]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - mm/memory.c
[PATCH] mm: init_mm without ptlock
[linux-2.6-omap-h63xx.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93         pgd_ERROR(*pgd);
94         pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99         pud_ERROR(*pud);
100         pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105         pmd_ERROR(*pmd);
106         pmd_clear(pmd);
107 }
108
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115         struct page *page = pmd_page(*pmd);
116         pmd_clear(pmd);
117         pte_free_tlb(tlb, page);
118         dec_page_state(nr_page_table_pages);
119         tlb->mm->nr_ptes--;
120 }
121
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123                                 unsigned long addr, unsigned long end,
124                                 unsigned long floor, unsigned long ceiling)
125 {
126         pmd_t *pmd;
127         unsigned long next;
128         unsigned long start;
129
130         start = addr;
131         pmd = pmd_offset(pud, addr);
132         do {
133                 next = pmd_addr_end(addr, end);
134                 if (pmd_none_or_clear_bad(pmd))
135                         continue;
136                 free_pte_range(tlb, pmd);
137         } while (pmd++, addr = next, addr != end);
138
139         start &= PUD_MASK;
140         if (start < floor)
141                 return;
142         if (ceiling) {
143                 ceiling &= PUD_MASK;
144                 if (!ceiling)
145                         return;
146         }
147         if (end - 1 > ceiling - 1)
148                 return;
149
150         pmd = pmd_offset(pud, start);
151         pud_clear(pud);
152         pmd_free_tlb(tlb, pmd);
153 }
154
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156                                 unsigned long addr, unsigned long end,
157                                 unsigned long floor, unsigned long ceiling)
158 {
159         pud_t *pud;
160         unsigned long next;
161         unsigned long start;
162
163         start = addr;
164         pud = pud_offset(pgd, addr);
165         do {
166                 next = pud_addr_end(addr, end);
167                 if (pud_none_or_clear_bad(pud))
168                         continue;
169                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170         } while (pud++, addr = next, addr != end);
171
172         start &= PGDIR_MASK;
173         if (start < floor)
174                 return;
175         if (ceiling) {
176                 ceiling &= PGDIR_MASK;
177                 if (!ceiling)
178                         return;
179         }
180         if (end - 1 > ceiling - 1)
181                 return;
182
183         pud = pud_offset(pgd, start);
184         pgd_clear(pgd);
185         pud_free_tlb(tlb, pud);
186 }
187
188 /*
189  * This function frees user-level page tables of a process.
190  *
191  * Must be called with pagetable lock held.
192  */
193 void free_pgd_range(struct mmu_gather **tlb,
194                         unsigned long addr, unsigned long end,
195                         unsigned long floor, unsigned long ceiling)
196 {
197         pgd_t *pgd;
198         unsigned long next;
199         unsigned long start;
200
201         /*
202          * The next few lines have given us lots of grief...
203          *
204          * Why are we testing PMD* at this top level?  Because often
205          * there will be no work to do at all, and we'd prefer not to
206          * go all the way down to the bottom just to discover that.
207          *
208          * Why all these "- 1"s?  Because 0 represents both the bottom
209          * of the address space and the top of it (using -1 for the
210          * top wouldn't help much: the masks would do the wrong thing).
211          * The rule is that addr 0 and floor 0 refer to the bottom of
212          * the address space, but end 0 and ceiling 0 refer to the top
213          * Comparisons need to use "end - 1" and "ceiling - 1" (though
214          * that end 0 case should be mythical).
215          *
216          * Wherever addr is brought up or ceiling brought down, we must
217          * be careful to reject "the opposite 0" before it confuses the
218          * subsequent tests.  But what about where end is brought down
219          * by PMD_SIZE below? no, end can't go down to 0 there.
220          *
221          * Whereas we round start (addr) and ceiling down, by different
222          * masks at different levels, in order to test whether a table
223          * now has no other vmas using it, so can be freed, we don't
224          * bother to round floor or end up - the tests don't need that.
225          */
226
227         addr &= PMD_MASK;
228         if (addr < floor) {
229                 addr += PMD_SIZE;
230                 if (!addr)
231                         return;
232         }
233         if (ceiling) {
234                 ceiling &= PMD_MASK;
235                 if (!ceiling)
236                         return;
237         }
238         if (end - 1 > ceiling - 1)
239                 end -= PMD_SIZE;
240         if (addr > end - 1)
241                 return;
242
243         start = addr;
244         pgd = pgd_offset((*tlb)->mm, addr);
245         do {
246                 next = pgd_addr_end(addr, end);
247                 if (pgd_none_or_clear_bad(pgd))
248                         continue;
249                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250         } while (pgd++, addr = next, addr != end);
251
252         if (!(*tlb)->fullmm)
253                 flush_tlb_pgtables((*tlb)->mm, start, end);
254 }
255
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257                 unsigned long floor, unsigned long ceiling)
258 {
259         while (vma) {
260                 struct vm_area_struct *next = vma->vm_next;
261                 unsigned long addr = vma->vm_start;
262
263                 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265                                 floor, next? next->vm_start: ceiling);
266                 } else {
267                         /*
268                          * Optimization: gather nearby vmas into one call down
269                          */
270                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271                           && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272                                                         HPAGE_SIZE)) {
273                                 vma = next;
274                                 next = vma->vm_next;
275                         }
276                         free_pgd_range(tlb, addr, vma->vm_end,
277                                 floor, next? next->vm_start: ceiling);
278                 }
279                 vma = next;
280         }
281 }
282
283 pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284                                 unsigned long address)
285 {
286         if (!pmd_present(*pmd)) {
287                 struct page *new;
288
289                 spin_unlock(&mm->page_table_lock);
290                 new = pte_alloc_one(mm, address);
291                 spin_lock(&mm->page_table_lock);
292                 if (!new)
293                         return NULL;
294                 /*
295                  * Because we dropped the lock, we should re-check the
296                  * entry, as somebody else could have populated it..
297                  */
298                 if (pmd_present(*pmd)) {
299                         pte_free(new);
300                         goto out;
301                 }
302                 mm->nr_ptes++;
303                 inc_page_state(nr_page_table_pages);
304                 pmd_populate(mm, pmd, new);
305         }
306 out:
307         return pte_offset_map(pmd, address);
308 }
309
310 pte_t fastcall * pte_alloc_kernel(pmd_t *pmd, unsigned long address)
311 {
312         if (!pmd_present(*pmd)) {
313                 pte_t *new;
314
315                 new = pte_alloc_one_kernel(&init_mm, address);
316                 if (!new)
317                         return NULL;
318
319                 spin_lock(&init_mm.page_table_lock);
320                 if (pmd_present(*pmd))
321                         pte_free_kernel(new);
322                 else
323                         pmd_populate_kernel(&init_mm, pmd, new);
324                 spin_unlock(&init_mm.page_table_lock);
325         }
326         return pte_offset_kernel(pmd, address);
327 }
328
329 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
330 {
331         if (file_rss)
332                 add_mm_counter(mm, file_rss, file_rss);
333         if (anon_rss)
334                 add_mm_counter(mm, anon_rss, anon_rss);
335 }
336
337 /*
338  * This function is called to print an error when a pte in a
339  * !VM_RESERVED region is found pointing to an invalid pfn (which
340  * is an error.
341  *
342  * The calling function must still handle the error.
343  */
344 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
345 {
346         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
347                         "vm_flags = %lx, vaddr = %lx\n",
348                 (long long)pte_val(pte),
349                 (vma->vm_mm == current->mm ? current->comm : "???"),
350                 vma->vm_flags, vaddr);
351         dump_stack();
352 }
353
354 /*
355  * copy one vm_area from one task to the other. Assumes the page tables
356  * already present in the new task to be cleared in the whole range
357  * covered by this vma.
358  *
359  * dst->page_table_lock is held on entry and exit,
360  * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
361  */
362
363 static inline void
364 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
365                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
366                 unsigned long addr, int *rss)
367 {
368         unsigned long vm_flags = vma->vm_flags;
369         pte_t pte = *src_pte;
370         struct page *page;
371         unsigned long pfn;
372
373         /* pte contains position in swap or file, so copy. */
374         if (unlikely(!pte_present(pte))) {
375                 if (!pte_file(pte)) {
376                         swap_duplicate(pte_to_swp_entry(pte));
377                         /* make sure dst_mm is on swapoff's mmlist. */
378                         if (unlikely(list_empty(&dst_mm->mmlist))) {
379                                 spin_lock(&mmlist_lock);
380                                 list_add(&dst_mm->mmlist, &src_mm->mmlist);
381                                 spin_unlock(&mmlist_lock);
382                         }
383                 }
384                 goto out_set_pte;
385         }
386
387         /* If the region is VM_RESERVED, the mapping is not
388          * mapped via rmap - duplicate the pte as is.
389          */
390         if (vm_flags & VM_RESERVED)
391                 goto out_set_pte;
392
393         pfn = pte_pfn(pte);
394         /* If the pte points outside of valid memory but
395          * the region is not VM_RESERVED, we have a problem.
396          */
397         if (unlikely(!pfn_valid(pfn))) {
398                 print_bad_pte(vma, pte, addr);
399                 goto out_set_pte; /* try to do something sane */
400         }
401
402         page = pfn_to_page(pfn);
403
404         /*
405          * If it's a COW mapping, write protect it both
406          * in the parent and the child
407          */
408         if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
409                 ptep_set_wrprotect(src_mm, addr, src_pte);
410                 pte = *src_pte;
411         }
412
413         /*
414          * If it's a shared mapping, mark it clean in
415          * the child
416          */
417         if (vm_flags & VM_SHARED)
418                 pte = pte_mkclean(pte);
419         pte = pte_mkold(pte);
420         get_page(page);
421         page_dup_rmap(page);
422         rss[!!PageAnon(page)]++;
423
424 out_set_pte:
425         set_pte_at(dst_mm, addr, dst_pte, pte);
426 }
427
428 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
429                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
430                 unsigned long addr, unsigned long end)
431 {
432         pte_t *src_pte, *dst_pte;
433         int progress = 0;
434         int rss[2];
435
436 again:
437         rss[1] = rss[0] = 0;
438         dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
439         if (!dst_pte)
440                 return -ENOMEM;
441         src_pte = pte_offset_map_nested(src_pmd, addr);
442
443         spin_lock(&src_mm->page_table_lock);
444         do {
445                 /*
446                  * We are holding two locks at this point - either of them
447                  * could generate latencies in another task on another CPU.
448                  */
449                 if (progress >= 32) {
450                         progress = 0;
451                         if (need_resched() ||
452                             need_lockbreak(&src_mm->page_table_lock) ||
453                             need_lockbreak(&dst_mm->page_table_lock))
454                                 break;
455                 }
456                 if (pte_none(*src_pte)) {
457                         progress++;
458                         continue;
459                 }
460                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
461                 progress += 8;
462         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
463         spin_unlock(&src_mm->page_table_lock);
464
465         pte_unmap_nested(src_pte - 1);
466         pte_unmap(dst_pte - 1);
467         add_mm_rss(dst_mm, rss[0], rss[1]);
468         cond_resched_lock(&dst_mm->page_table_lock);
469         if (addr != end)
470                 goto again;
471         return 0;
472 }
473
474 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
475                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
476                 unsigned long addr, unsigned long end)
477 {
478         pmd_t *src_pmd, *dst_pmd;
479         unsigned long next;
480
481         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
482         if (!dst_pmd)
483                 return -ENOMEM;
484         src_pmd = pmd_offset(src_pud, addr);
485         do {
486                 next = pmd_addr_end(addr, end);
487                 if (pmd_none_or_clear_bad(src_pmd))
488                         continue;
489                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
490                                                 vma, addr, next))
491                         return -ENOMEM;
492         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
493         return 0;
494 }
495
496 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
497                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
498                 unsigned long addr, unsigned long end)
499 {
500         pud_t *src_pud, *dst_pud;
501         unsigned long next;
502
503         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
504         if (!dst_pud)
505                 return -ENOMEM;
506         src_pud = pud_offset(src_pgd, addr);
507         do {
508                 next = pud_addr_end(addr, end);
509                 if (pud_none_or_clear_bad(src_pud))
510                         continue;
511                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
512                                                 vma, addr, next))
513                         return -ENOMEM;
514         } while (dst_pud++, src_pud++, addr = next, addr != end);
515         return 0;
516 }
517
518 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
519                 struct vm_area_struct *vma)
520 {
521         pgd_t *src_pgd, *dst_pgd;
522         unsigned long next;
523         unsigned long addr = vma->vm_start;
524         unsigned long end = vma->vm_end;
525
526         /*
527          * Don't copy ptes where a page fault will fill them correctly.
528          * Fork becomes much lighter when there are big shared or private
529          * readonly mappings. The tradeoff is that copy_page_range is more
530          * efficient than faulting.
531          */
532         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
533                 if (!vma->anon_vma)
534                         return 0;
535         }
536
537         if (is_vm_hugetlb_page(vma))
538                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
539
540         dst_pgd = pgd_offset(dst_mm, addr);
541         src_pgd = pgd_offset(src_mm, addr);
542         do {
543                 next = pgd_addr_end(addr, end);
544                 if (pgd_none_or_clear_bad(src_pgd))
545                         continue;
546                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
547                                                 vma, addr, next))
548                         return -ENOMEM;
549         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
550         return 0;
551 }
552
553 static void zap_pte_range(struct mmu_gather *tlb,
554                                 struct vm_area_struct *vma, pmd_t *pmd,
555                                 unsigned long addr, unsigned long end,
556                                 struct zap_details *details)
557 {
558         struct mm_struct *mm = tlb->mm;
559         pte_t *pte;
560         int file_rss = 0;
561         int anon_rss = 0;
562
563         pte = pte_offset_map(pmd, addr);
564         do {
565                 pte_t ptent = *pte;
566                 if (pte_none(ptent))
567                         continue;
568                 if (pte_present(ptent)) {
569                         struct page *page = NULL;
570                         if (!(vma->vm_flags & VM_RESERVED)) {
571                                 unsigned long pfn = pte_pfn(ptent);
572                                 if (unlikely(!pfn_valid(pfn)))
573                                         print_bad_pte(vma, ptent, addr);
574                                 else
575                                         page = pfn_to_page(pfn);
576                         }
577                         if (unlikely(details) && page) {
578                                 /*
579                                  * unmap_shared_mapping_pages() wants to
580                                  * invalidate cache without truncating:
581                                  * unmap shared but keep private pages.
582                                  */
583                                 if (details->check_mapping &&
584                                     details->check_mapping != page->mapping)
585                                         continue;
586                                 /*
587                                  * Each page->index must be checked when
588                                  * invalidating or truncating nonlinear.
589                                  */
590                                 if (details->nonlinear_vma &&
591                                     (page->index < details->first_index ||
592                                      page->index > details->last_index))
593                                         continue;
594                         }
595                         ptent = ptep_get_and_clear_full(mm, addr, pte,
596                                                         tlb->fullmm);
597                         tlb_remove_tlb_entry(tlb, pte, addr);
598                         if (unlikely(!page))
599                                 continue;
600                         if (unlikely(details) && details->nonlinear_vma
601                             && linear_page_index(details->nonlinear_vma,
602                                                 addr) != page->index)
603                                 set_pte_at(mm, addr, pte,
604                                            pgoff_to_pte(page->index));
605                         if (PageAnon(page))
606                                 anon_rss--;
607                         else {
608                                 if (pte_dirty(ptent))
609                                         set_page_dirty(page);
610                                 if (pte_young(ptent))
611                                         mark_page_accessed(page);
612                                 file_rss--;
613                         }
614                         page_remove_rmap(page);
615                         tlb_remove_page(tlb, page);
616                         continue;
617                 }
618                 /*
619                  * If details->check_mapping, we leave swap entries;
620                  * if details->nonlinear_vma, we leave file entries.
621                  */
622                 if (unlikely(details))
623                         continue;
624                 if (!pte_file(ptent))
625                         free_swap_and_cache(pte_to_swp_entry(ptent));
626                 pte_clear_full(mm, addr, pte, tlb->fullmm);
627         } while (pte++, addr += PAGE_SIZE, addr != end);
628
629         add_mm_rss(mm, file_rss, anon_rss);
630         pte_unmap(pte - 1);
631 }
632
633 static inline void zap_pmd_range(struct mmu_gather *tlb,
634                                 struct vm_area_struct *vma, pud_t *pud,
635                                 unsigned long addr, unsigned long end,
636                                 struct zap_details *details)
637 {
638         pmd_t *pmd;
639         unsigned long next;
640
641         pmd = pmd_offset(pud, addr);
642         do {
643                 next = pmd_addr_end(addr, end);
644                 if (pmd_none_or_clear_bad(pmd))
645                         continue;
646                 zap_pte_range(tlb, vma, pmd, addr, next, details);
647         } while (pmd++, addr = next, addr != end);
648 }
649
650 static inline void zap_pud_range(struct mmu_gather *tlb,
651                                 struct vm_area_struct *vma, pgd_t *pgd,
652                                 unsigned long addr, unsigned long end,
653                                 struct zap_details *details)
654 {
655         pud_t *pud;
656         unsigned long next;
657
658         pud = pud_offset(pgd, addr);
659         do {
660                 next = pud_addr_end(addr, end);
661                 if (pud_none_or_clear_bad(pud))
662                         continue;
663                 zap_pmd_range(tlb, vma, pud, addr, next, details);
664         } while (pud++, addr = next, addr != end);
665 }
666
667 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
668                                 unsigned long addr, unsigned long end,
669                                 struct zap_details *details)
670 {
671         pgd_t *pgd;
672         unsigned long next;
673
674         if (details && !details->check_mapping && !details->nonlinear_vma)
675                 details = NULL;
676
677         BUG_ON(addr >= end);
678         tlb_start_vma(tlb, vma);
679         pgd = pgd_offset(vma->vm_mm, addr);
680         do {
681                 next = pgd_addr_end(addr, end);
682                 if (pgd_none_or_clear_bad(pgd))
683                         continue;
684                 zap_pud_range(tlb, vma, pgd, addr, next, details);
685         } while (pgd++, addr = next, addr != end);
686         tlb_end_vma(tlb, vma);
687 }
688
689 #ifdef CONFIG_PREEMPT
690 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
691 #else
692 /* No preempt: go for improved straight-line efficiency */
693 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
694 #endif
695
696 /**
697  * unmap_vmas - unmap a range of memory covered by a list of vma's
698  * @tlbp: address of the caller's struct mmu_gather
699  * @mm: the controlling mm_struct
700  * @vma: the starting vma
701  * @start_addr: virtual address at which to start unmapping
702  * @end_addr: virtual address at which to end unmapping
703  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
704  * @details: details of nonlinear truncation or shared cache invalidation
705  *
706  * Returns the end address of the unmapping (restart addr if interrupted).
707  *
708  * Unmap all pages in the vma list.  Called under page_table_lock.
709  *
710  * We aim to not hold page_table_lock for too long (for scheduling latency
711  * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
712  * return the ending mmu_gather to the caller.
713  *
714  * Only addresses between `start' and `end' will be unmapped.
715  *
716  * The VMA list must be sorted in ascending virtual address order.
717  *
718  * unmap_vmas() assumes that the caller will flush the whole unmapped address
719  * range after unmap_vmas() returns.  So the only responsibility here is to
720  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
721  * drops the lock and schedules.
722  */
723 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
724                 struct vm_area_struct *vma, unsigned long start_addr,
725                 unsigned long end_addr, unsigned long *nr_accounted,
726                 struct zap_details *details)
727 {
728         unsigned long zap_bytes = ZAP_BLOCK_SIZE;
729         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
730         int tlb_start_valid = 0;
731         unsigned long start = start_addr;
732         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
733         int fullmm = (*tlbp)->fullmm;
734
735         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
736                 unsigned long end;
737
738                 start = max(vma->vm_start, start_addr);
739                 if (start >= vma->vm_end)
740                         continue;
741                 end = min(vma->vm_end, end_addr);
742                 if (end <= vma->vm_start)
743                         continue;
744
745                 if (vma->vm_flags & VM_ACCOUNT)
746                         *nr_accounted += (end - start) >> PAGE_SHIFT;
747
748                 while (start != end) {
749                         unsigned long block;
750
751                         if (!tlb_start_valid) {
752                                 tlb_start = start;
753                                 tlb_start_valid = 1;
754                         }
755
756                         if (is_vm_hugetlb_page(vma)) {
757                                 block = end - start;
758                                 unmap_hugepage_range(vma, start, end);
759                         } else {
760                                 block = min(zap_bytes, end - start);
761                                 unmap_page_range(*tlbp, vma, start,
762                                                 start + block, details);
763                         }
764
765                         start += block;
766                         zap_bytes -= block;
767                         if ((long)zap_bytes > 0)
768                                 continue;
769
770                         tlb_finish_mmu(*tlbp, tlb_start, start);
771
772                         if (need_resched() ||
773                                 need_lockbreak(&mm->page_table_lock) ||
774                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
775                                 if (i_mmap_lock) {
776                                         /* must reset count of rss freed */
777                                         *tlbp = tlb_gather_mmu(mm, fullmm);
778                                         goto out;
779                                 }
780                                 spin_unlock(&mm->page_table_lock);
781                                 cond_resched();
782                                 spin_lock(&mm->page_table_lock);
783                         }
784
785                         *tlbp = tlb_gather_mmu(mm, fullmm);
786                         tlb_start_valid = 0;
787                         zap_bytes = ZAP_BLOCK_SIZE;
788                 }
789         }
790 out:
791         return start;   /* which is now the end (or restart) address */
792 }
793
794 /**
795  * zap_page_range - remove user pages in a given range
796  * @vma: vm_area_struct holding the applicable pages
797  * @address: starting address of pages to zap
798  * @size: number of bytes to zap
799  * @details: details of nonlinear truncation or shared cache invalidation
800  */
801 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
802                 unsigned long size, struct zap_details *details)
803 {
804         struct mm_struct *mm = vma->vm_mm;
805         struct mmu_gather *tlb;
806         unsigned long end = address + size;
807         unsigned long nr_accounted = 0;
808
809         if (is_vm_hugetlb_page(vma)) {
810                 zap_hugepage_range(vma, address, size);
811                 return end;
812         }
813
814         lru_add_drain();
815         spin_lock(&mm->page_table_lock);
816         tlb = tlb_gather_mmu(mm, 0);
817         update_hiwater_rss(mm);
818         end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
819         tlb_finish_mmu(tlb, address, end);
820         spin_unlock(&mm->page_table_lock);
821         return end;
822 }
823
824 /*
825  * Do a quick page-table lookup for a single page.
826  * mm->page_table_lock must be held.
827  */
828 static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
829                         int read, int write, int accessed)
830 {
831         pgd_t *pgd;
832         pud_t *pud;
833         pmd_t *pmd;
834         pte_t *ptep, pte;
835         unsigned long pfn;
836         struct page *page;
837
838         page = follow_huge_addr(mm, address, write);
839         if (! IS_ERR(page))
840                 return page;
841
842         pgd = pgd_offset(mm, address);
843         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
844                 goto out;
845
846         pud = pud_offset(pgd, address);
847         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
848                 goto out;
849         
850         pmd = pmd_offset(pud, address);
851         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
852                 goto out;
853         if (pmd_huge(*pmd))
854                 return follow_huge_pmd(mm, address, pmd, write);
855
856         ptep = pte_offset_map(pmd, address);
857         if (!ptep)
858                 goto out;
859
860         pte = *ptep;
861         pte_unmap(ptep);
862         if (pte_present(pte)) {
863                 if (write && !pte_write(pte))
864                         goto out;
865                 if (read && !pte_read(pte))
866                         goto out;
867                 pfn = pte_pfn(pte);
868                 if (pfn_valid(pfn)) {
869                         page = pfn_to_page(pfn);
870                         if (accessed) {
871                                 if (write && !pte_dirty(pte) &&!PageDirty(page))
872                                         set_page_dirty(page);
873                                 mark_page_accessed(page);
874                         }
875                         return page;
876                 }
877         }
878
879 out:
880         return NULL;
881 }
882
883 inline struct page *
884 follow_page(struct mm_struct *mm, unsigned long address, int write)
885 {
886         return __follow_page(mm, address, 0, write, 1);
887 }
888
889 /*
890  * check_user_page_readable() can be called frm niterrupt context by oprofile,
891  * so we need to avoid taking any non-irq-safe locks
892  */
893 int check_user_page_readable(struct mm_struct *mm, unsigned long address)
894 {
895         return __follow_page(mm, address, 1, 0, 0) != NULL;
896 }
897 EXPORT_SYMBOL(check_user_page_readable);
898
899 static inline int
900 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
901                          unsigned long address)
902 {
903         pgd_t *pgd;
904         pud_t *pud;
905         pmd_t *pmd;
906
907         /* Check if the vma is for an anonymous mapping. */
908         if (vma->vm_ops && vma->vm_ops->nopage)
909                 return 0;
910
911         /* Check if page directory entry exists. */
912         pgd = pgd_offset(mm, address);
913         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
914                 return 1;
915
916         pud = pud_offset(pgd, address);
917         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
918                 return 1;
919
920         /* Check if page middle directory entry exists. */
921         pmd = pmd_offset(pud, address);
922         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
923                 return 1;
924
925         /* There is a pte slot for 'address' in 'mm'. */
926         return 0;
927 }
928
929 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
930                 unsigned long start, int len, int write, int force,
931                 struct page **pages, struct vm_area_struct **vmas)
932 {
933         int i;
934         unsigned int flags;
935
936         /* 
937          * Require read or write permissions.
938          * If 'force' is set, we only require the "MAY" flags.
939          */
940         flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
941         flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
942         i = 0;
943
944         do {
945                 struct vm_area_struct * vma;
946
947                 vma = find_extend_vma(mm, start);
948                 if (!vma && in_gate_area(tsk, start)) {
949                         unsigned long pg = start & PAGE_MASK;
950                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
951                         pgd_t *pgd;
952                         pud_t *pud;
953                         pmd_t *pmd;
954                         pte_t *pte;
955                         if (write) /* user gate pages are read-only */
956                                 return i ? : -EFAULT;
957                         if (pg > TASK_SIZE)
958                                 pgd = pgd_offset_k(pg);
959                         else
960                                 pgd = pgd_offset_gate(mm, pg);
961                         BUG_ON(pgd_none(*pgd));
962                         pud = pud_offset(pgd, pg);
963                         BUG_ON(pud_none(*pud));
964                         pmd = pmd_offset(pud, pg);
965                         if (pmd_none(*pmd))
966                                 return i ? : -EFAULT;
967                         pte = pte_offset_map(pmd, pg);
968                         if (pte_none(*pte)) {
969                                 pte_unmap(pte);
970                                 return i ? : -EFAULT;
971                         }
972                         if (pages) {
973                                 pages[i] = pte_page(*pte);
974                                 get_page(pages[i]);
975                         }
976                         pte_unmap(pte);
977                         if (vmas)
978                                 vmas[i] = gate_vma;
979                         i++;
980                         start += PAGE_SIZE;
981                         len--;
982                         continue;
983                 }
984
985                 if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
986                                 || !(flags & vma->vm_flags))
987                         return i ? : -EFAULT;
988
989                 if (is_vm_hugetlb_page(vma)) {
990                         i = follow_hugetlb_page(mm, vma, pages, vmas,
991                                                 &start, &len, i);
992                         continue;
993                 }
994                 spin_lock(&mm->page_table_lock);
995                 do {
996                         int write_access = write;
997                         struct page *page;
998
999                         cond_resched_lock(&mm->page_table_lock);
1000                         while (!(page = follow_page(mm, start, write_access))) {
1001                                 int ret;
1002
1003                                 /*
1004                                  * Shortcut for anonymous pages. We don't want
1005                                  * to force the creation of pages tables for
1006                                  * insanely big anonymously mapped areas that
1007                                  * nobody touched so far. This is important
1008                                  * for doing a core dump for these mappings.
1009                                  */
1010                                 if (!write && untouched_anonymous_page(mm,vma,start)) {
1011                                         page = ZERO_PAGE(start);
1012                                         break;
1013                                 }
1014                                 spin_unlock(&mm->page_table_lock);
1015                                 ret = __handle_mm_fault(mm, vma, start, write_access);
1016
1017                                 /*
1018                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
1019                                  * broken COW when necessary, even if maybe_mkwrite
1020                                  * decided not to set pte_write. We can thus safely do
1021                                  * subsequent page lookups as if they were reads.
1022                                  */
1023                                 if (ret & VM_FAULT_WRITE)
1024                                         write_access = 0;
1025                                 
1026                                 switch (ret & ~VM_FAULT_WRITE) {
1027                                 case VM_FAULT_MINOR:
1028                                         tsk->min_flt++;
1029                                         break;
1030                                 case VM_FAULT_MAJOR:
1031                                         tsk->maj_flt++;
1032                                         break;
1033                                 case VM_FAULT_SIGBUS:
1034                                         return i ? i : -EFAULT;
1035                                 case VM_FAULT_OOM:
1036                                         return i ? i : -ENOMEM;
1037                                 default:
1038                                         BUG();
1039                                 }
1040                                 spin_lock(&mm->page_table_lock);
1041                         }
1042                         if (pages) {
1043                                 pages[i] = page;
1044                                 flush_dcache_page(page);
1045                                 page_cache_get(page);
1046                         }
1047                         if (vmas)
1048                                 vmas[i] = vma;
1049                         i++;
1050                         start += PAGE_SIZE;
1051                         len--;
1052                 } while (len && start < vma->vm_end);
1053                 spin_unlock(&mm->page_table_lock);
1054         } while (len);
1055         return i;
1056 }
1057 EXPORT_SYMBOL(get_user_pages);
1058
1059 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1060                         unsigned long addr, unsigned long end, pgprot_t prot)
1061 {
1062         pte_t *pte;
1063
1064         pte = pte_alloc_map(mm, pmd, addr);
1065         if (!pte)
1066                 return -ENOMEM;
1067         do {
1068                 struct page *page = ZERO_PAGE(addr);
1069                 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1070                 page_cache_get(page);
1071                 page_add_file_rmap(page);
1072                 inc_mm_counter(mm, file_rss);
1073                 BUG_ON(!pte_none(*pte));
1074                 set_pte_at(mm, addr, pte, zero_pte);
1075         } while (pte++, addr += PAGE_SIZE, addr != end);
1076         pte_unmap(pte - 1);
1077         return 0;
1078 }
1079
1080 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1081                         unsigned long addr, unsigned long end, pgprot_t prot)
1082 {
1083         pmd_t *pmd;
1084         unsigned long next;
1085
1086         pmd = pmd_alloc(mm, pud, addr);
1087         if (!pmd)
1088                 return -ENOMEM;
1089         do {
1090                 next = pmd_addr_end(addr, end);
1091                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1092                         return -ENOMEM;
1093         } while (pmd++, addr = next, addr != end);
1094         return 0;
1095 }
1096
1097 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1098                         unsigned long addr, unsigned long end, pgprot_t prot)
1099 {
1100         pud_t *pud;
1101         unsigned long next;
1102
1103         pud = pud_alloc(mm, pgd, addr);
1104         if (!pud)
1105                 return -ENOMEM;
1106         do {
1107                 next = pud_addr_end(addr, end);
1108                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1109                         return -ENOMEM;
1110         } while (pud++, addr = next, addr != end);
1111         return 0;
1112 }
1113
1114 int zeromap_page_range(struct vm_area_struct *vma,
1115                         unsigned long addr, unsigned long size, pgprot_t prot)
1116 {
1117         pgd_t *pgd;
1118         unsigned long next;
1119         unsigned long end = addr + size;
1120         struct mm_struct *mm = vma->vm_mm;
1121         int err;
1122
1123         BUG_ON(addr >= end);
1124         pgd = pgd_offset(mm, addr);
1125         flush_cache_range(vma, addr, end);
1126         spin_lock(&mm->page_table_lock);
1127         do {
1128                 next = pgd_addr_end(addr, end);
1129                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1130                 if (err)
1131                         break;
1132         } while (pgd++, addr = next, addr != end);
1133         spin_unlock(&mm->page_table_lock);
1134         return err;
1135 }
1136
1137 /*
1138  * maps a range of physical memory into the requested pages. the old
1139  * mappings are removed. any references to nonexistent pages results
1140  * in null mappings (currently treated as "copy-on-access")
1141  */
1142 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1143                         unsigned long addr, unsigned long end,
1144                         unsigned long pfn, pgprot_t prot)
1145 {
1146         pte_t *pte;
1147
1148         pte = pte_alloc_map(mm, pmd, addr);
1149         if (!pte)
1150                 return -ENOMEM;
1151         do {
1152                 BUG_ON(!pte_none(*pte));
1153                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1154                 pfn++;
1155         } while (pte++, addr += PAGE_SIZE, addr != end);
1156         pte_unmap(pte - 1);
1157         return 0;
1158 }
1159
1160 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1161                         unsigned long addr, unsigned long end,
1162                         unsigned long pfn, pgprot_t prot)
1163 {
1164         pmd_t *pmd;
1165         unsigned long next;
1166
1167         pfn -= addr >> PAGE_SHIFT;
1168         pmd = pmd_alloc(mm, pud, addr);
1169         if (!pmd)
1170                 return -ENOMEM;
1171         do {
1172                 next = pmd_addr_end(addr, end);
1173                 if (remap_pte_range(mm, pmd, addr, next,
1174                                 pfn + (addr >> PAGE_SHIFT), prot))
1175                         return -ENOMEM;
1176         } while (pmd++, addr = next, addr != end);
1177         return 0;
1178 }
1179
1180 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1181                         unsigned long addr, unsigned long end,
1182                         unsigned long pfn, pgprot_t prot)
1183 {
1184         pud_t *pud;
1185         unsigned long next;
1186
1187         pfn -= addr >> PAGE_SHIFT;
1188         pud = pud_alloc(mm, pgd, addr);
1189         if (!pud)
1190                 return -ENOMEM;
1191         do {
1192                 next = pud_addr_end(addr, end);
1193                 if (remap_pmd_range(mm, pud, addr, next,
1194                                 pfn + (addr >> PAGE_SHIFT), prot))
1195                         return -ENOMEM;
1196         } while (pud++, addr = next, addr != end);
1197         return 0;
1198 }
1199
1200 /*  Note: this is only safe if the mm semaphore is held when called. */
1201 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1202                     unsigned long pfn, unsigned long size, pgprot_t prot)
1203 {
1204         pgd_t *pgd;
1205         unsigned long next;
1206         unsigned long end = addr + PAGE_ALIGN(size);
1207         struct mm_struct *mm = vma->vm_mm;
1208         int err;
1209
1210         /*
1211          * Physically remapped pages are special. Tell the
1212          * rest of the world about it:
1213          *   VM_IO tells people not to look at these pages
1214          *      (accesses can have side effects).
1215          *   VM_RESERVED tells the core MM not to "manage" these pages
1216          *      (e.g. refcount, mapcount, try to swap them out).
1217          */
1218         vma->vm_flags |= VM_IO | VM_RESERVED;
1219
1220         BUG_ON(addr >= end);
1221         pfn -= addr >> PAGE_SHIFT;
1222         pgd = pgd_offset(mm, addr);
1223         flush_cache_range(vma, addr, end);
1224         spin_lock(&mm->page_table_lock);
1225         do {
1226                 next = pgd_addr_end(addr, end);
1227                 err = remap_pud_range(mm, pgd, addr, next,
1228                                 pfn + (addr >> PAGE_SHIFT), prot);
1229                 if (err)
1230                         break;
1231         } while (pgd++, addr = next, addr != end);
1232         spin_unlock(&mm->page_table_lock);
1233         return err;
1234 }
1235 EXPORT_SYMBOL(remap_pfn_range);
1236
1237 /*
1238  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1239  * servicing faults for write access.  In the normal case, do always want
1240  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1241  * that do not have writing enabled, when used by access_process_vm.
1242  */
1243 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1244 {
1245         if (likely(vma->vm_flags & VM_WRITE))
1246                 pte = pte_mkwrite(pte);
1247         return pte;
1248 }
1249
1250 /*
1251  * This routine handles present pages, when users try to write
1252  * to a shared page. It is done by copying the page to a new address
1253  * and decrementing the shared-page counter for the old page.
1254  *
1255  * Note that this routine assumes that the protection checks have been
1256  * done by the caller (the low-level page fault routine in most cases).
1257  * Thus we can safely just mark it writable once we've done any necessary
1258  * COW.
1259  *
1260  * We also mark the page dirty at this point even though the page will
1261  * change only once the write actually happens. This avoids a few races,
1262  * and potentially makes it more efficient.
1263  *
1264  * We hold the mm semaphore and the page_table_lock on entry and exit
1265  * with the page_table_lock released.
1266  */
1267 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1268                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1269                 pte_t orig_pte)
1270 {
1271         struct page *old_page, *new_page;
1272         unsigned long pfn = pte_pfn(orig_pte);
1273         pte_t entry;
1274         int ret = VM_FAULT_MINOR;
1275
1276         BUG_ON(vma->vm_flags & VM_RESERVED);
1277
1278         if (unlikely(!pfn_valid(pfn))) {
1279                 /*
1280                  * Page table corrupted: show pte and kill process.
1281                  */
1282                 print_bad_pte(vma, orig_pte, address);
1283                 ret = VM_FAULT_OOM;
1284                 goto unlock;
1285         }
1286         old_page = pfn_to_page(pfn);
1287
1288         if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1289                 int reuse = can_share_swap_page(old_page);
1290                 unlock_page(old_page);
1291                 if (reuse) {
1292                         flush_cache_page(vma, address, pfn);
1293                         entry = pte_mkyoung(orig_pte);
1294                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1295                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1296                         update_mmu_cache(vma, address, entry);
1297                         lazy_mmu_prot_update(entry);
1298                         ret |= VM_FAULT_WRITE;
1299                         goto unlock;
1300                 }
1301         }
1302
1303         /*
1304          * Ok, we need to copy. Oh, well..
1305          */
1306         page_cache_get(old_page);
1307         pte_unmap(page_table);
1308         spin_unlock(&mm->page_table_lock);
1309
1310         if (unlikely(anon_vma_prepare(vma)))
1311                 goto oom;
1312         if (old_page == ZERO_PAGE(address)) {
1313                 new_page = alloc_zeroed_user_highpage(vma, address);
1314                 if (!new_page)
1315                         goto oom;
1316         } else {
1317                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1318                 if (!new_page)
1319                         goto oom;
1320                 copy_user_highpage(new_page, old_page, address);
1321         }
1322
1323         /*
1324          * Re-check the pte - we dropped the lock
1325          */
1326         spin_lock(&mm->page_table_lock);
1327         page_table = pte_offset_map(pmd, address);
1328         if (likely(pte_same(*page_table, orig_pte))) {
1329                 page_remove_rmap(old_page);
1330                 if (!PageAnon(old_page)) {
1331                         inc_mm_counter(mm, anon_rss);
1332                         dec_mm_counter(mm, file_rss);
1333                 }
1334                 flush_cache_page(vma, address, pfn);
1335                 entry = mk_pte(new_page, vma->vm_page_prot);
1336                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1337                 ptep_establish(vma, address, page_table, entry);
1338                 update_mmu_cache(vma, address, entry);
1339                 lazy_mmu_prot_update(entry);
1340
1341                 lru_cache_add_active(new_page);
1342                 page_add_anon_rmap(new_page, vma, address);
1343
1344                 /* Free the old page.. */
1345                 new_page = old_page;
1346                 ret |= VM_FAULT_WRITE;
1347         }
1348         page_cache_release(new_page);
1349         page_cache_release(old_page);
1350 unlock:
1351         pte_unmap(page_table);
1352         spin_unlock(&mm->page_table_lock);
1353         return ret;
1354 oom:
1355         page_cache_release(old_page);
1356         return VM_FAULT_OOM;
1357 }
1358
1359 /*
1360  * Helper functions for unmap_mapping_range().
1361  *
1362  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1363  *
1364  * We have to restart searching the prio_tree whenever we drop the lock,
1365  * since the iterator is only valid while the lock is held, and anyway
1366  * a later vma might be split and reinserted earlier while lock dropped.
1367  *
1368  * The list of nonlinear vmas could be handled more efficiently, using
1369  * a placeholder, but handle it in the same way until a need is shown.
1370  * It is important to search the prio_tree before nonlinear list: a vma
1371  * may become nonlinear and be shifted from prio_tree to nonlinear list
1372  * while the lock is dropped; but never shifted from list to prio_tree.
1373  *
1374  * In order to make forward progress despite restarting the search,
1375  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1376  * quickly skip it next time around.  Since the prio_tree search only
1377  * shows us those vmas affected by unmapping the range in question, we
1378  * can't efficiently keep all vmas in step with mapping->truncate_count:
1379  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1380  * mapping->truncate_count and vma->vm_truncate_count are protected by
1381  * i_mmap_lock.
1382  *
1383  * In order to make forward progress despite repeatedly restarting some
1384  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1385  * and restart from that address when we reach that vma again.  It might
1386  * have been split or merged, shrunk or extended, but never shifted: so
1387  * restart_addr remains valid so long as it remains in the vma's range.
1388  * unmap_mapping_range forces truncate_count to leap over page-aligned
1389  * values so we can save vma's restart_addr in its truncate_count field.
1390  */
1391 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1392
1393 static void reset_vma_truncate_counts(struct address_space *mapping)
1394 {
1395         struct vm_area_struct *vma;
1396         struct prio_tree_iter iter;
1397
1398         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1399                 vma->vm_truncate_count = 0;
1400         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1401                 vma->vm_truncate_count = 0;
1402 }
1403
1404 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1405                 unsigned long start_addr, unsigned long end_addr,
1406                 struct zap_details *details)
1407 {
1408         unsigned long restart_addr;
1409         int need_break;
1410
1411 again:
1412         restart_addr = vma->vm_truncate_count;
1413         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1414                 start_addr = restart_addr;
1415                 if (start_addr >= end_addr) {
1416                         /* Top of vma has been split off since last time */
1417                         vma->vm_truncate_count = details->truncate_count;
1418                         return 0;
1419                 }
1420         }
1421
1422         restart_addr = zap_page_range(vma, start_addr,
1423                                         end_addr - start_addr, details);
1424
1425         /*
1426          * We cannot rely on the break test in unmap_vmas:
1427          * on the one hand, we don't want to restart our loop
1428          * just because that broke out for the page_table_lock;
1429          * on the other hand, it does no test when vma is small.
1430          */
1431         need_break = need_resched() ||
1432                         need_lockbreak(details->i_mmap_lock);
1433
1434         if (restart_addr >= end_addr) {
1435                 /* We have now completed this vma: mark it so */
1436                 vma->vm_truncate_count = details->truncate_count;
1437                 if (!need_break)
1438                         return 0;
1439         } else {
1440                 /* Note restart_addr in vma's truncate_count field */
1441                 vma->vm_truncate_count = restart_addr;
1442                 if (!need_break)
1443                         goto again;
1444         }
1445
1446         spin_unlock(details->i_mmap_lock);
1447         cond_resched();
1448         spin_lock(details->i_mmap_lock);
1449         return -EINTR;
1450 }
1451
1452 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1453                                             struct zap_details *details)
1454 {
1455         struct vm_area_struct *vma;
1456         struct prio_tree_iter iter;
1457         pgoff_t vba, vea, zba, zea;
1458
1459 restart:
1460         vma_prio_tree_foreach(vma, &iter, root,
1461                         details->first_index, details->last_index) {
1462                 /* Skip quickly over those we have already dealt with */
1463                 if (vma->vm_truncate_count == details->truncate_count)
1464                         continue;
1465
1466                 vba = vma->vm_pgoff;
1467                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1468                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1469                 zba = details->first_index;
1470                 if (zba < vba)
1471                         zba = vba;
1472                 zea = details->last_index;
1473                 if (zea > vea)
1474                         zea = vea;
1475
1476                 if (unmap_mapping_range_vma(vma,
1477                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1478                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1479                                 details) < 0)
1480                         goto restart;
1481         }
1482 }
1483
1484 static inline void unmap_mapping_range_list(struct list_head *head,
1485                                             struct zap_details *details)
1486 {
1487         struct vm_area_struct *vma;
1488
1489         /*
1490          * In nonlinear VMAs there is no correspondence between virtual address
1491          * offset and file offset.  So we must perform an exhaustive search
1492          * across *all* the pages in each nonlinear VMA, not just the pages
1493          * whose virtual address lies outside the file truncation point.
1494          */
1495 restart:
1496         list_for_each_entry(vma, head, shared.vm_set.list) {
1497                 /* Skip quickly over those we have already dealt with */
1498                 if (vma->vm_truncate_count == details->truncate_count)
1499                         continue;
1500                 details->nonlinear_vma = vma;
1501                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1502                                         vma->vm_end, details) < 0)
1503                         goto restart;
1504         }
1505 }
1506
1507 /**
1508  * unmap_mapping_range - unmap the portion of all mmaps
1509  * in the specified address_space corresponding to the specified
1510  * page range in the underlying file.
1511  * @mapping: the address space containing mmaps to be unmapped.
1512  * @holebegin: byte in first page to unmap, relative to the start of
1513  * the underlying file.  This will be rounded down to a PAGE_SIZE
1514  * boundary.  Note that this is different from vmtruncate(), which
1515  * must keep the partial page.  In contrast, we must get rid of
1516  * partial pages.
1517  * @holelen: size of prospective hole in bytes.  This will be rounded
1518  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1519  * end of the file.
1520  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1521  * but 0 when invalidating pagecache, don't throw away private data.
1522  */
1523 void unmap_mapping_range(struct address_space *mapping,
1524                 loff_t const holebegin, loff_t const holelen, int even_cows)
1525 {
1526         struct zap_details details;
1527         pgoff_t hba = holebegin >> PAGE_SHIFT;
1528         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1529
1530         /* Check for overflow. */
1531         if (sizeof(holelen) > sizeof(hlen)) {
1532                 long long holeend =
1533                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1534                 if (holeend & ~(long long)ULONG_MAX)
1535                         hlen = ULONG_MAX - hba + 1;
1536         }
1537
1538         details.check_mapping = even_cows? NULL: mapping;
1539         details.nonlinear_vma = NULL;
1540         details.first_index = hba;
1541         details.last_index = hba + hlen - 1;
1542         if (details.last_index < details.first_index)
1543                 details.last_index = ULONG_MAX;
1544         details.i_mmap_lock = &mapping->i_mmap_lock;
1545
1546         spin_lock(&mapping->i_mmap_lock);
1547
1548         /* serialize i_size write against truncate_count write */
1549         smp_wmb();
1550         /* Protect against page faults, and endless unmapping loops */
1551         mapping->truncate_count++;
1552         /*
1553          * For archs where spin_lock has inclusive semantics like ia64
1554          * this smp_mb() will prevent to read pagetable contents
1555          * before the truncate_count increment is visible to
1556          * other cpus.
1557          */
1558         smp_mb();
1559         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1560                 if (mapping->truncate_count == 0)
1561                         reset_vma_truncate_counts(mapping);
1562                 mapping->truncate_count++;
1563         }
1564         details.truncate_count = mapping->truncate_count;
1565
1566         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1567                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1568         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1569                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1570         spin_unlock(&mapping->i_mmap_lock);
1571 }
1572 EXPORT_SYMBOL(unmap_mapping_range);
1573
1574 /*
1575  * Handle all mappings that got truncated by a "truncate()"
1576  * system call.
1577  *
1578  * NOTE! We have to be ready to update the memory sharing
1579  * between the file and the memory map for a potential last
1580  * incomplete page.  Ugly, but necessary.
1581  */
1582 int vmtruncate(struct inode * inode, loff_t offset)
1583 {
1584         struct address_space *mapping = inode->i_mapping;
1585         unsigned long limit;
1586
1587         if (inode->i_size < offset)
1588                 goto do_expand;
1589         /*
1590          * truncation of in-use swapfiles is disallowed - it would cause
1591          * subsequent swapout to scribble on the now-freed blocks.
1592          */
1593         if (IS_SWAPFILE(inode))
1594                 goto out_busy;
1595         i_size_write(inode, offset);
1596         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1597         truncate_inode_pages(mapping, offset);
1598         goto out_truncate;
1599
1600 do_expand:
1601         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1602         if (limit != RLIM_INFINITY && offset > limit)
1603                 goto out_sig;
1604         if (offset > inode->i_sb->s_maxbytes)
1605                 goto out_big;
1606         i_size_write(inode, offset);
1607
1608 out_truncate:
1609         if (inode->i_op && inode->i_op->truncate)
1610                 inode->i_op->truncate(inode);
1611         return 0;
1612 out_sig:
1613         send_sig(SIGXFSZ, current, 0);
1614 out_big:
1615         return -EFBIG;
1616 out_busy:
1617         return -ETXTBSY;
1618 }
1619
1620 EXPORT_SYMBOL(vmtruncate);
1621
1622 /* 
1623  * Primitive swap readahead code. We simply read an aligned block of
1624  * (1 << page_cluster) entries in the swap area. This method is chosen
1625  * because it doesn't cost us any seek time.  We also make sure to queue
1626  * the 'original' request together with the readahead ones...  
1627  *
1628  * This has been extended to use the NUMA policies from the mm triggering
1629  * the readahead.
1630  *
1631  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1632  */
1633 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1634 {
1635 #ifdef CONFIG_NUMA
1636         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1637 #endif
1638         int i, num;
1639         struct page *new_page;
1640         unsigned long offset;
1641
1642         /*
1643          * Get the number of handles we should do readahead io to.
1644          */
1645         num = valid_swaphandles(entry, &offset);
1646         for (i = 0; i < num; offset++, i++) {
1647                 /* Ok, do the async read-ahead now */
1648                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1649                                                            offset), vma, addr);
1650                 if (!new_page)
1651                         break;
1652                 page_cache_release(new_page);
1653 #ifdef CONFIG_NUMA
1654                 /*
1655                  * Find the next applicable VMA for the NUMA policy.
1656                  */
1657                 addr += PAGE_SIZE;
1658                 if (addr == 0)
1659                         vma = NULL;
1660                 if (vma) {
1661                         if (addr >= vma->vm_end) {
1662                                 vma = next_vma;
1663                                 next_vma = vma ? vma->vm_next : NULL;
1664                         }
1665                         if (vma && addr < vma->vm_start)
1666                                 vma = NULL;
1667                 } else {
1668                         if (next_vma && addr >= next_vma->vm_start) {
1669                                 vma = next_vma;
1670                                 next_vma = vma->vm_next;
1671                         }
1672                 }
1673 #endif
1674         }
1675         lru_add_drain();        /* Push any new pages onto the LRU now */
1676 }
1677
1678 /*
1679  * We hold the mm semaphore and the page_table_lock on entry and
1680  * should release the pagetable lock on exit..
1681  */
1682 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1683                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1684                 int write_access, pte_t orig_pte)
1685 {
1686         struct page *page;
1687         swp_entry_t entry;
1688         pte_t pte;
1689         int ret = VM_FAULT_MINOR;
1690
1691         pte_unmap(page_table);
1692         spin_unlock(&mm->page_table_lock);
1693
1694         entry = pte_to_swp_entry(orig_pte);
1695         page = lookup_swap_cache(entry);
1696         if (!page) {
1697                 swapin_readahead(entry, address, vma);
1698                 page = read_swap_cache_async(entry, vma, address);
1699                 if (!page) {
1700                         /*
1701                          * Back out if somebody else faulted in this pte while
1702                          * we released the page table lock.
1703                          */
1704                         spin_lock(&mm->page_table_lock);
1705                         page_table = pte_offset_map(pmd, address);
1706                         if (likely(pte_same(*page_table, orig_pte)))
1707                                 ret = VM_FAULT_OOM;
1708                         goto unlock;
1709                 }
1710
1711                 /* Had to read the page from swap area: Major fault */
1712                 ret = VM_FAULT_MAJOR;
1713                 inc_page_state(pgmajfault);
1714                 grab_swap_token();
1715         }
1716
1717         mark_page_accessed(page);
1718         lock_page(page);
1719
1720         /*
1721          * Back out if somebody else faulted in this pte while we
1722          * released the page table lock.
1723          */
1724         spin_lock(&mm->page_table_lock);
1725         page_table = pte_offset_map(pmd, address);
1726         if (unlikely(!pte_same(*page_table, orig_pte)))
1727                 goto out_nomap;
1728
1729         if (unlikely(!PageUptodate(page))) {
1730                 ret = VM_FAULT_SIGBUS;
1731                 goto out_nomap;
1732         }
1733
1734         /* The page isn't present yet, go ahead with the fault. */
1735
1736         inc_mm_counter(mm, anon_rss);
1737         pte = mk_pte(page, vma->vm_page_prot);
1738         if (write_access && can_share_swap_page(page)) {
1739                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1740                 write_access = 0;
1741         }
1742
1743         flush_icache_page(vma, page);
1744         set_pte_at(mm, address, page_table, pte);
1745         page_add_anon_rmap(page, vma, address);
1746
1747         swap_free(entry);
1748         if (vm_swap_full())
1749                 remove_exclusive_swap_page(page);
1750         unlock_page(page);
1751
1752         if (write_access) {
1753                 if (do_wp_page(mm, vma, address,
1754                                 page_table, pmd, pte) == VM_FAULT_OOM)
1755                         ret = VM_FAULT_OOM;
1756                 goto out;
1757         }
1758
1759         /* No need to invalidate - it was non-present before */
1760         update_mmu_cache(vma, address, pte);
1761         lazy_mmu_prot_update(pte);
1762 unlock:
1763         pte_unmap(page_table);
1764         spin_unlock(&mm->page_table_lock);
1765 out:
1766         return ret;
1767 out_nomap:
1768         pte_unmap(page_table);
1769         spin_unlock(&mm->page_table_lock);
1770         unlock_page(page);
1771         page_cache_release(page);
1772         return ret;
1773 }
1774
1775 /*
1776  * We are called with the MM semaphore and page_table_lock
1777  * spinlock held to protect against concurrent faults in
1778  * multithreaded programs. 
1779  */
1780 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1781                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1782                 int write_access)
1783 {
1784         struct page *page = ZERO_PAGE(addr);
1785         pte_t entry;
1786
1787         /* Mapping of ZERO_PAGE - vm_page_prot is readonly */
1788         entry = mk_pte(page, vma->vm_page_prot);
1789
1790         if (write_access) {
1791                 /* Allocate our own private page. */
1792                 pte_unmap(page_table);
1793                 spin_unlock(&mm->page_table_lock);
1794
1795                 if (unlikely(anon_vma_prepare(vma)))
1796                         goto oom;
1797                 page = alloc_zeroed_user_highpage(vma, address);
1798                 if (!page)
1799                         goto oom;
1800
1801                 spin_lock(&mm->page_table_lock);
1802                 page_table = pte_offset_map(pmd, address);
1803
1804                 if (!pte_none(*page_table)) {
1805                         page_cache_release(page);
1806                         goto unlock;
1807                 }
1808                 inc_mm_counter(mm, anon_rss);
1809                 entry = mk_pte(page, vma->vm_page_prot);
1810                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1811                 lru_cache_add_active(page);
1812                 SetPageReferenced(page);
1813                 page_add_anon_rmap(page, vma, address);
1814         } else {
1815                 inc_mm_counter(mm, file_rss);
1816                 page_add_file_rmap(page);
1817                 page_cache_get(page);
1818         }
1819
1820         set_pte_at(mm, address, page_table, entry);
1821
1822         /* No need to invalidate - it was non-present before */
1823         update_mmu_cache(vma, address, entry);
1824         lazy_mmu_prot_update(entry);
1825 unlock:
1826         pte_unmap(page_table);
1827         spin_unlock(&mm->page_table_lock);
1828         return VM_FAULT_MINOR;
1829 oom:
1830         return VM_FAULT_OOM;
1831 }
1832
1833 /*
1834  * do_no_page() tries to create a new page mapping. It aggressively
1835  * tries to share with existing pages, but makes a separate copy if
1836  * the "write_access" parameter is true in order to avoid the next
1837  * page fault.
1838  *
1839  * As this is called only for pages that do not currently exist, we
1840  * do not need to flush old virtual caches or the TLB.
1841  *
1842  * This is called with the MM semaphore held and the page table
1843  * spinlock held. Exit with the spinlock released.
1844  */
1845 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1846                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1847                 int write_access)
1848 {
1849         struct page *new_page;
1850         struct address_space *mapping = NULL;
1851         pte_t entry;
1852         unsigned int sequence = 0;
1853         int ret = VM_FAULT_MINOR;
1854         int anon = 0;
1855
1856         pte_unmap(page_table);
1857         spin_unlock(&mm->page_table_lock);
1858
1859         if (vma->vm_file) {
1860                 mapping = vma->vm_file->f_mapping;
1861                 sequence = mapping->truncate_count;
1862                 smp_rmb(); /* serializes i_size against truncate_count */
1863         }
1864 retry:
1865         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1866         /*
1867          * No smp_rmb is needed here as long as there's a full
1868          * spin_lock/unlock sequence inside the ->nopage callback
1869          * (for the pagecache lookup) that acts as an implicit
1870          * smp_mb() and prevents the i_size read to happen
1871          * after the next truncate_count read.
1872          */
1873
1874         /* no page was available -- either SIGBUS or OOM */
1875         if (new_page == NOPAGE_SIGBUS)
1876                 return VM_FAULT_SIGBUS;
1877         if (new_page == NOPAGE_OOM)
1878                 return VM_FAULT_OOM;
1879
1880         /*
1881          * Should we do an early C-O-W break?
1882          */
1883         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1884                 struct page *page;
1885
1886                 if (unlikely(anon_vma_prepare(vma)))
1887                         goto oom;
1888                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1889                 if (!page)
1890                         goto oom;
1891                 copy_user_highpage(page, new_page, address);
1892                 page_cache_release(new_page);
1893                 new_page = page;
1894                 anon = 1;
1895         }
1896
1897         spin_lock(&mm->page_table_lock);
1898         /*
1899          * For a file-backed vma, someone could have truncated or otherwise
1900          * invalidated this page.  If unmap_mapping_range got called,
1901          * retry getting the page.
1902          */
1903         if (mapping && unlikely(sequence != mapping->truncate_count)) {
1904                 spin_unlock(&mm->page_table_lock);
1905                 page_cache_release(new_page);
1906                 cond_resched();
1907                 sequence = mapping->truncate_count;
1908                 smp_rmb();
1909                 goto retry;
1910         }
1911         page_table = pte_offset_map(pmd, address);
1912
1913         /*
1914          * This silly early PAGE_DIRTY setting removes a race
1915          * due to the bad i386 page protection. But it's valid
1916          * for other architectures too.
1917          *
1918          * Note that if write_access is true, we either now have
1919          * an exclusive copy of the page, or this is a shared mapping,
1920          * so we can make it writable and dirty to avoid having to
1921          * handle that later.
1922          */
1923         /* Only go through if we didn't race with anybody else... */
1924         if (pte_none(*page_table)) {
1925                 flush_icache_page(vma, new_page);
1926                 entry = mk_pte(new_page, vma->vm_page_prot);
1927                 if (write_access)
1928                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1929                 set_pte_at(mm, address, page_table, entry);
1930                 if (anon) {
1931                         inc_mm_counter(mm, anon_rss);
1932                         lru_cache_add_active(new_page);
1933                         page_add_anon_rmap(new_page, vma, address);
1934                 } else if (!(vma->vm_flags & VM_RESERVED)) {
1935                         inc_mm_counter(mm, file_rss);
1936                         page_add_file_rmap(new_page);
1937                 }
1938         } else {
1939                 /* One of our sibling threads was faster, back out. */
1940                 page_cache_release(new_page);
1941                 goto unlock;
1942         }
1943
1944         /* no need to invalidate: a not-present page shouldn't be cached */
1945         update_mmu_cache(vma, address, entry);
1946         lazy_mmu_prot_update(entry);
1947 unlock:
1948         pte_unmap(page_table);
1949         spin_unlock(&mm->page_table_lock);
1950         return ret;
1951 oom:
1952         page_cache_release(new_page);
1953         return VM_FAULT_OOM;
1954 }
1955
1956 /*
1957  * Fault of a previously existing named mapping. Repopulate the pte
1958  * from the encoded file_pte if possible. This enables swappable
1959  * nonlinear vmas.
1960  */
1961 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1962                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1963                 int write_access, pte_t orig_pte)
1964 {
1965         pgoff_t pgoff;
1966         int err;
1967
1968         pte_unmap(page_table);
1969         spin_unlock(&mm->page_table_lock);
1970
1971         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1972                 /*
1973                  * Page table corrupted: show pte and kill process.
1974                  */
1975                 print_bad_pte(vma, orig_pte, address);
1976                 return VM_FAULT_OOM;
1977         }
1978         /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1979
1980         pgoff = pte_to_pgoff(orig_pte);
1981         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1982                                         vma->vm_page_prot, pgoff, 0);
1983         if (err == -ENOMEM)
1984                 return VM_FAULT_OOM;
1985         if (err)
1986                 return VM_FAULT_SIGBUS;
1987         return VM_FAULT_MAJOR;
1988 }
1989
1990 /*
1991  * These routines also need to handle stuff like marking pages dirty
1992  * and/or accessed for architectures that don't do it in hardware (most
1993  * RISC architectures).  The early dirtying is also good on the i386.
1994  *
1995  * There is also a hook called "update_mmu_cache()" that architectures
1996  * with external mmu caches can use to update those (ie the Sparc or
1997  * PowerPC hashed page tables that act as extended TLBs).
1998  *
1999  * Note the "page_table_lock". It is to protect against kswapd removing
2000  * pages from under us. Note that kswapd only ever _removes_ pages, never
2001  * adds them. As such, once we have noticed that the page is not present,
2002  * we can drop the lock early.
2003  *
2004  * The adding of pages is protected by the MM semaphore (which we hold),
2005  * so we don't need to worry about a page being suddenly been added into
2006  * our VM.
2007  *
2008  * We enter with the pagetable spinlock held, we are supposed to
2009  * release it when done.
2010  */
2011 static inline int handle_pte_fault(struct mm_struct *mm,
2012                 struct vm_area_struct *vma, unsigned long address,
2013                 pte_t *pte, pmd_t *pmd, int write_access)
2014 {
2015         pte_t entry;
2016
2017         entry = *pte;
2018         if (!pte_present(entry)) {
2019                 if (pte_none(entry)) {
2020                         if (!vma->vm_ops || !vma->vm_ops->nopage)
2021                                 return do_anonymous_page(mm, vma, address,
2022                                         pte, pmd, write_access);
2023                         return do_no_page(mm, vma, address,
2024                                         pte, pmd, write_access);
2025                 }
2026                 if (pte_file(entry))
2027                         return do_file_page(mm, vma, address,
2028                                         pte, pmd, write_access, entry);
2029                 return do_swap_page(mm, vma, address,
2030                                         pte, pmd, write_access, entry);
2031         }
2032
2033         if (write_access) {
2034                 if (!pte_write(entry))
2035                         return do_wp_page(mm, vma, address, pte, pmd, entry);
2036                 entry = pte_mkdirty(entry);
2037         }
2038         entry = pte_mkyoung(entry);
2039         ptep_set_access_flags(vma, address, pte, entry, write_access);
2040         update_mmu_cache(vma, address, entry);
2041         lazy_mmu_prot_update(entry);
2042         pte_unmap(pte);
2043         spin_unlock(&mm->page_table_lock);
2044         return VM_FAULT_MINOR;
2045 }
2046
2047 /*
2048  * By the time we get here, we already hold the mm semaphore
2049  */
2050 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2051                 unsigned long address, int write_access)
2052 {
2053         pgd_t *pgd;
2054         pud_t *pud;
2055         pmd_t *pmd;
2056         pte_t *pte;
2057
2058         __set_current_state(TASK_RUNNING);
2059
2060         inc_page_state(pgfault);
2061
2062         if (unlikely(is_vm_hugetlb_page(vma)))
2063                 return hugetlb_fault(mm, vma, address, write_access);
2064
2065         /*
2066          * We need the page table lock to synchronize with kswapd
2067          * and the SMP-safe atomic PTE updates.
2068          */
2069         pgd = pgd_offset(mm, address);
2070         spin_lock(&mm->page_table_lock);
2071
2072         pud = pud_alloc(mm, pgd, address);
2073         if (!pud)
2074                 goto oom;
2075
2076         pmd = pmd_alloc(mm, pud, address);
2077         if (!pmd)
2078                 goto oom;
2079
2080         pte = pte_alloc_map(mm, pmd, address);
2081         if (!pte)
2082                 goto oom;
2083         
2084         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2085
2086  oom:
2087         spin_unlock(&mm->page_table_lock);
2088         return VM_FAULT_OOM;
2089 }
2090
2091 #ifndef __PAGETABLE_PUD_FOLDED
2092 /*
2093  * Allocate page upper directory.
2094  * We've already handled the fast-path in-line.
2095  */
2096 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2097 {
2098         pud_t *new;
2099
2100         if (mm != &init_mm)             /* Temporary bridging hack */
2101                 spin_unlock(&mm->page_table_lock);
2102         new = pud_alloc_one(mm, address);
2103         if (!new) {
2104                 if (mm != &init_mm)     /* Temporary bridging hack */
2105                         spin_lock(&mm->page_table_lock);
2106                 return NULL;
2107         }
2108
2109         spin_lock(&mm->page_table_lock);
2110         if (pgd_present(*pgd)) {
2111                 pud_free(new);
2112                 goto out;
2113         }
2114         pgd_populate(mm, pgd, new);
2115  out:
2116         if (mm == &init_mm)             /* Temporary bridging hack */
2117                 spin_unlock(&mm->page_table_lock);
2118         return pud_offset(pgd, address);
2119 }
2120 #endif /* __PAGETABLE_PUD_FOLDED */
2121
2122 #ifndef __PAGETABLE_PMD_FOLDED
2123 /*
2124  * Allocate page middle directory.
2125  * We've already handled the fast-path in-line.
2126  */
2127 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2128 {
2129         pmd_t *new;
2130
2131         if (mm != &init_mm)             /* Temporary bridging hack */
2132                 spin_unlock(&mm->page_table_lock);
2133         new = pmd_alloc_one(mm, address);
2134         if (!new) {
2135                 if (mm != &init_mm)     /* Temporary bridging hack */
2136                         spin_lock(&mm->page_table_lock);
2137                 return NULL;
2138         }
2139
2140         spin_lock(&mm->page_table_lock);
2141 #ifndef __ARCH_HAS_4LEVEL_HACK
2142         if (pud_present(*pud)) {
2143                 pmd_free(new);
2144                 goto out;
2145         }
2146         pud_populate(mm, pud, new);
2147 #else
2148         if (pgd_present(*pud)) {
2149                 pmd_free(new);
2150                 goto out;
2151         }
2152         pgd_populate(mm, pud, new);
2153 #endif /* __ARCH_HAS_4LEVEL_HACK */
2154
2155  out:
2156         if (mm == &init_mm)             /* Temporary bridging hack */
2157                 spin_unlock(&mm->page_table_lock);
2158         return pmd_offset(pud, address);
2159 }
2160 #endif /* __PAGETABLE_PMD_FOLDED */
2161
2162 int make_pages_present(unsigned long addr, unsigned long end)
2163 {
2164         int ret, len, write;
2165         struct vm_area_struct * vma;
2166
2167         vma = find_vma(current->mm, addr);
2168         if (!vma)
2169                 return -1;
2170         write = (vma->vm_flags & VM_WRITE) != 0;
2171         if (addr >= end)
2172                 BUG();
2173         if (end > vma->vm_end)
2174                 BUG();
2175         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2176         ret = get_user_pages(current, current->mm, addr,
2177                         len, write, 0, NULL, NULL);
2178         if (ret < 0)
2179                 return ret;
2180         return ret == len ? 0 : -1;
2181 }
2182
2183 /* 
2184  * Map a vmalloc()-space virtual address to the physical page.
2185  */
2186 struct page * vmalloc_to_page(void * vmalloc_addr)
2187 {
2188         unsigned long addr = (unsigned long) vmalloc_addr;
2189         struct page *page = NULL;
2190         pgd_t *pgd = pgd_offset_k(addr);
2191         pud_t *pud;
2192         pmd_t *pmd;
2193         pte_t *ptep, pte;
2194   
2195         if (!pgd_none(*pgd)) {
2196                 pud = pud_offset(pgd, addr);
2197                 if (!pud_none(*pud)) {
2198                         pmd = pmd_offset(pud, addr);
2199                         if (!pmd_none(*pmd)) {
2200                                 ptep = pte_offset_map(pmd, addr);
2201                                 pte = *ptep;
2202                                 if (pte_present(pte))
2203                                         page = pte_page(pte);
2204                                 pte_unmap(ptep);
2205                         }
2206                 }
2207         }
2208         return page;
2209 }
2210
2211 EXPORT_SYMBOL(vmalloc_to_page);
2212
2213 /*
2214  * Map a vmalloc()-space virtual address to the physical page frame number.
2215  */
2216 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2217 {
2218         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2219 }
2220
2221 EXPORT_SYMBOL(vmalloc_to_pfn);
2222
2223 #if !defined(__HAVE_ARCH_GATE_AREA)
2224
2225 #if defined(AT_SYSINFO_EHDR)
2226 static struct vm_area_struct gate_vma;
2227
2228 static int __init gate_vma_init(void)
2229 {
2230         gate_vma.vm_mm = NULL;
2231         gate_vma.vm_start = FIXADDR_USER_START;
2232         gate_vma.vm_end = FIXADDR_USER_END;
2233         gate_vma.vm_page_prot = PAGE_READONLY;
2234         gate_vma.vm_flags = VM_RESERVED;
2235         return 0;
2236 }
2237 __initcall(gate_vma_init);
2238 #endif
2239
2240 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2241 {
2242 #ifdef AT_SYSINFO_EHDR
2243         return &gate_vma;
2244 #else
2245         return NULL;
2246 #endif
2247 }
2248
2249 int in_gate_area_no_task(unsigned long addr)
2250 {
2251 #ifdef AT_SYSINFO_EHDR
2252         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2253                 return 1;
2254 #endif
2255         return 0;
2256 }
2257
2258 #endif  /* __HAVE_ARCH_GATE_AREA */