]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/ipv4/tcp_input.c
12512336dbd81751798ff0bc5efa31796c2e2df5
[linux-2.6-omap-h63xx.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732                 unsigned long rtt;
733
734                 if (icsk->icsk_backoff || !tp->srtt) {
735                         /* This session failed to estimate rtt. Why?
736                          * Probably, no packets returned in time.
737                          * Reset our results.
738                          */
739                         if (!(dst_metric_locked(dst, RTAX_RTT)))
740                                 dst->metrics[RTAX_RTT - 1] = 0;
741                         return;
742                 }
743
744                 rtt = dst_metric_rtt(dst, RTAX_RTT);
745                 m = rtt - tp->srtt;
746
747                 /* If newly calculated rtt larger than stored one,
748                  * store new one. Otherwise, use EWMA. Remember,
749                  * rtt overestimation is always better than underestimation.
750                  */
751                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752                         if (m <= 0)
753                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754                         else
755                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756                 }
757
758                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759                         unsigned long var;
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
769                         if (m >= var)
770                                 var = m;
771                         else
772                                 var -= (var - m) >> 2;
773
774                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775                 }
776
777                 if (tp->snd_ssthresh >= 0xFFFF) {
778                         /* Slow start still did not finish. */
779                         if (dst_metric(dst, RTAX_SSTHRESH) &&
780                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783                         if (!dst_metric_locked(dst, RTAX_CWND) &&
784                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787                            icsk->icsk_ca_state == TCP_CA_Open) {
788                         /* Cong. avoidance phase, cwnd is reliable. */
789                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790                                 dst->metrics[RTAX_SSTHRESH-1] =
791                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794                 } else {
795                         /* Else slow start did not finish, cwnd is non-sense,
796                            ssthresh may be also invalid.
797                          */
798                         if (!dst_metric_locked(dst, RTAX_CWND))
799                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800                         if (dst_metric(dst, RTAX_SSTHRESH) &&
801                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804                 }
805
806                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808                             tp->reordering != sysctl_tcp_reordering)
809                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810                 }
811         }
812 }
813
814 /* Numbers are taken from RFC3390.
815  *
816  * John Heffner states:
817  *
818  *      The RFC specifies a window of no more than 4380 bytes
819  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
820  *      is a bit misleading because they use a clamp at 4380 bytes
821  *      rather than use a multiplier in the relevant range.
822  */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827         if (!cwnd) {
828                 if (tp->mss_cache > 1460)
829                         cwnd = 2;
830                 else
831                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832         }
833         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839         struct tcp_sock *tp = tcp_sk(sk);
840         const struct inet_connection_sock *icsk = inet_csk(sk);
841
842         tp->prior_ssthresh = 0;
843         tp->bytes_acked = 0;
844         if (icsk->icsk_ca_state < TCP_CA_CWR) {
845                 tp->undo_marker = 0;
846                 if (set_ssthresh)
847                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848                 tp->snd_cwnd = min(tp->snd_cwnd,
849                                    tcp_packets_in_flight(tp) + 1U);
850                 tp->snd_cwnd_cnt = 0;
851                 tp->high_seq = tp->snd_nxt;
852                 tp->snd_cwnd_stamp = tcp_time_stamp;
853                 TCP_ECN_queue_cwr(tp);
854
855                 tcp_set_ca_state(sk, TCP_CA_CWR);
856         }
857 }
858
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865         /* RFC3517 uses different metric in lost marker => reset on change */
866         if (tcp_is_fack(tp))
867                 tp->lost_skb_hint = NULL;
868         tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874         tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         struct dst_entry *dst = __sk_dst_get(sk);
883
884         if (dst == NULL)
885                 goto reset;
886
887         dst_confirm(dst);
888
889         if (dst_metric_locked(dst, RTAX_CWND))
890                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891         if (dst_metric(dst, RTAX_SSTHRESH)) {
892                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
895         }
896         if (dst_metric(dst, RTAX_REORDERING) &&
897             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898                 tcp_disable_fack(tp);
899                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900         }
901
902         if (dst_metric(dst, RTAX_RTT) == 0)
903                 goto reset;
904
905         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906                 goto reset;
907
908         /* Initial rtt is determined from SYN,SYN-ACK.
909          * The segment is small and rtt may appear much
910          * less than real one. Use per-dst memory
911          * to make it more realistic.
912          *
913          * A bit of theory. RTT is time passed after "normal" sized packet
914          * is sent until it is ACKed. In normal circumstances sending small
915          * packets force peer to delay ACKs and calculation is correct too.
916          * The algorithm is adaptive and, provided we follow specs, it
917          * NEVER underestimate RTT. BUT! If peer tries to make some clever
918          * tricks sort of "quick acks" for time long enough to decrease RTT
919          * to low value, and then abruptly stops to do it and starts to delay
920          * ACKs, wait for troubles.
921          */
922         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924                 tp->rtt_seq = tp->snd_nxt;
925         }
926         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929         }
930         tcp_set_rto(sk);
931         tcp_bound_rto(sk);
932         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933                 goto reset;
934         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935         tp->snd_cwnd_stamp = tcp_time_stamp;
936         return;
937
938 reset:
939         /* Play conservative. If timestamps are not
940          * supported, TCP will fail to recalculate correct
941          * rtt, if initial rto is too small. FORGET ALL AND RESET!
942          */
943         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944                 tp->srtt = 0;
945                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947         }
948 }
949
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951                                   const int ts)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         if (metric > tp->reordering) {
955                 int mib_idx;
956
957                 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959                 /* This exciting event is worth to be remembered. 8) */
960                 if (ts)
961                         mib_idx = LINUX_MIB_TCPTSREORDER;
962                 else if (tcp_is_reno(tp))
963                         mib_idx = LINUX_MIB_TCPRENOREORDER;
964                 else if (tcp_is_fack(tp))
965                         mib_idx = LINUX_MIB_TCPFACKREORDER;
966                 else
967                         mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973                        tp->reordering,
974                        tp->fackets_out,
975                        tp->sacked_out,
976                        tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978                 tcp_disable_fack(tp);
979         }
980 }
981
982 /* RFC: This is from the original, I doubt that this is necessary at all:
983  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
984  * retransmitted past LOST markings in the first place? I'm not fully sure
985  * about undo and end of connection cases, which can cause R without L?
986  */
987 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
988 {
989         if ((tp->retransmit_skb_hint != NULL) &&
990             before(TCP_SKB_CB(skb)->seq,
991                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
992                 tp->retransmit_skb_hint = NULL;
993 }
994
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998                 tcp_verify_retransmit_hint(tp, skb);
999
1000                 tp->lost_out += tcp_skb_pcount(skb);
1001                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002         }
1003 }
1004
1005 /* This procedure tags the retransmission queue when SACKs arrive.
1006  *
1007  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1008  * Packets in queue with these bits set are counted in variables
1009  * sacked_out, retrans_out and lost_out, correspondingly.
1010  *
1011  * Valid combinations are:
1012  * Tag  InFlight        Description
1013  * 0    1               - orig segment is in flight.
1014  * S    0               - nothing flies, orig reached receiver.
1015  * L    0               - nothing flies, orig lost by net.
1016  * R    2               - both orig and retransmit are in flight.
1017  * L|R  1               - orig is lost, retransmit is in flight.
1018  * S|R  1               - orig reached receiver, retrans is still in flight.
1019  * (L|S|R is logically valid, it could occur when L|R is sacked,
1020  *  but it is equivalent to plain S and code short-curcuits it to S.
1021  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1022  *
1023  * These 6 states form finite state machine, controlled by the following events:
1024  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1025  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1026  * 3. Loss detection event of one of three flavors:
1027  *      A. Scoreboard estimator decided the packet is lost.
1028  *         A'. Reno "three dupacks" marks head of queue lost.
1029  *         A''. Its FACK modfication, head until snd.fack is lost.
1030  *      B. SACK arrives sacking data transmitted after never retransmitted
1031  *         hole was sent out.
1032  *      C. SACK arrives sacking SND.NXT at the moment, when the
1033  *         segment was retransmitted.
1034  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1035  *
1036  * It is pleasant to note, that state diagram turns out to be commutative,
1037  * so that we are allowed not to be bothered by order of our actions,
1038  * when multiple events arrive simultaneously. (see the function below).
1039  *
1040  * Reordering detection.
1041  * --------------------
1042  * Reordering metric is maximal distance, which a packet can be displaced
1043  * in packet stream. With SACKs we can estimate it:
1044  *
1045  * 1. SACK fills old hole and the corresponding segment was not
1046  *    ever retransmitted -> reordering. Alas, we cannot use it
1047  *    when segment was retransmitted.
1048  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1049  *    for retransmitted and already SACKed segment -> reordering..
1050  * Both of these heuristics are not used in Loss state, when we cannot
1051  * account for retransmits accurately.
1052  *
1053  * SACK block validation.
1054  * ----------------------
1055  *
1056  * SACK block range validation checks that the received SACK block fits to
1057  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1058  * Note that SND.UNA is not included to the range though being valid because
1059  * it means that the receiver is rather inconsistent with itself reporting
1060  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1061  * perfectly valid, however, in light of RFC2018 which explicitly states
1062  * that "SACK block MUST reflect the newest segment.  Even if the newest
1063  * segment is going to be discarded ...", not that it looks very clever
1064  * in case of head skb. Due to potentional receiver driven attacks, we
1065  * choose to avoid immediate execution of a walk in write queue due to
1066  * reneging and defer head skb's loss recovery to standard loss recovery
1067  * procedure that will eventually trigger (nothing forbids us doing this).
1068  *
1069  * Implements also blockage to start_seq wrap-around. Problem lies in the
1070  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1071  * there's no guarantee that it will be before snd_nxt (n). The problem
1072  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1073  * wrap (s_w):
1074  *
1075  *         <- outs wnd ->                          <- wrapzone ->
1076  *         u     e      n                         u_w   e_w  s n_w
1077  *         |     |      |                          |     |   |  |
1078  * |<------------+------+----- TCP seqno space --------------+---------->|
1079  * ...-- <2^31 ->|                                           |<--------...
1080  * ...---- >2^31 ------>|                                    |<--------...
1081  *
1082  * Current code wouldn't be vulnerable but it's better still to discard such
1083  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1084  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1085  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1086  * equal to the ideal case (infinite seqno space without wrap caused issues).
1087  *
1088  * With D-SACK the lower bound is extended to cover sequence space below
1089  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1090  * again, D-SACK block must not to go across snd_una (for the same reason as
1091  * for the normal SACK blocks, explained above). But there all simplicity
1092  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1093  * fully below undo_marker they do not affect behavior in anyway and can
1094  * therefore be safely ignored. In rare cases (which are more or less
1095  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1096  * fragmentation and packet reordering past skb's retransmission. To consider
1097  * them correctly, the acceptable range must be extended even more though
1098  * the exact amount is rather hard to quantify. However, tp->max_window can
1099  * be used as an exaggerated estimate.
1100  */
1101 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1102                                   u32 start_seq, u32 end_seq)
1103 {
1104         /* Too far in future, or reversed (interpretation is ambiguous) */
1105         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1106                 return 0;
1107
1108         /* Nasty start_seq wrap-around check (see comments above) */
1109         if (!before(start_seq, tp->snd_nxt))
1110                 return 0;
1111
1112         /* In outstanding window? ...This is valid exit for D-SACKs too.
1113          * start_seq == snd_una is non-sensical (see comments above)
1114          */
1115         if (after(start_seq, tp->snd_una))
1116                 return 1;
1117
1118         if (!is_dsack || !tp->undo_marker)
1119                 return 0;
1120
1121         /* ...Then it's D-SACK, and must reside below snd_una completely */
1122         if (!after(end_seq, tp->snd_una))
1123                 return 0;
1124
1125         if (!before(start_seq, tp->undo_marker))
1126                 return 1;
1127
1128         /* Too old */
1129         if (!after(end_seq, tp->undo_marker))
1130                 return 0;
1131
1132         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1133          *   start_seq < undo_marker and end_seq >= undo_marker.
1134          */
1135         return !before(start_seq, end_seq - tp->max_window);
1136 }
1137
1138 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1139  * Event "C". Later note: FACK people cheated me again 8), we have to account
1140  * for reordering! Ugly, but should help.
1141  *
1142  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1143  * less than what is now known to be received by the other end (derived from
1144  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1145  * retransmitted skbs to avoid some costly processing per ACKs.
1146  */
1147 static void tcp_mark_lost_retrans(struct sock *sk)
1148 {
1149         const struct inet_connection_sock *icsk = inet_csk(sk);
1150         struct tcp_sock *tp = tcp_sk(sk);
1151         struct sk_buff *skb;
1152         int cnt = 0;
1153         u32 new_low_seq = tp->snd_nxt;
1154         u32 received_upto = tcp_highest_sack_seq(tp);
1155
1156         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1157             !after(received_upto, tp->lost_retrans_low) ||
1158             icsk->icsk_ca_state != TCP_CA_Recovery)
1159                 return;
1160
1161         tcp_for_write_queue(skb, sk) {
1162                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1163
1164                 if (skb == tcp_send_head(sk))
1165                         break;
1166                 if (cnt == tp->retrans_out)
1167                         break;
1168                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1169                         continue;
1170
1171                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1172                         continue;
1173
1174                 if (after(received_upto, ack_seq) &&
1175                     (tcp_is_fack(tp) ||
1176                      !before(received_upto,
1177                              ack_seq + tp->reordering * tp->mss_cache))) {
1178                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1179                         tp->retrans_out -= tcp_skb_pcount(skb);
1180
1181                         /* clear lost hint */
1182                         tp->retransmit_skb_hint = NULL;
1183
1184                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1185                                 tp->lost_out += tcp_skb_pcount(skb);
1186                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1187                         }
1188                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1189                 } else {
1190                         if (before(ack_seq, new_low_seq))
1191                                 new_low_seq = ack_seq;
1192                         cnt += tcp_skb_pcount(skb);
1193                 }
1194         }
1195
1196         if (tp->retrans_out)
1197                 tp->lost_retrans_low = new_low_seq;
1198 }
1199
1200 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1201                            struct tcp_sack_block_wire *sp, int num_sacks,
1202                            u32 prior_snd_una)
1203 {
1204         struct tcp_sock *tp = tcp_sk(sk);
1205         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1206         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1207         int dup_sack = 0;
1208
1209         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1210                 dup_sack = 1;
1211                 tcp_dsack_seen(tp);
1212                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1213         } else if (num_sacks > 1) {
1214                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1215                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1216
1217                 if (!after(end_seq_0, end_seq_1) &&
1218                     !before(start_seq_0, start_seq_1)) {
1219                         dup_sack = 1;
1220                         tcp_dsack_seen(tp);
1221                         NET_INC_STATS_BH(sock_net(sk),
1222                                         LINUX_MIB_TCPDSACKOFORECV);
1223                 }
1224         }
1225
1226         /* D-SACK for already forgotten data... Do dumb counting. */
1227         if (dup_sack &&
1228             !after(end_seq_0, prior_snd_una) &&
1229             after(end_seq_0, tp->undo_marker))
1230                 tp->undo_retrans--;
1231
1232         return dup_sack;
1233 }
1234
1235 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1236  * the incoming SACK may not exactly match but we can find smaller MSS
1237  * aligned portion of it that matches. Therefore we might need to fragment
1238  * which may fail and creates some hassle (caller must handle error case
1239  * returns).
1240  */
1241 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1242                                  u32 start_seq, u32 end_seq)
1243 {
1244         int in_sack, err;
1245         unsigned int pkt_len;
1246
1247         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1248                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1249
1250         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1251             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1252
1253                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1254
1255                 if (!in_sack)
1256                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1257                 else
1258                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1259                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1260                 if (err < 0)
1261                         return err;
1262         }
1263
1264         return in_sack;
1265 }
1266
1267 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1268                            int *reord, int dup_sack, int fack_count)
1269 {
1270         struct tcp_sock *tp = tcp_sk(sk);
1271         u8 sacked = TCP_SKB_CB(skb)->sacked;
1272         int flag = 0;
1273
1274         /* Account D-SACK for retransmitted packet. */
1275         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1276                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1277                         tp->undo_retrans--;
1278                 if (sacked & TCPCB_SACKED_ACKED)
1279                         *reord = min(fack_count, *reord);
1280         }
1281
1282         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1283         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1284                 return flag;
1285
1286         if (!(sacked & TCPCB_SACKED_ACKED)) {
1287                 if (sacked & TCPCB_SACKED_RETRANS) {
1288                         /* If the segment is not tagged as lost,
1289                          * we do not clear RETRANS, believing
1290                          * that retransmission is still in flight.
1291                          */
1292                         if (sacked & TCPCB_LOST) {
1293                                 TCP_SKB_CB(skb)->sacked &=
1294                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1295                                 tp->lost_out -= tcp_skb_pcount(skb);
1296                                 tp->retrans_out -= tcp_skb_pcount(skb);
1297
1298                                 /* clear lost hint */
1299                                 tp->retransmit_skb_hint = NULL;
1300                         }
1301                 } else {
1302                         if (!(sacked & TCPCB_RETRANS)) {
1303                                 /* New sack for not retransmitted frame,
1304                                  * which was in hole. It is reordering.
1305                                  */
1306                                 if (before(TCP_SKB_CB(skb)->seq,
1307                                            tcp_highest_sack_seq(tp)))
1308                                         *reord = min(fack_count, *reord);
1309
1310                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1311                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1312                                         flag |= FLAG_ONLY_ORIG_SACKED;
1313                         }
1314
1315                         if (sacked & TCPCB_LOST) {
1316                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1317                                 tp->lost_out -= tcp_skb_pcount(skb);
1318
1319                                 /* clear lost hint */
1320                                 tp->retransmit_skb_hint = NULL;
1321                         }
1322                 }
1323
1324                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1325                 flag |= FLAG_DATA_SACKED;
1326                 tp->sacked_out += tcp_skb_pcount(skb);
1327
1328                 fack_count += tcp_skb_pcount(skb);
1329
1330                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1331                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1332                     before(TCP_SKB_CB(skb)->seq,
1333                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1334                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1335
1336                 if (fack_count > tp->fackets_out)
1337                         tp->fackets_out = fack_count;
1338
1339                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1340                         tcp_advance_highest_sack(sk, skb);
1341         }
1342
1343         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1344          * frames and clear it. undo_retrans is decreased above, L|R frames
1345          * are accounted above as well.
1346          */
1347         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1348                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1349                 tp->retrans_out -= tcp_skb_pcount(skb);
1350                 tp->retransmit_skb_hint = NULL;
1351         }
1352
1353         return flag;
1354 }
1355
1356 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1357                                         struct tcp_sack_block *next_dup,
1358                                         u32 start_seq, u32 end_seq,
1359                                         int dup_sack_in, int *fack_count,
1360                                         int *reord, int *flag)
1361 {
1362         tcp_for_write_queue_from(skb, sk) {
1363                 int in_sack = 0;
1364                 int dup_sack = dup_sack_in;
1365
1366                 if (skb == tcp_send_head(sk))
1367                         break;
1368
1369                 /* queue is in-order => we can short-circuit the walk early */
1370                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1371                         break;
1372
1373                 if ((next_dup != NULL) &&
1374                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1375                         in_sack = tcp_match_skb_to_sack(sk, skb,
1376                                                         next_dup->start_seq,
1377                                                         next_dup->end_seq);
1378                         if (in_sack > 0)
1379                                 dup_sack = 1;
1380                 }
1381
1382                 if (in_sack <= 0)
1383                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1384                                                         end_seq);
1385                 if (unlikely(in_sack < 0))
1386                         break;
1387
1388                 if (in_sack)
1389                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1390                                                  *fack_count);
1391
1392                 *fack_count += tcp_skb_pcount(skb);
1393         }
1394         return skb;
1395 }
1396
1397 /* Avoid all extra work that is being done by sacktag while walking in
1398  * a normal way
1399  */
1400 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1401                                         u32 skip_to_seq, int *fack_count)
1402 {
1403         tcp_for_write_queue_from(skb, sk) {
1404                 if (skb == tcp_send_head(sk))
1405                         break;
1406
1407                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1408                         break;
1409
1410                 *fack_count += tcp_skb_pcount(skb);
1411         }
1412         return skb;
1413 }
1414
1415 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1416                                                 struct sock *sk,
1417                                                 struct tcp_sack_block *next_dup,
1418                                                 u32 skip_to_seq,
1419                                                 int *fack_count, int *reord,
1420                                                 int *flag)
1421 {
1422         if (next_dup == NULL)
1423                 return skb;
1424
1425         if (before(next_dup->start_seq, skip_to_seq)) {
1426                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1427                 skb = tcp_sacktag_walk(skb, sk, NULL,
1428                                      next_dup->start_seq, next_dup->end_seq,
1429                                      1, fack_count, reord, flag);
1430         }
1431
1432         return skb;
1433 }
1434
1435 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1436 {
1437         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1438 }
1439
1440 static int
1441 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1442                         u32 prior_snd_una)
1443 {
1444         const struct inet_connection_sock *icsk = inet_csk(sk);
1445         struct tcp_sock *tp = tcp_sk(sk);
1446         unsigned char *ptr = (skb_transport_header(ack_skb) +
1447                               TCP_SKB_CB(ack_skb)->sacked);
1448         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1449         struct tcp_sack_block sp[TCP_NUM_SACKS];
1450         struct tcp_sack_block *cache;
1451         struct sk_buff *skb;
1452         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1453         int used_sacks;
1454         int reord = tp->packets_out;
1455         int flag = 0;
1456         int found_dup_sack = 0;
1457         int fack_count;
1458         int i, j;
1459         int first_sack_index;
1460
1461         if (!tp->sacked_out) {
1462                 if (WARN_ON(tp->fackets_out))
1463                         tp->fackets_out = 0;
1464                 tcp_highest_sack_reset(sk);
1465         }
1466
1467         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1468                                          num_sacks, prior_snd_una);
1469         if (found_dup_sack)
1470                 flag |= FLAG_DSACKING_ACK;
1471
1472         /* Eliminate too old ACKs, but take into
1473          * account more or less fresh ones, they can
1474          * contain valid SACK info.
1475          */
1476         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1477                 return 0;
1478
1479         if (!tp->packets_out)
1480                 goto out;
1481
1482         used_sacks = 0;
1483         first_sack_index = 0;
1484         for (i = 0; i < num_sacks; i++) {
1485                 int dup_sack = !i && found_dup_sack;
1486
1487                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1488                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1489
1490                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1491                                             sp[used_sacks].start_seq,
1492                                             sp[used_sacks].end_seq)) {
1493                         int mib_idx;
1494
1495                         if (dup_sack) {
1496                                 if (!tp->undo_marker)
1497                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1498                                 else
1499                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1500                         } else {
1501                                 /* Don't count olds caused by ACK reordering */
1502                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1503                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1504                                         continue;
1505                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1506                         }
1507
1508                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1509                         if (i == 0)
1510                                 first_sack_index = -1;
1511                         continue;
1512                 }
1513
1514                 /* Ignore very old stuff early */
1515                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1516                         continue;
1517
1518                 used_sacks++;
1519         }
1520
1521         /* order SACK blocks to allow in order walk of the retrans queue */
1522         for (i = used_sacks - 1; i > 0; i--) {
1523                 for (j = 0; j < i; j++) {
1524                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1525                                 struct tcp_sack_block tmp;
1526
1527                                 tmp = sp[j];
1528                                 sp[j] = sp[j + 1];
1529                                 sp[j + 1] = tmp;
1530
1531                                 /* Track where the first SACK block goes to */
1532                                 if (j == first_sack_index)
1533                                         first_sack_index = j + 1;
1534                         }
1535                 }
1536         }
1537
1538         skb = tcp_write_queue_head(sk);
1539         fack_count = 0;
1540         i = 0;
1541
1542         if (!tp->sacked_out) {
1543                 /* It's already past, so skip checking against it */
1544                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1545         } else {
1546                 cache = tp->recv_sack_cache;
1547                 /* Skip empty blocks in at head of the cache */
1548                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1549                        !cache->end_seq)
1550                         cache++;
1551         }
1552
1553         while (i < used_sacks) {
1554                 u32 start_seq = sp[i].start_seq;
1555                 u32 end_seq = sp[i].end_seq;
1556                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1557                 struct tcp_sack_block *next_dup = NULL;
1558
1559                 if (found_dup_sack && ((i + 1) == first_sack_index))
1560                         next_dup = &sp[i + 1];
1561
1562                 /* Event "B" in the comment above. */
1563                 if (after(end_seq, tp->high_seq))
1564                         flag |= FLAG_DATA_LOST;
1565
1566                 /* Skip too early cached blocks */
1567                 while (tcp_sack_cache_ok(tp, cache) &&
1568                        !before(start_seq, cache->end_seq))
1569                         cache++;
1570
1571                 /* Can skip some work by looking recv_sack_cache? */
1572                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1573                     after(end_seq, cache->start_seq)) {
1574
1575                         /* Head todo? */
1576                         if (before(start_seq, cache->start_seq)) {
1577                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1578                                                        &fack_count);
1579                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1580                                                        start_seq,
1581                                                        cache->start_seq,
1582                                                        dup_sack, &fack_count,
1583                                                        &reord, &flag);
1584                         }
1585
1586                         /* Rest of the block already fully processed? */
1587                         if (!after(end_seq, cache->end_seq))
1588                                 goto advance_sp;
1589
1590                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1591                                                        cache->end_seq,
1592                                                        &fack_count, &reord,
1593                                                        &flag);
1594
1595                         /* ...tail remains todo... */
1596                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1597                                 /* ...but better entrypoint exists! */
1598                                 skb = tcp_highest_sack(sk);
1599                                 if (skb == NULL)
1600                                         break;
1601                                 fack_count = tp->fackets_out;
1602                                 cache++;
1603                                 goto walk;
1604                         }
1605
1606                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1607                                                &fack_count);
1608                         /* Check overlap against next cached too (past this one already) */
1609                         cache++;
1610                         continue;
1611                 }
1612
1613                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1614                         skb = tcp_highest_sack(sk);
1615                         if (skb == NULL)
1616                                 break;
1617                         fack_count = tp->fackets_out;
1618                 }
1619                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1620
1621 walk:
1622                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1623                                        dup_sack, &fack_count, &reord, &flag);
1624
1625 advance_sp:
1626                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1627                  * due to in-order walk
1628                  */
1629                 if (after(end_seq, tp->frto_highmark))
1630                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1631
1632                 i++;
1633         }
1634
1635         /* Clear the head of the cache sack blocks so we can skip it next time */
1636         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1637                 tp->recv_sack_cache[i].start_seq = 0;
1638                 tp->recv_sack_cache[i].end_seq = 0;
1639         }
1640         for (j = 0; j < used_sacks; j++)
1641                 tp->recv_sack_cache[i++] = sp[j];
1642
1643         tcp_mark_lost_retrans(sk);
1644
1645         tcp_verify_left_out(tp);
1646
1647         if ((reord < tp->fackets_out) &&
1648             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1649             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1650                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1651
1652 out:
1653
1654 #if FASTRETRANS_DEBUG > 0
1655         WARN_ON((int)tp->sacked_out < 0);
1656         WARN_ON((int)tp->lost_out < 0);
1657         WARN_ON((int)tp->retrans_out < 0);
1658         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1659 #endif
1660         return flag;
1661 }
1662
1663 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1664  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1665  */
1666 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1667 {
1668         u32 holes;
1669
1670         holes = max(tp->lost_out, 1U);
1671         holes = min(holes, tp->packets_out);
1672
1673         if ((tp->sacked_out + holes) > tp->packets_out) {
1674                 tp->sacked_out = tp->packets_out - holes;
1675                 return 1;
1676         }
1677         return 0;
1678 }
1679
1680 /* If we receive more dupacks than we expected counting segments
1681  * in assumption of absent reordering, interpret this as reordering.
1682  * The only another reason could be bug in receiver TCP.
1683  */
1684 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1685 {
1686         struct tcp_sock *tp = tcp_sk(sk);
1687         if (tcp_limit_reno_sacked(tp))
1688                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1689 }
1690
1691 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1692
1693 static void tcp_add_reno_sack(struct sock *sk)
1694 {
1695         struct tcp_sock *tp = tcp_sk(sk);
1696         tp->sacked_out++;
1697         tcp_check_reno_reordering(sk, 0);
1698         tcp_verify_left_out(tp);
1699 }
1700
1701 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1702
1703 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1704 {
1705         struct tcp_sock *tp = tcp_sk(sk);
1706
1707         if (acked > 0) {
1708                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1709                 if (acked - 1 >= tp->sacked_out)
1710                         tp->sacked_out = 0;
1711                 else
1712                         tp->sacked_out -= acked - 1;
1713         }
1714         tcp_check_reno_reordering(sk, acked);
1715         tcp_verify_left_out(tp);
1716 }
1717
1718 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1719 {
1720         tp->sacked_out = 0;
1721 }
1722
1723 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1724 {
1725         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1726 }
1727
1728 /* F-RTO can only be used if TCP has never retransmitted anything other than
1729  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1730  */
1731 int tcp_use_frto(struct sock *sk)
1732 {
1733         const struct tcp_sock *tp = tcp_sk(sk);
1734         const struct inet_connection_sock *icsk = inet_csk(sk);
1735         struct sk_buff *skb;
1736
1737         if (!sysctl_tcp_frto)
1738                 return 0;
1739
1740         /* MTU probe and F-RTO won't really play nicely along currently */
1741         if (icsk->icsk_mtup.probe_size)
1742                 return 0;
1743
1744         if (tcp_is_sackfrto(tp))
1745                 return 1;
1746
1747         /* Avoid expensive walking of rexmit queue if possible */
1748         if (tp->retrans_out > 1)
1749                 return 0;
1750
1751         skb = tcp_write_queue_head(sk);
1752         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1753         tcp_for_write_queue_from(skb, sk) {
1754                 if (skb == tcp_send_head(sk))
1755                         break;
1756                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1757                         return 0;
1758                 /* Short-circuit when first non-SACKed skb has been checked */
1759                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1760                         break;
1761         }
1762         return 1;
1763 }
1764
1765 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1766  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1767  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1768  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1769  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1770  * bits are handled if the Loss state is really to be entered (in
1771  * tcp_enter_frto_loss).
1772  *
1773  * Do like tcp_enter_loss() would; when RTO expires the second time it
1774  * does:
1775  *  "Reduce ssthresh if it has not yet been made inside this window."
1776  */
1777 void tcp_enter_frto(struct sock *sk)
1778 {
1779         const struct inet_connection_sock *icsk = inet_csk(sk);
1780         struct tcp_sock *tp = tcp_sk(sk);
1781         struct sk_buff *skb;
1782
1783         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1784             tp->snd_una == tp->high_seq ||
1785             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1786              !icsk->icsk_retransmits)) {
1787                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1788                 /* Our state is too optimistic in ssthresh() call because cwnd
1789                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1790                  * recovery has not yet completed. Pattern would be this: RTO,
1791                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1792                  * up here twice).
1793                  * RFC4138 should be more specific on what to do, even though
1794                  * RTO is quite unlikely to occur after the first Cumulative ACK
1795                  * due to back-off and complexity of triggering events ...
1796                  */
1797                 if (tp->frto_counter) {
1798                         u32 stored_cwnd;
1799                         stored_cwnd = tp->snd_cwnd;
1800                         tp->snd_cwnd = 2;
1801                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1802                         tp->snd_cwnd = stored_cwnd;
1803                 } else {
1804                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1805                 }
1806                 /* ... in theory, cong.control module could do "any tricks" in
1807                  * ssthresh(), which means that ca_state, lost bits and lost_out
1808                  * counter would have to be faked before the call occurs. We
1809                  * consider that too expensive, unlikely and hacky, so modules
1810                  * using these in ssthresh() must deal these incompatibility
1811                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1812                  */
1813                 tcp_ca_event(sk, CA_EVENT_FRTO);
1814         }
1815
1816         tp->undo_marker = tp->snd_una;
1817         tp->undo_retrans = 0;
1818
1819         skb = tcp_write_queue_head(sk);
1820         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1821                 tp->undo_marker = 0;
1822         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1823                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1824                 tp->retrans_out -= tcp_skb_pcount(skb);
1825         }
1826         tcp_verify_left_out(tp);
1827
1828         /* Too bad if TCP was application limited */
1829         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1830
1831         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1832          * The last condition is necessary at least in tp->frto_counter case.
1833          */
1834         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1835             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1836             after(tp->high_seq, tp->snd_una)) {
1837                 tp->frto_highmark = tp->high_seq;
1838         } else {
1839                 tp->frto_highmark = tp->snd_nxt;
1840         }
1841         tcp_set_ca_state(sk, TCP_CA_Disorder);
1842         tp->high_seq = tp->snd_nxt;
1843         tp->frto_counter = 1;
1844 }
1845
1846 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1847  * which indicates that we should follow the traditional RTO recovery,
1848  * i.e. mark everything lost and do go-back-N retransmission.
1849  */
1850 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1851 {
1852         struct tcp_sock *tp = tcp_sk(sk);
1853         struct sk_buff *skb;
1854
1855         tp->lost_out = 0;
1856         tp->retrans_out = 0;
1857         if (tcp_is_reno(tp))
1858                 tcp_reset_reno_sack(tp);
1859
1860         tcp_for_write_queue(skb, sk) {
1861                 if (skb == tcp_send_head(sk))
1862                         break;
1863
1864                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1865                 /*
1866                  * Count the retransmission made on RTO correctly (only when
1867                  * waiting for the first ACK and did not get it)...
1868                  */
1869                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1870                         /* For some reason this R-bit might get cleared? */
1871                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1872                                 tp->retrans_out += tcp_skb_pcount(skb);
1873                         /* ...enter this if branch just for the first segment */
1874                         flag |= FLAG_DATA_ACKED;
1875                 } else {
1876                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1877                                 tp->undo_marker = 0;
1878                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1879                 }
1880
1881                 /* Marking forward transmissions that were made after RTO lost
1882                  * can cause unnecessary retransmissions in some scenarios,
1883                  * SACK blocks will mitigate that in some but not in all cases.
1884                  * We used to not mark them but it was causing break-ups with
1885                  * receivers that do only in-order receival.
1886                  *
1887                  * TODO: we could detect presence of such receiver and select
1888                  * different behavior per flow.
1889                  */
1890                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1891                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1892                         tp->lost_out += tcp_skb_pcount(skb);
1893                 }
1894         }
1895         tcp_verify_left_out(tp);
1896
1897         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1898         tp->snd_cwnd_cnt = 0;
1899         tp->snd_cwnd_stamp = tcp_time_stamp;
1900         tp->frto_counter = 0;
1901         tp->bytes_acked = 0;
1902
1903         tp->reordering = min_t(unsigned int, tp->reordering,
1904                                sysctl_tcp_reordering);
1905         tcp_set_ca_state(sk, TCP_CA_Loss);
1906         tp->high_seq = tp->snd_nxt;
1907         TCP_ECN_queue_cwr(tp);
1908
1909         tcp_clear_all_retrans_hints(tp);
1910 }
1911
1912 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1913 {
1914         tp->retrans_out = 0;
1915         tp->lost_out = 0;
1916
1917         tp->undo_marker = 0;
1918         tp->undo_retrans = 0;
1919 }
1920
1921 void tcp_clear_retrans(struct tcp_sock *tp)
1922 {
1923         tcp_clear_retrans_partial(tp);
1924
1925         tp->fackets_out = 0;
1926         tp->sacked_out = 0;
1927 }
1928
1929 /* Enter Loss state. If "how" is not zero, forget all SACK information
1930  * and reset tags completely, otherwise preserve SACKs. If receiver
1931  * dropped its ofo queue, we will know this due to reneging detection.
1932  */
1933 void tcp_enter_loss(struct sock *sk, int how)
1934 {
1935         const struct inet_connection_sock *icsk = inet_csk(sk);
1936         struct tcp_sock *tp = tcp_sk(sk);
1937         struct sk_buff *skb;
1938
1939         /* Reduce ssthresh if it has not yet been made inside this window. */
1940         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1941             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1942                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1943                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1944                 tcp_ca_event(sk, CA_EVENT_LOSS);
1945         }
1946         tp->snd_cwnd       = 1;
1947         tp->snd_cwnd_cnt   = 0;
1948         tp->snd_cwnd_stamp = tcp_time_stamp;
1949
1950         tp->bytes_acked = 0;
1951         tcp_clear_retrans_partial(tp);
1952
1953         if (tcp_is_reno(tp))
1954                 tcp_reset_reno_sack(tp);
1955
1956         if (!how) {
1957                 /* Push undo marker, if it was plain RTO and nothing
1958                  * was retransmitted. */
1959                 tp->undo_marker = tp->snd_una;
1960         } else {
1961                 tp->sacked_out = 0;
1962                 tp->fackets_out = 0;
1963         }
1964         tcp_clear_all_retrans_hints(tp);
1965
1966         tcp_for_write_queue(skb, sk) {
1967                 if (skb == tcp_send_head(sk))
1968                         break;
1969
1970                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1971                         tp->undo_marker = 0;
1972                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1973                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1974                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1975                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1976                         tp->lost_out += tcp_skb_pcount(skb);
1977                 }
1978         }
1979         tcp_verify_left_out(tp);
1980
1981         tp->reordering = min_t(unsigned int, tp->reordering,
1982                                sysctl_tcp_reordering);
1983         tcp_set_ca_state(sk, TCP_CA_Loss);
1984         tp->high_seq = tp->snd_nxt;
1985         TCP_ECN_queue_cwr(tp);
1986         /* Abort F-RTO algorithm if one is in progress */
1987         tp->frto_counter = 0;
1988 }
1989
1990 /* If ACK arrived pointing to a remembered SACK, it means that our
1991  * remembered SACKs do not reflect real state of receiver i.e.
1992  * receiver _host_ is heavily congested (or buggy).
1993  *
1994  * Do processing similar to RTO timeout.
1995  */
1996 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1997 {
1998         if (flag & FLAG_SACK_RENEGING) {
1999                 struct inet_connection_sock *icsk = inet_csk(sk);
2000                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2001
2002                 tcp_enter_loss(sk, 1);
2003                 icsk->icsk_retransmits++;
2004                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2005                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2006                                           icsk->icsk_rto, TCP_RTO_MAX);
2007                 return 1;
2008         }
2009         return 0;
2010 }
2011
2012 static inline int tcp_fackets_out(struct tcp_sock *tp)
2013 {
2014         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2015 }
2016
2017 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2018  * counter when SACK is enabled (without SACK, sacked_out is used for
2019  * that purpose).
2020  *
2021  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2022  * segments up to the highest received SACK block so far and holes in
2023  * between them.
2024  *
2025  * With reordering, holes may still be in flight, so RFC3517 recovery
2026  * uses pure sacked_out (total number of SACKed segments) even though
2027  * it violates the RFC that uses duplicate ACKs, often these are equal
2028  * but when e.g. out-of-window ACKs or packet duplication occurs,
2029  * they differ. Since neither occurs due to loss, TCP should really
2030  * ignore them.
2031  */
2032 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2033 {
2034         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2035 }
2036
2037 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2038 {
2039         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2040 }
2041
2042 static inline int tcp_head_timedout(struct sock *sk)
2043 {
2044         struct tcp_sock *tp = tcp_sk(sk);
2045
2046         return tp->packets_out &&
2047                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2048 }
2049
2050 /* Linux NewReno/SACK/FACK/ECN state machine.
2051  * --------------------------------------
2052  *
2053  * "Open"       Normal state, no dubious events, fast path.
2054  * "Disorder"   In all the respects it is "Open",
2055  *              but requires a bit more attention. It is entered when
2056  *              we see some SACKs or dupacks. It is split of "Open"
2057  *              mainly to move some processing from fast path to slow one.
2058  * "CWR"        CWND was reduced due to some Congestion Notification event.
2059  *              It can be ECN, ICMP source quench, local device congestion.
2060  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2061  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2062  *
2063  * tcp_fastretrans_alert() is entered:
2064  * - each incoming ACK, if state is not "Open"
2065  * - when arrived ACK is unusual, namely:
2066  *      * SACK
2067  *      * Duplicate ACK.
2068  *      * ECN ECE.
2069  *
2070  * Counting packets in flight is pretty simple.
2071  *
2072  *      in_flight = packets_out - left_out + retrans_out
2073  *
2074  *      packets_out is SND.NXT-SND.UNA counted in packets.
2075  *
2076  *      retrans_out is number of retransmitted segments.
2077  *
2078  *      left_out is number of segments left network, but not ACKed yet.
2079  *
2080  *              left_out = sacked_out + lost_out
2081  *
2082  *     sacked_out: Packets, which arrived to receiver out of order
2083  *                 and hence not ACKed. With SACKs this number is simply
2084  *                 amount of SACKed data. Even without SACKs
2085  *                 it is easy to give pretty reliable estimate of this number,
2086  *                 counting duplicate ACKs.
2087  *
2088  *       lost_out: Packets lost by network. TCP has no explicit
2089  *                 "loss notification" feedback from network (for now).
2090  *                 It means that this number can be only _guessed_.
2091  *                 Actually, it is the heuristics to predict lossage that
2092  *                 distinguishes different algorithms.
2093  *
2094  *      F.e. after RTO, when all the queue is considered as lost,
2095  *      lost_out = packets_out and in_flight = retrans_out.
2096  *
2097  *              Essentially, we have now two algorithms counting
2098  *              lost packets.
2099  *
2100  *              FACK: It is the simplest heuristics. As soon as we decided
2101  *              that something is lost, we decide that _all_ not SACKed
2102  *              packets until the most forward SACK are lost. I.e.
2103  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2104  *              It is absolutely correct estimate, if network does not reorder
2105  *              packets. And it loses any connection to reality when reordering
2106  *              takes place. We use FACK by default until reordering
2107  *              is suspected on the path to this destination.
2108  *
2109  *              NewReno: when Recovery is entered, we assume that one segment
2110  *              is lost (classic Reno). While we are in Recovery and
2111  *              a partial ACK arrives, we assume that one more packet
2112  *              is lost (NewReno). This heuristics are the same in NewReno
2113  *              and SACK.
2114  *
2115  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2116  *  deflation etc. CWND is real congestion window, never inflated, changes
2117  *  only according to classic VJ rules.
2118  *
2119  * Really tricky (and requiring careful tuning) part of algorithm
2120  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2121  * The first determines the moment _when_ we should reduce CWND and,
2122  * hence, slow down forward transmission. In fact, it determines the moment
2123  * when we decide that hole is caused by loss, rather than by a reorder.
2124  *
2125  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2126  * holes, caused by lost packets.
2127  *
2128  * And the most logically complicated part of algorithm is undo
2129  * heuristics. We detect false retransmits due to both too early
2130  * fast retransmit (reordering) and underestimated RTO, analyzing
2131  * timestamps and D-SACKs. When we detect that some segments were
2132  * retransmitted by mistake and CWND reduction was wrong, we undo
2133  * window reduction and abort recovery phase. This logic is hidden
2134  * inside several functions named tcp_try_undo_<something>.
2135  */
2136
2137 /* This function decides, when we should leave Disordered state
2138  * and enter Recovery phase, reducing congestion window.
2139  *
2140  * Main question: may we further continue forward transmission
2141  * with the same cwnd?
2142  */
2143 static int tcp_time_to_recover(struct sock *sk)
2144 {
2145         struct tcp_sock *tp = tcp_sk(sk);
2146         __u32 packets_out;
2147
2148         /* Do not perform any recovery during F-RTO algorithm */
2149         if (tp->frto_counter)
2150                 return 0;
2151
2152         /* Trick#1: The loss is proven. */
2153         if (tp->lost_out)
2154                 return 1;
2155
2156         /* Not-A-Trick#2 : Classic rule... */
2157         if (tcp_dupack_heurestics(tp) > tp->reordering)
2158                 return 1;
2159
2160         /* Trick#3 : when we use RFC2988 timer restart, fast
2161          * retransmit can be triggered by timeout of queue head.
2162          */
2163         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2164                 return 1;
2165
2166         /* Trick#4: It is still not OK... But will it be useful to delay
2167          * recovery more?
2168          */
2169         packets_out = tp->packets_out;
2170         if (packets_out <= tp->reordering &&
2171             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2172             !tcp_may_send_now(sk)) {
2173                 /* We have nothing to send. This connection is limited
2174                  * either by receiver window or by application.
2175                  */
2176                 return 1;
2177         }
2178
2179         return 0;
2180 }
2181
2182 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2183  * is against sacked "cnt", otherwise it's against facked "cnt"
2184  */
2185 static void tcp_mark_head_lost(struct sock *sk, int packets)
2186 {
2187         struct tcp_sock *tp = tcp_sk(sk);
2188         struct sk_buff *skb;
2189         int cnt, oldcnt;
2190         int err;
2191         unsigned int mss;
2192
2193         WARN_ON(packets > tp->packets_out);
2194         if (tp->lost_skb_hint) {
2195                 skb = tp->lost_skb_hint;
2196                 cnt = tp->lost_cnt_hint;
2197         } else {
2198                 skb = tcp_write_queue_head(sk);
2199                 cnt = 0;
2200         }
2201
2202         tcp_for_write_queue_from(skb, sk) {
2203                 if (skb == tcp_send_head(sk))
2204                         break;
2205                 /* TODO: do this better */
2206                 /* this is not the most efficient way to do this... */
2207                 tp->lost_skb_hint = skb;
2208                 tp->lost_cnt_hint = cnt;
2209
2210                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2211                         break;
2212
2213                 oldcnt = cnt;
2214                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2215                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2216                         cnt += tcp_skb_pcount(skb);
2217
2218                 if (cnt > packets) {
2219                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2220                                 break;
2221
2222                         mss = skb_shinfo(skb)->gso_size;
2223                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2224                         if (err < 0)
2225                                 break;
2226                         cnt = packets;
2227                 }
2228
2229                 tcp_skb_mark_lost(tp, skb);
2230         }
2231         tcp_verify_left_out(tp);
2232 }
2233
2234 /* Account newly detected lost packet(s) */
2235
2236 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2237 {
2238         struct tcp_sock *tp = tcp_sk(sk);
2239
2240         if (tcp_is_reno(tp)) {
2241                 tcp_mark_head_lost(sk, 1);
2242         } else if (tcp_is_fack(tp)) {
2243                 int lost = tp->fackets_out - tp->reordering;
2244                 if (lost <= 0)
2245                         lost = 1;
2246                 tcp_mark_head_lost(sk, lost);
2247         } else {
2248                 int sacked_upto = tp->sacked_out - tp->reordering;
2249                 if (sacked_upto < fast_rexmit)
2250                         sacked_upto = fast_rexmit;
2251                 tcp_mark_head_lost(sk, sacked_upto);
2252         }
2253
2254         /* New heuristics: it is possible only after we switched
2255          * to restart timer each time when something is ACKed.
2256          * Hence, we can detect timed out packets during fast
2257          * retransmit without falling to slow start.
2258          */
2259         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2260                 struct sk_buff *skb;
2261
2262                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2263                         : tcp_write_queue_head(sk);
2264
2265                 tcp_for_write_queue_from(skb, sk) {
2266                         if (skb == tcp_send_head(sk))
2267                                 break;
2268                         if (!tcp_skb_timedout(sk, skb))
2269                                 break;
2270
2271                         tcp_skb_mark_lost(tp, skb);
2272                 }
2273
2274                 tp->scoreboard_skb_hint = skb;
2275
2276                 tcp_verify_left_out(tp);
2277         }
2278 }
2279
2280 /* CWND moderation, preventing bursts due to too big ACKs
2281  * in dubious situations.
2282  */
2283 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2284 {
2285         tp->snd_cwnd = min(tp->snd_cwnd,
2286                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2287         tp->snd_cwnd_stamp = tcp_time_stamp;
2288 }
2289
2290 /* Lower bound on congestion window is slow start threshold
2291  * unless congestion avoidance choice decides to overide it.
2292  */
2293 static inline u32 tcp_cwnd_min(const struct sock *sk)
2294 {
2295         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2296
2297         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2298 }
2299
2300 /* Decrease cwnd each second ack. */
2301 static void tcp_cwnd_down(struct sock *sk, int flag)
2302 {
2303         struct tcp_sock *tp = tcp_sk(sk);
2304         int decr = tp->snd_cwnd_cnt + 1;
2305
2306         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2307             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2308                 tp->snd_cwnd_cnt = decr & 1;
2309                 decr >>= 1;
2310
2311                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2312                         tp->snd_cwnd -= decr;
2313
2314                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2315                 tp->snd_cwnd_stamp = tcp_time_stamp;
2316         }
2317 }
2318
2319 /* Nothing was retransmitted or returned timestamp is less
2320  * than timestamp of the first retransmission.
2321  */
2322 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2323 {
2324         return !tp->retrans_stamp ||
2325                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2326                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2327 }
2328
2329 /* Undo procedures. */
2330
2331 #if FASTRETRANS_DEBUG > 1
2332 static void DBGUNDO(struct sock *sk, const char *msg)
2333 {
2334         struct tcp_sock *tp = tcp_sk(sk);
2335         struct inet_sock *inet = inet_sk(sk);
2336
2337         if (sk->sk_family == AF_INET) {
2338                 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2339                        msg,
2340                        NIPQUAD(inet->daddr), ntohs(inet->dport),
2341                        tp->snd_cwnd, tcp_left_out(tp),
2342                        tp->snd_ssthresh, tp->prior_ssthresh,
2343                        tp->packets_out);
2344         }
2345 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2346         else if (sk->sk_family == AF_INET6) {
2347                 struct ipv6_pinfo *np = inet6_sk(sk);
2348                 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2349                        msg,
2350                        NIP6(np->daddr), ntohs(inet->dport),
2351                        tp->snd_cwnd, tcp_left_out(tp),
2352                        tp->snd_ssthresh, tp->prior_ssthresh,
2353                        tp->packets_out);
2354         }
2355 #endif
2356 }
2357 #else
2358 #define DBGUNDO(x...) do { } while (0)
2359 #endif
2360
2361 static void tcp_undo_cwr(struct sock *sk, const int undo)
2362 {
2363         struct tcp_sock *tp = tcp_sk(sk);
2364
2365         if (tp->prior_ssthresh) {
2366                 const struct inet_connection_sock *icsk = inet_csk(sk);
2367
2368                 if (icsk->icsk_ca_ops->undo_cwnd)
2369                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2370                 else
2371                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2372
2373                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2374                         tp->snd_ssthresh = tp->prior_ssthresh;
2375                         TCP_ECN_withdraw_cwr(tp);
2376                 }
2377         } else {
2378                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2379         }
2380         tcp_moderate_cwnd(tp);
2381         tp->snd_cwnd_stamp = tcp_time_stamp;
2382
2383         /* There is something screwy going on with the retrans hints after
2384            an undo */
2385         tcp_clear_all_retrans_hints(tp);
2386 }
2387
2388 static inline int tcp_may_undo(struct tcp_sock *tp)
2389 {
2390         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2391 }
2392
2393 /* People celebrate: "We love our President!" */
2394 static int tcp_try_undo_recovery(struct sock *sk)
2395 {
2396         struct tcp_sock *tp = tcp_sk(sk);
2397
2398         if (tcp_may_undo(tp)) {
2399                 int mib_idx;
2400
2401                 /* Happy end! We did not retransmit anything
2402                  * or our original transmission succeeded.
2403                  */
2404                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2405                 tcp_undo_cwr(sk, 1);
2406                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2407                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2408                 else
2409                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2410
2411                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2412                 tp->undo_marker = 0;
2413         }
2414         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2415                 /* Hold old state until something *above* high_seq
2416                  * is ACKed. For Reno it is MUST to prevent false
2417                  * fast retransmits (RFC2582). SACK TCP is safe. */
2418                 tcp_moderate_cwnd(tp);
2419                 return 1;
2420         }
2421         tcp_set_ca_state(sk, TCP_CA_Open);
2422         return 0;
2423 }
2424
2425 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2426 static void tcp_try_undo_dsack(struct sock *sk)
2427 {
2428         struct tcp_sock *tp = tcp_sk(sk);
2429
2430         if (tp->undo_marker && !tp->undo_retrans) {
2431                 DBGUNDO(sk, "D-SACK");
2432                 tcp_undo_cwr(sk, 1);
2433                 tp->undo_marker = 0;
2434                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2435         }
2436 }
2437
2438 /* Undo during fast recovery after partial ACK. */
2439
2440 static int tcp_try_undo_partial(struct sock *sk, int acked)
2441 {
2442         struct tcp_sock *tp = tcp_sk(sk);
2443         /* Partial ACK arrived. Force Hoe's retransmit. */
2444         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2445
2446         if (tcp_may_undo(tp)) {
2447                 /* Plain luck! Hole if filled with delayed
2448                  * packet, rather than with a retransmit.
2449                  */
2450                 if (tp->retrans_out == 0)
2451                         tp->retrans_stamp = 0;
2452
2453                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2454
2455                 DBGUNDO(sk, "Hoe");
2456                 tcp_undo_cwr(sk, 0);
2457                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2458
2459                 /* So... Do not make Hoe's retransmit yet.
2460                  * If the first packet was delayed, the rest
2461                  * ones are most probably delayed as well.
2462                  */
2463                 failed = 0;
2464         }
2465         return failed;
2466 }
2467
2468 /* Undo during loss recovery after partial ACK. */
2469 static int tcp_try_undo_loss(struct sock *sk)
2470 {
2471         struct tcp_sock *tp = tcp_sk(sk);
2472
2473         if (tcp_may_undo(tp)) {
2474                 struct sk_buff *skb;
2475                 tcp_for_write_queue(skb, sk) {
2476                         if (skb == tcp_send_head(sk))
2477                                 break;
2478                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2479                 }
2480
2481                 tcp_clear_all_retrans_hints(tp);
2482
2483                 DBGUNDO(sk, "partial loss");
2484                 tp->lost_out = 0;
2485                 tcp_undo_cwr(sk, 1);
2486                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2487                 inet_csk(sk)->icsk_retransmits = 0;
2488                 tp->undo_marker = 0;
2489                 if (tcp_is_sack(tp))
2490                         tcp_set_ca_state(sk, TCP_CA_Open);
2491                 return 1;
2492         }
2493         return 0;
2494 }
2495
2496 static inline void tcp_complete_cwr(struct sock *sk)
2497 {
2498         struct tcp_sock *tp = tcp_sk(sk);
2499         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2500         tp->snd_cwnd_stamp = tcp_time_stamp;
2501         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2502 }
2503
2504 static void tcp_try_keep_open(struct sock *sk)
2505 {
2506         struct tcp_sock *tp = tcp_sk(sk);
2507         int state = TCP_CA_Open;
2508
2509         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2510                 state = TCP_CA_Disorder;
2511
2512         if (inet_csk(sk)->icsk_ca_state != state) {
2513                 tcp_set_ca_state(sk, state);
2514                 tp->high_seq = tp->snd_nxt;
2515         }
2516 }
2517
2518 static void tcp_try_to_open(struct sock *sk, int flag)
2519 {
2520         struct tcp_sock *tp = tcp_sk(sk);
2521
2522         tcp_verify_left_out(tp);
2523
2524         if (!tp->frto_counter && tp->retrans_out == 0)
2525                 tp->retrans_stamp = 0;
2526
2527         if (flag & FLAG_ECE)
2528                 tcp_enter_cwr(sk, 1);
2529
2530         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2531                 tcp_try_keep_open(sk);
2532                 tcp_moderate_cwnd(tp);
2533         } else {
2534                 tcp_cwnd_down(sk, flag);
2535         }
2536 }
2537
2538 static void tcp_mtup_probe_failed(struct sock *sk)
2539 {
2540         struct inet_connection_sock *icsk = inet_csk(sk);
2541
2542         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2543         icsk->icsk_mtup.probe_size = 0;
2544 }
2545
2546 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2547 {
2548         struct tcp_sock *tp = tcp_sk(sk);
2549         struct inet_connection_sock *icsk = inet_csk(sk);
2550
2551         /* FIXME: breaks with very large cwnd */
2552         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2553         tp->snd_cwnd = tp->snd_cwnd *
2554                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2555                        icsk->icsk_mtup.probe_size;
2556         tp->snd_cwnd_cnt = 0;
2557         tp->snd_cwnd_stamp = tcp_time_stamp;
2558         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2559
2560         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2561         icsk->icsk_mtup.probe_size = 0;
2562         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2563 }
2564
2565 /* Process an event, which can update packets-in-flight not trivially.
2566  * Main goal of this function is to calculate new estimate for left_out,
2567  * taking into account both packets sitting in receiver's buffer and
2568  * packets lost by network.
2569  *
2570  * Besides that it does CWND reduction, when packet loss is detected
2571  * and changes state of machine.
2572  *
2573  * It does _not_ decide what to send, it is made in function
2574  * tcp_xmit_retransmit_queue().
2575  */
2576 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2577 {
2578         struct inet_connection_sock *icsk = inet_csk(sk);
2579         struct tcp_sock *tp = tcp_sk(sk);
2580         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2581         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2582                                     (tcp_fackets_out(tp) > tp->reordering));
2583         int fast_rexmit = 0, mib_idx;
2584
2585         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2586                 tp->sacked_out = 0;
2587         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2588                 tp->fackets_out = 0;
2589
2590         /* Now state machine starts.
2591          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2592         if (flag & FLAG_ECE)
2593                 tp->prior_ssthresh = 0;
2594
2595         /* B. In all the states check for reneging SACKs. */
2596         if (tcp_check_sack_reneging(sk, flag))
2597                 return;
2598
2599         /* C. Process data loss notification, provided it is valid. */
2600         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2601             before(tp->snd_una, tp->high_seq) &&
2602             icsk->icsk_ca_state != TCP_CA_Open &&
2603             tp->fackets_out > tp->reordering) {
2604                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2605                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2606         }
2607
2608         /* D. Check consistency of the current state. */
2609         tcp_verify_left_out(tp);
2610
2611         /* E. Check state exit conditions. State can be terminated
2612          *    when high_seq is ACKed. */
2613         if (icsk->icsk_ca_state == TCP_CA_Open) {
2614                 WARN_ON(tp->retrans_out != 0);
2615                 tp->retrans_stamp = 0;
2616         } else if (!before(tp->snd_una, tp->high_seq)) {
2617                 switch (icsk->icsk_ca_state) {
2618                 case TCP_CA_Loss:
2619                         icsk->icsk_retransmits = 0;
2620                         if (tcp_try_undo_recovery(sk))
2621                                 return;
2622                         break;
2623
2624                 case TCP_CA_CWR:
2625                         /* CWR is to be held something *above* high_seq
2626                          * is ACKed for CWR bit to reach receiver. */
2627                         if (tp->snd_una != tp->high_seq) {
2628                                 tcp_complete_cwr(sk);
2629                                 tcp_set_ca_state(sk, TCP_CA_Open);
2630                         }
2631                         break;
2632
2633                 case TCP_CA_Disorder:
2634                         tcp_try_undo_dsack(sk);
2635                         if (!tp->undo_marker ||
2636                             /* For SACK case do not Open to allow to undo
2637                              * catching for all duplicate ACKs. */
2638                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2639                                 tp->undo_marker = 0;
2640                                 tcp_set_ca_state(sk, TCP_CA_Open);
2641                         }
2642                         break;
2643
2644                 case TCP_CA_Recovery:
2645                         if (tcp_is_reno(tp))
2646                                 tcp_reset_reno_sack(tp);
2647                         if (tcp_try_undo_recovery(sk))
2648                                 return;
2649                         tcp_complete_cwr(sk);
2650                         break;
2651                 }
2652         }
2653
2654         /* F. Process state. */
2655         switch (icsk->icsk_ca_state) {
2656         case TCP_CA_Recovery:
2657                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2658                         if (tcp_is_reno(tp) && is_dupack)
2659                                 tcp_add_reno_sack(sk);
2660                 } else
2661                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2662                 break;
2663         case TCP_CA_Loss:
2664                 if (flag & FLAG_DATA_ACKED)
2665                         icsk->icsk_retransmits = 0;
2666                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2667                         tcp_reset_reno_sack(tp);
2668                 if (!tcp_try_undo_loss(sk)) {
2669                         tcp_moderate_cwnd(tp);
2670                         tcp_xmit_retransmit_queue(sk);
2671                         return;
2672                 }
2673                 if (icsk->icsk_ca_state != TCP_CA_Open)
2674                         return;
2675                 /* Loss is undone; fall through to processing in Open state. */
2676         default:
2677                 if (tcp_is_reno(tp)) {
2678                         if (flag & FLAG_SND_UNA_ADVANCED)
2679                                 tcp_reset_reno_sack(tp);
2680                         if (is_dupack)
2681                                 tcp_add_reno_sack(sk);
2682                 }
2683
2684                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2685                         tcp_try_undo_dsack(sk);
2686
2687                 if (!tcp_time_to_recover(sk)) {
2688                         tcp_try_to_open(sk, flag);
2689                         return;
2690                 }
2691
2692                 /* MTU probe failure: don't reduce cwnd */
2693                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2694                     icsk->icsk_mtup.probe_size &&
2695                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2696                         tcp_mtup_probe_failed(sk);
2697                         /* Restores the reduction we did in tcp_mtup_probe() */
2698                         tp->snd_cwnd++;
2699                         tcp_simple_retransmit(sk);
2700                         return;
2701                 }
2702
2703                 /* Otherwise enter Recovery state */
2704
2705                 if (tcp_is_reno(tp))
2706                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
2707                 else
2708                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2709
2710                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2711
2712                 tp->high_seq = tp->snd_nxt;
2713                 tp->prior_ssthresh = 0;
2714                 tp->undo_marker = tp->snd_una;
2715                 tp->undo_retrans = tp->retrans_out;
2716
2717                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2718                         if (!(flag & FLAG_ECE))
2719                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2720                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2721                         TCP_ECN_queue_cwr(tp);
2722                 }
2723
2724                 tp->bytes_acked = 0;
2725                 tp->snd_cwnd_cnt = 0;
2726                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2727                 fast_rexmit = 1;
2728         }
2729
2730         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2731                 tcp_update_scoreboard(sk, fast_rexmit);
2732         tcp_cwnd_down(sk, flag);
2733         tcp_xmit_retransmit_queue(sk);
2734 }
2735
2736 /* Read draft-ietf-tcplw-high-performance before mucking
2737  * with this code. (Supersedes RFC1323)
2738  */
2739 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2740 {
2741         /* RTTM Rule: A TSecr value received in a segment is used to
2742          * update the averaged RTT measurement only if the segment
2743          * acknowledges some new data, i.e., only if it advances the
2744          * left edge of the send window.
2745          *
2746          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2747          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2748          *
2749          * Changed: reset backoff as soon as we see the first valid sample.
2750          * If we do not, we get strongly overestimated rto. With timestamps
2751          * samples are accepted even from very old segments: f.e., when rtt=1
2752          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2753          * answer arrives rto becomes 120 seconds! If at least one of segments
2754          * in window is lost... Voila.                          --ANK (010210)
2755          */
2756         struct tcp_sock *tp = tcp_sk(sk);
2757         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2758         tcp_rtt_estimator(sk, seq_rtt);
2759         tcp_set_rto(sk);
2760         inet_csk(sk)->icsk_backoff = 0;
2761         tcp_bound_rto(sk);
2762 }
2763
2764 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2765 {
2766         /* We don't have a timestamp. Can only use
2767          * packets that are not retransmitted to determine
2768          * rtt estimates. Also, we must not reset the
2769          * backoff for rto until we get a non-retransmitted
2770          * packet. This allows us to deal with a situation
2771          * where the network delay has increased suddenly.
2772          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2773          */
2774
2775         if (flag & FLAG_RETRANS_DATA_ACKED)
2776                 return;
2777
2778         tcp_rtt_estimator(sk, seq_rtt);
2779         tcp_set_rto(sk);
2780         inet_csk(sk)->icsk_backoff = 0;
2781         tcp_bound_rto(sk);
2782 }
2783
2784 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2785                                       const s32 seq_rtt)
2786 {
2787         const struct tcp_sock *tp = tcp_sk(sk);
2788         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2789         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2790                 tcp_ack_saw_tstamp(sk, flag);
2791         else if (seq_rtt >= 0)
2792                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2793 }
2794
2795 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2796 {
2797         const struct inet_connection_sock *icsk = inet_csk(sk);
2798         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2799         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2800 }
2801
2802 /* Restart timer after forward progress on connection.
2803  * RFC2988 recommends to restart timer to now+rto.
2804  */
2805 static void tcp_rearm_rto(struct sock *sk)
2806 {
2807         struct tcp_sock *tp = tcp_sk(sk);
2808
2809         if (!tp->packets_out) {
2810                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2811         } else {
2812                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2813                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2814         }
2815 }
2816
2817 /* If we get here, the whole TSO packet has not been acked. */
2818 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2819 {
2820         struct tcp_sock *tp = tcp_sk(sk);
2821         u32 packets_acked;
2822
2823         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2824
2825         packets_acked = tcp_skb_pcount(skb);
2826         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2827                 return 0;
2828         packets_acked -= tcp_skb_pcount(skb);
2829
2830         if (packets_acked) {
2831                 BUG_ON(tcp_skb_pcount(skb) == 0);
2832                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2833         }
2834
2835         return packets_acked;
2836 }
2837
2838 /* Remove acknowledged frames from the retransmission queue. If our packet
2839  * is before the ack sequence we can discard it as it's confirmed to have
2840  * arrived at the other end.
2841  */
2842 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2843 {
2844         struct tcp_sock *tp = tcp_sk(sk);
2845         const struct inet_connection_sock *icsk = inet_csk(sk);
2846         struct sk_buff *skb;
2847         u32 now = tcp_time_stamp;
2848         int fully_acked = 1;
2849         int flag = 0;
2850         u32 pkts_acked = 0;
2851         u32 reord = tp->packets_out;
2852         s32 seq_rtt = -1;
2853         s32 ca_seq_rtt = -1;
2854         ktime_t last_ackt = net_invalid_timestamp();
2855
2856         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2857                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2858                 u32 end_seq;
2859                 u32 acked_pcount;
2860                 u8 sacked = scb->sacked;
2861
2862                 /* Determine how many packets and what bytes were acked, tso and else */
2863                 if (after(scb->end_seq, tp->snd_una)) {
2864                         if (tcp_skb_pcount(skb) == 1 ||
2865                             !after(tp->snd_una, scb->seq))
2866                                 break;
2867
2868                         acked_pcount = tcp_tso_acked(sk, skb);
2869                         if (!acked_pcount)
2870                                 break;
2871
2872                         fully_acked = 0;
2873                         end_seq = tp->snd_una;
2874                 } else {
2875                         acked_pcount = tcp_skb_pcount(skb);
2876                         end_seq = scb->end_seq;
2877                 }
2878
2879                 /* MTU probing checks */
2880                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2881                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2882                         tcp_mtup_probe_success(sk, skb);
2883                 }
2884
2885                 if (sacked & TCPCB_RETRANS) {
2886                         if (sacked & TCPCB_SACKED_RETRANS)
2887                                 tp->retrans_out -= acked_pcount;
2888                         flag |= FLAG_RETRANS_DATA_ACKED;
2889                         ca_seq_rtt = -1;
2890                         seq_rtt = -1;
2891                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2892                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2893                 } else {
2894                         ca_seq_rtt = now - scb->when;
2895                         last_ackt = skb->tstamp;
2896                         if (seq_rtt < 0) {
2897                                 seq_rtt = ca_seq_rtt;
2898                         }
2899                         if (!(sacked & TCPCB_SACKED_ACKED))
2900                                 reord = min(pkts_acked, reord);
2901                 }
2902
2903                 if (sacked & TCPCB_SACKED_ACKED)
2904                         tp->sacked_out -= acked_pcount;
2905                 if (sacked & TCPCB_LOST)
2906                         tp->lost_out -= acked_pcount;
2907
2908                 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2909                         tp->urg_mode = 0;
2910
2911                 tp->packets_out -= acked_pcount;
2912                 pkts_acked += acked_pcount;
2913
2914                 /* Initial outgoing SYN's get put onto the write_queue
2915                  * just like anything else we transmit.  It is not
2916                  * true data, and if we misinform our callers that
2917                  * this ACK acks real data, we will erroneously exit
2918                  * connection startup slow start one packet too
2919                  * quickly.  This is severely frowned upon behavior.
2920                  */
2921                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2922                         flag |= FLAG_DATA_ACKED;
2923                 } else {
2924                         flag |= FLAG_SYN_ACKED;
2925                         tp->retrans_stamp = 0;
2926                 }
2927
2928                 if (!fully_acked)
2929                         break;
2930
2931                 tcp_unlink_write_queue(skb, sk);
2932                 sk_wmem_free_skb(sk, skb);
2933                 tcp_clear_all_retrans_hints(tp);
2934         }
2935
2936         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2937                 flag |= FLAG_SACK_RENEGING;
2938
2939         if (flag & FLAG_ACKED) {
2940                 const struct tcp_congestion_ops *ca_ops
2941                         = inet_csk(sk)->icsk_ca_ops;
2942
2943                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2944                 tcp_rearm_rto(sk);
2945
2946                 if (tcp_is_reno(tp)) {
2947                         tcp_remove_reno_sacks(sk, pkts_acked);
2948                 } else {
2949                         /* Non-retransmitted hole got filled? That's reordering */
2950                         if (reord < prior_fackets)
2951                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2952                 }
2953
2954                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2955
2956                 if (ca_ops->pkts_acked) {
2957                         s32 rtt_us = -1;
2958
2959                         /* Is the ACK triggering packet unambiguous? */
2960                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2961                                 /* High resolution needed and available? */
2962                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2963                                     !ktime_equal(last_ackt,
2964                                                  net_invalid_timestamp()))
2965                                         rtt_us = ktime_us_delta(ktime_get_real(),
2966                                                                 last_ackt);
2967                                 else if (ca_seq_rtt > 0)
2968                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2969                         }
2970
2971                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2972                 }
2973         }
2974
2975 #if FASTRETRANS_DEBUG > 0
2976         WARN_ON((int)tp->sacked_out < 0);
2977         WARN_ON((int)tp->lost_out < 0);
2978         WARN_ON((int)tp->retrans_out < 0);
2979         if (!tp->packets_out && tcp_is_sack(tp)) {
2980                 icsk = inet_csk(sk);
2981                 if (tp->lost_out) {
2982                         printk(KERN_DEBUG "Leak l=%u %d\n",
2983                                tp->lost_out, icsk->icsk_ca_state);
2984                         tp->lost_out = 0;
2985                 }
2986                 if (tp->sacked_out) {
2987                         printk(KERN_DEBUG "Leak s=%u %d\n",
2988                                tp->sacked_out, icsk->icsk_ca_state);
2989                         tp->sacked_out = 0;
2990                 }
2991                 if (tp->retrans_out) {
2992                         printk(KERN_DEBUG "Leak r=%u %d\n",
2993                                tp->retrans_out, icsk->icsk_ca_state);
2994                         tp->retrans_out = 0;
2995                 }
2996         }
2997 #endif
2998         return flag;
2999 }
3000
3001 static void tcp_ack_probe(struct sock *sk)
3002 {
3003         const struct tcp_sock *tp = tcp_sk(sk);
3004         struct inet_connection_sock *icsk = inet_csk(sk);
3005
3006         /* Was it a usable window open? */
3007
3008         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3009                 icsk->icsk_backoff = 0;
3010                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3011                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3012                  * This function is not for random using!
3013                  */
3014         } else {
3015                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3016                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3017                                           TCP_RTO_MAX);
3018         }
3019 }
3020
3021 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3022 {
3023         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3024                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3025 }
3026
3027 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3028 {
3029         const struct tcp_sock *tp = tcp_sk(sk);
3030         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3031                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3032 }
3033
3034 /* Check that window update is acceptable.
3035  * The function assumes that snd_una<=ack<=snd_next.
3036  */
3037 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3038                                         const u32 ack, const u32 ack_seq,
3039                                         const u32 nwin)
3040 {
3041         return (after(ack, tp->snd_una) ||
3042                 after(ack_seq, tp->snd_wl1) ||
3043                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3044 }
3045
3046 /* Update our send window.
3047  *
3048  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3049  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3050  */
3051 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3052                                  u32 ack_seq)
3053 {
3054         struct tcp_sock *tp = tcp_sk(sk);
3055         int flag = 0;
3056         u32 nwin = ntohs(tcp_hdr(skb)->window);
3057
3058         if (likely(!tcp_hdr(skb)->syn))
3059                 nwin <<= tp->rx_opt.snd_wscale;
3060
3061         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3062                 flag |= FLAG_WIN_UPDATE;
3063                 tcp_update_wl(tp, ack, ack_seq);
3064
3065                 if (tp->snd_wnd != nwin) {
3066                         tp->snd_wnd = nwin;
3067
3068                         /* Note, it is the only place, where
3069                          * fast path is recovered for sending TCP.
3070                          */
3071                         tp->pred_flags = 0;
3072                         tcp_fast_path_check(sk);
3073
3074                         if (nwin > tp->max_window) {
3075                                 tp->max_window = nwin;
3076                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3077                         }
3078                 }
3079         }
3080
3081         tp->snd_una = ack;
3082
3083         return flag;
3084 }
3085
3086 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3087  * continue in congestion avoidance.
3088  */
3089 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3090 {
3091         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3092         tp->snd_cwnd_cnt = 0;
3093         tp->bytes_acked = 0;
3094         TCP_ECN_queue_cwr(tp);
3095         tcp_moderate_cwnd(tp);
3096 }
3097
3098 /* A conservative spurious RTO response algorithm: reduce cwnd using
3099  * rate halving and continue in congestion avoidance.
3100  */
3101 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3102 {
3103         tcp_enter_cwr(sk, 0);
3104 }
3105
3106 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3107 {
3108         if (flag & FLAG_ECE)
3109                 tcp_ratehalving_spur_to_response(sk);
3110         else
3111                 tcp_undo_cwr(sk, 1);
3112 }
3113
3114 /* F-RTO spurious RTO detection algorithm (RFC4138)
3115  *
3116  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3117  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3118  * window (but not to or beyond highest sequence sent before RTO):
3119  *   On First ACK,  send two new segments out.
3120  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3121  *                  algorithm is not part of the F-RTO detection algorithm
3122  *                  given in RFC4138 but can be selected separately).
3123  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3124  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3125  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3126  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3127  *
3128  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3129  * original window even after we transmit two new data segments.
3130  *
3131  * SACK version:
3132  *   on first step, wait until first cumulative ACK arrives, then move to
3133  *   the second step. In second step, the next ACK decides.
3134  *
3135  * F-RTO is implemented (mainly) in four functions:
3136  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3137  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3138  *     called when tcp_use_frto() showed green light
3139  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3140  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3141  *     to prove that the RTO is indeed spurious. It transfers the control
3142  *     from F-RTO to the conventional RTO recovery
3143  */
3144 static int tcp_process_frto(struct sock *sk, int flag)
3145 {
3146         struct tcp_sock *tp = tcp_sk(sk);
3147
3148         tcp_verify_left_out(tp);
3149
3150         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3151         if (flag & FLAG_DATA_ACKED)
3152                 inet_csk(sk)->icsk_retransmits = 0;
3153
3154         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3155             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3156                 tp->undo_marker = 0;
3157
3158         if (!before(tp->snd_una, tp->frto_highmark)) {
3159                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3160                 return 1;
3161         }
3162
3163         if (!tcp_is_sackfrto(tp)) {
3164                 /* RFC4138 shortcoming in step 2; should also have case c):
3165                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3166                  * data, winupdate
3167                  */
3168                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3169                         return 1;
3170
3171                 if (!(flag & FLAG_DATA_ACKED)) {
3172                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3173                                             flag);
3174                         return 1;
3175                 }
3176         } else {
3177                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3178                         /* Prevent sending of new data. */
3179                         tp->snd_cwnd = min(tp->snd_cwnd,
3180                                            tcp_packets_in_flight(tp));
3181                         return 1;
3182                 }
3183
3184                 if ((tp->frto_counter >= 2) &&
3185                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3186                      ((flag & FLAG_DATA_SACKED) &&
3187                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3188                         /* RFC4138 shortcoming (see comment above) */
3189                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3190                             (flag & FLAG_NOT_DUP))
3191                                 return 1;
3192
3193                         tcp_enter_frto_loss(sk, 3, flag);
3194                         return 1;
3195                 }
3196         }
3197
3198         if (tp->frto_counter == 1) {
3199                 /* tcp_may_send_now needs to see updated state */
3200                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3201                 tp->frto_counter = 2;
3202
3203                 if (!tcp_may_send_now(sk))
3204                         tcp_enter_frto_loss(sk, 2, flag);
3205
3206                 return 1;
3207         } else {
3208                 switch (sysctl_tcp_frto_response) {
3209                 case 2:
3210                         tcp_undo_spur_to_response(sk, flag);
3211                         break;
3212                 case 1:
3213                         tcp_conservative_spur_to_response(tp);
3214                         break;
3215                 default:
3216                         tcp_ratehalving_spur_to_response(sk);
3217                         break;
3218                 }
3219                 tp->frto_counter = 0;
3220                 tp->undo_marker = 0;
3221                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3222         }
3223         return 0;
3224 }
3225
3226 /* This routine deals with incoming acks, but not outgoing ones. */
3227 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3228 {
3229         struct inet_connection_sock *icsk = inet_csk(sk);
3230         struct tcp_sock *tp = tcp_sk(sk);
3231         u32 prior_snd_una = tp->snd_una;
3232         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3233         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3234         u32 prior_in_flight;
3235         u32 prior_fackets;
3236         int prior_packets;
3237         int frto_cwnd = 0;
3238
3239         /* If the ack is newer than sent or older than previous acks
3240          * then we can probably ignore it.
3241          */
3242         if (after(ack, tp->snd_nxt))
3243                 goto uninteresting_ack;
3244
3245         if (before(ack, prior_snd_una))
3246                 goto old_ack;
3247
3248         if (after(ack, prior_snd_una))
3249                 flag |= FLAG_SND_UNA_ADVANCED;
3250
3251         if (sysctl_tcp_abc) {
3252                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3253                         tp->bytes_acked += ack - prior_snd_una;
3254                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3255                         /* we assume just one segment left network */
3256                         tp->bytes_acked += min(ack - prior_snd_una,
3257                                                tp->mss_cache);
3258         }
3259
3260         prior_fackets = tp->fackets_out;
3261         prior_in_flight = tcp_packets_in_flight(tp);
3262
3263         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3264                 /* Window is constant, pure forward advance.
3265                  * No more checks are required.
3266                  * Note, we use the fact that SND.UNA>=SND.WL2.
3267                  */
3268                 tcp_update_wl(tp, ack, ack_seq);
3269                 tp->snd_una = ack;
3270                 flag |= FLAG_WIN_UPDATE;
3271
3272                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3273
3274                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3275         } else {
3276                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3277                         flag |= FLAG_DATA;
3278                 else
3279                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3280
3281                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3282
3283                 if (TCP_SKB_CB(skb)->sacked)
3284                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3285
3286                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3287                         flag |= FLAG_ECE;
3288
3289                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3290         }
3291
3292         /* We passed data and got it acked, remove any soft error
3293          * log. Something worked...
3294          */
3295         sk->sk_err_soft = 0;
3296         icsk->icsk_probes_out = 0;
3297         tp->rcv_tstamp = tcp_time_stamp;
3298         prior_packets = tp->packets_out;
3299         if (!prior_packets)
3300                 goto no_queue;
3301
3302         /* See if we can take anything off of the retransmit queue. */
3303         flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3304
3305         if (tp->frto_counter)
3306                 frto_cwnd = tcp_process_frto(sk, flag);
3307         /* Guarantee sacktag reordering detection against wrap-arounds */
3308         if (before(tp->frto_highmark, tp->snd_una))
3309                 tp->frto_highmark = 0;
3310
3311         if (tcp_ack_is_dubious(sk, flag)) {
3312                 /* Advance CWND, if state allows this. */
3313                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3314                     tcp_may_raise_cwnd(sk, flag))
3315                         tcp_cong_avoid(sk, ack, prior_in_flight);
3316                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3317                                       flag);
3318         } else {
3319                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3320                         tcp_cong_avoid(sk, ack, prior_in_flight);
3321         }
3322
3323         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3324                 dst_confirm(sk->sk_dst_cache);
3325
3326         return 1;
3327
3328 no_queue:
3329         /* If this ack opens up a zero window, clear backoff.  It was
3330          * being used to time the probes, and is probably far higher than
3331          * it needs to be for normal retransmission.
3332          */
3333         if (tcp_send_head(sk))
3334                 tcp_ack_probe(sk);
3335         return 1;
3336
3337 old_ack:
3338         if (TCP_SKB_CB(skb)->sacked) {
3339                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3340                 if (icsk->icsk_ca_state == TCP_CA_Open)
3341                         tcp_try_keep_open(sk);
3342         }
3343
3344 uninteresting_ack:
3345         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3346         return 0;
3347 }
3348
3349 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3350  * But, this can also be called on packets in the established flow when
3351  * the fast version below fails.
3352  */
3353 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3354                        int estab)
3355 {
3356         unsigned char *ptr;
3357         struct tcphdr *th = tcp_hdr(skb);
3358         int length = (th->doff * 4) - sizeof(struct tcphdr);
3359
3360         ptr = (unsigned char *)(th + 1);
3361         opt_rx->saw_tstamp = 0;
3362
3363         while (length > 0) {
3364                 int opcode = *ptr++;
3365                 int opsize;
3366
3367                 switch (opcode) {
3368                 case TCPOPT_EOL:
3369                         return;
3370                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3371                         length--;
3372                         continue;
3373                 default:
3374                         opsize = *ptr++;
3375                         if (opsize < 2) /* "silly options" */
3376                                 return;
3377                         if (opsize > length)
3378                                 return; /* don't parse partial options */
3379                         switch (opcode) {
3380                         case TCPOPT_MSS:
3381                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3382                                         u16 in_mss = get_unaligned_be16(ptr);
3383                                         if (in_mss) {
3384                                                 if (opt_rx->user_mss &&
3385                                                     opt_rx->user_mss < in_mss)
3386                                                         in_mss = opt_rx->user_mss;
3387                                                 opt_rx->mss_clamp = in_mss;
3388                                         }
3389                                 }
3390                                 break;
3391                         case TCPOPT_WINDOW:
3392                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3393                                     !estab && sysctl_tcp_window_scaling) {
3394                                         __u8 snd_wscale = *(__u8 *)ptr;
3395                                         opt_rx->wscale_ok = 1;
3396                                         if (snd_wscale > 14) {
3397                                                 if (net_ratelimit())
3398                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3399                                                                "scaling value %d >14 received.\n",
3400                                                                snd_wscale);
3401                                                 snd_wscale = 14;
3402                                         }
3403                                         opt_rx->snd_wscale = snd_wscale;
3404                                 }
3405                                 break;
3406                         case TCPOPT_TIMESTAMP:
3407                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3408                                     ((estab && opt_rx->tstamp_ok) ||
3409                                      (!estab && sysctl_tcp_timestamps))) {
3410                                         opt_rx->saw_tstamp = 1;
3411                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3412                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3413                                 }
3414                                 break;
3415                         case TCPOPT_SACK_PERM:
3416                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3417                                     !estab && sysctl_tcp_sack) {
3418                                         opt_rx->sack_ok = 1;
3419                                         tcp_sack_reset(opt_rx);
3420                                 }
3421                                 break;
3422
3423                         case TCPOPT_SACK:
3424                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3425                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3426                                    opt_rx->sack_ok) {
3427                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3428                                 }
3429                                 break;
3430 #ifdef CONFIG_TCP_MD5SIG
3431                         case TCPOPT_MD5SIG:
3432                                 /*
3433                                  * The MD5 Hash has already been
3434                                  * checked (see tcp_v{4,6}_do_rcv()).
3435                                  */
3436                                 break;
3437 #endif
3438                         }
3439
3440                         ptr += opsize-2;
3441                         length -= opsize;
3442                 }
3443         }
3444 }
3445
3446 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3447 {
3448         __be32 *ptr = (__be32 *)(th + 1);
3449
3450         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3451                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3452                 tp->rx_opt.saw_tstamp = 1;
3453                 ++ptr;
3454                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3455                 ++ptr;
3456                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3457                 return 1;
3458         }
3459         return 0;
3460 }
3461
3462 /* Fast parse options. This hopes to only see timestamps.
3463  * If it is wrong it falls back on tcp_parse_options().
3464  */
3465 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3466                                   struct tcp_sock *tp)
3467 {
3468         if (th->doff == sizeof(struct tcphdr) >> 2) {
3469                 tp->rx_opt.saw_tstamp = 0;
3470                 return 0;
3471         } else if (tp->rx_opt.tstamp_ok &&
3472                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3473                 if (tcp_parse_aligned_timestamp(tp, th))
3474                         return 1;
3475         }
3476         tcp_parse_options(skb, &tp->rx_opt, 1);
3477         return 1;
3478 }
3479
3480 #ifdef CONFIG_TCP_MD5SIG
3481 /*
3482  * Parse MD5 Signature option
3483  */
3484 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3485 {
3486         int length = (th->doff << 2) - sizeof (*th);
3487         u8 *ptr = (u8*)(th + 1);
3488
3489         /* If the TCP option is too short, we can short cut */
3490         if (length < TCPOLEN_MD5SIG)
3491                 return NULL;
3492
3493         while (length > 0) {
3494                 int opcode = *ptr++;
3495                 int opsize;
3496
3497                 switch(opcode) {
3498                 case TCPOPT_EOL:
3499                         return NULL;
3500                 case TCPOPT_NOP:
3501                         length--;
3502                         continue;
3503                 default:
3504                         opsize = *ptr++;
3505                         if (opsize < 2 || opsize > length)
3506                                 return NULL;
3507                         if (opcode == TCPOPT_MD5SIG)
3508                                 return ptr;
3509                 }
3510                 ptr += opsize - 2;
3511                 length -= opsize;
3512         }
3513         return NULL;
3514 }
3515 #endif
3516
3517 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3518 {
3519         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3520         tp->rx_opt.ts_recent_stamp = get_seconds();
3521 }
3522
3523 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3524 {
3525         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3526                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3527                  * extra check below makes sure this can only happen
3528                  * for pure ACK frames.  -DaveM
3529                  *
3530                  * Not only, also it occurs for expired timestamps.
3531                  */
3532
3533                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3534                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3535                         tcp_store_ts_recent(tp);
3536         }
3537 }
3538
3539 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3540  *
3541  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3542  * it can pass through stack. So, the following predicate verifies that
3543  * this segment is not used for anything but congestion avoidance or
3544  * fast retransmit. Moreover, we even are able to eliminate most of such
3545  * second order effects, if we apply some small "replay" window (~RTO)
3546  * to timestamp space.
3547  *
3548  * All these measures still do not guarantee that we reject wrapped ACKs
3549  * on networks with high bandwidth, when sequence space is recycled fastly,
3550  * but it guarantees that such events will be very rare and do not affect
3551  * connection seriously. This doesn't look nice, but alas, PAWS is really
3552  * buggy extension.
3553  *
3554  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3555  * states that events when retransmit arrives after original data are rare.
3556  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3557  * the biggest problem on large power networks even with minor reordering.
3558  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3559  * up to bandwidth of 18Gigabit/sec. 8) ]
3560  */
3561
3562 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3563 {
3564         struct tcp_sock *tp = tcp_sk(sk);
3565         struct tcphdr *th = tcp_hdr(skb);
3566         u32 seq = TCP_SKB_CB(skb)->seq;
3567         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3568
3569         return (/* 1. Pure ACK with correct sequence number. */
3570                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3571
3572                 /* 2. ... and duplicate ACK. */
3573                 ack == tp->snd_una &&
3574
3575                 /* 3. ... and does not update window. */
3576                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3577
3578                 /* 4. ... and sits in replay window. */
3579                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3580 }
3581
3582 static inline int tcp_paws_discard(const struct sock *sk,
3583                                    const struct sk_buff *skb)
3584 {
3585         const struct tcp_sock *tp = tcp_sk(sk);
3586         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3587                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3588                 !tcp_disordered_ack(sk, skb));
3589 }
3590
3591 /* Check segment sequence number for validity.
3592  *
3593  * Segment controls are considered valid, if the segment
3594  * fits to the window after truncation to the window. Acceptability
3595  * of data (and SYN, FIN, of course) is checked separately.
3596  * See tcp_data_queue(), for example.
3597  *
3598  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3599  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3600  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3601  * (borrowed from freebsd)
3602  */
3603
3604 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3605 {
3606         return  !before(end_seq, tp->rcv_wup) &&
3607                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3608 }
3609
3610 /* When we get a reset we do this. */
3611 static void tcp_reset(struct sock *sk)
3612 {
3613         /* We want the right error as BSD sees it (and indeed as we do). */
3614         switch (sk->sk_state) {
3615         case TCP_SYN_SENT:
3616                 sk->sk_err = ECONNREFUSED;
3617                 break;
3618         case TCP_CLOSE_WAIT:
3619                 sk->sk_err = EPIPE;
3620                 break;
3621         case TCP_CLOSE:
3622                 return;
3623         default:
3624                 sk->sk_err = ECONNRESET;
3625         }
3626
3627         if (!sock_flag(sk, SOCK_DEAD))
3628                 sk->sk_error_report(sk);
3629
3630         tcp_done(sk);
3631 }
3632
3633 /*
3634  *      Process the FIN bit. This now behaves as it is supposed to work
3635  *      and the FIN takes effect when it is validly part of sequence
3636  *      space. Not before when we get holes.
3637  *
3638  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3639  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3640  *      TIME-WAIT)
3641  *
3642  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3643  *      close and we go into CLOSING (and later onto TIME-WAIT)
3644  *
3645  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3646  */
3647 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3648 {
3649         struct tcp_sock *tp = tcp_sk(sk);
3650
3651         inet_csk_schedule_ack(sk);
3652
3653         sk->sk_shutdown |= RCV_SHUTDOWN;
3654         sock_set_flag(sk, SOCK_DONE);
3655
3656         switch (sk->sk_state) {
3657         case TCP_SYN_RECV:
3658         case TCP_ESTABLISHED:
3659                 /* Move to CLOSE_WAIT */
3660                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3661                 inet_csk(sk)->icsk_ack.pingpong = 1;
3662                 break;
3663
3664         case TCP_CLOSE_WAIT:
3665         case TCP_CLOSING:
3666                 /* Received a retransmission of the FIN, do
3667                  * nothing.
3668                  */
3669                 break;
3670         case TCP_LAST_ACK:
3671                 /* RFC793: Remain in the LAST-ACK state. */
3672                 break;
3673
3674         case TCP_FIN_WAIT1:
3675                 /* This case occurs when a simultaneous close
3676                  * happens, we must ack the received FIN and
3677                  * enter the CLOSING state.
3678                  */
3679                 tcp_send_ack(sk);
3680                 tcp_set_state(sk, TCP_CLOSING);
3681                 break;
3682         case TCP_FIN_WAIT2:
3683                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3684                 tcp_send_ack(sk);
3685                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3686                 break;
3687         default:
3688                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3689                  * cases we should never reach this piece of code.
3690                  */
3691                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3692                        __func__, sk->sk_state);
3693                 break;
3694         }
3695
3696         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3697          * Probably, we should reset in this case. For now drop them.
3698          */
3699         __skb_queue_purge(&tp->out_of_order_queue);
3700         if (tcp_is_sack(tp))
3701                 tcp_sack_reset(&tp->rx_opt);
3702         sk_mem_reclaim(sk);
3703
3704         if (!sock_flag(sk, SOCK_DEAD)) {
3705                 sk->sk_state_change(sk);
3706
3707                 /* Do not send POLL_HUP for half duplex close. */
3708                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3709                     sk->sk_state == TCP_CLOSE)
3710                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3711                 else
3712                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3713         }
3714 }
3715
3716 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3717                                   u32 end_seq)
3718 {
3719         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3720                 if (before(seq, sp->start_seq))
3721                         sp->start_seq = seq;
3722                 if (after(end_seq, sp->end_seq))
3723                         sp->end_seq = end_seq;
3724                 return 1;
3725         }
3726         return 0;
3727 }
3728
3729 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3730 {
3731         struct tcp_sock *tp = tcp_sk(sk);
3732
3733         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3734                 int mib_idx;
3735
3736                 if (before(seq, tp->rcv_nxt))
3737                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3738                 else
3739                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3740
3741                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3742
3743                 tp->rx_opt.dsack = 1;
3744                 tp->duplicate_sack[0].start_seq = seq;
3745                 tp->duplicate_sack[0].end_seq = end_seq;
3746                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
3747         }
3748 }
3749
3750 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3751 {
3752         struct tcp_sock *tp = tcp_sk(sk);
3753
3754         if (!tp->rx_opt.dsack)
3755                 tcp_dsack_set(sk, seq, end_seq);
3756         else
3757                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3758 }
3759
3760 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3761 {
3762         struct tcp_sock *tp = tcp_sk(sk);
3763
3764         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3765             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3766                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3767                 tcp_enter_quickack_mode(sk);
3768
3769                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3770                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3771
3772                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3773                                 end_seq = tp->rcv_nxt;
3774                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3775                 }
3776         }
3777
3778         tcp_send_ack(sk);
3779 }
3780
3781 /* These routines update the SACK block as out-of-order packets arrive or
3782  * in-order packets close up the sequence space.
3783  */
3784 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3785 {
3786         int this_sack;
3787         struct tcp_sack_block *sp = &tp->selective_acks[0];
3788         struct tcp_sack_block *swalk = sp + 1;
3789
3790         /* See if the recent change to the first SACK eats into
3791          * or hits the sequence space of other SACK blocks, if so coalesce.
3792          */
3793         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3794                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3795                         int i;
3796
3797                         /* Zap SWALK, by moving every further SACK up by one slot.
3798                          * Decrease num_sacks.
3799                          */
3800                         tp->rx_opt.num_sacks--;
3801                         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3802                                                tp->rx_opt.dsack;
3803                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3804                                 sp[i] = sp[i + 1];
3805                         continue;
3806                 }
3807                 this_sack++, swalk++;
3808         }
3809 }
3810
3811 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3812                                  struct tcp_sack_block *sack2)
3813 {
3814         __u32 tmp;
3815
3816         tmp = sack1->start_seq;
3817         sack1->start_seq = sack2->start_seq;
3818         sack2->start_seq = tmp;
3819
3820         tmp = sack1->end_seq;
3821         sack1->end_seq = sack2->end_seq;
3822         sack2->end_seq = tmp;
3823 }
3824
3825 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3826 {
3827         struct tcp_sock *tp = tcp_sk(sk);
3828         struct tcp_sack_block *sp = &tp->selective_acks[0];
3829         int cur_sacks = tp->rx_opt.num_sacks;
3830         int this_sack;
3831
3832         if (!cur_sacks)
3833                 goto new_sack;
3834
3835         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3836                 if (tcp_sack_extend(sp, seq, end_seq)) {
3837                         /* Rotate this_sack to the first one. */
3838                         for (; this_sack > 0; this_sack--, sp--)
3839                                 tcp_sack_swap(sp, sp - 1);
3840                         if (cur_sacks > 1)
3841                                 tcp_sack_maybe_coalesce(tp);
3842                         return;
3843                 }
3844         }
3845
3846         /* Could not find an adjacent existing SACK, build a new one,
3847          * put it at the front, and shift everyone else down.  We
3848          * always know there is at least one SACK present already here.
3849          *
3850          * If the sack array is full, forget about the last one.
3851          */
3852         if (this_sack >= TCP_NUM_SACKS) {
3853                 this_sack--;
3854                 tp->rx_opt.num_sacks--;
3855                 sp--;
3856         }
3857         for (; this_sack > 0; this_sack--, sp--)
3858                 *sp = *(sp - 1);
3859
3860 new_sack:
3861         /* Build the new head SACK, and we're done. */
3862         sp->start_seq = seq;
3863         sp->end_seq = end_seq;
3864         tp->rx_opt.num_sacks++;
3865         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
3866 }
3867
3868 /* RCV.NXT advances, some SACKs should be eaten. */
3869
3870 static void tcp_sack_remove(struct tcp_sock *tp)
3871 {
3872         struct tcp_sack_block *sp = &tp->selective_acks[0];
3873         int num_sacks = tp->rx_opt.num_sacks;
3874         int this_sack;
3875
3876         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3877         if (skb_queue_empty(&tp->out_of_order_queue)) {
3878                 tp->rx_opt.num_sacks = 0;
3879                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3880                 return;
3881         }
3882
3883         for (this_sack = 0; this_sack < num_sacks;) {
3884                 /* Check if the start of the sack is covered by RCV.NXT. */
3885                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3886                         int i;
3887
3888                         /* RCV.NXT must cover all the block! */
3889                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3890
3891                         /* Zap this SACK, by moving forward any other SACKS. */
3892                         for (i=this_sack+1; i < num_sacks; i++)
3893                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3894                         num_sacks--;
3895                         continue;
3896                 }
3897                 this_sack++;
3898                 sp++;
3899         }
3900         if (num_sacks != tp->rx_opt.num_sacks) {
3901                 tp->rx_opt.num_sacks = num_sacks;
3902                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3903                                        tp->rx_opt.dsack;
3904         }
3905 }
3906
3907 /* This one checks to see if we can put data from the
3908  * out_of_order queue into the receive_queue.
3909  */
3910 static void tcp_ofo_queue(struct sock *sk)
3911 {
3912         struct tcp_sock *tp = tcp_sk(sk);
3913         __u32 dsack_high = tp->rcv_nxt;
3914         struct sk_buff *skb;
3915
3916         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3917                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3918                         break;
3919
3920                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3921                         __u32 dsack = dsack_high;
3922                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3923                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3924                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3925                 }
3926
3927                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3928                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3929                         __skb_unlink(skb, &tp->out_of_order_queue);
3930                         __kfree_skb(skb);
3931                         continue;
3932                 }
3933                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3934                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3935                            TCP_SKB_CB(skb)->end_seq);
3936
3937                 __skb_unlink(skb, &tp->out_of_order_queue);
3938                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3939                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3940                 if (tcp_hdr(skb)->fin)
3941                         tcp_fin(skb, sk, tcp_hdr(skb));
3942         }
3943 }
3944
3945 static int tcp_prune_ofo_queue(struct sock *sk);
3946 static int tcp_prune_queue(struct sock *sk);
3947
3948 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3949 {
3950         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3951             !sk_rmem_schedule(sk, size)) {
3952
3953                 if (tcp_prune_queue(sk) < 0)
3954                         return -1;
3955
3956                 if (!sk_rmem_schedule(sk, size)) {
3957                         if (!tcp_prune_ofo_queue(sk))
3958                                 return -1;
3959
3960                         if (!sk_rmem_schedule(sk, size))
3961                                 return -1;
3962                 }
3963         }
3964         return 0;
3965 }
3966
3967 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3968 {
3969         struct tcphdr *th = tcp_hdr(skb);
3970         struct tcp_sock *tp = tcp_sk(sk);
3971         int eaten = -1;
3972
3973         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3974                 goto drop;
3975
3976         __skb_pull(skb, th->doff * 4);
3977
3978         TCP_ECN_accept_cwr(tp, skb);
3979
3980         if (tp->rx_opt.dsack) {
3981                 tp->rx_opt.dsack = 0;
3982                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
3983         }
3984
3985         /*  Queue data for delivery to the user.
3986          *  Packets in sequence go to the receive queue.
3987          *  Out of sequence packets to the out_of_order_queue.
3988          */
3989         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3990                 if (tcp_receive_window(tp) == 0)
3991                         goto out_of_window;
3992
3993                 /* Ok. In sequence. In window. */
3994                 if (tp->ucopy.task == current &&
3995                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3996                     sock_owned_by_user(sk) && !tp->urg_data) {
3997                         int chunk = min_t(unsigned int, skb->len,
3998                                           tp->ucopy.len);
3999
4000                         __set_current_state(TASK_RUNNING);
4001
4002                         local_bh_enable();
4003                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4004                                 tp->ucopy.len -= chunk;
4005                                 tp->copied_seq += chunk;
4006                                 eaten = (chunk == skb->len && !th->fin);
4007                                 tcp_rcv_space_adjust(sk);
4008                         }
4009                         local_bh_disable();
4010                 }
4011
4012                 if (eaten <= 0) {
4013 queue_and_out:
4014                         if (eaten < 0 &&
4015                             tcp_try_rmem_schedule(sk, skb->truesize))
4016                                 goto drop;
4017
4018                         skb_set_owner_r(skb, sk);
4019                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4020                 }
4021                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4022                 if (skb->len)
4023                         tcp_event_data_recv(sk, skb);
4024                 if (th->fin)
4025                         tcp_fin(skb, sk, th);
4026
4027                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4028                         tcp_ofo_queue(sk);
4029
4030                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4031                          * gap in queue is filled.
4032                          */
4033                         if (skb_queue_empty(&tp->out_of_order_queue))
4034                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4035                 }
4036
4037                 if (tp->rx_opt.num_sacks)
4038                         tcp_sack_remove(tp);
4039
4040                 tcp_fast_path_check(sk);
4041
4042                 if (eaten > 0)
4043                         __kfree_skb(skb);
4044                 else if (!sock_flag(sk, SOCK_DEAD))
4045                         sk->sk_data_ready(sk, 0);
4046                 return;
4047         }
4048
4049         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4050                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4051                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4052                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4053
4054 out_of_window:
4055                 tcp_enter_quickack_mode(sk);
4056                 inet_csk_schedule_ack(sk);
4057 drop:
4058                 __kfree_skb(skb);
4059                 return;
4060         }
4061
4062         /* Out of window. F.e. zero window probe. */
4063         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4064                 goto out_of_window;
4065
4066         tcp_enter_quickack_mode(sk);
4067
4068         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4069                 /* Partial packet, seq < rcv_next < end_seq */
4070                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4071                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4072                            TCP_SKB_CB(skb)->end_seq);
4073
4074                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4075
4076                 /* If window is closed, drop tail of packet. But after
4077                  * remembering D-SACK for its head made in previous line.
4078                  */
4079                 if (!tcp_receive_window(tp))
4080                         goto out_of_window;
4081                 goto queue_and_out;
4082         }
4083
4084         TCP_ECN_check_ce(tp, skb);
4085
4086         if (tcp_try_rmem_schedule(sk, skb->truesize))
4087                 goto drop;
4088
4089         /* Disable header prediction. */
4090         tp->pred_flags = 0;
4091         inet_csk_schedule_ack(sk);
4092
4093         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4094                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4095
4096         skb_set_owner_r(skb, sk);
4097
4098         if (!skb_peek(&tp->out_of_order_queue)) {
4099                 /* Initial out of order segment, build 1 SACK. */
4100                 if (tcp_is_sack(tp)) {
4101                         tp->rx_opt.num_sacks = 1;
4102                         tp->rx_opt.dsack     = 0;
4103                         tp->rx_opt.eff_sacks = 1;
4104                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4105                         tp->selective_acks[0].end_seq =
4106                                                 TCP_SKB_CB(skb)->end_seq;
4107                 }
4108                 __skb_queue_head(&tp->out_of_order_queue, skb);
4109         } else {
4110                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4111                 u32 seq = TCP_SKB_CB(skb)->seq;
4112                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4113
4114                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4115                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4116
4117                         if (!tp->rx_opt.num_sacks ||
4118                             tp->selective_acks[0].end_seq != seq)
4119                                 goto add_sack;
4120
4121                         /* Common case: data arrive in order after hole. */
4122                         tp->selective_acks[0].end_seq = end_seq;
4123                         return;
4124                 }
4125
4126                 /* Find place to insert this segment. */
4127                 do {
4128                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4129                                 break;
4130                 } while ((skb1 = skb1->prev) !=
4131                          (struct sk_buff *)&tp->out_of_order_queue);
4132
4133                 /* Do skb overlap to previous one? */
4134                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4135                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4136                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4137                                 /* All the bits are present. Drop. */
4138                                 __kfree_skb(skb);
4139                                 tcp_dsack_set(sk, seq, end_seq);
4140                                 goto add_sack;
4141                         }
4142                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4143                                 /* Partial overlap. */
4144                                 tcp_dsack_set(sk, seq,
4145                                               TCP_SKB_CB(skb1)->end_seq);
4146                         } else {
4147                                 skb1 = skb1->prev;
4148                         }
4149                 }
4150                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4151
4152                 /* And clean segments covered by new one as whole. */
4153                 while ((skb1 = skb->next) !=
4154                        (struct sk_buff *)&tp->out_of_order_queue &&
4155                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4156                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4157                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4158                                                  end_seq);
4159                                 break;
4160                         }
4161                         __skb_unlink(skb1, &tp->out_of_order_queue);
4162                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4163                                          TCP_SKB_CB(skb1)->end_seq);
4164                         __kfree_skb(skb1);
4165                 }
4166
4167 add_sack:
4168                 if (tcp_is_sack(tp))
4169                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4170         }
4171 }
4172
4173 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4174                                         struct sk_buff_head *list)
4175 {
4176         struct sk_buff *next = skb->next;
4177
4178         __skb_unlink(skb, list);
4179         __kfree_skb(skb);
4180         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4181
4182         return next;
4183 }
4184
4185 /* Collapse contiguous sequence of skbs head..tail with
4186  * sequence numbers start..end.
4187  * Segments with FIN/SYN are not collapsed (only because this
4188  * simplifies code)
4189  */
4190 static void
4191 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4192              struct sk_buff *head, struct sk_buff *tail,
4193              u32 start, u32 end)
4194 {
4195         struct sk_buff *skb;
4196
4197         /* First, check that queue is collapsible and find
4198          * the point where collapsing can be useful. */
4199         for (skb = head; skb != tail;) {
4200                 /* No new bits? It is possible on ofo queue. */
4201                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4202                         skb = tcp_collapse_one(sk, skb, list);
4203                         continue;
4204                 }
4205
4206                 /* The first skb to collapse is:
4207                  * - not SYN/FIN and
4208                  * - bloated or contains data before "start" or
4209                  *   overlaps to the next one.
4210                  */
4211                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4212                     (tcp_win_from_space(skb->truesize) > skb->len ||
4213                      before(TCP_SKB_CB(skb)->seq, start) ||
4214                      (skb->next != tail &&
4215                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4216                         break;
4217
4218                 /* Decided to skip this, advance start seq. */
4219                 start = TCP_SKB_CB(skb)->end_seq;
4220                 skb = skb->next;
4221         }
4222         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4223                 return;
4224
4225         while (before(start, end)) {
4226                 struct sk_buff *nskb;
4227                 unsigned int header = skb_headroom(skb);
4228                 int copy = SKB_MAX_ORDER(header, 0);
4229
4230                 /* Too big header? This can happen with IPv6. */
4231                 if (copy < 0)
4232                         return;
4233                 if (end - start < copy)
4234                         copy = end - start;
4235                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4236                 if (!nskb)
4237                         return;
4238
4239                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4240                 skb_set_network_header(nskb, (skb_network_header(skb) -
4241                                               skb->head));
4242                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4243                                                 skb->head));
4244                 skb_reserve(nskb, header);
4245                 memcpy(nskb->head, skb->head, header);
4246                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4247                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4248                 __skb_insert(nskb, skb->prev, skb, list);
4249                 skb_set_owner_r(nskb, sk);
4250
4251                 /* Copy data, releasing collapsed skbs. */
4252                 while (copy > 0) {
4253                         int offset = start - TCP_SKB_CB(skb)->seq;
4254                         int size = TCP_SKB_CB(skb)->end_seq - start;
4255
4256                         BUG_ON(offset < 0);
4257                         if (size > 0) {
4258                                 size = min(copy, size);
4259                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4260                                         BUG();
4261                                 TCP_SKB_CB(nskb)->end_seq += size;
4262                                 copy -= size;
4263                                 start += size;
4264                         }
4265                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4266                                 skb = tcp_collapse_one(sk, skb, list);
4267                                 if (skb == tail ||
4268                                     tcp_hdr(skb)->syn ||
4269                                     tcp_hdr(skb)->fin)
4270                                         return;
4271                         }
4272                 }
4273         }
4274 }
4275
4276 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4277  * and tcp_collapse() them until all the queue is collapsed.
4278  */
4279 static void tcp_collapse_ofo_queue(struct sock *sk)
4280 {
4281         struct tcp_sock *tp = tcp_sk(sk);
4282         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4283         struct sk_buff *head;
4284         u32 start, end;
4285
4286         if (skb == NULL)
4287                 return;
4288
4289         start = TCP_SKB_CB(skb)->seq;
4290         end = TCP_SKB_CB(skb)->end_seq;
4291         head = skb;
4292
4293         for (;;) {
4294                 skb = skb->next;
4295
4296                 /* Segment is terminated when we see gap or when
4297                  * we are at the end of all the queue. */
4298                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4299                     after(TCP_SKB_CB(skb)->seq, end) ||
4300                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4301                         tcp_collapse(sk, &tp->out_of_order_queue,
4302                                      head, skb, start, end);
4303                         head = skb;
4304                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4305                                 break;
4306                         /* Start new segment */
4307                         start = TCP_SKB_CB(skb)->seq;
4308                         end = TCP_SKB_CB(skb)->end_seq;
4309                 } else {
4310                         if (before(TCP_SKB_CB(skb)->seq, start))
4311                                 start = TCP_SKB_CB(skb)->seq;
4312                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4313                                 end = TCP_SKB_CB(skb)->end_seq;
4314                 }
4315         }
4316 }
4317
4318 /*
4319  * Purge the out-of-order queue.
4320  * Return true if queue was pruned.
4321  */
4322 static int tcp_prune_ofo_queue(struct sock *sk)
4323 {
4324         struct tcp_sock *tp = tcp_sk(sk);
4325         int res = 0;
4326
4327         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4328                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4329                 __skb_queue_purge(&tp->out_of_order_queue);
4330
4331                 /* Reset SACK state.  A conforming SACK implementation will
4332                  * do the same at a timeout based retransmit.  When a connection
4333                  * is in a sad state like this, we care only about integrity
4334                  * of the connection not performance.
4335                  */
4336                 if (tp->rx_opt.sack_ok)
4337                         tcp_sack_reset(&tp->rx_opt);
4338                 sk_mem_reclaim(sk);
4339                 res = 1;
4340         }
4341         return res;
4342 }
4343
4344 /* Reduce allocated memory if we can, trying to get
4345  * the socket within its memory limits again.
4346  *
4347  * Return less than zero if we should start dropping frames
4348  * until the socket owning process reads some of the data
4349  * to stabilize the situation.
4350  */
4351 static int tcp_prune_queue(struct sock *sk)
4352 {
4353         struct tcp_sock *tp = tcp_sk(sk);
4354
4355         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4356
4357         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4358
4359         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4360                 tcp_clamp_window(sk);
4361         else if (tcp_memory_pressure)
4362                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4363
4364         tcp_collapse_ofo_queue(sk);
4365         tcp_collapse(sk, &sk->sk_receive_queue,
4366                      sk->sk_receive_queue.next,
4367                      (struct sk_buff *)&sk->sk_receive_queue,
4368                      tp->copied_seq, tp->rcv_nxt);
4369         sk_mem_reclaim(sk);
4370
4371         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4372                 return 0;
4373
4374         /* Collapsing did not help, destructive actions follow.
4375          * This must not ever occur. */
4376
4377         tcp_prune_ofo_queue(sk);
4378
4379         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4380                 return 0;
4381
4382         /* If we are really being abused, tell the caller to silently
4383          * drop receive data on the floor.  It will get retransmitted
4384          * and hopefully then we'll have sufficient space.
4385          */
4386         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4387
4388         /* Massive buffer overcommit. */
4389         tp->pred_flags = 0;
4390         return -1;
4391 }
4392
4393 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4394  * As additional protections, we do not touch cwnd in retransmission phases,
4395  * and if application hit its sndbuf limit recently.
4396  */
4397 void tcp_cwnd_application_limited(struct sock *sk)
4398 {
4399         struct tcp_sock *tp = tcp_sk(sk);
4400
4401         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4402             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4403                 /* Limited by application or receiver window. */
4404                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4405                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4406                 if (win_used < tp->snd_cwnd) {
4407                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4408                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4409                 }
4410                 tp->snd_cwnd_used = 0;
4411         }
4412         tp->snd_cwnd_stamp = tcp_time_stamp;
4413 }
4414
4415 static int tcp_should_expand_sndbuf(struct sock *sk)
4416 {
4417         struct tcp_sock *tp = tcp_sk(sk);
4418
4419         /* If the user specified a specific send buffer setting, do
4420          * not modify it.
4421          */
4422         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4423                 return 0;
4424
4425         /* If we are under global TCP memory pressure, do not expand.  */
4426         if (tcp_memory_pressure)
4427                 return 0;
4428
4429         /* If we are under soft global TCP memory pressure, do not expand.  */
4430         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4431                 return 0;
4432
4433         /* If we filled the congestion window, do not expand.  */
4434         if (tp->packets_out >= tp->snd_cwnd)
4435                 return 0;
4436
4437         return 1;
4438 }
4439
4440 /* When incoming ACK allowed to free some skb from write_queue,
4441  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4442  * on the exit from tcp input handler.
4443  *
4444  * PROBLEM: sndbuf expansion does not work well with largesend.
4445  */
4446 static void tcp_new_space(struct sock *sk)
4447 {
4448         struct tcp_sock *tp = tcp_sk(sk);
4449
4450         if (tcp_should_expand_sndbuf(sk)) {
4451                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4452                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4453                     demanded = max_t(unsigned int, tp->snd_cwnd,
4454                                      tp->reordering + 1);
4455                 sndmem *= 2 * demanded;
4456                 if (sndmem > sk->sk_sndbuf)
4457                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4458                 tp->snd_cwnd_stamp = tcp_time_stamp;
4459         }
4460
4461         sk->sk_write_space(sk);
4462 }
4463
4464 static void tcp_check_space(struct sock *sk)
4465 {
4466         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4467                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4468                 if (sk->sk_socket &&
4469                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4470                         tcp_new_space(sk);
4471         }
4472 }
4473
4474 static inline void tcp_data_snd_check(struct sock *sk)
4475 {
4476         tcp_push_pending_frames(sk);
4477         tcp_check_space(sk);
4478 }
4479
4480 /*
4481  * Check if sending an ack is needed.
4482  */
4483 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4484 {
4485         struct tcp_sock *tp = tcp_sk(sk);
4486
4487             /* More than one full frame received... */
4488         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4489              /* ... and right edge of window advances far enough.
4490               * (tcp_recvmsg() will send ACK otherwise). Or...
4491               */
4492              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4493             /* We ACK each frame or... */
4494             tcp_in_quickack_mode(sk) ||
4495             /* We have out of order data. */
4496             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4497                 /* Then ack it now */
4498                 tcp_send_ack(sk);
4499         } else {
4500                 /* Else, send delayed ack. */
4501                 tcp_send_delayed_ack(sk);
4502         }
4503 }
4504
4505 static inline void tcp_ack_snd_check(struct sock *sk)
4506 {
4507         if (!inet_csk_ack_scheduled(sk)) {
4508                 /* We sent a data segment already. */
4509                 return;
4510         }
4511         __tcp_ack_snd_check(sk, 1);
4512 }
4513
4514 /*
4515  *      This routine is only called when we have urgent data
4516  *      signaled. Its the 'slow' part of tcp_urg. It could be
4517  *      moved inline now as tcp_urg is only called from one
4518  *      place. We handle URGent data wrong. We have to - as
4519  *      BSD still doesn't use the correction from RFC961.
4520  *      For 1003.1g we should support a new option TCP_STDURG to permit
4521  *      either form (or just set the sysctl tcp_stdurg).
4522  */
4523
4524 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4525 {
4526         struct tcp_sock *tp = tcp_sk(sk);
4527         u32 ptr = ntohs(th->urg_ptr);
4528
4529         if (ptr && !sysctl_tcp_stdurg)
4530                 ptr--;
4531         ptr += ntohl(th->seq);
4532
4533         /* Ignore urgent data that we've already seen and read. */
4534         if (after(tp->copied_seq, ptr))
4535                 return;
4536
4537         /* Do not replay urg ptr.
4538          *
4539          * NOTE: interesting situation not covered by specs.
4540          * Misbehaving sender may send urg ptr, pointing to segment,
4541          * which we already have in ofo queue. We are not able to fetch
4542          * such data and will stay in TCP_URG_NOTYET until will be eaten
4543          * by recvmsg(). Seems, we are not obliged to handle such wicked
4544          * situations. But it is worth to think about possibility of some
4545          * DoSes using some hypothetical application level deadlock.
4546          */
4547         if (before(ptr, tp->rcv_nxt))
4548                 return;
4549
4550         /* Do we already have a newer (or duplicate) urgent pointer? */
4551         if (tp->urg_data && !after(ptr, tp->urg_seq))
4552                 return;
4553
4554         /* Tell the world about our new urgent pointer. */
4555         sk_send_sigurg(sk);
4556
4557         /* We may be adding urgent data when the last byte read was
4558          * urgent. To do this requires some care. We cannot just ignore
4559          * tp->copied_seq since we would read the last urgent byte again
4560          * as data, nor can we alter copied_seq until this data arrives
4561          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4562          *
4563          * NOTE. Double Dutch. Rendering to plain English: author of comment
4564          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4565          * and expect that both A and B disappear from stream. This is _wrong_.
4566          * Though this happens in BSD with high probability, this is occasional.
4567          * Any application relying on this is buggy. Note also, that fix "works"
4568          * only in this artificial test. Insert some normal data between A and B and we will
4569          * decline of BSD again. Verdict: it is better to remove to trap
4570          * buggy users.
4571          */
4572         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4573             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4574                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4575                 tp->copied_seq++;
4576                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4577                         __skb_unlink(skb, &sk->sk_receive_queue);
4578                         __kfree_skb(skb);
4579                 }
4580         }
4581
4582         tp->urg_data = TCP_URG_NOTYET;
4583         tp->urg_seq = ptr;
4584
4585         /* Disable header prediction. */
4586         tp->pred_flags = 0;
4587 }
4588
4589 /* This is the 'fast' part of urgent handling. */
4590 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4591 {
4592         struct tcp_sock *tp = tcp_sk(sk);
4593
4594         /* Check if we get a new urgent pointer - normally not. */
4595         if (th->urg)
4596                 tcp_check_urg(sk, th);
4597
4598         /* Do we wait for any urgent data? - normally not... */
4599         if (tp->urg_data == TCP_URG_NOTYET) {
4600                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4601                           th->syn;
4602
4603                 /* Is the urgent pointer pointing into this packet? */
4604                 if (ptr < skb->len) {
4605                         u8 tmp;
4606                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4607                                 BUG();
4608                         tp->urg_data = TCP_URG_VALID | tmp;
4609                         if (!sock_flag(sk, SOCK_DEAD))
4610                                 sk->sk_data_ready(sk, 0);
4611                 }
4612         }
4613 }
4614
4615 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4616 {
4617         struct tcp_sock *tp = tcp_sk(sk);
4618         int chunk = skb->len - hlen;
4619         int err;
4620
4621         local_bh_enable();
4622         if (skb_csum_unnecessary(skb))
4623                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4624         else
4625                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4626                                                        tp->ucopy.iov);
4627
4628         if (!err) {
4629                 tp->ucopy.len -= chunk;
4630                 tp->copied_seq += chunk;
4631                 tcp_rcv_space_adjust(sk);
4632         }
4633
4634         local_bh_disable();
4635         return err;
4636 }
4637
4638 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4639                                             struct sk_buff *skb)
4640 {
4641         __sum16 result;
4642
4643         if (sock_owned_by_user(sk)) {
4644                 local_bh_enable();
4645                 result = __tcp_checksum_complete(skb);
4646                 local_bh_disable();
4647         } else {
4648                 result = __tcp_checksum_complete(skb);
4649         }
4650         return result;
4651 }
4652
4653 static inline int tcp_checksum_complete_user(struct sock *sk,
4654                                              struct sk_buff *skb)
4655 {
4656         return !skb_csum_unnecessary(skb) &&
4657                __tcp_checksum_complete_user(sk, skb);
4658 }
4659
4660 #ifdef CONFIG_NET_DMA
4661 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4662                                   int hlen)
4663 {
4664         struct tcp_sock *tp = tcp_sk(sk);
4665         int chunk = skb->len - hlen;
4666         int dma_cookie;
4667         int copied_early = 0;
4668
4669         if (tp->ucopy.wakeup)
4670                 return 0;
4671
4672         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4673                 tp->ucopy.dma_chan = get_softnet_dma();
4674
4675         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4676
4677                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4678                                                          skb, hlen,
4679                                                          tp->ucopy.iov, chunk,
4680                                                          tp->ucopy.pinned_list);
4681
4682                 if (dma_cookie < 0)
4683                         goto out;
4684
4685                 tp->ucopy.dma_cookie = dma_cookie;
4686                 copied_early = 1;
4687
4688                 tp->ucopy.len -= chunk;
4689                 tp->copied_seq += chunk;
4690                 tcp_rcv_space_adjust(sk);
4691
4692                 if ((tp->ucopy.len == 0) ||
4693                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4694                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4695                         tp->ucopy.wakeup = 1;
4696                         sk->sk_data_ready(sk, 0);
4697                 }
4698         } else if (chunk > 0) {
4699                 tp->ucopy.wakeup = 1;
4700                 sk->sk_data_ready(sk, 0);
4701         }
4702 out:
4703         return copied_early;
4704 }
4705 #endif /* CONFIG_NET_DMA */
4706
4707 /* Does PAWS and seqno based validation of an incoming segment, flags will
4708  * play significant role here.
4709  */
4710 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4711                               struct tcphdr *th, int syn_inerr)
4712 {
4713         struct tcp_sock *tp = tcp_sk(sk);
4714
4715         /* RFC1323: H1. Apply PAWS check first. */
4716         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4717             tcp_paws_discard(sk, skb)) {
4718                 if (!th->rst) {
4719                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4720                         tcp_send_dupack(sk, skb);
4721                         goto discard;
4722                 }
4723                 /* Reset is accepted even if it did not pass PAWS. */
4724         }
4725
4726         /* Step 1: check sequence number */
4727         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4728                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4729                  * (RST) segments are validated by checking their SEQ-fields."
4730                  * And page 69: "If an incoming segment is not acceptable,
4731                  * an acknowledgment should be sent in reply (unless the RST
4732                  * bit is set, if so drop the segment and return)".
4733                  */
4734                 if (!th->rst)
4735                         tcp_send_dupack(sk, skb);
4736                 goto discard;
4737         }
4738
4739         /* Step 2: check RST bit */
4740         if (th->rst) {
4741                 tcp_reset(sk);
4742                 goto discard;
4743         }
4744
4745         /* ts_recent update must be made after we are sure that the packet
4746          * is in window.
4747          */
4748         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4749
4750         /* step 3: check security and precedence [ignored] */
4751
4752         /* step 4: Check for a SYN in window. */
4753         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4754                 if (syn_inerr)
4755                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4756                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4757                 tcp_reset(sk);
4758                 return -1;
4759         }
4760
4761         return 1;
4762
4763 discard:
4764         __kfree_skb(skb);
4765         return 0;
4766 }
4767
4768 /*
4769  *      TCP receive function for the ESTABLISHED state.
4770  *
4771  *      It is split into a fast path and a slow path. The fast path is
4772  *      disabled when:
4773  *      - A zero window was announced from us - zero window probing
4774  *        is only handled properly in the slow path.
4775  *      - Out of order segments arrived.
4776  *      - Urgent data is expected.
4777  *      - There is no buffer space left
4778  *      - Unexpected TCP flags/window values/header lengths are received
4779  *        (detected by checking the TCP header against pred_flags)
4780  *      - Data is sent in both directions. Fast path only supports pure senders
4781  *        or pure receivers (this means either the sequence number or the ack
4782  *        value must stay constant)
4783  *      - Unexpected TCP option.
4784  *
4785  *      When these conditions are not satisfied it drops into a standard
4786  *      receive procedure patterned after RFC793 to handle all cases.
4787  *      The first three cases are guaranteed by proper pred_flags setting,
4788  *      the rest is checked inline. Fast processing is turned on in
4789  *      tcp_data_queue when everything is OK.
4790  */
4791 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4792                         struct tcphdr *th, unsigned len)
4793 {
4794         struct tcp_sock *tp = tcp_sk(sk);
4795         int res;
4796
4797         /*
4798          *      Header prediction.
4799          *      The code loosely follows the one in the famous
4800          *      "30 instruction TCP receive" Van Jacobson mail.
4801          *
4802          *      Van's trick is to deposit buffers into socket queue
4803          *      on a device interrupt, to call tcp_recv function
4804          *      on the receive process context and checksum and copy
4805          *      the buffer to user space. smart...
4806          *
4807          *      Our current scheme is not silly either but we take the
4808          *      extra cost of the net_bh soft interrupt processing...
4809          *      We do checksum and copy also but from device to kernel.
4810          */
4811
4812         tp->rx_opt.saw_tstamp = 0;
4813
4814         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4815          *      if header_prediction is to be made
4816          *      'S' will always be tp->tcp_header_len >> 2
4817          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4818          *  turn it off (when there are holes in the receive
4819          *       space for instance)
4820          *      PSH flag is ignored.
4821          */
4822
4823         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4824             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4825                 int tcp_header_len = tp->tcp_header_len;
4826
4827                 /* Timestamp header prediction: tcp_header_len
4828                  * is automatically equal to th->doff*4 due to pred_flags
4829                  * match.
4830                  */
4831
4832                 /* Check timestamp */
4833                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4834                         /* No? Slow path! */
4835                         if (!tcp_parse_aligned_timestamp(tp, th))
4836                                 goto slow_path;
4837
4838                         /* If PAWS failed, check it more carefully in slow path */
4839                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4840                                 goto slow_path;
4841
4842                         /* DO NOT update ts_recent here, if checksum fails
4843                          * and timestamp was corrupted part, it will result
4844                          * in a hung connection since we will drop all
4845                          * future packets due to the PAWS test.
4846                          */
4847                 }
4848
4849                 if (len <= tcp_header_len) {
4850                         /* Bulk data transfer: sender */
4851                         if (len == tcp_header_len) {
4852                                 /* Predicted packet is in window by definition.
4853                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4854                                  * Hence, check seq<=rcv_wup reduces to:
4855                                  */
4856                                 if (tcp_header_len ==
4857                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4858                                     tp->rcv_nxt == tp->rcv_wup)
4859                                         tcp_store_ts_recent(tp);
4860
4861                                 /* We know that such packets are checksummed
4862                                  * on entry.
4863                                  */
4864                                 tcp_ack(sk, skb, 0);
4865                                 __kfree_skb(skb);
4866                                 tcp_data_snd_check(sk);
4867                                 return 0;
4868                         } else { /* Header too small */
4869                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4870                                 goto discard;
4871                         }
4872                 } else {
4873                         int eaten = 0;
4874                         int copied_early = 0;
4875
4876                         if (tp->copied_seq == tp->rcv_nxt &&
4877                             len - tcp_header_len <= tp->ucopy.len) {
4878 #ifdef CONFIG_NET_DMA
4879                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4880                                         copied_early = 1;
4881                                         eaten = 1;
4882                                 }
4883 #endif
4884                                 if (tp->ucopy.task == current &&
4885                                     sock_owned_by_user(sk) && !copied_early) {
4886                                         __set_current_state(TASK_RUNNING);
4887
4888                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4889                                                 eaten = 1;
4890                                 }
4891                                 if (eaten) {
4892                                         /* Predicted packet is in window by definition.
4893                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4894                                          * Hence, check seq<=rcv_wup reduces to:
4895                                          */
4896                                         if (tcp_header_len ==
4897                                             (sizeof(struct tcphdr) +
4898                                              TCPOLEN_TSTAMP_ALIGNED) &&
4899                                             tp->rcv_nxt == tp->rcv_wup)
4900                                                 tcp_store_ts_recent(tp);
4901
4902                                         tcp_rcv_rtt_measure_ts(sk, skb);
4903
4904                                         __skb_pull(skb, tcp_header_len);
4905                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4906                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4907                                 }
4908                                 if (copied_early)
4909                                         tcp_cleanup_rbuf(sk, skb->len);
4910                         }
4911                         if (!eaten) {
4912                                 if (tcp_checksum_complete_user(sk, skb))
4913                                         goto csum_error;
4914
4915                                 /* Predicted packet is in window by definition.
4916                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4917                                  * Hence, check seq<=rcv_wup reduces to:
4918                                  */
4919                                 if (tcp_header_len ==
4920                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4921                                     tp->rcv_nxt == tp->rcv_wup)
4922                                         tcp_store_ts_recent(tp);
4923
4924                                 tcp_rcv_rtt_measure_ts(sk, skb);
4925
4926                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4927                                         goto step5;
4928
4929                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
4930
4931                                 /* Bulk data transfer: receiver */
4932                                 __skb_pull(skb, tcp_header_len);
4933                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4934                                 skb_set_owner_r(skb, sk);
4935                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4936                         }
4937
4938                         tcp_event_data_recv(sk, skb);
4939
4940                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4941                                 /* Well, only one small jumplet in fast path... */
4942                                 tcp_ack(sk, skb, FLAG_DATA);
4943                                 tcp_data_snd_check(sk);
4944                                 if (!inet_csk_ack_scheduled(sk))
4945                                         goto no_ack;
4946                         }
4947
4948                         __tcp_ack_snd_check(sk, 0);
4949 no_ack:
4950 #ifdef CONFIG_NET_DMA
4951                         if (copied_early)
4952                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4953                         else
4954 #endif
4955                         if (eaten)
4956                                 __kfree_skb(skb);
4957                         else
4958                                 sk->sk_data_ready(sk, 0);
4959                         return 0;
4960                 }
4961         }
4962
4963 slow_path:
4964         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4965                 goto csum_error;
4966
4967         /*
4968          *      Standard slow path.
4969          */
4970
4971         res = tcp_validate_incoming(sk, skb, th, 1);
4972         if (res <= 0)
4973                 return -res;
4974
4975 step5:
4976         if (th->ack)
4977                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4978
4979         tcp_rcv_rtt_measure_ts(sk, skb);
4980
4981         /* Process urgent data. */
4982         tcp_urg(sk, skb, th);
4983
4984         /* step 7: process the segment text */
4985         tcp_data_queue(sk, skb);
4986
4987         tcp_data_snd_check(sk);
4988         tcp_ack_snd_check(sk);
4989         return 0;
4990
4991 csum_error:
4992         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4993
4994 discard:
4995         __kfree_skb(skb);
4996         return 0;
4997 }
4998
4999 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5000                                          struct tcphdr *th, unsigned len)
5001 {
5002         struct tcp_sock *tp = tcp_sk(sk);
5003         struct inet_connection_sock *icsk = inet_csk(sk);
5004         int saved_clamp = tp->rx_opt.mss_clamp;
5005
5006         tcp_parse_options(skb, &tp->rx_opt, 0);
5007
5008         if (th->ack) {
5009                 /* rfc793:
5010                  * "If the state is SYN-SENT then
5011                  *    first check the ACK bit
5012                  *      If the ACK bit is set
5013                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5014                  *        a reset (unless the RST bit is set, if so drop
5015                  *        the segment and return)"
5016                  *
5017                  *  We do not send data with SYN, so that RFC-correct
5018                  *  test reduces to:
5019                  */
5020                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5021                         goto reset_and_undo;
5022
5023                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5024                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5025                              tcp_time_stamp)) {
5026                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5027                         goto reset_and_undo;
5028                 }
5029
5030                 /* Now ACK is acceptable.
5031                  *
5032                  * "If the RST bit is set
5033                  *    If the ACK was acceptable then signal the user "error:
5034                  *    connection reset", drop the segment, enter CLOSED state,
5035                  *    delete TCB, and return."
5036                  */
5037
5038                 if (th->rst) {
5039                         tcp_reset(sk);
5040                         goto discard;
5041                 }
5042
5043                 /* rfc793:
5044                  *   "fifth, if neither of the SYN or RST bits is set then
5045                  *    drop the segment and return."
5046                  *
5047                  *    See note below!
5048                  *                                        --ANK(990513)
5049                  */
5050                 if (!th->syn)
5051                         goto discard_and_undo;
5052
5053                 /* rfc793:
5054                  *   "If the SYN bit is on ...
5055                  *    are acceptable then ...
5056                  *    (our SYN has been ACKed), change the connection
5057                  *    state to ESTABLISHED..."
5058                  */
5059
5060                 TCP_ECN_rcv_synack(tp, th);
5061
5062                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5063                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5064
5065                 /* Ok.. it's good. Set up sequence numbers and
5066                  * move to established.
5067                  */
5068                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5069                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5070
5071                 /* RFC1323: The window in SYN & SYN/ACK segments is
5072                  * never scaled.
5073                  */
5074                 tp->snd_wnd = ntohs(th->window);
5075                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5076
5077                 if (!tp->rx_opt.wscale_ok) {
5078                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5079                         tp->window_clamp = min(tp->window_clamp, 65535U);
5080                 }
5081
5082                 if (tp->rx_opt.saw_tstamp) {
5083                         tp->rx_opt.tstamp_ok       = 1;
5084                         tp->tcp_header_len =
5085                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5086                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5087                         tcp_store_ts_recent(tp);
5088                 } else {
5089                         tp->tcp_header_len = sizeof(struct tcphdr);
5090                 }
5091
5092                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5093                         tcp_enable_fack(tp);
5094
5095                 tcp_mtup_init(sk);
5096                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5097                 tcp_initialize_rcv_mss(sk);
5098
5099                 /* Remember, tcp_poll() does not lock socket!
5100                  * Change state from SYN-SENT only after copied_seq
5101                  * is initialized. */
5102                 tp->copied_seq = tp->rcv_nxt;
5103                 smp_mb();
5104                 tcp_set_state(sk, TCP_ESTABLISHED);
5105
5106                 security_inet_conn_established(sk, skb);
5107
5108                 /* Make sure socket is routed, for correct metrics.  */
5109                 icsk->icsk_af_ops->rebuild_header(sk);
5110
5111                 tcp_init_metrics(sk);
5112
5113                 tcp_init_congestion_control(sk);
5114
5115                 /* Prevent spurious tcp_cwnd_restart() on first data
5116                  * packet.
5117                  */
5118                 tp->lsndtime = tcp_time_stamp;
5119
5120                 tcp_init_buffer_space(sk);
5121
5122                 if (sock_flag(sk, SOCK_KEEPOPEN))
5123                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5124
5125                 if (!tp->rx_opt.snd_wscale)
5126                         __tcp_fast_path_on(tp, tp->snd_wnd);
5127                 else
5128                         tp->pred_flags = 0;
5129
5130                 if (!sock_flag(sk, SOCK_DEAD)) {
5131                         sk->sk_state_change(sk);
5132                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5133                 }
5134
5135                 if (sk->sk_write_pending ||
5136                     icsk->icsk_accept_queue.rskq_defer_accept ||
5137                     icsk->icsk_ack.pingpong) {
5138                         /* Save one ACK. Data will be ready after
5139                          * several ticks, if write_pending is set.
5140                          *
5141                          * It may be deleted, but with this feature tcpdumps
5142                          * look so _wonderfully_ clever, that I was not able
5143                          * to stand against the temptation 8)     --ANK
5144                          */
5145                         inet_csk_schedule_ack(sk);
5146                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5147                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5148                         tcp_incr_quickack(sk);
5149                         tcp_enter_quickack_mode(sk);
5150                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5151                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5152
5153 discard:
5154                         __kfree_skb(skb);
5155                         return 0;
5156                 } else {
5157                         tcp_send_ack(sk);
5158                 }
5159                 return -1;
5160         }
5161
5162         /* No ACK in the segment */
5163
5164         if (th->rst) {
5165                 /* rfc793:
5166                  * "If the RST bit is set
5167                  *
5168                  *      Otherwise (no ACK) drop the segment and return."
5169                  */
5170
5171                 goto discard_and_undo;
5172         }
5173
5174         /* PAWS check. */
5175         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5176             tcp_paws_check(&tp->rx_opt, 0))
5177                 goto discard_and_undo;
5178
5179         if (th->syn) {
5180                 /* We see SYN without ACK. It is attempt of
5181                  * simultaneous connect with crossed SYNs.
5182                  * Particularly, it can be connect to self.
5183                  */
5184                 tcp_set_state(sk, TCP_SYN_RECV);
5185
5186                 if (tp->rx_opt.saw_tstamp) {
5187                         tp->rx_opt.tstamp_ok = 1;
5188                         tcp_store_ts_recent(tp);
5189                         tp->tcp_header_len =
5190                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5191                 } else {
5192                         tp->tcp_header_len = sizeof(struct tcphdr);
5193                 }
5194
5195                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5196                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5197
5198                 /* RFC1323: The window in SYN & SYN/ACK segments is
5199                  * never scaled.
5200                  */
5201                 tp->snd_wnd    = ntohs(th->window);
5202                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5203                 tp->max_window = tp->snd_wnd;
5204
5205                 TCP_ECN_rcv_syn(tp, th);
5206
5207                 tcp_mtup_init(sk);
5208                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5209                 tcp_initialize_rcv_mss(sk);
5210
5211                 tcp_send_synack(sk);
5212 #if 0
5213                 /* Note, we could accept data and URG from this segment.
5214                  * There are no obstacles to make this.
5215                  *
5216                  * However, if we ignore data in ACKless segments sometimes,
5217                  * we have no reasons to accept it sometimes.
5218                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5219                  * is not flawless. So, discard packet for sanity.
5220                  * Uncomment this return to process the data.
5221                  */
5222                 return -1;
5223 #else
5224                 goto discard;
5225 #endif
5226         }
5227         /* "fifth, if neither of the SYN or RST bits is set then
5228          * drop the segment and return."
5229          */
5230
5231 discard_and_undo:
5232         tcp_clear_options(&tp->rx_opt);
5233         tp->rx_opt.mss_clamp = saved_clamp;
5234         goto discard;
5235
5236 reset_and_undo:
5237         tcp_clear_options(&tp->rx_opt);
5238         tp->rx_opt.mss_clamp = saved_clamp;
5239         return 1;
5240 }
5241
5242 /*
5243  *      This function implements the receiving procedure of RFC 793 for
5244  *      all states except ESTABLISHED and TIME_WAIT.
5245  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5246  *      address independent.
5247  */
5248
5249 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5250                           struct tcphdr *th, unsigned len)
5251 {
5252         struct tcp_sock *tp = tcp_sk(sk);
5253         struct inet_connection_sock *icsk = inet_csk(sk);
5254         int queued = 0;
5255         int res;
5256
5257         tp->rx_opt.saw_tstamp = 0;
5258
5259         switch (sk->sk_state) {
5260         case TCP_CLOSE:
5261                 goto discard;
5262
5263         case TCP_LISTEN:
5264                 if (th->ack)
5265                         return 1;
5266
5267                 if (th->rst)
5268                         goto discard;
5269
5270                 if (th->syn) {
5271                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5272                                 return 1;
5273
5274                         /* Now we have several options: In theory there is
5275                          * nothing else in the frame. KA9Q has an option to
5276                          * send data with the syn, BSD accepts data with the
5277                          * syn up to the [to be] advertised window and
5278                          * Solaris 2.1 gives you a protocol error. For now
5279                          * we just ignore it, that fits the spec precisely
5280                          * and avoids incompatibilities. It would be nice in
5281                          * future to drop through and process the data.
5282                          *
5283                          * Now that TTCP is starting to be used we ought to
5284                          * queue this data.
5285                          * But, this leaves one open to an easy denial of
5286                          * service attack, and SYN cookies can't defend
5287                          * against this problem. So, we drop the data
5288                          * in the interest of security over speed unless
5289                          * it's still in use.
5290                          */
5291                         kfree_skb(skb);
5292                         return 0;
5293                 }
5294                 goto discard;
5295
5296         case TCP_SYN_SENT:
5297                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5298                 if (queued >= 0)
5299                         return queued;
5300
5301                 /* Do step6 onward by hand. */
5302                 tcp_urg(sk, skb, th);
5303                 __kfree_skb(skb);
5304                 tcp_data_snd_check(sk);
5305                 return 0;
5306         }
5307
5308         res = tcp_validate_incoming(sk, skb, th, 0);
5309         if (res <= 0)
5310                 return -res;
5311
5312         /* step 5: check the ACK field */
5313         if (th->ack) {
5314                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5315
5316                 switch (sk->sk_state) {
5317                 case TCP_SYN_RECV:
5318                         if (acceptable) {
5319                                 tp->copied_seq = tp->rcv_nxt;
5320                                 smp_mb();
5321                                 tcp_set_state(sk, TCP_ESTABLISHED);
5322                                 sk->sk_state_change(sk);
5323
5324                                 /* Note, that this wakeup is only for marginal
5325                                  * crossed SYN case. Passively open sockets
5326                                  * are not waked up, because sk->sk_sleep ==
5327                                  * NULL and sk->sk_socket == NULL.
5328                                  */
5329                                 if (sk->sk_socket)
5330                                         sk_wake_async(sk,
5331                                                       SOCK_WAKE_IO, POLL_OUT);
5332
5333                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5334                                 tp->snd_wnd = ntohs(th->window) <<
5335                                               tp->rx_opt.snd_wscale;
5336                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5337                                             TCP_SKB_CB(skb)->seq);
5338
5339                                 /* tcp_ack considers this ACK as duplicate
5340                                  * and does not calculate rtt.
5341                                  * Fix it at least with timestamps.
5342                                  */
5343                                 if (tp->rx_opt.saw_tstamp &&
5344                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5345                                         tcp_ack_saw_tstamp(sk, 0);
5346
5347                                 if (tp->rx_opt.tstamp_ok)
5348                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5349
5350                                 /* Make sure socket is routed, for
5351                                  * correct metrics.
5352                                  */
5353                                 icsk->icsk_af_ops->rebuild_header(sk);
5354
5355                                 tcp_init_metrics(sk);
5356
5357                                 tcp_init_congestion_control(sk);
5358
5359                                 /* Prevent spurious tcp_cwnd_restart() on
5360                                  * first data packet.
5361                                  */
5362                                 tp->lsndtime = tcp_time_stamp;
5363
5364                                 tcp_mtup_init(sk);
5365                                 tcp_initialize_rcv_mss(sk);
5366                                 tcp_init_buffer_space(sk);
5367                                 tcp_fast_path_on(tp);
5368                         } else {
5369                                 return 1;
5370                         }
5371                         break;
5372
5373                 case TCP_FIN_WAIT1:
5374                         if (tp->snd_una == tp->write_seq) {
5375                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5376                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5377                                 dst_confirm(sk->sk_dst_cache);
5378
5379                                 if (!sock_flag(sk, SOCK_DEAD))
5380                                         /* Wake up lingering close() */
5381                                         sk->sk_state_change(sk);
5382                                 else {
5383                                         int tmo;
5384
5385                                         if (tp->linger2 < 0 ||
5386                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5387                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5388                                                 tcp_done(sk);
5389                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5390                                                 return 1;
5391                                         }
5392
5393                                         tmo = tcp_fin_time(sk);
5394                                         if (tmo > TCP_TIMEWAIT_LEN) {
5395                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5396                                         } else if (th->fin || sock_owned_by_user(sk)) {
5397                                                 /* Bad case. We could lose such FIN otherwise.
5398                                                  * It is not a big problem, but it looks confusing
5399                                                  * and not so rare event. We still can lose it now,
5400                                                  * if it spins in bh_lock_sock(), but it is really
5401                                                  * marginal case.
5402                                                  */
5403                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5404                                         } else {
5405                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5406                                                 goto discard;
5407                                         }
5408                                 }
5409                         }
5410                         break;
5411
5412                 case TCP_CLOSING:
5413                         if (tp->snd_una == tp->write_seq) {
5414                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5415                                 goto discard;
5416                         }
5417                         break;
5418
5419                 case TCP_LAST_ACK:
5420                         if (tp->snd_una == tp->write_seq) {
5421                                 tcp_update_metrics(sk);
5422                                 tcp_done(sk);
5423                                 goto discard;
5424                         }
5425                         break;
5426                 }
5427         } else
5428                 goto discard;
5429
5430         /* step 6: check the URG bit */
5431         tcp_urg(sk, skb, th);
5432
5433         /* step 7: process the segment text */
5434         switch (sk->sk_state) {
5435         case TCP_CLOSE_WAIT:
5436         case TCP_CLOSING:
5437         case TCP_LAST_ACK:
5438                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5439                         break;
5440         case TCP_FIN_WAIT1:
5441         case TCP_FIN_WAIT2:
5442                 /* RFC 793 says to queue data in these states,
5443                  * RFC 1122 says we MUST send a reset.
5444                  * BSD 4.4 also does reset.
5445                  */
5446                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5447                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5448                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5449                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5450                                 tcp_reset(sk);
5451                                 return 1;
5452                         }
5453                 }
5454                 /* Fall through */
5455         case TCP_ESTABLISHED:
5456                 tcp_data_queue(sk, skb);
5457                 queued = 1;
5458                 break;
5459         }
5460
5461         /* tcp_data could move socket to TIME-WAIT */
5462         if (sk->sk_state != TCP_CLOSE) {
5463                 tcp_data_snd_check(sk);
5464                 tcp_ack_snd_check(sk);
5465         }
5466
5467         if (!queued) {
5468 discard:
5469                 __kfree_skb(skb);
5470         }
5471         return 0;
5472 }
5473
5474 EXPORT_SYMBOL(sysctl_tcp_ecn);
5475 EXPORT_SYMBOL(sysctl_tcp_reordering);
5476 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5477 EXPORT_SYMBOL(tcp_parse_options);
5478 #ifdef CONFIG_TCP_MD5SIG
5479 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5480 #endif
5481 EXPORT_SYMBOL(tcp_rcv_established);
5482 EXPORT_SYMBOL(tcp_rcv_state_process);
5483 EXPORT_SYMBOL(tcp_initialize_rcv_mss);