]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - mm/vmscan.c
[PATCH] Zone reclaim: resurrect may_swap
[linux-2.6-omap-h63xx.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>  /* for try_to_release_page(),
26                                         buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /* possible outcome of pageout() */
43 typedef enum {
44         /* failed to write page out, page is locked */
45         PAGE_KEEP,
46         /* move page to the active list, page is locked */
47         PAGE_ACTIVATE,
48         /* page has been sent to the disk successfully, page is unlocked */
49         PAGE_SUCCESS,
50         /* page is clean and locked */
51         PAGE_CLEAN,
52 } pageout_t;
53
54 struct scan_control {
55         /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56         unsigned long nr_to_scan;
57
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Incremented by the number of pages reclaimed */
62         unsigned long nr_reclaimed;
63
64         unsigned long nr_mapped;        /* From page_state */
65
66         /* Ask shrink_caches, or shrink_zone to scan at this priority */
67         unsigned int priority;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can pages be swapped as part of reclaim? */
75         int may_swap;
76
77         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
78          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79          * In this context, it doesn't matter that we scan the
80          * whole list at once. */
81         int swap_cluster_max;
82 };
83
84 /*
85  * The list of shrinker callbacks used by to apply pressure to
86  * ageable caches.
87  */
88 struct shrinker {
89         shrinker_t              shrinker;
90         struct list_head        list;
91         int                     seeks;  /* seeks to recreate an obj */
92         long                    nr;     /* objs pending delete */
93 };
94
95 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96
97 #ifdef ARCH_HAS_PREFETCH
98 #define prefetch_prev_lru_page(_page, _base, _field)                    \
99         do {                                                            \
100                 if ((_page)->lru.prev != _base) {                       \
101                         struct page *prev;                              \
102                                                                         \
103                         prev = lru_to_page(&(_page->lru));              \
104                         prefetch(&prev->_field);                        \
105                 }                                                       \
106         } while (0)
107 #else
108 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
109 #endif
110
111 #ifdef ARCH_HAS_PREFETCHW
112 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
113         do {                                                            \
114                 if ((_page)->lru.prev != _base) {                       \
115                         struct page *prev;                              \
116                                                                         \
117                         prev = lru_to_page(&(_page->lru));              \
118                         prefetchw(&prev->_field);                       \
119                 }                                                       \
120         } while (0)
121 #else
122 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124
125 /*
126  * From 0 .. 100.  Higher means more swappy.
127  */
128 int vm_swappiness = 60;
129 static long total_memory;
130
131 static LIST_HEAD(shrinker_list);
132 static DECLARE_RWSEM(shrinker_rwsem);
133
134 /*
135  * Add a shrinker callback to be called from the vm
136  */
137 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
138 {
139         struct shrinker *shrinker;
140
141         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
142         if (shrinker) {
143                 shrinker->shrinker = theshrinker;
144                 shrinker->seeks = seeks;
145                 shrinker->nr = 0;
146                 down_write(&shrinker_rwsem);
147                 list_add_tail(&shrinker->list, &shrinker_list);
148                 up_write(&shrinker_rwsem);
149         }
150         return shrinker;
151 }
152 EXPORT_SYMBOL(set_shrinker);
153
154 /*
155  * Remove one
156  */
157 void remove_shrinker(struct shrinker *shrinker)
158 {
159         down_write(&shrinker_rwsem);
160         list_del(&shrinker->list);
161         up_write(&shrinker_rwsem);
162         kfree(shrinker);
163 }
164 EXPORT_SYMBOL(remove_shrinker);
165
166 #define SHRINK_BATCH 128
167 /*
168  * Call the shrink functions to age shrinkable caches
169  *
170  * Here we assume it costs one seek to replace a lru page and that it also
171  * takes a seek to recreate a cache object.  With this in mind we age equal
172  * percentages of the lru and ageable caches.  This should balance the seeks
173  * generated by these structures.
174  *
175  * If the vm encounted mapped pages on the LRU it increase the pressure on
176  * slab to avoid swapping.
177  *
178  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
179  *
180  * `lru_pages' represents the number of on-LRU pages in all the zones which
181  * are eligible for the caller's allocation attempt.  It is used for balancing
182  * slab reclaim versus page reclaim.
183  *
184  * Returns the number of slab objects which we shrunk.
185  */
186 int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
187 {
188         struct shrinker *shrinker;
189         int ret = 0;
190
191         if (scanned == 0)
192                 scanned = SWAP_CLUSTER_MAX;
193
194         if (!down_read_trylock(&shrinker_rwsem))
195                 return 1;       /* Assume we'll be able to shrink next time */
196
197         list_for_each_entry(shrinker, &shrinker_list, list) {
198                 unsigned long long delta;
199                 unsigned long total_scan;
200                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
201
202                 delta = (4 * scanned) / shrinker->seeks;
203                 delta *= max_pass;
204                 do_div(delta, lru_pages + 1);
205                 shrinker->nr += delta;
206                 if (shrinker->nr < 0) {
207                         printk(KERN_ERR "%s: nr=%ld\n",
208                                         __FUNCTION__, shrinker->nr);
209                         shrinker->nr = max_pass;
210                 }
211
212                 /*
213                  * Avoid risking looping forever due to too large nr value:
214                  * never try to free more than twice the estimate number of
215                  * freeable entries.
216                  */
217                 if (shrinker->nr > max_pass * 2)
218                         shrinker->nr = max_pass * 2;
219
220                 total_scan = shrinker->nr;
221                 shrinker->nr = 0;
222
223                 while (total_scan >= SHRINK_BATCH) {
224                         long this_scan = SHRINK_BATCH;
225                         int shrink_ret;
226                         int nr_before;
227
228                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
229                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
230                         if (shrink_ret == -1)
231                                 break;
232                         if (shrink_ret < nr_before)
233                                 ret += nr_before - shrink_ret;
234                         mod_page_state(slabs_scanned, this_scan);
235                         total_scan -= this_scan;
236
237                         cond_resched();
238                 }
239
240                 shrinker->nr += total_scan;
241         }
242         up_read(&shrinker_rwsem);
243         return ret;
244 }
245
246 /* Called without lock on whether page is mapped, so answer is unstable */
247 static inline int page_mapping_inuse(struct page *page)
248 {
249         struct address_space *mapping;
250
251         /* Page is in somebody's page tables. */
252         if (page_mapped(page))
253                 return 1;
254
255         /* Be more reluctant to reclaim swapcache than pagecache */
256         if (PageSwapCache(page))
257                 return 1;
258
259         mapping = page_mapping(page);
260         if (!mapping)
261                 return 0;
262
263         /* File is mmap'd by somebody? */
264         return mapping_mapped(mapping);
265 }
266
267 static inline int is_page_cache_freeable(struct page *page)
268 {
269         return page_count(page) - !!PagePrivate(page) == 2;
270 }
271
272 static int may_write_to_queue(struct backing_dev_info *bdi)
273 {
274         if (current->flags & PF_SWAPWRITE)
275                 return 1;
276         if (!bdi_write_congested(bdi))
277                 return 1;
278         if (bdi == current->backing_dev_info)
279                 return 1;
280         return 0;
281 }
282
283 /*
284  * We detected a synchronous write error writing a page out.  Probably
285  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
286  * fsync(), msync() or close().
287  *
288  * The tricky part is that after writepage we cannot touch the mapping: nothing
289  * prevents it from being freed up.  But we have a ref on the page and once
290  * that page is locked, the mapping is pinned.
291  *
292  * We're allowed to run sleeping lock_page() here because we know the caller has
293  * __GFP_FS.
294  */
295 static void handle_write_error(struct address_space *mapping,
296                                 struct page *page, int error)
297 {
298         lock_page(page);
299         if (page_mapping(page) == mapping) {
300                 if (error == -ENOSPC)
301                         set_bit(AS_ENOSPC, &mapping->flags);
302                 else
303                         set_bit(AS_EIO, &mapping->flags);
304         }
305         unlock_page(page);
306 }
307
308 /*
309  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
310  */
311 static pageout_t pageout(struct page *page, struct address_space *mapping)
312 {
313         /*
314          * If the page is dirty, only perform writeback if that write
315          * will be non-blocking.  To prevent this allocation from being
316          * stalled by pagecache activity.  But note that there may be
317          * stalls if we need to run get_block().  We could test
318          * PagePrivate for that.
319          *
320          * If this process is currently in generic_file_write() against
321          * this page's queue, we can perform writeback even if that
322          * will block.
323          *
324          * If the page is swapcache, write it back even if that would
325          * block, for some throttling. This happens by accident, because
326          * swap_backing_dev_info is bust: it doesn't reflect the
327          * congestion state of the swapdevs.  Easy to fix, if needed.
328          * See swapfile.c:page_queue_congested().
329          */
330         if (!is_page_cache_freeable(page))
331                 return PAGE_KEEP;
332         if (!mapping) {
333                 /*
334                  * Some data journaling orphaned pages can have
335                  * page->mapping == NULL while being dirty with clean buffers.
336                  */
337                 if (PagePrivate(page)) {
338                         if (try_to_free_buffers(page)) {
339                                 ClearPageDirty(page);
340                                 printk("%s: orphaned page\n", __FUNCTION__);
341                                 return PAGE_CLEAN;
342                         }
343                 }
344                 return PAGE_KEEP;
345         }
346         if (mapping->a_ops->writepage == NULL)
347                 return PAGE_ACTIVATE;
348         if (!may_write_to_queue(mapping->backing_dev_info))
349                 return PAGE_KEEP;
350
351         if (clear_page_dirty_for_io(page)) {
352                 int res;
353                 struct writeback_control wbc = {
354                         .sync_mode = WB_SYNC_NONE,
355                         .nr_to_write = SWAP_CLUSTER_MAX,
356                         .nonblocking = 1,
357                         .for_reclaim = 1,
358                 };
359
360                 SetPageReclaim(page);
361                 res = mapping->a_ops->writepage(page, &wbc);
362                 if (res < 0)
363                         handle_write_error(mapping, page, res);
364                 if (res == AOP_WRITEPAGE_ACTIVATE) {
365                         ClearPageReclaim(page);
366                         return PAGE_ACTIVATE;
367                 }
368                 if (!PageWriteback(page)) {
369                         /* synchronous write or broken a_ops? */
370                         ClearPageReclaim(page);
371                 }
372
373                 return PAGE_SUCCESS;
374         }
375
376         return PAGE_CLEAN;
377 }
378
379 static int remove_mapping(struct address_space *mapping, struct page *page)
380 {
381         if (!mapping)
382                 return 0;               /* truncate got there first */
383
384         write_lock_irq(&mapping->tree_lock);
385
386         /*
387          * The non-racy check for busy page.  It is critical to check
388          * PageDirty _after_ making sure that the page is freeable and
389          * not in use by anybody.       (pagecache + us == 2)
390          */
391         if (unlikely(page_count(page) != 2))
392                 goto cannot_free;
393         smp_rmb();
394         if (unlikely(PageDirty(page)))
395                 goto cannot_free;
396
397         if (PageSwapCache(page)) {
398                 swp_entry_t swap = { .val = page_private(page) };
399                 __delete_from_swap_cache(page);
400                 write_unlock_irq(&mapping->tree_lock);
401                 swap_free(swap);
402                 __put_page(page);       /* The pagecache ref */
403                 return 1;
404         }
405
406         __remove_from_page_cache(page);
407         write_unlock_irq(&mapping->tree_lock);
408         __put_page(page);
409         return 1;
410
411 cannot_free:
412         write_unlock_irq(&mapping->tree_lock);
413         return 0;
414 }
415
416 /*
417  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
418  */
419 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
420 {
421         LIST_HEAD(ret_pages);
422         struct pagevec freed_pvec;
423         int pgactivate = 0;
424         int reclaimed = 0;
425
426         cond_resched();
427
428         pagevec_init(&freed_pvec, 1);
429         while (!list_empty(page_list)) {
430                 struct address_space *mapping;
431                 struct page *page;
432                 int may_enter_fs;
433                 int referenced;
434
435                 cond_resched();
436
437                 page = lru_to_page(page_list);
438                 list_del(&page->lru);
439
440                 if (TestSetPageLocked(page))
441                         goto keep;
442
443                 BUG_ON(PageActive(page));
444
445                 sc->nr_scanned++;
446                 /* Double the slab pressure for mapped and swapcache pages */
447                 if (page_mapped(page) || PageSwapCache(page))
448                         sc->nr_scanned++;
449
450                 if (PageWriteback(page))
451                         goto keep_locked;
452
453                 referenced = page_referenced(page, 1);
454                 /* In active use or really unfreeable?  Activate it. */
455                 if (referenced && page_mapping_inuse(page))
456                         goto activate_locked;
457
458 #ifdef CONFIG_SWAP
459                 /*
460                  * Anonymous process memory has backing store?
461                  * Try to allocate it some swap space here.
462                  */
463                 if (PageAnon(page) && !PageSwapCache(page)) {
464                         if (!sc->may_swap)
465                                 goto keep_locked;
466                         if (!add_to_swap(page, GFP_ATOMIC))
467                                 goto activate_locked;
468                 }
469 #endif /* CONFIG_SWAP */
470
471                 mapping = page_mapping(page);
472                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
473                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
474
475                 /*
476                  * The page is mapped into the page tables of one or more
477                  * processes. Try to unmap it here.
478                  */
479                 if (page_mapped(page) && mapping) {
480                         switch (try_to_unmap(page)) {
481                         case SWAP_FAIL:
482                                 goto activate_locked;
483                         case SWAP_AGAIN:
484                                 goto keep_locked;
485                         case SWAP_SUCCESS:
486                                 ; /* try to free the page below */
487                         }
488                 }
489
490                 if (PageDirty(page)) {
491                         if (referenced)
492                                 goto keep_locked;
493                         if (!may_enter_fs)
494                                 goto keep_locked;
495                         if (laptop_mode && !sc->may_writepage)
496                                 goto keep_locked;
497
498                         /* Page is dirty, try to write it out here */
499                         switch(pageout(page, mapping)) {
500                         case PAGE_KEEP:
501                                 goto keep_locked;
502                         case PAGE_ACTIVATE:
503                                 goto activate_locked;
504                         case PAGE_SUCCESS:
505                                 if (PageWriteback(page) || PageDirty(page))
506                                         goto keep;
507                                 /*
508                                  * A synchronous write - probably a ramdisk.  Go
509                                  * ahead and try to reclaim the page.
510                                  */
511                                 if (TestSetPageLocked(page))
512                                         goto keep;
513                                 if (PageDirty(page) || PageWriteback(page))
514                                         goto keep_locked;
515                                 mapping = page_mapping(page);
516                         case PAGE_CLEAN:
517                                 ; /* try to free the page below */
518                         }
519                 }
520
521                 /*
522                  * If the page has buffers, try to free the buffer mappings
523                  * associated with this page. If we succeed we try to free
524                  * the page as well.
525                  *
526                  * We do this even if the page is PageDirty().
527                  * try_to_release_page() does not perform I/O, but it is
528                  * possible for a page to have PageDirty set, but it is actually
529                  * clean (all its buffers are clean).  This happens if the
530                  * buffers were written out directly, with submit_bh(). ext3
531                  * will do this, as well as the blockdev mapping. 
532                  * try_to_release_page() will discover that cleanness and will
533                  * drop the buffers and mark the page clean - it can be freed.
534                  *
535                  * Rarely, pages can have buffers and no ->mapping.  These are
536                  * the pages which were not successfully invalidated in
537                  * truncate_complete_page().  We try to drop those buffers here
538                  * and if that worked, and the page is no longer mapped into
539                  * process address space (page_count == 1) it can be freed.
540                  * Otherwise, leave the page on the LRU so it is swappable.
541                  */
542                 if (PagePrivate(page)) {
543                         if (!try_to_release_page(page, sc->gfp_mask))
544                                 goto activate_locked;
545                         if (!mapping && page_count(page) == 1)
546                                 goto free_it;
547                 }
548
549                 if (!remove_mapping(mapping, page))
550                         goto keep_locked;
551
552 free_it:
553                 unlock_page(page);
554                 reclaimed++;
555                 if (!pagevec_add(&freed_pvec, page))
556                         __pagevec_release_nonlru(&freed_pvec);
557                 continue;
558
559 activate_locked:
560                 SetPageActive(page);
561                 pgactivate++;
562 keep_locked:
563                 unlock_page(page);
564 keep:
565                 list_add(&page->lru, &ret_pages);
566                 BUG_ON(PageLRU(page));
567         }
568         list_splice(&ret_pages, page_list);
569         if (pagevec_count(&freed_pvec))
570                 __pagevec_release_nonlru(&freed_pvec);
571         mod_page_state(pgactivate, pgactivate);
572         sc->nr_reclaimed += reclaimed;
573         return reclaimed;
574 }
575
576 #ifdef CONFIG_MIGRATION
577 static inline void move_to_lru(struct page *page)
578 {
579         list_del(&page->lru);
580         if (PageActive(page)) {
581                 /*
582                  * lru_cache_add_active checks that
583                  * the PG_active bit is off.
584                  */
585                 ClearPageActive(page);
586                 lru_cache_add_active(page);
587         } else {
588                 lru_cache_add(page);
589         }
590         put_page(page);
591 }
592
593 /*
594  * Add isolated pages on the list back to the LRU.
595  *
596  * returns the number of pages put back.
597  */
598 int putback_lru_pages(struct list_head *l)
599 {
600         struct page *page;
601         struct page *page2;
602         int count = 0;
603
604         list_for_each_entry_safe(page, page2, l, lru) {
605                 move_to_lru(page);
606                 count++;
607         }
608         return count;
609 }
610
611 /*
612  * swapout a single page
613  * page is locked upon entry, unlocked on exit
614  */
615 static int swap_page(struct page *page)
616 {
617         struct address_space *mapping = page_mapping(page);
618
619         if (page_mapped(page) && mapping)
620                 if (try_to_unmap(page) != SWAP_SUCCESS)
621                         goto unlock_retry;
622
623         if (PageDirty(page)) {
624                 /* Page is dirty, try to write it out here */
625                 switch(pageout(page, mapping)) {
626                 case PAGE_KEEP:
627                 case PAGE_ACTIVATE:
628                         goto unlock_retry;
629
630                 case PAGE_SUCCESS:
631                         goto retry;
632
633                 case PAGE_CLEAN:
634                         ; /* try to free the page below */
635                 }
636         }
637
638         if (PagePrivate(page)) {
639                 if (!try_to_release_page(page, GFP_KERNEL) ||
640                     (!mapping && page_count(page) == 1))
641                         goto unlock_retry;
642         }
643
644         if (remove_mapping(mapping, page)) {
645                 /* Success */
646                 unlock_page(page);
647                 return 0;
648         }
649
650 unlock_retry:
651         unlock_page(page);
652
653 retry:
654         return -EAGAIN;
655 }
656 /*
657  * migrate_pages
658  *
659  * Two lists are passed to this function. The first list
660  * contains the pages isolated from the LRU to be migrated.
661  * The second list contains new pages that the pages isolated
662  * can be moved to. If the second list is NULL then all
663  * pages are swapped out.
664  *
665  * The function returns after 10 attempts or if no pages
666  * are movable anymore because t has become empty
667  * or no retryable pages exist anymore.
668  *
669  * SIMPLIFIED VERSION: This implementation of migrate_pages
670  * is only swapping out pages and never touches the second
671  * list. The direct migration patchset
672  * extends this function to avoid the use of swap.
673  *
674  * Return: Number of pages not migrated when "to" ran empty.
675  */
676 int migrate_pages(struct list_head *from, struct list_head *to,
677                   struct list_head *moved, struct list_head *failed)
678 {
679         int retry;
680         int nr_failed = 0;
681         int pass = 0;
682         struct page *page;
683         struct page *page2;
684         int swapwrite = current->flags & PF_SWAPWRITE;
685         int rc;
686
687         if (!swapwrite)
688                 current->flags |= PF_SWAPWRITE;
689
690 redo:
691         retry = 0;
692
693         list_for_each_entry_safe(page, page2, from, lru) {
694                 cond_resched();
695
696                 rc = 0;
697                 if (page_count(page) == 1)
698                         /* page was freed from under us. So we are done. */
699                         goto next;
700
701                 /*
702                  * Skip locked pages during the first two passes to give the
703                  * functions holding the lock time to release the page. Later we
704                  * use lock_page() to have a higher chance of acquiring the
705                  * lock.
706                  */
707                 rc = -EAGAIN;
708                 if (pass > 2)
709                         lock_page(page);
710                 else
711                         if (TestSetPageLocked(page))
712                                 goto next;
713
714                 /*
715                  * Only wait on writeback if we have already done a pass where
716                  * we we may have triggered writeouts for lots of pages.
717                  */
718                 if (pass > 0) {
719                         wait_on_page_writeback(page);
720                 } else {
721                         if (PageWriteback(page))
722                                 goto unlock_page;
723                 }
724
725                 /*
726                  * Anonymous pages must have swap cache references otherwise
727                  * the information contained in the page maps cannot be
728                  * preserved.
729                  */
730                 if (PageAnon(page) && !PageSwapCache(page)) {
731                         if (!add_to_swap(page, GFP_KERNEL)) {
732                                 rc = -ENOMEM;
733                                 goto unlock_page;
734                         }
735                 }
736
737                 /*
738                  * Page is properly locked and writeback is complete.
739                  * Try to migrate the page.
740                  */
741                 rc = swap_page(page);
742                 goto next;
743
744 unlock_page:
745                 unlock_page(page);
746
747 next:
748                 if (rc == -EAGAIN) {
749                         retry++;
750                 } else if (rc) {
751                         /* Permanent failure */
752                         list_move(&page->lru, failed);
753                         nr_failed++;
754                 } else {
755                         /* Success */
756                         list_move(&page->lru, moved);
757                 }
758         }
759         if (retry && pass++ < 10)
760                 goto redo;
761
762         if (!swapwrite)
763                 current->flags &= ~PF_SWAPWRITE;
764
765         return nr_failed + retry;
766 }
767
768 /*
769  * Isolate one page from the LRU lists and put it on the
770  * indicated list with elevated refcount.
771  *
772  * Result:
773  *  0 = page not on LRU list
774  *  1 = page removed from LRU list and added to the specified list.
775  */
776 int isolate_lru_page(struct page *page)
777 {
778         int ret = 0;
779
780         if (PageLRU(page)) {
781                 struct zone *zone = page_zone(page);
782                 spin_lock_irq(&zone->lru_lock);
783                 if (TestClearPageLRU(page)) {
784                         ret = 1;
785                         get_page(page);
786                         if (PageActive(page))
787                                 del_page_from_active_list(zone, page);
788                         else
789                                 del_page_from_inactive_list(zone, page);
790                 }
791                 spin_unlock_irq(&zone->lru_lock);
792         }
793
794         return ret;
795 }
796 #endif
797
798 /*
799  * zone->lru_lock is heavily contended.  Some of the functions that
800  * shrink the lists perform better by taking out a batch of pages
801  * and working on them outside the LRU lock.
802  *
803  * For pagecache intensive workloads, this function is the hottest
804  * spot in the kernel (apart from copy_*_user functions).
805  *
806  * Appropriate locks must be held before calling this function.
807  *
808  * @nr_to_scan: The number of pages to look through on the list.
809  * @src:        The LRU list to pull pages off.
810  * @dst:        The temp list to put pages on to.
811  * @scanned:    The number of pages that were scanned.
812  *
813  * returns how many pages were moved onto *@dst.
814  */
815 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
816                              struct list_head *dst, int *scanned)
817 {
818         int nr_taken = 0;
819         struct page *page;
820         int scan = 0;
821
822         while (scan++ < nr_to_scan && !list_empty(src)) {
823                 page = lru_to_page(src);
824                 prefetchw_prev_lru_page(page, src, flags);
825
826                 if (!TestClearPageLRU(page))
827                         BUG();
828                 list_del(&page->lru);
829                 if (get_page_testone(page)) {
830                         /*
831                          * It is being freed elsewhere
832                          */
833                         __put_page(page);
834                         SetPageLRU(page);
835                         list_add(&page->lru, src);
836                         continue;
837                 } else {
838                         list_add(&page->lru, dst);
839                         nr_taken++;
840                 }
841         }
842
843         *scanned = scan;
844         return nr_taken;
845 }
846
847 /*
848  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
849  */
850 static void shrink_cache(struct zone *zone, struct scan_control *sc)
851 {
852         LIST_HEAD(page_list);
853         struct pagevec pvec;
854         int max_scan = sc->nr_to_scan;
855
856         pagevec_init(&pvec, 1);
857
858         lru_add_drain();
859         spin_lock_irq(&zone->lru_lock);
860         while (max_scan > 0) {
861                 struct page *page;
862                 int nr_taken;
863                 int nr_scan;
864                 int nr_freed;
865
866                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
867                                              &zone->inactive_list,
868                                              &page_list, &nr_scan);
869                 zone->nr_inactive -= nr_taken;
870                 zone->pages_scanned += nr_scan;
871                 spin_unlock_irq(&zone->lru_lock);
872
873                 if (nr_taken == 0)
874                         goto done;
875
876                 max_scan -= nr_scan;
877                 nr_freed = shrink_list(&page_list, sc);
878
879                 local_irq_disable();
880                 if (current_is_kswapd()) {
881                         __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
882                         __mod_page_state(kswapd_steal, nr_freed);
883                 } else
884                         __mod_page_state_zone(zone, pgscan_direct, nr_scan);
885                 __mod_page_state_zone(zone, pgsteal, nr_freed);
886
887                 spin_lock(&zone->lru_lock);
888                 /*
889                  * Put back any unfreeable pages.
890                  */
891                 while (!list_empty(&page_list)) {
892                         page = lru_to_page(&page_list);
893                         if (TestSetPageLRU(page))
894                                 BUG();
895                         list_del(&page->lru);
896                         if (PageActive(page))
897                                 add_page_to_active_list(zone, page);
898                         else
899                                 add_page_to_inactive_list(zone, page);
900                         if (!pagevec_add(&pvec, page)) {
901                                 spin_unlock_irq(&zone->lru_lock);
902                                 __pagevec_release(&pvec);
903                                 spin_lock_irq(&zone->lru_lock);
904                         }
905                 }
906         }
907         spin_unlock_irq(&zone->lru_lock);
908 done:
909         pagevec_release(&pvec);
910 }
911
912 /*
913  * This moves pages from the active list to the inactive list.
914  *
915  * We move them the other way if the page is referenced by one or more
916  * processes, from rmap.
917  *
918  * If the pages are mostly unmapped, the processing is fast and it is
919  * appropriate to hold zone->lru_lock across the whole operation.  But if
920  * the pages are mapped, the processing is slow (page_referenced()) so we
921  * should drop zone->lru_lock around each page.  It's impossible to balance
922  * this, so instead we remove the pages from the LRU while processing them.
923  * It is safe to rely on PG_active against the non-LRU pages in here because
924  * nobody will play with that bit on a non-LRU page.
925  *
926  * The downside is that we have to touch page->_count against each page.
927  * But we had to alter page->flags anyway.
928  */
929 static void
930 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
931 {
932         int pgmoved;
933         int pgdeactivate = 0;
934         int pgscanned;
935         int nr_pages = sc->nr_to_scan;
936         LIST_HEAD(l_hold);      /* The pages which were snipped off */
937         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
938         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
939         struct page *page;
940         struct pagevec pvec;
941         int reclaim_mapped = 0;
942         long mapped_ratio;
943         long distress;
944         long swap_tendency;
945
946         lru_add_drain();
947         spin_lock_irq(&zone->lru_lock);
948         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
949                                     &l_hold, &pgscanned);
950         zone->pages_scanned += pgscanned;
951         zone->nr_active -= pgmoved;
952         spin_unlock_irq(&zone->lru_lock);
953
954         /*
955          * `distress' is a measure of how much trouble we're having reclaiming
956          * pages.  0 -> no problems.  100 -> great trouble.
957          */
958         distress = 100 >> zone->prev_priority;
959
960         /*
961          * The point of this algorithm is to decide when to start reclaiming
962          * mapped memory instead of just pagecache.  Work out how much memory
963          * is mapped.
964          */
965         mapped_ratio = (sc->nr_mapped * 100) / total_memory;
966
967         /*
968          * Now decide how much we really want to unmap some pages.  The mapped
969          * ratio is downgraded - just because there's a lot of mapped memory
970          * doesn't necessarily mean that page reclaim isn't succeeding.
971          *
972          * The distress ratio is important - we don't want to start going oom.
973          *
974          * A 100% value of vm_swappiness overrides this algorithm altogether.
975          */
976         swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
977
978         /*
979          * Now use this metric to decide whether to start moving mapped memory
980          * onto the inactive list.
981          */
982         if (swap_tendency >= 100)
983                 reclaim_mapped = 1;
984
985         while (!list_empty(&l_hold)) {
986                 cond_resched();
987                 page = lru_to_page(&l_hold);
988                 list_del(&page->lru);
989                 if (page_mapped(page)) {
990                         if (!reclaim_mapped ||
991                             (total_swap_pages == 0 && PageAnon(page)) ||
992                             page_referenced(page, 0)) {
993                                 list_add(&page->lru, &l_active);
994                                 continue;
995                         }
996                 }
997                 list_add(&page->lru, &l_inactive);
998         }
999
1000         pagevec_init(&pvec, 1);
1001         pgmoved = 0;
1002         spin_lock_irq(&zone->lru_lock);
1003         while (!list_empty(&l_inactive)) {
1004                 page = lru_to_page(&l_inactive);
1005                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1006                 if (TestSetPageLRU(page))
1007                         BUG();
1008                 if (!TestClearPageActive(page))
1009                         BUG();
1010                 list_move(&page->lru, &zone->inactive_list);
1011                 pgmoved++;
1012                 if (!pagevec_add(&pvec, page)) {
1013                         zone->nr_inactive += pgmoved;
1014                         spin_unlock_irq(&zone->lru_lock);
1015                         pgdeactivate += pgmoved;
1016                         pgmoved = 0;
1017                         if (buffer_heads_over_limit)
1018                                 pagevec_strip(&pvec);
1019                         __pagevec_release(&pvec);
1020                         spin_lock_irq(&zone->lru_lock);
1021                 }
1022         }
1023         zone->nr_inactive += pgmoved;
1024         pgdeactivate += pgmoved;
1025         if (buffer_heads_over_limit) {
1026                 spin_unlock_irq(&zone->lru_lock);
1027                 pagevec_strip(&pvec);
1028                 spin_lock_irq(&zone->lru_lock);
1029         }
1030
1031         pgmoved = 0;
1032         while (!list_empty(&l_active)) {
1033                 page = lru_to_page(&l_active);
1034                 prefetchw_prev_lru_page(page, &l_active, flags);
1035                 if (TestSetPageLRU(page))
1036                         BUG();
1037                 BUG_ON(!PageActive(page));
1038                 list_move(&page->lru, &zone->active_list);
1039                 pgmoved++;
1040                 if (!pagevec_add(&pvec, page)) {
1041                         zone->nr_active += pgmoved;
1042                         pgmoved = 0;
1043                         spin_unlock_irq(&zone->lru_lock);
1044                         __pagevec_release(&pvec);
1045                         spin_lock_irq(&zone->lru_lock);
1046                 }
1047         }
1048         zone->nr_active += pgmoved;
1049         spin_unlock(&zone->lru_lock);
1050
1051         __mod_page_state_zone(zone, pgrefill, pgscanned);
1052         __mod_page_state(pgdeactivate, pgdeactivate);
1053         local_irq_enable();
1054
1055         pagevec_release(&pvec);
1056 }
1057
1058 /*
1059  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1060  */
1061 static void
1062 shrink_zone(struct zone *zone, struct scan_control *sc)
1063 {
1064         unsigned long nr_active;
1065         unsigned long nr_inactive;
1066
1067         atomic_inc(&zone->reclaim_in_progress);
1068
1069         /*
1070          * Add one to `nr_to_scan' just to make sure that the kernel will
1071          * slowly sift through the active list.
1072          */
1073         zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1074         nr_active = zone->nr_scan_active;
1075         if (nr_active >= sc->swap_cluster_max)
1076                 zone->nr_scan_active = 0;
1077         else
1078                 nr_active = 0;
1079
1080         zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1081         nr_inactive = zone->nr_scan_inactive;
1082         if (nr_inactive >= sc->swap_cluster_max)
1083                 zone->nr_scan_inactive = 0;
1084         else
1085                 nr_inactive = 0;
1086
1087         while (nr_active || nr_inactive) {
1088                 if (nr_active) {
1089                         sc->nr_to_scan = min(nr_active,
1090                                         (unsigned long)sc->swap_cluster_max);
1091                         nr_active -= sc->nr_to_scan;
1092                         refill_inactive_zone(zone, sc);
1093                 }
1094
1095                 if (nr_inactive) {
1096                         sc->nr_to_scan = min(nr_inactive,
1097                                         (unsigned long)sc->swap_cluster_max);
1098                         nr_inactive -= sc->nr_to_scan;
1099                         shrink_cache(zone, sc);
1100                 }
1101         }
1102
1103         throttle_vm_writeout();
1104
1105         atomic_dec(&zone->reclaim_in_progress);
1106 }
1107
1108 /*
1109  * This is the direct reclaim path, for page-allocating processes.  We only
1110  * try to reclaim pages from zones which will satisfy the caller's allocation
1111  * request.
1112  *
1113  * We reclaim from a zone even if that zone is over pages_high.  Because:
1114  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1115  *    allocation or
1116  * b) The zones may be over pages_high but they must go *over* pages_high to
1117  *    satisfy the `incremental min' zone defense algorithm.
1118  *
1119  * Returns the number of reclaimed pages.
1120  *
1121  * If a zone is deemed to be full of pinned pages then just give it a light
1122  * scan then give up on it.
1123  */
1124 static void
1125 shrink_caches(struct zone **zones, struct scan_control *sc)
1126 {
1127         int i;
1128
1129         for (i = 0; zones[i] != NULL; i++) {
1130                 struct zone *zone = zones[i];
1131
1132                 if (!populated_zone(zone))
1133                         continue;
1134
1135                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1136                         continue;
1137
1138                 zone->temp_priority = sc->priority;
1139                 if (zone->prev_priority > sc->priority)
1140                         zone->prev_priority = sc->priority;
1141
1142                 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1143                         continue;       /* Let kswapd poll it */
1144
1145                 shrink_zone(zone, sc);
1146         }
1147 }
1148  
1149 /*
1150  * This is the main entry point to direct page reclaim.
1151  *
1152  * If a full scan of the inactive list fails to free enough memory then we
1153  * are "out of memory" and something needs to be killed.
1154  *
1155  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1156  * high - the zone may be full of dirty or under-writeback pages, which this
1157  * caller can't do much about.  We kick pdflush and take explicit naps in the
1158  * hope that some of these pages can be written.  But if the allocating task
1159  * holds filesystem locks which prevent writeout this might not work, and the
1160  * allocation attempt will fail.
1161  */
1162 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1163 {
1164         int priority;
1165         int ret = 0;
1166         int total_scanned = 0, total_reclaimed = 0;
1167         struct reclaim_state *reclaim_state = current->reclaim_state;
1168         struct scan_control sc;
1169         unsigned long lru_pages = 0;
1170         int i;
1171
1172         sc.gfp_mask = gfp_mask;
1173         sc.may_writepage = 0;
1174         sc.may_swap = 1;
1175
1176         inc_page_state(allocstall);
1177
1178         for (i = 0; zones[i] != NULL; i++) {
1179                 struct zone *zone = zones[i];
1180
1181                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1182                         continue;
1183
1184                 zone->temp_priority = DEF_PRIORITY;
1185                 lru_pages += zone->nr_active + zone->nr_inactive;
1186         }
1187
1188         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1189                 sc.nr_mapped = read_page_state(nr_mapped);
1190                 sc.nr_scanned = 0;
1191                 sc.nr_reclaimed = 0;
1192                 sc.priority = priority;
1193                 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1194                 if (!priority)
1195                         disable_swap_token();
1196                 shrink_caches(zones, &sc);
1197                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1198                 if (reclaim_state) {
1199                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1200                         reclaim_state->reclaimed_slab = 0;
1201                 }
1202                 total_scanned += sc.nr_scanned;
1203                 total_reclaimed += sc.nr_reclaimed;
1204                 if (total_reclaimed >= sc.swap_cluster_max) {
1205                         ret = 1;
1206                         goto out;
1207                 }
1208
1209                 /*
1210                  * Try to write back as many pages as we just scanned.  This
1211                  * tends to cause slow streaming writers to write data to the
1212                  * disk smoothly, at the dirtying rate, which is nice.   But
1213                  * that's undesirable in laptop mode, where we *want* lumpy
1214                  * writeout.  So in laptop mode, write out the whole world.
1215                  */
1216                 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
1217                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1218                         sc.may_writepage = 1;
1219                 }
1220
1221                 /* Take a nap, wait for some writeback to complete */
1222                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1223                         blk_congestion_wait(WRITE, HZ/10);
1224         }
1225 out:
1226         for (i = 0; zones[i] != 0; i++) {
1227                 struct zone *zone = zones[i];
1228
1229                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1230                         continue;
1231
1232                 zone->prev_priority = zone->temp_priority;
1233         }
1234         return ret;
1235 }
1236
1237 /*
1238  * For kswapd, balance_pgdat() will work across all this node's zones until
1239  * they are all at pages_high.
1240  *
1241  * If `nr_pages' is non-zero then it is the number of pages which are to be
1242  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1243  * special.
1244  *
1245  * Returns the number of pages which were actually freed.
1246  *
1247  * There is special handling here for zones which are full of pinned pages.
1248  * This can happen if the pages are all mlocked, or if they are all used by
1249  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1250  * What we do is to detect the case where all pages in the zone have been
1251  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1252  * dead and from now on, only perform a short scan.  Basically we're polling
1253  * the zone for when the problem goes away.
1254  *
1255  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1256  * zones which have free_pages > pages_high, but once a zone is found to have
1257  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1258  * of the number of free pages in the lower zones.  This interoperates with
1259  * the page allocator fallback scheme to ensure that aging of pages is balanced
1260  * across the zones.
1261  */
1262 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1263 {
1264         int to_free = nr_pages;
1265         int all_zones_ok;
1266         int priority;
1267         int i;
1268         int total_scanned, total_reclaimed;
1269         struct reclaim_state *reclaim_state = current->reclaim_state;
1270         struct scan_control sc;
1271
1272 loop_again:
1273         total_scanned = 0;
1274         total_reclaimed = 0;
1275         sc.gfp_mask = GFP_KERNEL;
1276         sc.may_writepage = 0;
1277         sc.may_swap = 1;
1278         sc.nr_mapped = read_page_state(nr_mapped);
1279
1280         inc_page_state(pageoutrun);
1281
1282         for (i = 0; i < pgdat->nr_zones; i++) {
1283                 struct zone *zone = pgdat->node_zones + i;
1284
1285                 zone->temp_priority = DEF_PRIORITY;
1286         }
1287
1288         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1289                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1290                 unsigned long lru_pages = 0;
1291
1292                 /* The swap token gets in the way of swapout... */
1293                 if (!priority)
1294                         disable_swap_token();
1295
1296                 all_zones_ok = 1;
1297
1298                 if (nr_pages == 0) {
1299                         /*
1300                          * Scan in the highmem->dma direction for the highest
1301                          * zone which needs scanning
1302                          */
1303                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1304                                 struct zone *zone = pgdat->node_zones + i;
1305
1306                                 if (!populated_zone(zone))
1307                                         continue;
1308
1309                                 if (zone->all_unreclaimable &&
1310                                                 priority != DEF_PRIORITY)
1311                                         continue;
1312
1313                                 if (!zone_watermark_ok(zone, order,
1314                                                 zone->pages_high, 0, 0)) {
1315                                         end_zone = i;
1316                                         goto scan;
1317                                 }
1318                         }
1319                         goto out;
1320                 } else {
1321                         end_zone = pgdat->nr_zones - 1;
1322                 }
1323 scan:
1324                 for (i = 0; i <= end_zone; i++) {
1325                         struct zone *zone = pgdat->node_zones + i;
1326
1327                         lru_pages += zone->nr_active + zone->nr_inactive;
1328                 }
1329
1330                 /*
1331                  * Now scan the zone in the dma->highmem direction, stopping
1332                  * at the last zone which needs scanning.
1333                  *
1334                  * We do this because the page allocator works in the opposite
1335                  * direction.  This prevents the page allocator from allocating
1336                  * pages behind kswapd's direction of progress, which would
1337                  * cause too much scanning of the lower zones.
1338                  */
1339                 for (i = 0; i <= end_zone; i++) {
1340                         struct zone *zone = pgdat->node_zones + i;
1341                         int nr_slab;
1342
1343                         if (!populated_zone(zone))
1344                                 continue;
1345
1346                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1347                                 continue;
1348
1349                         if (nr_pages == 0) {    /* Not software suspend */
1350                                 if (!zone_watermark_ok(zone, order,
1351                                                 zone->pages_high, end_zone, 0))
1352                                         all_zones_ok = 0;
1353                         }
1354                         zone->temp_priority = priority;
1355                         if (zone->prev_priority > priority)
1356                                 zone->prev_priority = priority;
1357                         sc.nr_scanned = 0;
1358                         sc.nr_reclaimed = 0;
1359                         sc.priority = priority;
1360                         sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1361                         atomic_inc(&zone->reclaim_in_progress);
1362                         shrink_zone(zone, &sc);
1363                         atomic_dec(&zone->reclaim_in_progress);
1364                         reclaim_state->reclaimed_slab = 0;
1365                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1366                                                 lru_pages);
1367                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1368                         total_reclaimed += sc.nr_reclaimed;
1369                         total_scanned += sc.nr_scanned;
1370                         if (zone->all_unreclaimable)
1371                                 continue;
1372                         if (nr_slab == 0 && zone->pages_scanned >=
1373                                     (zone->nr_active + zone->nr_inactive) * 4)
1374                                 zone->all_unreclaimable = 1;
1375                         /*
1376                          * If we've done a decent amount of scanning and
1377                          * the reclaim ratio is low, start doing writepage
1378                          * even in laptop mode
1379                          */
1380                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1381                             total_scanned > total_reclaimed+total_reclaimed/2)
1382                                 sc.may_writepage = 1;
1383                 }
1384                 if (nr_pages && to_free > total_reclaimed)
1385                         continue;       /* swsusp: need to do more work */
1386                 if (all_zones_ok)
1387                         break;          /* kswapd: all done */
1388                 /*
1389                  * OK, kswapd is getting into trouble.  Take a nap, then take
1390                  * another pass across the zones.
1391                  */
1392                 if (total_scanned && priority < DEF_PRIORITY - 2)
1393                         blk_congestion_wait(WRITE, HZ/10);
1394
1395                 /*
1396                  * We do this so kswapd doesn't build up large priorities for
1397                  * example when it is freeing in parallel with allocators. It
1398                  * matches the direct reclaim path behaviour in terms of impact
1399                  * on zone->*_priority.
1400                  */
1401                 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1402                         break;
1403         }
1404 out:
1405         for (i = 0; i < pgdat->nr_zones; i++) {
1406                 struct zone *zone = pgdat->node_zones + i;
1407
1408                 zone->prev_priority = zone->temp_priority;
1409         }
1410         if (!all_zones_ok) {
1411                 cond_resched();
1412                 goto loop_again;
1413         }
1414
1415         return total_reclaimed;
1416 }
1417
1418 /*
1419  * The background pageout daemon, started as a kernel thread
1420  * from the init process. 
1421  *
1422  * This basically trickles out pages so that we have _some_
1423  * free memory available even if there is no other activity
1424  * that frees anything up. This is needed for things like routing
1425  * etc, where we otherwise might have all activity going on in
1426  * asynchronous contexts that cannot page things out.
1427  *
1428  * If there are applications that are active memory-allocators
1429  * (most normal use), this basically shouldn't matter.
1430  */
1431 static int kswapd(void *p)
1432 {
1433         unsigned long order;
1434         pg_data_t *pgdat = (pg_data_t*)p;
1435         struct task_struct *tsk = current;
1436         DEFINE_WAIT(wait);
1437         struct reclaim_state reclaim_state = {
1438                 .reclaimed_slab = 0,
1439         };
1440         cpumask_t cpumask;
1441
1442         daemonize("kswapd%d", pgdat->node_id);
1443         cpumask = node_to_cpumask(pgdat->node_id);
1444         if (!cpus_empty(cpumask))
1445                 set_cpus_allowed(tsk, cpumask);
1446         current->reclaim_state = &reclaim_state;
1447
1448         /*
1449          * Tell the memory management that we're a "memory allocator",
1450          * and that if we need more memory we should get access to it
1451          * regardless (see "__alloc_pages()"). "kswapd" should
1452          * never get caught in the normal page freeing logic.
1453          *
1454          * (Kswapd normally doesn't need memory anyway, but sometimes
1455          * you need a small amount of memory in order to be able to
1456          * page out something else, and this flag essentially protects
1457          * us from recursively trying to free more memory as we're
1458          * trying to free the first piece of memory in the first place).
1459          */
1460         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1461
1462         order = 0;
1463         for ( ; ; ) {
1464                 unsigned long new_order;
1465
1466                 try_to_freeze();
1467
1468                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1469                 new_order = pgdat->kswapd_max_order;
1470                 pgdat->kswapd_max_order = 0;
1471                 if (order < new_order) {
1472                         /*
1473                          * Don't sleep if someone wants a larger 'order'
1474                          * allocation
1475                          */
1476                         order = new_order;
1477                 } else {
1478                         schedule();
1479                         order = pgdat->kswapd_max_order;
1480                 }
1481                 finish_wait(&pgdat->kswapd_wait, &wait);
1482
1483                 balance_pgdat(pgdat, 0, order);
1484         }
1485         return 0;
1486 }
1487
1488 /*
1489  * A zone is low on free memory, so wake its kswapd task to service it.
1490  */
1491 void wakeup_kswapd(struct zone *zone, int order)
1492 {
1493         pg_data_t *pgdat;
1494
1495         if (!populated_zone(zone))
1496                 return;
1497
1498         pgdat = zone->zone_pgdat;
1499         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1500                 return;
1501         if (pgdat->kswapd_max_order < order)
1502                 pgdat->kswapd_max_order = order;
1503         if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1504                 return;
1505         if (!waitqueue_active(&pgdat->kswapd_wait))
1506                 return;
1507         wake_up_interruptible(&pgdat->kswapd_wait);
1508 }
1509
1510 #ifdef CONFIG_PM
1511 /*
1512  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1513  * pages.
1514  */
1515 int shrink_all_memory(int nr_pages)
1516 {
1517         pg_data_t *pgdat;
1518         int nr_to_free = nr_pages;
1519         int ret = 0;
1520         struct reclaim_state reclaim_state = {
1521                 .reclaimed_slab = 0,
1522         };
1523
1524         current->reclaim_state = &reclaim_state;
1525         for_each_pgdat(pgdat) {
1526                 int freed;
1527                 freed = balance_pgdat(pgdat, nr_to_free, 0);
1528                 ret += freed;
1529                 nr_to_free -= freed;
1530                 if (nr_to_free <= 0)
1531                         break;
1532         }
1533         current->reclaim_state = NULL;
1534         return ret;
1535 }
1536 #endif
1537
1538 #ifdef CONFIG_HOTPLUG_CPU
1539 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1540    not required for correctness.  So if the last cpu in a node goes
1541    away, we get changed to run anywhere: as the first one comes back,
1542    restore their cpu bindings. */
1543 static int __devinit cpu_callback(struct notifier_block *nfb,
1544                                   unsigned long action,
1545                                   void *hcpu)
1546 {
1547         pg_data_t *pgdat;
1548         cpumask_t mask;
1549
1550         if (action == CPU_ONLINE) {
1551                 for_each_pgdat(pgdat) {
1552                         mask = node_to_cpumask(pgdat->node_id);
1553                         if (any_online_cpu(mask) != NR_CPUS)
1554                                 /* One of our CPUs online: restore mask */
1555                                 set_cpus_allowed(pgdat->kswapd, mask);
1556                 }
1557         }
1558         return NOTIFY_OK;
1559 }
1560 #endif /* CONFIG_HOTPLUG_CPU */
1561
1562 static int __init kswapd_init(void)
1563 {
1564         pg_data_t *pgdat;
1565         swap_setup();
1566         for_each_pgdat(pgdat)
1567                 pgdat->kswapd
1568                 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1569         total_memory = nr_free_pagecache_pages();
1570         hotcpu_notifier(cpu_callback, 0);
1571         return 0;
1572 }
1573
1574 module_init(kswapd_init)