4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
55 /* This context's GFP mask */
60 /* Can pages be swapped as part of reclaim? */
63 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
64 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
65 * In this context, it doesn't matter that we scan the
66 * whole list at once. */
71 int all_unreclaimable;
75 /* Which cgroup do we reclaim from */
76 struct mem_cgroup *mem_cgroup;
78 /* Pluggable isolate pages callback */
79 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
80 unsigned long *scanned, int order, int mode,
81 struct zone *z, struct mem_cgroup *mem_cont,
82 int active, int file);
85 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
87 #ifdef ARCH_HAS_PREFETCH
88 #define prefetch_prev_lru_page(_page, _base, _field) \
90 if ((_page)->lru.prev != _base) { \
93 prev = lru_to_page(&(_page->lru)); \
94 prefetch(&prev->_field); \
98 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
101 #ifdef ARCH_HAS_PREFETCHW
102 #define prefetchw_prev_lru_page(_page, _base, _field) \
104 if ((_page)->lru.prev != _base) { \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetchw(&prev->_field); \
112 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116 * From 0 .. 100. Higher means more swappy.
118 int vm_swappiness = 60;
119 long vm_total_pages; /* The total number of pages which the VM controls */
121 static LIST_HEAD(shrinker_list);
122 static DECLARE_RWSEM(shrinker_rwsem);
124 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
125 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
127 #define scan_global_lru(sc) (1)
131 * Add a shrinker callback to be called from the vm
133 void register_shrinker(struct shrinker *shrinker)
136 down_write(&shrinker_rwsem);
137 list_add_tail(&shrinker->list, &shrinker_list);
138 up_write(&shrinker_rwsem);
140 EXPORT_SYMBOL(register_shrinker);
145 void unregister_shrinker(struct shrinker *shrinker)
147 down_write(&shrinker_rwsem);
148 list_del(&shrinker->list);
149 up_write(&shrinker_rwsem);
151 EXPORT_SYMBOL(unregister_shrinker);
153 #define SHRINK_BATCH 128
155 * Call the shrink functions to age shrinkable caches
157 * Here we assume it costs one seek to replace a lru page and that it also
158 * takes a seek to recreate a cache object. With this in mind we age equal
159 * percentages of the lru and ageable caches. This should balance the seeks
160 * generated by these structures.
162 * If the vm encountered mapped pages on the LRU it increase the pressure on
163 * slab to avoid swapping.
165 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
167 * `lru_pages' represents the number of on-LRU pages in all the zones which
168 * are eligible for the caller's allocation attempt. It is used for balancing
169 * slab reclaim versus page reclaim.
171 * Returns the number of slab objects which we shrunk.
173 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
174 unsigned long lru_pages)
176 struct shrinker *shrinker;
177 unsigned long ret = 0;
180 scanned = SWAP_CLUSTER_MAX;
182 if (!down_read_trylock(&shrinker_rwsem))
183 return 1; /* Assume we'll be able to shrink next time */
185 list_for_each_entry(shrinker, &shrinker_list, list) {
186 unsigned long long delta;
187 unsigned long total_scan;
188 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
190 delta = (4 * scanned) / shrinker->seeks;
192 do_div(delta, lru_pages + 1);
193 shrinker->nr += delta;
194 if (shrinker->nr < 0) {
195 printk(KERN_ERR "%s: nr=%ld\n",
196 __func__, shrinker->nr);
197 shrinker->nr = max_pass;
201 * Avoid risking looping forever due to too large nr value:
202 * never try to free more than twice the estimate number of
205 if (shrinker->nr > max_pass * 2)
206 shrinker->nr = max_pass * 2;
208 total_scan = shrinker->nr;
211 while (total_scan >= SHRINK_BATCH) {
212 long this_scan = SHRINK_BATCH;
216 nr_before = (*shrinker->shrink)(0, gfp_mask);
217 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
218 if (shrink_ret == -1)
220 if (shrink_ret < nr_before)
221 ret += nr_before - shrink_ret;
222 count_vm_events(SLABS_SCANNED, this_scan);
223 total_scan -= this_scan;
228 shrinker->nr += total_scan;
230 up_read(&shrinker_rwsem);
234 /* Called without lock on whether page is mapped, so answer is unstable */
235 static inline int page_mapping_inuse(struct page *page)
237 struct address_space *mapping;
239 /* Page is in somebody's page tables. */
240 if (page_mapped(page))
243 /* Be more reluctant to reclaim swapcache than pagecache */
244 if (PageSwapCache(page))
247 mapping = page_mapping(page);
251 /* File is mmap'd by somebody? */
252 return mapping_mapped(mapping);
255 static inline int is_page_cache_freeable(struct page *page)
257 return page_count(page) - !!PagePrivate(page) == 2;
260 static int may_write_to_queue(struct backing_dev_info *bdi)
262 if (current->flags & PF_SWAPWRITE)
264 if (!bdi_write_congested(bdi))
266 if (bdi == current->backing_dev_info)
272 * We detected a synchronous write error writing a page out. Probably
273 * -ENOSPC. We need to propagate that into the address_space for a subsequent
274 * fsync(), msync() or close().
276 * The tricky part is that after writepage we cannot touch the mapping: nothing
277 * prevents it from being freed up. But we have a ref on the page and once
278 * that page is locked, the mapping is pinned.
280 * We're allowed to run sleeping lock_page() here because we know the caller has
283 static void handle_write_error(struct address_space *mapping,
284 struct page *page, int error)
287 if (page_mapping(page) == mapping)
288 mapping_set_error(mapping, error);
292 /* Request for sync pageout. */
298 /* possible outcome of pageout() */
300 /* failed to write page out, page is locked */
302 /* move page to the active list, page is locked */
304 /* page has been sent to the disk successfully, page is unlocked */
306 /* page is clean and locked */
311 * pageout is called by shrink_page_list() for each dirty page.
312 * Calls ->writepage().
314 static pageout_t pageout(struct page *page, struct address_space *mapping,
315 enum pageout_io sync_writeback)
318 * If the page is dirty, only perform writeback if that write
319 * will be non-blocking. To prevent this allocation from being
320 * stalled by pagecache activity. But note that there may be
321 * stalls if we need to run get_block(). We could test
322 * PagePrivate for that.
324 * If this process is currently in generic_file_write() against
325 * this page's queue, we can perform writeback even if that
328 * If the page is swapcache, write it back even if that would
329 * block, for some throttling. This happens by accident, because
330 * swap_backing_dev_info is bust: it doesn't reflect the
331 * congestion state of the swapdevs. Easy to fix, if needed.
332 * See swapfile.c:page_queue_congested().
334 if (!is_page_cache_freeable(page))
338 * Some data journaling orphaned pages can have
339 * page->mapping == NULL while being dirty with clean buffers.
341 if (PagePrivate(page)) {
342 if (try_to_free_buffers(page)) {
343 ClearPageDirty(page);
344 printk("%s: orphaned page\n", __func__);
350 if (mapping->a_ops->writepage == NULL)
351 return PAGE_ACTIVATE;
352 if (!may_write_to_queue(mapping->backing_dev_info))
355 if (clear_page_dirty_for_io(page)) {
357 struct writeback_control wbc = {
358 .sync_mode = WB_SYNC_NONE,
359 .nr_to_write = SWAP_CLUSTER_MAX,
361 .range_end = LLONG_MAX,
366 SetPageReclaim(page);
367 res = mapping->a_ops->writepage(page, &wbc);
369 handle_write_error(mapping, page, res);
370 if (res == AOP_WRITEPAGE_ACTIVATE) {
371 ClearPageReclaim(page);
372 return PAGE_ACTIVATE;
376 * Wait on writeback if requested to. This happens when
377 * direct reclaiming a large contiguous area and the
378 * first attempt to free a range of pages fails.
380 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
381 wait_on_page_writeback(page);
383 if (!PageWriteback(page)) {
384 /* synchronous write or broken a_ops? */
385 ClearPageReclaim(page);
387 inc_zone_page_state(page, NR_VMSCAN_WRITE);
395 * Same as remove_mapping, but if the page is removed from the mapping, it
396 * gets returned with a refcount of 0.
398 static int __remove_mapping(struct address_space *mapping, struct page *page)
400 BUG_ON(!PageLocked(page));
401 BUG_ON(mapping != page_mapping(page));
403 spin_lock_irq(&mapping->tree_lock);
405 * The non racy check for a busy page.
407 * Must be careful with the order of the tests. When someone has
408 * a ref to the page, it may be possible that they dirty it then
409 * drop the reference. So if PageDirty is tested before page_count
410 * here, then the following race may occur:
412 * get_user_pages(&page);
413 * [user mapping goes away]
415 * !PageDirty(page) [good]
416 * SetPageDirty(page);
418 * !page_count(page) [good, discard it]
420 * [oops, our write_to data is lost]
422 * Reversing the order of the tests ensures such a situation cannot
423 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
424 * load is not satisfied before that of page->_count.
426 * Note that if SetPageDirty is always performed via set_page_dirty,
427 * and thus under tree_lock, then this ordering is not required.
429 if (!page_freeze_refs(page, 2))
431 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
432 if (unlikely(PageDirty(page))) {
433 page_unfreeze_refs(page, 2);
437 if (PageSwapCache(page)) {
438 swp_entry_t swap = { .val = page_private(page) };
439 __delete_from_swap_cache(page);
440 spin_unlock_irq(&mapping->tree_lock);
443 __remove_from_page_cache(page);
444 spin_unlock_irq(&mapping->tree_lock);
450 spin_unlock_irq(&mapping->tree_lock);
455 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
456 * someone else has a ref on the page, abort and return 0. If it was
457 * successfully detached, return 1. Assumes the caller has a single ref on
460 int remove_mapping(struct address_space *mapping, struct page *page)
462 if (__remove_mapping(mapping, page)) {
464 * Unfreezing the refcount with 1 rather than 2 effectively
465 * drops the pagecache ref for us without requiring another
468 page_unfreeze_refs(page, 1);
475 * putback_lru_page - put previously isolated page onto appropriate LRU list
476 * @page: page to be put back to appropriate lru list
478 * Add previously isolated @page to appropriate LRU list.
479 * Page may still be unevictable for other reasons.
481 * lru_lock must not be held, interrupts must be enabled.
483 #ifdef CONFIG_UNEVICTABLE_LRU
484 void putback_lru_page(struct page *page)
487 int active = !!TestClearPageActive(page);
488 int was_unevictable = PageUnevictable(page);
490 VM_BUG_ON(PageLRU(page));
493 ClearPageUnevictable(page);
495 if (page_evictable(page, NULL)) {
497 * For evictable pages, we can use the cache.
498 * In event of a race, worst case is we end up with an
499 * unevictable page on [in]active list.
500 * We know how to handle that.
502 lru = active + page_is_file_cache(page);
503 lru_cache_add_lru(page, lru);
506 * Put unevictable pages directly on zone's unevictable
509 lru = LRU_UNEVICTABLE;
510 add_page_to_unevictable_list(page);
512 mem_cgroup_move_lists(page, lru);
515 * page's status can change while we move it among lru. If an evictable
516 * page is on unevictable list, it never be freed. To avoid that,
517 * check after we added it to the list, again.
519 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
520 if (!isolate_lru_page(page)) {
524 /* This means someone else dropped this page from LRU
525 * So, it will be freed or putback to LRU again. There is
526 * nothing to do here.
530 if (was_unevictable && lru != LRU_UNEVICTABLE)
531 count_vm_event(UNEVICTABLE_PGRESCUED);
532 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
533 count_vm_event(UNEVICTABLE_PGCULLED);
535 put_page(page); /* drop ref from isolate */
538 #else /* CONFIG_UNEVICTABLE_LRU */
540 void putback_lru_page(struct page *page)
543 VM_BUG_ON(PageLRU(page));
545 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
546 lru_cache_add_lru(page, lru);
547 mem_cgroup_move_lists(page, lru);
550 #endif /* CONFIG_UNEVICTABLE_LRU */
554 * shrink_page_list() returns the number of reclaimed pages
556 static unsigned long shrink_page_list(struct list_head *page_list,
557 struct scan_control *sc,
558 enum pageout_io sync_writeback)
560 LIST_HEAD(ret_pages);
561 struct pagevec freed_pvec;
563 unsigned long nr_reclaimed = 0;
567 pagevec_init(&freed_pvec, 1);
568 while (!list_empty(page_list)) {
569 struct address_space *mapping;
576 page = lru_to_page(page_list);
577 list_del(&page->lru);
579 if (!trylock_page(page))
582 VM_BUG_ON(PageActive(page));
586 if (unlikely(!page_evictable(page, NULL)))
589 if (!sc->may_swap && page_mapped(page))
592 /* Double the slab pressure for mapped and swapcache pages */
593 if (page_mapped(page) || PageSwapCache(page))
596 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
597 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
599 if (PageWriteback(page)) {
601 * Synchronous reclaim is performed in two passes,
602 * first an asynchronous pass over the list to
603 * start parallel writeback, and a second synchronous
604 * pass to wait for the IO to complete. Wait here
605 * for any page for which writeback has already
608 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
609 wait_on_page_writeback(page);
614 referenced = page_referenced(page, 1, sc->mem_cgroup);
615 /* In active use or really unfreeable? Activate it. */
616 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
617 referenced && page_mapping_inuse(page))
618 goto activate_locked;
622 * Anonymous process memory has backing store?
623 * Try to allocate it some swap space here.
625 if (PageAnon(page) && !PageSwapCache(page)) {
626 switch (try_to_munlock(page)) {
627 case SWAP_FAIL: /* shouldn't happen */
633 ; /* fall thru'; add to swap cache */
635 if (!add_to_swap(page, GFP_ATOMIC))
636 goto activate_locked;
638 #endif /* CONFIG_SWAP */
640 mapping = page_mapping(page);
643 * The page is mapped into the page tables of one or more
644 * processes. Try to unmap it here.
646 if (page_mapped(page) && mapping) {
647 switch (try_to_unmap(page, 0)) {
649 goto activate_locked;
655 ; /* try to free the page below */
659 if (PageDirty(page)) {
660 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
664 if (!sc->may_writepage)
667 /* Page is dirty, try to write it out here */
668 switch (pageout(page, mapping, sync_writeback)) {
672 goto activate_locked;
674 if (PageWriteback(page) || PageDirty(page))
677 * A synchronous write - probably a ramdisk. Go
678 * ahead and try to reclaim the page.
680 if (!trylock_page(page))
682 if (PageDirty(page) || PageWriteback(page))
684 mapping = page_mapping(page);
686 ; /* try to free the page below */
691 * If the page has buffers, try to free the buffer mappings
692 * associated with this page. If we succeed we try to free
695 * We do this even if the page is PageDirty().
696 * try_to_release_page() does not perform I/O, but it is
697 * possible for a page to have PageDirty set, but it is actually
698 * clean (all its buffers are clean). This happens if the
699 * buffers were written out directly, with submit_bh(). ext3
700 * will do this, as well as the blockdev mapping.
701 * try_to_release_page() will discover that cleanness and will
702 * drop the buffers and mark the page clean - it can be freed.
704 * Rarely, pages can have buffers and no ->mapping. These are
705 * the pages which were not successfully invalidated in
706 * truncate_complete_page(). We try to drop those buffers here
707 * and if that worked, and the page is no longer mapped into
708 * process address space (page_count == 1) it can be freed.
709 * Otherwise, leave the page on the LRU so it is swappable.
711 if (PagePrivate(page)) {
712 if (!try_to_release_page(page, sc->gfp_mask))
713 goto activate_locked;
714 if (!mapping && page_count(page) == 1) {
716 if (put_page_testzero(page))
720 * rare race with speculative reference.
721 * the speculative reference will free
722 * this page shortly, so we may
723 * increment nr_reclaimed here (and
724 * leave it off the LRU).
732 if (!mapping || !__remove_mapping(mapping, page))
736 * At this point, we have no other references and there is
737 * no way to pick any more up (removed from LRU, removed
738 * from pagecache). Can use non-atomic bitops now (and
739 * we obviously don't have to worry about waking up a process
740 * waiting on the page lock, because there are no references.
742 __clear_page_locked(page);
745 if (!pagevec_add(&freed_pvec, page)) {
746 __pagevec_free(&freed_pvec);
747 pagevec_reinit(&freed_pvec);
753 putback_lru_page(page);
757 /* Not a candidate for swapping, so reclaim swap space. */
758 if (PageSwapCache(page) && vm_swap_full())
759 remove_exclusive_swap_page_ref(page);
760 VM_BUG_ON(PageActive(page));
766 list_add(&page->lru, &ret_pages);
767 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
769 list_splice(&ret_pages, page_list);
770 if (pagevec_count(&freed_pvec))
771 __pagevec_free(&freed_pvec);
772 count_vm_events(PGACTIVATE, pgactivate);
776 /* LRU Isolation modes. */
777 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
778 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
779 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
782 * Attempt to remove the specified page from its LRU. Only take this page
783 * if it is of the appropriate PageActive status. Pages which are being
784 * freed elsewhere are also ignored.
786 * page: page to consider
787 * mode: one of the LRU isolation modes defined above
789 * returns 0 on success, -ve errno on failure.
791 int __isolate_lru_page(struct page *page, int mode, int file)
795 /* Only take pages on the LRU. */
800 * When checking the active state, we need to be sure we are
801 * dealing with comparible boolean values. Take the logical not
804 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
807 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
811 * When this function is being called for lumpy reclaim, we
812 * initially look into all LRU pages, active, inactive and
813 * unevictable; only give shrink_page_list evictable pages.
815 if (PageUnevictable(page))
819 if (likely(get_page_unless_zero(page))) {
821 * Be careful not to clear PageLRU until after we're
822 * sure the page is not being freed elsewhere -- the
823 * page release code relies on it.
833 * zone->lru_lock is heavily contended. Some of the functions that
834 * shrink the lists perform better by taking out a batch of pages
835 * and working on them outside the LRU lock.
837 * For pagecache intensive workloads, this function is the hottest
838 * spot in the kernel (apart from copy_*_user functions).
840 * Appropriate locks must be held before calling this function.
842 * @nr_to_scan: The number of pages to look through on the list.
843 * @src: The LRU list to pull pages off.
844 * @dst: The temp list to put pages on to.
845 * @scanned: The number of pages that were scanned.
846 * @order: The caller's attempted allocation order
847 * @mode: One of the LRU isolation modes
848 * @file: True [1] if isolating file [!anon] pages
850 * returns how many pages were moved onto *@dst.
852 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
853 struct list_head *src, struct list_head *dst,
854 unsigned long *scanned, int order, int mode, int file)
856 unsigned long nr_taken = 0;
859 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
862 unsigned long end_pfn;
863 unsigned long page_pfn;
866 page = lru_to_page(src);
867 prefetchw_prev_lru_page(page, src, flags);
869 VM_BUG_ON(!PageLRU(page));
871 switch (__isolate_lru_page(page, mode, file)) {
873 list_move(&page->lru, dst);
878 /* else it is being freed elsewhere */
879 list_move(&page->lru, src);
890 * Attempt to take all pages in the order aligned region
891 * surrounding the tag page. Only take those pages of
892 * the same active state as that tag page. We may safely
893 * round the target page pfn down to the requested order
894 * as the mem_map is guarenteed valid out to MAX_ORDER,
895 * where that page is in a different zone we will detect
896 * it from its zone id and abort this block scan.
898 zone_id = page_zone_id(page);
899 page_pfn = page_to_pfn(page);
900 pfn = page_pfn & ~((1 << order) - 1);
901 end_pfn = pfn + (1 << order);
902 for (; pfn < end_pfn; pfn++) {
903 struct page *cursor_page;
905 /* The target page is in the block, ignore it. */
906 if (unlikely(pfn == page_pfn))
909 /* Avoid holes within the zone. */
910 if (unlikely(!pfn_valid_within(pfn)))
913 cursor_page = pfn_to_page(pfn);
915 /* Check that we have not crossed a zone boundary. */
916 if (unlikely(page_zone_id(cursor_page) != zone_id))
918 switch (__isolate_lru_page(cursor_page, mode, file)) {
920 list_move(&cursor_page->lru, dst);
926 /* else it is being freed elsewhere */
927 list_move(&cursor_page->lru, src);
929 break; /* ! on LRU or wrong list */
938 static unsigned long isolate_pages_global(unsigned long nr,
939 struct list_head *dst,
940 unsigned long *scanned, int order,
941 int mode, struct zone *z,
942 struct mem_cgroup *mem_cont,
943 int active, int file)
950 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
955 * clear_active_flags() is a helper for shrink_active_list(), clearing
956 * any active bits from the pages in the list.
958 static unsigned long clear_active_flags(struct list_head *page_list,
965 list_for_each_entry(page, page_list, lru) {
966 lru = page_is_file_cache(page);
967 if (PageActive(page)) {
969 ClearPageActive(page);
979 * isolate_lru_page - tries to isolate a page from its LRU list
980 * @page: page to isolate from its LRU list
982 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
983 * vmstat statistic corresponding to whatever LRU list the page was on.
985 * Returns 0 if the page was removed from an LRU list.
986 * Returns -EBUSY if the page was not on an LRU list.
988 * The returned page will have PageLRU() cleared. If it was found on
989 * the active list, it will have PageActive set. If it was found on
990 * the unevictable list, it will have the PageUnevictable bit set. That flag
991 * may need to be cleared by the caller before letting the page go.
993 * The vmstat statistic corresponding to the list on which the page was
994 * found will be decremented.
997 * (1) Must be called with an elevated refcount on the page. This is a
998 * fundamentnal difference from isolate_lru_pages (which is called
999 * without a stable reference).
1000 * (2) the lru_lock must not be held.
1001 * (3) interrupts must be enabled.
1003 int isolate_lru_page(struct page *page)
1007 if (PageLRU(page)) {
1008 struct zone *zone = page_zone(page);
1010 spin_lock_irq(&zone->lru_lock);
1011 if (PageLRU(page) && get_page_unless_zero(page)) {
1012 int lru = page_lru(page);
1016 del_page_from_lru_list(zone, page, lru);
1018 spin_unlock_irq(&zone->lru_lock);
1024 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1025 * of reclaimed pages
1027 static unsigned long shrink_inactive_list(unsigned long max_scan,
1028 struct zone *zone, struct scan_control *sc,
1029 int priority, int file)
1031 LIST_HEAD(page_list);
1032 struct pagevec pvec;
1033 unsigned long nr_scanned = 0;
1034 unsigned long nr_reclaimed = 0;
1036 pagevec_init(&pvec, 1);
1039 spin_lock_irq(&zone->lru_lock);
1042 unsigned long nr_taken;
1043 unsigned long nr_scan;
1044 unsigned long nr_freed;
1045 unsigned long nr_active;
1046 unsigned int count[NR_LRU_LISTS] = { 0, };
1047 int mode = ISOLATE_INACTIVE;
1050 * If we need a large contiguous chunk of memory, or have
1051 * trouble getting a small set of contiguous pages, we
1052 * will reclaim both active and inactive pages.
1054 * We use the same threshold as pageout congestion_wait below.
1056 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1057 mode = ISOLATE_BOTH;
1058 else if (sc->order && priority < DEF_PRIORITY - 2)
1059 mode = ISOLATE_BOTH;
1061 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1062 &page_list, &nr_scan, sc->order, mode,
1063 zone, sc->mem_cgroup, 0, file);
1064 nr_active = clear_active_flags(&page_list, count);
1065 __count_vm_events(PGDEACTIVATE, nr_active);
1067 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1068 -count[LRU_ACTIVE_FILE]);
1069 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1070 -count[LRU_INACTIVE_FILE]);
1071 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1072 -count[LRU_ACTIVE_ANON]);
1073 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1074 -count[LRU_INACTIVE_ANON]);
1076 if (scan_global_lru(sc)) {
1077 zone->pages_scanned += nr_scan;
1078 zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1079 zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1080 zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1081 zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1083 spin_unlock_irq(&zone->lru_lock);
1085 nr_scanned += nr_scan;
1086 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1089 * If we are direct reclaiming for contiguous pages and we do
1090 * not reclaim everything in the list, try again and wait
1091 * for IO to complete. This will stall high-order allocations
1092 * but that should be acceptable to the caller
1094 if (nr_freed < nr_taken && !current_is_kswapd() &&
1095 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1096 congestion_wait(WRITE, HZ/10);
1099 * The attempt at page out may have made some
1100 * of the pages active, mark them inactive again.
1102 nr_active = clear_active_flags(&page_list, count);
1103 count_vm_events(PGDEACTIVATE, nr_active);
1105 nr_freed += shrink_page_list(&page_list, sc,
1109 nr_reclaimed += nr_freed;
1110 local_irq_disable();
1111 if (current_is_kswapd()) {
1112 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1113 __count_vm_events(KSWAPD_STEAL, nr_freed);
1114 } else if (scan_global_lru(sc))
1115 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1117 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1122 spin_lock(&zone->lru_lock);
1124 * Put back any unfreeable pages.
1126 while (!list_empty(&page_list)) {
1128 page = lru_to_page(&page_list);
1129 VM_BUG_ON(PageLRU(page));
1130 list_del(&page->lru);
1131 if (unlikely(!page_evictable(page, NULL))) {
1132 spin_unlock_irq(&zone->lru_lock);
1133 putback_lru_page(page);
1134 spin_lock_irq(&zone->lru_lock);
1138 lru = page_lru(page);
1139 add_page_to_lru_list(zone, page, lru);
1140 mem_cgroup_move_lists(page, lru);
1141 if (PageActive(page) && scan_global_lru(sc)) {
1142 int file = !!page_is_file_cache(page);
1143 zone->recent_rotated[file]++;
1145 if (!pagevec_add(&pvec, page)) {
1146 spin_unlock_irq(&zone->lru_lock);
1147 __pagevec_release(&pvec);
1148 spin_lock_irq(&zone->lru_lock);
1151 } while (nr_scanned < max_scan);
1152 spin_unlock(&zone->lru_lock);
1155 pagevec_release(&pvec);
1156 return nr_reclaimed;
1160 * We are about to scan this zone at a certain priority level. If that priority
1161 * level is smaller (ie: more urgent) than the previous priority, then note
1162 * that priority level within the zone. This is done so that when the next
1163 * process comes in to scan this zone, it will immediately start out at this
1164 * priority level rather than having to build up its own scanning priority.
1165 * Here, this priority affects only the reclaim-mapped threshold.
1167 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1169 if (priority < zone->prev_priority)
1170 zone->prev_priority = priority;
1173 static inline int zone_is_near_oom(struct zone *zone)
1175 return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1179 * This moves pages from the active list to the inactive list.
1181 * We move them the other way if the page is referenced by one or more
1182 * processes, from rmap.
1184 * If the pages are mostly unmapped, the processing is fast and it is
1185 * appropriate to hold zone->lru_lock across the whole operation. But if
1186 * the pages are mapped, the processing is slow (page_referenced()) so we
1187 * should drop zone->lru_lock around each page. It's impossible to balance
1188 * this, so instead we remove the pages from the LRU while processing them.
1189 * It is safe to rely on PG_active against the non-LRU pages in here because
1190 * nobody will play with that bit on a non-LRU page.
1192 * The downside is that we have to touch page->_count against each page.
1193 * But we had to alter page->flags anyway.
1197 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1198 struct scan_control *sc, int priority, int file)
1200 unsigned long pgmoved;
1201 int pgdeactivate = 0;
1202 unsigned long pgscanned;
1203 LIST_HEAD(l_hold); /* The pages which were snipped off */
1204 LIST_HEAD(l_inactive);
1206 struct pagevec pvec;
1210 spin_lock_irq(&zone->lru_lock);
1211 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1212 ISOLATE_ACTIVE, zone,
1213 sc->mem_cgroup, 1, file);
1215 * zone->pages_scanned is used for detect zone's oom
1216 * mem_cgroup remembers nr_scan by itself.
1218 if (scan_global_lru(sc)) {
1219 zone->pages_scanned += pgscanned;
1220 zone->recent_scanned[!!file] += pgmoved;
1224 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1226 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1227 spin_unlock_irq(&zone->lru_lock);
1230 while (!list_empty(&l_hold)) {
1232 page = lru_to_page(&l_hold);
1233 list_del(&page->lru);
1235 if (unlikely(!page_evictable(page, NULL))) {
1236 putback_lru_page(page);
1240 /* page_referenced clears PageReferenced */
1241 if (page_mapping_inuse(page) &&
1242 page_referenced(page, 0, sc->mem_cgroup))
1245 list_add(&page->lru, &l_inactive);
1249 * Count referenced pages from currently used mappings as
1250 * rotated, even though they are moved to the inactive list.
1251 * This helps balance scan pressure between file and anonymous
1252 * pages in get_scan_ratio.
1254 zone->recent_rotated[!!file] += pgmoved;
1257 * Move the pages to the [file or anon] inactive list.
1259 pagevec_init(&pvec, 1);
1262 lru = LRU_BASE + file * LRU_FILE;
1263 spin_lock_irq(&zone->lru_lock);
1264 while (!list_empty(&l_inactive)) {
1265 page = lru_to_page(&l_inactive);
1266 prefetchw_prev_lru_page(page, &l_inactive, flags);
1267 VM_BUG_ON(PageLRU(page));
1269 VM_BUG_ON(!PageActive(page));
1270 ClearPageActive(page);
1272 list_move(&page->lru, &zone->lru[lru].list);
1273 mem_cgroup_move_lists(page, lru);
1275 if (!pagevec_add(&pvec, page)) {
1276 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1277 spin_unlock_irq(&zone->lru_lock);
1278 pgdeactivate += pgmoved;
1280 if (buffer_heads_over_limit)
1281 pagevec_strip(&pvec);
1282 __pagevec_release(&pvec);
1283 spin_lock_irq(&zone->lru_lock);
1286 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1287 pgdeactivate += pgmoved;
1288 if (buffer_heads_over_limit) {
1289 spin_unlock_irq(&zone->lru_lock);
1290 pagevec_strip(&pvec);
1291 spin_lock_irq(&zone->lru_lock);
1293 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1294 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1295 spin_unlock_irq(&zone->lru_lock);
1297 pagevec_swap_free(&pvec);
1299 pagevec_release(&pvec);
1302 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1303 struct zone *zone, struct scan_control *sc, int priority)
1305 int file = is_file_lru(lru);
1307 if (lru == LRU_ACTIVE_FILE) {
1308 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1312 if (lru == LRU_ACTIVE_ANON &&
1313 (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
1314 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1317 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1321 * Determine how aggressively the anon and file LRU lists should be
1322 * scanned. The relative value of each set of LRU lists is determined
1323 * by looking at the fraction of the pages scanned we did rotate back
1324 * onto the active list instead of evict.
1326 * percent[0] specifies how much pressure to put on ram/swap backed
1327 * memory, while percent[1] determines pressure on the file LRUs.
1329 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1330 unsigned long *percent)
1332 unsigned long anon, file, free;
1333 unsigned long anon_prio, file_prio;
1334 unsigned long ap, fp;
1336 anon = zone_page_state(zone, NR_ACTIVE_ANON) +
1337 zone_page_state(zone, NR_INACTIVE_ANON);
1338 file = zone_page_state(zone, NR_ACTIVE_FILE) +
1339 zone_page_state(zone, NR_INACTIVE_FILE);
1340 free = zone_page_state(zone, NR_FREE_PAGES);
1342 /* If we have no swap space, do not bother scanning anon pages. */
1343 if (nr_swap_pages <= 0) {
1349 /* If we have very few page cache pages, force-scan anon pages. */
1350 if (unlikely(file + free <= zone->pages_high)) {
1357 * OK, so we have swap space and a fair amount of page cache
1358 * pages. We use the recently rotated / recently scanned
1359 * ratios to determine how valuable each cache is.
1361 * Because workloads change over time (and to avoid overflow)
1362 * we keep these statistics as a floating average, which ends
1363 * up weighing recent references more than old ones.
1365 * anon in [0], file in [1]
1367 if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1368 spin_lock_irq(&zone->lru_lock);
1369 zone->recent_scanned[0] /= 2;
1370 zone->recent_rotated[0] /= 2;
1371 spin_unlock_irq(&zone->lru_lock);
1374 if (unlikely(zone->recent_scanned[1] > file / 4)) {
1375 spin_lock_irq(&zone->lru_lock);
1376 zone->recent_scanned[1] /= 2;
1377 zone->recent_rotated[1] /= 2;
1378 spin_unlock_irq(&zone->lru_lock);
1382 * With swappiness at 100, anonymous and file have the same priority.
1383 * This scanning priority is essentially the inverse of IO cost.
1385 anon_prio = sc->swappiness;
1386 file_prio = 200 - sc->swappiness;
1389 * anon recent_rotated[0]
1390 * %anon = 100 * ----------- / ----------------- * IO cost
1391 * anon + file rotate_sum
1393 ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1394 ap /= zone->recent_rotated[0] + 1;
1396 fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1397 fp /= zone->recent_rotated[1] + 1;
1399 /* Normalize to percentages */
1400 percent[0] = 100 * ap / (ap + fp + 1);
1401 percent[1] = 100 - percent[0];
1406 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1408 static unsigned long shrink_zone(int priority, struct zone *zone,
1409 struct scan_control *sc)
1411 unsigned long nr[NR_LRU_LISTS];
1412 unsigned long nr_to_scan;
1413 unsigned long nr_reclaimed = 0;
1414 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1417 get_scan_ratio(zone, sc, percent);
1419 for_each_evictable_lru(l) {
1420 if (scan_global_lru(sc)) {
1421 int file = is_file_lru(l);
1424 scan = zone_page_state(zone, NR_LRU_BASE + l);
1427 scan = (scan * percent[file]) / 100;
1429 zone->lru[l].nr_scan += scan;
1430 nr[l] = zone->lru[l].nr_scan;
1431 if (nr[l] >= sc->swap_cluster_max)
1432 zone->lru[l].nr_scan = 0;
1437 * This reclaim occurs not because zone memory shortage
1438 * but because memory controller hits its limit.
1439 * Don't modify zone reclaim related data.
1441 nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1446 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1447 nr[LRU_INACTIVE_FILE]) {
1448 for_each_evictable_lru(l) {
1450 nr_to_scan = min(nr[l],
1451 (unsigned long)sc->swap_cluster_max);
1452 nr[l] -= nr_to_scan;
1454 nr_reclaimed += shrink_list(l, nr_to_scan,
1455 zone, sc, priority);
1461 * Even if we did not try to evict anon pages at all, we want to
1462 * rebalance the anon lru active/inactive ratio.
1464 if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1465 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1466 else if (!scan_global_lru(sc))
1467 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1469 throttle_vm_writeout(sc->gfp_mask);
1470 return nr_reclaimed;
1474 * This is the direct reclaim path, for page-allocating processes. We only
1475 * try to reclaim pages from zones which will satisfy the caller's allocation
1478 * We reclaim from a zone even if that zone is over pages_high. Because:
1479 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1481 * b) The zones may be over pages_high but they must go *over* pages_high to
1482 * satisfy the `incremental min' zone defense algorithm.
1484 * Returns the number of reclaimed pages.
1486 * If a zone is deemed to be full of pinned pages then just give it a light
1487 * scan then give up on it.
1489 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1490 struct scan_control *sc)
1492 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1493 unsigned long nr_reclaimed = 0;
1497 sc->all_unreclaimable = 1;
1498 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1499 if (!populated_zone(zone))
1502 * Take care memory controller reclaiming has small influence
1505 if (scan_global_lru(sc)) {
1506 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1508 note_zone_scanning_priority(zone, priority);
1510 if (zone_is_all_unreclaimable(zone) &&
1511 priority != DEF_PRIORITY)
1512 continue; /* Let kswapd poll it */
1513 sc->all_unreclaimable = 0;
1516 * Ignore cpuset limitation here. We just want to reduce
1517 * # of used pages by us regardless of memory shortage.
1519 sc->all_unreclaimable = 0;
1520 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1524 nr_reclaimed += shrink_zone(priority, zone, sc);
1527 return nr_reclaimed;
1531 * This is the main entry point to direct page reclaim.
1533 * If a full scan of the inactive list fails to free enough memory then we
1534 * are "out of memory" and something needs to be killed.
1536 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1537 * high - the zone may be full of dirty or under-writeback pages, which this
1538 * caller can't do much about. We kick pdflush and take explicit naps in the
1539 * hope that some of these pages can be written. But if the allocating task
1540 * holds filesystem locks which prevent writeout this might not work, and the
1541 * allocation attempt will fail.
1543 * returns: 0, if no pages reclaimed
1544 * else, the number of pages reclaimed
1546 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1547 struct scan_control *sc)
1550 unsigned long ret = 0;
1551 unsigned long total_scanned = 0;
1552 unsigned long nr_reclaimed = 0;
1553 struct reclaim_state *reclaim_state = current->reclaim_state;
1554 unsigned long lru_pages = 0;
1557 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1559 delayacct_freepages_start();
1561 if (scan_global_lru(sc))
1562 count_vm_event(ALLOCSTALL);
1564 * mem_cgroup will not do shrink_slab.
1566 if (scan_global_lru(sc)) {
1567 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1569 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1572 lru_pages += zone_lru_pages(zone);
1576 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1579 disable_swap_token();
1580 nr_reclaimed += shrink_zones(priority, zonelist, sc);
1582 * Don't shrink slabs when reclaiming memory from
1583 * over limit cgroups
1585 if (scan_global_lru(sc)) {
1586 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1587 if (reclaim_state) {
1588 nr_reclaimed += reclaim_state->reclaimed_slab;
1589 reclaim_state->reclaimed_slab = 0;
1592 total_scanned += sc->nr_scanned;
1593 if (nr_reclaimed >= sc->swap_cluster_max) {
1599 * Try to write back as many pages as we just scanned. This
1600 * tends to cause slow streaming writers to write data to the
1601 * disk smoothly, at the dirtying rate, which is nice. But
1602 * that's undesirable in laptop mode, where we *want* lumpy
1603 * writeout. So in laptop mode, write out the whole world.
1605 if (total_scanned > sc->swap_cluster_max +
1606 sc->swap_cluster_max / 2) {
1607 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1608 sc->may_writepage = 1;
1611 /* Take a nap, wait for some writeback to complete */
1612 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1613 congestion_wait(WRITE, HZ/10);
1615 /* top priority shrink_zones still had more to do? don't OOM, then */
1616 if (!sc->all_unreclaimable && scan_global_lru(sc))
1620 * Now that we've scanned all the zones at this priority level, note
1621 * that level within the zone so that the next thread which performs
1622 * scanning of this zone will immediately start out at this priority
1623 * level. This affects only the decision whether or not to bring
1624 * mapped pages onto the inactive list.
1629 if (scan_global_lru(sc)) {
1630 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1632 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1635 zone->prev_priority = priority;
1638 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1640 delayacct_freepages_end();
1645 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1648 struct scan_control sc = {
1649 .gfp_mask = gfp_mask,
1650 .may_writepage = !laptop_mode,
1651 .swap_cluster_max = SWAP_CLUSTER_MAX,
1653 .swappiness = vm_swappiness,
1656 .isolate_pages = isolate_pages_global,
1659 return do_try_to_free_pages(zonelist, &sc);
1662 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1664 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1667 struct scan_control sc = {
1668 .may_writepage = !laptop_mode,
1670 .swap_cluster_max = SWAP_CLUSTER_MAX,
1671 .swappiness = vm_swappiness,
1673 .mem_cgroup = mem_cont,
1674 .isolate_pages = mem_cgroup_isolate_pages,
1676 struct zonelist *zonelist;
1678 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1679 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1680 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1681 return do_try_to_free_pages(zonelist, &sc);
1686 * For kswapd, balance_pgdat() will work across all this node's zones until
1687 * they are all at pages_high.
1689 * Returns the number of pages which were actually freed.
1691 * There is special handling here for zones which are full of pinned pages.
1692 * This can happen if the pages are all mlocked, or if they are all used by
1693 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1694 * What we do is to detect the case where all pages in the zone have been
1695 * scanned twice and there has been zero successful reclaim. Mark the zone as
1696 * dead and from now on, only perform a short scan. Basically we're polling
1697 * the zone for when the problem goes away.
1699 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1700 * zones which have free_pages > pages_high, but once a zone is found to have
1701 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1702 * of the number of free pages in the lower zones. This interoperates with
1703 * the page allocator fallback scheme to ensure that aging of pages is balanced
1706 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1711 unsigned long total_scanned;
1712 unsigned long nr_reclaimed;
1713 struct reclaim_state *reclaim_state = current->reclaim_state;
1714 struct scan_control sc = {
1715 .gfp_mask = GFP_KERNEL,
1717 .swap_cluster_max = SWAP_CLUSTER_MAX,
1718 .swappiness = vm_swappiness,
1721 .isolate_pages = isolate_pages_global,
1724 * temp_priority is used to remember the scanning priority at which
1725 * this zone was successfully refilled to free_pages == pages_high.
1727 int temp_priority[MAX_NR_ZONES];
1732 sc.may_writepage = !laptop_mode;
1733 count_vm_event(PAGEOUTRUN);
1735 for (i = 0; i < pgdat->nr_zones; i++)
1736 temp_priority[i] = DEF_PRIORITY;
1738 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1739 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1740 unsigned long lru_pages = 0;
1742 /* The swap token gets in the way of swapout... */
1744 disable_swap_token();
1749 * Scan in the highmem->dma direction for the highest
1750 * zone which needs scanning
1752 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1753 struct zone *zone = pgdat->node_zones + i;
1755 if (!populated_zone(zone))
1758 if (zone_is_all_unreclaimable(zone) &&
1759 priority != DEF_PRIORITY)
1763 * Do some background aging of the anon list, to give
1764 * pages a chance to be referenced before reclaiming.
1766 if (inactive_anon_is_low(zone))
1767 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1770 if (!zone_watermark_ok(zone, order, zone->pages_high,
1779 for (i = 0; i <= end_zone; i++) {
1780 struct zone *zone = pgdat->node_zones + i;
1782 lru_pages += zone_lru_pages(zone);
1786 * Now scan the zone in the dma->highmem direction, stopping
1787 * at the last zone which needs scanning.
1789 * We do this because the page allocator works in the opposite
1790 * direction. This prevents the page allocator from allocating
1791 * pages behind kswapd's direction of progress, which would
1792 * cause too much scanning of the lower zones.
1794 for (i = 0; i <= end_zone; i++) {
1795 struct zone *zone = pgdat->node_zones + i;
1798 if (!populated_zone(zone))
1801 if (zone_is_all_unreclaimable(zone) &&
1802 priority != DEF_PRIORITY)
1805 if (!zone_watermark_ok(zone, order, zone->pages_high,
1808 temp_priority[i] = priority;
1810 note_zone_scanning_priority(zone, priority);
1812 * We put equal pressure on every zone, unless one
1813 * zone has way too many pages free already.
1815 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1817 nr_reclaimed += shrink_zone(priority, zone, &sc);
1818 reclaim_state->reclaimed_slab = 0;
1819 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1821 nr_reclaimed += reclaim_state->reclaimed_slab;
1822 total_scanned += sc.nr_scanned;
1823 if (zone_is_all_unreclaimable(zone))
1825 if (nr_slab == 0 && zone->pages_scanned >=
1826 (zone_lru_pages(zone) * 6))
1828 ZONE_ALL_UNRECLAIMABLE);
1830 * If we've done a decent amount of scanning and
1831 * the reclaim ratio is low, start doing writepage
1832 * even in laptop mode
1834 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1835 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1836 sc.may_writepage = 1;
1839 break; /* kswapd: all done */
1841 * OK, kswapd is getting into trouble. Take a nap, then take
1842 * another pass across the zones.
1844 if (total_scanned && priority < DEF_PRIORITY - 2)
1845 congestion_wait(WRITE, HZ/10);
1848 * We do this so kswapd doesn't build up large priorities for
1849 * example when it is freeing in parallel with allocators. It
1850 * matches the direct reclaim path behaviour in terms of impact
1851 * on zone->*_priority.
1853 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1858 * Note within each zone the priority level at which this zone was
1859 * brought into a happy state. So that the next thread which scans this
1860 * zone will start out at that priority level.
1862 for (i = 0; i < pgdat->nr_zones; i++) {
1863 struct zone *zone = pgdat->node_zones + i;
1865 zone->prev_priority = temp_priority[i];
1867 if (!all_zones_ok) {
1875 return nr_reclaimed;
1879 * The background pageout daemon, started as a kernel thread
1880 * from the init process.
1882 * This basically trickles out pages so that we have _some_
1883 * free memory available even if there is no other activity
1884 * that frees anything up. This is needed for things like routing
1885 * etc, where we otherwise might have all activity going on in
1886 * asynchronous contexts that cannot page things out.
1888 * If there are applications that are active memory-allocators
1889 * (most normal use), this basically shouldn't matter.
1891 static int kswapd(void *p)
1893 unsigned long order;
1894 pg_data_t *pgdat = (pg_data_t*)p;
1895 struct task_struct *tsk = current;
1897 struct reclaim_state reclaim_state = {
1898 .reclaimed_slab = 0,
1900 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1902 if (!cpus_empty(*cpumask))
1903 set_cpus_allowed_ptr(tsk, cpumask);
1904 current->reclaim_state = &reclaim_state;
1907 * Tell the memory management that we're a "memory allocator",
1908 * and that if we need more memory we should get access to it
1909 * regardless (see "__alloc_pages()"). "kswapd" should
1910 * never get caught in the normal page freeing logic.
1912 * (Kswapd normally doesn't need memory anyway, but sometimes
1913 * you need a small amount of memory in order to be able to
1914 * page out something else, and this flag essentially protects
1915 * us from recursively trying to free more memory as we're
1916 * trying to free the first piece of memory in the first place).
1918 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1923 unsigned long new_order;
1925 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1926 new_order = pgdat->kswapd_max_order;
1927 pgdat->kswapd_max_order = 0;
1928 if (order < new_order) {
1930 * Don't sleep if someone wants a larger 'order'
1935 if (!freezing(current))
1938 order = pgdat->kswapd_max_order;
1940 finish_wait(&pgdat->kswapd_wait, &wait);
1942 if (!try_to_freeze()) {
1943 /* We can speed up thawing tasks if we don't call
1944 * balance_pgdat after returning from the refrigerator
1946 balance_pgdat(pgdat, order);
1953 * A zone is low on free memory, so wake its kswapd task to service it.
1955 void wakeup_kswapd(struct zone *zone, int order)
1959 if (!populated_zone(zone))
1962 pgdat = zone->zone_pgdat;
1963 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1965 if (pgdat->kswapd_max_order < order)
1966 pgdat->kswapd_max_order = order;
1967 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1969 if (!waitqueue_active(&pgdat->kswapd_wait))
1971 wake_up_interruptible(&pgdat->kswapd_wait);
1974 unsigned long global_lru_pages(void)
1976 return global_page_state(NR_ACTIVE_ANON)
1977 + global_page_state(NR_ACTIVE_FILE)
1978 + global_page_state(NR_INACTIVE_ANON)
1979 + global_page_state(NR_INACTIVE_FILE);
1984 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1985 * from LRU lists system-wide, for given pass and priority, and returns the
1986 * number of reclaimed pages
1988 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1990 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1991 int pass, struct scan_control *sc)
1994 unsigned long nr_to_scan, ret = 0;
1997 for_each_zone(zone) {
1999 if (!populated_zone(zone))
2002 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2005 for_each_evictable_lru(l) {
2006 /* For pass = 0, we don't shrink the active list */
2008 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
2011 zone->lru[l].nr_scan +=
2012 (zone_page_state(zone, NR_LRU_BASE + l)
2014 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2015 zone->lru[l].nr_scan = 0;
2016 nr_to_scan = min(nr_pages,
2017 zone_page_state(zone,
2019 ret += shrink_list(l, nr_to_scan, zone,
2021 if (ret >= nr_pages)
2031 * Try to free `nr_pages' of memory, system-wide, and return the number of
2034 * Rather than trying to age LRUs the aim is to preserve the overall
2035 * LRU order by reclaiming preferentially
2036 * inactive > active > active referenced > active mapped
2038 unsigned long shrink_all_memory(unsigned long nr_pages)
2040 unsigned long lru_pages, nr_slab;
2041 unsigned long ret = 0;
2043 struct reclaim_state reclaim_state;
2044 struct scan_control sc = {
2045 .gfp_mask = GFP_KERNEL,
2047 .swap_cluster_max = nr_pages,
2049 .swappiness = vm_swappiness,
2050 .isolate_pages = isolate_pages_global,
2053 current->reclaim_state = &reclaim_state;
2055 lru_pages = global_lru_pages();
2056 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2057 /* If slab caches are huge, it's better to hit them first */
2058 while (nr_slab >= lru_pages) {
2059 reclaim_state.reclaimed_slab = 0;
2060 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2061 if (!reclaim_state.reclaimed_slab)
2064 ret += reclaim_state.reclaimed_slab;
2065 if (ret >= nr_pages)
2068 nr_slab -= reclaim_state.reclaimed_slab;
2072 * We try to shrink LRUs in 5 passes:
2073 * 0 = Reclaim from inactive_list only
2074 * 1 = Reclaim from active list but don't reclaim mapped
2075 * 2 = 2nd pass of type 1
2076 * 3 = Reclaim mapped (normal reclaim)
2077 * 4 = 2nd pass of type 3
2079 for (pass = 0; pass < 5; pass++) {
2082 /* Force reclaiming mapped pages in the passes #3 and #4 */
2085 sc.swappiness = 100;
2088 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2089 unsigned long nr_to_scan = nr_pages - ret;
2092 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2093 if (ret >= nr_pages)
2096 reclaim_state.reclaimed_slab = 0;
2097 shrink_slab(sc.nr_scanned, sc.gfp_mask,
2098 global_lru_pages());
2099 ret += reclaim_state.reclaimed_slab;
2100 if (ret >= nr_pages)
2103 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2104 congestion_wait(WRITE, HZ / 10);
2109 * If ret = 0, we could not shrink LRUs, but there may be something
2114 reclaim_state.reclaimed_slab = 0;
2115 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2116 ret += reclaim_state.reclaimed_slab;
2117 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2121 current->reclaim_state = NULL;
2127 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2128 not required for correctness. So if the last cpu in a node goes
2129 away, we get changed to run anywhere: as the first one comes back,
2130 restore their cpu bindings. */
2131 static int __devinit cpu_callback(struct notifier_block *nfb,
2132 unsigned long action, void *hcpu)
2136 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2137 for_each_node_state(nid, N_HIGH_MEMORY) {
2138 pg_data_t *pgdat = NODE_DATA(nid);
2139 node_to_cpumask_ptr(mask, pgdat->node_id);
2141 if (any_online_cpu(*mask) < nr_cpu_ids)
2142 /* One of our CPUs online: restore mask */
2143 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2150 * This kswapd start function will be called by init and node-hot-add.
2151 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2153 int kswapd_run(int nid)
2155 pg_data_t *pgdat = NODE_DATA(nid);
2161 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2162 if (IS_ERR(pgdat->kswapd)) {
2163 /* failure at boot is fatal */
2164 BUG_ON(system_state == SYSTEM_BOOTING);
2165 printk("Failed to start kswapd on node %d\n",nid);
2171 static int __init kswapd_init(void)
2176 for_each_node_state(nid, N_HIGH_MEMORY)
2178 hotcpu_notifier(cpu_callback, 0);
2182 module_init(kswapd_init)
2188 * If non-zero call zone_reclaim when the number of free pages falls below
2191 int zone_reclaim_mode __read_mostly;
2193 #define RECLAIM_OFF 0
2194 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2195 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2196 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2199 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2200 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2203 #define ZONE_RECLAIM_PRIORITY 4
2206 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2209 int sysctl_min_unmapped_ratio = 1;
2212 * If the number of slab pages in a zone grows beyond this percentage then
2213 * slab reclaim needs to occur.
2215 int sysctl_min_slab_ratio = 5;
2218 * Try to free up some pages from this zone through reclaim.
2220 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2222 /* Minimum pages needed in order to stay on node */
2223 const unsigned long nr_pages = 1 << order;
2224 struct task_struct *p = current;
2225 struct reclaim_state reclaim_state;
2227 unsigned long nr_reclaimed = 0;
2228 struct scan_control sc = {
2229 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2230 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2231 .swap_cluster_max = max_t(unsigned long, nr_pages,
2233 .gfp_mask = gfp_mask,
2234 .swappiness = vm_swappiness,
2235 .isolate_pages = isolate_pages_global,
2237 unsigned long slab_reclaimable;
2239 disable_swap_token();
2242 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2243 * and we also need to be able to write out pages for RECLAIM_WRITE
2246 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2247 reclaim_state.reclaimed_slab = 0;
2248 p->reclaim_state = &reclaim_state;
2250 if (zone_page_state(zone, NR_FILE_PAGES) -
2251 zone_page_state(zone, NR_FILE_MAPPED) >
2252 zone->min_unmapped_pages) {
2254 * Free memory by calling shrink zone with increasing
2255 * priorities until we have enough memory freed.
2257 priority = ZONE_RECLAIM_PRIORITY;
2259 note_zone_scanning_priority(zone, priority);
2260 nr_reclaimed += shrink_zone(priority, zone, &sc);
2262 } while (priority >= 0 && nr_reclaimed < nr_pages);
2265 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2266 if (slab_reclaimable > zone->min_slab_pages) {
2268 * shrink_slab() does not currently allow us to determine how
2269 * many pages were freed in this zone. So we take the current
2270 * number of slab pages and shake the slab until it is reduced
2271 * by the same nr_pages that we used for reclaiming unmapped
2274 * Note that shrink_slab will free memory on all zones and may
2277 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2278 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2279 slab_reclaimable - nr_pages)
2283 * Update nr_reclaimed by the number of slab pages we
2284 * reclaimed from this zone.
2286 nr_reclaimed += slab_reclaimable -
2287 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2290 p->reclaim_state = NULL;
2291 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2292 return nr_reclaimed >= nr_pages;
2295 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2301 * Zone reclaim reclaims unmapped file backed pages and
2302 * slab pages if we are over the defined limits.
2304 * A small portion of unmapped file backed pages is needed for
2305 * file I/O otherwise pages read by file I/O will be immediately
2306 * thrown out if the zone is overallocated. So we do not reclaim
2307 * if less than a specified percentage of the zone is used by
2308 * unmapped file backed pages.
2310 if (zone_page_state(zone, NR_FILE_PAGES) -
2311 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2312 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2313 <= zone->min_slab_pages)
2316 if (zone_is_all_unreclaimable(zone))
2320 * Do not scan if the allocation should not be delayed.
2322 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2326 * Only run zone reclaim on the local zone or on zones that do not
2327 * have associated processors. This will favor the local processor
2328 * over remote processors and spread off node memory allocations
2329 * as wide as possible.
2331 node_id = zone_to_nid(zone);
2332 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2335 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2337 ret = __zone_reclaim(zone, gfp_mask, order);
2338 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2344 #ifdef CONFIG_UNEVICTABLE_LRU
2346 * page_evictable - test whether a page is evictable
2347 * @page: the page to test
2348 * @vma: the VMA in which the page is or will be mapped, may be NULL
2350 * Test whether page is evictable--i.e., should be placed on active/inactive
2351 * lists vs unevictable list. The vma argument is !NULL when called from the
2352 * fault path to determine how to instantate a new page.
2354 * Reasons page might not be evictable:
2355 * (1) page's mapping marked unevictable
2356 * (2) page is part of an mlocked VMA
2359 int page_evictable(struct page *page, struct vm_area_struct *vma)
2362 if (mapping_unevictable(page_mapping(page)))
2365 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2371 static void show_page_path(struct page *page)
2374 if (page_is_file_cache(page)) {
2375 struct address_space *mapping = page->mapping;
2376 struct dentry *dentry;
2377 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
2379 spin_lock(&mapping->i_mmap_lock);
2380 dentry = d_find_alias(mapping->host);
2381 printk(KERN_INFO "rescued: %s %lu\n",
2382 dentry_path(dentry, buf, 256), pgoff);
2383 spin_unlock(&mapping->i_mmap_lock);
2385 #if defined(CONFIG_MM_OWNER) && defined(CONFIG_MMU)
2386 struct anon_vma *anon_vma;
2387 struct vm_area_struct *vma;
2389 anon_vma = page_lock_anon_vma(page);
2393 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
2394 printk(KERN_INFO "rescued: anon %s\n",
2395 vma->vm_mm->owner->comm);
2398 page_unlock_anon_vma(anon_vma);
2405 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2406 * @page: page to check evictability and move to appropriate lru list
2407 * @zone: zone page is in
2409 * Checks a page for evictability and moves the page to the appropriate
2412 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2413 * have PageUnevictable set.
2415 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2417 VM_BUG_ON(PageActive(page));
2420 ClearPageUnevictable(page);
2421 if (page_evictable(page, NULL)) {
2422 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2424 show_page_path(page);
2426 __dec_zone_state(zone, NR_UNEVICTABLE);
2427 list_move(&page->lru, &zone->lru[l].list);
2428 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2429 __count_vm_event(UNEVICTABLE_PGRESCUED);
2432 * rotate unevictable list
2434 SetPageUnevictable(page);
2435 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2436 if (page_evictable(page, NULL))
2442 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2443 * @mapping: struct address_space to scan for evictable pages
2445 * Scan all pages in mapping. Check unevictable pages for
2446 * evictability and move them to the appropriate zone lru list.
2448 void scan_mapping_unevictable_pages(struct address_space *mapping)
2451 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2454 struct pagevec pvec;
2456 if (mapping->nrpages == 0)
2459 pagevec_init(&pvec, 0);
2460 while (next < end &&
2461 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2467 for (i = 0; i < pagevec_count(&pvec); i++) {
2468 struct page *page = pvec.pages[i];
2469 pgoff_t page_index = page->index;
2470 struct zone *pagezone = page_zone(page);
2473 if (page_index > next)
2477 if (pagezone != zone) {
2479 spin_unlock_irq(&zone->lru_lock);
2481 spin_lock_irq(&zone->lru_lock);
2484 if (PageLRU(page) && PageUnevictable(page))
2485 check_move_unevictable_page(page, zone);
2488 spin_unlock_irq(&zone->lru_lock);
2489 pagevec_release(&pvec);
2491 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2497 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2498 * @zone - zone of which to scan the unevictable list
2500 * Scan @zone's unevictable LRU lists to check for pages that have become
2501 * evictable. Move those that have to @zone's inactive list where they
2502 * become candidates for reclaim, unless shrink_inactive_zone() decides
2503 * to reactivate them. Pages that are still unevictable are rotated
2504 * back onto @zone's unevictable list.
2506 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2507 void scan_zone_unevictable_pages(struct zone *zone)
2509 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2511 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2513 while (nr_to_scan > 0) {
2514 unsigned long batch_size = min(nr_to_scan,
2515 SCAN_UNEVICTABLE_BATCH_SIZE);
2517 spin_lock_irq(&zone->lru_lock);
2518 for (scan = 0; scan < batch_size; scan++) {
2519 struct page *page = lru_to_page(l_unevictable);
2521 if (!trylock_page(page))
2524 prefetchw_prev_lru_page(page, l_unevictable, flags);
2526 if (likely(PageLRU(page) && PageUnevictable(page)))
2527 check_move_unevictable_page(page, zone);
2531 spin_unlock_irq(&zone->lru_lock);
2533 nr_to_scan -= batch_size;
2539 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2541 * A really big hammer: scan all zones' unevictable LRU lists to check for
2542 * pages that have become evictable. Move those back to the zones'
2543 * inactive list where they become candidates for reclaim.
2544 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2545 * and we add swap to the system. As such, it runs in the context of a task
2546 * that has possibly/probably made some previously unevictable pages
2549 void scan_all_zones_unevictable_pages(void)
2553 for_each_zone(zone) {
2554 scan_zone_unevictable_pages(zone);
2559 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2560 * all nodes' unevictable lists for evictable pages
2562 unsigned long scan_unevictable_pages;
2564 int scan_unevictable_handler(struct ctl_table *table, int write,
2565 struct file *file, void __user *buffer,
2566 size_t *length, loff_t *ppos)
2568 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2570 if (write && *(unsigned long *)table->data)
2571 scan_all_zones_unevictable_pages();
2573 scan_unevictable_pages = 0;
2578 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2579 * a specified node's per zone unevictable lists for evictable pages.
2582 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2583 struct sysdev_attribute *attr,
2586 return sprintf(buf, "0\n"); /* always zero; should fit... */
2589 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2590 struct sysdev_attribute *attr,
2591 const char *buf, size_t count)
2593 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2596 unsigned long req = strict_strtoul(buf, 10, &res);
2599 return 1; /* zero is no-op */
2601 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2602 if (!populated_zone(zone))
2604 scan_zone_unevictable_pages(zone);
2610 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2611 read_scan_unevictable_node,
2612 write_scan_unevictable_node);
2614 int scan_unevictable_register_node(struct node *node)
2616 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2619 void scan_unevictable_unregister_node(struct node *node)
2621 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);