases, which can cause R without L?
2125  */
2126 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2127 {
2128         if ((tp->retransmit_skb_hint != NULL) &&
2129             before(TCP_SKB_CB(skb)->seq,
2130                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2131                 tp->retransmit_skb_hint = NULL;
2132 }
2133
2134 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2135  * is against sacked "cnt", otherwise it's against facked "cnt"
2136  */
2137 static void tcp_mark_head_lost(struct sock *sk, int packets)
2138 {
2139         struct tcp_sock *tp = tcp_sk(sk);
2140         struct sk_buff *skb;
2141         int cnt;
2142
2143         BUG_TRAP(packets <= tp->packets_out);
2144         if (tp->lost_skb_hint) {
2145                 skb = tp->lost_skb_hint;
2146                 cnt = tp->lost_cnt_hint;
2147         } else {
2148                 skb = tcp_write_queue_head(sk);
2149                 cnt = 0;
2150         }
2151
2152         tcp_for_write_queue_from(skb, sk) {
2153                 if (skb == tcp_send_head(sk))
2154                         break;
2155                 /* TODO: do this better */
2156                 /* this is not the most efficient way to do this... */
2157                 tp->lost_skb_hint = skb;
2158                 tp->lost_cnt_hint = cnt;
2159
2160                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2161                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2162                         cnt += tcp_skb_pcount(skb);
2163
2164                 if ((cnt > packets) ||
2165                     after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2166                         break;
2167                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2168                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2169                         tp->lost_out += tcp_skb_pcount(skb);
2170                         tcp_verify_retransmit_hint(tp, skb);
2171                 }
2172         }
2173         tcp_verify_left_out(tp);
2174 }
2175
2176 /* Account newly detected lost packet(s) */
2177
2178 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2179 {
2180         struct tcp_sock *tp = tcp_sk(sk);
2181
2182         if (tcp_is_reno(tp)) {
2183                 tcp_mark_head_lost(sk, 1);
2184         } else if (tcp_is_fack(tp)) {
2185                 int lost = tp->fackets_out - tp->reordering;
2186                 if (lost <= 0)
2187                         lost = 1;
2188                 tcp_mark_head_lost(sk, lost);
2189         } else {
2190                 int sacked_upto = tp->sacked_out - tp->reordering;
2191                 if (sacked_upto < fast_rexmit)
2192                         sacked_upto = fast_rexmit;
2193                 tcp_mark_head_lost(sk, sacked_upto);
2194         }
2195
2196         /* New heuristics: it is possible only after we switched
2197          * to restart timer each time when something is ACKed.
2198          * Hence, we can detect timed out packets during fast
2199          * retransmit without falling to slow start.
2200          */
2201         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2202                 struct sk_buff *skb;
2203
2204                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2205                         : tcp_write_queue_head(sk);
2206
2207                 tcp_for_write_queue_from(skb, sk) {
2208                         if (skb == tcp_send_head(sk))
2209                                 break;
2210                         if (!tcp_skb_timedout(sk, skb))
2211                                 break;
2212
2213                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2214                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2215                                 tp->lost_out += tcp_skb_pcount(skb);
2216                                 tcp_verify_retransmit_hint(tp, skb);
2217                         }
2218                 }
2219
2220                 tp->scoreboard_skb_hint = skb;
2221
2222                 tcp_verify_left_out(tp);
2223         }
2224 }
2225
2226 /* CWND moderation, preventing bursts due to too big ACKs
2227  * in dubious situations.
2228  */
2229 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2230 {
2231         tp->snd_cwnd = min(tp->snd_cwnd,
2232                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2233         tp->snd_cwnd_stamp = tcp_time_stamp;
2234 }
2235
2236 /* Lower bound on congestion window is slow start threshold
2237  * unless congestion avoidance choice decides to overide it.
2238  */
2239 static inline u32 tcp_cwnd_min(const struct sock *sk)
2240 {
2241         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2242
2243         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2244 }
2245
2246 /* Decrease cwnd each second ack. */
2247 static void tcp_cwnd_down(struct sock *sk, int flag)
2248 {
2249         struct tcp_sock *tp = tcp_sk(sk);
2250         int decr = tp->snd_cwnd_cnt + 1;
2251
2252         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2253             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2254                 tp->snd_cwnd_cnt = decr & 1;
2255                 decr >>= 1;
2256
2257                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2258                         tp->snd_cwnd -= decr;
2259
2260                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2261                 tp->snd_cwnd_stamp = tcp_time_stamp;
2262         }
2263 }
2264
2265 /* Nothing was retransmitted or returned timestamp is less
2266  * than timestamp of the first retransmission.
2267  */
2268 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2269 {
2270         return !tp->retrans_stamp ||
2271                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2272                  (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2273 }
2274
2275 /* Undo procedures. */
2276
2277 #if FASTRETRANS_DEBUG > 1
2278 static void DBGUNDO(struct sock *sk, const char *msg)
2279 {
2280         struct tcp_sock *tp = tcp_sk(sk);
2281         struct inet_sock *inet = inet_sk(sk);
2282
2283         printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2284                msg,
2285                NIPQUAD(inet->daddr), ntohs(inet->dport),
2286                tp->snd_cwnd, tcp_left_out(tp),
2287                tp->snd_ssthresh, tp->prior_ssthresh,
2288                tp->packets_out);
2289 }
2290 #else
2291 #define DBGUNDO(x...) do { } while (0)
2292 #endif
2293
2294 static void tcp_undo_cwr(struct sock *sk, const int undo)
2295 {
2296         struct tcp_sock *tp = tcp_sk(sk);
2297
2298         if (tp->prior_ssthresh) {
2299                 const struct inet_connection_sock *icsk = inet_csk(sk);
2300
2301                 if (icsk->icsk_ca_ops->undo_cwnd)
2302                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2303                 else
2304                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2305
2306                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2307                         tp->snd_ssthresh = tp->prior_ssthresh;
2308                         TCP_ECN_withdraw_cwr(tp);
2309                 }
2310         } else {
2311                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2312         }
2313         tcp_moderate_cwnd(tp);
2314         tp->snd_cwnd_stamp = tcp_time_stamp;
2315
2316         /* There is something screwy going on with the retrans hints after
2317            an undo */
2318         tcp_clear_all_retrans_hints(tp);
2319 }
2320
2321 static inline int tcp_may_undo(struct tcp_sock *tp)
2322 {
2323         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2324 }
2325
2326 /* People celebrate: "We love our President!" */
2327 static int tcp_try_undo_recovery(struct sock *sk)
2328 {
2329         struct tcp_sock *tp = tcp_sk(sk);
2330
2331         if (tcp_may_undo(tp)) {
2332                 /* Happy end! We did not retransmit anything
2333                  * or our original transmission succeeded.
2334                  */
2335                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2336                 tcp_undo_cwr(sk, 1);
2337                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2338                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2339                 else
2340                         NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2341                 tp->undo_marker = 0;
2342         }
2343         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2344                 /* Hold old state until something *above* high_seq
2345                  * is ACKed. For Reno it is MUST to prevent false
2346                  * fast retransmits (RFC2582). SACK TCP is safe. */
2347                 tcp_moderate_cwnd(tp);
2348                 return 1;
2349         }
2350         tcp_set_ca_state(sk, TCP_CA_Open);
2351         return 0;
2352 }
2353
2354 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2355 static void tcp_try_undo_dsack(struct sock *sk)
2356 {
2357         struct tcp_sock *tp = tcp_sk(sk);
2358
2359         if (tp->undo_marker && !tp->undo_retrans) {
2360                 DBGUNDO(sk, "D-SACK");
2361                 tcp_undo_cwr(sk, 1);
2362                 tp->undo_marker = 0;
2363                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2364         }
2365 }
2366
2367 /* Undo during fast recovery after partial ACK. */
2368
2369 static int tcp_try_undo_partial(struct sock *sk, int acked)
2370 {
2371         struct tcp_sock *tp = tcp_sk(sk);
2372         /* Partial ACK arrived. Force Hoe's retransmit. */
2373         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2374
2375         if (tcp_may_undo(tp)) {
2376                 /* Plain luck! Hole if filled with delayed
2377                  * packet, rather than with a retransmit.
2378                  */
2379                 if (tp->retrans_out == 0)
2380                         tp->retrans_stamp = 0;
2381
2382                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2383
2384                 DBGUNDO(sk, "Hoe");
2385                 tcp_undo_cwr(sk, 0);
2386                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2387
2388                 /* So... Do not make Hoe's retransmit yet.
2389                  * If the first packet was delayed, the rest
2390                  * ones are most probably delayed as well.
2391                  */
2392                 failed = 0;
2393         }
2394         return failed;
2395 }
2396
2397 /* Undo during loss recovery after partial ACK. */
2398 static int tcp_try_undo_loss(struct sock *sk)
2399 {
2400         struct tcp_sock *tp = tcp_sk(sk);
2401
2402         if (tcp_may_undo(tp)) {
2403                 struct sk_buff *skb;
2404                 tcp_for_write_queue(skb, sk) {
2405                         if (skb == tcp_send_head(sk))
2406                                 break;
2407                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2408                 }
2409
2410                 tcp_clear_all_retrans_hints(tp);
2411
2412                 DBGUNDO(sk, "partial loss");
2413                 tp->lost_out = 0;
2414                 tcp_undo_cwr(sk, 1);
2415                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2416                 inet_csk(sk)->icsk_retransmits = 0;
2417                 tp->undo_marker = 0;
2418                 if (tcp_is_sack(tp))
2419                         tcp_set_ca_state(sk, TCP_CA_Open);
2420                 return 1;
2421         }
2422         return 0;
2423 }
2424
2425 static inline void tcp_complete_cwr(struct sock *sk)
2426 {
2427         struct tcp_sock *tp = tcp_sk(sk);
2428         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2429         tp->snd_cwnd_stamp = tcp_time_stamp;
2430         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2431 }
2432
2433 static void tcp_try_to_open(struct sock *sk, int flag)
2434 {
2435         struct tcp_sock *tp = tcp_sk(sk);
2436
2437         tcp_verify_left_out(tp);
2438
2439         if (tp->retrans_out == 0)
2440                 tp->retrans_stamp = 0;
2441
2442         if (flag & FLAG_ECE)
2443                 tcp_enter_cwr(sk, 1);
2444
2445         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2446                 int state = TCP_CA_Open;
2447
2448                 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2449                         state = TCP_CA_Disorder;
2450
2451                 if (inet_csk(sk)->icsk_ca_state != state) {
2452                         tcp_set_ca_state(sk, state);
2453                         tp->high_seq = tp->snd_nxt;
2454                 }
2455                 tcp_moderate_cwnd(tp);
2456         } else {
2457                 tcp_cwnd_down(sk, flag);
2458         }
2459 }
2460
2461 static void tcp_mtup_probe_failed(struct sock *sk)
2462 {
2463         struct inet_connection_sock *icsk = inet_csk(sk);
2464
2465         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2466         icsk->icsk_mtup.probe_size = 0;
2467 }
2468
2469 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2470 {
2471         struct tcp_sock *tp = tcp_sk(sk);
2472         struct inet_connection_sock *icsk = inet_csk(sk);
2473
2474         /* FIXME: breaks with very large cwnd */
2475         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2476         tp->snd_cwnd = tp->snd_cwnd *
2477                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2478                        icsk->icsk_mtup.probe_size;
2479         tp->snd_cwnd_cnt = 0;
2480         tp->snd_cwnd_stamp = tcp_time_stamp;
2481         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2482
2483         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2484         icsk->icsk_mtup.probe_size = 0;
2485         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2486 }
2487
2488 /* Process an event, which can update packets-in-flight not trivially.
2489  * Main goal of this function is to calculate new estimate for left_out,
2490  * taking into account both packets sitting in receiver's buffer and
2491  * packets lost by network.
2492  *
2493  * Besides that it does CWND reduction, when packet loss is detected
2494  * and changes state of machine.
2495  *
2496  * It does _not_ decide what to send, it is made in function
2497  * tcp_xmit_retransmit_queue().
2498  */
2499 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2500 {
2501         struct inet_connection_sock *icsk = inet_csk(sk);
2502         struct tcp_sock *tp = tcp_sk(sk);
2503         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2504         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2505                                     (tcp_fackets_out(tp) > tp->reordering));
2506         int fast_rexmit = 0;
2507
2508         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2509                 tp->sacked_out = 0;
2510         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2511                 tp->fackets_out = 0;
2512
2513         /* Now state machine starts.
2514          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2515         if (flag & FLAG_ECE)
2516                 tp->prior_ssthresh = 0;
2517
2518         /* B. In all the states check for reneging SACKs. */
2519         if (tcp_check_sack_reneging(sk, flag))
2520                 return;
2521
2522         /* C. Process data loss notification, provided it is valid. */
2523         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2524             before(tp->snd_una, tp->high_seq) &&
2525             icsk->icsk_ca_state != TCP_CA_Open &&
2526             tp->fackets_out > tp->reordering) {
2527                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2528                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2529         }
2530
2531         /* D. Check consistency of the current state. */
2532         tcp_verify_left_out(tp);
2533
2534         /* E. Check state exit conditions. State can be terminated
2535          *    when high_seq is ACKed. */
2536         if (icsk->icsk_ca_state == TCP_CA_Open) {
2537                 BUG_TRAP(tp->retrans_out == 0);
2538                 tp->retrans_stamp = 0;
2539         } else if (!before(tp->snd_una, tp->high_seq)) {
2540                 switch (icsk->icsk_ca_state) {
2541                 case TCP_CA_Loss:
2542                         icsk->icsk_retransmits = 0;
2543                         if (tcp_try_undo_recovery(sk))
2544                                 return;
2545                         break;
2546
2547                 case TCP_CA_CWR:
2548                         /* CWR is to be held something *above* high_seq
2549                          * is ACKed for CWR bit to reach receiver. */
2550                         if (tp->snd_una != tp->high_seq) {
2551                                 tcp_complete_cwr(sk);
2552                                 tcp_set_ca_state(sk, TCP_CA_Open);
2553                         }
2554                         break;
2555
2556                 case TCP_CA_Disorder:
2557                         tcp_try_undo_dsack(sk);
2558                         if (!tp->undo_marker ||
2559                             /* For SACK case do not Open to allow to undo
2560                              * catching for all duplicate ACKs. */
2561                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2562                                 tp->undo_marker = 0;
2563                                 tcp_set_ca_state(sk, TCP_CA_Open);
2564                         }
2565                         break;
2566
2567                 case TCP_CA_Recovery:
2568                         if (tcp_is_reno(tp))
2569                                 tcp_reset_reno_sack(tp);
2570                         if (tcp_try_undo_recovery(sk))
2571                                 return;
2572                         tcp_complete_cwr(sk);
2573                         break;
2574                 }
2575         }
2576
2577         /* F. Process state. */
2578         switch (icsk->icsk_ca_state) {
2579         case TCP_CA_Recovery:
2580                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2581                         if (tcp_is_reno(tp) && is_dupack)
2582                                 tcp_add_reno_sack(sk);
2583                 } else
2584                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2585                 break;
2586         case TCP_CA_Loss:
2587                 if (flag & FLAG_DATA_ACKED)
2588                         icsk->icsk_retransmits = 0;
2589                 if (!tcp_try_undo_loss(sk)) {
2590                         tcp_moderate_cwnd(tp);
2591                         tcp_xmit_retransmit_queue(sk);
2592                         return;
2593                 }
2594                 if (icsk->icsk_ca_state != TCP_CA_Open)
2595                         return;
2596                 /* Loss is undone; fall through to processing in Open state. */
2597         default:
2598                 if (tcp_is_reno(tp)) {
2599                         if (flag & FLAG_SND_UNA_ADVANCED)
2600                                 tcp_reset_reno_sack(tp);
2601                         if (is_dupack)
2602                                 tcp_add_reno_sack(sk);
2603                 }
2604
2605                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2606                         tcp_try_undo_dsack(sk);
2607
2608                 if (!tcp_time_to_recover(sk)) {
2609                         tcp_try_to_open(sk, flag);
2610                         return;
2611                 }
2612
2613                 /* MTU probe failure: don't reduce cwnd */
2614                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2615                     icsk->icsk_mtup.probe_size &&
2616                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2617                         tcp_mtup_probe_failed(sk);
2618                         /* Restores the reduction we did in tcp_mtup_probe() */
2619                         tp->snd_cwnd++;
2620                         tcp_simple_retransmit(sk);
2621                         return;
2622                 }
2623
2624                 /* Otherwise enter Recovery state */
2625
2626                 if (tcp_is_reno(tp))
2627                         NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2628                 else
2629                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2630
2631                 tp->high_seq = tp->snd_nxt;
2632                 tp->prior_ssthresh = 0;
2633                 tp->undo_marker = tp->snd_una;
2634                 tp->undo_retrans = tp->retrans_out;
2635
2636                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2637                         if (!(flag & FLAG_ECE))
2638                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2639                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2640                         TCP_ECN_queue_cwr(tp);
2641                 }
2642
2643                 tp->bytes_acked = 0;
2644                 tp->snd_cwnd_cnt = 0;
2645                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2646                 fast_rexmit = 1;
2647         }
2648
2649         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2650                 tcp_update_scoreboard(sk, fast_rexmit);
2651         tcp_cwnd_down(sk, flag);
2652         tcp_xmit_retransmit_queue(sk);
2653 }
2654
2655 /* Read draft-ietf-tcplw-high-performance before mucking
2656  * with this code. (Supersedes RFC1323)
2657  */
2658 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2659 {
2660         /* RTTM Rule: A TSecr value received in a segment is used to
2661          * update the averaged RTT measurement only if the segment
2662          * acknowledges some new data, i.e., only if it advances the
2663          * left edge of the send window.
2664          *
2665          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2666          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2667          *
2668          * Changed: reset backoff as soon as we see the first valid sample.
2669          * If we do not, we get strongly overestimated rto. With timestamps
2670          * samples are accepted even from very old segments: f.e., when rtt=1
2671          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2672          * answer arrives rto becomes 120 seconds! If at least one of segments
2673          * in window is lost... Voila.                          --ANK (010210)
2674          */
2675         struct tcp_sock *tp = tcp_sk(sk);
2676         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2677         tcp_rtt_estimator(sk, seq_rtt);
2678         tcp_set_rto(sk);
2679         inet_csk(sk)->icsk_backoff = 0;
2680         tcp_bound_rto(sk);
2681 }
2682
2683 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2684 {
2685         /* We don't have a timestamp. Can only use
2686          * packets that are not retransmitted to determine
2687          * rtt estimates. Also, we must not reset the
2688          * backoff for rto until we get a non-retransmitted
2689          * packet. This allows us to deal with a situation
2690          * where the network delay has increased suddenly.
2691          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2692          */
2693
2694         if (flag & FLAG_RETRANS_DATA_ACKED)
2695                 return;
2696
2697         tcp_rtt_estimator(sk, seq_rtt);
2698         tcp_set_rto(sk);
2699         inet_csk(sk)->icsk_backoff = 0;
2700         tcp_bound_rto(sk);
2701 }
2702
2703 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2704                                       const s32 seq_rtt)
2705 {
2706         const struct tcp_sock *tp = tcp_sk(sk);
2707         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2708         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2709                 tcp_ack_saw_tstamp(sk, flag);
2710         else if (seq_rtt >= 0)
2711                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2712 }
2713
2714 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2715 {
2716         const struct inet_connection_sock *icsk = inet_csk(sk);
2717         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2718         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2719 }
2720
2721 /* Restart timer after forward progress on connection.
2722  * RFC2988 recommends to restart timer to now+rto.
2723  */
2724 static void tcp_rearm_rto(struct sock *sk)
2725 {
2726         struct tcp_sock *tp = tcp_sk(sk);
2727
2728         if (!tp->packets_out) {
2729                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2730         } else {
2731                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2732                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2733         }
2734 }
2735
2736 /* If we get here, the whole TSO packet has not been acked. */
2737 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2738 {
2739         struct tcp_sock *tp = tcp_sk(sk);
2740         u32 packets_acked;
2741
2742         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2743
2744         packets_acked = tcp_skb_pcount(skb);
2745         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2746                 return 0;
2747         packets_acked -= tcp_skb_pcount(skb);
2748
2749         if (packets_acked) {
2750                 BUG_ON(tcp_skb_pcount(skb) == 0);
2751                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2752         }
2753
2754         return packets_acked;
2755 }
2756
2757 /* Remove acknowledged frames from the retransmission queue. If our packet
2758  * is before the ack sequence we can discard it as it's confirmed to have
2759  * arrived at the other end.
2760  */
2761 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2762 {
2763         struct tcp_sock *tp = tcp_sk(sk);
2764         const struct inet_connection_sock *icsk = inet_csk(sk);
2765         struct sk_buff *skb;
2766         u32 now = tcp_time_stamp;
2767         int fully_acked = 1;
2768         int flag = 0;
2769         u32 pkts_acked = 0;
2770         u32 reord = tp->packets_out;
2771         s32 seq_rtt = -1;
2772         s32 ca_seq_rtt = -1;
2773         ktime_t last_ackt = net_invalid_timestamp();
2774
2775         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2776                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2777                 u32 end_seq;
2778                 u32 acked_pcount;
2779                 u8 sacked = scb->sacked;
2780
2781                 /* Determine how many packets and what bytes were acked, tso and else */
2782                 if (after(scb->end_seq, tp->snd_una)) {
2783                         if (tcp_skb_pcount(skb) == 1 ||
2784                             !after(tp->snd_una, scb->seq))
2785                                 break;
2786
2787                         acked_pcount = tcp_tso_acked(sk, skb);
2788                         if (!acked_pcount)
2789                                 break;
2790
2791                         fully_acked = 0;
2792                         end_seq = tp->snd_una;
2793                 } else {
2794                         acked_pcount = tcp_skb_pcount(skb);
2795                         end_seq = scb->end_seq;
2796                 }
2797
2798                 /* MTU probing checks */
2799                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2800                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2801                         tcp_mtup_probe_success(sk, skb);
2802                 }
2803
2804                 if (sacked & TCPCB_RETRANS) {
2805                         if (sacked & TCPCB_SACKED_RETRANS)
2806                                 tp->retrans_out -= acked_pcount;
2807                         flag |= FLAG_RETRANS_DATA_ACKED;
2808                         ca_seq_rtt = -1;
2809                         seq_rtt = -1;
2810                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2811                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2812                 } else {
2813                         ca_seq_rtt = now - scb->when;
2814                         last_ackt = skb->tstamp;
2815                         if (seq_rtt < 0) {
2816                                 seq_rtt = ca_seq_rtt;
2817                         }
2818                         if (!(sacked & TCPCB_SACKED_ACKED))
2819                                 reord = min(pkts_acked, reord);
2820                 }
2821
2822                 if (sacked & TCPCB_SACKED_ACKED)
2823                         tp->sacked_out -= acked_pcount;
2824                 if (sacked & TCPCB_LOST)
2825                         tp->lost_out -= acked_pcount;
2826
2827                 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2828                         tp->urg_mode = 0;
2829
2830                 tp->packets_out -= acked_pcount;
2831                 pkts_acked += acked_pcount;
2832
2833                 /* Initial outgoing SYN's get put onto the write_queue
2834                  * just like anything else we transmit.  It is not
2835                  * true data, and if we misinform our callers that
2836                  * this ACK acks real data, we will erroneously exit
2837                  * connection startup slow start one packet too
2838                  * quickly.  This is severely frowned upon behavior.
2839                  */
2840                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2841                         flag |= FLAG_DATA_ACKED;
2842                 } else {
2843                         flag |= FLAG_SYN_ACKED;
2844                         tp->retrans_stamp = 0;
2845                 }
2846
2847                 if (!fully_acked)
2848                         break;
2849
2850                 tcp_unlink_write_queue(skb, sk);
2851                 sk_wmem_free_skb(sk, skb);
2852                 tcp_clear_all_retrans_hints(tp);
2853         }
2854
2855         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2856                 flag |= FLAG_SACK_RENEGING;
2857
2858         if (flag & FLAG_ACKED) {
2859                 const struct tcp_congestion_ops *ca_ops
2860                         = inet_csk(sk)->icsk_ca_ops;
2861
2862                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2863                 tcp_rearm_rto(sk);
2864
2865                 if (tcp_is_reno(tp)) {
2866                         tcp_remove_reno_sacks(sk, pkts_acked);
2867                 } else {
2868                         /* Non-retransmitted hole got filled? That's reordering */
2869                         if (reord < prior_fackets)
2870                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2871                 }
2872
2873                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2874
2875                 if (ca_ops->pkts_acked) {
2876                         s32 rtt_us = -1;
2877
2878                         /* Is the ACK triggering packet unambiguous? */
2879                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2880                                 /* High resolution needed and available? */
2881                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2882                                     !ktime_equal(last_ackt,
2883                                                  net_invalid_timestamp()))
2884                                         rtt_us = ktime_us_delta(ktime_get_real(),
2885                                                                 last_ackt);
2886                                 else if (ca_seq_rtt > 0)
2887                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2888                         }
2889
2890                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2891                 }
2892         }
2893
2894 #if FASTRETRANS_DEBUG > 0
2895         BUG_TRAP((int)tp->sacked_out >= 0);
2896         BUG_TRAP((int)tp->lost_out >= 0);
2897         BUG_TRAP((int)tp->retrans_out >= 0);
2898         if (!tp->packets_out && tcp_is_sack(tp)) {
2899                 icsk = inet_csk(sk);
2900                 if (tp->lost_out) {
2901                         printk(KERN_DEBUG "Leak l=%u %d\n",
2902                                tp->lost_out, icsk->icsk_ca_state);
2903                         tp->lost_out = 0;
2904                 }
2905                 if (tp->sacked_out) {
2906                         printk(KERN_DEBUG "Leak s=%u %d\n",
2907                                tp->sacked_out, icsk->icsk_ca_state);
2908                         tp->sacked_out = 0;
2909                 }
2910                 if (tp->retrans_out) {
2911                         printk(KERN_DEBUG "Leak r=%u %d\n",
2912                                tp->retrans_out, icsk->icsk_ca_state);
2913                         tp->retrans_out = 0;
2914                 }
2915         }
2916 #endif
2917         return flag;
2918 }
2919
2920 static void tcp_ack_probe(struct sock *sk)
2921 {
2922         const struct tcp_sock *tp = tcp_sk(sk);
2923         struct inet_connection_sock *icsk = inet_csk(sk);
2924
2925         /* Was it a usable window open? */
2926
2927         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2928                 icsk->icsk_backoff = 0;
2929                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2930                 /* Socket must be waked up by subsequent tcp_data_snd_check().
2931                  * This function is not for random using!
2932                  */
2933         } else {
2934                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2935                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2936                                           TCP_RTO_MAX);
2937         }
2938 }
2939
2940 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2941 {
2942         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2943                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2944 }
2945
2946 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2947 {
2948         const struct tcp_sock *tp = tcp_sk(sk);
2949         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2950                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2951 }
2952
2953 /* Check that window update is acceptable.
2954  * The function assumes that snd_una<=ack<=snd_next.
2955  */
2956 static inline int tcp_may_update_window(const struct tcp_sock *tp,
2957                                         const u32 ack, const u32 ack_seq,
2958                                         const u32 nwin)
2959 {
2960         return (after(ack, tp->snd_una) ||
2961                 after(ack_seq, tp->snd_wl1) ||
2962                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2963 }
2964
2965 /* Update our send window.
2966  *
2967  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2968  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2969  */
2970 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2971                                  u32 ack_seq)
2972 {
2973         struct tcp_sock *tp = tcp_sk(sk);
2974         int flag = 0;
2975         u32 nwin = ntohs(tcp_hdr(skb)->window);
2976
2977         if (likely(!tcp_hdr(skb)->syn))
2978                 nwin <<= tp->rx_opt.snd_wscale;
2979
2980         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2981                 flag |= FLAG_WIN_UPDATE;
2982                 tcp_update_wl(tp, ack, ack_seq);
2983
2984                 if (tp->snd_wnd != nwin) {
2985                         tp->snd_wnd = nwin;
2986
2987                         /* Note, it is the only place, where
2988                          * fast path is recovered for sending TCP.
2989                          */
2990                         tp->pred_flags = 0;
2991                         tcp_fast_path_check(sk);
2992
2993                         if (nwin > tp->max_window) {
2994                                 tp->max_window = nwin;
2995                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2996                         }
2997                 }
2998         }
2999
3000         tp->snd_una = ack;
3001
3002         return flag;
3003 }
3004
3005 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3006  * continue in congestion avoidance.
3007  */
3008 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3009 {
3010         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3011         tp->snd_cwnd_cnt = 0;
3012         tp->bytes_acked = 0;
3013         TCP_ECN_queue_cwr(tp);
3014         tcp_moderate_cwnd(tp);
3015 }
3016
3017 /* A conservative spurious RTO response algorithm: reduce cwnd using
3018  * rate halving and continue in congestion avoidance.
3019  */
3020 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3021 {
3022         tcp_enter_cwr(sk, 0);
3023 }
3024
3025 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3026 {
3027         if (flag & FLAG_ECE)
3028                 tcp_ratehalving_spur_to_response(sk);
3029         else
3030                 tcp_undo_cwr(sk, 1);
3031 }
3032
3033 /* F-RTO spurious RTO detection algorithm (RFC4138)
3034  *
3035  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3036  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3037  * window (but not to or beyond highest sequence sent before RTO):
3038  *   On First ACK,  send two new segments out.
3039  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3040  *                  algorithm is not part of the F-RTO detection algorithm
3041  *                  given in RFC4138 but can be selected separately).
3042  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3043  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3044  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3045  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3046  *
3047  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3048  * original window even after we transmit two new data segments.
3049  *
3050  * SACK version:
3051  *   on first step, wait until first cumulative ACK arrives, then move to
3052  *   the second step. In second step, the next ACK decides.
3053  *
3054  * F-RTO is implemented (mainly) in four functions:
3055  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3056  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3057  *     called when tcp_use_frto() showed green light
3058  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3059  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3060  *     to prove that the RTO is indeed spurious. It transfers the control
3061  *     from F-RTO to the conventional RTO recovery
3062  */
3063 static int tcp_process_frto(struct sock *sk, int flag)
3064 {
3065         struct tcp_sock *tp = tcp_sk(sk);
3066
3067         tcp_verify_left_out(tp);
3068
3069         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3070         if (flag & FLAG_DATA_ACKED)
3071                 inet_csk(sk)->icsk_retransmits = 0;
3072
3073         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3074             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3075                 tp->undo_marker = 0;
3076
3077         if (!before(tp->snd_una, tp->frto_highmark)) {
3078                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3079                 return 1;
3080         }
3081
3082         if (!IsSackFrto() || tcp_is_reno(tp)) {
3083                 /* RFC4138 shortcoming in step 2; should also have case c):
3084                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3085                  * data, winupdate
3086                  */
3087                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3088                         return 1;
3089
3090                 if (!(flag & FLAG_DATA_ACKED)) {
3091                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3092                                             flag);
3093                         return 1;
3094                 }
3095         } else {
3096                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3097                         /* Prevent sending of new data. */
3098                         tp->snd_cwnd = min(tp->snd_cwnd,
3099                                            tcp_packets_in_flight(tp));
3100                         return 1;
3101                 }
3102
3103                 if ((tp->frto_counter >= 2) &&
3104                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3105                      ((flag & FLAG_DATA_SACKED) &&
3106                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3107                         /* RFC4138 shortcoming (see comment above) */
3108                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3109                             (flag & FLAG_NOT_DUP))
3110                                 return 1;
3111
3112                         tcp_enter_frto_loss(sk, 3, flag);
3113                         return 1;
3114                 }
3115         }
3116
3117         if (tp->frto_counter == 1) {
3118                 /* tcp_may_send_now needs to see updated state */
3119                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3120                 tp->frto_counter = 2;
3121
3122                 if (!tcp_may_send_now(sk))
3123                         tcp_enter_frto_loss(sk, 2, flag);
3124
3125                 return 1;
3126         } else {
3127                 switch (sysctl_tcp_frto_response) {
3128                 case 2:
3129                         tcp_undo_spur_to_response(sk, flag);
3130                         break;
3131                 case 1:
3132                         tcp_conservative_spur_to_response(tp);
3133                         break;
3134                 default:
3135                         tcp_ratehalving_spur_to_response(sk);
3136                         break;
3137                 }
3138                 tp->frto_counter = 0;
3139                 tp->undo_marker = 0;
3140                 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3141         }
3142         return 0;
3143 }
3144
3145 /* This routine deals with incoming acks, but not outgoing ones. */
3146 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3147 {
3148         struct inet_connection_sock *icsk = inet_csk(sk);
3149         struct tcp_sock *tp = tcp_sk(sk);
3150         u32 prior_snd_una = tp->snd_una;
3151         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3152         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3153         u32 prior_in_flight;
3154         u32 prior_fackets;
3155         int prior_packets;
3156         int frto_cwnd = 0;
3157
3158         /* If the ack is newer than sent or older than previous acks
3159          * then we can probably ignore it.
3160          */
3161         if (after(ack, tp->snd_nxt))
3162                 goto uninteresting_ack;
3163
3164         if (before(ack, prior_snd_una))
3165                 goto old_ack;
3166
3167         if (after(ack, prior_snd_una))
3168                 flag |= FLAG_SND_UNA_ADVANCED;
3169
3170         if (sysctl_tcp_abc) {
3171                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3172                         tp->bytes_acked += ack - prior_snd_una;
3173                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3174                         /* we assume just one segment left network */
3175                         tp->bytes_acked += min(ack - prior_snd_una,
3176                                                tp->mss_cache);
3177         }
3178
3179         prior_fackets = tp->fackets_out;
3180         prior_in_flight = tcp_packets_in_flight(tp);
3181
3182         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3183                 /* Window is constant, pure forward advance.
3184                  * No more checks are required.
3185                  * Note, we use the fact that SND.UNA>=SND.WL2.
3186                  */
3187                 tcp_update_wl(tp, ack, ack_seq);
3188                 tp->snd_una = ack;
3189                 flag |= FLAG_WIN_UPDATE;
3190
3191                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3192
3193                 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3194         } else {
3195                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3196                         flag |= FLAG_DATA;
3197                 else
3198                         NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3199
3200                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3201
3202                 if (TCP_SKB_CB(skb)->sacked)
3203                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3204
3205                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3206                         flag |= FLAG_ECE;
3207
3208                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3209         }
3210
3211         /* We passed data and got it acked, remove any soft error
3212          * log. Something worked...
3213          */
3214         sk->sk_err_soft = 0;
3215         tp->rcv_tstamp = tcp_time_stamp;
3216         prior_packets = tp->packets_out;
3217         if (!prior_packets)
3218                 goto no_queue;
3219
3220         /* See if we can take anything off of the retransmit queue. */
3221         flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3222
3223         if (tp->frto_counter)
3224                 frto_cwnd = tcp_process_frto(sk, flag);
3225         /* Guarantee sacktag reordering detection against wrap-arounds */
3226         if (before(tp->frto_highmark, tp->snd_una))
3227                 tp->frto_highmark = 0;
3228
3229         if (tcp_ack_is_dubious(sk, flag)) {
3230                 /* Advance CWND, if state allows this. */
3231                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3232                     tcp_may_raise_cwnd(sk, flag))
3233                         tcp_cong_avoid(sk, ack, prior_in_flight);
3234                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3235                                       flag);
3236         } else {
3237                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3238                         tcp_cong_avoid(sk, ack, prior_in_flight);
3239         }
3240
3241         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3242                 dst_confirm(sk->sk_dst_cache);
3243
3244         return 1;
3245
3246 no_queue:
3247         icsk->icsk_probes_out = 0;
3248
3249         /* If this ack opens up a zero window, clear backoff.  It was
3250          * being used to time the probes, and is probably far higher than
3251          * it needs to be for normal retransmission.
3252          */
3253         if (tcp_send_head(sk))
3254                 tcp_ack_probe(sk);
3255         return 1;
3256
3257 old_ack:
3258         if (TCP_SKB_CB(skb)->sacked)
3259                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3260
3261 uninteresting_ack:
3262         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3263         return 0;
3264 }
3265
3266 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3267  * But, this can also be called on packets in the established flow when
3268  * the fast version below fails.
3269  */
3270 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3271                        int estab)
3272 {
3273         unsigned char *ptr;
3274         struct tcphdr *th = tcp_hdr(skb);
3275         int length = (th->doff * 4) - sizeof(struct tcphdr);
3276
3277         ptr = (unsigned char *)(th + 1);
3278         opt_rx->saw_tstamp = 0;
3279
3280         while (length > 0) {
3281                 int opcode = *ptr++;
3282                 int opsize;
3283
3284                 switch (opcode) {
3285                 case TCPOPT_EOL:
3286                         return;
3287                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3288                         length--;
3289                         continue;
3290                 default:
3291                         opsize = *ptr++;
3292                         if (opsize < 2) /* "silly options" */
3293                                 return;
3294                         if (opsize > length)
3295                                 return; /* don't parse partial options */
3296                         switch (opcode) {
3297                         case TCPOPT_MSS:
3298                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3299                                         u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3300                                         if (in_mss) {
3301                                                 if (opt_rx->user_mss &&
3302                                                     opt_rx->user_mss < in_mss)
3303                                                         in_mss = opt_rx->user_mss;
3304                                                 opt_rx->mss_clamp = in_mss;
3305                                         }
3306                                 }
3307                                 break;
3308                         case TCPOPT_WINDOW:
3309                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3310                                     !estab && sysctl_tcp_window_scaling) {
3311                                         __u8 snd_wscale = *(__u8 *)ptr;
3312                                         opt_rx->wscale_ok = 1;
3313                                         if (snd_wscale > 14) {
3314                                                 if (net_ratelimit())
3315                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3316                                                                "scaling value %d >14 received.\n",
3317                                                                snd_wscale);
3318                                                 snd_wscale = 14;
3319                                         }
3320                                         opt_rx->snd_wscale = snd_wscale;
3321                                 }
3322                                 break;
3323                         case TCPOPT_TIMESTAMP:
3324                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3325                                     ((estab && opt_rx->tstamp_ok) ||
3326                                      (!estab && sysctl_tcp_timestamps))) {
3327                                         opt_rx->saw_tstamp = 1;
3328                                         opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3329                                         opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3330                                 }
3331                                 break;
3332                         case TCPOPT_SACK_PERM:
3333                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3334                                     !estab && sysctl_tcp_sack) {
3335                                         opt_rx->sack_ok = 1;
3336                                         tcp_sack_reset(opt_rx);
3337                                 }
3338                                 break;
3339
3340                         case TCPOPT_SACK:
3341                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3342                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3343                                    opt_rx->sack_ok) {
3344                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3345                                 }
3346                                 break;
3347 #ifdef CONFIG_TCP_MD5SIG
3348                         case TCPOPT_MD5SIG:
3349                                 /*
3350                                  * The MD5 Hash has already been
3351                                  * checked (see tcp_v{4,6}_do_rcv()).
3352                                  */
3353                                 break;
3354 #endif
3355                         }
3356
3357                         ptr += opsize-2;
3358                         length -= opsize;
3359                 }
3360         }
3361 }
3362
3363 /* Fast parse options. This hopes to only see timestamps.
3364  * If it is wrong it falls back on tcp_parse_options().
3365  */
3366 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3367                                   struct tcp_sock *tp)
3368 {
3369         if (th->doff == sizeof(struct tcphdr) >> 2) {
3370                 tp->rx_opt.saw_tstamp = 0;
3371                 return 0;
3372         } else if (tp->rx_opt.tstamp_ok &&
3373                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3374                 __be32 *ptr = (__be32 *)(th + 1);
3375                 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3376                                   | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3377                         tp->rx_opt.saw_tstamp = 1;
3378                         ++ptr;
3379                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
3380                         ++ptr;
3381                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3382                         return 1;
3383                 }
3384         }
3385         tcp_parse_options(skb, &tp->rx_opt, 1);
3386         return 1;
3387 }
3388
3389 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3390 {
3391         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3392         tp->rx_opt.ts_recent_stamp = get_seconds();
3393 }
3394
3395 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3396 {
3397         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3398                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3399                  * extra check below makes sure this can only happen
3400                  * for pure ACK frames.  -DaveM
3401                  *
3402                  * Not only, also it occurs for expired timestamps.
3403                  */
3404
3405                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3406                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3407                         tcp_store_ts_recent(tp);
3408         }
3409 }
3410
3411 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3412  *
3413  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3414  * it can pass through stack. So, the following predicate verifies that
3415  * this segment is not used for anything but congestion avoidance or
3416  * fast retransmit. Moreover, we even are able to eliminate most of such
3417  * second order effects, if we apply some small "replay" window (~RTO)
3418  * to timestamp space.
3419  *
3420  * All these measures still do not guarantee that we reject wrapped ACKs
3421  * on networks with high bandwidth, when sequence space is recycled fastly,
3422  * but it guarantees that such events will be very rare and do not affect
3423  * connection seriously. This doesn't look nice, but alas, PAWS is really
3424  * buggy extension.
3425  *
3426  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3427  * states that events when retransmit arrives after original data are rare.
3428  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3429  * the biggest problem on large power networks even with minor reordering.
3430  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3431  * up to bandwidth of 18Gigabit/sec. 8) ]
3432  */
3433
3434 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3435 {
3436         struct tcp_sock *tp = tcp_sk(sk);
3437         struct tcphdr *th = tcp_hdr(skb);
3438         u32 seq = TCP_SKB_CB(skb)->seq;
3439         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3440
3441         return (/* 1. Pure ACK with correct sequence number. */
3442                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3443
3444                 /* 2. ... and duplicate ACK. */
3445                 ack == tp->snd_una &&
3446
3447                 /* 3. ... and does not update window. */
3448                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3449
3450                 /* 4. ... and sits in replay window. */
3451                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3452 }
3453
3454 static inline int tcp_paws_discard(const struct sock *sk,
3455                                    const struct sk_buff *skb)
3456 {
3457         const struct tcp_sock *tp = tcp_sk(sk);
3458         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3459                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3460                 !tcp_disordered_ack(sk, skb));
3461 }
3462
3463 /* Check segment sequence number for validity.
3464  *
3465  * Segment controls are considered valid, if the segment
3466  * fits to the window after truncation to the window. Acceptability
3467  * of data (and SYN, FIN, of course) is checked separately.
3468  * See tcp_data_queue(), for example.
3469  *
3470  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3471  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3472  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3473  * (borrowed from freebsd)
3474  */
3475
3476 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3477 {
3478         return  !before(end_seq, tp->rcv_wup) &&
3479                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3480 }
3481
3482 /* When we get a reset we do this. */
3483 static void tcp_reset(struct sock *sk)
3484 {
3485         /* We want the right error as BSD sees it (and indeed as we do). */
3486         switch (sk->sk_state) {
3487         case TCP_SYN_SENT:
3488                 sk->sk_err = ECONNREFUSED;
3489                 break;
3490         case TCP_CLOSE_WAIT:
3491                 sk->sk_err = EPIPE;
3492                 break;
3493         case TCP_CLOSE:
3494                 return;
3495         default:
3496                 sk->sk_err = ECONNRESET;
3497         }
3498
3499         if (!sock_flag(sk, SOCK_DEAD))
3500                 sk->sk_error_report(sk);
3501
3502         tcp_done(sk);
3503 }
3504
3505 /*
3506  *      Process the FIN bit. This now behaves as it is supposed to work
3507  *      and the FIN takes effect when it is validly part of sequence
3508  *      space. Not before when we get holes.
3509  *
3510  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3511  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3512  *      TIME-WAIT)
3513  *
3514  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3515  *      close and we go into CLOSING (and later onto TIME-WAIT)
3516  *
3517  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3518  */
3519 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3520 {
3521         struct tcp_sock *tp = tcp_sk(sk);
3522
3523         inet_csk_schedule_ack(sk);
3524
3525         sk->sk_shutdown |= RCV_SHUTDOWN;
3526         sock_set_flag(sk, SOCK_DONE);
3527
3528         switch (sk->sk_state) {
3529         case TCP_SYN_RECV:
3530         case TCP_ESTABLISHED:
3531                 /* Move to CLOSE_WAIT */
3532                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3533                 inet_csk(sk)->icsk_ack.pingpong = 1;
3534                 break;
3535
3536         case TCP_CLOSE_WAIT:
3537         case TCP_CLOSING:
3538                 /* Received a retransmission of the FIN, do
3539                  * nothing.
3540                  */
3541                 break;
3542         case TCP_LAST_ACK:
3543                 /* RFC793: Remain in the LAST-ACK state. */
3544                 break;
3545
3546         case TCP_FIN_WAIT1:
3547                 /* This case occurs when a simultaneous close
3548                  * happens, we must ack the received FIN and
3549                  * enter the CLOSING state.
3550                  */
3551                 tcp_send_ack(sk);
3552                 tcp_set_state(sk, TCP_CLOSING);
3553                 break;
3554         case TCP_FIN_WAIT2:
3555                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3556                 tcp_send_ack(sk);
3557                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3558                 break;
3559         default:
3560                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3561                  * cases we should never reach this piece of code.
3562                  */
3563                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3564                        __FUNCTION__, sk->sk_state);
3565                 break;
3566         }
3567
3568         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3569          * Probably, we should reset in this case. For now drop them.
3570          */
3571         __skb_queue_purge(&tp->out_of_order_queue);
3572         if (tcp_is_sack(tp))
3573                 tcp_sack_reset(&tp->rx_opt);
3574         sk_mem_reclaim(sk);
3575
3576         if (!sock_flag(sk, SOCK_DEAD)) {
3577                 sk->sk_state_change(sk);
3578
3579                 /* Do not send POLL_HUP for half duplex close. */
3580                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3581                     sk->sk_state == TCP_CLOSE)
3582                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3583                 else
3584                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3585         }
3586 }
3587
3588 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3589                                   u32 end_seq)
3590 {
3591         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3592                 if (before(seq, sp->start_seq))
3593                         sp->start_seq = seq;
3594                 if (after(end_seq, sp->end_seq))
3595                         sp->end_seq = end_seq;
3596                 return 1;
3597         }
3598         return 0;
3599 }
3600
3601 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3602 {
3603         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3604                 if (before(seq, tp->rcv_nxt))
3605                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3606                 else
3607                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3608
3609                 tp->rx_opt.dsack = 1;
3610                 tp->duplicate_sack[0].start_seq = seq;
3611                 tp->duplicate_sack[0].end_seq = end_seq;
3612                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3613                                            4 - tp->rx_opt.tstamp_ok);
3614         }
3615 }
3616
3617 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3618 {
3619         if (!tp->rx_opt.dsack)
3620                 tcp_dsack_set(tp, seq, end_seq);
3621         else
3622                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3623 }
3624
3625 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3626 {
3627         struct tcp_sock *tp = tcp_sk(sk);
3628
3629         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3630             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3631                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3632                 tcp_enter_quickack_mode(sk);
3633
3634                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3635                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3636
3637                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3638                                 end_seq = tp->rcv_nxt;
3639                         tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3640                 }
3641         }
3642
3643         tcp_send_ack(sk);
3644 }
3645
3646 /* These routines update the SACK block as out-of-order packets arrive or
3647  * in-order packets close up the sequence space.
3648  */
3649 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3650 {
3651         int this_sack;
3652         struct tcp_sack_block *sp = &tp->selective_acks[0];
3653         struct tcp_sack_block *swalk = sp + 1;
3654
3655         /* See if the recent change to the first SACK eats into
3656          * or hits the sequence space of other SACK blocks, if so coalesce.
3657          */
3658         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3659                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3660                         int i;
3661
3662                         /* Zap SWALK, by moving every further SACK up by one slot.
3663                          * Decrease num_sacks.
3664                          */
3665                         tp->rx_opt.num_sacks--;
3666                         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3667                                                    tp->rx_opt.dsack,
3668                                                    4 - tp->rx_opt.tstamp_ok);
3669                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3670                                 sp[i] = sp[i + 1];
3671                         continue;
3672                 }
3673                 this_sack++, swalk++;
3674         }
3675 }
3676
3677 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3678                                  struct tcp_sack_block *sack2)
3679 {
3680         __u32 tmp;
3681
3682         tmp = sack1->start_seq;
3683         sack1->start_seq = sack2->start_seq;
3684         sack2->start_seq = tmp;
3685
3686         tmp = sack1->end_seq;
3687         sack1->end_seq = sack2->end_seq;
3688         sack2->end_seq = tmp;
3689 }
3690
3691 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3692 {
3693         struct tcp_sock *tp = tcp_sk(sk);
3694         struct tcp_sack_block *sp = &tp->selective_acks[0];
3695         int cur_sacks = tp->rx_opt.num_sacks;
3696         int this_sack;
3697
3698         if (!cur_sacks)
3699                 goto new_sack;
3700
3701         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3702                 if (tcp_sack_extend(sp, seq, end_seq)) {
3703                         /* Rotate this_sack to the first one. */
3704                         for (; this_sack > 0; this_sack--, sp--)
3705                                 tcp_sack_swap(sp, sp - 1);
3706                         if (cur_sacks > 1)
3707                                 tcp_sack_maybe_coalesce(tp);
3708                         return;
3709                 }
3710         }
3711
3712         /* Could not find an adjacent existing SACK, build a new one,
3713          * put it at the front, and shift everyone else down.  We
3714          * always know there is at least one SACK present already here.
3715          *
3716          * If the sack array is full, forget about the last one.
3717          */
3718         if (this_sack >= 4) {
3719                 this_sack--;
3720                 tp->rx_opt.num_sacks--;
3721                 sp--;
3722         }
3723         for (; this_sack > 0; this_sack--, sp--)
3724                 *sp = *(sp - 1);
3725
3726 new_sack:
3727         /* Build the new head SACK, and we're done. */
3728         sp->start_seq = seq;
3729         sp->end_seq = end_seq;
3730         tp->rx_opt.num_sacks++;
3731         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3732                                    4 - tp->rx_opt.tstamp_ok);
3733 }
3734
3735 /* RCV.NXT advances, some SACKs should be eaten. */
3736
3737 static void tcp_sack_remove(struct tcp_sock *tp)
3738 {
3739         struct tcp_sack_block *sp = &tp->selective_acks[0];
3740         int num_sacks = tp->rx_opt.num_sacks;
3741         int this_sack;
3742
3743         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3744         if (skb_queue_empty(&tp->out_of_order_queue)) {
3745                 tp->rx_opt.num_sacks = 0;
3746                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3747                 return;
3748         }
3749
3750         for (this_sack = 0; this_sack < num_sacks;) {
3751                 /* Check if the start of the sack is covered by RCV.NXT. */
3752                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3753                         int i;
3754
3755                         /* RCV.NXT must cover all the block! */
3756                         BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3757
3758                         /* Zap this SACK, by moving forward any other SACKS. */
3759                         for (i=this_sack+1; i < num_sacks; i++)
3760                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3761                         num_sacks--;
3762                         continue;
3763                 }
3764                 this_sack++;
3765                 sp++;
3766         }
3767         if (num_sacks != tp->rx_opt.num_sacks) {
3768                 tp->rx_opt.num_sacks = num_sacks;
3769                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3770                                            tp->rx_opt.dsack,
3771                                            4 - tp->rx_opt.tstamp_ok);
3772         }
3773 }
3774
3775 /* This one checks to see if we can put data from the
3776  * out_of_order queue into the receive_queue.
3777  */
3778 static void tcp_ofo_queue(struct sock *sk)
3779 {
3780         struct tcp_sock *tp = tcp_sk(sk);
3781         __u32 dsack_high = tp->rcv_nxt;
3782         struct sk_buff *skb;
3783
3784         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3785                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3786                         break;
3787
3788                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3789                         __u32 dsack = dsack_high;
3790                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3791                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3792                         tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3793                 }
3794
3795                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3796                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3797                         __skb_unlink(skb, &tp->out_of_order_queue);
3798                         __kfree_skb(skb);
3799                         continue;
3800                 }
3801                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3802                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3803                            TCP_SKB_CB(skb)->end_seq);
3804
3805                 __skb_unlink(skb, &tp->out_of_order_queue);
3806                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3807                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3808                 if (tcp_hdr(skb)->fin)
3809                         tcp_fin(skb, sk, tcp_hdr(skb));
3810         }
3811 }
3812
3813 static int tcp_prune_queue(struct sock *sk);
3814
3815 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3816 {
3817         struct tcphdr *th = tcp_hdr(skb);
3818         struct tcp_sock *tp = tcp_sk(sk);
3819         int eaten = -1;
3820
3821         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3822                 goto drop;
3823
3824         __skb_pull(skb, th->doff * 4);
3825
3826         TCP_ECN_accept_cwr(tp, skb);
3827
3828         if (tp->rx_opt.dsack) {
3829                 tp->rx_opt.dsack = 0;
3830                 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3831                                              4 - tp->rx_opt.tstamp_ok);
3832         }
3833
3834         /*  Queue data for delivery to the user.
3835          *  Packets in sequence go to the receive queue.
3836          *  Out of sequence packets to the out_of_order_queue.
3837          */
3838         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3839                 if (tcp_receive_window(tp) == 0)
3840                         goto out_of_window;
3841
3842                 /* Ok. In sequence. In window. */
3843                 if (tp->ucopy.task == current &&
3844                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3845                     sock_owned_by_user(sk) && !tp->urg_data) {
3846                         int chunk = min_t(unsigned int, skb->len,
3847                                           tp->ucopy.len);
3848
3849                         __set_current_state(TASK_RUNNING);
3850
3851                         local_bh_enable();
3852                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3853                                 tp->ucopy.len -= chunk;
3854                                 tp->copied_seq += chunk;
3855                                 eaten = (chunk == skb->len && !th->fin);
3856                                 tcp_rcv_space_adjust(sk);
3857                         }
3858                         local_bh_disable();
3859                 }
3860
3861                 if (eaten <= 0) {
3862 queue_and_out:
3863                         if (eaten < 0 &&
3864                             (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3865                              !sk_rmem_schedule(sk, skb->truesize))) {
3866                                 if (tcp_prune_queue(sk) < 0 ||
3867                                     !sk_rmem_schedule(sk, skb->truesize))
3868                                         goto drop;
3869                         }
3870                         skb_set_owner_r(skb, sk);
3871                         __skb_queue_tail(&sk->sk_receive_queue, skb);
3872                 }
3873                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3874                 if (skb->len)
3875                         tcp_event_data_recv(sk, skb);
3876                 if (th->fin)
3877                         tcp_fin(skb, sk, th);
3878
3879                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3880                         tcp_ofo_queue(sk);
3881
3882                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
3883                          * gap in queue is filled.
3884                          */
3885                         if (skb_queue_empty(&tp->out_of_order_queue))
3886                                 inet_csk(sk)->icsk_ack.pingpong = 0;
3887                 }
3888
3889                 if (tp->rx_opt.num_sacks)
3890                         tcp_sack_remove(tp);
3891
3892                 tcp_fast_path_check(sk);
3893
3894                 if (eaten > 0)
3895                         __kfree_skb(skb);
3896                 else if (!sock_flag(sk, SOCK_DEAD))
3897                         sk->sk_data_ready(sk, 0);
3898                 return;
3899         }
3900
3901         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3902                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
3903                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3904                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3905
3906 out_of_window:
3907                 tcp_enter_quickack_mode(sk);
3908                 inet_csk_schedule_ack(sk);
3909 drop:
3910                 __kfree_skb(skb);
3911                 return;
3912         }
3913
3914         /* Out of window. F.e. zero window probe. */
3915         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3916                 goto out_of_window;
3917
3918         tcp_enter_quickack_mode(sk);
3919
3920         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3921                 /* Partial packet, seq < rcv_next < end_seq */
3922                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3923                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3924                            TCP_SKB_CB(skb)->end_seq);
3925
3926                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3927
3928                 /* If window is closed, drop tail of packet. But after
3929                  * remembering D-SACK for its head made in previous line.
3930                  */
3931                 if (!tcp_receive_window(tp))
3932                         goto out_of_window;
3933                 goto queue_and_out;
3934         }
3935
3936         TCP_ECN_check_ce(tp, skb);
3937
3938         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3939             !sk_rmem_schedule(sk, skb->truesize)) {
3940                 if (tcp_prune_queue(sk) < 0 ||
3941                     !sk_rmem_schedule(sk, skb->truesize))
3942                         goto drop;
3943         }
3944
3945         /* Disable header prediction. */
3946         tp->pred_flags = 0;
3947         inet_csk_schedule_ack(sk);
3948
3949         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3950                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3951
3952         skb_set_owner_r(skb, sk);
3953
3954         if (!skb_peek(&tp->out_of_order_queue)) {
3955                 /* Initial out of order segment, build 1 SACK. */
3956                 if (tcp_is_sack(tp)) {
3957                         tp->rx_opt.num_sacks = 1;
3958                         tp->rx_opt.dsack     = 0;
3959                         tp->rx_opt.eff_sacks = 1;
3960                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3961                         tp->selective_acks[0].end_seq =
3962                                                 TCP_SKB_CB(skb)->end_seq;
3963                 }
3964                 __skb_queue_head(&tp->out_of_order_queue, skb);
3965         } else {
3966                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3967                 u32 seq = TCP_SKB_CB(skb)->seq;
3968                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3969
3970                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3971                         __skb_append(skb1, skb, &tp->out_of_order_queue);
3972
3973                         if (!tp->rx_opt.num_sacks ||
3974                             tp->selective_acks[0].end_seq != seq)
3975                                 goto add_sack;
3976
3977                         /* Common case: data arrive in order after hole. */
3978                         tp->selective_acks[0].end_seq = end_seq;
3979                         return;
3980                 }
3981
3982                 /* Find place to insert this segment. */
3983                 do {
3984                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
3985                                 break;
3986                 } while ((skb1 = skb1->prev) !=
3987                          (struct sk_buff *)&tp->out_of_order_queue);
3988
3989                 /* Do skb overlap to previous one? */
3990                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
3991                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3992                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3993                                 /* All the bits are present. Drop. */
3994                                 __kfree_skb(skb);
3995                                 tcp_dsack_set(tp, seq, end_seq);
3996                                 goto add_sack;
3997                         }
3998                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3999                                 /* Partial overlap. */
4000                                 tcp_dsack_set(tp, seq,
4001                                               TCP_SKB_CB(skb1)->end_seq);
4002                         } else {
4003                                 skb1 = skb1->prev;
4004                         }
4005                 }
4006                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4007
4008                 /* And clean segments covered by new one as whole. */
4009                 while ((skb1 = skb->next) !=
4010                        (struct sk_buff *)&tp->out_of_order_queue &&
4011                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4012                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4013                                 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4014                                                  end_seq);
4015                                 break;
4016                         }
4017                         __skb_unlink(skb1, &tp->out_of_order_queue);
4018                         tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4019                                          TCP_SKB_CB(skb1)->end_seq);
4020                         __kfree_skb(skb1);
4021                 }
4022
4023 add_sack:
4024                 if (tcp_is_sack(tp))
4025                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4026         }
4027 }
4028
4029 /* Collapse contiguous sequence of skbs head..tail with
4030  * sequence numbers start..end.
4031  * Segments with FIN/SYN are not collapsed (only because this
4032  * simplifies code)
4033  */
4034 static void
4035 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4036              struct sk_buff *head, struct sk_buff *tail,
4037              u32 start, u32 end)
4038 {
4039         struct sk_buff *skb;
4040
4041         /* First, check that queue is collapsible and find
4042          * the point where collapsing can be useful. */
4043         for (skb = head; skb != tail;) {
4044                 /* No new bits? It is possible on ofo queue. */
4045                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4046                         struct sk_buff *next = skb->next;
4047                         __skb_unlink(skb, list);
4048                         __kfree_skb(skb);
4049                         NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4050                         skb = next;
4051                         continue;
4052                 }
4053
4054                 /* The first skb to collapse is:
4055                  * - not SYN/FIN and
4056                  * - bloated or contains data before "start" or
4057                  *   overlaps to the next one.
4058                  */
4059                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4060                     (tcp_win_from_space(skb->truesize) > skb->len ||
4061                      before(TCP_SKB_CB(skb)->seq, start) ||
4062                      (skb->next != tail &&
4063                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4064                         break;
4065
4066                 /* Decided to skip this, advance start seq. */
4067                 start = TCP_SKB_CB(skb)->end_seq;
4068                 skb = skb->next;
4069         }
4070         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4071                 return;
4072
4073         while (before(start, end)) {
4074                 struct sk_buff *nskb;
4075                 unsigned int header = skb_headroom(skb);
4076                 int copy = SKB_MAX_ORDER(header, 0);
4077
4078                 /* Too big header? This can happen with IPv6. */
4079                 if (copy < 0)
4080                         return;
4081                 if (end - start < copy)
4082                         copy = end - start;
4083                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4084                 if (!nskb)
4085                         return;
4086
4087                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4088                 skb_set_network_header(nskb, (skb_network_header(skb) -
4089                                               skb->head));
4090                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4091                                                 skb->head));
4092                 skb_reserve(nskb, header);
4093                 memcpy(nskb->head, skb->head, header);
4094                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4095                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4096                 __skb_insert(nskb, skb->prev, skb, list);
4097                 skb_set_owner_r(nskb, sk);
4098
4099                 /* Copy data, releasing collapsed skbs. */
4100                 while (copy > 0) {
4101                         int offset = start - TCP_SKB_CB(skb)->seq;
4102                         int size = TCP_SKB_CB(skb)->end_seq - start;
4103
4104                         BUG_ON(offset < 0);
4105                         if (size > 0) {
4106                                 size = min(copy, size);
4107                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4108                                         BUG();
4109                                 TCP_SKB_CB(nskb)->end_seq += size;
4110                                 copy -= size;
4111                                 start += size;
4112                         }
4113                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4114                                 struct sk_buff *next = skb->next;
4115                                 __skb_unlink(skb, list);
4116                                 __kfree_skb(skb);
4117                                 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4118                                 skb = next;
4119                                 if (skb == tail ||
4120                                     tcp_hdr(skb)->syn ||
4121                                     tcp_hdr(skb)->fin)
4122                                         return;
4123                         }
4124                 }
4125         }
4126 }
4127
4128 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4129  * and tcp_collapse() them until all the queue is collapsed.
4130  */
4131 static void tcp_collapse_ofo_queue(struct sock *sk)
4132 {
4133         struct tcp_sock *tp = tcp_sk(sk);
4134         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4135         struct sk_buff *head;
4136         u32 start, end;
4137
4138         if (skb == NULL)
4139                 return;
4140
4141         start = TCP_SKB_CB(skb)->seq;
4142         end = TCP_SKB_CB(skb)->end_seq;
4143         head = skb;
4144
4145         for (;;) {
4146                 skb = skb->next;
4147
4148                 /* Segment is terminated when we see gap or when
4149                  * we are at the end of all the queue. */
4150                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4151                     after(TCP_SKB_CB(skb)->seq, end) ||
4152                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4153                         tcp_collapse(sk, &tp->out_of_order_queue,
4154                                      head, skb, start, end);
4155                         head = skb;
4156                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4157                                 break;
4158                         /* Start new segment */
4159                         start = TCP_SKB_CB(skb)->seq;
4160                         end = TCP_SKB_CB(skb)->end_seq;
4161                 } else {
4162                         if (before(TCP_SKB_CB(skb)->seq, start))
4163                                 start = TCP_SKB_CB(skb)->seq;
4164                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4165                                 end = TCP_SKB_CB(skb)->end_seq;
4166                 }
4167         }
4168 }
4169
4170 /* Reduce allocated memory if we can, trying to get
4171  * the socket within its memory limits again.
4172  *
4173  * Return less than zero if we should start dropping frames
4174  * until the socket owning process reads some of the data
4175  * to stabilize the situation.
4176  */
4177 static int tcp_prune_queue(struct sock *sk)
4178 {
4179         struct tcp_sock *tp = tcp_sk(sk);
4180
4181         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4182
4183         NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4184
4185         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4186                 tcp_clamp_window(sk);
4187         else if (tcp_memory_pressure)
4188                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4189
4190         tcp_collapse_ofo_queue(sk);
4191         tcp_collapse(sk, &sk->sk_receive_queue,
4192                      sk->sk_receive_queue.next,
4193                      (struct sk_buff *)&sk->sk_receive_queue,
4194                      tp->copied_seq, tp->rcv_nxt);
4195         sk_mem_reclaim(sk);
4196
4197         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4198                 return 0;
4199
4200         /* Collapsing did not help, destructive actions follow.
4201          * This must not ever occur. */
4202
4203         /* First, purge the out_of_order queue. */
4204         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4205                 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4206                 __skb_queue_purge(&tp->out_of_order_queue);
4207
4208                 /* Reset SACK state.  A conforming SACK implementation will
4209                  * do the same at a timeout based retransmit.  When a connection
4210                  * is in a sad state like this, we care only about integrity
4211                  * of the connection not performance.
4212                  */
4213                 if (tcp_is_sack(tp))
4214                         tcp_sack_reset(&tp->rx_opt);
4215                 sk_mem_reclaim(sk);
4216         }
4217
4218         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4219                 return 0;
4220
4221         /* If we are really being abused, tell the caller to silently
4222          * drop receive data on the floor.  It will get retransmitted
4223          * and hopefully then we'll have sufficient space.
4224          */
4225         NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4226
4227         /* Massive buffer overcommit. */
4228         tp->pred_flags = 0;
4229         return -1;
4230 }
4231
4232 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4233  * As additional protections, we do not touch cwnd in retransmission phases,
4234  * and if application hit its sndbuf limit recently.
4235  */
4236 void tcp_cwnd_application_limited(struct sock *sk)
4237 {
4238         struct tcp_sock *tp = tcp_sk(sk);
4239
4240         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4241             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4242                 /* Limited by application or receiver window. */
4243                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4244                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4245                 if (win_used < tp->snd_cwnd) {
4246                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4247                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4248                 }
4249                 tp->snd_cwnd_used = 0;
4250         }
4251         tp->snd_cwnd_stamp = tcp_time_stamp;
4252 }
4253
4254 static int tcp_should_expand_sndbuf(struct sock *sk)
4255 {
4256         struct tcp_sock *tp = tcp_sk(sk);
4257
4258         /* If the user specified a specific send buffer setting, do
4259          * not modify it.
4260          */
4261         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4262                 return 0;
4263
4264         /* If we are under global TCP memory pressure, do not expand.  */
4265         if (tcp_memory_pressure)
4266                 return 0;
4267
4268         /* If we are under soft global TCP memory pressure, do not expand.  */
4269         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4270                 return 0;
4271
4272         /* If we filled the congestion window, do not expand.  */
4273         if (tp->packets_out >= tp->snd_cwnd)
4274                 return 0;
4275
4276         return 1;
4277 }
4278
4279 /* When incoming ACK allowed to free some skb from write_queue,
4280  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4281  * on the exit from tcp input handler.
4282  *
4283  * PROBLEM: sndbuf expansion does not work well with largesend.
4284  */
4285 static void tcp_new_space(struct sock *sk)
4286 {
4287         struct tcp_sock *tp = tcp_sk(sk);
4288
4289         if (tcp_should_expand_sndbuf(sk)) {
4290                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4291                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4292                     demanded = max_t(unsigned int, tp->snd_cwnd,
4293                                      tp->reordering + 1);
4294                 sndmem *= 2 * demanded;
4295                 if (sndmem > sk->sk_sndbuf)
4296                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4297                 tp->snd_cwnd_stamp = tcp_time_stamp;
4298         }
4299
4300         sk->sk_write_space(sk);
4301 }
4302
4303 static void tcp_check_space(struct sock *sk)
4304 {
4305         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4306                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4307                 if (sk->sk_socket &&
4308                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4309                         tcp_new_space(sk);
4310         }
4311 }
4312
4313 static inline void tcp_data_snd_check(struct sock *sk)
4314 {
4315         tcp_push_pending_frames(sk);
4316         tcp_check_space(sk);
4317 }
4318
4319 /*
4320  * Check if sending an ack is needed.
4321  */
4322 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4323 {
4324         struct tcp_sock *tp = tcp_sk(sk);
4325
4326             /* More than one full frame received... */
4327         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4328              /* ... and right edge of window advances far enough.
4329               * (tcp_recvmsg() will send ACK otherwise). Or...
4330               */
4331              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4332             /* We ACK each frame or... */
4333             tcp_in_quickack_mode(sk) ||
4334             /* We have out of order data. */
4335             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4336                 /* Then ack it now */
4337                 tcp_send_ack(sk);
4338         } else {
4339                 /* Else, send delayed ack. */
4340                 tcp_send_delayed_ack(sk);
4341         }
4342 }
4343
4344 static inline void tcp_ack_snd_check(struct sock *sk)
4345 {
4346         if (!inet_csk_ack_scheduled(sk)) {
4347                 /* We sent a data segment already. */
4348                 return;
4349         }
4350         __tcp_ack_snd_check(sk, 1);
4351 }
4352
4353 /*
4354  *      This routine is only called when we have urgent data
4355  *      signaled. Its the 'slow' part of tcp_urg. It could be
4356  *      moved inline now as tcp_urg is only called from one
4357  *      place. We handle URGent data wrong. We have to - as
4358  *      BSD still doesn't use the correction from RFC961.
4359  *      For 1003.1g we should support a new option TCP_STDURG to permit
4360  *      either form (or just set the sysctl tcp_stdurg).
4361  */
4362
4363 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4364 {
4365         struct tcp_sock *tp = tcp_sk(sk);
4366         u32 ptr = ntohs(th->urg_ptr);
4367
4368         if (ptr && !sysctl_tcp_stdurg)
4369                 ptr--;
4370         ptr += ntohl(th->seq);
4371
4372         /* Ignore urgent data that we've already seen and read. */
4373         if (after(tp->copied_seq, ptr))
4374                 return;
4375
4376         /* Do not replay urg ptr.
4377          *
4378          * NOTE: interesting situation not covered by specs.
4379          * Misbehaving sender may send urg ptr, pointing to segment,
4380          * which we already have in ofo queue. We are not able to fetch
4381          * such data and will stay in TCP_URG_NOTYET until will be eaten
4382          * by recvmsg(). Seems, we are not obliged to handle such wicked
4383          * situations. But it is worth to think about possibility of some
4384          * DoSes using some hypothetical application level deadlock.
4385          */
4386         if (before(ptr, tp->rcv_nxt))
4387                 return;
4388
4389         /* Do we already have a newer (or duplicate) urgent pointer? */
4390         if (tp->urg_data && !after(ptr, tp->urg_seq))
4391                 return;
4392
4393         /* Tell the world about our new urgent pointer. */
4394         sk_send_sigurg(sk);
4395
4396         /* We may be adding urgent data when the last byte read was
4397          * urgent. To do this requires some care. We cannot just ignore
4398          * tp->copied_seq since we would read the last urgent byte again
4399          * as data, nor can we alter copied_seq until this data arrives
4400          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4401          *
4402          * NOTE. Double Dutch. Rendering to plain English: author of comment
4403          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4404          * and expect that both A and B disappear from stream. This is _wrong_.
4405          * Though this happens in BSD with high probability, this is occasional.
4406          * Any application relying on this is buggy. Note also, that fix "works"
4407          * only in this artificial test. Insert some normal data between A and B and we will
4408          * decline of BSD again. Verdict: it is better to remove to trap
4409          * buggy users.
4410          */
4411         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4412             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4413                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4414                 tp->copied_seq++;
4415                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4416                         __skb_unlink(skb, &sk->sk_receive_queue);
4417                         __kfree_skb(skb);
4418                 }
4419         }
4420
4421         tp->urg_data = TCP_URG_NOTYET;
4422         tp->urg_seq = ptr;
4423
4424         /* Disable header prediction. */
4425         tp->pred_flags = 0;
4426 }
4427
4428 /* This is the 'fast' part of urgent handling. */
4429 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4430 {
4431         struct tcp_sock *tp = tcp_sk(sk);
4432
4433         /* Check if we get a new urgent pointer - normally not. */
4434         if (th->urg)
4435                 tcp_check_urg(sk, th);
4436
4437         /* Do we wait for any urgent data? - normally not... */
4438         if (tp->urg_data == TCP_URG_NOTYET) {
4439                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4440                           th->syn;
4441
4442                 /* Is the urgent pointer pointing into this packet? */
4443                 if (ptr < skb->len) {
4444                         u8 tmp;
4445                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4446                                 BUG();
4447                         tp->urg_data = TCP_URG_VALID | tmp;
4448                         if (!sock_flag(sk, SOCK_DEAD))
4449                                 sk->sk_data_ready(sk, 0);
4450                 }
4451         }
4452 }
4453
4454 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4455 {
4456         struct tcp_sock *tp = tcp_sk(sk);
4457         int chunk = skb->len - hlen;
4458         int err;
4459
4460         local_bh_enable();
4461         if (skb_csum_unnecessary(skb))
4462                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4463         else
4464                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4465                                                        tp->ucopy.iov);
4466
4467         if (!err) {
4468                 tp->ucopy.len -= chunk;
4469                 tp->copied_seq += chunk;
4470                 tcp_rcv_space_adjust(sk);
4471         }
4472
4473         local_bh_disable();
4474         return err;
4475 }
4476
4477 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4478                                             struct sk_buff *skb)
4479 {
4480         __sum16 result;
4481
4482         if (sock_owned_by_user(sk)) {
4483                 local_bh_enable();
4484                 result = __tcp_checksum_complete(skb);
4485                 local_bh_disable();
4486         } else {
4487                 result = __tcp_checksum_complete(skb);
4488         }
4489         return result;
4490 }
4491
4492 static inline int tcp_checksum_complete_user(struct sock *sk,
4493                                              struct sk_buff *skb)
4494 {
4495         return !skb_csum_unnecessary(skb) &&
4496                __tcp_checksum_complete_user(sk, skb);
4497 }
4498
4499 #ifdef CONFIG_NET_DMA
4500 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4501                                   int hlen)
4502 {
4503         struct tcp_sock *tp = tcp_sk(sk);
4504         int chunk = skb->len - hlen;
4505         int dma_cookie;
4506         int copied_early = 0;
4507
4508         if (tp->ucopy.wakeup)
4509                 return 0;
4510
4511         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4512                 tp->ucopy.dma_chan = get_softnet_dma();
4513
4514         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4515
4516                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4517                                                          skb, hlen,
4518                                                          tp->ucopy.iov, chunk,
4519                                                          tp->ucopy.pinned_list);
4520
4521                 if (dma_cookie < 0)
4522                         goto out;
4523
4524                 tp->ucopy.dma_cookie = dma_cookie;
4525                 copied_early = 1;
4526
4527                 tp->ucopy.len -= chunk;
4528                 tp->copied_seq += chunk;
4529                 tcp_rcv_space_adjust(sk);
4530
4531                 if ((tp->ucopy.len == 0) ||
4532                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4533                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4534                         tp->ucopy.wakeup = 1;
4535                         sk->sk_data_ready(sk, 0);
4536                 }
4537         } else if (chunk > 0) {
4538                 tp->ucopy.wakeup = 1;
4539                 sk->sk_data_ready(sk, 0);
4540         }
4541 out:
4542         return copied_early;
4543 }
4544 #endif /* CONFIG_NET_DMA */
4545
4546 /*
4547  *      TCP receive function for the ESTABLISHED state.
4548  *
4549  *      It is split into a fast path and a slow path. The fast path is
4550  *      disabled when:
4551  *      - A zero window was announced from us - zero window probing
4552  *        is only handled properly in the slow path.
4553  *      - Out of order segments arrived.
4554  *      - Urgent data is expected.
4555  *      - There is no buffer space left
4556  *      - Unexpected TCP flags/window values/header lengths are received
4557  *        (detected by checking the TCP header against pred_flags)
4558  *      - Data is sent in both directions. Fast path only supports pure senders
4559  *        or pure receivers (this means either the sequence number or the ack
4560  *        value must stay constant)
4561  *      - Unexpected TCP option.
4562  *
4563  *      When these conditions are not satisfied it drops into a standard
4564  *      receive procedure patterned after RFC793 to handle all cases.
4565  *      The first three cases are guaranteed by proper pred_flags setting,
4566  *      the rest is checked inline. Fast processing is turned on in
4567  *      tcp_data_queue when everything is OK.
4568  */
4569 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4570                         struct tcphdr *th, unsigned len)
4571 {
4572         struct tcp_sock *tp = tcp_sk(sk);
4573
4574         /*
4575          *      Header prediction.
4576          *      The code loosely follows the one in the famous
4577          *      "30 instruction TCP receive" Van Jacobson mail.
4578          *
4579          *      Van's trick is to deposit buffers into socket queue
4580          *      on a device interrupt, to call tcp_recv function
4581          *      on the receive process context and checksum and copy
4582          *      the buffer to user space. smart...
4583          *
4584          *      Our current scheme is not silly either but we take the
4585          *      extra cost of the net_bh soft interrupt processing...
4586          *      We do checksum and copy also but from device to kernel.
4587          */
4588
4589         tp->rx_opt.saw_tstamp = 0;
4590
4591         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4592          *      if header_prediction is to be made
4593          *      'S' will always be tp->tcp_header_len >> 2
4594          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4595          *  turn it off (when there are holes in the receive
4596          *       space for instance)
4597          *      PSH flag is ignored.
4598          */
4599
4600         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4601             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4602                 int tcp_header_len = tp->tcp_header_len;
4603
4604                 /* Timestamp header prediction: tcp_header_len
4605                  * is automatically equal to th->doff*4 due to pred_flags
4606                  * match.
4607                  */
4608
4609                 /* Check timestamp */
4610                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4611                         __be32 *ptr = (__be32 *)(th + 1);
4612
4613                         /* No? Slow path! */
4614                         if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4615                                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4616                                 goto slow_path;
4617
4618                         tp->rx_opt.saw_tstamp = 1;
4619                         ++ptr;
4620                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
4621                         ++ptr;
4622                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4623
4624                         /* If PAWS failed, check it more carefully in slow path */
4625                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4626                                 goto slow_path;
4627
4628                         /* DO NOT update ts_recent here, if checksum fails
4629                          * and timestamp was corrupted part, it will result
4630                          * in a hung connection since we will drop all
4631                          * future packets due to the PAWS test.
4632                          */
4633                 }
4634
4635                 if (len <= tcp_header_len) {
4636                         /* Bulk data transfer: sender */
4637                         if (len == tcp_header_len) {
4638                                 /* Predicted packet is in window by definition.
4639                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4640                                  * Hence, check seq<=rcv_wup reduces to:
4641                                  */
4642                                 if (tcp_header_len ==
4643                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4644                                     tp->rcv_nxt == tp->rcv_wup)
4645                                         tcp_store_ts_recent(tp);
4646
4647                                 /* We know that such packets are checksummed
4648                                  * on entry.
4649                                  */
4650                                 tcp_ack(sk, skb, 0);
4651                                 __kfree_skb(skb);
4652                                 tcp_data_snd_check(sk);
4653                                 return 0;
4654                         } else { /* Header too small */
4655                                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4656                                 goto discard;
4657                         }
4658                 } else {
4659                         int eaten = 0;
4660                         int copied_early = 0;
4661
4662                         if (tp->copied_seq == tp->rcv_nxt &&
4663                             len - tcp_header_len <= tp->ucopy.len) {
4664 #ifdef CONFIG_NET_DMA
4665                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4666                                         copied_early = 1;
4667                                         eaten = 1;
4668                                 }
4669 #endif
4670                                 if (tp->ucopy.task == current &&
4671                                     sock_owned_by_user(sk) && !copied_early) {
4672                                         __set_current_state(TASK_RUNNING);
4673
4674                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4675                                                 eaten = 1;
4676                                 }
4677                                 if (eaten) {
4678                                         /* Predicted packet is in window by definition.
4679                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4680                                          * Hence, check seq<=rcv_wup reduces to:
4681                                          */
4682                                         if (tcp_header_len ==
4683                                             (sizeof(struct tcphdr) +
4684                                              TCPOLEN_TSTAMP_ALIGNED) &&
4685                                             tp->rcv_nxt == tp->rcv_wup)
4686                                                 tcp_store_ts_recent(tp);
4687
4688                                         tcp_rcv_rtt_measure_ts(sk, skb);
4689
4690                                         __skb_pull(skb, tcp_header_len);
4691                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4692                                         NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4693                                 }
4694                                 if (copied_early)
4695                                         tcp_cleanup_rbuf(sk, skb->len);
4696                         }
4697                         if (!eaten) {
4698                                 if (tcp_checksum_complete_user(sk, skb))
4699                                         goto csum_error;
4700
4701                                 /* Predicted packet is in window by definition.
4702                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4703                                  * Hence, check seq<=rcv_wup reduces to:
4704                                  */
4705                                 if (tcp_header_len ==
4706                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4707                                     tp->rcv_nxt == tp->rcv_wup)
4708                                         tcp_store_ts_recent(tp);
4709
4710                                 tcp_rcv_rtt_measure_ts(sk, skb);
4711
4712                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4713                                         goto step5;
4714
4715                                 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4716
4717                                 /* Bulk data transfer: receiver */
4718                                 __skb_pull(skb, tcp_header_len);
4719                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4720                                 skb_set_owner_r(skb, sk);
4721                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4722                         }
4723
4724                         tcp_event_data_recv(sk, skb);
4725
4726                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4727                                 /* Well, only one small jumplet in fast path... */
4728                                 tcp_ack(sk, skb, FLAG_DATA);
4729                                 tcp_data_snd_check(sk);
4730                                 if (!inet_csk_ack_scheduled(sk))
4731                                         goto no_ack;
4732                         }
4733
4734                         __tcp_ack_snd_check(sk, 0);
4735 no_ack:
4736 #ifdef CONFIG_NET_DMA
4737                         if (copied_early)
4738                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4739                         else
4740 #endif
4741                         if (eaten)
4742                                 __kfree_skb(skb);
4743                         else
4744                                 sk->sk_data_ready(sk, 0);
4745                         return 0;
4746                 }
4747         }
4748
4749 slow_path:
4750         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4751                 goto csum_error;
4752
4753         /*
4754          * RFC1323: H1. Apply PAWS check first.
4755          */
4756         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4757             tcp_paws_discard(sk, skb)) {
4758                 if (!th->rst) {
4759                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4760                         tcp_send_dupack(sk, skb);
4761                         goto discard;
4762                 }
4763                 /* Resets are accepted even if PAWS failed.
4764
4765                    ts_recent update must be made after we are sure
4766                    that the packet is in window.
4767                  */
4768         }
4769
4770         /*
4771          *      Standard slow path.
4772          */
4773
4774         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4775                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4776                  * (RST) segments are validated by checking their SEQ-fields."
4777                  * And page 69: "If an incoming segment is not acceptable,
4778                  * an acknowledgment should be sent in reply (unless the RST bit
4779                  * is set, if so drop the segment and return)".
4780                  */
4781                 if (!th->rst)
4782                         tcp_send_dupack(sk, skb);
4783                 goto discard;
4784         }
4785
4786         if (th->rst) {
4787                 tcp_reset(sk);
4788                 goto discard;
4789         }
4790
4791         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4792
4793         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4794                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4795                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4796                 tcp_reset(sk);
4797                 return 1;
4798         }
4799
4800 step5:
4801         if (th->ack)
4802                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4803
4804         tcp_rcv_rtt_measure_ts(sk, skb);
4805
4806         /* Process urgent data. */
4807         tcp_urg(sk, skb, th);
4808
4809         /* step 7: process the segment text */
4810         tcp_data_queue(sk, skb);
4811
4812         tcp_data_snd_check(sk);
4813         tcp_ack_snd_check(sk);
4814         return 0;
4815
4816 csum_error:
4817         TCP_INC_STATS_BH(TCP_MIB_INERRS);
4818
4819 discard:
4820         __kfree_skb(skb);
4821         return 0;
4822 }
4823
4824 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4825                                          struct tcphdr *th, unsigned len)
4826 {
4827         struct tcp_sock *tp = tcp_sk(sk);
4828         struct inet_connection_sock *icsk = inet_csk(sk);
4829         int saved_clamp = tp->rx_opt.mss_clamp;
4830
4831         tcp_parse_options(skb, &tp->rx_opt, 0);
4832
4833         if (th->ack) {
4834                 /* rfc793:
4835                  * "If the state is SYN-SENT then
4836                  *    first check the ACK bit
4837                  *      If the ACK bit is set
4838                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4839                  *        a reset (unless the RST bit is set, if so drop
4840                  *        the segment and return)"
4841                  *
4842                  *  We do not send data with SYN, so that RFC-correct
4843                  *  test reduces to:
4844                  */
4845                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4846                         goto reset_and_undo;
4847
4848                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4849                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4850                              tcp_time_stamp)) {
4851                         NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4852                         goto reset_and_undo;
4853                 }
4854
4855                 /* Now ACK is acceptable.
4856                  *
4857                  * "If the RST bit is set
4858                  *    If the ACK was acceptable then signal the user "error:
4859                  *    connection reset", drop the segment, enter CLOSED state,
4860                  *    delete TCB, and return."
4861                  */
4862
4863                 if (th->rst) {
4864                         tcp_reset(sk);
4865                         goto discard;
4866                 }
4867
4868                 /* rfc793:
4869                  *   "fifth, if neither of the SYN or RST bits is set then
4870                  *    drop the segment and return."
4871                  *
4872                  *    See note below!
4873                  *                                        --ANK(990513)
4874                  */
4875                 if (!th->syn)
4876                         goto discard_and_undo;
4877
4878                 /* rfc793:
4879                  *   "If the SYN bit is on ...
4880                  *    are acceptable then ...
4881                  *    (our SYN has been ACKed), change the connection
4882                  *    state to ESTABLISHED..."
4883                  */
4884
4885                 TCP_ECN_rcv_synack(tp, th);
4886
4887                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4888                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4889
4890                 /* Ok.. it's good. Set up sequence numbers and
4891                  * move to established.
4892                  */
4893                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4894                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4895
4896                 /* RFC1323: The window in SYN & SYN/ACK segments is
4897                  * never scaled.
4898                  */
4899                 tp->snd_wnd = ntohs(th->window);
4900                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4901
4902                 if (!tp->rx_opt.wscale_ok) {
4903                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4904                         tp->window_clamp = min(tp->window_clamp, 65535U);
4905                 }
4906
4907                 if (tp->rx_opt.saw_tstamp) {
4908                         tp->rx_opt.tstamp_ok       = 1;
4909                         tp->tcp_header_len =
4910                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4911                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
4912                         tcp_store_ts_recent(tp);
4913                 } else {
4914                         tp->tcp_header_len = sizeof(struct tcphdr);
4915                 }
4916
4917                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4918                         tcp_enable_fack(tp);
4919
4920                 tcp_mtup_init(sk);
4921                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4922                 tcp_initialize_rcv_mss(sk);
4923
4924                 /* Remember, tcp_poll() does not lock socket!
4925                  * Change state from SYN-SENT only after copied_seq
4926                  * is initialized. */
4927                 tp->copied_seq = tp->rcv_nxt;
4928                 smp_mb();
4929                 tcp_set_state(sk, TCP_ESTABLISHED);
4930
4931                 security_inet_conn_established(sk, skb);
4932
4933                 /* Make sure socket is routed, for correct metrics.  */
4934                 icsk->icsk_af_ops->rebuild_header(sk);
4935
4936                 tcp_init_metrics(sk);
4937
4938                 tcp_init_congestion_control(sk);
4939
4940                 /* Prevent spurious tcp_cwnd_restart() on first data
4941                  * packet.
4942                  */
4943                 tp->lsndtime = tcp_time_stamp;
4944
4945                 tcp_init_buffer_space(sk);
4946
4947                 if (sock_flag(sk, SOCK_KEEPOPEN))
4948                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4949
4950                 if (!tp->rx_opt.snd_wscale)
4951                         __tcp_fast_path_on(tp, tp->snd_wnd);
4952                 else
4953                         tp->pred_flags = 0;
4954
4955                 if (!sock_flag(sk, SOCK_DEAD)) {
4956                         sk->sk_state_change(sk);
4957                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
4958                 }
4959
4960                 if (sk->sk_write_pending ||
4961                     icsk->icsk_accept_queue.rskq_defer_accept ||
4962                     icsk->icsk_ack.pingpong) {
4963                         /* Save one ACK. Data will be ready after
4964                          * several ticks, if write_pending is set.
4965                          *
4966                          * It may be deleted, but with this feature tcpdumps
4967                          * look so _wonderfully_ clever, that I was not able
4968                          * to stand against the temptation 8)     --ANK
4969                          */
4970                         inet_csk_schedule_ack(sk);
4971                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4972                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
4973                         tcp_incr_quickack(sk);
4974                         tcp_enter_quickack_mode(sk);
4975                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4976                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
4977
4978 discard:
4979                         __kfree_skb(skb);
4980                         return 0;
4981                 } else {
4982                         tcp_send_ack(sk);
4983                 }
4984                 return -1;
4985         }
4986
4987         /* No ACK in the segment */
4988
4989         if (th->rst) {
4990                 /* rfc793:
4991                  * "If the RST bit is set
4992                  *
4993                  *      Otherwise (no ACK) drop the segment and return."
4994                  */
4995
4996                 goto discard_and_undo;
4997         }
4998
4999         /* PAWS check. */
5000         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5001             tcp_paws_check(&tp->rx_opt, 0))
5002                 goto discard_and_undo;
5003
5004         if (th->syn) {
5005                 /* We see SYN without ACK. It is attempt of
5006                  * simultaneous connect with crossed SYNs.
5007                  * Particularly, it can be connect to self.
5008                  */
5009                 tcp_set_state(sk, TCP_SYN_RECV);
5010
5011                 if (tp->rx_opt.saw_tstamp) {
5012                         tp->rx_opt.tstamp_ok = 1;
5013                         tcp_store_ts_recent(tp);
5014                         tp->tcp_header_len =
5015                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5016                 } else {
5017                         tp->tcp_header_len = sizeof(struct tcphdr);
5018                 }
5019
5020                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5021                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5022
5023                 /* RFC1323: The window in SYN & SYN/ACK segments is
5024                  * never scaled.
5025                  */
5026                 tp->snd_wnd    = ntohs(th->window);
5027                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5028                 tp->max_window = tp->snd_wnd;
5029
5030                 TCP_ECN_rcv_syn(tp, th);
5031
5032                 tcp_mtup_init(sk);
5033                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5034                 tcp_initialize_rcv_mss(sk);
5035
5036                 tcp_send_synack(sk);
5037 #if 0
5038                 /* Note, we could accept data and URG from this segment.
5039                  * There are no obstacles to make this.
5040                  *
5041                  * However, if we ignore data in ACKless segments sometimes,
5042                  * we have no reasons to accept it sometimes.
5043                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5044                  * is not flawless. So, discard packet for sanity.
5045                  * Uncomment this return to process the data.
5046                  */
5047                 return -1;
5048 #else
5049                 goto discard;
5050 #endif
5051         }
5052         /* "fifth, if neither of the SYN or RST bits is set then
5053          * drop the segment and return."
5054          */
5055
5056 discard_and_undo:
5057         tcp_clear_options(&tp->rx_opt);
5058         tp->rx_opt.mss_clamp = saved_clamp;
5059         goto discard;
5060
5061 reset_and_undo:
5062         tcp_clear_options(&tp->rx_opt);
5063         tp->rx_opt.mss_clamp = saved_clamp;
5064         return 1;
5065 }
5066
5067 /*
5068  *      This function implements the receiving procedure of RFC 793 for
5069  *      all states except ESTABLISHED and TIME_WAIT.
5070  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5071  *      address independent.
5072  */
5073
5074 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5075                           struct tcphdr *th, unsigned len)
5076 {
5077         struct tcp_sock *tp = tcp_sk(sk);
5078         struct inet_connection_sock *icsk = inet_csk(sk);
5079         int queued = 0;
5080
5081         tp->rx_opt.saw_tstamp = 0;
5082
5083         switch (sk->sk_state) {
5084         case TCP_CLOSE:
5085                 goto discard;
5086
5087         case TCP_LISTEN:
5088                 if (th->ack)
5089                         return 1;
5090
5091                 if (th->rst)
5092                         goto discard;
5093
5094                 if (th->syn) {
5095                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5096                                 return 1;
5097
5098                         /* Now we have several options: In theory there is
5099                          * nothing else in the frame. KA9Q has an option to
5100                          * send data with the syn, BSD accepts data with the
5101                          * syn up to the [to be] advertised window and
5102                          * Solaris 2.1 gives you a protocol error. For now
5103                          * we just ignore it, that fits the spec precisely
5104                          * and avoids incompatibilities. It would be nice in
5105                          * future to drop through and process the data.
5106                          *
5107                          * Now that TTCP is starting to be used we ought to
5108                          * queue this data.
5109                          * But, this leaves one open to an easy denial of
5110                          * service attack, and SYN cookies can't defend
5111                          * against this problem. So, we drop the data
5112                          * in the interest of security over speed unless
5113                          * it's still in use.
5114                          */
5115                         kfree_skb(skb);
5116                         return 0;
5117                 }
5118                 goto discard;
5119
5120         case TCP_SYN_SENT:
5121                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5122                 if (queued >= 0)
5123                         return queued;
5124
5125                 /* Do step6 onward by hand. */
5126                 tcp_urg(sk, skb, th);
5127                 __kfree_skb(skb);
5128                 tcp_data_snd_check(sk);
5129                 return 0;
5130         }
5131
5132         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5133             tcp_paws_discard(sk, skb)) {
5134                 if (!th->rst) {
5135                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5136                         tcp_send_dupack(sk, skb);
5137                         goto discard;
5138                 }
5139                 /* Reset is accepted even if it did not pass PAWS. */
5140         }
5141
5142         /* step 1: check sequence number */
5143         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5144                 if (!th->rst)
5145                         tcp_send_dupack(sk, skb);
5146                 goto discard;
5147         }
5148
5149         /* step 2: check RST bit */
5150         if (th->rst) {
5151                 tcp_reset(sk);
5152                 goto discard;
5153         }
5154
5155         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5156
5157         /* step 3: check security and precedence [ignored] */
5158
5159         /*      step 4:
5160          *
5161          *      Check for a SYN in window.
5162          */
5163         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5164                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5165                 tcp_reset(sk);
5166                 return 1;
5167         }
5168
5169         /* step 5: check the ACK field */
5170         if (th->ack) {
5171                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5172
5173                 switch (sk->sk_state) {
5174                 case TCP_SYN_RECV:
5175                         if (acceptable) {
5176                                 tp->copied_seq = tp->rcv_nxt;
5177                                 smp_mb();
5178                                 tcp_set_state(sk, TCP_ESTABLISHED);
5179                                 sk->sk_state_change(sk);
5180
5181                                 /* Note, that this wakeup is only for marginal
5182                                  * crossed SYN case. Passively open sockets
5183                                  * are not waked up, because sk->sk_sleep ==
5184                                  * NULL and sk->sk_socket == NULL.
5185                                  */
5186                                 if (sk->sk_socket)
5187                                         sk_wake_async(sk,
5188                                                       SOCK_WAKE_IO, POLL_OUT);
5189
5190                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5191                                 tp->snd_wnd = ntohs(th->window) <<
5192                                               tp->rx_opt.snd_wscale;
5193                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5194                                             TCP_SKB_CB(skb)->seq);
5195
5196                                 /* tcp_ack considers this ACK as duplicate
5197                                  * and does not calculate rtt.
5198                                  * Fix it at least with timestamps.
5199                                  */
5200                                 if (tp->rx_opt.saw_tstamp &&
5201                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5202                                         tcp_ack_saw_tstamp(sk, 0);
5203
5204                                 if (tp->rx_opt.tstamp_ok)
5205                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5206
5207                                 /* Make sure socket is routed, for
5208                                  * correct metrics.
5209                                  */
5210                                 icsk->icsk_af_ops->rebuild_header(sk);
5211
5212                                 tcp_init_metrics(sk);
5213
5214                                 tcp_init_congestion_control(sk);
5215
5216                                 /* Prevent spurious tcp_cwnd_restart() on
5217                                  * first data packet.
5218                                  */
5219                                 tp->lsndtime = tcp_time_stamp;
5220
5221                                 tcp_mtup_init(sk);
5222                                 tcp_initialize_rcv_mss(sk);
5223                                 tcp_init_buffer_space(sk);
5224                                 tcp_fast_path_on(tp);
5225                         } else {
5226                                 return 1;
5227                         }
5228                         break;
5229
5230                 case TCP_FIN_WAIT1:
5231                         if (tp->snd_una == tp->write_seq) {
5232                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5233                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5234                                 dst_confirm(sk->sk_dst_cache);
5235
5236                                 if (!sock_flag(sk, SOCK_DEAD))
5237                                         /* Wake up lingering close() */
5238                                         sk->sk_state_change(sk);
5239                                 else {
5240                                         int tmo;
5241
5242                                         if (tp->linger2 < 0 ||
5243                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5244                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5245                                                 tcp_done(sk);
5246                                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5247                                                 return 1;
5248                                         }
5249
5250                                         tmo = tcp_fin_time(sk);
5251                                         if (tmo > TCP_TIMEWAIT_LEN) {
5252                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5253                                         } else if (th->fin || sock_owned_by_user(sk)) {
5254                                                 /* Bad case. We could lose such FIN otherwise.
5255                                                  * It is not a big problem, but it looks confusing
5256                                                  * and not so rare event. We still can lose it now,
5257                                                  * if it spins in bh_lock_sock(), but it is really
5258                                                  * marginal case.
5259                                                  */
5260                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5261                                         } else {
5262                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5263                                                 goto discard;
5264                                         }
5265                                 }
5266                         }
5267                         break;
5268
5269                 case TCP_CLOSING:
5270                         if (tp->snd_una == tp->write_seq) {
5271                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5272                                 goto discard;
5273                         }
5274                         break;
5275
5276                 case TCP_LAST_ACK:
5277                         if (tp->snd_una == tp->write_seq) {
5278                                 tcp_update_metrics(sk);
5279                                 tcp_done(sk);
5280                                 goto discard;
5281                         }
5282                         break;
5283                 }
5284         } else
5285                 goto discard;
5286
5287         /* step 6: check the URG bit */
5288         tcp_urg(sk, skb, th);
5289
5290         /* step 7: process the segment text */
5291         switch (sk->sk_state) {
5292         case TCP_CLOSE_WAIT:
5293         case TCP_CLOSING:
5294         case TCP_LAST_ACK:
5295                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5296                         break;
5297         case TCP_FIN_WAIT1:
5298         case TCP_FIN_WAIT2:
5299                 /* RFC 793 says to queue data in these states,
5300                  * RFC 1122 says we MUST send a reset.
5301                  * BSD 4.4 also does reset.
5302                  */
5303                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5304                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5305                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5306                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5307                                 tcp_reset(sk);
5308                                 return 1;
5309                         }
5310                 }
5311                 /* Fall through */
5312         case TCP_ESTABLISHED:
5313                 tcp_data_queue(sk, skb);
5314                 queued = 1;
5315                 break;
5316         }
5317
5318         /* tcp_data could move socket to TIME-WAIT */
5319         if (sk->sk_state != TCP_CLOSE) {
5320                 tcp_data_snd_check(sk);
5321                 tcp_ack_snd_check(sk);
5322         }
5323
5324         if (!queued) {
5325 discard:
5326                 __kfree_skb(skb);
5327         }
5328         return 0;
5329 }
5330
5331 EXPORT_SYMBOL(sysctl_tcp_ecn);
5332 EXPORT_SYMBOL(sysctl_tcp_reordering);
5333 EXPORT_SYMBOL(tcp_parse_options);
5334 EXPORT_SYMBOL(tcp_rcv_established);
5335 EXPORT_SYMBOL(tcp_rcv_state_process);
5336 EXPORT_SYMBOL(tcp_initialize_rcv_mss);