]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - mm/vmscan.c
[PATCH] mm: isolate_lru_pages() scan count fix
[linux-2.6-omap-h63xx.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>  /* for try_to_release_page(),
26                                         buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /* possible outcome of pageout() */
43 typedef enum {
44         /* failed to write page out, page is locked */
45         PAGE_KEEP,
46         /* move page to the active list, page is locked */
47         PAGE_ACTIVATE,
48         /* page has been sent to the disk successfully, page is unlocked */
49         PAGE_SUCCESS,
50         /* page is clean and locked */
51         PAGE_CLEAN,
52 } pageout_t;
53
54 struct scan_control {
55         /* Incremented by the number of inactive pages that were scanned */
56         unsigned long nr_scanned;
57
58         unsigned long nr_mapped;        /* From page_state */
59
60         /* This context's GFP mask */
61         gfp_t gfp_mask;
62
63         int may_writepage;
64
65         /* Can pages be swapped as part of reclaim? */
66         int may_swap;
67
68         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
69          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
70          * In this context, it doesn't matter that we scan the
71          * whole list at once. */
72         int swap_cluster_max;
73 };
74
75 /*
76  * The list of shrinker callbacks used by to apply pressure to
77  * ageable caches.
78  */
79 struct shrinker {
80         shrinker_t              shrinker;
81         struct list_head        list;
82         int                     seeks;  /* seeks to recreate an obj */
83         long                    nr;     /* objs pending delete */
84 };
85
86 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
87
88 #ifdef ARCH_HAS_PREFETCH
89 #define prefetch_prev_lru_page(_page, _base, _field)                    \
90         do {                                                            \
91                 if ((_page)->lru.prev != _base) {                       \
92                         struct page *prev;                              \
93                                                                         \
94                         prev = lru_to_page(&(_page->lru));              \
95                         prefetch(&prev->_field);                        \
96                 }                                                       \
97         } while (0)
98 #else
99 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
100 #endif
101
102 #ifdef ARCH_HAS_PREFETCHW
103 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
104         do {                                                            \
105                 if ((_page)->lru.prev != _base) {                       \
106                         struct page *prev;                              \
107                                                                         \
108                         prev = lru_to_page(&(_page->lru));              \
109                         prefetchw(&prev->_field);                       \
110                 }                                                       \
111         } while (0)
112 #else
113 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
114 #endif
115
116 /*
117  * From 0 .. 100.  Higher means more swappy.
118  */
119 int vm_swappiness = 60;
120 static long total_memory;
121
122 static LIST_HEAD(shrinker_list);
123 static DECLARE_RWSEM(shrinker_rwsem);
124
125 /*
126  * Add a shrinker callback to be called from the vm
127  */
128 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
129 {
130         struct shrinker *shrinker;
131
132         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
133         if (shrinker) {
134                 shrinker->shrinker = theshrinker;
135                 shrinker->seeks = seeks;
136                 shrinker->nr = 0;
137                 down_write(&shrinker_rwsem);
138                 list_add_tail(&shrinker->list, &shrinker_list);
139                 up_write(&shrinker_rwsem);
140         }
141         return shrinker;
142 }
143 EXPORT_SYMBOL(set_shrinker);
144
145 /*
146  * Remove one
147  */
148 void remove_shrinker(struct shrinker *shrinker)
149 {
150         down_write(&shrinker_rwsem);
151         list_del(&shrinker->list);
152         up_write(&shrinker_rwsem);
153         kfree(shrinker);
154 }
155 EXPORT_SYMBOL(remove_shrinker);
156
157 #define SHRINK_BATCH 128
158 /*
159  * Call the shrink functions to age shrinkable caches
160  *
161  * Here we assume it costs one seek to replace a lru page and that it also
162  * takes a seek to recreate a cache object.  With this in mind we age equal
163  * percentages of the lru and ageable caches.  This should balance the seeks
164  * generated by these structures.
165  *
166  * If the vm encounted mapped pages on the LRU it increase the pressure on
167  * slab to avoid swapping.
168  *
169  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
170  *
171  * `lru_pages' represents the number of on-LRU pages in all the zones which
172  * are eligible for the caller's allocation attempt.  It is used for balancing
173  * slab reclaim versus page reclaim.
174  *
175  * Returns the number of slab objects which we shrunk.
176  */
177 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
178                         unsigned long lru_pages)
179 {
180         struct shrinker *shrinker;
181         unsigned long ret = 0;
182
183         if (scanned == 0)
184                 scanned = SWAP_CLUSTER_MAX;
185
186         if (!down_read_trylock(&shrinker_rwsem))
187                 return 1;       /* Assume we'll be able to shrink next time */
188
189         list_for_each_entry(shrinker, &shrinker_list, list) {
190                 unsigned long long delta;
191                 unsigned long total_scan;
192                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
193
194                 delta = (4 * scanned) / shrinker->seeks;
195                 delta *= max_pass;
196                 do_div(delta, lru_pages + 1);
197                 shrinker->nr += delta;
198                 if (shrinker->nr < 0) {
199                         printk(KERN_ERR "%s: nr=%ld\n",
200                                         __FUNCTION__, shrinker->nr);
201                         shrinker->nr = max_pass;
202                 }
203
204                 /*
205                  * Avoid risking looping forever due to too large nr value:
206                  * never try to free more than twice the estimate number of
207                  * freeable entries.
208                  */
209                 if (shrinker->nr > max_pass * 2)
210                         shrinker->nr = max_pass * 2;
211
212                 total_scan = shrinker->nr;
213                 shrinker->nr = 0;
214
215                 while (total_scan >= SHRINK_BATCH) {
216                         long this_scan = SHRINK_BATCH;
217                         int shrink_ret;
218                         int nr_before;
219
220                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
221                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
222                         if (shrink_ret == -1)
223                                 break;
224                         if (shrink_ret < nr_before)
225                                 ret += nr_before - shrink_ret;
226                         mod_page_state(slabs_scanned, this_scan);
227                         total_scan -= this_scan;
228
229                         cond_resched();
230                 }
231
232                 shrinker->nr += total_scan;
233         }
234         up_read(&shrinker_rwsem);
235         return ret;
236 }
237
238 /* Called without lock on whether page is mapped, so answer is unstable */
239 static inline int page_mapping_inuse(struct page *page)
240 {
241         struct address_space *mapping;
242
243         /* Page is in somebody's page tables. */
244         if (page_mapped(page))
245                 return 1;
246
247         /* Be more reluctant to reclaim swapcache than pagecache */
248         if (PageSwapCache(page))
249                 return 1;
250
251         mapping = page_mapping(page);
252         if (!mapping)
253                 return 0;
254
255         /* File is mmap'd by somebody? */
256         return mapping_mapped(mapping);
257 }
258
259 static inline int is_page_cache_freeable(struct page *page)
260 {
261         return page_count(page) - !!PagePrivate(page) == 2;
262 }
263
264 static int may_write_to_queue(struct backing_dev_info *bdi)
265 {
266         if (current->flags & PF_SWAPWRITE)
267                 return 1;
268         if (!bdi_write_congested(bdi))
269                 return 1;
270         if (bdi == current->backing_dev_info)
271                 return 1;
272         return 0;
273 }
274
275 /*
276  * We detected a synchronous write error writing a page out.  Probably
277  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
278  * fsync(), msync() or close().
279  *
280  * The tricky part is that after writepage we cannot touch the mapping: nothing
281  * prevents it from being freed up.  But we have a ref on the page and once
282  * that page is locked, the mapping is pinned.
283  *
284  * We're allowed to run sleeping lock_page() here because we know the caller has
285  * __GFP_FS.
286  */
287 static void handle_write_error(struct address_space *mapping,
288                                 struct page *page, int error)
289 {
290         lock_page(page);
291         if (page_mapping(page) == mapping) {
292                 if (error == -ENOSPC)
293                         set_bit(AS_ENOSPC, &mapping->flags);
294                 else
295                         set_bit(AS_EIO, &mapping->flags);
296         }
297         unlock_page(page);
298 }
299
300 /*
301  * pageout is called by shrink_page_list() for each dirty page.
302  * Calls ->writepage().
303  */
304 static pageout_t pageout(struct page *page, struct address_space *mapping)
305 {
306         /*
307          * If the page is dirty, only perform writeback if that write
308          * will be non-blocking.  To prevent this allocation from being
309          * stalled by pagecache activity.  But note that there may be
310          * stalls if we need to run get_block().  We could test
311          * PagePrivate for that.
312          *
313          * If this process is currently in generic_file_write() against
314          * this page's queue, we can perform writeback even if that
315          * will block.
316          *
317          * If the page is swapcache, write it back even if that would
318          * block, for some throttling. This happens by accident, because
319          * swap_backing_dev_info is bust: it doesn't reflect the
320          * congestion state of the swapdevs.  Easy to fix, if needed.
321          * See swapfile.c:page_queue_congested().
322          */
323         if (!is_page_cache_freeable(page))
324                 return PAGE_KEEP;
325         if (!mapping) {
326                 /*
327                  * Some data journaling orphaned pages can have
328                  * page->mapping == NULL while being dirty with clean buffers.
329                  */
330                 if (PagePrivate(page)) {
331                         if (try_to_free_buffers(page)) {
332                                 ClearPageDirty(page);
333                                 printk("%s: orphaned page\n", __FUNCTION__);
334                                 return PAGE_CLEAN;
335                         }
336                 }
337                 return PAGE_KEEP;
338         }
339         if (mapping->a_ops->writepage == NULL)
340                 return PAGE_ACTIVATE;
341         if (!may_write_to_queue(mapping->backing_dev_info))
342                 return PAGE_KEEP;
343
344         if (clear_page_dirty_for_io(page)) {
345                 int res;
346                 struct writeback_control wbc = {
347                         .sync_mode = WB_SYNC_NONE,
348                         .nr_to_write = SWAP_CLUSTER_MAX,
349                         .nonblocking = 1,
350                         .for_reclaim = 1,
351                 };
352
353                 SetPageReclaim(page);
354                 res = mapping->a_ops->writepage(page, &wbc);
355                 if (res < 0)
356                         handle_write_error(mapping, page, res);
357                 if (res == AOP_WRITEPAGE_ACTIVATE) {
358                         ClearPageReclaim(page);
359                         return PAGE_ACTIVATE;
360                 }
361                 if (!PageWriteback(page)) {
362                         /* synchronous write or broken a_ops? */
363                         ClearPageReclaim(page);
364                 }
365
366                 return PAGE_SUCCESS;
367         }
368
369         return PAGE_CLEAN;
370 }
371
372 static int remove_mapping(struct address_space *mapping, struct page *page)
373 {
374         if (!mapping)
375                 return 0;               /* truncate got there first */
376
377         write_lock_irq(&mapping->tree_lock);
378
379         /*
380          * The non-racy check for busy page.  It is critical to check
381          * PageDirty _after_ making sure that the page is freeable and
382          * not in use by anybody.       (pagecache + us == 2)
383          */
384         if (unlikely(page_count(page) != 2))
385                 goto cannot_free;
386         smp_rmb();
387         if (unlikely(PageDirty(page)))
388                 goto cannot_free;
389
390         if (PageSwapCache(page)) {
391                 swp_entry_t swap = { .val = page_private(page) };
392                 __delete_from_swap_cache(page);
393                 write_unlock_irq(&mapping->tree_lock);
394                 swap_free(swap);
395                 __put_page(page);       /* The pagecache ref */
396                 return 1;
397         }
398
399         __remove_from_page_cache(page);
400         write_unlock_irq(&mapping->tree_lock);
401         __put_page(page);
402         return 1;
403
404 cannot_free:
405         write_unlock_irq(&mapping->tree_lock);
406         return 0;
407 }
408
409 /*
410  * shrink_page_list() returns the number of reclaimed pages
411  */
412 static unsigned long shrink_page_list(struct list_head *page_list,
413                                         struct scan_control *sc)
414 {
415         LIST_HEAD(ret_pages);
416         struct pagevec freed_pvec;
417         int pgactivate = 0;
418         unsigned long nr_reclaimed = 0;
419
420         cond_resched();
421
422         pagevec_init(&freed_pvec, 1);
423         while (!list_empty(page_list)) {
424                 struct address_space *mapping;
425                 struct page *page;
426                 int may_enter_fs;
427                 int referenced;
428
429                 cond_resched();
430
431                 page = lru_to_page(page_list);
432                 list_del(&page->lru);
433
434                 if (TestSetPageLocked(page))
435                         goto keep;
436
437                 BUG_ON(PageActive(page));
438
439                 sc->nr_scanned++;
440
441                 if (!sc->may_swap && page_mapped(page))
442                         goto keep_locked;
443
444                 /* Double the slab pressure for mapped and swapcache pages */
445                 if (page_mapped(page) || PageSwapCache(page))
446                         sc->nr_scanned++;
447
448                 if (PageWriteback(page))
449                         goto keep_locked;
450
451                 referenced = page_referenced(page, 1);
452                 /* In active use or really unfreeable?  Activate it. */
453                 if (referenced && page_mapping_inuse(page))
454                         goto activate_locked;
455
456 #ifdef CONFIG_SWAP
457                 /*
458                  * Anonymous process memory has backing store?
459                  * Try to allocate it some swap space here.
460                  */
461                 if (PageAnon(page) && !PageSwapCache(page)) {
462                         if (!sc->may_swap)
463                                 goto keep_locked;
464                         if (!add_to_swap(page, GFP_ATOMIC))
465                                 goto activate_locked;
466                 }
467 #endif /* CONFIG_SWAP */
468
469                 mapping = page_mapping(page);
470                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
471                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
472
473                 /*
474                  * The page is mapped into the page tables of one or more
475                  * processes. Try to unmap it here.
476                  */
477                 if (page_mapped(page) && mapping) {
478                         /*
479                          * No unmapping if we do not swap
480                          */
481                         if (!sc->may_swap)
482                                 goto keep_locked;
483
484                         switch (try_to_unmap(page, 0)) {
485                         case SWAP_FAIL:
486                                 goto activate_locked;
487                         case SWAP_AGAIN:
488                                 goto keep_locked;
489                         case SWAP_SUCCESS:
490                                 ; /* try to free the page below */
491                         }
492                 }
493
494                 if (PageDirty(page)) {
495                         if (referenced)
496                                 goto keep_locked;
497                         if (!may_enter_fs)
498                                 goto keep_locked;
499                         if (!sc->may_writepage)
500                                 goto keep_locked;
501
502                         /* Page is dirty, try to write it out here */
503                         switch(pageout(page, mapping)) {
504                         case PAGE_KEEP:
505                                 goto keep_locked;
506                         case PAGE_ACTIVATE:
507                                 goto activate_locked;
508                         case PAGE_SUCCESS:
509                                 if (PageWriteback(page) || PageDirty(page))
510                                         goto keep;
511                                 /*
512                                  * A synchronous write - probably a ramdisk.  Go
513                                  * ahead and try to reclaim the page.
514                                  */
515                                 if (TestSetPageLocked(page))
516                                         goto keep;
517                                 if (PageDirty(page) || PageWriteback(page))
518                                         goto keep_locked;
519                                 mapping = page_mapping(page);
520                         case PAGE_CLEAN:
521                                 ; /* try to free the page below */
522                         }
523                 }
524
525                 /*
526                  * If the page has buffers, try to free the buffer mappings
527                  * associated with this page. If we succeed we try to free
528                  * the page as well.
529                  *
530                  * We do this even if the page is PageDirty().
531                  * try_to_release_page() does not perform I/O, but it is
532                  * possible for a page to have PageDirty set, but it is actually
533                  * clean (all its buffers are clean).  This happens if the
534                  * buffers were written out directly, with submit_bh(). ext3
535                  * will do this, as well as the blockdev mapping. 
536                  * try_to_release_page() will discover that cleanness and will
537                  * drop the buffers and mark the page clean - it can be freed.
538                  *
539                  * Rarely, pages can have buffers and no ->mapping.  These are
540                  * the pages which were not successfully invalidated in
541                  * truncate_complete_page().  We try to drop those buffers here
542                  * and if that worked, and the page is no longer mapped into
543                  * process address space (page_count == 1) it can be freed.
544                  * Otherwise, leave the page on the LRU so it is swappable.
545                  */
546                 if (PagePrivate(page)) {
547                         if (!try_to_release_page(page, sc->gfp_mask))
548                                 goto activate_locked;
549                         if (!mapping && page_count(page) == 1)
550                                 goto free_it;
551                 }
552
553                 if (!remove_mapping(mapping, page))
554                         goto keep_locked;
555
556 free_it:
557                 unlock_page(page);
558                 nr_reclaimed++;
559                 if (!pagevec_add(&freed_pvec, page))
560                         __pagevec_release_nonlru(&freed_pvec);
561                 continue;
562
563 activate_locked:
564                 SetPageActive(page);
565                 pgactivate++;
566 keep_locked:
567                 unlock_page(page);
568 keep:
569                 list_add(&page->lru, &ret_pages);
570                 BUG_ON(PageLRU(page));
571         }
572         list_splice(&ret_pages, page_list);
573         if (pagevec_count(&freed_pvec))
574                 __pagevec_release_nonlru(&freed_pvec);
575         mod_page_state(pgactivate, pgactivate);
576         return nr_reclaimed;
577 }
578
579 #ifdef CONFIG_MIGRATION
580 static inline void move_to_lru(struct page *page)
581 {
582         list_del(&page->lru);
583         if (PageActive(page)) {
584                 /*
585                  * lru_cache_add_active checks that
586                  * the PG_active bit is off.
587                  */
588                 ClearPageActive(page);
589                 lru_cache_add_active(page);
590         } else {
591                 lru_cache_add(page);
592         }
593         put_page(page);
594 }
595
596 /*
597  * Add isolated pages on the list back to the LRU.
598  *
599  * returns the number of pages put back.
600  */
601 unsigned long putback_lru_pages(struct list_head *l)
602 {
603         struct page *page;
604         struct page *page2;
605         unsigned long count = 0;
606
607         list_for_each_entry_safe(page, page2, l, lru) {
608                 move_to_lru(page);
609                 count++;
610         }
611         return count;
612 }
613
614 /*
615  * Non migratable page
616  */
617 int fail_migrate_page(struct page *newpage, struct page *page)
618 {
619         return -EIO;
620 }
621 EXPORT_SYMBOL(fail_migrate_page);
622
623 /*
624  * swapout a single page
625  * page is locked upon entry, unlocked on exit
626  */
627 static int swap_page(struct page *page)
628 {
629         struct address_space *mapping = page_mapping(page);
630
631         if (page_mapped(page) && mapping)
632                 if (try_to_unmap(page, 1) != SWAP_SUCCESS)
633                         goto unlock_retry;
634
635         if (PageDirty(page)) {
636                 /* Page is dirty, try to write it out here */
637                 switch(pageout(page, mapping)) {
638                 case PAGE_KEEP:
639                 case PAGE_ACTIVATE:
640                         goto unlock_retry;
641
642                 case PAGE_SUCCESS:
643                         goto retry;
644
645                 case PAGE_CLEAN:
646                         ; /* try to free the page below */
647                 }
648         }
649
650         if (PagePrivate(page)) {
651                 if (!try_to_release_page(page, GFP_KERNEL) ||
652                     (!mapping && page_count(page) == 1))
653                         goto unlock_retry;
654         }
655
656         if (remove_mapping(mapping, page)) {
657                 /* Success */
658                 unlock_page(page);
659                 return 0;
660         }
661
662 unlock_retry:
663         unlock_page(page);
664
665 retry:
666         return -EAGAIN;
667 }
668 EXPORT_SYMBOL(swap_page);
669
670 /*
671  * Page migration was first developed in the context of the memory hotplug
672  * project. The main authors of the migration code are:
673  *
674  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
675  * Hirokazu Takahashi <taka@valinux.co.jp>
676  * Dave Hansen <haveblue@us.ibm.com>
677  * Christoph Lameter <clameter@sgi.com>
678  */
679
680 /*
681  * Remove references for a page and establish the new page with the correct
682  * basic settings to be able to stop accesses to the page.
683  */
684 int migrate_page_remove_references(struct page *newpage,
685                                 struct page *page, int nr_refs)
686 {
687         struct address_space *mapping = page_mapping(page);
688         struct page **radix_pointer;
689
690         /*
691          * Avoid doing any of the following work if the page count
692          * indicates that the page is in use or truncate has removed
693          * the page.
694          */
695         if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
696                 return -EAGAIN;
697
698         /*
699          * Establish swap ptes for anonymous pages or destroy pte
700          * maps for files.
701          *
702          * In order to reestablish file backed mappings the fault handlers
703          * will take the radix tree_lock which may then be used to stop
704          * processses from accessing this page until the new page is ready.
705          *
706          * A process accessing via a swap pte (an anonymous page) will take a
707          * page_lock on the old page which will block the process until the
708          * migration attempt is complete. At that time the PageSwapCache bit
709          * will be examined. If the page was migrated then the PageSwapCache
710          * bit will be clear and the operation to retrieve the page will be
711          * retried which will find the new page in the radix tree. Then a new
712          * direct mapping may be generated based on the radix tree contents.
713          *
714          * If the page was not migrated then the PageSwapCache bit
715          * is still set and the operation may continue.
716          */
717         if (try_to_unmap(page, 1) == SWAP_FAIL)
718                 /* A vma has VM_LOCKED set -> Permanent failure */
719                 return -EPERM;
720
721         /*
722          * Give up if we were unable to remove all mappings.
723          */
724         if (page_mapcount(page))
725                 return -EAGAIN;
726
727         write_lock_irq(&mapping->tree_lock);
728
729         radix_pointer = (struct page **)radix_tree_lookup_slot(
730                                                 &mapping->page_tree,
731                                                 page_index(page));
732
733         if (!page_mapping(page) || page_count(page) != nr_refs ||
734                         *radix_pointer != page) {
735                 write_unlock_irq(&mapping->tree_lock);
736                 return -EAGAIN;
737         }
738
739         /*
740          * Now we know that no one else is looking at the page.
741          *
742          * Certain minimal information about a page must be available
743          * in order for other subsystems to properly handle the page if they
744          * find it through the radix tree update before we are finished
745          * copying the page.
746          */
747         get_page(newpage);
748         newpage->index = page->index;
749         newpage->mapping = page->mapping;
750         if (PageSwapCache(page)) {
751                 SetPageSwapCache(newpage);
752                 set_page_private(newpage, page_private(page));
753         }
754
755         *radix_pointer = newpage;
756         __put_page(page);
757         write_unlock_irq(&mapping->tree_lock);
758
759         return 0;
760 }
761 EXPORT_SYMBOL(migrate_page_remove_references);
762
763 /*
764  * Copy the page to its new location
765  */
766 void migrate_page_copy(struct page *newpage, struct page *page)
767 {
768         copy_highpage(newpage, page);
769
770         if (PageError(page))
771                 SetPageError(newpage);
772         if (PageReferenced(page))
773                 SetPageReferenced(newpage);
774         if (PageUptodate(page))
775                 SetPageUptodate(newpage);
776         if (PageActive(page))
777                 SetPageActive(newpage);
778         if (PageChecked(page))
779                 SetPageChecked(newpage);
780         if (PageMappedToDisk(page))
781                 SetPageMappedToDisk(newpage);
782
783         if (PageDirty(page)) {
784                 clear_page_dirty_for_io(page);
785                 set_page_dirty(newpage);
786         }
787
788         ClearPageSwapCache(page);
789         ClearPageActive(page);
790         ClearPagePrivate(page);
791         set_page_private(page, 0);
792         page->mapping = NULL;
793
794         /*
795          * If any waiters have accumulated on the new page then
796          * wake them up.
797          */
798         if (PageWriteback(newpage))
799                 end_page_writeback(newpage);
800 }
801 EXPORT_SYMBOL(migrate_page_copy);
802
803 /*
804  * Common logic to directly migrate a single page suitable for
805  * pages that do not use PagePrivate.
806  *
807  * Pages are locked upon entry and exit.
808  */
809 int migrate_page(struct page *newpage, struct page *page)
810 {
811         int rc;
812
813         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
814
815         rc = migrate_page_remove_references(newpage, page, 2);
816
817         if (rc)
818                 return rc;
819
820         migrate_page_copy(newpage, page);
821
822         /*
823          * Remove auxiliary swap entries and replace
824          * them with real ptes.
825          *
826          * Note that a real pte entry will allow processes that are not
827          * waiting on the page lock to use the new page via the page tables
828          * before the new page is unlocked.
829          */
830         remove_from_swap(newpage);
831         return 0;
832 }
833 EXPORT_SYMBOL(migrate_page);
834
835 /*
836  * migrate_pages
837  *
838  * Two lists are passed to this function. The first list
839  * contains the pages isolated from the LRU to be migrated.
840  * The second list contains new pages that the pages isolated
841  * can be moved to. If the second list is NULL then all
842  * pages are swapped out.
843  *
844  * The function returns after 10 attempts or if no pages
845  * are movable anymore because to has become empty
846  * or no retryable pages exist anymore.
847  *
848  * Return: Number of pages not migrated when "to" ran empty.
849  */
850 unsigned long migrate_pages(struct list_head *from, struct list_head *to,
851                   struct list_head *moved, struct list_head *failed)
852 {
853         unsigned long retry;
854         unsigned long nr_failed = 0;
855         int pass = 0;
856         struct page *page;
857         struct page *page2;
858         int swapwrite = current->flags & PF_SWAPWRITE;
859         int rc;
860
861         if (!swapwrite)
862                 current->flags |= PF_SWAPWRITE;
863
864 redo:
865         retry = 0;
866
867         list_for_each_entry_safe(page, page2, from, lru) {
868                 struct page *newpage = NULL;
869                 struct address_space *mapping;
870
871                 cond_resched();
872
873                 rc = 0;
874                 if (page_count(page) == 1)
875                         /* page was freed from under us. So we are done. */
876                         goto next;
877
878                 if (to && list_empty(to))
879                         break;
880
881                 /*
882                  * Skip locked pages during the first two passes to give the
883                  * functions holding the lock time to release the page. Later we
884                  * use lock_page() to have a higher chance of acquiring the
885                  * lock.
886                  */
887                 rc = -EAGAIN;
888                 if (pass > 2)
889                         lock_page(page);
890                 else
891                         if (TestSetPageLocked(page))
892                                 goto next;
893
894                 /*
895                  * Only wait on writeback if we have already done a pass where
896                  * we we may have triggered writeouts for lots of pages.
897                  */
898                 if (pass > 0) {
899                         wait_on_page_writeback(page);
900                 } else {
901                         if (PageWriteback(page))
902                                 goto unlock_page;
903                 }
904
905                 /*
906                  * Anonymous pages must have swap cache references otherwise
907                  * the information contained in the page maps cannot be
908                  * preserved.
909                  */
910                 if (PageAnon(page) && !PageSwapCache(page)) {
911                         if (!add_to_swap(page, GFP_KERNEL)) {
912                                 rc = -ENOMEM;
913                                 goto unlock_page;
914                         }
915                 }
916
917                 if (!to) {
918                         rc = swap_page(page);
919                         goto next;
920                 }
921
922                 newpage = lru_to_page(to);
923                 lock_page(newpage);
924
925                 /*
926                  * Pages are properly locked and writeback is complete.
927                  * Try to migrate the page.
928                  */
929                 mapping = page_mapping(page);
930                 if (!mapping)
931                         goto unlock_both;
932
933                 if (mapping->a_ops->migratepage) {
934                         /*
935                          * Most pages have a mapping and most filesystems
936                          * should provide a migration function. Anonymous
937                          * pages are part of swap space which also has its
938                          * own migration function. This is the most common
939                          * path for page migration.
940                          */
941                         rc = mapping->a_ops->migratepage(newpage, page);
942                         goto unlock_both;
943                 }
944
945                 /*
946                  * Default handling if a filesystem does not provide
947                  * a migration function. We can only migrate clean
948                  * pages so try to write out any dirty pages first.
949                  */
950                 if (PageDirty(page)) {
951                         switch (pageout(page, mapping)) {
952                         case PAGE_KEEP:
953                         case PAGE_ACTIVATE:
954                                 goto unlock_both;
955
956                         case PAGE_SUCCESS:
957                                 unlock_page(newpage);
958                                 goto next;
959
960                         case PAGE_CLEAN:
961                                 ; /* try to migrate the page below */
962                         }
963                 }
964
965                 /*
966                  * Buffers are managed in a filesystem specific way.
967                  * We must have no buffers or drop them.
968                  */
969                 if (!page_has_buffers(page) ||
970                     try_to_release_page(page, GFP_KERNEL)) {
971                         rc = migrate_page(newpage, page);
972                         goto unlock_both;
973                 }
974
975                 /*
976                  * On early passes with mapped pages simply
977                  * retry. There may be a lock held for some
978                  * buffers that may go away. Later
979                  * swap them out.
980                  */
981                 if (pass > 4) {
982                         /*
983                          * Persistently unable to drop buffers..... As a
984                          * measure of last resort we fall back to
985                          * swap_page().
986                          */
987                         unlock_page(newpage);
988                         newpage = NULL;
989                         rc = swap_page(page);
990                         goto next;
991                 }
992
993 unlock_both:
994                 unlock_page(newpage);
995
996 unlock_page:
997                 unlock_page(page);
998
999 next:
1000                 if (rc == -EAGAIN) {
1001                         retry++;
1002                 } else if (rc) {
1003                         /* Permanent failure */
1004                         list_move(&page->lru, failed);
1005                         nr_failed++;
1006                 } else {
1007                         if (newpage) {
1008                                 /* Successful migration. Return page to LRU */
1009                                 move_to_lru(newpage);
1010                         }
1011                         list_move(&page->lru, moved);
1012                 }
1013         }
1014         if (retry && pass++ < 10)
1015                 goto redo;
1016
1017         if (!swapwrite)
1018                 current->flags &= ~PF_SWAPWRITE;
1019
1020         return nr_failed + retry;
1021 }
1022
1023 /*
1024  * Isolate one page from the LRU lists and put it on the
1025  * indicated list with elevated refcount.
1026  *
1027  * Result:
1028  *  0 = page not on LRU list
1029  *  1 = page removed from LRU list and added to the specified list.
1030  */
1031 int isolate_lru_page(struct page *page)
1032 {
1033         int ret = 0;
1034
1035         if (PageLRU(page)) {
1036                 struct zone *zone = page_zone(page);
1037                 spin_lock_irq(&zone->lru_lock);
1038                 if (PageLRU(page)) {
1039                         ret = 1;
1040                         get_page(page);
1041                         ClearPageLRU(page);
1042                         if (PageActive(page))
1043                                 del_page_from_active_list(zone, page);
1044                         else
1045                                 del_page_from_inactive_list(zone, page);
1046                 }
1047                 spin_unlock_irq(&zone->lru_lock);
1048         }
1049
1050         return ret;
1051 }
1052 #endif
1053
1054 /*
1055  * zone->lru_lock is heavily contended.  Some of the functions that
1056  * shrink the lists perform better by taking out a batch of pages
1057  * and working on them outside the LRU lock.
1058  *
1059  * For pagecache intensive workloads, this function is the hottest
1060  * spot in the kernel (apart from copy_*_user functions).
1061  *
1062  * Appropriate locks must be held before calling this function.
1063  *
1064  * @nr_to_scan: The number of pages to look through on the list.
1065  * @src:        The LRU list to pull pages off.
1066  * @dst:        The temp list to put pages on to.
1067  * @scanned:    The number of pages that were scanned.
1068  *
1069  * returns how many pages were moved onto *@dst.
1070  */
1071 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1072                 struct list_head *src, struct list_head *dst,
1073                 unsigned long *scanned)
1074 {
1075         unsigned long nr_taken = 0;
1076         struct page *page;
1077         unsigned long scan;
1078
1079         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1080                 struct list_head *target;
1081                 page = lru_to_page(src);
1082                 prefetchw_prev_lru_page(page, src, flags);
1083
1084                 BUG_ON(!PageLRU(page));
1085
1086                 list_del(&page->lru);
1087                 target = src;
1088                 if (likely(get_page_unless_zero(page))) {
1089                         /*
1090                          * Be careful not to clear PageLRU until after we're
1091                          * sure the page is not being freed elsewhere -- the
1092                          * page release code relies on it.
1093                          */
1094                         ClearPageLRU(page);
1095                         target = dst;
1096                         nr_taken++;
1097                 } /* else it is being freed elsewhere */
1098
1099                 list_add(&page->lru, target);
1100         }
1101
1102         *scanned = scan;
1103         return nr_taken;
1104 }
1105
1106 /*
1107  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1108  * of reclaimed pages
1109  */
1110 static unsigned long shrink_inactive_list(unsigned long max_scan,
1111                                 struct zone *zone, struct scan_control *sc)
1112 {
1113         LIST_HEAD(page_list);
1114         struct pagevec pvec;
1115         unsigned long nr_scanned = 0;
1116         unsigned long nr_reclaimed = 0;
1117
1118         pagevec_init(&pvec, 1);
1119
1120         lru_add_drain();
1121         spin_lock_irq(&zone->lru_lock);
1122         do {
1123                 struct page *page;
1124                 unsigned long nr_taken;
1125                 unsigned long nr_scan;
1126                 unsigned long nr_freed;
1127
1128                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
1129                                              &zone->inactive_list,
1130                                              &page_list, &nr_scan);
1131                 zone->nr_inactive -= nr_taken;
1132                 zone->pages_scanned += nr_scan;
1133                 spin_unlock_irq(&zone->lru_lock);
1134
1135                 if (nr_taken == 0)
1136                         goto done;
1137
1138                 nr_scanned += nr_scan;
1139                 nr_freed = shrink_page_list(&page_list, sc);
1140                 nr_reclaimed += nr_freed;
1141                 local_irq_disable();
1142                 if (current_is_kswapd()) {
1143                         __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
1144                         __mod_page_state(kswapd_steal, nr_freed);
1145                 } else
1146                         __mod_page_state_zone(zone, pgscan_direct, nr_scan);
1147                 __mod_page_state_zone(zone, pgsteal, nr_freed);
1148
1149                 spin_lock(&zone->lru_lock);
1150                 /*
1151                  * Put back any unfreeable pages.
1152                  */
1153                 while (!list_empty(&page_list)) {
1154                         page = lru_to_page(&page_list);
1155                         BUG_ON(PageLRU(page));
1156                         SetPageLRU(page);
1157                         list_del(&page->lru);
1158                         if (PageActive(page))
1159                                 add_page_to_active_list(zone, page);
1160                         else
1161                                 add_page_to_inactive_list(zone, page);
1162                         if (!pagevec_add(&pvec, page)) {
1163                                 spin_unlock_irq(&zone->lru_lock);
1164                                 __pagevec_release(&pvec);
1165                                 spin_lock_irq(&zone->lru_lock);
1166                         }
1167                 }
1168         } while (nr_scanned < max_scan);
1169         spin_unlock_irq(&zone->lru_lock);
1170 done:
1171         pagevec_release(&pvec);
1172         return nr_reclaimed;
1173 }
1174
1175 /*
1176  * This moves pages from the active list to the inactive list.
1177  *
1178  * We move them the other way if the page is referenced by one or more
1179  * processes, from rmap.
1180  *
1181  * If the pages are mostly unmapped, the processing is fast and it is
1182  * appropriate to hold zone->lru_lock across the whole operation.  But if
1183  * the pages are mapped, the processing is slow (page_referenced()) so we
1184  * should drop zone->lru_lock around each page.  It's impossible to balance
1185  * this, so instead we remove the pages from the LRU while processing them.
1186  * It is safe to rely on PG_active against the non-LRU pages in here because
1187  * nobody will play with that bit on a non-LRU page.
1188  *
1189  * The downside is that we have to touch page->_count against each page.
1190  * But we had to alter page->flags anyway.
1191  */
1192 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1193                                 struct scan_control *sc)
1194 {
1195         unsigned long pgmoved;
1196         int pgdeactivate = 0;
1197         unsigned long pgscanned;
1198         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1199         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
1200         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
1201         struct page *page;
1202         struct pagevec pvec;
1203         int reclaim_mapped = 0;
1204
1205         if (unlikely(sc->may_swap)) {
1206                 long mapped_ratio;
1207                 long distress;
1208                 long swap_tendency;
1209
1210                 /*
1211                  * `distress' is a measure of how much trouble we're having
1212                  * reclaiming pages.  0 -> no problems.  100 -> great trouble.
1213                  */
1214                 distress = 100 >> zone->prev_priority;
1215
1216                 /*
1217                  * The point of this algorithm is to decide when to start
1218                  * reclaiming mapped memory instead of just pagecache.  Work out
1219                  * how much memory
1220                  * is mapped.
1221                  */
1222                 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
1223
1224                 /*
1225                  * Now decide how much we really want to unmap some pages.  The
1226                  * mapped ratio is downgraded - just because there's a lot of
1227                  * mapped memory doesn't necessarily mean that page reclaim
1228                  * isn't succeeding.
1229                  *
1230                  * The distress ratio is important - we don't want to start
1231                  * going oom.
1232                  *
1233                  * A 100% value of vm_swappiness overrides this algorithm
1234                  * altogether.
1235                  */
1236                 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
1237
1238                 /*
1239                  * Now use this metric to decide whether to start moving mapped
1240                  * memory onto the inactive list.
1241                  */
1242                 if (swap_tendency >= 100)
1243                         reclaim_mapped = 1;
1244         }
1245
1246         lru_add_drain();
1247         spin_lock_irq(&zone->lru_lock);
1248         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
1249                                     &l_hold, &pgscanned);
1250         zone->pages_scanned += pgscanned;
1251         zone->nr_active -= pgmoved;
1252         spin_unlock_irq(&zone->lru_lock);
1253
1254         while (!list_empty(&l_hold)) {
1255                 cond_resched();
1256                 page = lru_to_page(&l_hold);
1257                 list_del(&page->lru);
1258                 if (page_mapped(page)) {
1259                         if (!reclaim_mapped ||
1260                             (total_swap_pages == 0 && PageAnon(page)) ||
1261                             page_referenced(page, 0)) {
1262                                 list_add(&page->lru, &l_active);
1263                                 continue;
1264                         }
1265                 }
1266                 list_add(&page->lru, &l_inactive);
1267         }
1268
1269         pagevec_init(&pvec, 1);
1270         pgmoved = 0;
1271         spin_lock_irq(&zone->lru_lock);
1272         while (!list_empty(&l_inactive)) {
1273                 page = lru_to_page(&l_inactive);
1274                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1275                 BUG_ON(PageLRU(page));
1276                 SetPageLRU(page);
1277                 BUG_ON(!PageActive(page));
1278                 ClearPageActive(page);
1279
1280                 list_move(&page->lru, &zone->inactive_list);
1281                 pgmoved++;
1282                 if (!pagevec_add(&pvec, page)) {
1283                         zone->nr_inactive += pgmoved;
1284                         spin_unlock_irq(&zone->lru_lock);
1285                         pgdeactivate += pgmoved;
1286                         pgmoved = 0;
1287                         if (buffer_heads_over_limit)
1288                                 pagevec_strip(&pvec);
1289                         __pagevec_release(&pvec);
1290                         spin_lock_irq(&zone->lru_lock);
1291                 }
1292         }
1293         zone->nr_inactive += pgmoved;
1294         pgdeactivate += pgmoved;
1295         if (buffer_heads_over_limit) {
1296                 spin_unlock_irq(&zone->lru_lock);
1297                 pagevec_strip(&pvec);
1298                 spin_lock_irq(&zone->lru_lock);
1299         }
1300
1301         pgmoved = 0;
1302         while (!list_empty(&l_active)) {
1303                 page = lru_to_page(&l_active);
1304                 prefetchw_prev_lru_page(page, &l_active, flags);
1305                 BUG_ON(PageLRU(page));
1306                 SetPageLRU(page);
1307                 BUG_ON(!PageActive(page));
1308                 list_move(&page->lru, &zone->active_list);
1309                 pgmoved++;
1310                 if (!pagevec_add(&pvec, page)) {
1311                         zone->nr_active += pgmoved;
1312                         pgmoved = 0;
1313                         spin_unlock_irq(&zone->lru_lock);
1314                         __pagevec_release(&pvec);
1315                         spin_lock_irq(&zone->lru_lock);
1316                 }
1317         }
1318         zone->nr_active += pgmoved;
1319         spin_unlock(&zone->lru_lock);
1320
1321         __mod_page_state_zone(zone, pgrefill, pgscanned);
1322         __mod_page_state(pgdeactivate, pgdeactivate);
1323         local_irq_enable();
1324
1325         pagevec_release(&pvec);
1326 }
1327
1328 /*
1329  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1330  */
1331 static unsigned long shrink_zone(int priority, struct zone *zone,
1332                                 struct scan_control *sc)
1333 {
1334         unsigned long nr_active;
1335         unsigned long nr_inactive;
1336         unsigned long nr_to_scan;
1337         unsigned long nr_reclaimed = 0;
1338
1339         atomic_inc(&zone->reclaim_in_progress);
1340
1341         /*
1342          * Add one to `nr_to_scan' just to make sure that the kernel will
1343          * slowly sift through the active list.
1344          */
1345         zone->nr_scan_active += (zone->nr_active >> priority) + 1;
1346         nr_active = zone->nr_scan_active;
1347         if (nr_active >= sc->swap_cluster_max)
1348                 zone->nr_scan_active = 0;
1349         else
1350                 nr_active = 0;
1351
1352         zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
1353         nr_inactive = zone->nr_scan_inactive;
1354         if (nr_inactive >= sc->swap_cluster_max)
1355                 zone->nr_scan_inactive = 0;
1356         else
1357                 nr_inactive = 0;
1358
1359         while (nr_active || nr_inactive) {
1360                 if (nr_active) {
1361                         nr_to_scan = min(nr_active,
1362                                         (unsigned long)sc->swap_cluster_max);
1363                         nr_active -= nr_to_scan;
1364                         shrink_active_list(nr_to_scan, zone, sc);
1365                 }
1366
1367                 if (nr_inactive) {
1368                         nr_to_scan = min(nr_inactive,
1369                                         (unsigned long)sc->swap_cluster_max);
1370                         nr_inactive -= nr_to_scan;
1371                         nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1372                                                                 sc);
1373                 }
1374         }
1375
1376         throttle_vm_writeout();
1377
1378         atomic_dec(&zone->reclaim_in_progress);
1379         return nr_reclaimed;
1380 }
1381
1382 /*
1383  * This is the direct reclaim path, for page-allocating processes.  We only
1384  * try to reclaim pages from zones which will satisfy the caller's allocation
1385  * request.
1386  *
1387  * We reclaim from a zone even if that zone is over pages_high.  Because:
1388  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1389  *    allocation or
1390  * b) The zones may be over pages_high but they must go *over* pages_high to
1391  *    satisfy the `incremental min' zone defense algorithm.
1392  *
1393  * Returns the number of reclaimed pages.
1394  *
1395  * If a zone is deemed to be full of pinned pages then just give it a light
1396  * scan then give up on it.
1397  */
1398 static unsigned long shrink_zones(int priority, struct zone **zones,
1399                                         struct scan_control *sc)
1400 {
1401         unsigned long nr_reclaimed = 0;
1402         int i;
1403
1404         for (i = 0; zones[i] != NULL; i++) {
1405                 struct zone *zone = zones[i];
1406
1407                 if (!populated_zone(zone))
1408                         continue;
1409
1410                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1411                         continue;
1412
1413                 zone->temp_priority = priority;
1414                 if (zone->prev_priority > priority)
1415                         zone->prev_priority = priority;
1416
1417                 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1418                         continue;       /* Let kswapd poll it */
1419
1420                 nr_reclaimed += shrink_zone(priority, zone, sc);
1421         }
1422         return nr_reclaimed;
1423 }
1424  
1425 /*
1426  * This is the main entry point to direct page reclaim.
1427  *
1428  * If a full scan of the inactive list fails to free enough memory then we
1429  * are "out of memory" and something needs to be killed.
1430  *
1431  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1432  * high - the zone may be full of dirty or under-writeback pages, which this
1433  * caller can't do much about.  We kick pdflush and take explicit naps in the
1434  * hope that some of these pages can be written.  But if the allocating task
1435  * holds filesystem locks which prevent writeout this might not work, and the
1436  * allocation attempt will fail.
1437  */
1438 unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1439 {
1440         int priority;
1441         int ret = 0;
1442         unsigned long total_scanned = 0;
1443         unsigned long nr_reclaimed = 0;
1444         struct reclaim_state *reclaim_state = current->reclaim_state;
1445         unsigned long lru_pages = 0;
1446         int i;
1447         struct scan_control sc = {
1448                 .gfp_mask = gfp_mask,
1449                 .may_writepage = !laptop_mode,
1450                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1451                 .may_swap = 1,
1452         };
1453
1454         inc_page_state(allocstall);
1455
1456         for (i = 0; zones[i] != NULL; i++) {
1457                 struct zone *zone = zones[i];
1458
1459                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1460                         continue;
1461
1462                 zone->temp_priority = DEF_PRIORITY;
1463                 lru_pages += zone->nr_active + zone->nr_inactive;
1464         }
1465
1466         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1467                 sc.nr_mapped = read_page_state(nr_mapped);
1468                 sc.nr_scanned = 0;
1469                 if (!priority)
1470                         disable_swap_token();
1471                 nr_reclaimed += shrink_zones(priority, zones, &sc);
1472                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1473                 if (reclaim_state) {
1474                         nr_reclaimed += reclaim_state->reclaimed_slab;
1475                         reclaim_state->reclaimed_slab = 0;
1476                 }
1477                 total_scanned += sc.nr_scanned;
1478                 if (nr_reclaimed >= sc.swap_cluster_max) {
1479                         ret = 1;
1480                         goto out;
1481                 }
1482
1483                 /*
1484                  * Try to write back as many pages as we just scanned.  This
1485                  * tends to cause slow streaming writers to write data to the
1486                  * disk smoothly, at the dirtying rate, which is nice.   But
1487                  * that's undesirable in laptop mode, where we *want* lumpy
1488                  * writeout.  So in laptop mode, write out the whole world.
1489                  */
1490                 if (total_scanned > sc.swap_cluster_max +
1491                                         sc.swap_cluster_max / 2) {
1492                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1493                         sc.may_writepage = 1;
1494                 }
1495
1496                 /* Take a nap, wait for some writeback to complete */
1497                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1498                         blk_congestion_wait(WRITE, HZ/10);
1499         }
1500 out:
1501         for (i = 0; zones[i] != 0; i++) {
1502                 struct zone *zone = zones[i];
1503
1504                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1505                         continue;
1506
1507                 zone->prev_priority = zone->temp_priority;
1508         }
1509         return ret;
1510 }
1511
1512 /*
1513  * For kswapd, balance_pgdat() will work across all this node's zones until
1514  * they are all at pages_high.
1515  *
1516  * If `nr_pages' is non-zero then it is the number of pages which are to be
1517  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1518  * special.
1519  *
1520  * Returns the number of pages which were actually freed.
1521  *
1522  * There is special handling here for zones which are full of pinned pages.
1523  * This can happen if the pages are all mlocked, or if they are all used by
1524  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1525  * What we do is to detect the case where all pages in the zone have been
1526  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1527  * dead and from now on, only perform a short scan.  Basically we're polling
1528  * the zone for when the problem goes away.
1529  *
1530  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1531  * zones which have free_pages > pages_high, but once a zone is found to have
1532  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1533  * of the number of free pages in the lower zones.  This interoperates with
1534  * the page allocator fallback scheme to ensure that aging of pages is balanced
1535  * across the zones.
1536  */
1537 static unsigned long balance_pgdat(pg_data_t *pgdat, unsigned long nr_pages,
1538                                 int order)
1539 {
1540         unsigned long to_free = nr_pages;
1541         int all_zones_ok;
1542         int priority;
1543         int i;
1544         unsigned long total_scanned;
1545         unsigned long nr_reclaimed;
1546         struct reclaim_state *reclaim_state = current->reclaim_state;
1547         struct scan_control sc = {
1548                 .gfp_mask = GFP_KERNEL,
1549                 .may_swap = 1,
1550                 .swap_cluster_max = nr_pages ? nr_pages : SWAP_CLUSTER_MAX,
1551         };
1552
1553 loop_again:
1554         total_scanned = 0;
1555         nr_reclaimed = 0;
1556         sc.may_writepage = !laptop_mode,
1557         sc.nr_mapped = read_page_state(nr_mapped);
1558
1559         inc_page_state(pageoutrun);
1560
1561         for (i = 0; i < pgdat->nr_zones; i++) {
1562                 struct zone *zone = pgdat->node_zones + i;
1563
1564                 zone->temp_priority = DEF_PRIORITY;
1565         }
1566
1567         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1568                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1569                 unsigned long lru_pages = 0;
1570
1571                 /* The swap token gets in the way of swapout... */
1572                 if (!priority)
1573                         disable_swap_token();
1574
1575                 all_zones_ok = 1;
1576
1577                 if (nr_pages == 0) {
1578                         /*
1579                          * Scan in the highmem->dma direction for the highest
1580                          * zone which needs scanning
1581                          */
1582                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1583                                 struct zone *zone = pgdat->node_zones + i;
1584
1585                                 if (!populated_zone(zone))
1586                                         continue;
1587
1588                                 if (zone->all_unreclaimable &&
1589                                                 priority != DEF_PRIORITY)
1590                                         continue;
1591
1592                                 if (!zone_watermark_ok(zone, order,
1593                                                 zone->pages_high, 0, 0)) {
1594                                         end_zone = i;
1595                                         goto scan;
1596                                 }
1597                         }
1598                         goto out;
1599                 } else {
1600                         end_zone = pgdat->nr_zones - 1;
1601                 }
1602 scan:
1603                 for (i = 0; i <= end_zone; i++) {
1604                         struct zone *zone = pgdat->node_zones + i;
1605
1606                         lru_pages += zone->nr_active + zone->nr_inactive;
1607                 }
1608
1609                 /*
1610                  * Now scan the zone in the dma->highmem direction, stopping
1611                  * at the last zone which needs scanning.
1612                  *
1613                  * We do this because the page allocator works in the opposite
1614                  * direction.  This prevents the page allocator from allocating
1615                  * pages behind kswapd's direction of progress, which would
1616                  * cause too much scanning of the lower zones.
1617                  */
1618                 for (i = 0; i <= end_zone; i++) {
1619                         struct zone *zone = pgdat->node_zones + i;
1620                         int nr_slab;
1621
1622                         if (!populated_zone(zone))
1623                                 continue;
1624
1625                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1626                                 continue;
1627
1628                         if (nr_pages == 0) {    /* Not software suspend */
1629                                 if (!zone_watermark_ok(zone, order,
1630                                                 zone->pages_high, end_zone, 0))
1631                                         all_zones_ok = 0;
1632                         }
1633                         zone->temp_priority = priority;
1634                         if (zone->prev_priority > priority)
1635                                 zone->prev_priority = priority;
1636                         sc.nr_scanned = 0;
1637                         nr_reclaimed += shrink_zone(priority, zone, &sc);
1638                         reclaim_state->reclaimed_slab = 0;
1639                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1640                                                 lru_pages);
1641                         nr_reclaimed += reclaim_state->reclaimed_slab;
1642                         total_scanned += sc.nr_scanned;
1643                         if (zone->all_unreclaimable)
1644                                 continue;
1645                         if (nr_slab == 0 && zone->pages_scanned >=
1646                                     (zone->nr_active + zone->nr_inactive) * 4)
1647                                 zone->all_unreclaimable = 1;
1648                         /*
1649                          * If we've done a decent amount of scanning and
1650                          * the reclaim ratio is low, start doing writepage
1651                          * even in laptop mode
1652                          */
1653                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1654                             total_scanned > nr_reclaimed + nr_reclaimed / 2)
1655                                 sc.may_writepage = 1;
1656                 }
1657                 if (nr_pages && to_free > nr_reclaimed)
1658                         continue;       /* swsusp: need to do more work */
1659                 if (all_zones_ok)
1660                         break;          /* kswapd: all done */
1661                 /*
1662                  * OK, kswapd is getting into trouble.  Take a nap, then take
1663                  * another pass across the zones.
1664                  */
1665                 if (total_scanned && priority < DEF_PRIORITY - 2)
1666                         blk_congestion_wait(WRITE, HZ/10);
1667
1668                 /*
1669                  * We do this so kswapd doesn't build up large priorities for
1670                  * example when it is freeing in parallel with allocators. It
1671                  * matches the direct reclaim path behaviour in terms of impact
1672                  * on zone->*_priority.
1673                  */
1674                 if ((nr_reclaimed >= SWAP_CLUSTER_MAX) && !nr_pages)
1675                         break;
1676         }
1677 out:
1678         for (i = 0; i < pgdat->nr_zones; i++) {
1679                 struct zone *zone = pgdat->node_zones + i;
1680
1681                 zone->prev_priority = zone->temp_priority;
1682         }
1683         if (!all_zones_ok) {
1684                 cond_resched();
1685                 goto loop_again;
1686         }
1687
1688         return nr_reclaimed;
1689 }
1690
1691 /*
1692  * The background pageout daemon, started as a kernel thread
1693  * from the init process. 
1694  *
1695  * This basically trickles out pages so that we have _some_
1696  * free memory available even if there is no other activity
1697  * that frees anything up. This is needed for things like routing
1698  * etc, where we otherwise might have all activity going on in
1699  * asynchronous contexts that cannot page things out.
1700  *
1701  * If there are applications that are active memory-allocators
1702  * (most normal use), this basically shouldn't matter.
1703  */
1704 static int kswapd(void *p)
1705 {
1706         unsigned long order;
1707         pg_data_t *pgdat = (pg_data_t*)p;
1708         struct task_struct *tsk = current;
1709         DEFINE_WAIT(wait);
1710         struct reclaim_state reclaim_state = {
1711                 .reclaimed_slab = 0,
1712         };
1713         cpumask_t cpumask;
1714
1715         daemonize("kswapd%d", pgdat->node_id);
1716         cpumask = node_to_cpumask(pgdat->node_id);
1717         if (!cpus_empty(cpumask))
1718                 set_cpus_allowed(tsk, cpumask);
1719         current->reclaim_state = &reclaim_state;
1720
1721         /*
1722          * Tell the memory management that we're a "memory allocator",
1723          * and that if we need more memory we should get access to it
1724          * regardless (see "__alloc_pages()"). "kswapd" should
1725          * never get caught in the normal page freeing logic.
1726          *
1727          * (Kswapd normally doesn't need memory anyway, but sometimes
1728          * you need a small amount of memory in order to be able to
1729          * page out something else, and this flag essentially protects
1730          * us from recursively trying to free more memory as we're
1731          * trying to free the first piece of memory in the first place).
1732          */
1733         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1734
1735         order = 0;
1736         for ( ; ; ) {
1737                 unsigned long new_order;
1738
1739                 try_to_freeze();
1740
1741                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1742                 new_order = pgdat->kswapd_max_order;
1743                 pgdat->kswapd_max_order = 0;
1744                 if (order < new_order) {
1745                         /*
1746                          * Don't sleep if someone wants a larger 'order'
1747                          * allocation
1748                          */
1749                         order = new_order;
1750                 } else {
1751                         schedule();
1752                         order = pgdat->kswapd_max_order;
1753                 }
1754                 finish_wait(&pgdat->kswapd_wait, &wait);
1755
1756                 balance_pgdat(pgdat, 0, order);
1757         }
1758         return 0;
1759 }
1760
1761 /*
1762  * A zone is low on free memory, so wake its kswapd task to service it.
1763  */
1764 void wakeup_kswapd(struct zone *zone, int order)
1765 {
1766         pg_data_t *pgdat;
1767
1768         if (!populated_zone(zone))
1769                 return;
1770
1771         pgdat = zone->zone_pgdat;
1772         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1773                 return;
1774         if (pgdat->kswapd_max_order < order)
1775                 pgdat->kswapd_max_order = order;
1776         if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1777                 return;
1778         if (!waitqueue_active(&pgdat->kswapd_wait))
1779                 return;
1780         wake_up_interruptible(&pgdat->kswapd_wait);
1781 }
1782
1783 #ifdef CONFIG_PM
1784 /*
1785  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1786  * pages.
1787  */
1788 unsigned long shrink_all_memory(unsigned long nr_pages)
1789 {
1790         pg_data_t *pgdat;
1791         unsigned long nr_to_free = nr_pages;
1792         unsigned long ret = 0;
1793         struct reclaim_state reclaim_state = {
1794                 .reclaimed_slab = 0,
1795         };
1796
1797         current->reclaim_state = &reclaim_state;
1798         for_each_pgdat(pgdat) {
1799                 unsigned long freed;
1800
1801                 freed = balance_pgdat(pgdat, nr_to_free, 0);
1802                 ret += freed;
1803                 nr_to_free -= freed;
1804                 if ((long)nr_to_free <= 0)
1805                         break;
1806         }
1807         current->reclaim_state = NULL;
1808         return ret;
1809 }
1810 #endif
1811
1812 #ifdef CONFIG_HOTPLUG_CPU
1813 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1814    not required for correctness.  So if the last cpu in a node goes
1815    away, we get changed to run anywhere: as the first one comes back,
1816    restore their cpu bindings. */
1817 static int __devinit cpu_callback(struct notifier_block *nfb,
1818                                   unsigned long action, void *hcpu)
1819 {
1820         pg_data_t *pgdat;
1821         cpumask_t mask;
1822
1823         if (action == CPU_ONLINE) {
1824                 for_each_pgdat(pgdat) {
1825                         mask = node_to_cpumask(pgdat->node_id);
1826                         if (any_online_cpu(mask) != NR_CPUS)
1827                                 /* One of our CPUs online: restore mask */
1828                                 set_cpus_allowed(pgdat->kswapd, mask);
1829                 }
1830         }
1831         return NOTIFY_OK;
1832 }
1833 #endif /* CONFIG_HOTPLUG_CPU */
1834
1835 static int __init kswapd_init(void)
1836 {
1837         pg_data_t *pgdat;
1838
1839         swap_setup();
1840         for_each_pgdat(pgdat) {
1841                 pid_t pid;
1842
1843                 pid = kernel_thread(kswapd, pgdat, CLONE_KERNEL);
1844                 BUG_ON(pid < 0);
1845                 pgdat->kswapd = find_task_by_pid(pid);
1846         }
1847         total_memory = nr_free_pagecache_pages();
1848         hotcpu_notifier(cpu_callback, 0);
1849         return 0;
1850 }
1851
1852 module_init(kswapd_init)
1853
1854 #ifdef CONFIG_NUMA
1855 /*
1856  * Zone reclaim mode
1857  *
1858  * If non-zero call zone_reclaim when the number of free pages falls below
1859  * the watermarks.
1860  *
1861  * In the future we may add flags to the mode. However, the page allocator
1862  * should only have to check that zone_reclaim_mode != 0 before calling
1863  * zone_reclaim().
1864  */
1865 int zone_reclaim_mode __read_mostly;
1866
1867 #define RECLAIM_OFF 0
1868 #define RECLAIM_ZONE (1<<0)     /* Run shrink_cache on the zone */
1869 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
1870 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
1871 #define RECLAIM_SLAB (1<<3)     /* Do a global slab shrink if the zone is out of memory */
1872
1873 /*
1874  * Mininum time between zone reclaim scans
1875  */
1876 int zone_reclaim_interval __read_mostly = 30*HZ;
1877
1878 /*
1879  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1880  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1881  * a zone.
1882  */
1883 #define ZONE_RECLAIM_PRIORITY 4
1884
1885 /*
1886  * Try to free up some pages from this zone through reclaim.
1887  */
1888 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1889 {
1890         /* Minimum pages needed in order to stay on node */
1891         const unsigned long nr_pages = 1 << order;
1892         struct task_struct *p = current;
1893         struct reclaim_state reclaim_state;
1894         int priority;
1895         unsigned long nr_reclaimed = 0;
1896         struct scan_control sc = {
1897                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1898                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1899                 .nr_mapped = read_page_state(nr_mapped),
1900                 .swap_cluster_max = max_t(unsigned long, nr_pages,
1901                                         SWAP_CLUSTER_MAX),
1902                 .gfp_mask = gfp_mask,
1903         };
1904
1905         disable_swap_token();
1906         cond_resched();
1907         /*
1908          * We need to be able to allocate from the reserves for RECLAIM_SWAP
1909          * and we also need to be able to write out pages for RECLAIM_WRITE
1910          * and RECLAIM_SWAP.
1911          */
1912         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1913         reclaim_state.reclaimed_slab = 0;
1914         p->reclaim_state = &reclaim_state;
1915
1916         /*
1917          * Free memory by calling shrink zone with increasing priorities
1918          * until we have enough memory freed.
1919          */
1920         priority = ZONE_RECLAIM_PRIORITY;
1921         do {
1922                 nr_reclaimed += shrink_zone(priority, zone, &sc);
1923                 priority--;
1924         } while (priority >= 0 && nr_reclaimed < nr_pages);
1925
1926         if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1927                 /*
1928                  * shrink_slab() does not currently allow us to determine how
1929                  * many pages were freed in this zone. So we just shake the slab
1930                  * a bit and then go off node for this particular allocation
1931                  * despite possibly having freed enough memory to allocate in
1932                  * this zone.  If we freed local memory then the next
1933                  * allocations will be local again.
1934                  *
1935                  * shrink_slab will free memory on all zones and may take
1936                  * a long time.
1937                  */
1938                 shrink_slab(sc.nr_scanned, gfp_mask, order);
1939         }
1940
1941         p->reclaim_state = NULL;
1942         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1943
1944         if (nr_reclaimed == 0) {
1945                 /*
1946                  * We were unable to reclaim enough pages to stay on node.  We
1947                  * now allow off node accesses for a certain time period before
1948                  * trying again to reclaim pages from the local zone.
1949                  */
1950                 zone->last_unsuccessful_zone_reclaim = jiffies;
1951         }
1952
1953         return nr_reclaimed >= nr_pages;
1954 }
1955
1956 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1957 {
1958         cpumask_t mask;
1959         int node_id;
1960
1961         /*
1962          * Do not reclaim if there was a recent unsuccessful attempt at zone
1963          * reclaim.  In that case we let allocations go off node for the
1964          * zone_reclaim_interval.  Otherwise we would scan for each off-node
1965          * page allocation.
1966          */
1967         if (time_before(jiffies,
1968                 zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1969                         return 0;
1970
1971         /*
1972          * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1973          * not have reclaimable pages and if we should not delay the allocation
1974          * then do not scan.
1975          */
1976         if (!(gfp_mask & __GFP_WAIT) ||
1977                 zone->all_unreclaimable ||
1978                 atomic_read(&zone->reclaim_in_progress) > 0 ||
1979                 (current->flags & PF_MEMALLOC))
1980                         return 0;
1981
1982         /*
1983          * Only run zone reclaim on the local zone or on zones that do not
1984          * have associated processors. This will favor the local processor
1985          * over remote processors and spread off node memory allocations
1986          * as wide as possible.
1987          */
1988         node_id = zone->zone_pgdat->node_id;
1989         mask = node_to_cpumask(node_id);
1990         if (!cpus_empty(mask) && node_id != numa_node_id())
1991                 return 0;
1992         return __zone_reclaim(zone, gfp_mask, order);
1993 }
1994 #endif