]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/ipv4/tcp_input.c
28e93f1e421743b823466e2c1be682d0feb41151
[linux-2.6-omap-h63xx.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732                 unsigned long rtt;
733
734                 if (icsk->icsk_backoff || !tp->srtt) {
735                         /* This session failed to estimate rtt. Why?
736                          * Probably, no packets returned in time.
737                          * Reset our results.
738                          */
739                         if (!(dst_metric_locked(dst, RTAX_RTT)))
740                                 dst->metrics[RTAX_RTT - 1] = 0;
741                         return;
742                 }
743
744                 rtt = dst_metric_rtt(dst, RTAX_RTT);
745                 m = rtt - tp->srtt;
746
747                 /* If newly calculated rtt larger than stored one,
748                  * store new one. Otherwise, use EWMA. Remember,
749                  * rtt overestimation is always better than underestimation.
750                  */
751                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752                         if (m <= 0)
753                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754                         else
755                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756                 }
757
758                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759                         unsigned long var;
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
769                         if (m >= var)
770                                 var = m;
771                         else
772                                 var -= (var - m) >> 2;
773
774                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775                 }
776
777                 if (tp->snd_ssthresh >= 0xFFFF) {
778                         /* Slow start still did not finish. */
779                         if (dst_metric(dst, RTAX_SSTHRESH) &&
780                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783                         if (!dst_metric_locked(dst, RTAX_CWND) &&
784                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787                            icsk->icsk_ca_state == TCP_CA_Open) {
788                         /* Cong. avoidance phase, cwnd is reliable. */
789                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790                                 dst->metrics[RTAX_SSTHRESH-1] =
791                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794                 } else {
795                         /* Else slow start did not finish, cwnd is non-sense,
796                            ssthresh may be also invalid.
797                          */
798                         if (!dst_metric_locked(dst, RTAX_CWND))
799                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800                         if (dst_metric(dst, RTAX_SSTHRESH) &&
801                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804                 }
805
806                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808                             tp->reordering != sysctl_tcp_reordering)
809                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810                 }
811         }
812 }
813
814 /* Numbers are taken from RFC3390.
815  *
816  * John Heffner states:
817  *
818  *      The RFC specifies a window of no more than 4380 bytes
819  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
820  *      is a bit misleading because they use a clamp at 4380 bytes
821  *      rather than use a multiplier in the relevant range.
822  */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827         if (!cwnd) {
828                 if (tp->mss_cache > 1460)
829                         cwnd = 2;
830                 else
831                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832         }
833         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839         struct tcp_sock *tp = tcp_sk(sk);
840         const struct inet_connection_sock *icsk = inet_csk(sk);
841
842         tp->prior_ssthresh = 0;
843         tp->bytes_acked = 0;
844         if (icsk->icsk_ca_state < TCP_CA_CWR) {
845                 tp->undo_marker = 0;
846                 if (set_ssthresh)
847                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848                 tp->snd_cwnd = min(tp->snd_cwnd,
849                                    tcp_packets_in_flight(tp) + 1U);
850                 tp->snd_cwnd_cnt = 0;
851                 tp->high_seq = tp->snd_nxt;
852                 tp->snd_cwnd_stamp = tcp_time_stamp;
853                 TCP_ECN_queue_cwr(tp);
854
855                 tcp_set_ca_state(sk, TCP_CA_CWR);
856         }
857 }
858
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865         /* RFC3517 uses different metric in lost marker => reset on change */
866         if (tcp_is_fack(tp))
867                 tp->lost_skb_hint = NULL;
868         tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874         tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         struct dst_entry *dst = __sk_dst_get(sk);
883
884         if (dst == NULL)
885                 goto reset;
886
887         dst_confirm(dst);
888
889         if (dst_metric_locked(dst, RTAX_CWND))
890                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891         if (dst_metric(dst, RTAX_SSTHRESH)) {
892                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
895         }
896         if (dst_metric(dst, RTAX_REORDERING) &&
897             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898                 tcp_disable_fack(tp);
899                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900         }
901
902         if (dst_metric(dst, RTAX_RTT) == 0)
903                 goto reset;
904
905         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906                 goto reset;
907
908         /* Initial rtt is determined from SYN,SYN-ACK.
909          * The segment is small and rtt may appear much
910          * less than real one. Use per-dst memory
911          * to make it more realistic.
912          *
913          * A bit of theory. RTT is time passed after "normal" sized packet
914          * is sent until it is ACKed. In normal circumstances sending small
915          * packets force peer to delay ACKs and calculation is correct too.
916          * The algorithm is adaptive and, provided we follow specs, it
917          * NEVER underestimate RTT. BUT! If peer tries to make some clever
918          * tricks sort of "quick acks" for time long enough to decrease RTT
919          * to low value, and then abruptly stops to do it and starts to delay
920          * ACKs, wait for troubles.
921          */
922         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924                 tp->rtt_seq = tp->snd_nxt;
925         }
926         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929         }
930         tcp_set_rto(sk);
931         tcp_bound_rto(sk);
932         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933                 goto reset;
934         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935         tp->snd_cwnd_stamp = tcp_time_stamp;
936         return;
937
938 reset:
939         /* Play conservative. If timestamps are not
940          * supported, TCP will fail to recalculate correct
941          * rtt, if initial rto is too small. FORGET ALL AND RESET!
942          */
943         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944                 tp->srtt = 0;
945                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947         }
948 }
949
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951                                   const int ts)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         if (metric > tp->reordering) {
955                 int mib_idx;
956
957                 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959                 /* This exciting event is worth to be remembered. 8) */
960                 if (ts)
961                         mib_idx = LINUX_MIB_TCPTSREORDER;
962                 else if (tcp_is_reno(tp))
963                         mib_idx = LINUX_MIB_TCPRENOREORDER;
964                 else if (tcp_is_fack(tp))
965                         mib_idx = LINUX_MIB_TCPFACKREORDER;
966                 else
967                         mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973                        tp->reordering,
974                        tp->fackets_out,
975                        tp->sacked_out,
976                        tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978                 tcp_disable_fack(tp);
979         }
980 }
981
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985         if ((tp->retransmit_skb_hint == NULL) ||
986             before(TCP_SKB_CB(skb)->seq,
987                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988                 tp->retransmit_skb_hint = skb;
989
990         if (!tp->lost_out ||
991             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993 }
994
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998                 tcp_verify_retransmit_hint(tp, skb);
999
1000                 tp->lost_out += tcp_skb_pcount(skb);
1001                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002         }
1003 }
1004
1005 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
1006 {
1007         tcp_verify_retransmit_hint(tp, skb);
1008
1009         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1010                 tp->lost_out += tcp_skb_pcount(skb);
1011                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1012         }
1013 }
1014
1015 /* This procedure tags the retransmission queue when SACKs arrive.
1016  *
1017  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1018  * Packets in queue with these bits set are counted in variables
1019  * sacked_out, retrans_out and lost_out, correspondingly.
1020  *
1021  * Valid combinations are:
1022  * Tag  InFlight        Description
1023  * 0    1               - orig segment is in flight.
1024  * S    0               - nothing flies, orig reached receiver.
1025  * L    0               - nothing flies, orig lost by net.
1026  * R    2               - both orig and retransmit are in flight.
1027  * L|R  1               - orig is lost, retransmit is in flight.
1028  * S|R  1               - orig reached receiver, retrans is still in flight.
1029  * (L|S|R is logically valid, it could occur when L|R is sacked,
1030  *  but it is equivalent to plain S and code short-curcuits it to S.
1031  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1032  *
1033  * These 6 states form finite state machine, controlled by the following events:
1034  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1035  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1036  * 3. Loss detection event of one of three flavors:
1037  *      A. Scoreboard estimator decided the packet is lost.
1038  *         A'. Reno "three dupacks" marks head of queue lost.
1039  *         A''. Its FACK modfication, head until snd.fack is lost.
1040  *      B. SACK arrives sacking data transmitted after never retransmitted
1041  *         hole was sent out.
1042  *      C. SACK arrives sacking SND.NXT at the moment, when the
1043  *         segment was retransmitted.
1044  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1045  *
1046  * It is pleasant to note, that state diagram turns out to be commutative,
1047  * so that we are allowed not to be bothered by order of our actions,
1048  * when multiple events arrive simultaneously. (see the function below).
1049  *
1050  * Reordering detection.
1051  * --------------------
1052  * Reordering metric is maximal distance, which a packet can be displaced
1053  * in packet stream. With SACKs we can estimate it:
1054  *
1055  * 1. SACK fills old hole and the corresponding segment was not
1056  *    ever retransmitted -> reordering. Alas, we cannot use it
1057  *    when segment was retransmitted.
1058  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1059  *    for retransmitted and already SACKed segment -> reordering..
1060  * Both of these heuristics are not used in Loss state, when we cannot
1061  * account for retransmits accurately.
1062  *
1063  * SACK block validation.
1064  * ----------------------
1065  *
1066  * SACK block range validation checks that the received SACK block fits to
1067  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1068  * Note that SND.UNA is not included to the range though being valid because
1069  * it means that the receiver is rather inconsistent with itself reporting
1070  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1071  * perfectly valid, however, in light of RFC2018 which explicitly states
1072  * that "SACK block MUST reflect the newest segment.  Even if the newest
1073  * segment is going to be discarded ...", not that it looks very clever
1074  * in case of head skb. Due to potentional receiver driven attacks, we
1075  * choose to avoid immediate execution of a walk in write queue due to
1076  * reneging and defer head skb's loss recovery to standard loss recovery
1077  * procedure that will eventually trigger (nothing forbids us doing this).
1078  *
1079  * Implements also blockage to start_seq wrap-around. Problem lies in the
1080  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1081  * there's no guarantee that it will be before snd_nxt (n). The problem
1082  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1083  * wrap (s_w):
1084  *
1085  *         <- outs wnd ->                          <- wrapzone ->
1086  *         u     e      n                         u_w   e_w  s n_w
1087  *         |     |      |                          |     |   |  |
1088  * |<------------+------+----- TCP seqno space --------------+---------->|
1089  * ...-- <2^31 ->|                                           |<--------...
1090  * ...---- >2^31 ------>|                                    |<--------...
1091  *
1092  * Current code wouldn't be vulnerable but it's better still to discard such
1093  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1094  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1095  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1096  * equal to the ideal case (infinite seqno space without wrap caused issues).
1097  *
1098  * With D-SACK the lower bound is extended to cover sequence space below
1099  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1100  * again, D-SACK block must not to go across snd_una (for the same reason as
1101  * for the normal SACK blocks, explained above). But there all simplicity
1102  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1103  * fully below undo_marker they do not affect behavior in anyway and can
1104  * therefore be safely ignored. In rare cases (which are more or less
1105  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1106  * fragmentation and packet reordering past skb's retransmission. To consider
1107  * them correctly, the acceptable range must be extended even more though
1108  * the exact amount is rather hard to quantify. However, tp->max_window can
1109  * be used as an exaggerated estimate.
1110  */
1111 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1112                                   u32 start_seq, u32 end_seq)
1113 {
1114         /* Too far in future, or reversed (interpretation is ambiguous) */
1115         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1116                 return 0;
1117
1118         /* Nasty start_seq wrap-around check (see comments above) */
1119         if (!before(start_seq, tp->snd_nxt))
1120                 return 0;
1121
1122         /* In outstanding window? ...This is valid exit for D-SACKs too.
1123          * start_seq == snd_una is non-sensical (see comments above)
1124          */
1125         if (after(start_seq, tp->snd_una))
1126                 return 1;
1127
1128         if (!is_dsack || !tp->undo_marker)
1129                 return 0;
1130
1131         /* ...Then it's D-SACK, and must reside below snd_una completely */
1132         if (!after(end_seq, tp->snd_una))
1133                 return 0;
1134
1135         if (!before(start_seq, tp->undo_marker))
1136                 return 1;
1137
1138         /* Too old */
1139         if (!after(end_seq, tp->undo_marker))
1140                 return 0;
1141
1142         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1143          *   start_seq < undo_marker and end_seq >= undo_marker.
1144          */
1145         return !before(start_seq, end_seq - tp->max_window);
1146 }
1147
1148 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1149  * Event "C". Later note: FACK people cheated me again 8), we have to account
1150  * for reordering! Ugly, but should help.
1151  *
1152  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1153  * less than what is now known to be received by the other end (derived from
1154  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1155  * retransmitted skbs to avoid some costly processing per ACKs.
1156  */
1157 static void tcp_mark_lost_retrans(struct sock *sk)
1158 {
1159         const struct inet_connection_sock *icsk = inet_csk(sk);
1160         struct tcp_sock *tp = tcp_sk(sk);
1161         struct sk_buff *skb;
1162         int cnt = 0;
1163         u32 new_low_seq = tp->snd_nxt;
1164         u32 received_upto = tcp_highest_sack_seq(tp);
1165
1166         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1167             !after(received_upto, tp->lost_retrans_low) ||
1168             icsk->icsk_ca_state != TCP_CA_Recovery)
1169                 return;
1170
1171         tcp_for_write_queue(skb, sk) {
1172                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1173
1174                 if (skb == tcp_send_head(sk))
1175                         break;
1176                 if (cnt == tp->retrans_out)
1177                         break;
1178                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1179                         continue;
1180
1181                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1182                         continue;
1183
1184                 if (after(received_upto, ack_seq) &&
1185                     (tcp_is_fack(tp) ||
1186                      !before(received_upto,
1187                              ack_seq + tp->reordering * tp->mss_cache))) {
1188                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1189                         tp->retrans_out -= tcp_skb_pcount(skb);
1190
1191                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1192                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1193                 } else {
1194                         if (before(ack_seq, new_low_seq))
1195                                 new_low_seq = ack_seq;
1196                         cnt += tcp_skb_pcount(skb);
1197                 }
1198         }
1199
1200         if (tp->retrans_out)
1201                 tp->lost_retrans_low = new_low_seq;
1202 }
1203
1204 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1205                            struct tcp_sack_block_wire *sp, int num_sacks,
1206                            u32 prior_snd_una)
1207 {
1208         struct tcp_sock *tp = tcp_sk(sk);
1209         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1210         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1211         int dup_sack = 0;
1212
1213         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1214                 dup_sack = 1;
1215                 tcp_dsack_seen(tp);
1216                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1217         } else if (num_sacks > 1) {
1218                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1219                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1220
1221                 if (!after(end_seq_0, end_seq_1) &&
1222                     !before(start_seq_0, start_seq_1)) {
1223                         dup_sack = 1;
1224                         tcp_dsack_seen(tp);
1225                         NET_INC_STATS_BH(sock_net(sk),
1226                                         LINUX_MIB_TCPDSACKOFORECV);
1227                 }
1228         }
1229
1230         /* D-SACK for already forgotten data... Do dumb counting. */
1231         if (dup_sack &&
1232             !after(end_seq_0, prior_snd_una) &&
1233             after(end_seq_0, tp->undo_marker))
1234                 tp->undo_retrans--;
1235
1236         return dup_sack;
1237 }
1238
1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1240  * the incoming SACK may not exactly match but we can find smaller MSS
1241  * aligned portion of it that matches. Therefore we might need to fragment
1242  * which may fail and creates some hassle (caller must handle error case
1243  * returns).
1244  */
1245 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1246                                  u32 start_seq, u32 end_seq)
1247 {
1248         int in_sack, err;
1249         unsigned int pkt_len;
1250
1251         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1252                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1253
1254         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1255             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1256
1257                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1258
1259                 if (!in_sack)
1260                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1261                 else
1262                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1263                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1264                 if (err < 0)
1265                         return err;
1266         }
1267
1268         return in_sack;
1269 }
1270
1271 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1272                            int *reord, int dup_sack, int fack_count)
1273 {
1274         struct tcp_sock *tp = tcp_sk(sk);
1275         u8 sacked = TCP_SKB_CB(skb)->sacked;
1276         int flag = 0;
1277
1278         /* Account D-SACK for retransmitted packet. */
1279         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1280                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1281                         tp->undo_retrans--;
1282                 if (sacked & TCPCB_SACKED_ACKED)
1283                         *reord = min(fack_count, *reord);
1284         }
1285
1286         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1287         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1288                 return flag;
1289
1290         if (!(sacked & TCPCB_SACKED_ACKED)) {
1291                 if (sacked & TCPCB_SACKED_RETRANS) {
1292                         /* If the segment is not tagged as lost,
1293                          * we do not clear RETRANS, believing
1294                          * that retransmission is still in flight.
1295                          */
1296                         if (sacked & TCPCB_LOST) {
1297                                 TCP_SKB_CB(skb)->sacked &=
1298                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1299                                 tp->lost_out -= tcp_skb_pcount(skb);
1300                                 tp->retrans_out -= tcp_skb_pcount(skb);
1301
1302                                 /* clear lost hint */
1303                                 tp->retransmit_skb_hint = NULL;
1304                         }
1305                 } else {
1306                         if (!(sacked & TCPCB_RETRANS)) {
1307                                 /* New sack for not retransmitted frame,
1308                                  * which was in hole. It is reordering.
1309                                  */
1310                                 if (before(TCP_SKB_CB(skb)->seq,
1311                                            tcp_highest_sack_seq(tp)))
1312                                         *reord = min(fack_count, *reord);
1313
1314                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1315                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1316                                         flag |= FLAG_ONLY_ORIG_SACKED;
1317                         }
1318
1319                         if (sacked & TCPCB_LOST) {
1320                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1321                                 tp->lost_out -= tcp_skb_pcount(skb);
1322
1323                                 /* clear lost hint */
1324                                 tp->retransmit_skb_hint = NULL;
1325                         }
1326                 }
1327
1328                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1329                 flag |= FLAG_DATA_SACKED;
1330                 tp->sacked_out += tcp_skb_pcount(skb);
1331
1332                 fack_count += tcp_skb_pcount(skb);
1333
1334                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1335                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1336                     before(TCP_SKB_CB(skb)->seq,
1337                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1338                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1339
1340                 if (fack_count > tp->fackets_out)
1341                         tp->fackets_out = fack_count;
1342
1343                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1344                         tcp_advance_highest_sack(sk, skb);
1345         }
1346
1347         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1348          * frames and clear it. undo_retrans is decreased above, L|R frames
1349          * are accounted above as well.
1350          */
1351         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1352                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1353                 tp->retrans_out -= tcp_skb_pcount(skb);
1354                 tp->retransmit_skb_hint = NULL;
1355         }
1356
1357         return flag;
1358 }
1359
1360 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1361                                         struct tcp_sack_block *next_dup,
1362                                         u32 start_seq, u32 end_seq,
1363                                         int dup_sack_in, int *fack_count,
1364                                         int *reord, int *flag)
1365 {
1366         tcp_for_write_queue_from(skb, sk) {
1367                 int in_sack = 0;
1368                 int dup_sack = dup_sack_in;
1369
1370                 if (skb == tcp_send_head(sk))
1371                         break;
1372
1373                 /* queue is in-order => we can short-circuit the walk early */
1374                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1375                         break;
1376
1377                 if ((next_dup != NULL) &&
1378                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1379                         in_sack = tcp_match_skb_to_sack(sk, skb,
1380                                                         next_dup->start_seq,
1381                                                         next_dup->end_seq);
1382                         if (in_sack > 0)
1383                                 dup_sack = 1;
1384                 }
1385
1386                 if (in_sack <= 0)
1387                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1388                                                         end_seq);
1389                 if (unlikely(in_sack < 0))
1390                         break;
1391
1392                 if (in_sack)
1393                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1394                                                  *fack_count);
1395
1396                 *fack_count += tcp_skb_pcount(skb);
1397         }
1398         return skb;
1399 }
1400
1401 /* Avoid all extra work that is being done by sacktag while walking in
1402  * a normal way
1403  */
1404 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1405                                         u32 skip_to_seq, int *fack_count)
1406 {
1407         tcp_for_write_queue_from(skb, sk) {
1408                 if (skb == tcp_send_head(sk))
1409                         break;
1410
1411                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1412                         break;
1413
1414                 *fack_count += tcp_skb_pcount(skb);
1415         }
1416         return skb;
1417 }
1418
1419 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1420                                                 struct sock *sk,
1421                                                 struct tcp_sack_block *next_dup,
1422                                                 u32 skip_to_seq,
1423                                                 int *fack_count, int *reord,
1424                                                 int *flag)
1425 {
1426         if (next_dup == NULL)
1427                 return skb;
1428
1429         if (before(next_dup->start_seq, skip_to_seq)) {
1430                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1431                 skb = tcp_sacktag_walk(skb, sk, NULL,
1432                                      next_dup->start_seq, next_dup->end_seq,
1433                                      1, fack_count, reord, flag);
1434         }
1435
1436         return skb;
1437 }
1438
1439 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1440 {
1441         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1442 }
1443
1444 static int
1445 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1446                         u32 prior_snd_una)
1447 {
1448         const struct inet_connection_sock *icsk = inet_csk(sk);
1449         struct tcp_sock *tp = tcp_sk(sk);
1450         unsigned char *ptr = (skb_transport_header(ack_skb) +
1451                               TCP_SKB_CB(ack_skb)->sacked);
1452         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1453         struct tcp_sack_block sp[TCP_NUM_SACKS];
1454         struct tcp_sack_block *cache;
1455         struct sk_buff *skb;
1456         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1457         int used_sacks;
1458         int reord = tp->packets_out;
1459         int flag = 0;
1460         int found_dup_sack = 0;
1461         int fack_count;
1462         int i, j;
1463         int first_sack_index;
1464
1465         if (!tp->sacked_out) {
1466                 if (WARN_ON(tp->fackets_out))
1467                         tp->fackets_out = 0;
1468                 tcp_highest_sack_reset(sk);
1469         }
1470
1471         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1472                                          num_sacks, prior_snd_una);
1473         if (found_dup_sack)
1474                 flag |= FLAG_DSACKING_ACK;
1475
1476         /* Eliminate too old ACKs, but take into
1477          * account more or less fresh ones, they can
1478          * contain valid SACK info.
1479          */
1480         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1481                 return 0;
1482
1483         if (!tp->packets_out)
1484                 goto out;
1485
1486         used_sacks = 0;
1487         first_sack_index = 0;
1488         for (i = 0; i < num_sacks; i++) {
1489                 int dup_sack = !i && found_dup_sack;
1490
1491                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1492                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1493
1494                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1495                                             sp[used_sacks].start_seq,
1496                                             sp[used_sacks].end_seq)) {
1497                         int mib_idx;
1498
1499                         if (dup_sack) {
1500                                 if (!tp->undo_marker)
1501                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1502                                 else
1503                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1504                         } else {
1505                                 /* Don't count olds caused by ACK reordering */
1506                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1507                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1508                                         continue;
1509                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1510                         }
1511
1512                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1513                         if (i == 0)
1514                                 first_sack_index = -1;
1515                         continue;
1516                 }
1517
1518                 /* Ignore very old stuff early */
1519                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1520                         continue;
1521
1522                 used_sacks++;
1523         }
1524
1525         /* order SACK blocks to allow in order walk of the retrans queue */
1526         for (i = used_sacks - 1; i > 0; i--) {
1527                 for (j = 0; j < i; j++) {
1528                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1529                                 struct tcp_sack_block tmp;
1530
1531                                 tmp = sp[j];
1532                                 sp[j] = sp[j + 1];
1533                                 sp[j + 1] = tmp;
1534
1535                                 /* Track where the first SACK block goes to */
1536                                 if (j == first_sack_index)
1537                                         first_sack_index = j + 1;
1538                         }
1539                 }
1540         }
1541
1542         skb = tcp_write_queue_head(sk);
1543         fack_count = 0;
1544         i = 0;
1545
1546         if (!tp->sacked_out) {
1547                 /* It's already past, so skip checking against it */
1548                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1549         } else {
1550                 cache = tp->recv_sack_cache;
1551                 /* Skip empty blocks in at head of the cache */
1552                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1553                        !cache->end_seq)
1554                         cache++;
1555         }
1556
1557         while (i < used_sacks) {
1558                 u32 start_seq = sp[i].start_seq;
1559                 u32 end_seq = sp[i].end_seq;
1560                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1561                 struct tcp_sack_block *next_dup = NULL;
1562
1563                 if (found_dup_sack && ((i + 1) == first_sack_index))
1564                         next_dup = &sp[i + 1];
1565
1566                 /* Event "B" in the comment above. */
1567                 if (after(end_seq, tp->high_seq))
1568                         flag |= FLAG_DATA_LOST;
1569
1570                 /* Skip too early cached blocks */
1571                 while (tcp_sack_cache_ok(tp, cache) &&
1572                        !before(start_seq, cache->end_seq))
1573                         cache++;
1574
1575                 /* Can skip some work by looking recv_sack_cache? */
1576                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1577                     after(end_seq, cache->start_seq)) {
1578
1579                         /* Head todo? */
1580                         if (before(start_seq, cache->start_seq)) {
1581                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1582                                                        &fack_count);
1583                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1584                                                        start_seq,
1585                                                        cache->start_seq,
1586                                                        dup_sack, &fack_count,
1587                                                        &reord, &flag);
1588                         }
1589
1590                         /* Rest of the block already fully processed? */
1591                         if (!after(end_seq, cache->end_seq))
1592                                 goto advance_sp;
1593
1594                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1595                                                        cache->end_seq,
1596                                                        &fack_count, &reord,
1597                                                        &flag);
1598
1599                         /* ...tail remains todo... */
1600                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1601                                 /* ...but better entrypoint exists! */
1602                                 skb = tcp_highest_sack(sk);
1603                                 if (skb == NULL)
1604                                         break;
1605                                 fack_count = tp->fackets_out;
1606                                 cache++;
1607                                 goto walk;
1608                         }
1609
1610                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1611                                                &fack_count);
1612                         /* Check overlap against next cached too (past this one already) */
1613                         cache++;
1614                         continue;
1615                 }
1616
1617                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1618                         skb = tcp_highest_sack(sk);
1619                         if (skb == NULL)
1620                                 break;
1621                         fack_count = tp->fackets_out;
1622                 }
1623                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1624
1625 walk:
1626                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1627                                        dup_sack, &fack_count, &reord, &flag);
1628
1629 advance_sp:
1630                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1631                  * due to in-order walk
1632                  */
1633                 if (after(end_seq, tp->frto_highmark))
1634                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1635
1636                 i++;
1637         }
1638
1639         /* Clear the head of the cache sack blocks so we can skip it next time */
1640         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1641                 tp->recv_sack_cache[i].start_seq = 0;
1642                 tp->recv_sack_cache[i].end_seq = 0;
1643         }
1644         for (j = 0; j < used_sacks; j++)
1645                 tp->recv_sack_cache[i++] = sp[j];
1646
1647         tcp_mark_lost_retrans(sk);
1648
1649         tcp_verify_left_out(tp);
1650
1651         if ((reord < tp->fackets_out) &&
1652             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1653             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1654                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1655
1656 out:
1657
1658 #if FASTRETRANS_DEBUG > 0
1659         WARN_ON((int)tp->sacked_out < 0);
1660         WARN_ON((int)tp->lost_out < 0);
1661         WARN_ON((int)tp->retrans_out < 0);
1662         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1663 #endif
1664         return flag;
1665 }
1666
1667 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1668  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1669  */
1670 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1671 {
1672         u32 holes;
1673
1674         holes = max(tp->lost_out, 1U);
1675         holes = min(holes, tp->packets_out);
1676
1677         if ((tp->sacked_out + holes) > tp->packets_out) {
1678                 tp->sacked_out = tp->packets_out - holes;
1679                 return 1;
1680         }
1681         return 0;
1682 }
1683
1684 /* If we receive more dupacks than we expected counting segments
1685  * in assumption of absent reordering, interpret this as reordering.
1686  * The only another reason could be bug in receiver TCP.
1687  */
1688 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1689 {
1690         struct tcp_sock *tp = tcp_sk(sk);
1691         if (tcp_limit_reno_sacked(tp))
1692                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1693 }
1694
1695 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1696
1697 static void tcp_add_reno_sack(struct sock *sk)
1698 {
1699         struct tcp_sock *tp = tcp_sk(sk);
1700         tp->sacked_out++;
1701         tcp_check_reno_reordering(sk, 0);
1702         tcp_verify_left_out(tp);
1703 }
1704
1705 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1706
1707 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1708 {
1709         struct tcp_sock *tp = tcp_sk(sk);
1710
1711         if (acked > 0) {
1712                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1713                 if (acked - 1 >= tp->sacked_out)
1714                         tp->sacked_out = 0;
1715                 else
1716                         tp->sacked_out -= acked - 1;
1717         }
1718         tcp_check_reno_reordering(sk, acked);
1719         tcp_verify_left_out(tp);
1720 }
1721
1722 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1723 {
1724         tp->sacked_out = 0;
1725 }
1726
1727 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1728 {
1729         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1730 }
1731
1732 /* F-RTO can only be used if TCP has never retransmitted anything other than
1733  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1734  */
1735 int tcp_use_frto(struct sock *sk)
1736 {
1737         const struct tcp_sock *tp = tcp_sk(sk);
1738         const struct inet_connection_sock *icsk = inet_csk(sk);
1739         struct sk_buff *skb;
1740
1741         if (!sysctl_tcp_frto)
1742                 return 0;
1743
1744         /* MTU probe and F-RTO won't really play nicely along currently */
1745         if (icsk->icsk_mtup.probe_size)
1746                 return 0;
1747
1748         if (tcp_is_sackfrto(tp))
1749                 return 1;
1750
1751         /* Avoid expensive walking of rexmit queue if possible */
1752         if (tp->retrans_out > 1)
1753                 return 0;
1754
1755         skb = tcp_write_queue_head(sk);
1756         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1757         tcp_for_write_queue_from(skb, sk) {
1758                 if (skb == tcp_send_head(sk))
1759                         break;
1760                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1761                         return 0;
1762                 /* Short-circuit when first non-SACKed skb has been checked */
1763                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1764                         break;
1765         }
1766         return 1;
1767 }
1768
1769 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1770  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1771  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1772  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1773  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1774  * bits are handled if the Loss state is really to be entered (in
1775  * tcp_enter_frto_loss).
1776  *
1777  * Do like tcp_enter_loss() would; when RTO expires the second time it
1778  * does:
1779  *  "Reduce ssthresh if it has not yet been made inside this window."
1780  */
1781 void tcp_enter_frto(struct sock *sk)
1782 {
1783         const struct inet_connection_sock *icsk = inet_csk(sk);
1784         struct tcp_sock *tp = tcp_sk(sk);
1785         struct sk_buff *skb;
1786
1787         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1788             tp->snd_una == tp->high_seq ||
1789             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1790              !icsk->icsk_retransmits)) {
1791                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1792                 /* Our state is too optimistic in ssthresh() call because cwnd
1793                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1794                  * recovery has not yet completed. Pattern would be this: RTO,
1795                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1796                  * up here twice).
1797                  * RFC4138 should be more specific on what to do, even though
1798                  * RTO is quite unlikely to occur after the first Cumulative ACK
1799                  * due to back-off and complexity of triggering events ...
1800                  */
1801                 if (tp->frto_counter) {
1802                         u32 stored_cwnd;
1803                         stored_cwnd = tp->snd_cwnd;
1804                         tp->snd_cwnd = 2;
1805                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1806                         tp->snd_cwnd = stored_cwnd;
1807                 } else {
1808                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1809                 }
1810                 /* ... in theory, cong.control module could do "any tricks" in
1811                  * ssthresh(), which means that ca_state, lost bits and lost_out
1812                  * counter would have to be faked before the call occurs. We
1813                  * consider that too expensive, unlikely and hacky, so modules
1814                  * using these in ssthresh() must deal these incompatibility
1815                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1816                  */
1817                 tcp_ca_event(sk, CA_EVENT_FRTO);
1818         }
1819
1820         tp->undo_marker = tp->snd_una;
1821         tp->undo_retrans = 0;
1822
1823         skb = tcp_write_queue_head(sk);
1824         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1825                 tp->undo_marker = 0;
1826         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1827                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1828                 tp->retrans_out -= tcp_skb_pcount(skb);
1829         }
1830         tcp_verify_left_out(tp);
1831
1832         /* Too bad if TCP was application limited */
1833         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1834
1835         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1836          * The last condition is necessary at least in tp->frto_counter case.
1837          */
1838         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1839             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1840             after(tp->high_seq, tp->snd_una)) {
1841                 tp->frto_highmark = tp->high_seq;
1842         } else {
1843                 tp->frto_highmark = tp->snd_nxt;
1844         }
1845         tcp_set_ca_state(sk, TCP_CA_Disorder);
1846         tp->high_seq = tp->snd_nxt;
1847         tp->frto_counter = 1;
1848 }
1849
1850 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1851  * which indicates that we should follow the traditional RTO recovery,
1852  * i.e. mark everything lost and do go-back-N retransmission.
1853  */
1854 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1855 {
1856         struct tcp_sock *tp = tcp_sk(sk);
1857         struct sk_buff *skb;
1858
1859         tp->lost_out = 0;
1860         tp->retrans_out = 0;
1861         if (tcp_is_reno(tp))
1862                 tcp_reset_reno_sack(tp);
1863
1864         tcp_for_write_queue(skb, sk) {
1865                 if (skb == tcp_send_head(sk))
1866                         break;
1867
1868                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1869                 /*
1870                  * Count the retransmission made on RTO correctly (only when
1871                  * waiting for the first ACK and did not get it)...
1872                  */
1873                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1874                         /* For some reason this R-bit might get cleared? */
1875                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1876                                 tp->retrans_out += tcp_skb_pcount(skb);
1877                         /* ...enter this if branch just for the first segment */
1878                         flag |= FLAG_DATA_ACKED;
1879                 } else {
1880                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1881                                 tp->undo_marker = 0;
1882                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1883                 }
1884
1885                 /* Marking forward transmissions that were made after RTO lost
1886                  * can cause unnecessary retransmissions in some scenarios,
1887                  * SACK blocks will mitigate that in some but not in all cases.
1888                  * We used to not mark them but it was causing break-ups with
1889                  * receivers that do only in-order receival.
1890                  *
1891                  * TODO: we could detect presence of such receiver and select
1892                  * different behavior per flow.
1893                  */
1894                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1895                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1896                         tp->lost_out += tcp_skb_pcount(skb);
1897                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1898                 }
1899         }
1900         tcp_verify_left_out(tp);
1901
1902         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1903         tp->snd_cwnd_cnt = 0;
1904         tp->snd_cwnd_stamp = tcp_time_stamp;
1905         tp->frto_counter = 0;
1906         tp->bytes_acked = 0;
1907
1908         tp->reordering = min_t(unsigned int, tp->reordering,
1909                                sysctl_tcp_reordering);
1910         tcp_set_ca_state(sk, TCP_CA_Loss);
1911         tp->high_seq = tp->snd_nxt;
1912         TCP_ECN_queue_cwr(tp);
1913
1914         tcp_clear_all_retrans_hints(tp);
1915 }
1916
1917 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1918 {
1919         tp->retrans_out = 0;
1920         tp->lost_out = 0;
1921
1922         tp->undo_marker = 0;
1923         tp->undo_retrans = 0;
1924 }
1925
1926 void tcp_clear_retrans(struct tcp_sock *tp)
1927 {
1928         tcp_clear_retrans_partial(tp);
1929
1930         tp->fackets_out = 0;
1931         tp->sacked_out = 0;
1932 }
1933
1934 /* Enter Loss state. If "how" is not zero, forget all SACK information
1935  * and reset tags completely, otherwise preserve SACKs. If receiver
1936  * dropped its ofo queue, we will know this due to reneging detection.
1937  */
1938 void tcp_enter_loss(struct sock *sk, int how)
1939 {
1940         const struct inet_connection_sock *icsk = inet_csk(sk);
1941         struct tcp_sock *tp = tcp_sk(sk);
1942         struct sk_buff *skb;
1943
1944         /* Reduce ssthresh if it has not yet been made inside this window. */
1945         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1946             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1947                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1948                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1949                 tcp_ca_event(sk, CA_EVENT_LOSS);
1950         }
1951         tp->snd_cwnd       = 1;
1952         tp->snd_cwnd_cnt   = 0;
1953         tp->snd_cwnd_stamp = tcp_time_stamp;
1954
1955         tp->bytes_acked = 0;
1956         tcp_clear_retrans_partial(tp);
1957
1958         if (tcp_is_reno(tp))
1959                 tcp_reset_reno_sack(tp);
1960
1961         if (!how) {
1962                 /* Push undo marker, if it was plain RTO and nothing
1963                  * was retransmitted. */
1964                 tp->undo_marker = tp->snd_una;
1965         } else {
1966                 tp->sacked_out = 0;
1967                 tp->fackets_out = 0;
1968         }
1969         tcp_clear_all_retrans_hints(tp);
1970
1971         tcp_for_write_queue(skb, sk) {
1972                 if (skb == tcp_send_head(sk))
1973                         break;
1974
1975                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1976                         tp->undo_marker = 0;
1977                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1978                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1979                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1980                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1981                         tp->lost_out += tcp_skb_pcount(skb);
1982                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1983                 }
1984         }
1985         tcp_verify_left_out(tp);
1986
1987         tp->reordering = min_t(unsigned int, tp->reordering,
1988                                sysctl_tcp_reordering);
1989         tcp_set_ca_state(sk, TCP_CA_Loss);
1990         tp->high_seq = tp->snd_nxt;
1991         TCP_ECN_queue_cwr(tp);
1992         /* Abort F-RTO algorithm if one is in progress */
1993         tp->frto_counter = 0;
1994 }
1995
1996 /* If ACK arrived pointing to a remembered SACK, it means that our
1997  * remembered SACKs do not reflect real state of receiver i.e.
1998  * receiver _host_ is heavily congested (or buggy).
1999  *
2000  * Do processing similar to RTO timeout.
2001  */
2002 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2003 {
2004         if (flag & FLAG_SACK_RENEGING) {
2005                 struct inet_connection_sock *icsk = inet_csk(sk);
2006                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2007
2008                 tcp_enter_loss(sk, 1);
2009                 icsk->icsk_retransmits++;
2010                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2011                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2012                                           icsk->icsk_rto, TCP_RTO_MAX);
2013                 return 1;
2014         }
2015         return 0;
2016 }
2017
2018 static inline int tcp_fackets_out(struct tcp_sock *tp)
2019 {
2020         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2021 }
2022
2023 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2024  * counter when SACK is enabled (without SACK, sacked_out is used for
2025  * that purpose).
2026  *
2027  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2028  * segments up to the highest received SACK block so far and holes in
2029  * between them.
2030  *
2031  * With reordering, holes may still be in flight, so RFC3517 recovery
2032  * uses pure sacked_out (total number of SACKed segments) even though
2033  * it violates the RFC that uses duplicate ACKs, often these are equal
2034  * but when e.g. out-of-window ACKs or packet duplication occurs,
2035  * they differ. Since neither occurs due to loss, TCP should really
2036  * ignore them.
2037  */
2038 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2039 {
2040         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2041 }
2042
2043 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2044 {
2045         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2046 }
2047
2048 static inline int tcp_head_timedout(struct sock *sk)
2049 {
2050         struct tcp_sock *tp = tcp_sk(sk);
2051
2052         return tp->packets_out &&
2053                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2054 }
2055
2056 /* Linux NewReno/SACK/FACK/ECN state machine.
2057  * --------------------------------------
2058  *
2059  * "Open"       Normal state, no dubious events, fast path.
2060  * "Disorder"   In all the respects it is "Open",
2061  *              but requires a bit more attention. It is entered when
2062  *              we see some SACKs or dupacks. It is split of "Open"
2063  *              mainly to move some processing from fast path to slow one.
2064  * "CWR"        CWND was reduced due to some Congestion Notification event.
2065  *              It can be ECN, ICMP source quench, local device congestion.
2066  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2067  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2068  *
2069  * tcp_fastretrans_alert() is entered:
2070  * - each incoming ACK, if state is not "Open"
2071  * - when arrived ACK is unusual, namely:
2072  *      * SACK
2073  *      * Duplicate ACK.
2074  *      * ECN ECE.
2075  *
2076  * Counting packets in flight is pretty simple.
2077  *
2078  *      in_flight = packets_out - left_out + retrans_out
2079  *
2080  *      packets_out is SND.NXT-SND.UNA counted in packets.
2081  *
2082  *      retrans_out is number of retransmitted segments.
2083  *
2084  *      left_out is number of segments left network, but not ACKed yet.
2085  *
2086  *              left_out = sacked_out + lost_out
2087  *
2088  *     sacked_out: Packets, which arrived to receiver out of order
2089  *                 and hence not ACKed. With SACKs this number is simply
2090  *                 amount of SACKed data. Even without SACKs
2091  *                 it is easy to give pretty reliable estimate of this number,
2092  *                 counting duplicate ACKs.
2093  *
2094  *       lost_out: Packets lost by network. TCP has no explicit
2095  *                 "loss notification" feedback from network (for now).
2096  *                 It means that this number can be only _guessed_.
2097  *                 Actually, it is the heuristics to predict lossage that
2098  *                 distinguishes different algorithms.
2099  *
2100  *      F.e. after RTO, when all the queue is considered as lost,
2101  *      lost_out = packets_out and in_flight = retrans_out.
2102  *
2103  *              Essentially, we have now two algorithms counting
2104  *              lost packets.
2105  *
2106  *              FACK: It is the simplest heuristics. As soon as we decided
2107  *              that something is lost, we decide that _all_ not SACKed
2108  *              packets until the most forward SACK are lost. I.e.
2109  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2110  *              It is absolutely correct estimate, if network does not reorder
2111  *              packets. And it loses any connection to reality when reordering
2112  *              takes place. We use FACK by default until reordering
2113  *              is suspected on the path to this destination.
2114  *
2115  *              NewReno: when Recovery is entered, we assume that one segment
2116  *              is lost (classic Reno). While we are in Recovery and
2117  *              a partial ACK arrives, we assume that one more packet
2118  *              is lost (NewReno). This heuristics are the same in NewReno
2119  *              and SACK.
2120  *
2121  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2122  *  deflation etc. CWND is real congestion window, never inflated, changes
2123  *  only according to classic VJ rules.
2124  *
2125  * Really tricky (and requiring careful tuning) part of algorithm
2126  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2127  * The first determines the moment _when_ we should reduce CWND and,
2128  * hence, slow down forward transmission. In fact, it determines the moment
2129  * when we decide that hole is caused by loss, rather than by a reorder.
2130  *
2131  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2132  * holes, caused by lost packets.
2133  *
2134  * And the most logically complicated part of algorithm is undo
2135  * heuristics. We detect false retransmits due to both too early
2136  * fast retransmit (reordering) and underestimated RTO, analyzing
2137  * timestamps and D-SACKs. When we detect that some segments were
2138  * retransmitted by mistake and CWND reduction was wrong, we undo
2139  * window reduction and abort recovery phase. This logic is hidden
2140  * inside several functions named tcp_try_undo_<something>.
2141  */
2142
2143 /* This function decides, when we should leave Disordered state
2144  * and enter Recovery phase, reducing congestion window.
2145  *
2146  * Main question: may we further continue forward transmission
2147  * with the same cwnd?
2148  */
2149 static int tcp_time_to_recover(struct sock *sk)
2150 {
2151         struct tcp_sock *tp = tcp_sk(sk);
2152         __u32 packets_out;
2153
2154         /* Do not perform any recovery during F-RTO algorithm */
2155         if (tp->frto_counter)
2156                 return 0;
2157
2158         /* Trick#1: The loss is proven. */
2159         if (tp->lost_out)
2160                 return 1;
2161
2162         /* Not-A-Trick#2 : Classic rule... */
2163         if (tcp_dupack_heurestics(tp) > tp->reordering)
2164                 return 1;
2165
2166         /* Trick#3 : when we use RFC2988 timer restart, fast
2167          * retransmit can be triggered by timeout of queue head.
2168          */
2169         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2170                 return 1;
2171
2172         /* Trick#4: It is still not OK... But will it be useful to delay
2173          * recovery more?
2174          */
2175         packets_out = tp->packets_out;
2176         if (packets_out <= tp->reordering &&
2177             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2178             !tcp_may_send_now(sk)) {
2179                 /* We have nothing to send. This connection is limited
2180                  * either by receiver window or by application.
2181                  */
2182                 return 1;
2183         }
2184
2185         return 0;
2186 }
2187
2188 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2189  * is against sacked "cnt", otherwise it's against facked "cnt"
2190  */
2191 static void tcp_mark_head_lost(struct sock *sk, int packets)
2192 {
2193         struct tcp_sock *tp = tcp_sk(sk);
2194         struct sk_buff *skb;
2195         int cnt, oldcnt;
2196         int err;
2197         unsigned int mss;
2198
2199         WARN_ON(packets > tp->packets_out);
2200         if (tp->lost_skb_hint) {
2201                 skb = tp->lost_skb_hint;
2202                 cnt = tp->lost_cnt_hint;
2203         } else {
2204                 skb = tcp_write_queue_head(sk);
2205                 cnt = 0;
2206         }
2207
2208         tcp_for_write_queue_from(skb, sk) {
2209                 if (skb == tcp_send_head(sk))
2210                         break;
2211                 /* TODO: do this better */
2212                 /* this is not the most efficient way to do this... */
2213                 tp->lost_skb_hint = skb;
2214                 tp->lost_cnt_hint = cnt;
2215
2216                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2217                         break;
2218
2219                 oldcnt = cnt;
2220                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2221                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2222                         cnt += tcp_skb_pcount(skb);
2223
2224                 if (cnt > packets) {
2225                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2226                                 break;
2227
2228                         mss = skb_shinfo(skb)->gso_size;
2229                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2230                         if (err < 0)
2231                                 break;
2232                         cnt = packets;
2233                 }
2234
2235                 tcp_skb_mark_lost(tp, skb);
2236         }
2237         tcp_verify_left_out(tp);
2238 }
2239
2240 /* Account newly detected lost packet(s) */
2241
2242 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2243 {
2244         struct tcp_sock *tp = tcp_sk(sk);
2245
2246         if (tcp_is_reno(tp)) {
2247                 tcp_mark_head_lost(sk, 1);
2248         } else if (tcp_is_fack(tp)) {
2249                 int lost = tp->fackets_out - tp->reordering;
2250                 if (lost <= 0)
2251                         lost = 1;
2252                 tcp_mark_head_lost(sk, lost);
2253         } else {
2254                 int sacked_upto = tp->sacked_out - tp->reordering;
2255                 if (sacked_upto < fast_rexmit)
2256                         sacked_upto = fast_rexmit;
2257                 tcp_mark_head_lost(sk, sacked_upto);
2258         }
2259
2260         /* New heuristics: it is possible only after we switched
2261          * to restart timer each time when something is ACKed.
2262          * Hence, we can detect timed out packets during fast
2263          * retransmit without falling to slow start.
2264          */
2265         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2266                 struct sk_buff *skb;
2267
2268                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2269                         : tcp_write_queue_head(sk);
2270
2271                 tcp_for_write_queue_from(skb, sk) {
2272                         if (skb == tcp_send_head(sk))
2273                                 break;
2274                         if (!tcp_skb_timedout(sk, skb))
2275                                 break;
2276
2277                         tcp_skb_mark_lost(tp, skb);
2278                 }
2279
2280                 tp->scoreboard_skb_hint = skb;
2281
2282                 tcp_verify_left_out(tp);
2283         }
2284 }
2285
2286 /* CWND moderation, preventing bursts due to too big ACKs
2287  * in dubious situations.
2288  */
2289 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2290 {
2291         tp->snd_cwnd = min(tp->snd_cwnd,
2292                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2293         tp->snd_cwnd_stamp = tcp_time_stamp;
2294 }
2295
2296 /* Lower bound on congestion window is slow start threshold
2297  * unless congestion avoidance choice decides to overide it.
2298  */
2299 static inline u32 tcp_cwnd_min(const struct sock *sk)
2300 {
2301         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2302
2303         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2304 }
2305
2306 /* Decrease cwnd each second ack. */
2307 static void tcp_cwnd_down(struct sock *sk, int flag)
2308 {
2309         struct tcp_sock *tp = tcp_sk(sk);
2310         int decr = tp->snd_cwnd_cnt + 1;
2311
2312         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2313             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2314                 tp->snd_cwnd_cnt = decr & 1;
2315                 decr >>= 1;
2316
2317                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2318                         tp->snd_cwnd -= decr;
2319
2320                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2321                 tp->snd_cwnd_stamp = tcp_time_stamp;
2322         }
2323 }
2324
2325 /* Nothing was retransmitted or returned timestamp is less
2326  * than timestamp of the first retransmission.
2327  */
2328 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2329 {
2330         return !tp->retrans_stamp ||
2331                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2332                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2333 }
2334
2335 /* Undo procedures. */
2336
2337 #if FASTRETRANS_DEBUG > 1
2338 static void DBGUNDO(struct sock *sk, const char *msg)
2339 {
2340         struct tcp_sock *tp = tcp_sk(sk);
2341         struct inet_sock *inet = inet_sk(sk);
2342
2343         if (sk->sk_family == AF_INET) {
2344                 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2345                        msg,
2346                        NIPQUAD(inet->daddr), ntohs(inet->dport),
2347                        tp->snd_cwnd, tcp_left_out(tp),
2348                        tp->snd_ssthresh, tp->prior_ssthresh,
2349                        tp->packets_out);
2350         }
2351 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2352         else if (sk->sk_family == AF_INET6) {
2353                 struct ipv6_pinfo *np = inet6_sk(sk);
2354                 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2355                        msg,
2356                        NIP6(np->daddr), ntohs(inet->dport),
2357                        tp->snd_cwnd, tcp_left_out(tp),
2358                        tp->snd_ssthresh, tp->prior_ssthresh,
2359                        tp->packets_out);
2360         }
2361 #endif
2362 }
2363 #else
2364 #define DBGUNDO(x...) do { } while (0)
2365 #endif
2366
2367 static void tcp_undo_cwr(struct sock *sk, const int undo)
2368 {
2369         struct tcp_sock *tp = tcp_sk(sk);
2370
2371         if (tp->prior_ssthresh) {
2372                 const struct inet_connection_sock *icsk = inet_csk(sk);
2373
2374                 if (icsk->icsk_ca_ops->undo_cwnd)
2375                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2376                 else
2377                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2378
2379                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2380                         tp->snd_ssthresh = tp->prior_ssthresh;
2381                         TCP_ECN_withdraw_cwr(tp);
2382                 }
2383         } else {
2384                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2385         }
2386         tcp_moderate_cwnd(tp);
2387         tp->snd_cwnd_stamp = tcp_time_stamp;
2388 }
2389
2390 static inline int tcp_may_undo(struct tcp_sock *tp)
2391 {
2392         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2393 }
2394
2395 /* People celebrate: "We love our President!" */
2396 static int tcp_try_undo_recovery(struct sock *sk)
2397 {
2398         struct tcp_sock *tp = tcp_sk(sk);
2399
2400         if (tcp_may_undo(tp)) {
2401                 int mib_idx;
2402
2403                 /* Happy end! We did not retransmit anything
2404                  * or our original transmission succeeded.
2405                  */
2406                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2407                 tcp_undo_cwr(sk, 1);
2408                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2409                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2410                 else
2411                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2412
2413                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2414                 tp->undo_marker = 0;
2415         }
2416         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2417                 /* Hold old state until something *above* high_seq
2418                  * is ACKed. For Reno it is MUST to prevent false
2419                  * fast retransmits (RFC2582). SACK TCP is safe. */
2420                 tcp_moderate_cwnd(tp);
2421                 return 1;
2422         }
2423         tcp_set_ca_state(sk, TCP_CA_Open);
2424         return 0;
2425 }
2426
2427 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2428 static void tcp_try_undo_dsack(struct sock *sk)
2429 {
2430         struct tcp_sock *tp = tcp_sk(sk);
2431
2432         if (tp->undo_marker && !tp->undo_retrans) {
2433                 DBGUNDO(sk, "D-SACK");
2434                 tcp_undo_cwr(sk, 1);
2435                 tp->undo_marker = 0;
2436                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2437         }
2438 }
2439
2440 /* Undo during fast recovery after partial ACK. */
2441
2442 static int tcp_try_undo_partial(struct sock *sk, int acked)
2443 {
2444         struct tcp_sock *tp = tcp_sk(sk);
2445         /* Partial ACK arrived. Force Hoe's retransmit. */
2446         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2447
2448         if (tcp_may_undo(tp)) {
2449                 /* Plain luck! Hole if filled with delayed
2450                  * packet, rather than with a retransmit.
2451                  */
2452                 if (tp->retrans_out == 0)
2453                         tp->retrans_stamp = 0;
2454
2455                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2456
2457                 DBGUNDO(sk, "Hoe");
2458                 tcp_undo_cwr(sk, 0);
2459                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2460
2461                 /* So... Do not make Hoe's retransmit yet.
2462                  * If the first packet was delayed, the rest
2463                  * ones are most probably delayed as well.
2464                  */
2465                 failed = 0;
2466         }
2467         return failed;
2468 }
2469
2470 /* Undo during loss recovery after partial ACK. */
2471 static int tcp_try_undo_loss(struct sock *sk)
2472 {
2473         struct tcp_sock *tp = tcp_sk(sk);
2474
2475         if (tcp_may_undo(tp)) {
2476                 struct sk_buff *skb;
2477                 tcp_for_write_queue(skb, sk) {
2478                         if (skb == tcp_send_head(sk))
2479                                 break;
2480                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2481                 }
2482
2483                 tcp_clear_all_retrans_hints(tp);
2484
2485                 DBGUNDO(sk, "partial loss");
2486                 tp->lost_out = 0;
2487                 tcp_undo_cwr(sk, 1);
2488                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2489                 inet_csk(sk)->icsk_retransmits = 0;
2490                 tp->undo_marker = 0;
2491                 if (tcp_is_sack(tp))
2492                         tcp_set_ca_state(sk, TCP_CA_Open);
2493                 return 1;
2494         }
2495         return 0;
2496 }
2497
2498 static inline void tcp_complete_cwr(struct sock *sk)
2499 {
2500         struct tcp_sock *tp = tcp_sk(sk);
2501         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2502         tp->snd_cwnd_stamp = tcp_time_stamp;
2503         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2504 }
2505
2506 static void tcp_try_keep_open(struct sock *sk)
2507 {
2508         struct tcp_sock *tp = tcp_sk(sk);
2509         int state = TCP_CA_Open;
2510
2511         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2512                 state = TCP_CA_Disorder;
2513
2514         if (inet_csk(sk)->icsk_ca_state != state) {
2515                 tcp_set_ca_state(sk, state);
2516                 tp->high_seq = tp->snd_nxt;
2517         }
2518 }
2519
2520 static void tcp_try_to_open(struct sock *sk, int flag)
2521 {
2522         struct tcp_sock *tp = tcp_sk(sk);
2523
2524         tcp_verify_left_out(tp);
2525
2526         if (!tp->frto_counter && tp->retrans_out == 0)
2527                 tp->retrans_stamp = 0;
2528
2529         if (flag & FLAG_ECE)
2530                 tcp_enter_cwr(sk, 1);
2531
2532         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2533                 tcp_try_keep_open(sk);
2534                 tcp_moderate_cwnd(tp);
2535         } else {
2536                 tcp_cwnd_down(sk, flag);
2537         }
2538 }
2539
2540 static void tcp_mtup_probe_failed(struct sock *sk)
2541 {
2542         struct inet_connection_sock *icsk = inet_csk(sk);
2543
2544         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2545         icsk->icsk_mtup.probe_size = 0;
2546 }
2547
2548 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2549 {
2550         struct tcp_sock *tp = tcp_sk(sk);
2551         struct inet_connection_sock *icsk = inet_csk(sk);
2552
2553         /* FIXME: breaks with very large cwnd */
2554         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2555         tp->snd_cwnd = tp->snd_cwnd *
2556                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2557                        icsk->icsk_mtup.probe_size;
2558         tp->snd_cwnd_cnt = 0;
2559         tp->snd_cwnd_stamp = tcp_time_stamp;
2560         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2561
2562         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2563         icsk->icsk_mtup.probe_size = 0;
2564         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2565 }
2566
2567 /* Process an event, which can update packets-in-flight not trivially.
2568  * Main goal of this function is to calculate new estimate for left_out,
2569  * taking into account both packets sitting in receiver's buffer and
2570  * packets lost by network.
2571  *
2572  * Besides that it does CWND reduction, when packet loss is detected
2573  * and changes state of machine.
2574  *
2575  * It does _not_ decide what to send, it is made in function
2576  * tcp_xmit_retransmit_queue().
2577  */
2578 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2579 {
2580         struct inet_connection_sock *icsk = inet_csk(sk);
2581         struct tcp_sock *tp = tcp_sk(sk);
2582         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2583         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2584                                     (tcp_fackets_out(tp) > tp->reordering));
2585         int fast_rexmit = 0, mib_idx;
2586
2587         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2588                 tp->sacked_out = 0;
2589         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2590                 tp->fackets_out = 0;
2591
2592         /* Now state machine starts.
2593          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2594         if (flag & FLAG_ECE)
2595                 tp->prior_ssthresh = 0;
2596
2597         /* B. In all the states check for reneging SACKs. */
2598         if (tcp_check_sack_reneging(sk, flag))
2599                 return;
2600
2601         /* C. Process data loss notification, provided it is valid. */
2602         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2603             before(tp->snd_una, tp->high_seq) &&
2604             icsk->icsk_ca_state != TCP_CA_Open &&
2605             tp->fackets_out > tp->reordering) {
2606                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2607                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2608         }
2609
2610         /* D. Check consistency of the current state. */
2611         tcp_verify_left_out(tp);
2612
2613         /* E. Check state exit conditions. State can be terminated
2614          *    when high_seq is ACKed. */
2615         if (icsk->icsk_ca_state == TCP_CA_Open) {
2616                 WARN_ON(tp->retrans_out != 0);
2617                 tp->retrans_stamp = 0;
2618         } else if (!before(tp->snd_una, tp->high_seq)) {
2619                 switch (icsk->icsk_ca_state) {
2620                 case TCP_CA_Loss:
2621                         icsk->icsk_retransmits = 0;
2622                         if (tcp_try_undo_recovery(sk))
2623                                 return;
2624                         break;
2625
2626                 case TCP_CA_CWR:
2627                         /* CWR is to be held something *above* high_seq
2628                          * is ACKed for CWR bit to reach receiver. */
2629                         if (tp->snd_una != tp->high_seq) {
2630                                 tcp_complete_cwr(sk);
2631                                 tcp_set_ca_state(sk, TCP_CA_Open);
2632                         }
2633                         break;
2634
2635                 case TCP_CA_Disorder:
2636                         tcp_try_undo_dsack(sk);
2637                         if (!tp->undo_marker ||
2638                             /* For SACK case do not Open to allow to undo
2639                              * catching for all duplicate ACKs. */
2640                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2641                                 tp->undo_marker = 0;
2642                                 tcp_set_ca_state(sk, TCP_CA_Open);
2643                         }
2644                         break;
2645
2646                 case TCP_CA_Recovery:
2647                         if (tcp_is_reno(tp))
2648                                 tcp_reset_reno_sack(tp);
2649                         if (tcp_try_undo_recovery(sk))
2650                                 return;
2651                         tcp_complete_cwr(sk);
2652                         break;
2653                 }
2654         }
2655
2656         /* F. Process state. */
2657         switch (icsk->icsk_ca_state) {
2658         case TCP_CA_Recovery:
2659                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2660                         if (tcp_is_reno(tp) && is_dupack)
2661                                 tcp_add_reno_sack(sk);
2662                 } else
2663                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2664                 break;
2665         case TCP_CA_Loss:
2666                 if (flag & FLAG_DATA_ACKED)
2667                         icsk->icsk_retransmits = 0;
2668                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2669                         tcp_reset_reno_sack(tp);
2670                 if (!tcp_try_undo_loss(sk)) {
2671                         tcp_moderate_cwnd(tp);
2672                         tcp_xmit_retransmit_queue(sk);
2673                         return;
2674                 }
2675                 if (icsk->icsk_ca_state != TCP_CA_Open)
2676                         return;
2677                 /* Loss is undone; fall through to processing in Open state. */
2678         default:
2679                 if (tcp_is_reno(tp)) {
2680                         if (flag & FLAG_SND_UNA_ADVANCED)
2681                                 tcp_reset_reno_sack(tp);
2682                         if (is_dupack)
2683                                 tcp_add_reno_sack(sk);
2684                 }
2685
2686                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2687                         tcp_try_undo_dsack(sk);
2688
2689                 if (!tcp_time_to_recover(sk)) {
2690                         tcp_try_to_open(sk, flag);
2691                         return;
2692                 }
2693
2694                 /* MTU probe failure: don't reduce cwnd */
2695                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2696                     icsk->icsk_mtup.probe_size &&
2697                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2698                         tcp_mtup_probe_failed(sk);
2699                         /* Restores the reduction we did in tcp_mtup_probe() */
2700                         tp->snd_cwnd++;
2701                         tcp_simple_retransmit(sk);
2702                         return;
2703                 }
2704
2705                 /* Otherwise enter Recovery state */
2706
2707                 if (tcp_is_reno(tp))
2708                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
2709                 else
2710                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2711
2712                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2713
2714                 tp->high_seq = tp->snd_nxt;
2715                 tp->prior_ssthresh = 0;
2716                 tp->undo_marker = tp->snd_una;
2717                 tp->undo_retrans = tp->retrans_out;
2718
2719                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2720                         if (!(flag & FLAG_ECE))
2721                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2722                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2723                         TCP_ECN_queue_cwr(tp);
2724                 }
2725
2726                 tp->bytes_acked = 0;
2727                 tp->snd_cwnd_cnt = 0;
2728                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2729                 fast_rexmit = 1;
2730         }
2731
2732         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2733                 tcp_update_scoreboard(sk, fast_rexmit);
2734         tcp_cwnd_down(sk, flag);
2735         tcp_xmit_retransmit_queue(sk);
2736 }
2737
2738 /* Read draft-ietf-tcplw-high-performance before mucking
2739  * with this code. (Supersedes RFC1323)
2740  */
2741 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2742 {
2743         /* RTTM Rule: A TSecr value received in a segment is used to
2744          * update the averaged RTT measurement only if the segment
2745          * acknowledges some new data, i.e., only if it advances the
2746          * left edge of the send window.
2747          *
2748          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2749          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2750          *
2751          * Changed: reset backoff as soon as we see the first valid sample.
2752          * If we do not, we get strongly overestimated rto. With timestamps
2753          * samples are accepted even from very old segments: f.e., when rtt=1
2754          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2755          * answer arrives rto becomes 120 seconds! If at least one of segments
2756          * in window is lost... Voila.                          --ANK (010210)
2757          */
2758         struct tcp_sock *tp = tcp_sk(sk);
2759         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2760         tcp_rtt_estimator(sk, seq_rtt);
2761         tcp_set_rto(sk);
2762         inet_csk(sk)->icsk_backoff = 0;
2763         tcp_bound_rto(sk);
2764 }
2765
2766 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2767 {
2768         /* We don't have a timestamp. Can only use
2769          * packets that are not retransmitted to determine
2770          * rtt estimates. Also, we must not reset the
2771          * backoff for rto until we get a non-retransmitted
2772          * packet. This allows us to deal with a situation
2773          * where the network delay has increased suddenly.
2774          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2775          */
2776
2777         if (flag & FLAG_RETRANS_DATA_ACKED)
2778                 return;
2779
2780         tcp_rtt_estimator(sk, seq_rtt);
2781         tcp_set_rto(sk);
2782         inet_csk(sk)->icsk_backoff = 0;
2783         tcp_bound_rto(sk);
2784 }
2785
2786 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2787                                       const s32 seq_rtt)
2788 {
2789         const struct tcp_sock *tp = tcp_sk(sk);
2790         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2791         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2792                 tcp_ack_saw_tstamp(sk, flag);
2793         else if (seq_rtt >= 0)
2794                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2795 }
2796
2797 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2798 {
2799         const struct inet_connection_sock *icsk = inet_csk(sk);
2800         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2801         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2802 }
2803
2804 /* Restart timer after forward progress on connection.
2805  * RFC2988 recommends to restart timer to now+rto.
2806  */
2807 static void tcp_rearm_rto(struct sock *sk)
2808 {
2809         struct tcp_sock *tp = tcp_sk(sk);
2810
2811         if (!tp->packets_out) {
2812                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2813         } else {
2814                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2815                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2816         }
2817 }
2818
2819 /* If we get here, the whole TSO packet has not been acked. */
2820 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2821 {
2822         struct tcp_sock *tp = tcp_sk(sk);
2823         u32 packets_acked;
2824
2825         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2826
2827         packets_acked = tcp_skb_pcount(skb);
2828         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2829                 return 0;
2830         packets_acked -= tcp_skb_pcount(skb);
2831
2832         if (packets_acked) {
2833                 BUG_ON(tcp_skb_pcount(skb) == 0);
2834                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2835         }
2836
2837         return packets_acked;
2838 }
2839
2840 /* Remove acknowledged frames from the retransmission queue. If our packet
2841  * is before the ack sequence we can discard it as it's confirmed to have
2842  * arrived at the other end.
2843  */
2844 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2845 {
2846         struct tcp_sock *tp = tcp_sk(sk);
2847         const struct inet_connection_sock *icsk = inet_csk(sk);
2848         struct sk_buff *skb;
2849         u32 now = tcp_time_stamp;
2850         int fully_acked = 1;
2851         int flag = 0;
2852         u32 pkts_acked = 0;
2853         u32 reord = tp->packets_out;
2854         s32 seq_rtt = -1;
2855         s32 ca_seq_rtt = -1;
2856         ktime_t last_ackt = net_invalid_timestamp();
2857
2858         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2859                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2860                 u32 end_seq;
2861                 u32 acked_pcount;
2862                 u8 sacked = scb->sacked;
2863
2864                 /* Determine how many packets and what bytes were acked, tso and else */
2865                 if (after(scb->end_seq, tp->snd_una)) {
2866                         if (tcp_skb_pcount(skb) == 1 ||
2867                             !after(tp->snd_una, scb->seq))
2868                                 break;
2869
2870                         acked_pcount = tcp_tso_acked(sk, skb);
2871                         if (!acked_pcount)
2872                                 break;
2873
2874                         fully_acked = 0;
2875                         end_seq = tp->snd_una;
2876                 } else {
2877                         acked_pcount = tcp_skb_pcount(skb);
2878                         end_seq = scb->end_seq;
2879                 }
2880
2881                 /* MTU probing checks */
2882                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2883                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2884                         tcp_mtup_probe_success(sk, skb);
2885                 }
2886
2887                 if (sacked & TCPCB_RETRANS) {
2888                         if (sacked & TCPCB_SACKED_RETRANS)
2889                                 tp->retrans_out -= acked_pcount;
2890                         flag |= FLAG_RETRANS_DATA_ACKED;
2891                         ca_seq_rtt = -1;
2892                         seq_rtt = -1;
2893                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2894                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2895                 } else {
2896                         ca_seq_rtt = now - scb->when;
2897                         last_ackt = skb->tstamp;
2898                         if (seq_rtt < 0) {
2899                                 seq_rtt = ca_seq_rtt;
2900                         }
2901                         if (!(sacked & TCPCB_SACKED_ACKED))
2902                                 reord = min(pkts_acked, reord);
2903                 }
2904
2905                 if (sacked & TCPCB_SACKED_ACKED)
2906                         tp->sacked_out -= acked_pcount;
2907                 if (sacked & TCPCB_LOST)
2908                         tp->lost_out -= acked_pcount;
2909
2910                 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2911                         tp->urg_mode = 0;
2912
2913                 tp->packets_out -= acked_pcount;
2914                 pkts_acked += acked_pcount;
2915
2916                 /* Initial outgoing SYN's get put onto the write_queue
2917                  * just like anything else we transmit.  It is not
2918                  * true data, and if we misinform our callers that
2919                  * this ACK acks real data, we will erroneously exit
2920                  * connection startup slow start one packet too
2921                  * quickly.  This is severely frowned upon behavior.
2922                  */
2923                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2924                         flag |= FLAG_DATA_ACKED;
2925                 } else {
2926                         flag |= FLAG_SYN_ACKED;
2927                         tp->retrans_stamp = 0;
2928                 }
2929
2930                 if (!fully_acked)
2931                         break;
2932
2933                 tcp_unlink_write_queue(skb, sk);
2934                 sk_wmem_free_skb(sk, skb);
2935                 tcp_clear_all_retrans_hints(tp);
2936         }
2937
2938         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2939                 flag |= FLAG_SACK_RENEGING;
2940
2941         if (flag & FLAG_ACKED) {
2942                 const struct tcp_congestion_ops *ca_ops
2943                         = inet_csk(sk)->icsk_ca_ops;
2944
2945                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2946                 tcp_rearm_rto(sk);
2947
2948                 if (tcp_is_reno(tp)) {
2949                         tcp_remove_reno_sacks(sk, pkts_acked);
2950                 } else {
2951                         /* Non-retransmitted hole got filled? That's reordering */
2952                         if (reord < prior_fackets)
2953                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2954                 }
2955
2956                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2957
2958                 if (ca_ops->pkts_acked) {
2959                         s32 rtt_us = -1;
2960
2961                         /* Is the ACK triggering packet unambiguous? */
2962                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2963                                 /* High resolution needed and available? */
2964                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2965                                     !ktime_equal(last_ackt,
2966                                                  net_invalid_timestamp()))
2967                                         rtt_us = ktime_us_delta(ktime_get_real(),
2968                                                                 last_ackt);
2969                                 else if (ca_seq_rtt > 0)
2970                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2971                         }
2972
2973                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2974                 }
2975         }
2976
2977 #if FASTRETRANS_DEBUG > 0
2978         WARN_ON((int)tp->sacked_out < 0);
2979         WARN_ON((int)tp->lost_out < 0);
2980         WARN_ON((int)tp->retrans_out < 0);
2981         if (!tp->packets_out && tcp_is_sack(tp)) {
2982                 icsk = inet_csk(sk);
2983                 if (tp->lost_out) {
2984                         printk(KERN_DEBUG "Leak l=%u %d\n",
2985                                tp->lost_out, icsk->icsk_ca_state);
2986                         tp->lost_out = 0;
2987                 }
2988                 if (tp->sacked_out) {
2989                         printk(KERN_DEBUG "Leak s=%u %d\n",
2990                                tp->sacked_out, icsk->icsk_ca_state);
2991                         tp->sacked_out = 0;
2992                 }
2993                 if (tp->retrans_out) {
2994                         printk(KERN_DEBUG "Leak r=%u %d\n",
2995                                tp->retrans_out, icsk->icsk_ca_state);
2996                         tp->retrans_out = 0;
2997                 }
2998         }
2999 #endif
3000         return flag;
3001 }
3002
3003 static void tcp_ack_probe(struct sock *sk)
3004 {
3005         const struct tcp_sock *tp = tcp_sk(sk);
3006         struct inet_connection_sock *icsk = inet_csk(sk);
3007
3008         /* Was it a usable window open? */
3009
3010         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3011                 icsk->icsk_backoff = 0;
3012                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3013                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3014                  * This function is not for random using!
3015                  */
3016         } else {
3017                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3018                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3019                                           TCP_RTO_MAX);
3020         }
3021 }
3022
3023 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3024 {
3025         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3026                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3027 }
3028
3029 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3030 {
3031         const struct tcp_sock *tp = tcp_sk(sk);
3032         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3033                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3034 }
3035
3036 /* Check that window update is acceptable.
3037  * The function assumes that snd_una<=ack<=snd_next.
3038  */
3039 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3040                                         const u32 ack, const u32 ack_seq,
3041                                         const u32 nwin)
3042 {
3043         return (after(ack, tp->snd_una) ||
3044                 after(ack_seq, tp->snd_wl1) ||
3045                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3046 }
3047
3048 /* Update our send window.
3049  *
3050  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3051  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3052  */
3053 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3054                                  u32 ack_seq)
3055 {
3056         struct tcp_sock *tp = tcp_sk(sk);
3057         int flag = 0;
3058         u32 nwin = ntohs(tcp_hdr(skb)->window);
3059
3060         if (likely(!tcp_hdr(skb)->syn))
3061                 nwin <<= tp->rx_opt.snd_wscale;
3062
3063         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3064                 flag |= FLAG_WIN_UPDATE;
3065                 tcp_update_wl(tp, ack, ack_seq);
3066
3067                 if (tp->snd_wnd != nwin) {
3068                         tp->snd_wnd = nwin;
3069
3070                         /* Note, it is the only place, where
3071                          * fast path is recovered for sending TCP.
3072                          */
3073                         tp->pred_flags = 0;
3074                         tcp_fast_path_check(sk);
3075
3076                         if (nwin > tp->max_window) {
3077                                 tp->max_window = nwin;
3078                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3079                         }
3080                 }
3081         }
3082
3083         tp->snd_una = ack;
3084
3085         return flag;
3086 }
3087
3088 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3089  * continue in congestion avoidance.
3090  */
3091 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3092 {
3093         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3094         tp->snd_cwnd_cnt = 0;
3095         tp->bytes_acked = 0;
3096         TCP_ECN_queue_cwr(tp);
3097         tcp_moderate_cwnd(tp);
3098 }
3099
3100 /* A conservative spurious RTO response algorithm: reduce cwnd using
3101  * rate halving and continue in congestion avoidance.
3102  */
3103 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3104 {
3105         tcp_enter_cwr(sk, 0);
3106 }
3107
3108 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3109 {
3110         if (flag & FLAG_ECE)
3111                 tcp_ratehalving_spur_to_response(sk);
3112         else
3113                 tcp_undo_cwr(sk, 1);
3114 }
3115
3116 /* F-RTO spurious RTO detection algorithm (RFC4138)
3117  *
3118  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3119  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3120  * window (but not to or beyond highest sequence sent before RTO):
3121  *   On First ACK,  send two new segments out.
3122  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3123  *                  algorithm is not part of the F-RTO detection algorithm
3124  *                  given in RFC4138 but can be selected separately).
3125  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3126  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3127  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3128  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3129  *
3130  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3131  * original window even after we transmit two new data segments.
3132  *
3133  * SACK version:
3134  *   on first step, wait until first cumulative ACK arrives, then move to
3135  *   the second step. In second step, the next ACK decides.
3136  *
3137  * F-RTO is implemented (mainly) in four functions:
3138  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3139  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3140  *     called when tcp_use_frto() showed green light
3141  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3142  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3143  *     to prove that the RTO is indeed spurious. It transfers the control
3144  *     from F-RTO to the conventional RTO recovery
3145  */
3146 static int tcp_process_frto(struct sock *sk, int flag)
3147 {
3148         struct tcp_sock *tp = tcp_sk(sk);
3149
3150         tcp_verify_left_out(tp);
3151
3152         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3153         if (flag & FLAG_DATA_ACKED)
3154                 inet_csk(sk)->icsk_retransmits = 0;
3155
3156         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3157             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3158                 tp->undo_marker = 0;
3159
3160         if (!before(tp->snd_una, tp->frto_highmark)) {
3161                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3162                 return 1;
3163         }
3164
3165         if (!tcp_is_sackfrto(tp)) {
3166                 /* RFC4138 shortcoming in step 2; should also have case c):
3167                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3168                  * data, winupdate
3169                  */
3170                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3171                         return 1;
3172
3173                 if (!(flag & FLAG_DATA_ACKED)) {
3174                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3175                                             flag);
3176                         return 1;
3177                 }
3178         } else {
3179                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3180                         /* Prevent sending of new data. */
3181                         tp->snd_cwnd = min(tp->snd_cwnd,
3182                                            tcp_packets_in_flight(tp));
3183                         return 1;
3184                 }
3185
3186                 if ((tp->frto_counter >= 2) &&
3187                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3188                      ((flag & FLAG_DATA_SACKED) &&
3189                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3190                         /* RFC4138 shortcoming (see comment above) */
3191                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3192                             (flag & FLAG_NOT_DUP))
3193                                 return 1;
3194
3195                         tcp_enter_frto_loss(sk, 3, flag);
3196                         return 1;
3197                 }
3198         }
3199
3200         if (tp->frto_counter == 1) {
3201                 /* tcp_may_send_now needs to see updated state */
3202                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3203                 tp->frto_counter = 2;
3204
3205                 if (!tcp_may_send_now(sk))
3206                         tcp_enter_frto_loss(sk, 2, flag);
3207
3208                 return 1;
3209         } else {
3210                 switch (sysctl_tcp_frto_response) {
3211                 case 2:
3212                         tcp_undo_spur_to_response(sk, flag);
3213                         break;
3214                 case 1:
3215                         tcp_conservative_spur_to_response(tp);
3216                         break;
3217                 default:
3218                         tcp_ratehalving_spur_to_response(sk);
3219                         break;
3220                 }
3221                 tp->frto_counter = 0;
3222                 tp->undo_marker = 0;
3223                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3224         }
3225         return 0;
3226 }
3227
3228 /* This routine deals with incoming acks, but not outgoing ones. */
3229 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3230 {
3231         struct inet_connection_sock *icsk = inet_csk(sk);
3232         struct tcp_sock *tp = tcp_sk(sk);
3233         u32 prior_snd_una = tp->snd_una;
3234         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3235         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3236         u32 prior_in_flight;
3237         u32 prior_fackets;
3238         int prior_packets;
3239         int frto_cwnd = 0;
3240
3241         /* If the ack is newer than sent or older than previous acks
3242          * then we can probably ignore it.
3243          */
3244         if (after(ack, tp->snd_nxt))
3245                 goto uninteresting_ack;
3246
3247         if (before(ack, prior_snd_una))
3248                 goto old_ack;
3249
3250         if (after(ack, prior_snd_una))
3251                 flag |= FLAG_SND_UNA_ADVANCED;
3252
3253         if (sysctl_tcp_abc) {
3254                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3255                         tp->bytes_acked += ack - prior_snd_una;
3256                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3257                         /* we assume just one segment left network */
3258                         tp->bytes_acked += min(ack - prior_snd_una,
3259                                                tp->mss_cache);
3260         }
3261
3262         prior_fackets = tp->fackets_out;
3263         prior_in_flight = tcp_packets_in_flight(tp);
3264
3265         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3266                 /* Window is constant, pure forward advance.
3267                  * No more checks are required.
3268                  * Note, we use the fact that SND.UNA>=SND.WL2.
3269                  */
3270                 tcp_update_wl(tp, ack, ack_seq);
3271                 tp->snd_una = ack;
3272                 flag |= FLAG_WIN_UPDATE;
3273
3274                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3275
3276                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3277         } else {
3278                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3279                         flag |= FLAG_DATA;
3280                 else
3281                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3282
3283                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3284
3285                 if (TCP_SKB_CB(skb)->sacked)
3286                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3287
3288                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3289                         flag |= FLAG_ECE;
3290
3291                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3292         }
3293
3294         /* We passed data and got it acked, remove any soft error
3295          * log. Something worked...
3296          */
3297         sk->sk_err_soft = 0;
3298         icsk->icsk_probes_out = 0;
3299         tp->rcv_tstamp = tcp_time_stamp;
3300         prior_packets = tp->packets_out;
3301         if (!prior_packets)
3302                 goto no_queue;
3303
3304         /* See if we can take anything off of the retransmit queue. */
3305         flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3306
3307         if (tp->frto_counter)
3308                 frto_cwnd = tcp_process_frto(sk, flag);
3309         /* Guarantee sacktag reordering detection against wrap-arounds */
3310         if (before(tp->frto_highmark, tp->snd_una))
3311                 tp->frto_highmark = 0;
3312
3313         if (tcp_ack_is_dubious(sk, flag)) {
3314                 /* Advance CWND, if state allows this. */
3315                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3316                     tcp_may_raise_cwnd(sk, flag))
3317                         tcp_cong_avoid(sk, ack, prior_in_flight);
3318                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3319                                       flag);
3320         } else {
3321                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3322                         tcp_cong_avoid(sk, ack, prior_in_flight);
3323         }
3324
3325         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3326                 dst_confirm(sk->sk_dst_cache);
3327
3328         return 1;
3329
3330 no_queue:
3331         /* If this ack opens up a zero window, clear backoff.  It was
3332          * being used to time the probes, and is probably far higher than
3333          * it needs to be for normal retransmission.
3334          */
3335         if (tcp_send_head(sk))
3336                 tcp_ack_probe(sk);
3337         return 1;
3338
3339 old_ack:
3340         if (TCP_SKB_CB(skb)->sacked) {
3341                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3342                 if (icsk->icsk_ca_state == TCP_CA_Open)
3343                         tcp_try_keep_open(sk);
3344         }
3345
3346 uninteresting_ack:
3347         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3348         return 0;
3349 }
3350
3351 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3352  * But, this can also be called on packets in the established flow when
3353  * the fast version below fails.
3354  */
3355 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3356                        int estab)
3357 {
3358         unsigned char *ptr;
3359         struct tcphdr *th = tcp_hdr(skb);
3360         int length = (th->doff * 4) - sizeof(struct tcphdr);
3361
3362         ptr = (unsigned char *)(th + 1);
3363         opt_rx->saw_tstamp = 0;
3364
3365         while (length > 0) {
3366                 int opcode = *ptr++;
3367                 int opsize;
3368
3369                 switch (opcode) {
3370                 case TCPOPT_EOL:
3371                         return;
3372                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3373                         length--;
3374                         continue;
3375                 default:
3376                         opsize = *ptr++;
3377                         if (opsize < 2) /* "silly options" */
3378                                 return;
3379                         if (opsize > length)
3380                                 return; /* don't parse partial options */
3381                         switch (opcode) {
3382                         case TCPOPT_MSS:
3383                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3384                                         u16 in_mss = get_unaligned_be16(ptr);
3385                                         if (in_mss) {
3386                                                 if (opt_rx->user_mss &&
3387                                                     opt_rx->user_mss < in_mss)
3388                                                         in_mss = opt_rx->user_mss;
3389                                                 opt_rx->mss_clamp = in_mss;
3390                                         }
3391                                 }
3392                                 break;
3393                         case TCPOPT_WINDOW:
3394                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3395                                     !estab && sysctl_tcp_window_scaling) {
3396                                         __u8 snd_wscale = *(__u8 *)ptr;
3397                                         opt_rx->wscale_ok = 1;
3398                                         if (snd_wscale > 14) {
3399                                                 if (net_ratelimit())
3400                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3401                                                                "scaling value %d >14 received.\n",
3402                                                                snd_wscale);
3403                                                 snd_wscale = 14;
3404                                         }
3405                                         opt_rx->snd_wscale = snd_wscale;
3406                                 }
3407                                 break;
3408                         case TCPOPT_TIMESTAMP:
3409                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3410                                     ((estab && opt_rx->tstamp_ok) ||
3411                                      (!estab && sysctl_tcp_timestamps))) {
3412                                         opt_rx->saw_tstamp = 1;
3413                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3414                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3415                                 }
3416                                 break;
3417                         case TCPOPT_SACK_PERM:
3418                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3419                                     !estab && sysctl_tcp_sack) {
3420                                         opt_rx->sack_ok = 1;
3421                                         tcp_sack_reset(opt_rx);
3422                                 }
3423                                 break;
3424
3425                         case TCPOPT_SACK:
3426                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3427                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3428                                    opt_rx->sack_ok) {
3429                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3430                                 }
3431                                 break;
3432 #ifdef CONFIG_TCP_MD5SIG
3433                         case TCPOPT_MD5SIG:
3434                                 /*
3435                                  * The MD5 Hash has already been
3436                                  * checked (see tcp_v{4,6}_do_rcv()).
3437                                  */
3438                                 break;
3439 #endif
3440                         }
3441
3442                         ptr += opsize-2;
3443                         length -= opsize;
3444                 }
3445         }
3446 }
3447
3448 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3449 {
3450         __be32 *ptr = (__be32 *)(th + 1);
3451
3452         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3453                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3454                 tp->rx_opt.saw_tstamp = 1;
3455                 ++ptr;
3456                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3457                 ++ptr;
3458                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3459                 return 1;
3460         }
3461         return 0;
3462 }
3463
3464 /* Fast parse options. This hopes to only see timestamps.
3465  * If it is wrong it falls back on tcp_parse_options().
3466  */
3467 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3468                                   struct tcp_sock *tp)
3469 {
3470         if (th->doff == sizeof(struct tcphdr) >> 2) {
3471                 tp->rx_opt.saw_tstamp = 0;
3472                 return 0;
3473         } else if (tp->rx_opt.tstamp_ok &&
3474                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3475                 if (tcp_parse_aligned_timestamp(tp, th))
3476                         return 1;
3477         }
3478         tcp_parse_options(skb, &tp->rx_opt, 1);
3479         return 1;
3480 }
3481
3482 #ifdef CONFIG_TCP_MD5SIG
3483 /*
3484  * Parse MD5 Signature option
3485  */
3486 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3487 {
3488         int length = (th->doff << 2) - sizeof (*th);
3489         u8 *ptr = (u8*)(th + 1);
3490
3491         /* If the TCP option is too short, we can short cut */
3492         if (length < TCPOLEN_MD5SIG)
3493                 return NULL;
3494
3495         while (length > 0) {
3496                 int opcode = *ptr++;
3497                 int opsize;
3498
3499                 switch(opcode) {
3500                 case TCPOPT_EOL:
3501                         return NULL;
3502                 case TCPOPT_NOP:
3503                         length--;
3504                         continue;
3505                 default:
3506                         opsize = *ptr++;
3507                         if (opsize < 2 || opsize > length)
3508                                 return NULL;
3509                         if (opcode == TCPOPT_MD5SIG)
3510                                 return ptr;
3511                 }
3512                 ptr += opsize - 2;
3513                 length -= opsize;
3514         }
3515         return NULL;
3516 }
3517 #endif
3518
3519 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3520 {
3521         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3522         tp->rx_opt.ts_recent_stamp = get_seconds();
3523 }
3524
3525 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3526 {
3527         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3528                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3529                  * extra check below makes sure this can only happen
3530                  * for pure ACK frames.  -DaveM
3531                  *
3532                  * Not only, also it occurs for expired timestamps.
3533                  */
3534
3535                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3536                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3537                         tcp_store_ts_recent(tp);
3538         }
3539 }
3540
3541 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3542  *
3543  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3544  * it can pass through stack. So, the following predicate verifies that
3545  * this segment is not used for anything but congestion avoidance or
3546  * fast retransmit. Moreover, we even are able to eliminate most of such
3547  * second order effects, if we apply some small "replay" window (~RTO)
3548  * to timestamp space.
3549  *
3550  * All these measures still do not guarantee that we reject wrapped ACKs
3551  * on networks with high bandwidth, when sequence space is recycled fastly,
3552  * but it guarantees that such events will be very rare and do not affect
3553  * connection seriously. This doesn't look nice, but alas, PAWS is really
3554  * buggy extension.
3555  *
3556  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3557  * states that events when retransmit arrives after original data are rare.
3558  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3559  * the biggest problem on large power networks even with minor reordering.
3560  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3561  * up to bandwidth of 18Gigabit/sec. 8) ]
3562  */
3563
3564 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3565 {
3566         struct tcp_sock *tp = tcp_sk(sk);
3567         struct tcphdr *th = tcp_hdr(skb);
3568         u32 seq = TCP_SKB_CB(skb)->seq;
3569         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3570
3571         return (/* 1. Pure ACK with correct sequence number. */
3572                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3573
3574                 /* 2. ... and duplicate ACK. */
3575                 ack == tp->snd_una &&
3576
3577                 /* 3. ... and does not update window. */
3578                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3579
3580                 /* 4. ... and sits in replay window. */
3581                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3582 }
3583
3584 static inline int tcp_paws_discard(const struct sock *sk,
3585                                    const struct sk_buff *skb)
3586 {
3587         const struct tcp_sock *tp = tcp_sk(sk);
3588         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3589                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3590                 !tcp_disordered_ack(sk, skb));
3591 }
3592
3593 /* Check segment sequence number for validity.
3594  *
3595  * Segment controls are considered valid, if the segment
3596  * fits to the window after truncation to the window. Acceptability
3597  * of data (and SYN, FIN, of course) is checked separately.
3598  * See tcp_data_queue(), for example.
3599  *
3600  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3601  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3602  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3603  * (borrowed from freebsd)
3604  */
3605
3606 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3607 {
3608         return  !before(end_seq, tp->rcv_wup) &&
3609                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3610 }
3611
3612 /* When we get a reset we do this. */
3613 static void tcp_reset(struct sock *sk)
3614 {
3615         /* We want the right error as BSD sees it (and indeed as we do). */
3616         switch (sk->sk_state) {
3617         case TCP_SYN_SENT:
3618                 sk->sk_err = ECONNREFUSED;
3619                 break;
3620         case TCP_CLOSE_WAIT:
3621                 sk->sk_err = EPIPE;
3622                 break;
3623         case TCP_CLOSE:
3624                 return;
3625         default:
3626                 sk->sk_err = ECONNRESET;
3627         }
3628
3629         if (!sock_flag(sk, SOCK_DEAD))
3630                 sk->sk_error_report(sk);
3631
3632         tcp_done(sk);
3633 }
3634
3635 /*
3636  *      Process the FIN bit. This now behaves as it is supposed to work
3637  *      and the FIN takes effect when it is validly part of sequence
3638  *      space. Not before when we get holes.
3639  *
3640  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3641  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3642  *      TIME-WAIT)
3643  *
3644  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3645  *      close and we go into CLOSING (and later onto TIME-WAIT)
3646  *
3647  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3648  */
3649 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3650 {
3651         struct tcp_sock *tp = tcp_sk(sk);
3652
3653         inet_csk_schedule_ack(sk);
3654
3655         sk->sk_shutdown |= RCV_SHUTDOWN;
3656         sock_set_flag(sk, SOCK_DONE);
3657
3658         switch (sk->sk_state) {
3659         case TCP_SYN_RECV:
3660         case TCP_ESTABLISHED:
3661                 /* Move to CLOSE_WAIT */
3662                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3663                 inet_csk(sk)->icsk_ack.pingpong = 1;
3664                 break;
3665
3666         case TCP_CLOSE_WAIT:
3667         case TCP_CLOSING:
3668                 /* Received a retransmission of the FIN, do
3669                  * nothing.
3670                  */
3671                 break;
3672         case TCP_LAST_ACK:
3673                 /* RFC793: Remain in the LAST-ACK state. */
3674                 break;
3675
3676         case TCP_FIN_WAIT1:
3677                 /* This case occurs when a simultaneous close
3678                  * happens, we must ack the received FIN and
3679                  * enter the CLOSING state.
3680                  */
3681                 tcp_send_ack(sk);
3682                 tcp_set_state(sk, TCP_CLOSING);
3683                 break;
3684         case TCP_FIN_WAIT2:
3685                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3686                 tcp_send_ack(sk);
3687                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3688                 break;
3689         default:
3690                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3691                  * cases we should never reach this piece of code.
3692                  */
3693                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3694                        __func__, sk->sk_state);
3695                 break;
3696         }
3697
3698         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3699          * Probably, we should reset in this case. For now drop them.
3700          */
3701         __skb_queue_purge(&tp->out_of_order_queue);
3702         if (tcp_is_sack(tp))
3703                 tcp_sack_reset(&tp->rx_opt);
3704         sk_mem_reclaim(sk);
3705
3706         if (!sock_flag(sk, SOCK_DEAD)) {
3707                 sk->sk_state_change(sk);
3708
3709                 /* Do not send POLL_HUP for half duplex close. */
3710                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3711                     sk->sk_state == TCP_CLOSE)
3712                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3713                 else
3714                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3715         }
3716 }
3717
3718 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3719                                   u32 end_seq)
3720 {
3721         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3722                 if (before(seq, sp->start_seq))
3723                         sp->start_seq = seq;
3724                 if (after(end_seq, sp->end_seq))
3725                         sp->end_seq = end_seq;
3726                 return 1;
3727         }
3728         return 0;
3729 }
3730
3731 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3732 {
3733         struct tcp_sock *tp = tcp_sk(sk);
3734
3735         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3736                 int mib_idx;
3737
3738                 if (before(seq, tp->rcv_nxt))
3739                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3740                 else
3741                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3742
3743                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3744
3745                 tp->rx_opt.dsack = 1;
3746                 tp->duplicate_sack[0].start_seq = seq;
3747                 tp->duplicate_sack[0].end_seq = end_seq;
3748                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
3749         }
3750 }
3751
3752 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3753 {
3754         struct tcp_sock *tp = tcp_sk(sk);
3755
3756         if (!tp->rx_opt.dsack)
3757                 tcp_dsack_set(sk, seq, end_seq);
3758         else
3759                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3760 }
3761
3762 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3763 {
3764         struct tcp_sock *tp = tcp_sk(sk);
3765
3766         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3767             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3768                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3769                 tcp_enter_quickack_mode(sk);
3770
3771                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3772                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3773
3774                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3775                                 end_seq = tp->rcv_nxt;
3776                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3777                 }
3778         }
3779
3780         tcp_send_ack(sk);
3781 }
3782
3783 /* These routines update the SACK block as out-of-order packets arrive or
3784  * in-order packets close up the sequence space.
3785  */
3786 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3787 {
3788         int this_sack;
3789         struct tcp_sack_block *sp = &tp->selective_acks[0];
3790         struct tcp_sack_block *swalk = sp + 1;
3791
3792         /* See if the recent change to the first SACK eats into
3793          * or hits the sequence space of other SACK blocks, if so coalesce.
3794          */
3795         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3796                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3797                         int i;
3798
3799                         /* Zap SWALK, by moving every further SACK up by one slot.
3800                          * Decrease num_sacks.
3801                          */
3802                         tp->rx_opt.num_sacks--;
3803                         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3804                                                tp->rx_opt.dsack;
3805                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3806                                 sp[i] = sp[i + 1];
3807                         continue;
3808                 }
3809                 this_sack++, swalk++;
3810         }
3811 }
3812
3813 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3814                                  struct tcp_sack_block *sack2)
3815 {
3816         __u32 tmp;
3817
3818         tmp = sack1->start_seq;
3819         sack1->start_seq = sack2->start_seq;
3820         sack2->start_seq = tmp;
3821
3822         tmp = sack1->end_seq;
3823         sack1->end_seq = sack2->end_seq;
3824         sack2->end_seq = tmp;
3825 }
3826
3827 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3828 {
3829         struct tcp_sock *tp = tcp_sk(sk);
3830         struct tcp_sack_block *sp = &tp->selective_acks[0];
3831         int cur_sacks = tp->rx_opt.num_sacks;
3832         int this_sack;
3833
3834         if (!cur_sacks)
3835                 goto new_sack;
3836
3837         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3838                 if (tcp_sack_extend(sp, seq, end_seq)) {
3839                         /* Rotate this_sack to the first one. */
3840                         for (; this_sack > 0; this_sack--, sp--)
3841                                 tcp_sack_swap(sp, sp - 1);
3842                         if (cur_sacks > 1)
3843                                 tcp_sack_maybe_coalesce(tp);
3844                         return;
3845                 }
3846         }
3847
3848         /* Could not find an adjacent existing SACK, build a new one,
3849          * put it at the front, and shift everyone else down.  We
3850          * always know there is at least one SACK present already here.
3851          *
3852          * If the sack array is full, forget about the last one.
3853          */
3854         if (this_sack >= TCP_NUM_SACKS) {
3855                 this_sack--;
3856                 tp->rx_opt.num_sacks--;
3857                 sp--;
3858         }
3859         for (; this_sack > 0; this_sack--, sp--)
3860                 *sp = *(sp - 1);
3861
3862 new_sack:
3863         /* Build the new head SACK, and we're done. */
3864         sp->start_seq = seq;
3865         sp->end_seq = end_seq;
3866         tp->rx_opt.num_sacks++;
3867         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
3868 }
3869
3870 /* RCV.NXT advances, some SACKs should be eaten. */
3871
3872 static void tcp_sack_remove(struct tcp_sock *tp)
3873 {
3874         struct tcp_sack_block *sp = &tp->selective_acks[0];
3875         int num_sacks = tp->rx_opt.num_sacks;
3876         int this_sack;
3877
3878         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3879         if (skb_queue_empty(&tp->out_of_order_queue)) {
3880                 tp->rx_opt.num_sacks = 0;
3881                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3882                 return;
3883         }
3884
3885         for (this_sack = 0; this_sack < num_sacks;) {
3886                 /* Check if the start of the sack is covered by RCV.NXT. */
3887                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3888                         int i;
3889
3890                         /* RCV.NXT must cover all the block! */
3891                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3892
3893                         /* Zap this SACK, by moving forward any other SACKS. */
3894                         for (i=this_sack+1; i < num_sacks; i++)
3895                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3896                         num_sacks--;
3897                         continue;
3898                 }
3899                 this_sack++;
3900                 sp++;
3901         }
3902         if (num_sacks != tp->rx_opt.num_sacks) {
3903                 tp->rx_opt.num_sacks = num_sacks;
3904                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3905                                        tp->rx_opt.dsack;
3906         }
3907 }
3908
3909 /* This one checks to see if we can put data from the
3910  * out_of_order queue into the receive_queue.
3911  */
3912 static void tcp_ofo_queue(struct sock *sk)
3913 {
3914         struct tcp_sock *tp = tcp_sk(sk);
3915         __u32 dsack_high = tp->rcv_nxt;
3916         struct sk_buff *skb;
3917
3918         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3919                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3920                         break;
3921
3922                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3923                         __u32 dsack = dsack_high;
3924                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3925                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3926                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3927                 }
3928
3929                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3930                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3931                         __skb_unlink(skb, &tp->out_of_order_queue);
3932                         __kfree_skb(skb);
3933                         continue;
3934                 }
3935                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3936                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3937                            TCP_SKB_CB(skb)->end_seq);
3938
3939                 __skb_unlink(skb, &tp->out_of_order_queue);
3940                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3941                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3942                 if (tcp_hdr(skb)->fin)
3943                         tcp_fin(skb, sk, tcp_hdr(skb));
3944         }
3945 }
3946
3947 static int tcp_prune_ofo_queue(struct sock *sk);
3948 static int tcp_prune_queue(struct sock *sk);
3949
3950 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3951 {
3952         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3953             !sk_rmem_schedule(sk, size)) {
3954
3955                 if (tcp_prune_queue(sk) < 0)
3956                         return -1;
3957
3958                 if (!sk_rmem_schedule(sk, size)) {
3959                         if (!tcp_prune_ofo_queue(sk))
3960                                 return -1;
3961
3962                         if (!sk_rmem_schedule(sk, size))
3963                                 return -1;
3964                 }
3965         }
3966         return 0;
3967 }
3968
3969 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3970 {
3971         struct tcphdr *th = tcp_hdr(skb);
3972         struct tcp_sock *tp = tcp_sk(sk);
3973         int eaten = -1;
3974
3975         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3976                 goto drop;
3977
3978         __skb_pull(skb, th->doff * 4);
3979
3980         TCP_ECN_accept_cwr(tp, skb);
3981
3982         if (tp->rx_opt.dsack) {
3983                 tp->rx_opt.dsack = 0;
3984                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
3985         }
3986
3987         /*  Queue data for delivery to the user.
3988          *  Packets in sequence go to the receive queue.
3989          *  Out of sequence packets to the out_of_order_queue.
3990          */
3991         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3992                 if (tcp_receive_window(tp) == 0)
3993                         goto out_of_window;
3994
3995                 /* Ok. In sequence. In window. */
3996                 if (tp->ucopy.task == current &&
3997                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3998                     sock_owned_by_user(sk) && !tp->urg_data) {
3999                         int chunk = min_t(unsigned int, skb->len,
4000                                           tp->ucopy.len);
4001
4002                         __set_current_state(TASK_RUNNING);
4003
4004                         local_bh_enable();
4005                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4006                                 tp->ucopy.len -= chunk;
4007                                 tp->copied_seq += chunk;
4008                                 eaten = (chunk == skb->len && !th->fin);
4009                                 tcp_rcv_space_adjust(sk);
4010                         }
4011                         local_bh_disable();
4012                 }
4013
4014                 if (eaten <= 0) {
4015 queue_and_out:
4016                         if (eaten < 0 &&
4017                             tcp_try_rmem_schedule(sk, skb->truesize))
4018                                 goto drop;
4019
4020                         skb_set_owner_r(skb, sk);
4021                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4022                 }
4023                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4024                 if (skb->len)
4025                         tcp_event_data_recv(sk, skb);
4026                 if (th->fin)
4027                         tcp_fin(skb, sk, th);
4028
4029                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4030                         tcp_ofo_queue(sk);
4031
4032                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4033                          * gap in queue is filled.
4034                          */
4035                         if (skb_queue_empty(&tp->out_of_order_queue))
4036                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4037                 }
4038
4039                 if (tp->rx_opt.num_sacks)
4040                         tcp_sack_remove(tp);
4041
4042                 tcp_fast_path_check(sk);
4043
4044                 if (eaten > 0)
4045                         __kfree_skb(skb);
4046                 else if (!sock_flag(sk, SOCK_DEAD))
4047                         sk->sk_data_ready(sk, 0);
4048                 return;
4049         }
4050
4051         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4052                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4053                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4054                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4055
4056 out_of_window:
4057                 tcp_enter_quickack_mode(sk);
4058                 inet_csk_schedule_ack(sk);
4059 drop:
4060                 __kfree_skb(skb);
4061                 return;
4062         }
4063
4064         /* Out of window. F.e. zero window probe. */
4065         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4066                 goto out_of_window;
4067
4068         tcp_enter_quickack_mode(sk);
4069
4070         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4071                 /* Partial packet, seq < rcv_next < end_seq */
4072                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4073                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4074                            TCP_SKB_CB(skb)->end_seq);
4075
4076                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4077
4078                 /* If window is closed, drop tail of packet. But after
4079                  * remembering D-SACK for its head made in previous line.
4080                  */
4081                 if (!tcp_receive_window(tp))
4082                         goto out_of_window;
4083                 goto queue_and_out;
4084         }
4085
4086         TCP_ECN_check_ce(tp, skb);
4087
4088         if (tcp_try_rmem_schedule(sk, skb->truesize))
4089                 goto drop;
4090
4091         /* Disable header prediction. */
4092         tp->pred_flags = 0;
4093         inet_csk_schedule_ack(sk);
4094
4095         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4096                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4097
4098         skb_set_owner_r(skb, sk);
4099
4100         if (!skb_peek(&tp->out_of_order_queue)) {
4101                 /* Initial out of order segment, build 1 SACK. */
4102                 if (tcp_is_sack(tp)) {
4103                         tp->rx_opt.num_sacks = 1;
4104                         tp->rx_opt.dsack     = 0;
4105                         tp->rx_opt.eff_sacks = 1;
4106                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4107                         tp->selective_acks[0].end_seq =
4108                                                 TCP_SKB_CB(skb)->end_seq;
4109                 }
4110                 __skb_queue_head(&tp->out_of_order_queue, skb);
4111         } else {
4112                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4113                 u32 seq = TCP_SKB_CB(skb)->seq;
4114                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4115
4116                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4117                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4118
4119                         if (!tp->rx_opt.num_sacks ||
4120                             tp->selective_acks[0].end_seq != seq)
4121                                 goto add_sack;
4122
4123                         /* Common case: data arrive in order after hole. */
4124                         tp->selective_acks[0].end_seq = end_seq;
4125                         return;
4126                 }
4127
4128                 /* Find place to insert this segment. */
4129                 do {
4130                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4131                                 break;
4132                 } while ((skb1 = skb1->prev) !=
4133                          (struct sk_buff *)&tp->out_of_order_queue);
4134
4135                 /* Do skb overlap to previous one? */
4136                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4137                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4138                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4139                                 /* All the bits are present. Drop. */
4140                                 __kfree_skb(skb);
4141                                 tcp_dsack_set(sk, seq, end_seq);
4142                                 goto add_sack;
4143                         }
4144                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4145                                 /* Partial overlap. */
4146                                 tcp_dsack_set(sk, seq,
4147                                               TCP_SKB_CB(skb1)->end_seq);
4148                         } else {
4149                                 skb1 = skb1->prev;
4150                         }
4151                 }
4152                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4153
4154                 /* And clean segments covered by new one as whole. */
4155                 while ((skb1 = skb->next) !=
4156                        (struct sk_buff *)&tp->out_of_order_queue &&
4157                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4158                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4159                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4160                                                  end_seq);
4161                                 break;
4162                         }
4163                         __skb_unlink(skb1, &tp->out_of_order_queue);
4164                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4165                                          TCP_SKB_CB(skb1)->end_seq);
4166                         __kfree_skb(skb1);
4167                 }
4168
4169 add_sack:
4170                 if (tcp_is_sack(tp))
4171                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4172         }
4173 }
4174
4175 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4176                                         struct sk_buff_head *list)
4177 {
4178         struct sk_buff *next = skb->next;
4179
4180         __skb_unlink(skb, list);
4181         __kfree_skb(skb);
4182         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4183
4184         return next;
4185 }
4186
4187 /* Collapse contiguous sequence of skbs head..tail with
4188  * sequence numbers start..end.
4189  * Segments with FIN/SYN are not collapsed (only because this
4190  * simplifies code)
4191  */
4192 static void
4193 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4194              struct sk_buff *head, struct sk_buff *tail,
4195              u32 start, u32 end)
4196 {
4197         struct sk_buff *skb;
4198
4199         /* First, check that queue is collapsible and find
4200          * the point where collapsing can be useful. */
4201         for (skb = head; skb != tail;) {
4202                 /* No new bits? It is possible on ofo queue. */
4203                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4204                         skb = tcp_collapse_one(sk, skb, list);
4205                         continue;
4206                 }
4207
4208                 /* The first skb to collapse is:
4209                  * - not SYN/FIN and
4210                  * - bloated or contains data before "start" or
4211                  *   overlaps to the next one.
4212                  */
4213                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4214                     (tcp_win_from_space(skb->truesize) > skb->len ||
4215                      before(TCP_SKB_CB(skb)->seq, start) ||
4216                      (skb->next != tail &&
4217                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4218                         break;
4219
4220                 /* Decided to skip this, advance start seq. */
4221                 start = TCP_SKB_CB(skb)->end_seq;
4222                 skb = skb->next;
4223         }
4224         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4225                 return;
4226
4227         while (before(start, end)) {
4228                 struct sk_buff *nskb;
4229                 unsigned int header = skb_headroom(skb);
4230                 int copy = SKB_MAX_ORDER(header, 0);
4231
4232                 /* Too big header? This can happen with IPv6. */
4233                 if (copy < 0)
4234                         return;
4235                 if (end - start < copy)
4236                         copy = end - start;
4237                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4238                 if (!nskb)
4239                         return;
4240
4241                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4242                 skb_set_network_header(nskb, (skb_network_header(skb) -
4243                                               skb->head));
4244                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4245                                                 skb->head));
4246                 skb_reserve(nskb, header);
4247                 memcpy(nskb->head, skb->head, header);
4248                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4249                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4250                 __skb_insert(nskb, skb->prev, skb, list);
4251                 skb_set_owner_r(nskb, sk);
4252
4253                 /* Copy data, releasing collapsed skbs. */
4254                 while (copy > 0) {
4255                         int offset = start - TCP_SKB_CB(skb)->seq;
4256                         int size = TCP_SKB_CB(skb)->end_seq - start;
4257
4258                         BUG_ON(offset < 0);
4259                         if (size > 0) {
4260                                 size = min(copy, size);
4261                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4262                                         BUG();
4263                                 TCP_SKB_CB(nskb)->end_seq += size;
4264                                 copy -= size;
4265                                 start += size;
4266                         }
4267                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4268                                 skb = tcp_collapse_one(sk, skb, list);
4269                                 if (skb == tail ||
4270                                     tcp_hdr(skb)->syn ||
4271                                     tcp_hdr(skb)->fin)
4272                                         return;
4273                         }
4274                 }
4275         }
4276 }
4277
4278 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4279  * and tcp_collapse() them until all the queue is collapsed.
4280  */
4281 static void tcp_collapse_ofo_queue(struct sock *sk)
4282 {
4283         struct tcp_sock *tp = tcp_sk(sk);
4284         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4285         struct sk_buff *head;
4286         u32 start, end;
4287
4288         if (skb == NULL)
4289                 return;
4290
4291         start = TCP_SKB_CB(skb)->seq;
4292         end = TCP_SKB_CB(skb)->end_seq;
4293         head = skb;
4294
4295         for (;;) {
4296                 skb = skb->next;
4297
4298                 /* Segment is terminated when we see gap or when
4299                  * we are at the end of all the queue. */
4300                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4301                     after(TCP_SKB_CB(skb)->seq, end) ||
4302                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4303                         tcp_collapse(sk, &tp->out_of_order_queue,
4304                                      head, skb, start, end);
4305                         head = skb;
4306                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4307                                 break;
4308                         /* Start new segment */
4309                         start = TCP_SKB_CB(skb)->seq;
4310                         end = TCP_SKB_CB(skb)->end_seq;
4311                 } else {
4312                         if (before(TCP_SKB_CB(skb)->seq, start))
4313                                 start = TCP_SKB_CB(skb)->seq;
4314                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4315                                 end = TCP_SKB_CB(skb)->end_seq;
4316                 }
4317         }
4318 }
4319
4320 /*
4321  * Purge the out-of-order queue.
4322  * Return true if queue was pruned.
4323  */
4324 static int tcp_prune_ofo_queue(struct sock *sk)
4325 {
4326         struct tcp_sock *tp = tcp_sk(sk);
4327         int res = 0;
4328
4329         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4330                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4331                 __skb_queue_purge(&tp->out_of_order_queue);
4332
4333                 /* Reset SACK state.  A conforming SACK implementation will
4334                  * do the same at a timeout based retransmit.  When a connection
4335                  * is in a sad state like this, we care only about integrity
4336                  * of the connection not performance.
4337                  */
4338                 if (tp->rx_opt.sack_ok)
4339                         tcp_sack_reset(&tp->rx_opt);
4340                 sk_mem_reclaim(sk);
4341                 res = 1;
4342         }
4343         return res;
4344 }
4345
4346 /* Reduce allocated memory if we can, trying to get
4347  * the socket within its memory limits again.
4348  *
4349  * Return less than zero if we should start dropping frames
4350  * until the socket owning process reads some of the data
4351  * to stabilize the situation.
4352  */
4353 static int tcp_prune_queue(struct sock *sk)
4354 {
4355         struct tcp_sock *tp = tcp_sk(sk);
4356
4357         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4358
4359         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4360
4361         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4362                 tcp_clamp_window(sk);
4363         else if (tcp_memory_pressure)
4364                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4365
4366         tcp_collapse_ofo_queue(sk);
4367         tcp_collapse(sk, &sk->sk_receive_queue,
4368                      sk->sk_receive_queue.next,
4369                      (struct sk_buff *)&sk->sk_receive_queue,
4370                      tp->copied_seq, tp->rcv_nxt);
4371         sk_mem_reclaim(sk);
4372
4373         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4374                 return 0;
4375
4376         /* Collapsing did not help, destructive actions follow.
4377          * This must not ever occur. */
4378
4379         tcp_prune_ofo_queue(sk);
4380
4381         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4382                 return 0;
4383
4384         /* If we are really being abused, tell the caller to silently
4385          * drop receive data on the floor.  It will get retransmitted
4386          * and hopefully then we'll have sufficient space.
4387          */
4388         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4389
4390         /* Massive buffer overcommit. */
4391         tp->pred_flags = 0;
4392         return -1;
4393 }
4394
4395 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4396  * As additional protections, we do not touch cwnd in retransmission phases,
4397  * and if application hit its sndbuf limit recently.
4398  */
4399 void tcp_cwnd_application_limited(struct sock *sk)
4400 {
4401         struct tcp_sock *tp = tcp_sk(sk);
4402
4403         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4404             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4405                 /* Limited by application or receiver window. */
4406                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4407                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4408                 if (win_used < tp->snd_cwnd) {
4409                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4410                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4411                 }
4412                 tp->snd_cwnd_used = 0;
4413         }
4414         tp->snd_cwnd_stamp = tcp_time_stamp;
4415 }
4416
4417 static int tcp_should_expand_sndbuf(struct sock *sk)
4418 {
4419         struct tcp_sock *tp = tcp_sk(sk);
4420
4421         /* If the user specified a specific send buffer setting, do
4422          * not modify it.
4423          */
4424         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4425                 return 0;
4426
4427         /* If we are under global TCP memory pressure, do not expand.  */
4428         if (tcp_memory_pressure)
4429                 return 0;
4430
4431         /* If we are under soft global TCP memory pressure, do not expand.  */
4432         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4433                 return 0;
4434
4435         /* If we filled the congestion window, do not expand.  */
4436         if (tp->packets_out >= tp->snd_cwnd)
4437                 return 0;
4438
4439         return 1;
4440 }
4441
4442 /* When incoming ACK allowed to free some skb from write_queue,
4443  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4444  * on the exit from tcp input handler.
4445  *
4446  * PROBLEM: sndbuf expansion does not work well with largesend.
4447  */
4448 static void tcp_new_space(struct sock *sk)
4449 {
4450         struct tcp_sock *tp = tcp_sk(sk);
4451
4452         if (tcp_should_expand_sndbuf(sk)) {
4453                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4454                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4455                     demanded = max_t(unsigned int, tp->snd_cwnd,
4456                                      tp->reordering + 1);
4457                 sndmem *= 2 * demanded;
4458                 if (sndmem > sk->sk_sndbuf)
4459                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4460                 tp->snd_cwnd_stamp = tcp_time_stamp;
4461         }
4462
4463         sk->sk_write_space(sk);
4464 }
4465
4466 static void tcp_check_space(struct sock *sk)
4467 {
4468         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4469                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4470                 if (sk->sk_socket &&
4471                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4472                         tcp_new_space(sk);
4473         }
4474 }
4475
4476 static inline void tcp_data_snd_check(struct sock *sk)
4477 {
4478         tcp_push_pending_frames(sk);
4479         tcp_check_space(sk);
4480 }
4481
4482 /*
4483  * Check if sending an ack is needed.
4484  */
4485 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4486 {
4487         struct tcp_sock *tp = tcp_sk(sk);
4488
4489             /* More than one full frame received... */
4490         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4491              /* ... and right edge of window advances far enough.
4492               * (tcp_recvmsg() will send ACK otherwise). Or...
4493               */
4494              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4495             /* We ACK each frame or... */
4496             tcp_in_quickack_mode(sk) ||
4497             /* We have out of order data. */
4498             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4499                 /* Then ack it now */
4500                 tcp_send_ack(sk);
4501         } else {
4502                 /* Else, send delayed ack. */
4503                 tcp_send_delayed_ack(sk);
4504         }
4505 }
4506
4507 static inline void tcp_ack_snd_check(struct sock *sk)
4508 {
4509         if (!inet_csk_ack_scheduled(sk)) {
4510                 /* We sent a data segment already. */
4511                 return;
4512         }
4513         __tcp_ack_snd_check(sk, 1);
4514 }
4515
4516 /*
4517  *      This routine is only called when we have urgent data
4518  *      signaled. Its the 'slow' part of tcp_urg. It could be
4519  *      moved inline now as tcp_urg is only called from one
4520  *      place. We handle URGent data wrong. We have to - as
4521  *      BSD still doesn't use the correction from RFC961.
4522  *      For 1003.1g we should support a new option TCP_STDURG to permit
4523  *      either form (or just set the sysctl tcp_stdurg).
4524  */
4525
4526 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4527 {
4528         struct tcp_sock *tp = tcp_sk(sk);
4529         u32 ptr = ntohs(th->urg_ptr);
4530
4531         if (ptr && !sysctl_tcp_stdurg)
4532                 ptr--;
4533         ptr += ntohl(th->seq);
4534
4535         /* Ignore urgent data that we've already seen and read. */
4536         if (after(tp->copied_seq, ptr))
4537                 return;
4538
4539         /* Do not replay urg ptr.
4540          *
4541          * NOTE: interesting situation not covered by specs.
4542          * Misbehaving sender may send urg ptr, pointing to segment,
4543          * which we already have in ofo queue. We are not able to fetch
4544          * such data and will stay in TCP_URG_NOTYET until will be eaten
4545          * by recvmsg(). Seems, we are not obliged to handle such wicked
4546          * situations. But it is worth to think about possibility of some
4547          * DoSes using some hypothetical application level deadlock.
4548          */
4549         if (before(ptr, tp->rcv_nxt))
4550                 return;
4551
4552         /* Do we already have a newer (or duplicate) urgent pointer? */
4553         if (tp->urg_data && !after(ptr, tp->urg_seq))
4554                 return;
4555
4556         /* Tell the world about our new urgent pointer. */
4557         sk_send_sigurg(sk);
4558
4559         /* We may be adding urgent data when the last byte read was
4560          * urgent. To do this requires some care. We cannot just ignore
4561          * tp->copied_seq since we would read the last urgent byte again
4562          * as data, nor can we alter copied_seq until this data arrives
4563          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4564          *
4565          * NOTE. Double Dutch. Rendering to plain English: author of comment
4566          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4567          * and expect that both A and B disappear from stream. This is _wrong_.
4568          * Though this happens in BSD with high probability, this is occasional.
4569          * Any application relying on this is buggy. Note also, that fix "works"
4570          * only in this artificial test. Insert some normal data between A and B and we will
4571          * decline of BSD again. Verdict: it is better to remove to trap
4572          * buggy users.
4573          */
4574         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4575             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4576                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4577                 tp->copied_seq++;
4578                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4579                         __skb_unlink(skb, &sk->sk_receive_queue);
4580                         __kfree_skb(skb);
4581                 }
4582         }
4583
4584         tp->urg_data = TCP_URG_NOTYET;
4585         tp->urg_seq = ptr;
4586
4587         /* Disable header prediction. */
4588         tp->pred_flags = 0;
4589 }
4590
4591 /* This is the 'fast' part of urgent handling. */
4592 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4593 {
4594         struct tcp_sock *tp = tcp_sk(sk);
4595
4596         /* Check if we get a new urgent pointer - normally not. */
4597         if (th->urg)
4598                 tcp_check_urg(sk, th);
4599
4600         /* Do we wait for any urgent data? - normally not... */
4601         if (tp->urg_data == TCP_URG_NOTYET) {
4602                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4603                           th->syn;
4604
4605                 /* Is the urgent pointer pointing into this packet? */
4606                 if (ptr < skb->len) {
4607                         u8 tmp;
4608                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4609                                 BUG();
4610                         tp->urg_data = TCP_URG_VALID | tmp;
4611                         if (!sock_flag(sk, SOCK_DEAD))
4612                                 sk->sk_data_ready(sk, 0);
4613                 }
4614         }
4615 }
4616
4617 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4618 {
4619         struct tcp_sock *tp = tcp_sk(sk);
4620         int chunk = skb->len - hlen;
4621         int err;
4622
4623         local_bh_enable();
4624         if (skb_csum_unnecessary(skb))
4625                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4626         else
4627                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4628                                                        tp->ucopy.iov);
4629
4630         if (!err) {
4631                 tp->ucopy.len -= chunk;
4632                 tp->copied_seq += chunk;
4633                 tcp_rcv_space_adjust(sk);
4634         }
4635
4636         local_bh_disable();
4637         return err;
4638 }
4639
4640 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4641                                             struct sk_buff *skb)
4642 {
4643         __sum16 result;
4644
4645         if (sock_owned_by_user(sk)) {
4646                 local_bh_enable();
4647                 result = __tcp_checksum_complete(skb);
4648                 local_bh_disable();
4649         } else {
4650                 result = __tcp_checksum_complete(skb);
4651         }
4652         return result;
4653 }
4654
4655 static inline int tcp_checksum_complete_user(struct sock *sk,
4656                                              struct sk_buff *skb)
4657 {
4658         return !skb_csum_unnecessary(skb) &&
4659                __tcp_checksum_complete_user(sk, skb);
4660 }
4661
4662 #ifdef CONFIG_NET_DMA
4663 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4664                                   int hlen)
4665 {
4666         struct tcp_sock *tp = tcp_sk(sk);
4667         int chunk = skb->len - hlen;
4668         int dma_cookie;
4669         int copied_early = 0;
4670
4671         if (tp->ucopy.wakeup)
4672                 return 0;
4673
4674         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4675                 tp->ucopy.dma_chan = get_softnet_dma();
4676
4677         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4678
4679                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4680                                                          skb, hlen,
4681                                                          tp->ucopy.iov, chunk,
4682                                                          tp->ucopy.pinned_list);
4683
4684                 if (dma_cookie < 0)
4685                         goto out;
4686
4687                 tp->ucopy.dma_cookie = dma_cookie;
4688                 copied_early = 1;
4689
4690                 tp->ucopy.len -= chunk;
4691                 tp->copied_seq += chunk;
4692                 tcp_rcv_space_adjust(sk);
4693
4694                 if ((tp->ucopy.len == 0) ||
4695                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4696                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4697                         tp->ucopy.wakeup = 1;
4698                         sk->sk_data_ready(sk, 0);
4699                 }
4700         } else if (chunk > 0) {
4701                 tp->ucopy.wakeup = 1;
4702                 sk->sk_data_ready(sk, 0);
4703         }
4704 out:
4705         return copied_early;
4706 }
4707 #endif /* CONFIG_NET_DMA */
4708
4709 /* Does PAWS and seqno based validation of an incoming segment, flags will
4710  * play significant role here.
4711  */
4712 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4713                               struct tcphdr *th, int syn_inerr)
4714 {
4715         struct tcp_sock *tp = tcp_sk(sk);
4716
4717         /* RFC1323: H1. Apply PAWS check first. */
4718         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4719             tcp_paws_discard(sk, skb)) {
4720                 if (!th->rst) {
4721                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4722                         tcp_send_dupack(sk, skb);
4723                         goto discard;
4724                 }
4725                 /* Reset is accepted even if it did not pass PAWS. */
4726         }
4727
4728         /* Step 1: check sequence number */
4729         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4730                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4731                  * (RST) segments are validated by checking their SEQ-fields."
4732                  * And page 69: "If an incoming segment is not acceptable,
4733                  * an acknowledgment should be sent in reply (unless the RST
4734                  * bit is set, if so drop the segment and return)".
4735                  */
4736                 if (!th->rst)
4737                         tcp_send_dupack(sk, skb);
4738                 goto discard;
4739         }
4740
4741         /* Step 2: check RST bit */
4742         if (th->rst) {
4743                 tcp_reset(sk);
4744                 goto discard;
4745         }
4746
4747         /* ts_recent update must be made after we are sure that the packet
4748          * is in window.
4749          */
4750         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4751
4752         /* step 3: check security and precedence [ignored] */
4753
4754         /* step 4: Check for a SYN in window. */
4755         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4756                 if (syn_inerr)
4757                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4758                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4759                 tcp_reset(sk);
4760                 return -1;
4761         }
4762
4763         return 1;
4764
4765 discard:
4766         __kfree_skb(skb);
4767         return 0;
4768 }
4769
4770 /*
4771  *      TCP receive function for the ESTABLISHED state.
4772  *
4773  *      It is split into a fast path and a slow path. The fast path is
4774  *      disabled when:
4775  *      - A zero window was announced from us - zero window probing
4776  *        is only handled properly in the slow path.
4777  *      - Out of order segments arrived.
4778  *      - Urgent data is expected.
4779  *      - There is no buffer space left
4780  *      - Unexpected TCP flags/window values/header lengths are received
4781  *        (detected by checking the TCP header against pred_flags)
4782  *      - Data is sent in both directions. Fast path only supports pure senders
4783  *        or pure receivers (this means either the sequence number or the ack
4784  *        value must stay constant)
4785  *      - Unexpected TCP option.
4786  *
4787  *      When these conditions are not satisfied it drops into a standard
4788  *      receive procedure patterned after RFC793 to handle all cases.
4789  *      The first three cases are guaranteed by proper pred_flags setting,
4790  *      the rest is checked inline. Fast processing is turned on in
4791  *      tcp_data_queue when everything is OK.
4792  */
4793 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4794                         struct tcphdr *th, unsigned len)
4795 {
4796         struct tcp_sock *tp = tcp_sk(sk);
4797         int res;
4798
4799         /*
4800          *      Header prediction.
4801          *      The code loosely follows the one in the famous
4802          *      "30 instruction TCP receive" Van Jacobson mail.
4803          *
4804          *      Van's trick is to deposit buffers into socket queue
4805          *      on a device interrupt, to call tcp_recv function
4806          *      on the receive process context and checksum and copy
4807          *      the buffer to user space. smart...
4808          *
4809          *      Our current scheme is not silly either but we take the
4810          *      extra cost of the net_bh soft interrupt processing...
4811          *      We do checksum and copy also but from device to kernel.
4812          */
4813
4814         tp->rx_opt.saw_tstamp = 0;
4815
4816         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4817          *      if header_prediction is to be made
4818          *      'S' will always be tp->tcp_header_len >> 2
4819          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4820          *  turn it off (when there are holes in the receive
4821          *       space for instance)
4822          *      PSH flag is ignored.
4823          */
4824
4825         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4826             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4827                 int tcp_header_len = tp->tcp_header_len;
4828
4829                 /* Timestamp header prediction: tcp_header_len
4830                  * is automatically equal to th->doff*4 due to pred_flags
4831                  * match.
4832                  */
4833
4834                 /* Check timestamp */
4835                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4836                         /* No? Slow path! */
4837                         if (!tcp_parse_aligned_timestamp(tp, th))
4838                                 goto slow_path;
4839
4840                         /* If PAWS failed, check it more carefully in slow path */
4841                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4842                                 goto slow_path;
4843
4844                         /* DO NOT update ts_recent here, if checksum fails
4845                          * and timestamp was corrupted part, it will result
4846                          * in a hung connection since we will drop all
4847                          * future packets due to the PAWS test.
4848                          */
4849                 }
4850
4851                 if (len <= tcp_header_len) {
4852                         /* Bulk data transfer: sender */
4853                         if (len == tcp_header_len) {
4854                                 /* Predicted packet is in window by definition.
4855                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4856                                  * Hence, check seq<=rcv_wup reduces to:
4857                                  */
4858                                 if (tcp_header_len ==
4859                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4860                                     tp->rcv_nxt == tp->rcv_wup)
4861                                         tcp_store_ts_recent(tp);
4862
4863                                 /* We know that such packets are checksummed
4864                                  * on entry.
4865                                  */
4866                                 tcp_ack(sk, skb, 0);
4867                                 __kfree_skb(skb);
4868                                 tcp_data_snd_check(sk);
4869                                 return 0;
4870                         } else { /* Header too small */
4871                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4872                                 goto discard;
4873                         }
4874                 } else {
4875                         int eaten = 0;
4876                         int copied_early = 0;
4877
4878                         if (tp->copied_seq == tp->rcv_nxt &&
4879                             len - tcp_header_len <= tp->ucopy.len) {
4880 #ifdef CONFIG_NET_DMA
4881                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4882                                         copied_early = 1;
4883                                         eaten = 1;
4884                                 }
4885 #endif
4886                                 if (tp->ucopy.task == current &&
4887                                     sock_owned_by_user(sk) && !copied_early) {
4888                                         __set_current_state(TASK_RUNNING);
4889
4890                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4891                                                 eaten = 1;
4892                                 }
4893                                 if (eaten) {
4894                                         /* Predicted packet is in window by definition.
4895                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4896                                          * Hence, check seq<=rcv_wup reduces to:
4897                                          */
4898                                         if (tcp_header_len ==
4899                                             (sizeof(struct tcphdr) +
4900                                              TCPOLEN_TSTAMP_ALIGNED) &&
4901                                             tp->rcv_nxt == tp->rcv_wup)
4902                                                 tcp_store_ts_recent(tp);
4903
4904                                         tcp_rcv_rtt_measure_ts(sk, skb);
4905
4906                                         __skb_pull(skb, tcp_header_len);
4907                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4908                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4909                                 }
4910                                 if (copied_early)
4911                                         tcp_cleanup_rbuf(sk, skb->len);
4912                         }
4913                         if (!eaten) {
4914                                 if (tcp_checksum_complete_user(sk, skb))
4915                                         goto csum_error;
4916
4917                                 /* Predicted packet is in window by definition.
4918                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4919                                  * Hence, check seq<=rcv_wup reduces to:
4920                                  */
4921                                 if (tcp_header_len ==
4922                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4923                                     tp->rcv_nxt == tp->rcv_wup)
4924                                         tcp_store_ts_recent(tp);
4925
4926                                 tcp_rcv_rtt_measure_ts(sk, skb);
4927
4928                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4929                                         goto step5;
4930
4931                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
4932
4933                                 /* Bulk data transfer: receiver */
4934                                 __skb_pull(skb, tcp_header_len);
4935                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4936                                 skb_set_owner_r(skb, sk);
4937                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4938                         }
4939
4940                         tcp_event_data_recv(sk, skb);
4941
4942                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4943                                 /* Well, only one small jumplet in fast path... */
4944                                 tcp_ack(sk, skb, FLAG_DATA);
4945                                 tcp_data_snd_check(sk);
4946                                 if (!inet_csk_ack_scheduled(sk))
4947                                         goto no_ack;
4948                         }
4949
4950                         __tcp_ack_snd_check(sk, 0);
4951 no_ack:
4952 #ifdef CONFIG_NET_DMA
4953                         if (copied_early)
4954                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4955                         else
4956 #endif
4957                         if (eaten)
4958                                 __kfree_skb(skb);
4959                         else
4960                                 sk->sk_data_ready(sk, 0);
4961                         return 0;
4962                 }
4963         }
4964
4965 slow_path:
4966         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4967                 goto csum_error;
4968
4969         /*
4970          *      Standard slow path.
4971          */
4972
4973         res = tcp_validate_incoming(sk, skb, th, 1);
4974         if (res <= 0)
4975                 return -res;
4976
4977 step5:
4978         if (th->ack)
4979                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4980
4981         tcp_rcv_rtt_measure_ts(sk, skb);
4982
4983         /* Process urgent data. */
4984         tcp_urg(sk, skb, th);
4985
4986         /* step 7: process the segment text */
4987         tcp_data_queue(sk, skb);
4988
4989         tcp_data_snd_check(sk);
4990         tcp_ack_snd_check(sk);
4991         return 0;
4992
4993 csum_error:
4994         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4995
4996 discard:
4997         __kfree_skb(skb);
4998         return 0;
4999 }
5000
5001 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5002                                          struct tcphdr *th, unsigned len)
5003 {
5004         struct tcp_sock *tp = tcp_sk(sk);
5005         struct inet_connection_sock *icsk = inet_csk(sk);
5006         int saved_clamp = tp->rx_opt.mss_clamp;
5007
5008         tcp_parse_options(skb, &tp->rx_opt, 0);
5009
5010         if (th->ack) {
5011                 /* rfc793:
5012                  * "If the state is SYN-SENT then
5013                  *    first check the ACK bit
5014                  *      If the ACK bit is set
5015                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5016                  *        a reset (unless the RST bit is set, if so drop
5017                  *        the segment and return)"
5018                  *
5019                  *  We do not send data with SYN, so that RFC-correct
5020                  *  test reduces to:
5021                  */
5022                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5023                         goto reset_and_undo;
5024
5025                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5026                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5027                              tcp_time_stamp)) {
5028                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5029                         goto reset_and_undo;
5030                 }
5031
5032                 /* Now ACK is acceptable.
5033                  *
5034                  * "If the RST bit is set
5035                  *    If the ACK was acceptable then signal the user "error:
5036                  *    connection reset", drop the segment, enter CLOSED state,
5037                  *    delete TCB, and return."
5038                  */
5039
5040                 if (th->rst) {
5041                         tcp_reset(sk);
5042                         goto discard;
5043                 }
5044
5045                 /* rfc793:
5046                  *   "fifth, if neither of the SYN or RST bits is set then
5047                  *    drop the segment and return."
5048                  *
5049                  *    See note below!
5050                  *                                        --ANK(990513)
5051                  */
5052                 if (!th->syn)
5053                         goto discard_and_undo;
5054
5055                 /* rfc793:
5056                  *   "If the SYN bit is on ...
5057                  *    are acceptable then ...
5058                  *    (our SYN has been ACKed), change the connection
5059                  *    state to ESTABLISHED..."
5060                  */
5061
5062                 TCP_ECN_rcv_synack(tp, th);
5063
5064                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5065                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5066
5067                 /* Ok.. it's good. Set up sequence numbers and
5068                  * move to established.
5069                  */
5070                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5071                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5072
5073                 /* RFC1323: The window in SYN & SYN/ACK segments is
5074                  * never scaled.
5075                  */
5076                 tp->snd_wnd = ntohs(th->window);
5077                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5078
5079                 if (!tp->rx_opt.wscale_ok) {
5080                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5081                         tp->window_clamp = min(tp->window_clamp, 65535U);
5082                 }
5083
5084                 if (tp->rx_opt.saw_tstamp) {
5085                         tp->rx_opt.tstamp_ok       = 1;
5086                         tp->tcp_header_len =
5087                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5088                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5089                         tcp_store_ts_recent(tp);
5090                 } else {
5091                         tp->tcp_header_len = sizeof(struct tcphdr);
5092                 }
5093
5094                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5095                         tcp_enable_fack(tp);
5096
5097                 tcp_mtup_init(sk);
5098                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5099                 tcp_initialize_rcv_mss(sk);
5100
5101                 /* Remember, tcp_poll() does not lock socket!
5102                  * Change state from SYN-SENT only after copied_seq
5103                  * is initialized. */
5104                 tp->copied_seq = tp->rcv_nxt;
5105                 smp_mb();
5106                 tcp_set_state(sk, TCP_ESTABLISHED);
5107
5108                 security_inet_conn_established(sk, skb);
5109
5110                 /* Make sure socket is routed, for correct metrics.  */
5111                 icsk->icsk_af_ops->rebuild_header(sk);
5112
5113                 tcp_init_metrics(sk);
5114
5115                 tcp_init_congestion_control(sk);
5116
5117                 /* Prevent spurious tcp_cwnd_restart() on first data
5118                  * packet.
5119                  */
5120                 tp->lsndtime = tcp_time_stamp;
5121
5122                 tcp_init_buffer_space(sk);
5123
5124                 if (sock_flag(sk, SOCK_KEEPOPEN))
5125                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5126
5127                 if (!tp->rx_opt.snd_wscale)
5128                         __tcp_fast_path_on(tp, tp->snd_wnd);
5129                 else
5130                         tp->pred_flags = 0;
5131
5132                 if (!sock_flag(sk, SOCK_DEAD)) {
5133                         sk->sk_state_change(sk);
5134                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5135                 }
5136
5137                 if (sk->sk_write_pending ||
5138                     icsk->icsk_accept_queue.rskq_defer_accept ||
5139                     icsk->icsk_ack.pingpong) {
5140                         /* Save one ACK. Data will be ready after
5141                          * several ticks, if write_pending is set.
5142                          *
5143                          * It may be deleted, but with this feature tcpdumps
5144                          * look so _wonderfully_ clever, that I was not able
5145                          * to stand against the temptation 8)     --ANK
5146                          */
5147                         inet_csk_schedule_ack(sk);
5148                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5149                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5150                         tcp_incr_quickack(sk);
5151                         tcp_enter_quickack_mode(sk);
5152                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5153                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5154
5155 discard:
5156                         __kfree_skb(skb);
5157                         return 0;
5158                 } else {
5159                         tcp_send_ack(sk);
5160                 }
5161                 return -1;
5162         }
5163
5164         /* No ACK in the segment */
5165
5166         if (th->rst) {
5167                 /* rfc793:
5168                  * "If the RST bit is set
5169                  *
5170                  *      Otherwise (no ACK) drop the segment and return."
5171                  */
5172
5173                 goto discard_and_undo;
5174         }
5175
5176         /* PAWS check. */
5177         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5178             tcp_paws_check(&tp->rx_opt, 0))
5179                 goto discard_and_undo;
5180
5181         if (th->syn) {
5182                 /* We see SYN without ACK. It is attempt of
5183                  * simultaneous connect with crossed SYNs.
5184                  * Particularly, it can be connect to self.
5185                  */
5186                 tcp_set_state(sk, TCP_SYN_RECV);
5187
5188                 if (tp->rx_opt.saw_tstamp) {
5189                         tp->rx_opt.tstamp_ok = 1;
5190                         tcp_store_ts_recent(tp);
5191                         tp->tcp_header_len =
5192                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5193                 } else {
5194                         tp->tcp_header_len = sizeof(struct tcphdr);
5195                 }
5196
5197                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5198                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5199
5200                 /* RFC1323: The window in SYN & SYN/ACK segments is
5201                  * never scaled.
5202                  */
5203                 tp->snd_wnd    = ntohs(th->window);
5204                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5205                 tp->max_window = tp->snd_wnd;
5206
5207                 TCP_ECN_rcv_syn(tp, th);
5208
5209                 tcp_mtup_init(sk);
5210                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5211                 tcp_initialize_rcv_mss(sk);
5212
5213                 tcp_send_synack(sk);
5214 #if 0
5215                 /* Note, we could accept data and URG from this segment.
5216                  * There are no obstacles to make this.
5217                  *
5218                  * However, if we ignore data in ACKless segments sometimes,
5219                  * we have no reasons to accept it sometimes.
5220                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5221                  * is not flawless. So, discard packet for sanity.
5222                  * Uncomment this return to process the data.
5223                  */
5224                 return -1;
5225 #else
5226                 goto discard;
5227 #endif
5228         }
5229         /* "fifth, if neither of the SYN or RST bits is set then
5230          * drop the segment and return."
5231          */
5232
5233 discard_and_undo:
5234         tcp_clear_options(&tp->rx_opt);
5235         tp->rx_opt.mss_clamp = saved_clamp;
5236         goto discard;
5237
5238 reset_and_undo:
5239         tcp_clear_options(&tp->rx_opt);
5240         tp->rx_opt.mss_clamp = saved_clamp;
5241         return 1;
5242 }
5243
5244 /*
5245  *      This function implements the receiving procedure of RFC 793 for
5246  *      all states except ESTABLISHED and TIME_WAIT.
5247  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5248  *      address independent.
5249  */
5250
5251 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5252                           struct tcphdr *th, unsigned len)
5253 {
5254         struct tcp_sock *tp = tcp_sk(sk);
5255         struct inet_connection_sock *icsk = inet_csk(sk);
5256         int queued = 0;
5257         int res;
5258
5259         tp->rx_opt.saw_tstamp = 0;
5260
5261         switch (sk->sk_state) {
5262         case TCP_CLOSE:
5263                 goto discard;
5264
5265         case TCP_LISTEN:
5266                 if (th->ack)
5267                         return 1;
5268
5269                 if (th->rst)
5270                         goto discard;
5271
5272                 if (th->syn) {
5273                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5274                                 return 1;
5275
5276                         /* Now we have several options: In theory there is
5277                          * nothing else in the frame. KA9Q has an option to
5278                          * send data with the syn, BSD accepts data with the
5279                          * syn up to the [to be] advertised window and
5280                          * Solaris 2.1 gives you a protocol error. For now
5281                          * we just ignore it, that fits the spec precisely
5282                          * and avoids incompatibilities. It would be nice in
5283                          * future to drop through and process the data.
5284                          *
5285                          * Now that TTCP is starting to be used we ought to
5286                          * queue this data.
5287                          * But, this leaves one open to an easy denial of
5288                          * service attack, and SYN cookies can't defend
5289                          * against this problem. So, we drop the data
5290                          * in the interest of security over speed unless
5291                          * it's still in use.
5292                          */
5293                         kfree_skb(skb);
5294                         return 0;
5295                 }
5296                 goto discard;
5297
5298         case TCP_SYN_SENT:
5299                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5300                 if (queued >= 0)
5301                         return queued;
5302
5303                 /* Do step6 onward by hand. */
5304                 tcp_urg(sk, skb, th);
5305                 __kfree_skb(skb);
5306                 tcp_data_snd_check(sk);
5307                 return 0;
5308         }
5309
5310         res = tcp_validate_incoming(sk, skb, th, 0);
5311         if (res <= 0)
5312                 return -res;
5313
5314         /* step 5: check the ACK field */
5315         if (th->ack) {
5316                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5317
5318                 switch (sk->sk_state) {
5319                 case TCP_SYN_RECV:
5320                         if (acceptable) {
5321                                 tp->copied_seq = tp->rcv_nxt;
5322                                 smp_mb();
5323                                 tcp_set_state(sk, TCP_ESTABLISHED);
5324                                 sk->sk_state_change(sk);
5325
5326                                 /* Note, that this wakeup is only for marginal
5327                                  * crossed SYN case. Passively open sockets
5328                                  * are not waked up, because sk->sk_sleep ==
5329                                  * NULL and sk->sk_socket == NULL.
5330                                  */
5331                                 if (sk->sk_socket)
5332                                         sk_wake_async(sk,
5333                                                       SOCK_WAKE_IO, POLL_OUT);
5334
5335                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5336                                 tp->snd_wnd = ntohs(th->window) <<
5337                                               tp->rx_opt.snd_wscale;
5338                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5339                                             TCP_SKB_CB(skb)->seq);
5340
5341                                 /* tcp_ack considers this ACK as duplicate
5342                                  * and does not calculate rtt.
5343                                  * Fix it at least with timestamps.
5344                                  */
5345                                 if (tp->rx_opt.saw_tstamp &&
5346                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5347                                         tcp_ack_saw_tstamp(sk, 0);
5348
5349                                 if (tp->rx_opt.tstamp_ok)
5350                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5351
5352                                 /* Make sure socket is routed, for
5353                                  * correct metrics.
5354                                  */
5355                                 icsk->icsk_af_ops->rebuild_header(sk);
5356
5357                                 tcp_init_metrics(sk);
5358
5359                                 tcp_init_congestion_control(sk);
5360
5361                                 /* Prevent spurious tcp_cwnd_restart() on
5362                                  * first data packet.
5363                                  */
5364                                 tp->lsndtime = tcp_time_stamp;
5365
5366                                 tcp_mtup_init(sk);
5367                                 tcp_initialize_rcv_mss(sk);
5368                                 tcp_init_buffer_space(sk);
5369                                 tcp_fast_path_on(tp);
5370                         } else {
5371                                 return 1;
5372                         }
5373                         break;
5374
5375                 case TCP_FIN_WAIT1:
5376                         if (tp->snd_una == tp->write_seq) {
5377                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5378                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5379                                 dst_confirm(sk->sk_dst_cache);
5380
5381                                 if (!sock_flag(sk, SOCK_DEAD))
5382                                         /* Wake up lingering close() */
5383                                         sk->sk_state_change(sk);
5384                                 else {
5385                                         int tmo;
5386
5387                                         if (tp->linger2 < 0 ||
5388                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5389                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5390                                                 tcp_done(sk);
5391                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5392                                                 return 1;
5393                                         }
5394
5395                                         tmo = tcp_fin_time(sk);
5396                                         if (tmo > TCP_TIMEWAIT_LEN) {
5397                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5398                                         } else if (th->fin || sock_owned_by_user(sk)) {
5399                                                 /* Bad case. We could lose such FIN otherwise.
5400                                                  * It is not a big problem, but it looks confusing
5401                                                  * and not so rare event. We still can lose it now,
5402                                                  * if it spins in bh_lock_sock(), but it is really
5403                                                  * marginal case.
5404                                                  */
5405                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5406                                         } else {
5407                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5408                                                 goto discard;
5409                                         }
5410                                 }
5411                         }
5412                         break;
5413
5414                 case TCP_CLOSING:
5415                         if (tp->snd_una == tp->write_seq) {
5416                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5417                                 goto discard;
5418                         }
5419                         break;
5420
5421                 case TCP_LAST_ACK:
5422                         if (tp->snd_una == tp->write_seq) {
5423                                 tcp_update_metrics(sk);
5424                                 tcp_done(sk);
5425                                 goto discard;
5426                         }
5427                         break;
5428                 }
5429         } else
5430                 goto discard;
5431
5432         /* step 6: check the URG bit */
5433         tcp_urg(sk, skb, th);
5434
5435         /* step 7: process the segment text */
5436         switch (sk->sk_state) {
5437         case TCP_CLOSE_WAIT:
5438         case TCP_CLOSING:
5439         case TCP_LAST_ACK:
5440                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5441                         break;
5442         case TCP_FIN_WAIT1:
5443         case TCP_FIN_WAIT2:
5444                 /* RFC 793 says to queue data in these states,
5445                  * RFC 1122 says we MUST send a reset.
5446                  * BSD 4.4 also does reset.
5447                  */
5448                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5449                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5450                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5451                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5452                                 tcp_reset(sk);
5453                                 return 1;
5454                         }
5455                 }
5456                 /* Fall through */
5457         case TCP_ESTABLISHED:
5458                 tcp_data_queue(sk, skb);
5459                 queued = 1;
5460                 break;
5461         }
5462
5463         /* tcp_data could move socket to TIME-WAIT */
5464         if (sk->sk_state != TCP_CLOSE) {
5465                 tcp_data_snd_check(sk);
5466                 tcp_ack_snd_check(sk);
5467         }
5468
5469         if (!queued) {
5470 discard:
5471                 __kfree_skb(skb);
5472         }
5473         return 0;
5474 }
5475
5476 EXPORT_SYMBOL(sysctl_tcp_ecn);
5477 EXPORT_SYMBOL(sysctl_tcp_reordering);
5478 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5479 EXPORT_SYMBOL(tcp_parse_options);
5480 #ifdef CONFIG_TCP_MD5SIG
5481 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5482 #endif
5483 EXPORT_SYMBOL(tcp_rcv_established);
5484 EXPORT_SYMBOL(tcp_rcv_state_process);
5485 EXPORT_SYMBOL(tcp_initialize_rcv_mss);