]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - mm/memory.c
8461e2dd91d75fecafeffccd461b106d11af5a66
[linux-2.6-omap-h63xx.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93         pgd_ERROR(*pgd);
94         pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99         pud_ERROR(*pud);
100         pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105         pmd_ERROR(*pmd);
106         pmd_clear(pmd);
107 }
108
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115         struct page *page = pmd_page(*pmd);
116         pmd_clear(pmd);
117         pte_free_tlb(tlb, page);
118         dec_page_state(nr_page_table_pages);
119         tlb->mm->nr_ptes--;
120 }
121
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123                                 unsigned long addr, unsigned long end,
124                                 unsigned long floor, unsigned long ceiling)
125 {
126         pmd_t *pmd;
127         unsigned long next;
128         unsigned long start;
129
130         start = addr;
131         pmd = pmd_offset(pud, addr);
132         do {
133                 next = pmd_addr_end(addr, end);
134                 if (pmd_none_or_clear_bad(pmd))
135                         continue;
136                 free_pte_range(tlb, pmd);
137         } while (pmd++, addr = next, addr != end);
138
139         start &= PUD_MASK;
140         if (start < floor)
141                 return;
142         if (ceiling) {
143                 ceiling &= PUD_MASK;
144                 if (!ceiling)
145                         return;
146         }
147         if (end - 1 > ceiling - 1)
148                 return;
149
150         pmd = pmd_offset(pud, start);
151         pud_clear(pud);
152         pmd_free_tlb(tlb, pmd);
153 }
154
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156                                 unsigned long addr, unsigned long end,
157                                 unsigned long floor, unsigned long ceiling)
158 {
159         pud_t *pud;
160         unsigned long next;
161         unsigned long start;
162
163         start = addr;
164         pud = pud_offset(pgd, addr);
165         do {
166                 next = pud_addr_end(addr, end);
167                 if (pud_none_or_clear_bad(pud))
168                         continue;
169                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170         } while (pud++, addr = next, addr != end);
171
172         start &= PGDIR_MASK;
173         if (start < floor)
174                 return;
175         if (ceiling) {
176                 ceiling &= PGDIR_MASK;
177                 if (!ceiling)
178                         return;
179         }
180         if (end - 1 > ceiling - 1)
181                 return;
182
183         pud = pud_offset(pgd, start);
184         pgd_clear(pgd);
185         pud_free_tlb(tlb, pud);
186 }
187
188 /*
189  * This function frees user-level page tables of a process.
190  *
191  * Must be called with pagetable lock held.
192  */
193 void free_pgd_range(struct mmu_gather **tlb,
194                         unsigned long addr, unsigned long end,
195                         unsigned long floor, unsigned long ceiling)
196 {
197         pgd_t *pgd;
198         unsigned long next;
199         unsigned long start;
200
201         /*
202          * The next few lines have given us lots of grief...
203          *
204          * Why are we testing PMD* at this top level?  Because often
205          * there will be no work to do at all, and we'd prefer not to
206          * go all the way down to the bottom just to discover that.
207          *
208          * Why all these "- 1"s?  Because 0 represents both the bottom
209          * of the address space and the top of it (using -1 for the
210          * top wouldn't help much: the masks would do the wrong thing).
211          * The rule is that addr 0 and floor 0 refer to the bottom of
212          * the address space, but end 0 and ceiling 0 refer to the top
213          * Comparisons need to use "end - 1" and "ceiling - 1" (though
214          * that end 0 case should be mythical).
215          *
216          * Wherever addr is brought up or ceiling brought down, we must
217          * be careful to reject "the opposite 0" before it confuses the
218          * subsequent tests.  But what about where end is brought down
219          * by PMD_SIZE below? no, end can't go down to 0 there.
220          *
221          * Whereas we round start (addr) and ceiling down, by different
222          * masks at different levels, in order to test whether a table
223          * now has no other vmas using it, so can be freed, we don't
224          * bother to round floor or end up - the tests don't need that.
225          */
226
227         addr &= PMD_MASK;
228         if (addr < floor) {
229                 addr += PMD_SIZE;
230                 if (!addr)
231                         return;
232         }
233         if (ceiling) {
234                 ceiling &= PMD_MASK;
235                 if (!ceiling)
236                         return;
237         }
238         if (end - 1 > ceiling - 1)
239                 end -= PMD_SIZE;
240         if (addr > end - 1)
241                 return;
242
243         start = addr;
244         pgd = pgd_offset((*tlb)->mm, addr);
245         do {
246                 next = pgd_addr_end(addr, end);
247                 if (pgd_none_or_clear_bad(pgd))
248                         continue;
249                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250         } while (pgd++, addr = next, addr != end);
251
252         if (!(*tlb)->fullmm)
253                 flush_tlb_pgtables((*tlb)->mm, start, end);
254 }
255
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257                 unsigned long floor, unsigned long ceiling)
258 {
259         while (vma) {
260                 struct vm_area_struct *next = vma->vm_next;
261                 unsigned long addr = vma->vm_start;
262
263                 /*
264                  * Hide vma from rmap and vmtruncate before freeing pgtables
265                  */
266                 anon_vma_unlink(vma);
267                 unlink_file_vma(vma);
268
269                 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
270                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
271                                 floor, next? next->vm_start: ceiling);
272                 } else {
273                         /*
274                          * Optimization: gather nearby vmas into one call down
275                          */
276                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
277                           && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
278                                                         HPAGE_SIZE)) {
279                                 vma = next;
280                                 next = vma->vm_next;
281                                 anon_vma_unlink(vma);
282                                 unlink_file_vma(vma);
283                         }
284                         free_pgd_range(tlb, addr, vma->vm_end,
285                                 floor, next? next->vm_start: ceiling);
286                 }
287                 vma = next;
288         }
289 }
290
291 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
292 {
293         struct page *new = pte_alloc_one(mm, address);
294         if (!new)
295                 return -ENOMEM;
296
297         spin_lock(&mm->page_table_lock);
298         if (pmd_present(*pmd))          /* Another has populated it */
299                 pte_free(new);
300         else {
301                 mm->nr_ptes++;
302                 inc_page_state(nr_page_table_pages);
303                 pmd_populate(mm, pmd, new);
304         }
305         spin_unlock(&mm->page_table_lock);
306         return 0;
307 }
308
309 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
310 {
311         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
312         if (!new)
313                 return -ENOMEM;
314
315         spin_lock(&init_mm.page_table_lock);
316         if (pmd_present(*pmd))          /* Another has populated it */
317                 pte_free_kernel(new);
318         else
319                 pmd_populate_kernel(&init_mm, pmd, new);
320         spin_unlock(&init_mm.page_table_lock);
321         return 0;
322 }
323
324 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
325 {
326         if (file_rss)
327                 add_mm_counter(mm, file_rss, file_rss);
328         if (anon_rss)
329                 add_mm_counter(mm, anon_rss, anon_rss);
330 }
331
332 /*
333  * This function is called to print an error when a pte in a
334  * !VM_RESERVED region is found pointing to an invalid pfn (which
335  * is an error.
336  *
337  * The calling function must still handle the error.
338  */
339 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
340 {
341         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
342                         "vm_flags = %lx, vaddr = %lx\n",
343                 (long long)pte_val(pte),
344                 (vma->vm_mm == current->mm ? current->comm : "???"),
345                 vma->vm_flags, vaddr);
346         dump_stack();
347 }
348
349 /*
350  * copy one vm_area from one task to the other. Assumes the page tables
351  * already present in the new task to be cleared in the whole range
352  * covered by this vma.
353  */
354
355 static inline void
356 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
357                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
358                 unsigned long addr, int *rss)
359 {
360         unsigned long vm_flags = vma->vm_flags;
361         pte_t pte = *src_pte;
362         struct page *page;
363         unsigned long pfn;
364
365         /* pte contains position in swap or file, so copy. */
366         if (unlikely(!pte_present(pte))) {
367                 if (!pte_file(pte)) {
368                         swap_duplicate(pte_to_swp_entry(pte));
369                         /* make sure dst_mm is on swapoff's mmlist. */
370                         if (unlikely(list_empty(&dst_mm->mmlist))) {
371                                 spin_lock(&mmlist_lock);
372                                 list_add(&dst_mm->mmlist, &src_mm->mmlist);
373                                 spin_unlock(&mmlist_lock);
374                         }
375                 }
376                 goto out_set_pte;
377         }
378
379         /* If the region is VM_RESERVED, the mapping is not
380          * mapped via rmap - duplicate the pte as is.
381          */
382         if (vm_flags & VM_RESERVED)
383                 goto out_set_pte;
384
385         pfn = pte_pfn(pte);
386         /* If the pte points outside of valid memory but
387          * the region is not VM_RESERVED, we have a problem.
388          */
389         if (unlikely(!pfn_valid(pfn))) {
390                 print_bad_pte(vma, pte, addr);
391                 goto out_set_pte; /* try to do something sane */
392         }
393
394         page = pfn_to_page(pfn);
395
396         /*
397          * If it's a COW mapping, write protect it both
398          * in the parent and the child
399          */
400         if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
401                 ptep_set_wrprotect(src_mm, addr, src_pte);
402                 pte = *src_pte;
403         }
404
405         /*
406          * If it's a shared mapping, mark it clean in
407          * the child
408          */
409         if (vm_flags & VM_SHARED)
410                 pte = pte_mkclean(pte);
411         pte = pte_mkold(pte);
412         get_page(page);
413         page_dup_rmap(page);
414         rss[!!PageAnon(page)]++;
415
416 out_set_pte:
417         set_pte_at(dst_mm, addr, dst_pte, pte);
418 }
419
420 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
421                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
422                 unsigned long addr, unsigned long end)
423 {
424         pte_t *src_pte, *dst_pte;
425         spinlock_t *src_ptl, *dst_ptl;
426         int progress = 0;
427         int rss[2];
428
429 again:
430         rss[1] = rss[0] = 0;
431         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
432         if (!dst_pte)
433                 return -ENOMEM;
434         src_pte = pte_offset_map_nested(src_pmd, addr);
435         src_ptl = &src_mm->page_table_lock;
436         spin_lock(src_ptl);
437
438         do {
439                 /*
440                  * We are holding two locks at this point - either of them
441                  * could generate latencies in another task on another CPU.
442                  */
443                 if (progress >= 32) {
444                         progress = 0;
445                         if (need_resched() ||
446                             need_lockbreak(src_ptl) ||
447                             need_lockbreak(dst_ptl))
448                                 break;
449                 }
450                 if (pte_none(*src_pte)) {
451                         progress++;
452                         continue;
453                 }
454                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
455                 progress += 8;
456         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
457
458         spin_unlock(src_ptl);
459         pte_unmap_nested(src_pte - 1);
460         add_mm_rss(dst_mm, rss[0], rss[1]);
461         pte_unmap_unlock(dst_pte - 1, dst_ptl);
462         cond_resched();
463         if (addr != end)
464                 goto again;
465         return 0;
466 }
467
468 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
469                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
470                 unsigned long addr, unsigned long end)
471 {
472         pmd_t *src_pmd, *dst_pmd;
473         unsigned long next;
474
475         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
476         if (!dst_pmd)
477                 return -ENOMEM;
478         src_pmd = pmd_offset(src_pud, addr);
479         do {
480                 next = pmd_addr_end(addr, end);
481                 if (pmd_none_or_clear_bad(src_pmd))
482                         continue;
483                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
484                                                 vma, addr, next))
485                         return -ENOMEM;
486         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
487         return 0;
488 }
489
490 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
492                 unsigned long addr, unsigned long end)
493 {
494         pud_t *src_pud, *dst_pud;
495         unsigned long next;
496
497         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
498         if (!dst_pud)
499                 return -ENOMEM;
500         src_pud = pud_offset(src_pgd, addr);
501         do {
502                 next = pud_addr_end(addr, end);
503                 if (pud_none_or_clear_bad(src_pud))
504                         continue;
505                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
506                                                 vma, addr, next))
507                         return -ENOMEM;
508         } while (dst_pud++, src_pud++, addr = next, addr != end);
509         return 0;
510 }
511
512 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
513                 struct vm_area_struct *vma)
514 {
515         pgd_t *src_pgd, *dst_pgd;
516         unsigned long next;
517         unsigned long addr = vma->vm_start;
518         unsigned long end = vma->vm_end;
519
520         /*
521          * Don't copy ptes where a page fault will fill them correctly.
522          * Fork becomes much lighter when there are big shared or private
523          * readonly mappings. The tradeoff is that copy_page_range is more
524          * efficient than faulting.
525          */
526         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
527                 if (!vma->anon_vma)
528                         return 0;
529         }
530
531         if (is_vm_hugetlb_page(vma))
532                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
533
534         dst_pgd = pgd_offset(dst_mm, addr);
535         src_pgd = pgd_offset(src_mm, addr);
536         do {
537                 next = pgd_addr_end(addr, end);
538                 if (pgd_none_or_clear_bad(src_pgd))
539                         continue;
540                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
541                                                 vma, addr, next))
542                         return -ENOMEM;
543         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
544         return 0;
545 }
546
547 static void zap_pte_range(struct mmu_gather *tlb,
548                                 struct vm_area_struct *vma, pmd_t *pmd,
549                                 unsigned long addr, unsigned long end,
550                                 struct zap_details *details)
551 {
552         struct mm_struct *mm = tlb->mm;
553         pte_t *pte;
554         spinlock_t *ptl;
555         int file_rss = 0;
556         int anon_rss = 0;
557
558         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
559         do {
560                 pte_t ptent = *pte;
561                 if (pte_none(ptent))
562                         continue;
563                 if (pte_present(ptent)) {
564                         struct page *page = NULL;
565                         if (!(vma->vm_flags & VM_RESERVED)) {
566                                 unsigned long pfn = pte_pfn(ptent);
567                                 if (unlikely(!pfn_valid(pfn)))
568                                         print_bad_pte(vma, ptent, addr);
569                                 else
570                                         page = pfn_to_page(pfn);
571                         }
572                         if (unlikely(details) && page) {
573                                 /*
574                                  * unmap_shared_mapping_pages() wants to
575                                  * invalidate cache without truncating:
576                                  * unmap shared but keep private pages.
577                                  */
578                                 if (details->check_mapping &&
579                                     details->check_mapping != page->mapping)
580                                         continue;
581                                 /*
582                                  * Each page->index must be checked when
583                                  * invalidating or truncating nonlinear.
584                                  */
585                                 if (details->nonlinear_vma &&
586                                     (page->index < details->first_index ||
587                                      page->index > details->last_index))
588                                         continue;
589                         }
590                         ptent = ptep_get_and_clear_full(mm, addr, pte,
591                                                         tlb->fullmm);
592                         tlb_remove_tlb_entry(tlb, pte, addr);
593                         if (unlikely(!page))
594                                 continue;
595                         if (unlikely(details) && details->nonlinear_vma
596                             && linear_page_index(details->nonlinear_vma,
597                                                 addr) != page->index)
598                                 set_pte_at(mm, addr, pte,
599                                            pgoff_to_pte(page->index));
600                         if (PageAnon(page))
601                                 anon_rss--;
602                         else {
603                                 if (pte_dirty(ptent))
604                                         set_page_dirty(page);
605                                 if (pte_young(ptent))
606                                         mark_page_accessed(page);
607                                 file_rss--;
608                         }
609                         page_remove_rmap(page);
610                         tlb_remove_page(tlb, page);
611                         continue;
612                 }
613                 /*
614                  * If details->check_mapping, we leave swap entries;
615                  * if details->nonlinear_vma, we leave file entries.
616                  */
617                 if (unlikely(details))
618                         continue;
619                 if (!pte_file(ptent))
620                         free_swap_and_cache(pte_to_swp_entry(ptent));
621                 pte_clear_full(mm, addr, pte, tlb->fullmm);
622         } while (pte++, addr += PAGE_SIZE, addr != end);
623
624         add_mm_rss(mm, file_rss, anon_rss);
625         pte_unmap_unlock(pte - 1, ptl);
626 }
627
628 static inline void zap_pmd_range(struct mmu_gather *tlb,
629                                 struct vm_area_struct *vma, pud_t *pud,
630                                 unsigned long addr, unsigned long end,
631                                 struct zap_details *details)
632 {
633         pmd_t *pmd;
634         unsigned long next;
635
636         pmd = pmd_offset(pud, addr);
637         do {
638                 next = pmd_addr_end(addr, end);
639                 if (pmd_none_or_clear_bad(pmd))
640                         continue;
641                 zap_pte_range(tlb, vma, pmd, addr, next, details);
642         } while (pmd++, addr = next, addr != end);
643 }
644
645 static inline void zap_pud_range(struct mmu_gather *tlb,
646                                 struct vm_area_struct *vma, pgd_t *pgd,
647                                 unsigned long addr, unsigned long end,
648                                 struct zap_details *details)
649 {
650         pud_t *pud;
651         unsigned long next;
652
653         pud = pud_offset(pgd, addr);
654         do {
655                 next = pud_addr_end(addr, end);
656                 if (pud_none_or_clear_bad(pud))
657                         continue;
658                 zap_pmd_range(tlb, vma, pud, addr, next, details);
659         } while (pud++, addr = next, addr != end);
660 }
661
662 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
663                                 unsigned long addr, unsigned long end,
664                                 struct zap_details *details)
665 {
666         pgd_t *pgd;
667         unsigned long next;
668
669         if (details && !details->check_mapping && !details->nonlinear_vma)
670                 details = NULL;
671
672         BUG_ON(addr >= end);
673         tlb_start_vma(tlb, vma);
674         pgd = pgd_offset(vma->vm_mm, addr);
675         do {
676                 next = pgd_addr_end(addr, end);
677                 if (pgd_none_or_clear_bad(pgd))
678                         continue;
679                 zap_pud_range(tlb, vma, pgd, addr, next, details);
680         } while (pgd++, addr = next, addr != end);
681         tlb_end_vma(tlb, vma);
682 }
683
684 #ifdef CONFIG_PREEMPT
685 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
686 #else
687 /* No preempt: go for improved straight-line efficiency */
688 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
689 #endif
690
691 /**
692  * unmap_vmas - unmap a range of memory covered by a list of vma's
693  * @tlbp: address of the caller's struct mmu_gather
694  * @vma: the starting vma
695  * @start_addr: virtual address at which to start unmapping
696  * @end_addr: virtual address at which to end unmapping
697  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
698  * @details: details of nonlinear truncation or shared cache invalidation
699  *
700  * Returns the end address of the unmapping (restart addr if interrupted).
701  *
702  * Unmap all pages in the vma list.
703  *
704  * We aim to not hold locks for too long (for scheduling latency reasons).
705  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
706  * return the ending mmu_gather to the caller.
707  *
708  * Only addresses between `start' and `end' will be unmapped.
709  *
710  * The VMA list must be sorted in ascending virtual address order.
711  *
712  * unmap_vmas() assumes that the caller will flush the whole unmapped address
713  * range after unmap_vmas() returns.  So the only responsibility here is to
714  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
715  * drops the lock and schedules.
716  */
717 unsigned long unmap_vmas(struct mmu_gather **tlbp,
718                 struct vm_area_struct *vma, unsigned long start_addr,
719                 unsigned long end_addr, unsigned long *nr_accounted,
720                 struct zap_details *details)
721 {
722         unsigned long zap_bytes = ZAP_BLOCK_SIZE;
723         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
724         int tlb_start_valid = 0;
725         unsigned long start = start_addr;
726         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
727         int fullmm = (*tlbp)->fullmm;
728
729         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
730                 unsigned long end;
731
732                 start = max(vma->vm_start, start_addr);
733                 if (start >= vma->vm_end)
734                         continue;
735                 end = min(vma->vm_end, end_addr);
736                 if (end <= vma->vm_start)
737                         continue;
738
739                 if (vma->vm_flags & VM_ACCOUNT)
740                         *nr_accounted += (end - start) >> PAGE_SHIFT;
741
742                 while (start != end) {
743                         unsigned long block;
744
745                         if (!tlb_start_valid) {
746                                 tlb_start = start;
747                                 tlb_start_valid = 1;
748                         }
749
750                         if (is_vm_hugetlb_page(vma)) {
751                                 block = end - start;
752                                 unmap_hugepage_range(vma, start, end);
753                         } else {
754                                 block = min(zap_bytes, end - start);
755                                 unmap_page_range(*tlbp, vma, start,
756                                                 start + block, details);
757                         }
758
759                         start += block;
760                         zap_bytes -= block;
761                         if ((long)zap_bytes > 0)
762                                 continue;
763
764                         tlb_finish_mmu(*tlbp, tlb_start, start);
765
766                         if (need_resched() ||
767                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
768                                 if (i_mmap_lock) {
769                                         *tlbp = NULL;
770                                         goto out;
771                                 }
772                                 cond_resched();
773                         }
774
775                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
776                         tlb_start_valid = 0;
777                         zap_bytes = ZAP_BLOCK_SIZE;
778                 }
779         }
780 out:
781         return start;   /* which is now the end (or restart) address */
782 }
783
784 /**
785  * zap_page_range - remove user pages in a given range
786  * @vma: vm_area_struct holding the applicable pages
787  * @address: starting address of pages to zap
788  * @size: number of bytes to zap
789  * @details: details of nonlinear truncation or shared cache invalidation
790  */
791 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
792                 unsigned long size, struct zap_details *details)
793 {
794         struct mm_struct *mm = vma->vm_mm;
795         struct mmu_gather *tlb;
796         unsigned long end = address + size;
797         unsigned long nr_accounted = 0;
798
799         lru_add_drain();
800         tlb = tlb_gather_mmu(mm, 0);
801         update_hiwater_rss(mm);
802         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
803         if (tlb)
804                 tlb_finish_mmu(tlb, address, end);
805         return end;
806 }
807
808 /*
809  * Do a quick page-table lookup for a single page.
810  */
811 struct page *follow_page(struct mm_struct *mm, unsigned long address,
812                         unsigned int flags)
813 {
814         pgd_t *pgd;
815         pud_t *pud;
816         pmd_t *pmd;
817         pte_t *ptep, pte;
818         spinlock_t *ptl;
819         unsigned long pfn;
820         struct page *page;
821
822         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
823         if (!IS_ERR(page)) {
824                 BUG_ON(flags & FOLL_GET);
825                 goto out;
826         }
827
828         page = NULL;
829         pgd = pgd_offset(mm, address);
830         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
831                 goto no_page_table;
832
833         pud = pud_offset(pgd, address);
834         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
835                 goto no_page_table;
836         
837         pmd = pmd_offset(pud, address);
838         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
839                 goto no_page_table;
840
841         if (pmd_huge(*pmd)) {
842                 BUG_ON(flags & FOLL_GET);
843                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
844                 goto out;
845         }
846
847         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
848         if (!ptep)
849                 goto out;
850
851         pte = *ptep;
852         if (!pte_present(pte))
853                 goto unlock;
854         if ((flags & FOLL_WRITE) && !pte_write(pte))
855                 goto unlock;
856         pfn = pte_pfn(pte);
857         if (!pfn_valid(pfn))
858                 goto unlock;
859
860         page = pfn_to_page(pfn);
861         if (flags & FOLL_GET)
862                 get_page(page);
863         if (flags & FOLL_TOUCH) {
864                 if ((flags & FOLL_WRITE) &&
865                     !pte_dirty(pte) && !PageDirty(page))
866                         set_page_dirty(page);
867                 mark_page_accessed(page);
868         }
869 unlock:
870         pte_unmap_unlock(ptep, ptl);
871 out:
872         return page;
873
874 no_page_table:
875         /*
876          * When core dumping an enormous anonymous area that nobody
877          * has touched so far, we don't want to allocate page tables.
878          */
879         if (flags & FOLL_ANON) {
880                 page = ZERO_PAGE(address);
881                 if (flags & FOLL_GET)
882                         get_page(page);
883                 BUG_ON(flags & FOLL_WRITE);
884         }
885         return page;
886 }
887
888 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
889                 unsigned long start, int len, int write, int force,
890                 struct page **pages, struct vm_area_struct **vmas)
891 {
892         int i;
893         unsigned int vm_flags;
894
895         /* 
896          * Require read or write permissions.
897          * If 'force' is set, we only require the "MAY" flags.
898          */
899         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
900         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
901         i = 0;
902
903         do {
904                 struct vm_area_struct *vma;
905                 unsigned int foll_flags;
906
907                 vma = find_extend_vma(mm, start);
908                 if (!vma && in_gate_area(tsk, start)) {
909                         unsigned long pg = start & PAGE_MASK;
910                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
911                         pgd_t *pgd;
912                         pud_t *pud;
913                         pmd_t *pmd;
914                         pte_t *pte;
915                         if (write) /* user gate pages are read-only */
916                                 return i ? : -EFAULT;
917                         if (pg > TASK_SIZE)
918                                 pgd = pgd_offset_k(pg);
919                         else
920                                 pgd = pgd_offset_gate(mm, pg);
921                         BUG_ON(pgd_none(*pgd));
922                         pud = pud_offset(pgd, pg);
923                         BUG_ON(pud_none(*pud));
924                         pmd = pmd_offset(pud, pg);
925                         if (pmd_none(*pmd))
926                                 return i ? : -EFAULT;
927                         pte = pte_offset_map(pmd, pg);
928                         if (pte_none(*pte)) {
929                                 pte_unmap(pte);
930                                 return i ? : -EFAULT;
931                         }
932                         if (pages) {
933                                 pages[i] = pte_page(*pte);
934                                 get_page(pages[i]);
935                         }
936                         pte_unmap(pte);
937                         if (vmas)
938                                 vmas[i] = gate_vma;
939                         i++;
940                         start += PAGE_SIZE;
941                         len--;
942                         continue;
943                 }
944
945                 if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
946                                 || !(vm_flags & vma->vm_flags))
947                         return i ? : -EFAULT;
948
949                 if (is_vm_hugetlb_page(vma)) {
950                         i = follow_hugetlb_page(mm, vma, pages, vmas,
951                                                 &start, &len, i);
952                         continue;
953                 }
954
955                 foll_flags = FOLL_TOUCH;
956                 if (pages)
957                         foll_flags |= FOLL_GET;
958                 if (!write && !(vma->vm_flags & VM_LOCKED) &&
959                     (!vma->vm_ops || !vma->vm_ops->nopage))
960                         foll_flags |= FOLL_ANON;
961
962                 do {
963                         struct page *page;
964
965                         if (write)
966                                 foll_flags |= FOLL_WRITE;
967
968                         cond_resched();
969                         while (!(page = follow_page(mm, start, foll_flags))) {
970                                 int ret;
971                                 ret = __handle_mm_fault(mm, vma, start,
972                                                 foll_flags & FOLL_WRITE);
973                                 /*
974                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
975                                  * broken COW when necessary, even if maybe_mkwrite
976                                  * decided not to set pte_write. We can thus safely do
977                                  * subsequent page lookups as if they were reads.
978                                  */
979                                 if (ret & VM_FAULT_WRITE)
980                                         foll_flags &= ~FOLL_WRITE;
981                                 
982                                 switch (ret & ~VM_FAULT_WRITE) {
983                                 case VM_FAULT_MINOR:
984                                         tsk->min_flt++;
985                                         break;
986                                 case VM_FAULT_MAJOR:
987                                         tsk->maj_flt++;
988                                         break;
989                                 case VM_FAULT_SIGBUS:
990                                         return i ? i : -EFAULT;
991                                 case VM_FAULT_OOM:
992                                         return i ? i : -ENOMEM;
993                                 default:
994                                         BUG();
995                                 }
996                         }
997                         if (pages) {
998                                 pages[i] = page;
999                                 flush_dcache_page(page);
1000                         }
1001                         if (vmas)
1002                                 vmas[i] = vma;
1003                         i++;
1004                         start += PAGE_SIZE;
1005                         len--;
1006                 } while (len && start < vma->vm_end);
1007         } while (len);
1008         return i;
1009 }
1010 EXPORT_SYMBOL(get_user_pages);
1011
1012 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1013                         unsigned long addr, unsigned long end, pgprot_t prot)
1014 {
1015         pte_t *pte;
1016         spinlock_t *ptl;
1017
1018         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1019         if (!pte)
1020                 return -ENOMEM;
1021         do {
1022                 struct page *page = ZERO_PAGE(addr);
1023                 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1024                 page_cache_get(page);
1025                 page_add_file_rmap(page);
1026                 inc_mm_counter(mm, file_rss);
1027                 BUG_ON(!pte_none(*pte));
1028                 set_pte_at(mm, addr, pte, zero_pte);
1029         } while (pte++, addr += PAGE_SIZE, addr != end);
1030         pte_unmap_unlock(pte - 1, ptl);
1031         return 0;
1032 }
1033
1034 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1035                         unsigned long addr, unsigned long end, pgprot_t prot)
1036 {
1037         pmd_t *pmd;
1038         unsigned long next;
1039
1040         pmd = pmd_alloc(mm, pud, addr);
1041         if (!pmd)
1042                 return -ENOMEM;
1043         do {
1044                 next = pmd_addr_end(addr, end);
1045                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1046                         return -ENOMEM;
1047         } while (pmd++, addr = next, addr != end);
1048         return 0;
1049 }
1050
1051 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1052                         unsigned long addr, unsigned long end, pgprot_t prot)
1053 {
1054         pud_t *pud;
1055         unsigned long next;
1056
1057         pud = pud_alloc(mm, pgd, addr);
1058         if (!pud)
1059                 return -ENOMEM;
1060         do {
1061                 next = pud_addr_end(addr, end);
1062                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1063                         return -ENOMEM;
1064         } while (pud++, addr = next, addr != end);
1065         return 0;
1066 }
1067
1068 int zeromap_page_range(struct vm_area_struct *vma,
1069                         unsigned long addr, unsigned long size, pgprot_t prot)
1070 {
1071         pgd_t *pgd;
1072         unsigned long next;
1073         unsigned long end = addr + size;
1074         struct mm_struct *mm = vma->vm_mm;
1075         int err;
1076
1077         BUG_ON(addr >= end);
1078         pgd = pgd_offset(mm, addr);
1079         flush_cache_range(vma, addr, end);
1080         do {
1081                 next = pgd_addr_end(addr, end);
1082                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1083                 if (err)
1084                         break;
1085         } while (pgd++, addr = next, addr != end);
1086         return err;
1087 }
1088
1089 /*
1090  * maps a range of physical memory into the requested pages. the old
1091  * mappings are removed. any references to nonexistent pages results
1092  * in null mappings (currently treated as "copy-on-access")
1093  */
1094 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1095                         unsigned long addr, unsigned long end,
1096                         unsigned long pfn, pgprot_t prot)
1097 {
1098         pte_t *pte;
1099         spinlock_t *ptl;
1100
1101         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1102         if (!pte)
1103                 return -ENOMEM;
1104         do {
1105                 BUG_ON(!pte_none(*pte));
1106                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1107                 pfn++;
1108         } while (pte++, addr += PAGE_SIZE, addr != end);
1109         pte_unmap_unlock(pte - 1, ptl);
1110         return 0;
1111 }
1112
1113 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1114                         unsigned long addr, unsigned long end,
1115                         unsigned long pfn, pgprot_t prot)
1116 {
1117         pmd_t *pmd;
1118         unsigned long next;
1119
1120         pfn -= addr >> PAGE_SHIFT;
1121         pmd = pmd_alloc(mm, pud, addr);
1122         if (!pmd)
1123                 return -ENOMEM;
1124         do {
1125                 next = pmd_addr_end(addr, end);
1126                 if (remap_pte_range(mm, pmd, addr, next,
1127                                 pfn + (addr >> PAGE_SHIFT), prot))
1128                         return -ENOMEM;
1129         } while (pmd++, addr = next, addr != end);
1130         return 0;
1131 }
1132
1133 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1134                         unsigned long addr, unsigned long end,
1135                         unsigned long pfn, pgprot_t prot)
1136 {
1137         pud_t *pud;
1138         unsigned long next;
1139
1140         pfn -= addr >> PAGE_SHIFT;
1141         pud = pud_alloc(mm, pgd, addr);
1142         if (!pud)
1143                 return -ENOMEM;
1144         do {
1145                 next = pud_addr_end(addr, end);
1146                 if (remap_pmd_range(mm, pud, addr, next,
1147                                 pfn + (addr >> PAGE_SHIFT), prot))
1148                         return -ENOMEM;
1149         } while (pud++, addr = next, addr != end);
1150         return 0;
1151 }
1152
1153 /*  Note: this is only safe if the mm semaphore is held when called. */
1154 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1155                     unsigned long pfn, unsigned long size, pgprot_t prot)
1156 {
1157         pgd_t *pgd;
1158         unsigned long next;
1159         unsigned long end = addr + PAGE_ALIGN(size);
1160         struct mm_struct *mm = vma->vm_mm;
1161         int err;
1162
1163         /*
1164          * Physically remapped pages are special. Tell the
1165          * rest of the world about it:
1166          *   VM_IO tells people not to look at these pages
1167          *      (accesses can have side effects).
1168          *   VM_RESERVED tells the core MM not to "manage" these pages
1169          *      (e.g. refcount, mapcount, try to swap them out).
1170          */
1171         vma->vm_flags |= VM_IO | VM_RESERVED;
1172
1173         BUG_ON(addr >= end);
1174         pfn -= addr >> PAGE_SHIFT;
1175         pgd = pgd_offset(mm, addr);
1176         flush_cache_range(vma, addr, end);
1177         do {
1178                 next = pgd_addr_end(addr, end);
1179                 err = remap_pud_range(mm, pgd, addr, next,
1180                                 pfn + (addr >> PAGE_SHIFT), prot);
1181                 if (err)
1182                         break;
1183         } while (pgd++, addr = next, addr != end);
1184         return err;
1185 }
1186 EXPORT_SYMBOL(remap_pfn_range);
1187
1188 /*
1189  * handle_pte_fault chooses page fault handler according to an entry
1190  * which was read non-atomically.  Before making any commitment, on
1191  * those architectures or configurations (e.g. i386 with PAE) which
1192  * might give a mix of unmatched parts, do_swap_page and do_file_page
1193  * must check under lock before unmapping the pte and proceeding
1194  * (but do_wp_page is only called after already making such a check;
1195  * and do_anonymous_page and do_no_page can safely check later on).
1196  */
1197 static inline int pte_unmap_same(struct mm_struct *mm,
1198                                 pte_t *page_table, pte_t orig_pte)
1199 {
1200         int same = 1;
1201 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1202         if (sizeof(pte_t) > sizeof(unsigned long)) {
1203                 spin_lock(&mm->page_table_lock);
1204                 same = pte_same(*page_table, orig_pte);
1205                 spin_unlock(&mm->page_table_lock);
1206         }
1207 #endif
1208         pte_unmap(page_table);
1209         return same;
1210 }
1211
1212 /*
1213  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1214  * servicing faults for write access.  In the normal case, do always want
1215  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1216  * that do not have writing enabled, when used by access_process_vm.
1217  */
1218 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1219 {
1220         if (likely(vma->vm_flags & VM_WRITE))
1221                 pte = pte_mkwrite(pte);
1222         return pte;
1223 }
1224
1225 /*
1226  * This routine handles present pages, when users try to write
1227  * to a shared page. It is done by copying the page to a new address
1228  * and decrementing the shared-page counter for the old page.
1229  *
1230  * Note that this routine assumes that the protection checks have been
1231  * done by the caller (the low-level page fault routine in most cases).
1232  * Thus we can safely just mark it writable once we've done any necessary
1233  * COW.
1234  *
1235  * We also mark the page dirty at this point even though the page will
1236  * change only once the write actually happens. This avoids a few races,
1237  * and potentially makes it more efficient.
1238  *
1239  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1240  * but allow concurrent faults), with pte both mapped and locked.
1241  * We return with mmap_sem still held, but pte unmapped and unlocked.
1242  */
1243 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1244                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1245                 spinlock_t *ptl, pte_t orig_pte)
1246 {
1247         struct page *old_page, *new_page;
1248         unsigned long pfn = pte_pfn(orig_pte);
1249         pte_t entry;
1250         int ret = VM_FAULT_MINOR;
1251
1252         BUG_ON(vma->vm_flags & VM_RESERVED);
1253
1254         if (unlikely(!pfn_valid(pfn))) {
1255                 /*
1256                  * Page table corrupted: show pte and kill process.
1257                  */
1258                 print_bad_pte(vma, orig_pte, address);
1259                 ret = VM_FAULT_OOM;
1260                 goto unlock;
1261         }
1262         old_page = pfn_to_page(pfn);
1263
1264         if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1265                 int reuse = can_share_swap_page(old_page);
1266                 unlock_page(old_page);
1267                 if (reuse) {
1268                         flush_cache_page(vma, address, pfn);
1269                         entry = pte_mkyoung(orig_pte);
1270                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1271                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1272                         update_mmu_cache(vma, address, entry);
1273                         lazy_mmu_prot_update(entry);
1274                         ret |= VM_FAULT_WRITE;
1275                         goto unlock;
1276                 }
1277         }
1278
1279         /*
1280          * Ok, we need to copy. Oh, well..
1281          */
1282         page_cache_get(old_page);
1283         pte_unmap_unlock(page_table, ptl);
1284
1285         if (unlikely(anon_vma_prepare(vma)))
1286                 goto oom;
1287         if (old_page == ZERO_PAGE(address)) {
1288                 new_page = alloc_zeroed_user_highpage(vma, address);
1289                 if (!new_page)
1290                         goto oom;
1291         } else {
1292                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1293                 if (!new_page)
1294                         goto oom;
1295                 copy_user_highpage(new_page, old_page, address);
1296         }
1297
1298         /*
1299          * Re-check the pte - we dropped the lock
1300          */
1301         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1302         if (likely(pte_same(*page_table, orig_pte))) {
1303                 page_remove_rmap(old_page);
1304                 if (!PageAnon(old_page)) {
1305                         inc_mm_counter(mm, anon_rss);
1306                         dec_mm_counter(mm, file_rss);
1307                 }
1308                 flush_cache_page(vma, address, pfn);
1309                 entry = mk_pte(new_page, vma->vm_page_prot);
1310                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1311                 ptep_establish(vma, address, page_table, entry);
1312                 update_mmu_cache(vma, address, entry);
1313                 lazy_mmu_prot_update(entry);
1314                 lru_cache_add_active(new_page);
1315                 page_add_anon_rmap(new_page, vma, address);
1316
1317                 /* Free the old page.. */
1318                 new_page = old_page;
1319                 ret |= VM_FAULT_WRITE;
1320         }
1321         page_cache_release(new_page);
1322         page_cache_release(old_page);
1323 unlock:
1324         pte_unmap_unlock(page_table, ptl);
1325         return ret;
1326 oom:
1327         page_cache_release(old_page);
1328         return VM_FAULT_OOM;
1329 }
1330
1331 /*
1332  * Helper functions for unmap_mapping_range().
1333  *
1334  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1335  *
1336  * We have to restart searching the prio_tree whenever we drop the lock,
1337  * since the iterator is only valid while the lock is held, and anyway
1338  * a later vma might be split and reinserted earlier while lock dropped.
1339  *
1340  * The list of nonlinear vmas could be handled more efficiently, using
1341  * a placeholder, but handle it in the same way until a need is shown.
1342  * It is important to search the prio_tree before nonlinear list: a vma
1343  * may become nonlinear and be shifted from prio_tree to nonlinear list
1344  * while the lock is dropped; but never shifted from list to prio_tree.
1345  *
1346  * In order to make forward progress despite restarting the search,
1347  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1348  * quickly skip it next time around.  Since the prio_tree search only
1349  * shows us those vmas affected by unmapping the range in question, we
1350  * can't efficiently keep all vmas in step with mapping->truncate_count:
1351  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1352  * mapping->truncate_count and vma->vm_truncate_count are protected by
1353  * i_mmap_lock.
1354  *
1355  * In order to make forward progress despite repeatedly restarting some
1356  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1357  * and restart from that address when we reach that vma again.  It might
1358  * have been split or merged, shrunk or extended, but never shifted: so
1359  * restart_addr remains valid so long as it remains in the vma's range.
1360  * unmap_mapping_range forces truncate_count to leap over page-aligned
1361  * values so we can save vma's restart_addr in its truncate_count field.
1362  */
1363 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1364
1365 static void reset_vma_truncate_counts(struct address_space *mapping)
1366 {
1367         struct vm_area_struct *vma;
1368         struct prio_tree_iter iter;
1369
1370         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1371                 vma->vm_truncate_count = 0;
1372         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1373                 vma->vm_truncate_count = 0;
1374 }
1375
1376 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1377                 unsigned long start_addr, unsigned long end_addr,
1378                 struct zap_details *details)
1379 {
1380         unsigned long restart_addr;
1381         int need_break;
1382
1383 again:
1384         restart_addr = vma->vm_truncate_count;
1385         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1386                 start_addr = restart_addr;
1387                 if (start_addr >= end_addr) {
1388                         /* Top of vma has been split off since last time */
1389                         vma->vm_truncate_count = details->truncate_count;
1390                         return 0;
1391                 }
1392         }
1393
1394         restart_addr = zap_page_range(vma, start_addr,
1395                                         end_addr - start_addr, details);
1396         need_break = need_resched() ||
1397                         need_lockbreak(details->i_mmap_lock);
1398
1399         if (restart_addr >= end_addr) {
1400                 /* We have now completed this vma: mark it so */
1401                 vma->vm_truncate_count = details->truncate_count;
1402                 if (!need_break)
1403                         return 0;
1404         } else {
1405                 /* Note restart_addr in vma's truncate_count field */
1406                 vma->vm_truncate_count = restart_addr;
1407                 if (!need_break)
1408                         goto again;
1409         }
1410
1411         spin_unlock(details->i_mmap_lock);
1412         cond_resched();
1413         spin_lock(details->i_mmap_lock);
1414         return -EINTR;
1415 }
1416
1417 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1418                                             struct zap_details *details)
1419 {
1420         struct vm_area_struct *vma;
1421         struct prio_tree_iter iter;
1422         pgoff_t vba, vea, zba, zea;
1423
1424 restart:
1425         vma_prio_tree_foreach(vma, &iter, root,
1426                         details->first_index, details->last_index) {
1427                 /* Skip quickly over those we have already dealt with */
1428                 if (vma->vm_truncate_count == details->truncate_count)
1429                         continue;
1430
1431                 vba = vma->vm_pgoff;
1432                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1433                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1434                 zba = details->first_index;
1435                 if (zba < vba)
1436                         zba = vba;
1437                 zea = details->last_index;
1438                 if (zea > vea)
1439                         zea = vea;
1440
1441                 if (unmap_mapping_range_vma(vma,
1442                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1443                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1444                                 details) < 0)
1445                         goto restart;
1446         }
1447 }
1448
1449 static inline void unmap_mapping_range_list(struct list_head *head,
1450                                             struct zap_details *details)
1451 {
1452         struct vm_area_struct *vma;
1453
1454         /*
1455          * In nonlinear VMAs there is no correspondence between virtual address
1456          * offset and file offset.  So we must perform an exhaustive search
1457          * across *all* the pages in each nonlinear VMA, not just the pages
1458          * whose virtual address lies outside the file truncation point.
1459          */
1460 restart:
1461         list_for_each_entry(vma, head, shared.vm_set.list) {
1462                 /* Skip quickly over those we have already dealt with */
1463                 if (vma->vm_truncate_count == details->truncate_count)
1464                         continue;
1465                 details->nonlinear_vma = vma;
1466                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1467                                         vma->vm_end, details) < 0)
1468                         goto restart;
1469         }
1470 }
1471
1472 /**
1473  * unmap_mapping_range - unmap the portion of all mmaps
1474  * in the specified address_space corresponding to the specified
1475  * page range in the underlying file.
1476  * @mapping: the address space containing mmaps to be unmapped.
1477  * @holebegin: byte in first page to unmap, relative to the start of
1478  * the underlying file.  This will be rounded down to a PAGE_SIZE
1479  * boundary.  Note that this is different from vmtruncate(), which
1480  * must keep the partial page.  In contrast, we must get rid of
1481  * partial pages.
1482  * @holelen: size of prospective hole in bytes.  This will be rounded
1483  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1484  * end of the file.
1485  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1486  * but 0 when invalidating pagecache, don't throw away private data.
1487  */
1488 void unmap_mapping_range(struct address_space *mapping,
1489                 loff_t const holebegin, loff_t const holelen, int even_cows)
1490 {
1491         struct zap_details details;
1492         pgoff_t hba = holebegin >> PAGE_SHIFT;
1493         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1494
1495         /* Check for overflow. */
1496         if (sizeof(holelen) > sizeof(hlen)) {
1497                 long long holeend =
1498                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1499                 if (holeend & ~(long long)ULONG_MAX)
1500                         hlen = ULONG_MAX - hba + 1;
1501         }
1502
1503         details.check_mapping = even_cows? NULL: mapping;
1504         details.nonlinear_vma = NULL;
1505         details.first_index = hba;
1506         details.last_index = hba + hlen - 1;
1507         if (details.last_index < details.first_index)
1508                 details.last_index = ULONG_MAX;
1509         details.i_mmap_lock = &mapping->i_mmap_lock;
1510
1511         spin_lock(&mapping->i_mmap_lock);
1512
1513         /* serialize i_size write against truncate_count write */
1514         smp_wmb();
1515         /* Protect against page faults, and endless unmapping loops */
1516         mapping->truncate_count++;
1517         /*
1518          * For archs where spin_lock has inclusive semantics like ia64
1519          * this smp_mb() will prevent to read pagetable contents
1520          * before the truncate_count increment is visible to
1521          * other cpus.
1522          */
1523         smp_mb();
1524         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1525                 if (mapping->truncate_count == 0)
1526                         reset_vma_truncate_counts(mapping);
1527                 mapping->truncate_count++;
1528         }
1529         details.truncate_count = mapping->truncate_count;
1530
1531         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1532                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1533         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1534                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1535         spin_unlock(&mapping->i_mmap_lock);
1536 }
1537 EXPORT_SYMBOL(unmap_mapping_range);
1538
1539 /*
1540  * Handle all mappings that got truncated by a "truncate()"
1541  * system call.
1542  *
1543  * NOTE! We have to be ready to update the memory sharing
1544  * between the file and the memory map for a potential last
1545  * incomplete page.  Ugly, but necessary.
1546  */
1547 int vmtruncate(struct inode * inode, loff_t offset)
1548 {
1549         struct address_space *mapping = inode->i_mapping;
1550         unsigned long limit;
1551
1552         if (inode->i_size < offset)
1553                 goto do_expand;
1554         /*
1555          * truncation of in-use swapfiles is disallowed - it would cause
1556          * subsequent swapout to scribble on the now-freed blocks.
1557          */
1558         if (IS_SWAPFILE(inode))
1559                 goto out_busy;
1560         i_size_write(inode, offset);
1561         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1562         truncate_inode_pages(mapping, offset);
1563         goto out_truncate;
1564
1565 do_expand:
1566         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1567         if (limit != RLIM_INFINITY && offset > limit)
1568                 goto out_sig;
1569         if (offset > inode->i_sb->s_maxbytes)
1570                 goto out_big;
1571         i_size_write(inode, offset);
1572
1573 out_truncate:
1574         if (inode->i_op && inode->i_op->truncate)
1575                 inode->i_op->truncate(inode);
1576         return 0;
1577 out_sig:
1578         send_sig(SIGXFSZ, current, 0);
1579 out_big:
1580         return -EFBIG;
1581 out_busy:
1582         return -ETXTBSY;
1583 }
1584
1585 EXPORT_SYMBOL(vmtruncate);
1586
1587 /* 
1588  * Primitive swap readahead code. We simply read an aligned block of
1589  * (1 << page_cluster) entries in the swap area. This method is chosen
1590  * because it doesn't cost us any seek time.  We also make sure to queue
1591  * the 'original' request together with the readahead ones...  
1592  *
1593  * This has been extended to use the NUMA policies from the mm triggering
1594  * the readahead.
1595  *
1596  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1597  */
1598 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1599 {
1600 #ifdef CONFIG_NUMA
1601         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1602 #endif
1603         int i, num;
1604         struct page *new_page;
1605         unsigned long offset;
1606
1607         /*
1608          * Get the number of handles we should do readahead io to.
1609          */
1610         num = valid_swaphandles(entry, &offset);
1611         for (i = 0; i < num; offset++, i++) {
1612                 /* Ok, do the async read-ahead now */
1613                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1614                                                            offset), vma, addr);
1615                 if (!new_page)
1616                         break;
1617                 page_cache_release(new_page);
1618 #ifdef CONFIG_NUMA
1619                 /*
1620                  * Find the next applicable VMA for the NUMA policy.
1621                  */
1622                 addr += PAGE_SIZE;
1623                 if (addr == 0)
1624                         vma = NULL;
1625                 if (vma) {
1626                         if (addr >= vma->vm_end) {
1627                                 vma = next_vma;
1628                                 next_vma = vma ? vma->vm_next : NULL;
1629                         }
1630                         if (vma && addr < vma->vm_start)
1631                                 vma = NULL;
1632                 } else {
1633                         if (next_vma && addr >= next_vma->vm_start) {
1634                                 vma = next_vma;
1635                                 next_vma = vma->vm_next;
1636                         }
1637                 }
1638 #endif
1639         }
1640         lru_add_drain();        /* Push any new pages onto the LRU now */
1641 }
1642
1643 /*
1644  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1645  * but allow concurrent faults), and pte mapped but not yet locked.
1646  * We return with mmap_sem still held, but pte unmapped and unlocked.
1647  */
1648 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1649                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1650                 int write_access, pte_t orig_pte)
1651 {
1652         spinlock_t *ptl;
1653         struct page *page;
1654         swp_entry_t entry;
1655         pte_t pte;
1656         int ret = VM_FAULT_MINOR;
1657
1658         if (!pte_unmap_same(mm, page_table, orig_pte))
1659                 goto out;
1660
1661         entry = pte_to_swp_entry(orig_pte);
1662         page = lookup_swap_cache(entry);
1663         if (!page) {
1664                 swapin_readahead(entry, address, vma);
1665                 page = read_swap_cache_async(entry, vma, address);
1666                 if (!page) {
1667                         /*
1668                          * Back out if somebody else faulted in this pte
1669                          * while we released the pte lock.
1670                          */
1671                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1672                         if (likely(pte_same(*page_table, orig_pte)))
1673                                 ret = VM_FAULT_OOM;
1674                         goto unlock;
1675                 }
1676
1677                 /* Had to read the page from swap area: Major fault */
1678                 ret = VM_FAULT_MAJOR;
1679                 inc_page_state(pgmajfault);
1680                 grab_swap_token();
1681         }
1682
1683         mark_page_accessed(page);
1684         lock_page(page);
1685
1686         /*
1687          * Back out if somebody else already faulted in this pte.
1688          */
1689         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1690         if (unlikely(!pte_same(*page_table, orig_pte)))
1691                 goto out_nomap;
1692
1693         if (unlikely(!PageUptodate(page))) {
1694                 ret = VM_FAULT_SIGBUS;
1695                 goto out_nomap;
1696         }
1697
1698         /* The page isn't present yet, go ahead with the fault. */
1699
1700         inc_mm_counter(mm, anon_rss);
1701         pte = mk_pte(page, vma->vm_page_prot);
1702         if (write_access && can_share_swap_page(page)) {
1703                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1704                 write_access = 0;
1705         }
1706
1707         flush_icache_page(vma, page);
1708         set_pte_at(mm, address, page_table, pte);
1709         page_add_anon_rmap(page, vma, address);
1710
1711         swap_free(entry);
1712         if (vm_swap_full())
1713                 remove_exclusive_swap_page(page);
1714         unlock_page(page);
1715
1716         if (write_access) {
1717                 if (do_wp_page(mm, vma, address,
1718                                 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1719                         ret = VM_FAULT_OOM;
1720                 goto out;
1721         }
1722
1723         /* No need to invalidate - it was non-present before */
1724         update_mmu_cache(vma, address, pte);
1725         lazy_mmu_prot_update(pte);
1726 unlock:
1727         pte_unmap_unlock(page_table, ptl);
1728 out:
1729         return ret;
1730 out_nomap:
1731         pte_unmap_unlock(page_table, ptl);
1732         unlock_page(page);
1733         page_cache_release(page);
1734         return ret;
1735 }
1736
1737 /*
1738  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1739  * but allow concurrent faults), and pte mapped but not yet locked.
1740  * We return with mmap_sem still held, but pte unmapped and unlocked.
1741  */
1742 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1743                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1744                 int write_access)
1745 {
1746         struct page *page;
1747         spinlock_t *ptl;
1748         pte_t entry;
1749
1750         if (write_access) {
1751                 /* Allocate our own private page. */
1752                 pte_unmap(page_table);
1753
1754                 if (unlikely(anon_vma_prepare(vma)))
1755                         goto oom;
1756                 page = alloc_zeroed_user_highpage(vma, address);
1757                 if (!page)
1758                         goto oom;
1759
1760                 entry = mk_pte(page, vma->vm_page_prot);
1761                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1762
1763                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1764                 if (!pte_none(*page_table))
1765                         goto release;
1766                 inc_mm_counter(mm, anon_rss);
1767                 lru_cache_add_active(page);
1768                 SetPageReferenced(page);
1769                 page_add_anon_rmap(page, vma, address);
1770         } else {
1771                 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1772                 page = ZERO_PAGE(address);
1773                 page_cache_get(page);
1774                 entry = mk_pte(page, vma->vm_page_prot);
1775
1776                 ptl = &mm->page_table_lock;
1777                 spin_lock(ptl);
1778                 if (!pte_none(*page_table))
1779                         goto release;
1780                 inc_mm_counter(mm, file_rss);
1781                 page_add_file_rmap(page);
1782         }
1783
1784         set_pte_at(mm, address, page_table, entry);
1785
1786         /* No need to invalidate - it was non-present before */
1787         update_mmu_cache(vma, address, entry);
1788         lazy_mmu_prot_update(entry);
1789 unlock:
1790         pte_unmap_unlock(page_table, ptl);
1791         return VM_FAULT_MINOR;
1792 release:
1793         page_cache_release(page);
1794         goto unlock;
1795 oom:
1796         return VM_FAULT_OOM;
1797 }
1798
1799 /*
1800  * do_no_page() tries to create a new page mapping. It aggressively
1801  * tries to share with existing pages, but makes a separate copy if
1802  * the "write_access" parameter is true in order to avoid the next
1803  * page fault.
1804  *
1805  * As this is called only for pages that do not currently exist, we
1806  * do not need to flush old virtual caches or the TLB.
1807  *
1808  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1809  * but allow concurrent faults), and pte mapped but not yet locked.
1810  * We return with mmap_sem still held, but pte unmapped and unlocked.
1811  */
1812 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1813                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1814                 int write_access)
1815 {
1816         spinlock_t *ptl;
1817         struct page *new_page;
1818         struct address_space *mapping = NULL;
1819         pte_t entry;
1820         unsigned int sequence = 0;
1821         int ret = VM_FAULT_MINOR;
1822         int anon = 0;
1823
1824         pte_unmap(page_table);
1825
1826         if (vma->vm_file) {
1827                 mapping = vma->vm_file->f_mapping;
1828                 sequence = mapping->truncate_count;
1829                 smp_rmb(); /* serializes i_size against truncate_count */
1830         }
1831 retry:
1832         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1833         /*
1834          * No smp_rmb is needed here as long as there's a full
1835          * spin_lock/unlock sequence inside the ->nopage callback
1836          * (for the pagecache lookup) that acts as an implicit
1837          * smp_mb() and prevents the i_size read to happen
1838          * after the next truncate_count read.
1839          */
1840
1841         /* no page was available -- either SIGBUS or OOM */
1842         if (new_page == NOPAGE_SIGBUS)
1843                 return VM_FAULT_SIGBUS;
1844         if (new_page == NOPAGE_OOM)
1845                 return VM_FAULT_OOM;
1846
1847         /*
1848          * Should we do an early C-O-W break?
1849          */
1850         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1851                 struct page *page;
1852
1853                 if (unlikely(anon_vma_prepare(vma)))
1854                         goto oom;
1855                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1856                 if (!page)
1857                         goto oom;
1858                 copy_user_highpage(page, new_page, address);
1859                 page_cache_release(new_page);
1860                 new_page = page;
1861                 anon = 1;
1862         }
1863
1864         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1865         /*
1866          * For a file-backed vma, someone could have truncated or otherwise
1867          * invalidated this page.  If unmap_mapping_range got called,
1868          * retry getting the page.
1869          */
1870         if (mapping && unlikely(sequence != mapping->truncate_count)) {
1871                 pte_unmap_unlock(page_table, ptl);
1872                 page_cache_release(new_page);
1873                 cond_resched();
1874                 sequence = mapping->truncate_count;
1875                 smp_rmb();
1876                 goto retry;
1877         }
1878
1879         /*
1880          * This silly early PAGE_DIRTY setting removes a race
1881          * due to the bad i386 page protection. But it's valid
1882          * for other architectures too.
1883          *
1884          * Note that if write_access is true, we either now have
1885          * an exclusive copy of the page, or this is a shared mapping,
1886          * so we can make it writable and dirty to avoid having to
1887          * handle that later.
1888          */
1889         /* Only go through if we didn't race with anybody else... */
1890         if (pte_none(*page_table)) {
1891                 flush_icache_page(vma, new_page);
1892                 entry = mk_pte(new_page, vma->vm_page_prot);
1893                 if (write_access)
1894                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1895                 set_pte_at(mm, address, page_table, entry);
1896                 if (anon) {
1897                         inc_mm_counter(mm, anon_rss);
1898                         lru_cache_add_active(new_page);
1899                         page_add_anon_rmap(new_page, vma, address);
1900                 } else if (!(vma->vm_flags & VM_RESERVED)) {
1901                         inc_mm_counter(mm, file_rss);
1902                         page_add_file_rmap(new_page);
1903                 }
1904         } else {
1905                 /* One of our sibling threads was faster, back out. */
1906                 page_cache_release(new_page);
1907                 goto unlock;
1908         }
1909
1910         /* no need to invalidate: a not-present page shouldn't be cached */
1911         update_mmu_cache(vma, address, entry);
1912         lazy_mmu_prot_update(entry);
1913 unlock:
1914         pte_unmap_unlock(page_table, ptl);
1915         return ret;
1916 oom:
1917         page_cache_release(new_page);
1918         return VM_FAULT_OOM;
1919 }
1920
1921 /*
1922  * Fault of a previously existing named mapping. Repopulate the pte
1923  * from the encoded file_pte if possible. This enables swappable
1924  * nonlinear vmas.
1925  *
1926  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1927  * but allow concurrent faults), and pte mapped but not yet locked.
1928  * We return with mmap_sem still held, but pte unmapped and unlocked.
1929  */
1930 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1931                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1932                 int write_access, pte_t orig_pte)
1933 {
1934         pgoff_t pgoff;
1935         int err;
1936
1937         if (!pte_unmap_same(mm, page_table, orig_pte))
1938                 return VM_FAULT_MINOR;
1939
1940         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1941                 /*
1942                  * Page table corrupted: show pte and kill process.
1943                  */
1944                 print_bad_pte(vma, orig_pte, address);
1945                 return VM_FAULT_OOM;
1946         }
1947         /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1948
1949         pgoff = pte_to_pgoff(orig_pte);
1950         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1951                                         vma->vm_page_prot, pgoff, 0);
1952         if (err == -ENOMEM)
1953                 return VM_FAULT_OOM;
1954         if (err)
1955                 return VM_FAULT_SIGBUS;
1956         return VM_FAULT_MAJOR;
1957 }
1958
1959 /*
1960  * These routines also need to handle stuff like marking pages dirty
1961  * and/or accessed for architectures that don't do it in hardware (most
1962  * RISC architectures).  The early dirtying is also good on the i386.
1963  *
1964  * There is also a hook called "update_mmu_cache()" that architectures
1965  * with external mmu caches can use to update those (ie the Sparc or
1966  * PowerPC hashed page tables that act as extended TLBs).
1967  *
1968  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1969  * but allow concurrent faults), and pte mapped but not yet locked.
1970  * We return with mmap_sem still held, but pte unmapped and unlocked.
1971  */
1972 static inline int handle_pte_fault(struct mm_struct *mm,
1973                 struct vm_area_struct *vma, unsigned long address,
1974                 pte_t *pte, pmd_t *pmd, int write_access)
1975 {
1976         pte_t entry;
1977         spinlock_t *ptl;
1978
1979         entry = *pte;
1980         if (!pte_present(entry)) {
1981                 if (pte_none(entry)) {
1982                         if (!vma->vm_ops || !vma->vm_ops->nopage)
1983                                 return do_anonymous_page(mm, vma, address,
1984                                         pte, pmd, write_access);
1985                         return do_no_page(mm, vma, address,
1986                                         pte, pmd, write_access);
1987                 }
1988                 if (pte_file(entry))
1989                         return do_file_page(mm, vma, address,
1990                                         pte, pmd, write_access, entry);
1991                 return do_swap_page(mm, vma, address,
1992                                         pte, pmd, write_access, entry);
1993         }
1994
1995         ptl = &mm->page_table_lock;
1996         spin_lock(ptl);
1997         if (unlikely(!pte_same(*pte, entry)))
1998                 goto unlock;
1999         if (write_access) {
2000                 if (!pte_write(entry))
2001                         return do_wp_page(mm, vma, address,
2002                                         pte, pmd, ptl, entry);
2003                 entry = pte_mkdirty(entry);
2004         }
2005         entry = pte_mkyoung(entry);
2006         ptep_set_access_flags(vma, address, pte, entry, write_access);
2007         update_mmu_cache(vma, address, entry);
2008         lazy_mmu_prot_update(entry);
2009 unlock:
2010         pte_unmap_unlock(pte, ptl);
2011         return VM_FAULT_MINOR;
2012 }
2013
2014 /*
2015  * By the time we get here, we already hold the mm semaphore
2016  */
2017 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2018                 unsigned long address, int write_access)
2019 {
2020         pgd_t *pgd;
2021         pud_t *pud;
2022         pmd_t *pmd;
2023         pte_t *pte;
2024
2025         __set_current_state(TASK_RUNNING);
2026
2027         inc_page_state(pgfault);
2028
2029         if (unlikely(is_vm_hugetlb_page(vma)))
2030                 return hugetlb_fault(mm, vma, address, write_access);
2031
2032         pgd = pgd_offset(mm, address);
2033         pud = pud_alloc(mm, pgd, address);
2034         if (!pud)
2035                 return VM_FAULT_OOM;
2036         pmd = pmd_alloc(mm, pud, address);
2037         if (!pmd)
2038                 return VM_FAULT_OOM;
2039         pte = pte_alloc_map(mm, pmd, address);
2040         if (!pte)
2041                 return VM_FAULT_OOM;
2042
2043         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2044 }
2045
2046 #ifndef __PAGETABLE_PUD_FOLDED
2047 /*
2048  * Allocate page upper directory.
2049  * We've already handled the fast-path in-line.
2050  */
2051 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2052 {
2053         pud_t *new = pud_alloc_one(mm, address);
2054         if (!new)
2055                 return -ENOMEM;
2056
2057         spin_lock(&mm->page_table_lock);
2058         if (pgd_present(*pgd))          /* Another has populated it */
2059                 pud_free(new);
2060         else
2061                 pgd_populate(mm, pgd, new);
2062         spin_unlock(&mm->page_table_lock);
2063         return 0;
2064 }
2065 #endif /* __PAGETABLE_PUD_FOLDED */
2066
2067 #ifndef __PAGETABLE_PMD_FOLDED
2068 /*
2069  * Allocate page middle directory.
2070  * We've already handled the fast-path in-line.
2071  */
2072 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2073 {
2074         pmd_t *new = pmd_alloc_one(mm, address);
2075         if (!new)
2076                 return -ENOMEM;
2077
2078         spin_lock(&mm->page_table_lock);
2079 #ifndef __ARCH_HAS_4LEVEL_HACK
2080         if (pud_present(*pud))          /* Another has populated it */
2081                 pmd_free(new);
2082         else
2083                 pud_populate(mm, pud, new);
2084 #else
2085         if (pgd_present(*pud))          /* Another has populated it */
2086                 pmd_free(new);
2087         else
2088                 pgd_populate(mm, pud, new);
2089 #endif /* __ARCH_HAS_4LEVEL_HACK */
2090         spin_unlock(&mm->page_table_lock);
2091         return 0;
2092 }
2093 #endif /* __PAGETABLE_PMD_FOLDED */
2094
2095 int make_pages_present(unsigned long addr, unsigned long end)
2096 {
2097         int ret, len, write;
2098         struct vm_area_struct * vma;
2099
2100         vma = find_vma(current->mm, addr);
2101         if (!vma)
2102                 return -1;
2103         write = (vma->vm_flags & VM_WRITE) != 0;
2104         if (addr >= end)
2105                 BUG();
2106         if (end > vma->vm_end)
2107                 BUG();
2108         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2109         ret = get_user_pages(current, current->mm, addr,
2110                         len, write, 0, NULL, NULL);
2111         if (ret < 0)
2112                 return ret;
2113         return ret == len ? 0 : -1;
2114 }
2115
2116 /* 
2117  * Map a vmalloc()-space virtual address to the physical page.
2118  */
2119 struct page * vmalloc_to_page(void * vmalloc_addr)
2120 {
2121         unsigned long addr = (unsigned long) vmalloc_addr;
2122         struct page *page = NULL;
2123         pgd_t *pgd = pgd_offset_k(addr);
2124         pud_t *pud;
2125         pmd_t *pmd;
2126         pte_t *ptep, pte;
2127   
2128         if (!pgd_none(*pgd)) {
2129                 pud = pud_offset(pgd, addr);
2130                 if (!pud_none(*pud)) {
2131                         pmd = pmd_offset(pud, addr);
2132                         if (!pmd_none(*pmd)) {
2133                                 ptep = pte_offset_map(pmd, addr);
2134                                 pte = *ptep;
2135                                 if (pte_present(pte))
2136                                         page = pte_page(pte);
2137                                 pte_unmap(ptep);
2138                         }
2139                 }
2140         }
2141         return page;
2142 }
2143
2144 EXPORT_SYMBOL(vmalloc_to_page);
2145
2146 /*
2147  * Map a vmalloc()-space virtual address to the physical page frame number.
2148  */
2149 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2150 {
2151         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2152 }
2153
2154 EXPORT_SYMBOL(vmalloc_to_pfn);
2155
2156 #if !defined(__HAVE_ARCH_GATE_AREA)
2157
2158 #if defined(AT_SYSINFO_EHDR)
2159 static struct vm_area_struct gate_vma;
2160
2161 static int __init gate_vma_init(void)
2162 {
2163         gate_vma.vm_mm = NULL;
2164         gate_vma.vm_start = FIXADDR_USER_START;
2165         gate_vma.vm_end = FIXADDR_USER_END;
2166         gate_vma.vm_page_prot = PAGE_READONLY;
2167         gate_vma.vm_flags = VM_RESERVED;
2168         return 0;
2169 }
2170 __initcall(gate_vma_init);
2171 #endif
2172
2173 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2174 {
2175 #ifdef AT_SYSINFO_EHDR
2176         return &gate_vma;
2177 #else
2178         return NULL;
2179 #endif
2180 }
2181
2182 int in_gate_area_no_task(unsigned long addr)
2183 {
2184 #ifdef AT_SYSINFO_EHDR
2185         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2186                 return 1;
2187 #endif
2188         return 0;
2189 }
2190
2191 #endif  /* __HAVE_ARCH_GATE_AREA */