]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/core/sock.c
[NET]: Make socket creation namespace safe.
[linux-2.6-omap-h63xx.git] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:     $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:     Ross Biro
13  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *              Alan Cox        :       Numerous verify_area() problems
19  *              Alan Cox        :       Connecting on a connecting socket
20  *                                      now returns an error for tcp.
21  *              Alan Cox        :       sock->protocol is set correctly.
22  *                                      and is not sometimes left as 0.
23  *              Alan Cox        :       connect handles icmp errors on a
24  *                                      connect properly. Unfortunately there
25  *                                      is a restart syscall nasty there. I
26  *                                      can't match BSD without hacking the C
27  *                                      library. Ideas urgently sought!
28  *              Alan Cox        :       Disallow bind() to addresses that are
29  *                                      not ours - especially broadcast ones!!
30  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
31  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
32  *                                      instead they leave that for the DESTROY timer.
33  *              Alan Cox        :       Clean up error flag in accept
34  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
35  *                                      was buggy. Put a remove_sock() in the handler
36  *                                      for memory when we hit 0. Also altered the timer
37  *                                      code. The ACK stuff can wait and needs major
38  *                                      TCP layer surgery.
39  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
40  *                                      and fixed timer/inet_bh race.
41  *              Alan Cox        :       Added zapped flag for TCP
42  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
43  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
45  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
48  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
49  *      Pauline Middelink       :       identd support
50  *              Alan Cox        :       Fixed connect() taking signals I think.
51  *              Alan Cox        :       SO_LINGER supported
52  *              Alan Cox        :       Error reporting fixes
53  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
54  *              Alan Cox        :       inet sockets don't set sk->type!
55  *              Alan Cox        :       Split socket option code
56  *              Alan Cox        :       Callbacks
57  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
58  *              Alex            :       Removed restriction on inet fioctl
59  *              Alan Cox        :       Splitting INET from NET core
60  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
61  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
62  *              Alan Cox        :       Split IP from generic code
63  *              Alan Cox        :       New kfree_skbmem()
64  *              Alan Cox        :       Make SO_DEBUG superuser only.
65  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
66  *                                      (compatibility fix)
67  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
68  *              Alan Cox        :       Allocator for a socket is settable.
69  *              Alan Cox        :       SO_ERROR includes soft errors.
70  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
71  *              Alan Cox        :       Generic socket allocation to make hooks
72  *                                      easier (suggested by Craig Metz).
73  *              Michael Pall    :       SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
81  *              Andi Kleen      :       Fix write_space callback
82  *              Chris Evans     :       Security fixes - signedness again
83  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *              This program is free software; you can redistribute it and/or
89  *              modify it under the terms of the GNU General Public License
90  *              as published by the Free Software Foundation; either version
91  *              2 of the License, or (at your option) any later version.
92  */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127
128 #include <linux/filter.h>
129
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133
134 /*
135  * Each address family might have different locking rules, so we have
136  * one slock key per address family:
137  */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-29"          ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185   "clock-27"       , "clock-28"          , "clock-29"          ,
186   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187   "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190
191 /*
192  * sk_callback_lock locking rules are per-address-family,
193  * so split the lock classes by using a per-AF key:
194  */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196
197 /* Take into consideration the size of the struct sk_buff overhead in the
198  * determination of these values, since that is non-constant across
199  * platforms.  This makes socket queueing behavior and performance
200  * not depend upon such differences.
201  */
202 #define _SK_MEM_PACKETS         256
203 #define _SK_MEM_OVERHEAD        (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218         struct timeval tv;
219
220         if (optlen < sizeof(tv))
221                 return -EINVAL;
222         if (copy_from_user(&tv, optval, sizeof(tv)))
223                 return -EFAULT;
224         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225                 return -EDOM;
226
227         if (tv.tv_sec < 0) {
228                 static int warned __read_mostly;
229
230                 *timeo_p = 0;
231                 if (warned < 10 && net_ratelimit())
232                         warned++;
233                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234                                "tries to set negative timeout\n",
235                                 current->comm, current->pid);
236                 return 0;
237         }
238         *timeo_p = MAX_SCHEDULE_TIMEOUT;
239         if (tv.tv_sec == 0 && tv.tv_usec == 0)
240                 return 0;
241         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243         return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248         static int warned;
249         static char warncomm[TASK_COMM_LEN];
250         if (strcmp(warncomm, current->comm) && warned < 5) {
251                 strcpy(warncomm,  current->comm);
252                 printk(KERN_WARNING "process `%s' is using obsolete "
253                        "%s SO_BSDCOMPAT\n", warncomm, name);
254                 warned++;
255         }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260         if (sock_flag(sk, SOCK_TIMESTAMP)) {
261                 sock_reset_flag(sk, SOCK_TIMESTAMP);
262                 net_disable_timestamp();
263         }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269         int err = 0;
270         int skb_len;
271
272         /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273            number of warnings when compiling with -W --ANK
274          */
275         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276             (unsigned)sk->sk_rcvbuf) {
277                 err = -ENOMEM;
278                 goto out;
279         }
280
281         err = sk_filter(sk, skb);
282         if (err)
283                 goto out;
284
285         skb->dev = NULL;
286         skb_set_owner_r(skb, sk);
287
288         /* Cache the SKB length before we tack it onto the receive
289          * queue.  Once it is added it no longer belongs to us and
290          * may be freed by other threads of control pulling packets
291          * from the queue.
292          */
293         skb_len = skb->len;
294
295         skb_queue_tail(&sk->sk_receive_queue, skb);
296
297         if (!sock_flag(sk, SOCK_DEAD))
298                 sk->sk_data_ready(sk, skb_len);
299 out:
300         return err;
301 }
302 EXPORT_SYMBOL(sock_queue_rcv_skb);
303
304 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
305 {
306         int rc = NET_RX_SUCCESS;
307
308         if (sk_filter(sk, skb))
309                 goto discard_and_relse;
310
311         skb->dev = NULL;
312
313         if (nested)
314                 bh_lock_sock_nested(sk);
315         else
316                 bh_lock_sock(sk);
317         if (!sock_owned_by_user(sk)) {
318                 /*
319                  * trylock + unlock semantics:
320                  */
321                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
322
323                 rc = sk->sk_backlog_rcv(sk, skb);
324
325                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326         } else
327                 sk_add_backlog(sk, skb);
328         bh_unlock_sock(sk);
329 out:
330         sock_put(sk);
331         return rc;
332 discard_and_relse:
333         kfree_skb(skb);
334         goto out;
335 }
336 EXPORT_SYMBOL(sk_receive_skb);
337
338 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
339 {
340         struct dst_entry *dst = sk->sk_dst_cache;
341
342         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343                 sk->sk_dst_cache = NULL;
344                 dst_release(dst);
345                 return NULL;
346         }
347
348         return dst;
349 }
350 EXPORT_SYMBOL(__sk_dst_check);
351
352 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
353 {
354         struct dst_entry *dst = sk_dst_get(sk);
355
356         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357                 sk_dst_reset(sk);
358                 dst_release(dst);
359                 return NULL;
360         }
361
362         return dst;
363 }
364 EXPORT_SYMBOL(sk_dst_check);
365
366 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
367 {
368         int ret = -ENOPROTOOPT;
369 #ifdef CONFIG_NETDEVICES
370         char devname[IFNAMSIZ];
371         int index;
372
373         /* Sorry... */
374         ret = -EPERM;
375         if (!capable(CAP_NET_RAW))
376                 goto out;
377
378         ret = -EINVAL;
379         if (optlen < 0)
380                 goto out;
381
382         /* Bind this socket to a particular device like "eth0",
383          * as specified in the passed interface name. If the
384          * name is "" or the option length is zero the socket
385          * is not bound.
386          */
387         if (optlen > IFNAMSIZ - 1)
388                 optlen = IFNAMSIZ - 1;
389         memset(devname, 0, sizeof(devname));
390
391         ret = -EFAULT;
392         if (copy_from_user(devname, optval, optlen))
393                 goto out;
394
395         if (devname[0] == '\0') {
396                 index = 0;
397         } else {
398                 struct net_device *dev = dev_get_by_name(devname);
399
400                 ret = -ENODEV;
401                 if (!dev)
402                         goto out;
403
404                 index = dev->ifindex;
405                 dev_put(dev);
406         }
407
408         lock_sock(sk);
409         sk->sk_bound_dev_if = index;
410         sk_dst_reset(sk);
411         release_sock(sk);
412
413         ret = 0;
414
415 out:
416 #endif
417
418         return ret;
419 }
420
421 /*
422  *      This is meant for all protocols to use and covers goings on
423  *      at the socket level. Everything here is generic.
424  */
425
426 int sock_setsockopt(struct socket *sock, int level, int optname,
427                     char __user *optval, int optlen)
428 {
429         struct sock *sk=sock->sk;
430         struct sk_filter *filter;
431         int val;
432         int valbool;
433         struct linger ling;
434         int ret = 0;
435
436         /*
437          *      Options without arguments
438          */
439
440 #ifdef SO_DONTLINGER            /* Compatibility item... */
441         if (optname == SO_DONTLINGER) {
442                 lock_sock(sk);
443                 sock_reset_flag(sk, SOCK_LINGER);
444                 release_sock(sk);
445                 return 0;
446         }
447 #endif
448
449         if (optname == SO_BINDTODEVICE)
450                 return sock_bindtodevice(sk, optval, optlen);
451
452         if (optlen < sizeof(int))
453                 return -EINVAL;
454
455         if (get_user(val, (int __user *)optval))
456                 return -EFAULT;
457
458         valbool = val?1:0;
459
460         lock_sock(sk);
461
462         switch(optname) {
463         case SO_DEBUG:
464                 if (val && !capable(CAP_NET_ADMIN)) {
465                         ret = -EACCES;
466                 }
467                 else if (valbool)
468                         sock_set_flag(sk, SOCK_DBG);
469                 else
470                         sock_reset_flag(sk, SOCK_DBG);
471                 break;
472         case SO_REUSEADDR:
473                 sk->sk_reuse = valbool;
474                 break;
475         case SO_TYPE:
476         case SO_ERROR:
477                 ret = -ENOPROTOOPT;
478                 break;
479         case SO_DONTROUTE:
480                 if (valbool)
481                         sock_set_flag(sk, SOCK_LOCALROUTE);
482                 else
483                         sock_reset_flag(sk, SOCK_LOCALROUTE);
484                 break;
485         case SO_BROADCAST:
486                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
487                 break;
488         case SO_SNDBUF:
489                 /* Don't error on this BSD doesn't and if you think
490                    about it this is right. Otherwise apps have to
491                    play 'guess the biggest size' games. RCVBUF/SNDBUF
492                    are treated in BSD as hints */
493
494                 if (val > sysctl_wmem_max)
495                         val = sysctl_wmem_max;
496 set_sndbuf:
497                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
498                 if ((val * 2) < SOCK_MIN_SNDBUF)
499                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
500                 else
501                         sk->sk_sndbuf = val * 2;
502
503                 /*
504                  *      Wake up sending tasks if we
505                  *      upped the value.
506                  */
507                 sk->sk_write_space(sk);
508                 break;
509
510         case SO_SNDBUFFORCE:
511                 if (!capable(CAP_NET_ADMIN)) {
512                         ret = -EPERM;
513                         break;
514                 }
515                 goto set_sndbuf;
516
517         case SO_RCVBUF:
518                 /* Don't error on this BSD doesn't and if you think
519                    about it this is right. Otherwise apps have to
520                    play 'guess the biggest size' games. RCVBUF/SNDBUF
521                    are treated in BSD as hints */
522
523                 if (val > sysctl_rmem_max)
524                         val = sysctl_rmem_max;
525 set_rcvbuf:
526                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
527                 /*
528                  * We double it on the way in to account for
529                  * "struct sk_buff" etc. overhead.   Applications
530                  * assume that the SO_RCVBUF setting they make will
531                  * allow that much actual data to be received on that
532                  * socket.
533                  *
534                  * Applications are unaware that "struct sk_buff" and
535                  * other overheads allocate from the receive buffer
536                  * during socket buffer allocation.
537                  *
538                  * And after considering the possible alternatives,
539                  * returning the value we actually used in getsockopt
540                  * is the most desirable behavior.
541                  */
542                 if ((val * 2) < SOCK_MIN_RCVBUF)
543                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
544                 else
545                         sk->sk_rcvbuf = val * 2;
546                 break;
547
548         case SO_RCVBUFFORCE:
549                 if (!capable(CAP_NET_ADMIN)) {
550                         ret = -EPERM;
551                         break;
552                 }
553                 goto set_rcvbuf;
554
555         case SO_KEEPALIVE:
556 #ifdef CONFIG_INET
557                 if (sk->sk_protocol == IPPROTO_TCP)
558                         tcp_set_keepalive(sk, valbool);
559 #endif
560                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
561                 break;
562
563         case SO_OOBINLINE:
564                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
565                 break;
566
567         case SO_NO_CHECK:
568                 sk->sk_no_check = valbool;
569                 break;
570
571         case SO_PRIORITY:
572                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
573                         sk->sk_priority = val;
574                 else
575                         ret = -EPERM;
576                 break;
577
578         case SO_LINGER:
579                 if (optlen < sizeof(ling)) {
580                         ret = -EINVAL;  /* 1003.1g */
581                         break;
582                 }
583                 if (copy_from_user(&ling,optval,sizeof(ling))) {
584                         ret = -EFAULT;
585                         break;
586                 }
587                 if (!ling.l_onoff)
588                         sock_reset_flag(sk, SOCK_LINGER);
589                 else {
590 #if (BITS_PER_LONG == 32)
591                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
592                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
593                         else
594 #endif
595                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
596                         sock_set_flag(sk, SOCK_LINGER);
597                 }
598                 break;
599
600         case SO_BSDCOMPAT:
601                 sock_warn_obsolete_bsdism("setsockopt");
602                 break;
603
604         case SO_PASSCRED:
605                 if (valbool)
606                         set_bit(SOCK_PASSCRED, &sock->flags);
607                 else
608                         clear_bit(SOCK_PASSCRED, &sock->flags);
609                 break;
610
611         case SO_TIMESTAMP:
612         case SO_TIMESTAMPNS:
613                 if (valbool)  {
614                         if (optname == SO_TIMESTAMP)
615                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
616                         else
617                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
618                         sock_set_flag(sk, SOCK_RCVTSTAMP);
619                         sock_enable_timestamp(sk);
620                 } else {
621                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
622                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623                 }
624                 break;
625
626         case SO_RCVLOWAT:
627                 if (val < 0)
628                         val = INT_MAX;
629                 sk->sk_rcvlowat = val ? : 1;
630                 break;
631
632         case SO_RCVTIMEO:
633                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
634                 break;
635
636         case SO_SNDTIMEO:
637                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
638                 break;
639
640         case SO_ATTACH_FILTER:
641                 ret = -EINVAL;
642                 if (optlen == sizeof(struct sock_fprog)) {
643                         struct sock_fprog fprog;
644
645                         ret = -EFAULT;
646                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
647                                 break;
648
649                         ret = sk_attach_filter(&fprog, sk);
650                 }
651                 break;
652
653         case SO_DETACH_FILTER:
654                 rcu_read_lock_bh();
655                 filter = rcu_dereference(sk->sk_filter);
656                 if (filter) {
657                         rcu_assign_pointer(sk->sk_filter, NULL);
658                         sk_filter_release(sk, filter);
659                         rcu_read_unlock_bh();
660                         break;
661                 }
662                 rcu_read_unlock_bh();
663                 ret = -ENONET;
664                 break;
665
666         case SO_PASSSEC:
667                 if (valbool)
668                         set_bit(SOCK_PASSSEC, &sock->flags);
669                 else
670                         clear_bit(SOCK_PASSSEC, &sock->flags);
671                 break;
672
673                 /* We implement the SO_SNDLOWAT etc to
674                    not be settable (1003.1g 5.3) */
675         default:
676                 ret = -ENOPROTOOPT;
677                 break;
678         }
679         release_sock(sk);
680         return ret;
681 }
682
683
684 int sock_getsockopt(struct socket *sock, int level, int optname,
685                     char __user *optval, int __user *optlen)
686 {
687         struct sock *sk = sock->sk;
688
689         union {
690                 int val;
691                 struct linger ling;
692                 struct timeval tm;
693         } v;
694
695         unsigned int lv = sizeof(int);
696         int len;
697
698         if (get_user(len, optlen))
699                 return -EFAULT;
700         if (len < 0)
701                 return -EINVAL;
702
703         switch(optname) {
704         case SO_DEBUG:
705                 v.val = sock_flag(sk, SOCK_DBG);
706                 break;
707
708         case SO_DONTROUTE:
709                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
710                 break;
711
712         case SO_BROADCAST:
713                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
714                 break;
715
716         case SO_SNDBUF:
717                 v.val = sk->sk_sndbuf;
718                 break;
719
720         case SO_RCVBUF:
721                 v.val = sk->sk_rcvbuf;
722                 break;
723
724         case SO_REUSEADDR:
725                 v.val = sk->sk_reuse;
726                 break;
727
728         case SO_KEEPALIVE:
729                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
730                 break;
731
732         case SO_TYPE:
733                 v.val = sk->sk_type;
734                 break;
735
736         case SO_ERROR:
737                 v.val = -sock_error(sk);
738                 if (v.val==0)
739                         v.val = xchg(&sk->sk_err_soft, 0);
740                 break;
741
742         case SO_OOBINLINE:
743                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
744                 break;
745
746         case SO_NO_CHECK:
747                 v.val = sk->sk_no_check;
748                 break;
749
750         case SO_PRIORITY:
751                 v.val = sk->sk_priority;
752                 break;
753
754         case SO_LINGER:
755                 lv              = sizeof(v.ling);
756                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
757                 v.ling.l_linger = sk->sk_lingertime / HZ;
758                 break;
759
760         case SO_BSDCOMPAT:
761                 sock_warn_obsolete_bsdism("getsockopt");
762                 break;
763
764         case SO_TIMESTAMP:
765                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
766                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
767                 break;
768
769         case SO_TIMESTAMPNS:
770                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
771                 break;
772
773         case SO_RCVTIMEO:
774                 lv=sizeof(struct timeval);
775                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
776                         v.tm.tv_sec = 0;
777                         v.tm.tv_usec = 0;
778                 } else {
779                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
780                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
781                 }
782                 break;
783
784         case SO_SNDTIMEO:
785                 lv=sizeof(struct timeval);
786                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
787                         v.tm.tv_sec = 0;
788                         v.tm.tv_usec = 0;
789                 } else {
790                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
791                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
792                 }
793                 break;
794
795         case SO_RCVLOWAT:
796                 v.val = sk->sk_rcvlowat;
797                 break;
798
799         case SO_SNDLOWAT:
800                 v.val=1;
801                 break;
802
803         case SO_PASSCRED:
804                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
805                 break;
806
807         case SO_PEERCRED:
808                 if (len > sizeof(sk->sk_peercred))
809                         len = sizeof(sk->sk_peercred);
810                 if (copy_to_user(optval, &sk->sk_peercred, len))
811                         return -EFAULT;
812                 goto lenout;
813
814         case SO_PEERNAME:
815         {
816                 char address[128];
817
818                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
819                         return -ENOTCONN;
820                 if (lv < len)
821                         return -EINVAL;
822                 if (copy_to_user(optval, address, len))
823                         return -EFAULT;
824                 goto lenout;
825         }
826
827         /* Dubious BSD thing... Probably nobody even uses it, but
828          * the UNIX standard wants it for whatever reason... -DaveM
829          */
830         case SO_ACCEPTCONN:
831                 v.val = sk->sk_state == TCP_LISTEN;
832                 break;
833
834         case SO_PASSSEC:
835                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
836                 break;
837
838         case SO_PEERSEC:
839                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
840
841         default:
842                 return -ENOPROTOOPT;
843         }
844
845         if (len > lv)
846                 len = lv;
847         if (copy_to_user(optval, &v, len))
848                 return -EFAULT;
849 lenout:
850         if (put_user(len, optlen))
851                 return -EFAULT;
852         return 0;
853 }
854
855 /*
856  * Initialize an sk_lock.
857  *
858  * (We also register the sk_lock with the lock validator.)
859  */
860 static inline void sock_lock_init(struct sock *sk)
861 {
862         sock_lock_init_class_and_name(sk,
863                         af_family_slock_key_strings[sk->sk_family],
864                         af_family_slock_keys + sk->sk_family,
865                         af_family_key_strings[sk->sk_family],
866                         af_family_keys + sk->sk_family);
867 }
868
869 /**
870  *      sk_alloc - All socket objects are allocated here
871  *      @family: protocol family
872  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
873  *      @prot: struct proto associated with this new sock instance
874  *      @zero_it: if we should zero the newly allocated sock
875  */
876 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
877                       struct proto *prot, int zero_it)
878 {
879         struct sock *sk = NULL;
880         struct kmem_cache *slab = prot->slab;
881
882         if (slab != NULL)
883                 sk = kmem_cache_alloc(slab, priority);
884         else
885                 sk = kmalloc(prot->obj_size, priority);
886
887         if (sk) {
888                 if (zero_it) {
889                         memset(sk, 0, prot->obj_size);
890                         sk->sk_family = family;
891                         /*
892                          * See comment in struct sock definition to understand
893                          * why we need sk_prot_creator -acme
894                          */
895                         sk->sk_prot = sk->sk_prot_creator = prot;
896                         sock_lock_init(sk);
897                         sk->sk_net = get_net(net);
898                 }
899
900                 if (security_sk_alloc(sk, family, priority))
901                         goto out_free;
902
903                 if (!try_module_get(prot->owner))
904                         goto out_free;
905         }
906         return sk;
907
908 out_free:
909         if (slab != NULL)
910                 kmem_cache_free(slab, sk);
911         else
912                 kfree(sk);
913         return NULL;
914 }
915
916 void sk_free(struct sock *sk)
917 {
918         struct sk_filter *filter;
919         struct module *owner = sk->sk_prot_creator->owner;
920
921         if (sk->sk_destruct)
922                 sk->sk_destruct(sk);
923
924         filter = rcu_dereference(sk->sk_filter);
925         if (filter) {
926                 sk_filter_release(sk, filter);
927                 rcu_assign_pointer(sk->sk_filter, NULL);
928         }
929
930         sock_disable_timestamp(sk);
931
932         if (atomic_read(&sk->sk_omem_alloc))
933                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
934                        __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
935
936         security_sk_free(sk);
937         put_net(sk->sk_net);
938         if (sk->sk_prot_creator->slab != NULL)
939                 kmem_cache_free(sk->sk_prot_creator->slab, sk);
940         else
941                 kfree(sk);
942         module_put(owner);
943 }
944
945 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
946 {
947         struct sock *newsk = sk_alloc(sk->sk_net, sk->sk_family, priority, sk->sk_prot, 0);
948
949         if (newsk != NULL) {
950                 struct sk_filter *filter;
951
952                 sock_copy(newsk, sk);
953
954                 /* SANITY */
955                 sk_node_init(&newsk->sk_node);
956                 sock_lock_init(newsk);
957                 bh_lock_sock(newsk);
958                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
959
960                 atomic_set(&newsk->sk_rmem_alloc, 0);
961                 atomic_set(&newsk->sk_wmem_alloc, 0);
962                 atomic_set(&newsk->sk_omem_alloc, 0);
963                 skb_queue_head_init(&newsk->sk_receive_queue);
964                 skb_queue_head_init(&newsk->sk_write_queue);
965 #ifdef CONFIG_NET_DMA
966                 skb_queue_head_init(&newsk->sk_async_wait_queue);
967 #endif
968
969                 rwlock_init(&newsk->sk_dst_lock);
970                 rwlock_init(&newsk->sk_callback_lock);
971                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
972                                 af_callback_keys + newsk->sk_family,
973                                 af_family_clock_key_strings[newsk->sk_family]);
974
975                 newsk->sk_dst_cache     = NULL;
976                 newsk->sk_wmem_queued   = 0;
977                 newsk->sk_forward_alloc = 0;
978                 newsk->sk_send_head     = NULL;
979                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
980
981                 sock_reset_flag(newsk, SOCK_DONE);
982                 skb_queue_head_init(&newsk->sk_error_queue);
983
984                 filter = newsk->sk_filter;
985                 if (filter != NULL)
986                         sk_filter_charge(newsk, filter);
987
988                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
989                         /* It is still raw copy of parent, so invalidate
990                          * destructor and make plain sk_free() */
991                         newsk->sk_destruct = NULL;
992                         sk_free(newsk);
993                         newsk = NULL;
994                         goto out;
995                 }
996
997                 newsk->sk_err      = 0;
998                 newsk->sk_priority = 0;
999                 atomic_set(&newsk->sk_refcnt, 2);
1000
1001                 /*
1002                  * Increment the counter in the same struct proto as the master
1003                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1004                  * is the same as sk->sk_prot->socks, as this field was copied
1005                  * with memcpy).
1006                  *
1007                  * This _changes_ the previous behaviour, where
1008                  * tcp_create_openreq_child always was incrementing the
1009                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1010                  * to be taken into account in all callers. -acme
1011                  */
1012                 sk_refcnt_debug_inc(newsk);
1013                 newsk->sk_socket = NULL;
1014                 newsk->sk_sleep  = NULL;
1015
1016                 if (newsk->sk_prot->sockets_allocated)
1017                         atomic_inc(newsk->sk_prot->sockets_allocated);
1018         }
1019 out:
1020         return newsk;
1021 }
1022
1023 EXPORT_SYMBOL_GPL(sk_clone);
1024
1025 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1026 {
1027         __sk_dst_set(sk, dst);
1028         sk->sk_route_caps = dst->dev->features;
1029         if (sk->sk_route_caps & NETIF_F_GSO)
1030                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1031         if (sk_can_gso(sk)) {
1032                 if (dst->header_len)
1033                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1034                 else
1035                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1036         }
1037 }
1038 EXPORT_SYMBOL_GPL(sk_setup_caps);
1039
1040 void __init sk_init(void)
1041 {
1042         if (num_physpages <= 4096) {
1043                 sysctl_wmem_max = 32767;
1044                 sysctl_rmem_max = 32767;
1045                 sysctl_wmem_default = 32767;
1046                 sysctl_rmem_default = 32767;
1047         } else if (num_physpages >= 131072) {
1048                 sysctl_wmem_max = 131071;
1049                 sysctl_rmem_max = 131071;
1050         }
1051 }
1052
1053 /*
1054  *      Simple resource managers for sockets.
1055  */
1056
1057
1058 /*
1059  * Write buffer destructor automatically called from kfree_skb.
1060  */
1061 void sock_wfree(struct sk_buff *skb)
1062 {
1063         struct sock *sk = skb->sk;
1064
1065         /* In case it might be waiting for more memory. */
1066         atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1067         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1068                 sk->sk_write_space(sk);
1069         sock_put(sk);
1070 }
1071
1072 /*
1073  * Read buffer destructor automatically called from kfree_skb.
1074  */
1075 void sock_rfree(struct sk_buff *skb)
1076 {
1077         struct sock *sk = skb->sk;
1078
1079         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1080 }
1081
1082
1083 int sock_i_uid(struct sock *sk)
1084 {
1085         int uid;
1086
1087         read_lock(&sk->sk_callback_lock);
1088         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1089         read_unlock(&sk->sk_callback_lock);
1090         return uid;
1091 }
1092
1093 unsigned long sock_i_ino(struct sock *sk)
1094 {
1095         unsigned long ino;
1096
1097         read_lock(&sk->sk_callback_lock);
1098         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1099         read_unlock(&sk->sk_callback_lock);
1100         return ino;
1101 }
1102
1103 /*
1104  * Allocate a skb from the socket's send buffer.
1105  */
1106 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1107                              gfp_t priority)
1108 {
1109         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1110                 struct sk_buff * skb = alloc_skb(size, priority);
1111                 if (skb) {
1112                         skb_set_owner_w(skb, sk);
1113                         return skb;
1114                 }
1115         }
1116         return NULL;
1117 }
1118
1119 /*
1120  * Allocate a skb from the socket's receive buffer.
1121  */
1122 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1123                              gfp_t priority)
1124 {
1125         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1126                 struct sk_buff *skb = alloc_skb(size, priority);
1127                 if (skb) {
1128                         skb_set_owner_r(skb, sk);
1129                         return skb;
1130                 }
1131         }
1132         return NULL;
1133 }
1134
1135 /*
1136  * Allocate a memory block from the socket's option memory buffer.
1137  */
1138 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1139 {
1140         if ((unsigned)size <= sysctl_optmem_max &&
1141             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1142                 void *mem;
1143                 /* First do the add, to avoid the race if kmalloc
1144                  * might sleep.
1145                  */
1146                 atomic_add(size, &sk->sk_omem_alloc);
1147                 mem = kmalloc(size, priority);
1148                 if (mem)
1149                         return mem;
1150                 atomic_sub(size, &sk->sk_omem_alloc);
1151         }
1152         return NULL;
1153 }
1154
1155 /*
1156  * Free an option memory block.
1157  */
1158 void sock_kfree_s(struct sock *sk, void *mem, int size)
1159 {
1160         kfree(mem);
1161         atomic_sub(size, &sk->sk_omem_alloc);
1162 }
1163
1164 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1165    I think, these locks should be removed for datagram sockets.
1166  */
1167 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1168 {
1169         DEFINE_WAIT(wait);
1170
1171         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1172         for (;;) {
1173                 if (!timeo)
1174                         break;
1175                 if (signal_pending(current))
1176                         break;
1177                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1178                 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1179                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1180                         break;
1181                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1182                         break;
1183                 if (sk->sk_err)
1184                         break;
1185                 timeo = schedule_timeout(timeo);
1186         }
1187         finish_wait(sk->sk_sleep, &wait);
1188         return timeo;
1189 }
1190
1191
1192 /*
1193  *      Generic send/receive buffer handlers
1194  */
1195
1196 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1197                                             unsigned long header_len,
1198                                             unsigned long data_len,
1199                                             int noblock, int *errcode)
1200 {
1201         struct sk_buff *skb;
1202         gfp_t gfp_mask;
1203         long timeo;
1204         int err;
1205
1206         gfp_mask = sk->sk_allocation;
1207         if (gfp_mask & __GFP_WAIT)
1208                 gfp_mask |= __GFP_REPEAT;
1209
1210         timeo = sock_sndtimeo(sk, noblock);
1211         while (1) {
1212                 err = sock_error(sk);
1213                 if (err != 0)
1214                         goto failure;
1215
1216                 err = -EPIPE;
1217                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1218                         goto failure;
1219
1220                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1221                         skb = alloc_skb(header_len, gfp_mask);
1222                         if (skb) {
1223                                 int npages;
1224                                 int i;
1225
1226                                 /* No pages, we're done... */
1227                                 if (!data_len)
1228                                         break;
1229
1230                                 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1231                                 skb->truesize += data_len;
1232                                 skb_shinfo(skb)->nr_frags = npages;
1233                                 for (i = 0; i < npages; i++) {
1234                                         struct page *page;
1235                                         skb_frag_t *frag;
1236
1237                                         page = alloc_pages(sk->sk_allocation, 0);
1238                                         if (!page) {
1239                                                 err = -ENOBUFS;
1240                                                 skb_shinfo(skb)->nr_frags = i;
1241                                                 kfree_skb(skb);
1242                                                 goto failure;
1243                                         }
1244
1245                                         frag = &skb_shinfo(skb)->frags[i];
1246                                         frag->page = page;
1247                                         frag->page_offset = 0;
1248                                         frag->size = (data_len >= PAGE_SIZE ?
1249                                                       PAGE_SIZE :
1250                                                       data_len);
1251                                         data_len -= PAGE_SIZE;
1252                                 }
1253
1254                                 /* Full success... */
1255                                 break;
1256                         }
1257                         err = -ENOBUFS;
1258                         goto failure;
1259                 }
1260                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1261                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1262                 err = -EAGAIN;
1263                 if (!timeo)
1264                         goto failure;
1265                 if (signal_pending(current))
1266                         goto interrupted;
1267                 timeo = sock_wait_for_wmem(sk, timeo);
1268         }
1269
1270         skb_set_owner_w(skb, sk);
1271         return skb;
1272
1273 interrupted:
1274         err = sock_intr_errno(timeo);
1275 failure:
1276         *errcode = err;
1277         return NULL;
1278 }
1279
1280 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1281                                     int noblock, int *errcode)
1282 {
1283         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1284 }
1285
1286 static void __lock_sock(struct sock *sk)
1287 {
1288         DEFINE_WAIT(wait);
1289
1290         for (;;) {
1291                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1292                                         TASK_UNINTERRUPTIBLE);
1293                 spin_unlock_bh(&sk->sk_lock.slock);
1294                 schedule();
1295                 spin_lock_bh(&sk->sk_lock.slock);
1296                 if (!sock_owned_by_user(sk))
1297                         break;
1298         }
1299         finish_wait(&sk->sk_lock.wq, &wait);
1300 }
1301
1302 static void __release_sock(struct sock *sk)
1303 {
1304         struct sk_buff *skb = sk->sk_backlog.head;
1305
1306         do {
1307                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1308                 bh_unlock_sock(sk);
1309
1310                 do {
1311                         struct sk_buff *next = skb->next;
1312
1313                         skb->next = NULL;
1314                         sk->sk_backlog_rcv(sk, skb);
1315
1316                         /*
1317                          * We are in process context here with softirqs
1318                          * disabled, use cond_resched_softirq() to preempt.
1319                          * This is safe to do because we've taken the backlog
1320                          * queue private:
1321                          */
1322                         cond_resched_softirq();
1323
1324                         skb = next;
1325                 } while (skb != NULL);
1326
1327                 bh_lock_sock(sk);
1328         } while ((skb = sk->sk_backlog.head) != NULL);
1329 }
1330
1331 /**
1332  * sk_wait_data - wait for data to arrive at sk_receive_queue
1333  * @sk:    sock to wait on
1334  * @timeo: for how long
1335  *
1336  * Now socket state including sk->sk_err is changed only under lock,
1337  * hence we may omit checks after joining wait queue.
1338  * We check receive queue before schedule() only as optimization;
1339  * it is very likely that release_sock() added new data.
1340  */
1341 int sk_wait_data(struct sock *sk, long *timeo)
1342 {
1343         int rc;
1344         DEFINE_WAIT(wait);
1345
1346         prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1347         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1348         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1349         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1350         finish_wait(sk->sk_sleep, &wait);
1351         return rc;
1352 }
1353
1354 EXPORT_SYMBOL(sk_wait_data);
1355
1356 /*
1357  * Set of default routines for initialising struct proto_ops when
1358  * the protocol does not support a particular function. In certain
1359  * cases where it makes no sense for a protocol to have a "do nothing"
1360  * function, some default processing is provided.
1361  */
1362
1363 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1364 {
1365         return -EOPNOTSUPP;
1366 }
1367
1368 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1369                     int len, int flags)
1370 {
1371         return -EOPNOTSUPP;
1372 }
1373
1374 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1375 {
1376         return -EOPNOTSUPP;
1377 }
1378
1379 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1380 {
1381         return -EOPNOTSUPP;
1382 }
1383
1384 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1385                     int *len, int peer)
1386 {
1387         return -EOPNOTSUPP;
1388 }
1389
1390 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1391 {
1392         return 0;
1393 }
1394
1395 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1396 {
1397         return -EOPNOTSUPP;
1398 }
1399
1400 int sock_no_listen(struct socket *sock, int backlog)
1401 {
1402         return -EOPNOTSUPP;
1403 }
1404
1405 int sock_no_shutdown(struct socket *sock, int how)
1406 {
1407         return -EOPNOTSUPP;
1408 }
1409
1410 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1411                     char __user *optval, int optlen)
1412 {
1413         return -EOPNOTSUPP;
1414 }
1415
1416 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1417                     char __user *optval, int __user *optlen)
1418 {
1419         return -EOPNOTSUPP;
1420 }
1421
1422 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1423                     size_t len)
1424 {
1425         return -EOPNOTSUPP;
1426 }
1427
1428 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1429                     size_t len, int flags)
1430 {
1431         return -EOPNOTSUPP;
1432 }
1433
1434 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1435 {
1436         /* Mirror missing mmap method error code */
1437         return -ENODEV;
1438 }
1439
1440 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1441 {
1442         ssize_t res;
1443         struct msghdr msg = {.msg_flags = flags};
1444         struct kvec iov;
1445         char *kaddr = kmap(page);
1446         iov.iov_base = kaddr + offset;
1447         iov.iov_len = size;
1448         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1449         kunmap(page);
1450         return res;
1451 }
1452
1453 /*
1454  *      Default Socket Callbacks
1455  */
1456
1457 static void sock_def_wakeup(struct sock *sk)
1458 {
1459         read_lock(&sk->sk_callback_lock);
1460         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1461                 wake_up_interruptible_all(sk->sk_sleep);
1462         read_unlock(&sk->sk_callback_lock);
1463 }
1464
1465 static void sock_def_error_report(struct sock *sk)
1466 {
1467         read_lock(&sk->sk_callback_lock);
1468         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1469                 wake_up_interruptible(sk->sk_sleep);
1470         sk_wake_async(sk,0,POLL_ERR);
1471         read_unlock(&sk->sk_callback_lock);
1472 }
1473
1474 static void sock_def_readable(struct sock *sk, int len)
1475 {
1476         read_lock(&sk->sk_callback_lock);
1477         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1478                 wake_up_interruptible(sk->sk_sleep);
1479         sk_wake_async(sk,1,POLL_IN);
1480         read_unlock(&sk->sk_callback_lock);
1481 }
1482
1483 static void sock_def_write_space(struct sock *sk)
1484 {
1485         read_lock(&sk->sk_callback_lock);
1486
1487         /* Do not wake up a writer until he can make "significant"
1488          * progress.  --DaveM
1489          */
1490         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1491                 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1492                         wake_up_interruptible(sk->sk_sleep);
1493
1494                 /* Should agree with poll, otherwise some programs break */
1495                 if (sock_writeable(sk))
1496                         sk_wake_async(sk, 2, POLL_OUT);
1497         }
1498
1499         read_unlock(&sk->sk_callback_lock);
1500 }
1501
1502 static void sock_def_destruct(struct sock *sk)
1503 {
1504         kfree(sk->sk_protinfo);
1505 }
1506
1507 void sk_send_sigurg(struct sock *sk)
1508 {
1509         if (sk->sk_socket && sk->sk_socket->file)
1510                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1511                         sk_wake_async(sk, 3, POLL_PRI);
1512 }
1513
1514 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1515                     unsigned long expires)
1516 {
1517         if (!mod_timer(timer, expires))
1518                 sock_hold(sk);
1519 }
1520
1521 EXPORT_SYMBOL(sk_reset_timer);
1522
1523 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1524 {
1525         if (timer_pending(timer) && del_timer(timer))
1526                 __sock_put(sk);
1527 }
1528
1529 EXPORT_SYMBOL(sk_stop_timer);
1530
1531 void sock_init_data(struct socket *sock, struct sock *sk)
1532 {
1533         skb_queue_head_init(&sk->sk_receive_queue);
1534         skb_queue_head_init(&sk->sk_write_queue);
1535         skb_queue_head_init(&sk->sk_error_queue);
1536 #ifdef CONFIG_NET_DMA
1537         skb_queue_head_init(&sk->sk_async_wait_queue);
1538 #endif
1539
1540         sk->sk_send_head        =       NULL;
1541
1542         init_timer(&sk->sk_timer);
1543
1544         sk->sk_allocation       =       GFP_KERNEL;
1545         sk->sk_rcvbuf           =       sysctl_rmem_default;
1546         sk->sk_sndbuf           =       sysctl_wmem_default;
1547         sk->sk_state            =       TCP_CLOSE;
1548         sk->sk_socket           =       sock;
1549
1550         sock_set_flag(sk, SOCK_ZAPPED);
1551
1552         if (sock) {
1553                 sk->sk_type     =       sock->type;
1554                 sk->sk_sleep    =       &sock->wait;
1555                 sock->sk        =       sk;
1556         } else
1557                 sk->sk_sleep    =       NULL;
1558
1559         rwlock_init(&sk->sk_dst_lock);
1560         rwlock_init(&sk->sk_callback_lock);
1561         lockdep_set_class_and_name(&sk->sk_callback_lock,
1562                         af_callback_keys + sk->sk_family,
1563                         af_family_clock_key_strings[sk->sk_family]);
1564
1565         sk->sk_state_change     =       sock_def_wakeup;
1566         sk->sk_data_ready       =       sock_def_readable;
1567         sk->sk_write_space      =       sock_def_write_space;
1568         sk->sk_error_report     =       sock_def_error_report;
1569         sk->sk_destruct         =       sock_def_destruct;
1570
1571         sk->sk_sndmsg_page      =       NULL;
1572         sk->sk_sndmsg_off       =       0;
1573
1574         sk->sk_peercred.pid     =       0;
1575         sk->sk_peercred.uid     =       -1;
1576         sk->sk_peercred.gid     =       -1;
1577         sk->sk_write_pending    =       0;
1578         sk->sk_rcvlowat         =       1;
1579         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
1580         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
1581
1582         sk->sk_stamp = ktime_set(-1L, -1L);
1583
1584         atomic_set(&sk->sk_refcnt, 1);
1585 }
1586
1587 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1588 {
1589         might_sleep();
1590         spin_lock_bh(&sk->sk_lock.slock);
1591         if (sk->sk_lock.owned)
1592                 __lock_sock(sk);
1593         sk->sk_lock.owned = 1;
1594         spin_unlock(&sk->sk_lock.slock);
1595         /*
1596          * The sk_lock has mutex_lock() semantics here:
1597          */
1598         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1599         local_bh_enable();
1600 }
1601
1602 EXPORT_SYMBOL(lock_sock_nested);
1603
1604 void fastcall release_sock(struct sock *sk)
1605 {
1606         /*
1607          * The sk_lock has mutex_unlock() semantics:
1608          */
1609         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1610
1611         spin_lock_bh(&sk->sk_lock.slock);
1612         if (sk->sk_backlog.tail)
1613                 __release_sock(sk);
1614         sk->sk_lock.owned = 0;
1615         if (waitqueue_active(&sk->sk_lock.wq))
1616                 wake_up(&sk->sk_lock.wq);
1617         spin_unlock_bh(&sk->sk_lock.slock);
1618 }
1619 EXPORT_SYMBOL(release_sock);
1620
1621 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1622 {
1623         struct timeval tv;
1624         if (!sock_flag(sk, SOCK_TIMESTAMP))
1625                 sock_enable_timestamp(sk);
1626         tv = ktime_to_timeval(sk->sk_stamp);
1627         if (tv.tv_sec == -1)
1628                 return -ENOENT;
1629         if (tv.tv_sec == 0) {
1630                 sk->sk_stamp = ktime_get_real();
1631                 tv = ktime_to_timeval(sk->sk_stamp);
1632         }
1633         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1634 }
1635 EXPORT_SYMBOL(sock_get_timestamp);
1636
1637 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1638 {
1639         struct timespec ts;
1640         if (!sock_flag(sk, SOCK_TIMESTAMP))
1641                 sock_enable_timestamp(sk);
1642         ts = ktime_to_timespec(sk->sk_stamp);
1643         if (ts.tv_sec == -1)
1644                 return -ENOENT;
1645         if (ts.tv_sec == 0) {
1646                 sk->sk_stamp = ktime_get_real();
1647                 ts = ktime_to_timespec(sk->sk_stamp);
1648         }
1649         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1650 }
1651 EXPORT_SYMBOL(sock_get_timestampns);
1652
1653 void sock_enable_timestamp(struct sock *sk)
1654 {
1655         if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1656                 sock_set_flag(sk, SOCK_TIMESTAMP);
1657                 net_enable_timestamp();
1658         }
1659 }
1660 EXPORT_SYMBOL(sock_enable_timestamp);
1661
1662 /*
1663  *      Get a socket option on an socket.
1664  *
1665  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
1666  *      asynchronous errors should be reported by getsockopt. We assume
1667  *      this means if you specify SO_ERROR (otherwise whats the point of it).
1668  */
1669 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1670                            char __user *optval, int __user *optlen)
1671 {
1672         struct sock *sk = sock->sk;
1673
1674         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1675 }
1676
1677 EXPORT_SYMBOL(sock_common_getsockopt);
1678
1679 #ifdef CONFIG_COMPAT
1680 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1681                                   char __user *optval, int __user *optlen)
1682 {
1683         struct sock *sk = sock->sk;
1684
1685         if (sk->sk_prot->compat_getsockopt != NULL)
1686                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1687                                                       optval, optlen);
1688         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1689 }
1690 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1691 #endif
1692
1693 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1694                         struct msghdr *msg, size_t size, int flags)
1695 {
1696         struct sock *sk = sock->sk;
1697         int addr_len = 0;
1698         int err;
1699
1700         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1701                                    flags & ~MSG_DONTWAIT, &addr_len);
1702         if (err >= 0)
1703                 msg->msg_namelen = addr_len;
1704         return err;
1705 }
1706
1707 EXPORT_SYMBOL(sock_common_recvmsg);
1708
1709 /*
1710  *      Set socket options on an inet socket.
1711  */
1712 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1713                            char __user *optval, int optlen)
1714 {
1715         struct sock *sk = sock->sk;
1716
1717         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1718 }
1719
1720 EXPORT_SYMBOL(sock_common_setsockopt);
1721
1722 #ifdef CONFIG_COMPAT
1723 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1724                                   char __user *optval, int optlen)
1725 {
1726         struct sock *sk = sock->sk;
1727
1728         if (sk->sk_prot->compat_setsockopt != NULL)
1729                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1730                                                       optval, optlen);
1731         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1732 }
1733 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1734 #endif
1735
1736 void sk_common_release(struct sock *sk)
1737 {
1738         if (sk->sk_prot->destroy)
1739                 sk->sk_prot->destroy(sk);
1740
1741         /*
1742          * Observation: when sock_common_release is called, processes have
1743          * no access to socket. But net still has.
1744          * Step one, detach it from networking:
1745          *
1746          * A. Remove from hash tables.
1747          */
1748
1749         sk->sk_prot->unhash(sk);
1750
1751         /*
1752          * In this point socket cannot receive new packets, but it is possible
1753          * that some packets are in flight because some CPU runs receiver and
1754          * did hash table lookup before we unhashed socket. They will achieve
1755          * receive queue and will be purged by socket destructor.
1756          *
1757          * Also we still have packets pending on receive queue and probably,
1758          * our own packets waiting in device queues. sock_destroy will drain
1759          * receive queue, but transmitted packets will delay socket destruction
1760          * until the last reference will be released.
1761          */
1762
1763         sock_orphan(sk);
1764
1765         xfrm_sk_free_policy(sk);
1766
1767         sk_refcnt_debug_release(sk);
1768         sock_put(sk);
1769 }
1770
1771 EXPORT_SYMBOL(sk_common_release);
1772
1773 static DEFINE_RWLOCK(proto_list_lock);
1774 static LIST_HEAD(proto_list);
1775
1776 int proto_register(struct proto *prot, int alloc_slab)
1777 {
1778         char *request_sock_slab_name = NULL;
1779         char *timewait_sock_slab_name;
1780         int rc = -ENOBUFS;
1781
1782         if (alloc_slab) {
1783                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1784                                                SLAB_HWCACHE_ALIGN, NULL);
1785
1786                 if (prot->slab == NULL) {
1787                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1788                                prot->name);
1789                         goto out;
1790                 }
1791
1792                 if (prot->rsk_prot != NULL) {
1793                         static const char mask[] = "request_sock_%s";
1794
1795                         request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1796                         if (request_sock_slab_name == NULL)
1797                                 goto out_free_sock_slab;
1798
1799                         sprintf(request_sock_slab_name, mask, prot->name);
1800                         prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1801                                                                  prot->rsk_prot->obj_size, 0,
1802                                                                  SLAB_HWCACHE_ALIGN, NULL);
1803
1804                         if (prot->rsk_prot->slab == NULL) {
1805                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1806                                        prot->name);
1807                                 goto out_free_request_sock_slab_name;
1808                         }
1809                 }
1810
1811                 if (prot->twsk_prot != NULL) {
1812                         static const char mask[] = "tw_sock_%s";
1813
1814                         timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1815
1816                         if (timewait_sock_slab_name == NULL)
1817                                 goto out_free_request_sock_slab;
1818
1819                         sprintf(timewait_sock_slab_name, mask, prot->name);
1820                         prot->twsk_prot->twsk_slab =
1821                                 kmem_cache_create(timewait_sock_slab_name,
1822                                                   prot->twsk_prot->twsk_obj_size,
1823                                                   0, SLAB_HWCACHE_ALIGN,
1824                                                   NULL);
1825                         if (prot->twsk_prot->twsk_slab == NULL)
1826                                 goto out_free_timewait_sock_slab_name;
1827                 }
1828         }
1829
1830         write_lock(&proto_list_lock);
1831         list_add(&prot->node, &proto_list);
1832         write_unlock(&proto_list_lock);
1833         rc = 0;
1834 out:
1835         return rc;
1836 out_free_timewait_sock_slab_name:
1837         kfree(timewait_sock_slab_name);
1838 out_free_request_sock_slab:
1839         if (prot->rsk_prot && prot->rsk_prot->slab) {
1840                 kmem_cache_destroy(prot->rsk_prot->slab);
1841                 prot->rsk_prot->slab = NULL;
1842         }
1843 out_free_request_sock_slab_name:
1844         kfree(request_sock_slab_name);
1845 out_free_sock_slab:
1846         kmem_cache_destroy(prot->slab);
1847         prot->slab = NULL;
1848         goto out;
1849 }
1850
1851 EXPORT_SYMBOL(proto_register);
1852
1853 void proto_unregister(struct proto *prot)
1854 {
1855         write_lock(&proto_list_lock);
1856         list_del(&prot->node);
1857         write_unlock(&proto_list_lock);
1858
1859         if (prot->slab != NULL) {
1860                 kmem_cache_destroy(prot->slab);
1861                 prot->slab = NULL;
1862         }
1863
1864         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1865                 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1866
1867                 kmem_cache_destroy(prot->rsk_prot->slab);
1868                 kfree(name);
1869                 prot->rsk_prot->slab = NULL;
1870         }
1871
1872         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1873                 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1874
1875                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1876                 kfree(name);
1877                 prot->twsk_prot->twsk_slab = NULL;
1878         }
1879 }
1880
1881 EXPORT_SYMBOL(proto_unregister);
1882
1883 #ifdef CONFIG_PROC_FS
1884 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1885 {
1886         read_lock(&proto_list_lock);
1887         return seq_list_start_head(&proto_list, *pos);
1888 }
1889
1890 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1891 {
1892         return seq_list_next(v, &proto_list, pos);
1893 }
1894
1895 static void proto_seq_stop(struct seq_file *seq, void *v)
1896 {
1897         read_unlock(&proto_list_lock);
1898 }
1899
1900 static char proto_method_implemented(const void *method)
1901 {
1902         return method == NULL ? 'n' : 'y';
1903 }
1904
1905 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1906 {
1907         seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1908                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1909                    proto->name,
1910                    proto->obj_size,
1911                    proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1912                    proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1913                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1914                    proto->max_header,
1915                    proto->slab == NULL ? "no" : "yes",
1916                    module_name(proto->owner),
1917                    proto_method_implemented(proto->close),
1918                    proto_method_implemented(proto->connect),
1919                    proto_method_implemented(proto->disconnect),
1920                    proto_method_implemented(proto->accept),
1921                    proto_method_implemented(proto->ioctl),
1922                    proto_method_implemented(proto->init),
1923                    proto_method_implemented(proto->destroy),
1924                    proto_method_implemented(proto->shutdown),
1925                    proto_method_implemented(proto->setsockopt),
1926                    proto_method_implemented(proto->getsockopt),
1927                    proto_method_implemented(proto->sendmsg),
1928                    proto_method_implemented(proto->recvmsg),
1929                    proto_method_implemented(proto->sendpage),
1930                    proto_method_implemented(proto->bind),
1931                    proto_method_implemented(proto->backlog_rcv),
1932                    proto_method_implemented(proto->hash),
1933                    proto_method_implemented(proto->unhash),
1934                    proto_method_implemented(proto->get_port),
1935                    proto_method_implemented(proto->enter_memory_pressure));
1936 }
1937
1938 static int proto_seq_show(struct seq_file *seq, void *v)
1939 {
1940         if (v == &proto_list)
1941                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1942                            "protocol",
1943                            "size",
1944                            "sockets",
1945                            "memory",
1946                            "press",
1947                            "maxhdr",
1948                            "slab",
1949                            "module",
1950                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1951         else
1952                 proto_seq_printf(seq, list_entry(v, struct proto, node));
1953         return 0;
1954 }
1955
1956 static const struct seq_operations proto_seq_ops = {
1957         .start  = proto_seq_start,
1958         .next   = proto_seq_next,
1959         .stop   = proto_seq_stop,
1960         .show   = proto_seq_show,
1961 };
1962
1963 static int proto_seq_open(struct inode *inode, struct file *file)
1964 {
1965         return seq_open(file, &proto_seq_ops);
1966 }
1967
1968 static const struct file_operations proto_seq_fops = {
1969         .owner          = THIS_MODULE,
1970         .open           = proto_seq_open,
1971         .read           = seq_read,
1972         .llseek         = seq_lseek,
1973         .release        = seq_release,
1974 };
1975
1976 static int __init proto_init(void)
1977 {
1978         /* register /proc/net/protocols */
1979         return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1980 }
1981
1982 subsys_initcall(proto_init);
1983
1984 #endif /* PROC_FS */
1985
1986 EXPORT_SYMBOL(sk_alloc);
1987 EXPORT_SYMBOL(sk_free);
1988 EXPORT_SYMBOL(sk_send_sigurg);
1989 EXPORT_SYMBOL(sock_alloc_send_skb);
1990 EXPORT_SYMBOL(sock_init_data);
1991 EXPORT_SYMBOL(sock_kfree_s);
1992 EXPORT_SYMBOL(sock_kmalloc);
1993 EXPORT_SYMBOL(sock_no_accept);
1994 EXPORT_SYMBOL(sock_no_bind);
1995 EXPORT_SYMBOL(sock_no_connect);
1996 EXPORT_SYMBOL(sock_no_getname);
1997 EXPORT_SYMBOL(sock_no_getsockopt);
1998 EXPORT_SYMBOL(sock_no_ioctl);
1999 EXPORT_SYMBOL(sock_no_listen);
2000 EXPORT_SYMBOL(sock_no_mmap);
2001 EXPORT_SYMBOL(sock_no_poll);
2002 EXPORT_SYMBOL(sock_no_recvmsg);
2003 EXPORT_SYMBOL(sock_no_sendmsg);
2004 EXPORT_SYMBOL(sock_no_sendpage);
2005 EXPORT_SYMBOL(sock_no_setsockopt);
2006 EXPORT_SYMBOL(sock_no_shutdown);
2007 EXPORT_SYMBOL(sock_no_socketpair);
2008 EXPORT_SYMBOL(sock_rfree);
2009 EXPORT_SYMBOL(sock_setsockopt);
2010 EXPORT_SYMBOL(sock_wfree);
2011 EXPORT_SYMBOL(sock_wmalloc);
2012 EXPORT_SYMBOL(sock_i_uid);
2013 EXPORT_SYMBOL(sock_i_ino);
2014 EXPORT_SYMBOL(sysctl_optmem_max);
2015 #ifdef CONFIG_SYSCTL
2016 EXPORT_SYMBOL(sysctl_rmem_max);
2017 EXPORT_SYMBOL(sysctl_wmem_max);
2018 #endif