]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - mm/memory.c
4ea89a2e3a833209561c793e20e00e708769a83a
[linux-2.6-omap-h63xx.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93         pgd_ERROR(*pgd);
94         pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99         pud_ERROR(*pud);
100         pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105         pmd_ERROR(*pmd);
106         pmd_clear(pmd);
107 }
108
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115         struct page *page = pmd_page(*pmd);
116         pmd_clear(pmd);
117         pte_free_tlb(tlb, page);
118         dec_page_state(nr_page_table_pages);
119         tlb->mm->nr_ptes--;
120 }
121
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123                                 unsigned long addr, unsigned long end,
124                                 unsigned long floor, unsigned long ceiling)
125 {
126         pmd_t *pmd;
127         unsigned long next;
128         unsigned long start;
129
130         start = addr;
131         pmd = pmd_offset(pud, addr);
132         do {
133                 next = pmd_addr_end(addr, end);
134                 if (pmd_none_or_clear_bad(pmd))
135                         continue;
136                 free_pte_range(tlb, pmd);
137         } while (pmd++, addr = next, addr != end);
138
139         start &= PUD_MASK;
140         if (start < floor)
141                 return;
142         if (ceiling) {
143                 ceiling &= PUD_MASK;
144                 if (!ceiling)
145                         return;
146         }
147         if (end - 1 > ceiling - 1)
148                 return;
149
150         pmd = pmd_offset(pud, start);
151         pud_clear(pud);
152         pmd_free_tlb(tlb, pmd);
153 }
154
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156                                 unsigned long addr, unsigned long end,
157                                 unsigned long floor, unsigned long ceiling)
158 {
159         pud_t *pud;
160         unsigned long next;
161         unsigned long start;
162
163         start = addr;
164         pud = pud_offset(pgd, addr);
165         do {
166                 next = pud_addr_end(addr, end);
167                 if (pud_none_or_clear_bad(pud))
168                         continue;
169                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170         } while (pud++, addr = next, addr != end);
171
172         start &= PGDIR_MASK;
173         if (start < floor)
174                 return;
175         if (ceiling) {
176                 ceiling &= PGDIR_MASK;
177                 if (!ceiling)
178                         return;
179         }
180         if (end - 1 > ceiling - 1)
181                 return;
182
183         pud = pud_offset(pgd, start);
184         pgd_clear(pgd);
185         pud_free_tlb(tlb, pud);
186 }
187
188 /*
189  * This function frees user-level page tables of a process.
190  *
191  * Must be called with pagetable lock held.
192  */
193 void free_pgd_range(struct mmu_gather **tlb,
194                         unsigned long addr, unsigned long end,
195                         unsigned long floor, unsigned long ceiling)
196 {
197         pgd_t *pgd;
198         unsigned long next;
199         unsigned long start;
200
201         /*
202          * The next few lines have given us lots of grief...
203          *
204          * Why are we testing PMD* at this top level?  Because often
205          * there will be no work to do at all, and we'd prefer not to
206          * go all the way down to the bottom just to discover that.
207          *
208          * Why all these "- 1"s?  Because 0 represents both the bottom
209          * of the address space and the top of it (using -1 for the
210          * top wouldn't help much: the masks would do the wrong thing).
211          * The rule is that addr 0 and floor 0 refer to the bottom of
212          * the address space, but end 0 and ceiling 0 refer to the top
213          * Comparisons need to use "end - 1" and "ceiling - 1" (though
214          * that end 0 case should be mythical).
215          *
216          * Wherever addr is brought up or ceiling brought down, we must
217          * be careful to reject "the opposite 0" before it confuses the
218          * subsequent tests.  But what about where end is brought down
219          * by PMD_SIZE below? no, end can't go down to 0 there.
220          *
221          * Whereas we round start (addr) and ceiling down, by different
222          * masks at different levels, in order to test whether a table
223          * now has no other vmas using it, so can be freed, we don't
224          * bother to round floor or end up - the tests don't need that.
225          */
226
227         addr &= PMD_MASK;
228         if (addr < floor) {
229                 addr += PMD_SIZE;
230                 if (!addr)
231                         return;
232         }
233         if (ceiling) {
234                 ceiling &= PMD_MASK;
235                 if (!ceiling)
236                         return;
237         }
238         if (end - 1 > ceiling - 1)
239                 end -= PMD_SIZE;
240         if (addr > end - 1)
241                 return;
242
243         start = addr;
244         pgd = pgd_offset((*tlb)->mm, addr);
245         do {
246                 next = pgd_addr_end(addr, end);
247                 if (pgd_none_or_clear_bad(pgd))
248                         continue;
249                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250         } while (pgd++, addr = next, addr != end);
251
252         if (!(*tlb)->fullmm)
253                 flush_tlb_pgtables((*tlb)->mm, start, end);
254 }
255
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257                 unsigned long floor, unsigned long ceiling)
258 {
259         while (vma) {
260                 struct vm_area_struct *next = vma->vm_next;
261                 unsigned long addr = vma->vm_start;
262
263                 /*
264                  * Hide vma from rmap and vmtruncate before freeing pgtables
265                  */
266                 anon_vma_unlink(vma);
267                 unlink_file_vma(vma);
268
269                 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
270                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
271                                 floor, next? next->vm_start: ceiling);
272                 } else {
273                         /*
274                          * Optimization: gather nearby vmas into one call down
275                          */
276                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
277                           && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
278                                                         HPAGE_SIZE)) {
279                                 vma = next;
280                                 next = vma->vm_next;
281                                 anon_vma_unlink(vma);
282                                 unlink_file_vma(vma);
283                         }
284                         free_pgd_range(tlb, addr, vma->vm_end,
285                                 floor, next? next->vm_start: ceiling);
286                 }
287                 vma = next;
288         }
289 }
290
291 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
292 {
293         struct page *new = pte_alloc_one(mm, address);
294         if (!new)
295                 return -ENOMEM;
296
297         spin_lock(&mm->page_table_lock);
298         if (pmd_present(*pmd))          /* Another has populated it */
299                 pte_free(new);
300         else {
301                 mm->nr_ptes++;
302                 inc_page_state(nr_page_table_pages);
303                 pmd_populate(mm, pmd, new);
304         }
305         spin_unlock(&mm->page_table_lock);
306         return 0;
307 }
308
309 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
310 {
311         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
312         if (!new)
313                 return -ENOMEM;
314
315         spin_lock(&init_mm.page_table_lock);
316         if (pmd_present(*pmd))          /* Another has populated it */
317                 pte_free_kernel(new);
318         else
319                 pmd_populate_kernel(&init_mm, pmd, new);
320         spin_unlock(&init_mm.page_table_lock);
321         return 0;
322 }
323
324 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
325 {
326         if (file_rss)
327                 add_mm_counter(mm, file_rss, file_rss);
328         if (anon_rss)
329                 add_mm_counter(mm, anon_rss, anon_rss);
330 }
331
332 /*
333  * This function is called to print an error when a pte in a
334  * !VM_RESERVED region is found pointing to an invalid pfn (which
335  * is an error.
336  *
337  * The calling function must still handle the error.
338  */
339 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
340 {
341         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
342                         "vm_flags = %lx, vaddr = %lx\n",
343                 (long long)pte_val(pte),
344                 (vma->vm_mm == current->mm ? current->comm : "???"),
345                 vma->vm_flags, vaddr);
346         dump_stack();
347 }
348
349 /*
350  * copy one vm_area from one task to the other. Assumes the page tables
351  * already present in the new task to be cleared in the whole range
352  * covered by this vma.
353  */
354
355 static inline void
356 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
357                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
358                 unsigned long addr, int *rss)
359 {
360         unsigned long vm_flags = vma->vm_flags;
361         pte_t pte = *src_pte;
362         struct page *page;
363         unsigned long pfn;
364
365         /* pte contains position in swap or file, so copy. */
366         if (unlikely(!pte_present(pte))) {
367                 if (!pte_file(pte)) {
368                         swap_duplicate(pte_to_swp_entry(pte));
369                         /* make sure dst_mm is on swapoff's mmlist. */
370                         if (unlikely(list_empty(&dst_mm->mmlist))) {
371                                 spin_lock(&mmlist_lock);
372                                 list_add(&dst_mm->mmlist, &src_mm->mmlist);
373                                 spin_unlock(&mmlist_lock);
374                         }
375                 }
376                 goto out_set_pte;
377         }
378
379         /* If the region is VM_RESERVED, the mapping is not
380          * mapped via rmap - duplicate the pte as is.
381          */
382         if (vm_flags & VM_RESERVED)
383                 goto out_set_pte;
384
385         pfn = pte_pfn(pte);
386         /* If the pte points outside of valid memory but
387          * the region is not VM_RESERVED, we have a problem.
388          */
389         if (unlikely(!pfn_valid(pfn))) {
390                 print_bad_pte(vma, pte, addr);
391                 goto out_set_pte; /* try to do something sane */
392         }
393
394         page = pfn_to_page(pfn);
395
396         /*
397          * If it's a COW mapping, write protect it both
398          * in the parent and the child
399          */
400         if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
401                 ptep_set_wrprotect(src_mm, addr, src_pte);
402                 pte = *src_pte;
403         }
404
405         /*
406          * If it's a shared mapping, mark it clean in
407          * the child
408          */
409         if (vm_flags & VM_SHARED)
410                 pte = pte_mkclean(pte);
411         pte = pte_mkold(pte);
412         get_page(page);
413         page_dup_rmap(page);
414         rss[!!PageAnon(page)]++;
415
416 out_set_pte:
417         set_pte_at(dst_mm, addr, dst_pte, pte);
418 }
419
420 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
421                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
422                 unsigned long addr, unsigned long end)
423 {
424         pte_t *src_pte, *dst_pte;
425         spinlock_t *src_ptl, *dst_ptl;
426         int progress = 0;
427         int rss[2];
428
429 again:
430         rss[1] = rss[0] = 0;
431         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
432         if (!dst_pte)
433                 return -ENOMEM;
434         src_pte = pte_offset_map_nested(src_pmd, addr);
435         src_ptl = &src_mm->page_table_lock;
436         spin_lock(src_ptl);
437
438         do {
439                 /*
440                  * We are holding two locks at this point - either of them
441                  * could generate latencies in another task on another CPU.
442                  */
443                 if (progress >= 32) {
444                         progress = 0;
445                         if (need_resched() ||
446                             need_lockbreak(src_ptl) ||
447                             need_lockbreak(dst_ptl))
448                                 break;
449                 }
450                 if (pte_none(*src_pte)) {
451                         progress++;
452                         continue;
453                 }
454                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
455                 progress += 8;
456         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
457
458         spin_unlock(src_ptl);
459         pte_unmap_nested(src_pte - 1);
460         add_mm_rss(dst_mm, rss[0], rss[1]);
461         pte_unmap_unlock(dst_pte - 1, dst_ptl);
462         cond_resched();
463         if (addr != end)
464                 goto again;
465         return 0;
466 }
467
468 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
469                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
470                 unsigned long addr, unsigned long end)
471 {
472         pmd_t *src_pmd, *dst_pmd;
473         unsigned long next;
474
475         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
476         if (!dst_pmd)
477                 return -ENOMEM;
478         src_pmd = pmd_offset(src_pud, addr);
479         do {
480                 next = pmd_addr_end(addr, end);
481                 if (pmd_none_or_clear_bad(src_pmd))
482                         continue;
483                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
484                                                 vma, addr, next))
485                         return -ENOMEM;
486         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
487         return 0;
488 }
489
490 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
492                 unsigned long addr, unsigned long end)
493 {
494         pud_t *src_pud, *dst_pud;
495         unsigned long next;
496
497         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
498         if (!dst_pud)
499                 return -ENOMEM;
500         src_pud = pud_offset(src_pgd, addr);
501         do {
502                 next = pud_addr_end(addr, end);
503                 if (pud_none_or_clear_bad(src_pud))
504                         continue;
505                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
506                                                 vma, addr, next))
507                         return -ENOMEM;
508         } while (dst_pud++, src_pud++, addr = next, addr != end);
509         return 0;
510 }
511
512 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
513                 struct vm_area_struct *vma)
514 {
515         pgd_t *src_pgd, *dst_pgd;
516         unsigned long next;
517         unsigned long addr = vma->vm_start;
518         unsigned long end = vma->vm_end;
519
520         /*
521          * Don't copy ptes where a page fault will fill them correctly.
522          * Fork becomes much lighter when there are big shared or private
523          * readonly mappings. The tradeoff is that copy_page_range is more
524          * efficient than faulting.
525          */
526         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
527                 if (!vma->anon_vma)
528                         return 0;
529         }
530
531         if (is_vm_hugetlb_page(vma))
532                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
533
534         dst_pgd = pgd_offset(dst_mm, addr);
535         src_pgd = pgd_offset(src_mm, addr);
536         do {
537                 next = pgd_addr_end(addr, end);
538                 if (pgd_none_or_clear_bad(src_pgd))
539                         continue;
540                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
541                                                 vma, addr, next))
542                         return -ENOMEM;
543         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
544         return 0;
545 }
546
547 static void zap_pte_range(struct mmu_gather *tlb,
548                                 struct vm_area_struct *vma, pmd_t *pmd,
549                                 unsigned long addr, unsigned long end,
550                                 struct zap_details *details)
551 {
552         struct mm_struct *mm = tlb->mm;
553         pte_t *pte;
554         int file_rss = 0;
555         int anon_rss = 0;
556
557         pte = pte_offset_map(pmd, addr);
558         do {
559                 pte_t ptent = *pte;
560                 if (pte_none(ptent))
561                         continue;
562                 if (pte_present(ptent)) {
563                         struct page *page = NULL;
564                         if (!(vma->vm_flags & VM_RESERVED)) {
565                                 unsigned long pfn = pte_pfn(ptent);
566                                 if (unlikely(!pfn_valid(pfn)))
567                                         print_bad_pte(vma, ptent, addr);
568                                 else
569                                         page = pfn_to_page(pfn);
570                         }
571                         if (unlikely(details) && page) {
572                                 /*
573                                  * unmap_shared_mapping_pages() wants to
574                                  * invalidate cache without truncating:
575                                  * unmap shared but keep private pages.
576                                  */
577                                 if (details->check_mapping &&
578                                     details->check_mapping != page->mapping)
579                                         continue;
580                                 /*
581                                  * Each page->index must be checked when
582                                  * invalidating or truncating nonlinear.
583                                  */
584                                 if (details->nonlinear_vma &&
585                                     (page->index < details->first_index ||
586                                      page->index > details->last_index))
587                                         continue;
588                         }
589                         ptent = ptep_get_and_clear_full(mm, addr, pte,
590                                                         tlb->fullmm);
591                         tlb_remove_tlb_entry(tlb, pte, addr);
592                         if (unlikely(!page))
593                                 continue;
594                         if (unlikely(details) && details->nonlinear_vma
595                             && linear_page_index(details->nonlinear_vma,
596                                                 addr) != page->index)
597                                 set_pte_at(mm, addr, pte,
598                                            pgoff_to_pte(page->index));
599                         if (PageAnon(page))
600                                 anon_rss--;
601                         else {
602                                 if (pte_dirty(ptent))
603                                         set_page_dirty(page);
604                                 if (pte_young(ptent))
605                                         mark_page_accessed(page);
606                                 file_rss--;
607                         }
608                         page_remove_rmap(page);
609                         tlb_remove_page(tlb, page);
610                         continue;
611                 }
612                 /*
613                  * If details->check_mapping, we leave swap entries;
614                  * if details->nonlinear_vma, we leave file entries.
615                  */
616                 if (unlikely(details))
617                         continue;
618                 if (!pte_file(ptent))
619                         free_swap_and_cache(pte_to_swp_entry(ptent));
620                 pte_clear_full(mm, addr, pte, tlb->fullmm);
621         } while (pte++, addr += PAGE_SIZE, addr != end);
622
623         add_mm_rss(mm, file_rss, anon_rss);
624         pte_unmap(pte - 1);
625 }
626
627 static inline void zap_pmd_range(struct mmu_gather *tlb,
628                                 struct vm_area_struct *vma, pud_t *pud,
629                                 unsigned long addr, unsigned long end,
630                                 struct zap_details *details)
631 {
632         pmd_t *pmd;
633         unsigned long next;
634
635         pmd = pmd_offset(pud, addr);
636         do {
637                 next = pmd_addr_end(addr, end);
638                 if (pmd_none_or_clear_bad(pmd))
639                         continue;
640                 zap_pte_range(tlb, vma, pmd, addr, next, details);
641         } while (pmd++, addr = next, addr != end);
642 }
643
644 static inline void zap_pud_range(struct mmu_gather *tlb,
645                                 struct vm_area_struct *vma, pgd_t *pgd,
646                                 unsigned long addr, unsigned long end,
647                                 struct zap_details *details)
648 {
649         pud_t *pud;
650         unsigned long next;
651
652         pud = pud_offset(pgd, addr);
653         do {
654                 next = pud_addr_end(addr, end);
655                 if (pud_none_or_clear_bad(pud))
656                         continue;
657                 zap_pmd_range(tlb, vma, pud, addr, next, details);
658         } while (pud++, addr = next, addr != end);
659 }
660
661 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
662                                 unsigned long addr, unsigned long end,
663                                 struct zap_details *details)
664 {
665         pgd_t *pgd;
666         unsigned long next;
667
668         if (details && !details->check_mapping && !details->nonlinear_vma)
669                 details = NULL;
670
671         BUG_ON(addr >= end);
672         tlb_start_vma(tlb, vma);
673         pgd = pgd_offset(vma->vm_mm, addr);
674         do {
675                 next = pgd_addr_end(addr, end);
676                 if (pgd_none_or_clear_bad(pgd))
677                         continue;
678                 zap_pud_range(tlb, vma, pgd, addr, next, details);
679         } while (pgd++, addr = next, addr != end);
680         tlb_end_vma(tlb, vma);
681 }
682
683 #ifdef CONFIG_PREEMPT
684 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
685 #else
686 /* No preempt: go for improved straight-line efficiency */
687 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
688 #endif
689
690 /**
691  * unmap_vmas - unmap a range of memory covered by a list of vma's
692  * @tlbp: address of the caller's struct mmu_gather
693  * @mm: the controlling mm_struct
694  * @vma: the starting vma
695  * @start_addr: virtual address at which to start unmapping
696  * @end_addr: virtual address at which to end unmapping
697  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
698  * @details: details of nonlinear truncation or shared cache invalidation
699  *
700  * Returns the end address of the unmapping (restart addr if interrupted).
701  *
702  * Unmap all pages in the vma list.  Called under page_table_lock.
703  *
704  * We aim to not hold page_table_lock for too long (for scheduling latency
705  * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
706  * return the ending mmu_gather to the caller.
707  *
708  * Only addresses between `start' and `end' will be unmapped.
709  *
710  * The VMA list must be sorted in ascending virtual address order.
711  *
712  * unmap_vmas() assumes that the caller will flush the whole unmapped address
713  * range after unmap_vmas() returns.  So the only responsibility here is to
714  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
715  * drops the lock and schedules.
716  */
717 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
718                 struct vm_area_struct *vma, unsigned long start_addr,
719                 unsigned long end_addr, unsigned long *nr_accounted,
720                 struct zap_details *details)
721 {
722         unsigned long zap_bytes = ZAP_BLOCK_SIZE;
723         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
724         int tlb_start_valid = 0;
725         unsigned long start = start_addr;
726         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
727         int fullmm = (*tlbp)->fullmm;
728
729         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
730                 unsigned long end;
731
732                 start = max(vma->vm_start, start_addr);
733                 if (start >= vma->vm_end)
734                         continue;
735                 end = min(vma->vm_end, end_addr);
736                 if (end <= vma->vm_start)
737                         continue;
738
739                 if (vma->vm_flags & VM_ACCOUNT)
740                         *nr_accounted += (end - start) >> PAGE_SHIFT;
741
742                 while (start != end) {
743                         unsigned long block;
744
745                         if (!tlb_start_valid) {
746                                 tlb_start = start;
747                                 tlb_start_valid = 1;
748                         }
749
750                         if (is_vm_hugetlb_page(vma)) {
751                                 block = end - start;
752                                 unmap_hugepage_range(vma, start, end);
753                         } else {
754                                 block = min(zap_bytes, end - start);
755                                 unmap_page_range(*tlbp, vma, start,
756                                                 start + block, details);
757                         }
758
759                         start += block;
760                         zap_bytes -= block;
761                         if ((long)zap_bytes > 0)
762                                 continue;
763
764                         tlb_finish_mmu(*tlbp, tlb_start, start);
765
766                         if (need_resched() ||
767                                 need_lockbreak(&mm->page_table_lock) ||
768                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
769                                 if (i_mmap_lock) {
770                                         /* must reset count of rss freed */
771                                         *tlbp = tlb_gather_mmu(mm, fullmm);
772                                         goto out;
773                                 }
774                                 spin_unlock(&mm->page_table_lock);
775                                 cond_resched();
776                                 spin_lock(&mm->page_table_lock);
777                         }
778
779                         *tlbp = tlb_gather_mmu(mm, fullmm);
780                         tlb_start_valid = 0;
781                         zap_bytes = ZAP_BLOCK_SIZE;
782                 }
783         }
784 out:
785         return start;   /* which is now the end (or restart) address */
786 }
787
788 /**
789  * zap_page_range - remove user pages in a given range
790  * @vma: vm_area_struct holding the applicable pages
791  * @address: starting address of pages to zap
792  * @size: number of bytes to zap
793  * @details: details of nonlinear truncation or shared cache invalidation
794  */
795 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
796                 unsigned long size, struct zap_details *details)
797 {
798         struct mm_struct *mm = vma->vm_mm;
799         struct mmu_gather *tlb;
800         unsigned long end = address + size;
801         unsigned long nr_accounted = 0;
802
803         if (is_vm_hugetlb_page(vma)) {
804                 zap_hugepage_range(vma, address, size);
805                 return end;
806         }
807
808         lru_add_drain();
809         tlb = tlb_gather_mmu(mm, 0);
810         update_hiwater_rss(mm);
811         spin_lock(&mm->page_table_lock);
812         end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
813         spin_unlock(&mm->page_table_lock);
814         tlb_finish_mmu(tlb, address, end);
815         return end;
816 }
817
818 /*
819  * Do a quick page-table lookup for a single page.
820  * mm->page_table_lock must be held.
821  */
822 static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
823                         int read, int write, int accessed)
824 {
825         pgd_t *pgd;
826         pud_t *pud;
827         pmd_t *pmd;
828         pte_t *ptep, pte;
829         unsigned long pfn;
830         struct page *page;
831
832         page = follow_huge_addr(mm, address, write);
833         if (! IS_ERR(page))
834                 return page;
835
836         pgd = pgd_offset(mm, address);
837         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
838                 goto out;
839
840         pud = pud_offset(pgd, address);
841         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
842                 goto out;
843         
844         pmd = pmd_offset(pud, address);
845         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
846                 goto out;
847         if (pmd_huge(*pmd))
848                 return follow_huge_pmd(mm, address, pmd, write);
849
850         ptep = pte_offset_map(pmd, address);
851         if (!ptep)
852                 goto out;
853
854         pte = *ptep;
855         pte_unmap(ptep);
856         if (pte_present(pte)) {
857                 if (write && !pte_write(pte))
858                         goto out;
859                 if (read && !pte_read(pte))
860                         goto out;
861                 pfn = pte_pfn(pte);
862                 if (pfn_valid(pfn)) {
863                         page = pfn_to_page(pfn);
864                         if (accessed) {
865                                 if (write && !pte_dirty(pte) &&!PageDirty(page))
866                                         set_page_dirty(page);
867                                 mark_page_accessed(page);
868                         }
869                         return page;
870                 }
871         }
872
873 out:
874         return NULL;
875 }
876
877 inline struct page *
878 follow_page(struct mm_struct *mm, unsigned long address, int write)
879 {
880         return __follow_page(mm, address, 0, write, 1);
881 }
882
883 /*
884  * check_user_page_readable() can be called frm niterrupt context by oprofile,
885  * so we need to avoid taking any non-irq-safe locks
886  */
887 int check_user_page_readable(struct mm_struct *mm, unsigned long address)
888 {
889         return __follow_page(mm, address, 1, 0, 0) != NULL;
890 }
891 EXPORT_SYMBOL(check_user_page_readable);
892
893 static inline int
894 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
895                          unsigned long address)
896 {
897         pgd_t *pgd;
898         pud_t *pud;
899         pmd_t *pmd;
900
901         /* Check if the vma is for an anonymous mapping. */
902         if (vma->vm_ops && vma->vm_ops->nopage)
903                 return 0;
904
905         /* Check if page directory entry exists. */
906         pgd = pgd_offset(mm, address);
907         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
908                 return 1;
909
910         pud = pud_offset(pgd, address);
911         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
912                 return 1;
913
914         /* Check if page middle directory entry exists. */
915         pmd = pmd_offset(pud, address);
916         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
917                 return 1;
918
919         /* There is a pte slot for 'address' in 'mm'. */
920         return 0;
921 }
922
923 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
924                 unsigned long start, int len, int write, int force,
925                 struct page **pages, struct vm_area_struct **vmas)
926 {
927         int i;
928         unsigned int flags;
929
930         /* 
931          * Require read or write permissions.
932          * If 'force' is set, we only require the "MAY" flags.
933          */
934         flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
935         flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
936         i = 0;
937
938         do {
939                 struct vm_area_struct * vma;
940
941                 vma = find_extend_vma(mm, start);
942                 if (!vma && in_gate_area(tsk, start)) {
943                         unsigned long pg = start & PAGE_MASK;
944                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
945                         pgd_t *pgd;
946                         pud_t *pud;
947                         pmd_t *pmd;
948                         pte_t *pte;
949                         if (write) /* user gate pages are read-only */
950                                 return i ? : -EFAULT;
951                         if (pg > TASK_SIZE)
952                                 pgd = pgd_offset_k(pg);
953                         else
954                                 pgd = pgd_offset_gate(mm, pg);
955                         BUG_ON(pgd_none(*pgd));
956                         pud = pud_offset(pgd, pg);
957                         BUG_ON(pud_none(*pud));
958                         pmd = pmd_offset(pud, pg);
959                         if (pmd_none(*pmd))
960                                 return i ? : -EFAULT;
961                         pte = pte_offset_map(pmd, pg);
962                         if (pte_none(*pte)) {
963                                 pte_unmap(pte);
964                                 return i ? : -EFAULT;
965                         }
966                         if (pages) {
967                                 pages[i] = pte_page(*pte);
968                                 get_page(pages[i]);
969                         }
970                         pte_unmap(pte);
971                         if (vmas)
972                                 vmas[i] = gate_vma;
973                         i++;
974                         start += PAGE_SIZE;
975                         len--;
976                         continue;
977                 }
978
979                 if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
980                                 || !(flags & vma->vm_flags))
981                         return i ? : -EFAULT;
982
983                 if (is_vm_hugetlb_page(vma)) {
984                         i = follow_hugetlb_page(mm, vma, pages, vmas,
985                                                 &start, &len, i);
986                         continue;
987                 }
988                 spin_lock(&mm->page_table_lock);
989                 do {
990                         int write_access = write;
991                         struct page *page;
992
993                         cond_resched_lock(&mm->page_table_lock);
994                         while (!(page = follow_page(mm, start, write_access))) {
995                                 int ret;
996
997                                 /*
998                                  * Shortcut for anonymous pages. We don't want
999                                  * to force the creation of pages tables for
1000                                  * insanely big anonymously mapped areas that
1001                                  * nobody touched so far. This is important
1002                                  * for doing a core dump for these mappings.
1003                                  */
1004                                 if (!write && untouched_anonymous_page(mm,vma,start)) {
1005                                         page = ZERO_PAGE(start);
1006                                         break;
1007                                 }
1008                                 spin_unlock(&mm->page_table_lock);
1009                                 ret = __handle_mm_fault(mm, vma, start, write_access);
1010
1011                                 /*
1012                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
1013                                  * broken COW when necessary, even if maybe_mkwrite
1014                                  * decided not to set pte_write. We can thus safely do
1015                                  * subsequent page lookups as if they were reads.
1016                                  */
1017                                 if (ret & VM_FAULT_WRITE)
1018                                         write_access = 0;
1019                                 
1020                                 switch (ret & ~VM_FAULT_WRITE) {
1021                                 case VM_FAULT_MINOR:
1022                                         tsk->min_flt++;
1023                                         break;
1024                                 case VM_FAULT_MAJOR:
1025                                         tsk->maj_flt++;
1026                                         break;
1027                                 case VM_FAULT_SIGBUS:
1028                                         return i ? i : -EFAULT;
1029                                 case VM_FAULT_OOM:
1030                                         return i ? i : -ENOMEM;
1031                                 default:
1032                                         BUG();
1033                                 }
1034                                 spin_lock(&mm->page_table_lock);
1035                         }
1036                         if (pages) {
1037                                 pages[i] = page;
1038                                 flush_dcache_page(page);
1039                                 page_cache_get(page);
1040                         }
1041                         if (vmas)
1042                                 vmas[i] = vma;
1043                         i++;
1044                         start += PAGE_SIZE;
1045                         len--;
1046                 } while (len && start < vma->vm_end);
1047                 spin_unlock(&mm->page_table_lock);
1048         } while (len);
1049         return i;
1050 }
1051 EXPORT_SYMBOL(get_user_pages);
1052
1053 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1054                         unsigned long addr, unsigned long end, pgprot_t prot)
1055 {
1056         pte_t *pte;
1057         spinlock_t *ptl;
1058
1059         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1060         if (!pte)
1061                 return -ENOMEM;
1062         do {
1063                 struct page *page = ZERO_PAGE(addr);
1064                 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1065                 page_cache_get(page);
1066                 page_add_file_rmap(page);
1067                 inc_mm_counter(mm, file_rss);
1068                 BUG_ON(!pte_none(*pte));
1069                 set_pte_at(mm, addr, pte, zero_pte);
1070         } while (pte++, addr += PAGE_SIZE, addr != end);
1071         pte_unmap_unlock(pte - 1, ptl);
1072         return 0;
1073 }
1074
1075 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1076                         unsigned long addr, unsigned long end, pgprot_t prot)
1077 {
1078         pmd_t *pmd;
1079         unsigned long next;
1080
1081         pmd = pmd_alloc(mm, pud, addr);
1082         if (!pmd)
1083                 return -ENOMEM;
1084         do {
1085                 next = pmd_addr_end(addr, end);
1086                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1087                         return -ENOMEM;
1088         } while (pmd++, addr = next, addr != end);
1089         return 0;
1090 }
1091
1092 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1093                         unsigned long addr, unsigned long end, pgprot_t prot)
1094 {
1095         pud_t *pud;
1096         unsigned long next;
1097
1098         pud = pud_alloc(mm, pgd, addr);
1099         if (!pud)
1100                 return -ENOMEM;
1101         do {
1102                 next = pud_addr_end(addr, end);
1103                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1104                         return -ENOMEM;
1105         } while (pud++, addr = next, addr != end);
1106         return 0;
1107 }
1108
1109 int zeromap_page_range(struct vm_area_struct *vma,
1110                         unsigned long addr, unsigned long size, pgprot_t prot)
1111 {
1112         pgd_t *pgd;
1113         unsigned long next;
1114         unsigned long end = addr + size;
1115         struct mm_struct *mm = vma->vm_mm;
1116         int err;
1117
1118         BUG_ON(addr >= end);
1119         pgd = pgd_offset(mm, addr);
1120         flush_cache_range(vma, addr, end);
1121         do {
1122                 next = pgd_addr_end(addr, end);
1123                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1124                 if (err)
1125                         break;
1126         } while (pgd++, addr = next, addr != end);
1127         return err;
1128 }
1129
1130 /*
1131  * maps a range of physical memory into the requested pages. the old
1132  * mappings are removed. any references to nonexistent pages results
1133  * in null mappings (currently treated as "copy-on-access")
1134  */
1135 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1136                         unsigned long addr, unsigned long end,
1137                         unsigned long pfn, pgprot_t prot)
1138 {
1139         pte_t *pte;
1140         spinlock_t *ptl;
1141
1142         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1143         if (!pte)
1144                 return -ENOMEM;
1145         do {
1146                 BUG_ON(!pte_none(*pte));
1147                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1148                 pfn++;
1149         } while (pte++, addr += PAGE_SIZE, addr != end);
1150         pte_unmap_unlock(pte - 1, ptl);
1151         return 0;
1152 }
1153
1154 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1155                         unsigned long addr, unsigned long end,
1156                         unsigned long pfn, pgprot_t prot)
1157 {
1158         pmd_t *pmd;
1159         unsigned long next;
1160
1161         pfn -= addr >> PAGE_SHIFT;
1162         pmd = pmd_alloc(mm, pud, addr);
1163         if (!pmd)
1164                 return -ENOMEM;
1165         do {
1166                 next = pmd_addr_end(addr, end);
1167                 if (remap_pte_range(mm, pmd, addr, next,
1168                                 pfn + (addr >> PAGE_SHIFT), prot))
1169                         return -ENOMEM;
1170         } while (pmd++, addr = next, addr != end);
1171         return 0;
1172 }
1173
1174 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1175                         unsigned long addr, unsigned long end,
1176                         unsigned long pfn, pgprot_t prot)
1177 {
1178         pud_t *pud;
1179         unsigned long next;
1180
1181         pfn -= addr >> PAGE_SHIFT;
1182         pud = pud_alloc(mm, pgd, addr);
1183         if (!pud)
1184                 return -ENOMEM;
1185         do {
1186                 next = pud_addr_end(addr, end);
1187                 if (remap_pmd_range(mm, pud, addr, next,
1188                                 pfn + (addr >> PAGE_SHIFT), prot))
1189                         return -ENOMEM;
1190         } while (pud++, addr = next, addr != end);
1191         return 0;
1192 }
1193
1194 /*  Note: this is only safe if the mm semaphore is held when called. */
1195 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1196                     unsigned long pfn, unsigned long size, pgprot_t prot)
1197 {
1198         pgd_t *pgd;
1199         unsigned long next;
1200         unsigned long end = addr + PAGE_ALIGN(size);
1201         struct mm_struct *mm = vma->vm_mm;
1202         int err;
1203
1204         /*
1205          * Physically remapped pages are special. Tell the
1206          * rest of the world about it:
1207          *   VM_IO tells people not to look at these pages
1208          *      (accesses can have side effects).
1209          *   VM_RESERVED tells the core MM not to "manage" these pages
1210          *      (e.g. refcount, mapcount, try to swap them out).
1211          */
1212         vma->vm_flags |= VM_IO | VM_RESERVED;
1213
1214         BUG_ON(addr >= end);
1215         pfn -= addr >> PAGE_SHIFT;
1216         pgd = pgd_offset(mm, addr);
1217         flush_cache_range(vma, addr, end);
1218         do {
1219                 next = pgd_addr_end(addr, end);
1220                 err = remap_pud_range(mm, pgd, addr, next,
1221                                 pfn + (addr >> PAGE_SHIFT), prot);
1222                 if (err)
1223                         break;
1224         } while (pgd++, addr = next, addr != end);
1225         return err;
1226 }
1227 EXPORT_SYMBOL(remap_pfn_range);
1228
1229 /*
1230  * handle_pte_fault chooses page fault handler according to an entry
1231  * which was read non-atomically.  Before making any commitment, on
1232  * those architectures or configurations (e.g. i386 with PAE) which
1233  * might give a mix of unmatched parts, do_swap_page and do_file_page
1234  * must check under lock before unmapping the pte and proceeding
1235  * (but do_wp_page is only called after already making such a check;
1236  * and do_anonymous_page and do_no_page can safely check later on).
1237  */
1238 static inline int pte_unmap_same(struct mm_struct *mm,
1239                                 pte_t *page_table, pte_t orig_pte)
1240 {
1241         int same = 1;
1242 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1243         if (sizeof(pte_t) > sizeof(unsigned long)) {
1244                 spin_lock(&mm->page_table_lock);
1245                 same = pte_same(*page_table, orig_pte);
1246                 spin_unlock(&mm->page_table_lock);
1247         }
1248 #endif
1249         pte_unmap(page_table);
1250         return same;
1251 }
1252
1253 /*
1254  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1255  * servicing faults for write access.  In the normal case, do always want
1256  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1257  * that do not have writing enabled, when used by access_process_vm.
1258  */
1259 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1260 {
1261         if (likely(vma->vm_flags & VM_WRITE))
1262                 pte = pte_mkwrite(pte);
1263         return pte;
1264 }
1265
1266 /*
1267  * This routine handles present pages, when users try to write
1268  * to a shared page. It is done by copying the page to a new address
1269  * and decrementing the shared-page counter for the old page.
1270  *
1271  * Note that this routine assumes that the protection checks have been
1272  * done by the caller (the low-level page fault routine in most cases).
1273  * Thus we can safely just mark it writable once we've done any necessary
1274  * COW.
1275  *
1276  * We also mark the page dirty at this point even though the page will
1277  * change only once the write actually happens. This avoids a few races,
1278  * and potentially makes it more efficient.
1279  *
1280  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1281  * but allow concurrent faults), with pte both mapped and locked.
1282  * We return with mmap_sem still held, but pte unmapped and unlocked.
1283  */
1284 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1285                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1286                 spinlock_t *ptl, pte_t orig_pte)
1287 {
1288         struct page *old_page, *new_page;
1289         unsigned long pfn = pte_pfn(orig_pte);
1290         pte_t entry;
1291         int ret = VM_FAULT_MINOR;
1292
1293         BUG_ON(vma->vm_flags & VM_RESERVED);
1294
1295         if (unlikely(!pfn_valid(pfn))) {
1296                 /*
1297                  * Page table corrupted: show pte and kill process.
1298                  */
1299                 print_bad_pte(vma, orig_pte, address);
1300                 ret = VM_FAULT_OOM;
1301                 goto unlock;
1302         }
1303         old_page = pfn_to_page(pfn);
1304
1305         if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1306                 int reuse = can_share_swap_page(old_page);
1307                 unlock_page(old_page);
1308                 if (reuse) {
1309                         flush_cache_page(vma, address, pfn);
1310                         entry = pte_mkyoung(orig_pte);
1311                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1312                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1313                         update_mmu_cache(vma, address, entry);
1314                         lazy_mmu_prot_update(entry);
1315                         ret |= VM_FAULT_WRITE;
1316                         goto unlock;
1317                 }
1318         }
1319
1320         /*
1321          * Ok, we need to copy. Oh, well..
1322          */
1323         page_cache_get(old_page);
1324         pte_unmap_unlock(page_table, ptl);
1325
1326         if (unlikely(anon_vma_prepare(vma)))
1327                 goto oom;
1328         if (old_page == ZERO_PAGE(address)) {
1329                 new_page = alloc_zeroed_user_highpage(vma, address);
1330                 if (!new_page)
1331                         goto oom;
1332         } else {
1333                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1334                 if (!new_page)
1335                         goto oom;
1336                 copy_user_highpage(new_page, old_page, address);
1337         }
1338
1339         /*
1340          * Re-check the pte - we dropped the lock
1341          */
1342         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1343         if (likely(pte_same(*page_table, orig_pte))) {
1344                 page_remove_rmap(old_page);
1345                 if (!PageAnon(old_page)) {
1346                         inc_mm_counter(mm, anon_rss);
1347                         dec_mm_counter(mm, file_rss);
1348                 }
1349                 flush_cache_page(vma, address, pfn);
1350                 entry = mk_pte(new_page, vma->vm_page_prot);
1351                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1352                 ptep_establish(vma, address, page_table, entry);
1353                 update_mmu_cache(vma, address, entry);
1354                 lazy_mmu_prot_update(entry);
1355                 lru_cache_add_active(new_page);
1356                 page_add_anon_rmap(new_page, vma, address);
1357
1358                 /* Free the old page.. */
1359                 new_page = old_page;
1360                 ret |= VM_FAULT_WRITE;
1361         }
1362         page_cache_release(new_page);
1363         page_cache_release(old_page);
1364 unlock:
1365         pte_unmap_unlock(page_table, ptl);
1366         return ret;
1367 oom:
1368         page_cache_release(old_page);
1369         return VM_FAULT_OOM;
1370 }
1371
1372 /*
1373  * Helper functions for unmap_mapping_range().
1374  *
1375  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1376  *
1377  * We have to restart searching the prio_tree whenever we drop the lock,
1378  * since the iterator is only valid while the lock is held, and anyway
1379  * a later vma might be split and reinserted earlier while lock dropped.
1380  *
1381  * The list of nonlinear vmas could be handled more efficiently, using
1382  * a placeholder, but handle it in the same way until a need is shown.
1383  * It is important to search the prio_tree before nonlinear list: a vma
1384  * may become nonlinear and be shifted from prio_tree to nonlinear list
1385  * while the lock is dropped; but never shifted from list to prio_tree.
1386  *
1387  * In order to make forward progress despite restarting the search,
1388  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1389  * quickly skip it next time around.  Since the prio_tree search only
1390  * shows us those vmas affected by unmapping the range in question, we
1391  * can't efficiently keep all vmas in step with mapping->truncate_count:
1392  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1393  * mapping->truncate_count and vma->vm_truncate_count are protected by
1394  * i_mmap_lock.
1395  *
1396  * In order to make forward progress despite repeatedly restarting some
1397  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1398  * and restart from that address when we reach that vma again.  It might
1399  * have been split or merged, shrunk or extended, but never shifted: so
1400  * restart_addr remains valid so long as it remains in the vma's range.
1401  * unmap_mapping_range forces truncate_count to leap over page-aligned
1402  * values so we can save vma's restart_addr in its truncate_count field.
1403  */
1404 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1405
1406 static void reset_vma_truncate_counts(struct address_space *mapping)
1407 {
1408         struct vm_area_struct *vma;
1409         struct prio_tree_iter iter;
1410
1411         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1412                 vma->vm_truncate_count = 0;
1413         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1414                 vma->vm_truncate_count = 0;
1415 }
1416
1417 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1418                 unsigned long start_addr, unsigned long end_addr,
1419                 struct zap_details *details)
1420 {
1421         unsigned long restart_addr;
1422         int need_break;
1423
1424 again:
1425         restart_addr = vma->vm_truncate_count;
1426         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1427                 start_addr = restart_addr;
1428                 if (start_addr >= end_addr) {
1429                         /* Top of vma has been split off since last time */
1430                         vma->vm_truncate_count = details->truncate_count;
1431                         return 0;
1432                 }
1433         }
1434
1435         restart_addr = zap_page_range(vma, start_addr,
1436                                         end_addr - start_addr, details);
1437
1438         /*
1439          * We cannot rely on the break test in unmap_vmas:
1440          * on the one hand, we don't want to restart our loop
1441          * just because that broke out for the page_table_lock;
1442          * on the other hand, it does no test when vma is small.
1443          */
1444         need_break = need_resched() ||
1445                         need_lockbreak(details->i_mmap_lock);
1446
1447         if (restart_addr >= end_addr) {
1448                 /* We have now completed this vma: mark it so */
1449                 vma->vm_truncate_count = details->truncate_count;
1450                 if (!need_break)
1451                         return 0;
1452         } else {
1453                 /* Note restart_addr in vma's truncate_count field */
1454                 vma->vm_truncate_count = restart_addr;
1455                 if (!need_break)
1456                         goto again;
1457         }
1458
1459         spin_unlock(details->i_mmap_lock);
1460         cond_resched();
1461         spin_lock(details->i_mmap_lock);
1462         return -EINTR;
1463 }
1464
1465 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1466                                             struct zap_details *details)
1467 {
1468         struct vm_area_struct *vma;
1469         struct prio_tree_iter iter;
1470         pgoff_t vba, vea, zba, zea;
1471
1472 restart:
1473         vma_prio_tree_foreach(vma, &iter, root,
1474                         details->first_index, details->last_index) {
1475                 /* Skip quickly over those we have already dealt with */
1476                 if (vma->vm_truncate_count == details->truncate_count)
1477                         continue;
1478
1479                 vba = vma->vm_pgoff;
1480                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1481                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1482                 zba = details->first_index;
1483                 if (zba < vba)
1484                         zba = vba;
1485                 zea = details->last_index;
1486                 if (zea > vea)
1487                         zea = vea;
1488
1489                 if (unmap_mapping_range_vma(vma,
1490                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1491                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1492                                 details) < 0)
1493                         goto restart;
1494         }
1495 }
1496
1497 static inline void unmap_mapping_range_list(struct list_head *head,
1498                                             struct zap_details *details)
1499 {
1500         struct vm_area_struct *vma;
1501
1502         /*
1503          * In nonlinear VMAs there is no correspondence between virtual address
1504          * offset and file offset.  So we must perform an exhaustive search
1505          * across *all* the pages in each nonlinear VMA, not just the pages
1506          * whose virtual address lies outside the file truncation point.
1507          */
1508 restart:
1509         list_for_each_entry(vma, head, shared.vm_set.list) {
1510                 /* Skip quickly over those we have already dealt with */
1511                 if (vma->vm_truncate_count == details->truncate_count)
1512                         continue;
1513                 details->nonlinear_vma = vma;
1514                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1515                                         vma->vm_end, details) < 0)
1516                         goto restart;
1517         }
1518 }
1519
1520 /**
1521  * unmap_mapping_range - unmap the portion of all mmaps
1522  * in the specified address_space corresponding to the specified
1523  * page range in the underlying file.
1524  * @mapping: the address space containing mmaps to be unmapped.
1525  * @holebegin: byte in first page to unmap, relative to the start of
1526  * the underlying file.  This will be rounded down to a PAGE_SIZE
1527  * boundary.  Note that this is different from vmtruncate(), which
1528  * must keep the partial page.  In contrast, we must get rid of
1529  * partial pages.
1530  * @holelen: size of prospective hole in bytes.  This will be rounded
1531  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1532  * end of the file.
1533  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1534  * but 0 when invalidating pagecache, don't throw away private data.
1535  */
1536 void unmap_mapping_range(struct address_space *mapping,
1537                 loff_t const holebegin, loff_t const holelen, int even_cows)
1538 {
1539         struct zap_details details;
1540         pgoff_t hba = holebegin >> PAGE_SHIFT;
1541         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1542
1543         /* Check for overflow. */
1544         if (sizeof(holelen) > sizeof(hlen)) {
1545                 long long holeend =
1546                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1547                 if (holeend & ~(long long)ULONG_MAX)
1548                         hlen = ULONG_MAX - hba + 1;
1549         }
1550
1551         details.check_mapping = even_cows? NULL: mapping;
1552         details.nonlinear_vma = NULL;
1553         details.first_index = hba;
1554         details.last_index = hba + hlen - 1;
1555         if (details.last_index < details.first_index)
1556                 details.last_index = ULONG_MAX;
1557         details.i_mmap_lock = &mapping->i_mmap_lock;
1558
1559         spin_lock(&mapping->i_mmap_lock);
1560
1561         /* serialize i_size write against truncate_count write */
1562         smp_wmb();
1563         /* Protect against page faults, and endless unmapping loops */
1564         mapping->truncate_count++;
1565         /*
1566          * For archs where spin_lock has inclusive semantics like ia64
1567          * this smp_mb() will prevent to read pagetable contents
1568          * before the truncate_count increment is visible to
1569          * other cpus.
1570          */
1571         smp_mb();
1572         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1573                 if (mapping->truncate_count == 0)
1574                         reset_vma_truncate_counts(mapping);
1575                 mapping->truncate_count++;
1576         }
1577         details.truncate_count = mapping->truncate_count;
1578
1579         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1580                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1581         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1582                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1583         spin_unlock(&mapping->i_mmap_lock);
1584 }
1585 EXPORT_SYMBOL(unmap_mapping_range);
1586
1587 /*
1588  * Handle all mappings that got truncated by a "truncate()"
1589  * system call.
1590  *
1591  * NOTE! We have to be ready to update the memory sharing
1592  * between the file and the memory map for a potential last
1593  * incomplete page.  Ugly, but necessary.
1594  */
1595 int vmtruncate(struct inode * inode, loff_t offset)
1596 {
1597         struct address_space *mapping = inode->i_mapping;
1598         unsigned long limit;
1599
1600         if (inode->i_size < offset)
1601                 goto do_expand;
1602         /*
1603          * truncation of in-use swapfiles is disallowed - it would cause
1604          * subsequent swapout to scribble on the now-freed blocks.
1605          */
1606         if (IS_SWAPFILE(inode))
1607                 goto out_busy;
1608         i_size_write(inode, offset);
1609         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1610         truncate_inode_pages(mapping, offset);
1611         goto out_truncate;
1612
1613 do_expand:
1614         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1615         if (limit != RLIM_INFINITY && offset > limit)
1616                 goto out_sig;
1617         if (offset > inode->i_sb->s_maxbytes)
1618                 goto out_big;
1619         i_size_write(inode, offset);
1620
1621 out_truncate:
1622         if (inode->i_op && inode->i_op->truncate)
1623                 inode->i_op->truncate(inode);
1624         return 0;
1625 out_sig:
1626         send_sig(SIGXFSZ, current, 0);
1627 out_big:
1628         return -EFBIG;
1629 out_busy:
1630         return -ETXTBSY;
1631 }
1632
1633 EXPORT_SYMBOL(vmtruncate);
1634
1635 /* 
1636  * Primitive swap readahead code. We simply read an aligned block of
1637  * (1 << page_cluster) entries in the swap area. This method is chosen
1638  * because it doesn't cost us any seek time.  We also make sure to queue
1639  * the 'original' request together with the readahead ones...  
1640  *
1641  * This has been extended to use the NUMA policies from the mm triggering
1642  * the readahead.
1643  *
1644  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1645  */
1646 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1647 {
1648 #ifdef CONFIG_NUMA
1649         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1650 #endif
1651         int i, num;
1652         struct page *new_page;
1653         unsigned long offset;
1654
1655         /*
1656          * Get the number of handles we should do readahead io to.
1657          */
1658         num = valid_swaphandles(entry, &offset);
1659         for (i = 0; i < num; offset++, i++) {
1660                 /* Ok, do the async read-ahead now */
1661                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1662                                                            offset), vma, addr);
1663                 if (!new_page)
1664                         break;
1665                 page_cache_release(new_page);
1666 #ifdef CONFIG_NUMA
1667                 /*
1668                  * Find the next applicable VMA for the NUMA policy.
1669                  */
1670                 addr += PAGE_SIZE;
1671                 if (addr == 0)
1672                         vma = NULL;
1673                 if (vma) {
1674                         if (addr >= vma->vm_end) {
1675                                 vma = next_vma;
1676                                 next_vma = vma ? vma->vm_next : NULL;
1677                         }
1678                         if (vma && addr < vma->vm_start)
1679                                 vma = NULL;
1680                 } else {
1681                         if (next_vma && addr >= next_vma->vm_start) {
1682                                 vma = next_vma;
1683                                 next_vma = vma->vm_next;
1684                         }
1685                 }
1686 #endif
1687         }
1688         lru_add_drain();        /* Push any new pages onto the LRU now */
1689 }
1690
1691 /*
1692  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1693  * but allow concurrent faults), and pte mapped but not yet locked.
1694  * We return with mmap_sem still held, but pte unmapped and unlocked.
1695  */
1696 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1697                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1698                 int write_access, pte_t orig_pte)
1699 {
1700         spinlock_t *ptl;
1701         struct page *page;
1702         swp_entry_t entry;
1703         pte_t pte;
1704         int ret = VM_FAULT_MINOR;
1705
1706         if (!pte_unmap_same(mm, page_table, orig_pte))
1707                 goto out;
1708
1709         entry = pte_to_swp_entry(orig_pte);
1710         page = lookup_swap_cache(entry);
1711         if (!page) {
1712                 swapin_readahead(entry, address, vma);
1713                 page = read_swap_cache_async(entry, vma, address);
1714                 if (!page) {
1715                         /*
1716                          * Back out if somebody else faulted in this pte
1717                          * while we released the pte lock.
1718                          */
1719                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1720                         if (likely(pte_same(*page_table, orig_pte)))
1721                                 ret = VM_FAULT_OOM;
1722                         goto unlock;
1723                 }
1724
1725                 /* Had to read the page from swap area: Major fault */
1726                 ret = VM_FAULT_MAJOR;
1727                 inc_page_state(pgmajfault);
1728                 grab_swap_token();
1729         }
1730
1731         mark_page_accessed(page);
1732         lock_page(page);
1733
1734         /*
1735          * Back out if somebody else already faulted in this pte.
1736          */
1737         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1738         if (unlikely(!pte_same(*page_table, orig_pte)))
1739                 goto out_nomap;
1740
1741         if (unlikely(!PageUptodate(page))) {
1742                 ret = VM_FAULT_SIGBUS;
1743                 goto out_nomap;
1744         }
1745
1746         /* The page isn't present yet, go ahead with the fault. */
1747
1748         inc_mm_counter(mm, anon_rss);
1749         pte = mk_pte(page, vma->vm_page_prot);
1750         if (write_access && can_share_swap_page(page)) {
1751                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1752                 write_access = 0;
1753         }
1754
1755         flush_icache_page(vma, page);
1756         set_pte_at(mm, address, page_table, pte);
1757         page_add_anon_rmap(page, vma, address);
1758
1759         swap_free(entry);
1760         if (vm_swap_full())
1761                 remove_exclusive_swap_page(page);
1762         unlock_page(page);
1763
1764         if (write_access) {
1765                 if (do_wp_page(mm, vma, address,
1766                                 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1767                         ret = VM_FAULT_OOM;
1768                 goto out;
1769         }
1770
1771         /* No need to invalidate - it was non-present before */
1772         update_mmu_cache(vma, address, pte);
1773         lazy_mmu_prot_update(pte);
1774 unlock:
1775         pte_unmap_unlock(page_table, ptl);
1776 out:
1777         return ret;
1778 out_nomap:
1779         pte_unmap_unlock(page_table, ptl);
1780         unlock_page(page);
1781         page_cache_release(page);
1782         return ret;
1783 }
1784
1785 /*
1786  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1787  * but allow concurrent faults), and pte mapped but not yet locked.
1788  * We return with mmap_sem still held, but pte unmapped and unlocked.
1789  */
1790 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1791                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1792                 int write_access)
1793 {
1794         struct page *page;
1795         spinlock_t *ptl;
1796         pte_t entry;
1797
1798         if (write_access) {
1799                 /* Allocate our own private page. */
1800                 pte_unmap(page_table);
1801
1802                 if (unlikely(anon_vma_prepare(vma)))
1803                         goto oom;
1804                 page = alloc_zeroed_user_highpage(vma, address);
1805                 if (!page)
1806                         goto oom;
1807
1808                 entry = mk_pte(page, vma->vm_page_prot);
1809                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1810
1811                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1812                 if (!pte_none(*page_table))
1813                         goto release;
1814                 inc_mm_counter(mm, anon_rss);
1815                 lru_cache_add_active(page);
1816                 SetPageReferenced(page);
1817                 page_add_anon_rmap(page, vma, address);
1818         } else {
1819                 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1820                 page = ZERO_PAGE(address);
1821                 page_cache_get(page);
1822                 entry = mk_pte(page, vma->vm_page_prot);
1823
1824                 ptl = &mm->page_table_lock;
1825                 spin_lock(ptl);
1826                 if (!pte_none(*page_table))
1827                         goto release;
1828                 inc_mm_counter(mm, file_rss);
1829                 page_add_file_rmap(page);
1830         }
1831
1832         set_pte_at(mm, address, page_table, entry);
1833
1834         /* No need to invalidate - it was non-present before */
1835         update_mmu_cache(vma, address, entry);
1836         lazy_mmu_prot_update(entry);
1837 unlock:
1838         pte_unmap_unlock(page_table, ptl);
1839         return VM_FAULT_MINOR;
1840 release:
1841         page_cache_release(page);
1842         goto unlock;
1843 oom:
1844         return VM_FAULT_OOM;
1845 }
1846
1847 /*
1848  * do_no_page() tries to create a new page mapping. It aggressively
1849  * tries to share with existing pages, but makes a separate copy if
1850  * the "write_access" parameter is true in order to avoid the next
1851  * page fault.
1852  *
1853  * As this is called only for pages that do not currently exist, we
1854  * do not need to flush old virtual caches or the TLB.
1855  *
1856  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1857  * but allow concurrent faults), and pte mapped but not yet locked.
1858  * We return with mmap_sem still held, but pte unmapped and unlocked.
1859  */
1860 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1861                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1862                 int write_access)
1863 {
1864         spinlock_t *ptl;
1865         struct page *new_page;
1866         struct address_space *mapping = NULL;
1867         pte_t entry;
1868         unsigned int sequence = 0;
1869         int ret = VM_FAULT_MINOR;
1870         int anon = 0;
1871
1872         pte_unmap(page_table);
1873
1874         if (vma->vm_file) {
1875                 mapping = vma->vm_file->f_mapping;
1876                 sequence = mapping->truncate_count;
1877                 smp_rmb(); /* serializes i_size against truncate_count */
1878         }
1879 retry:
1880         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1881         /*
1882          * No smp_rmb is needed here as long as there's a full
1883          * spin_lock/unlock sequence inside the ->nopage callback
1884          * (for the pagecache lookup) that acts as an implicit
1885          * smp_mb() and prevents the i_size read to happen
1886          * after the next truncate_count read.
1887          */
1888
1889         /* no page was available -- either SIGBUS or OOM */
1890         if (new_page == NOPAGE_SIGBUS)
1891                 return VM_FAULT_SIGBUS;
1892         if (new_page == NOPAGE_OOM)
1893                 return VM_FAULT_OOM;
1894
1895         /*
1896          * Should we do an early C-O-W break?
1897          */
1898         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1899                 struct page *page;
1900
1901                 if (unlikely(anon_vma_prepare(vma)))
1902                         goto oom;
1903                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1904                 if (!page)
1905                         goto oom;
1906                 copy_user_highpage(page, new_page, address);
1907                 page_cache_release(new_page);
1908                 new_page = page;
1909                 anon = 1;
1910         }
1911
1912         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1913         /*
1914          * For a file-backed vma, someone could have truncated or otherwise
1915          * invalidated this page.  If unmap_mapping_range got called,
1916          * retry getting the page.
1917          */
1918         if (mapping && unlikely(sequence != mapping->truncate_count)) {
1919                 pte_unmap_unlock(page_table, ptl);
1920                 page_cache_release(new_page);
1921                 cond_resched();
1922                 sequence = mapping->truncate_count;
1923                 smp_rmb();
1924                 goto retry;
1925         }
1926
1927         /*
1928          * This silly early PAGE_DIRTY setting removes a race
1929          * due to the bad i386 page protection. But it's valid
1930          * for other architectures too.
1931          *
1932          * Note that if write_access is true, we either now have
1933          * an exclusive copy of the page, or this is a shared mapping,
1934          * so we can make it writable and dirty to avoid having to
1935          * handle that later.
1936          */
1937         /* Only go through if we didn't race with anybody else... */
1938         if (pte_none(*page_table)) {
1939                 flush_icache_page(vma, new_page);
1940                 entry = mk_pte(new_page, vma->vm_page_prot);
1941                 if (write_access)
1942                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1943                 set_pte_at(mm, address, page_table, entry);
1944                 if (anon) {
1945                         inc_mm_counter(mm, anon_rss);
1946                         lru_cache_add_active(new_page);
1947                         page_add_anon_rmap(new_page, vma, address);
1948                 } else if (!(vma->vm_flags & VM_RESERVED)) {
1949                         inc_mm_counter(mm, file_rss);
1950                         page_add_file_rmap(new_page);
1951                 }
1952         } else {
1953                 /* One of our sibling threads was faster, back out. */
1954                 page_cache_release(new_page);
1955                 goto unlock;
1956         }
1957
1958         /* no need to invalidate: a not-present page shouldn't be cached */
1959         update_mmu_cache(vma, address, entry);
1960         lazy_mmu_prot_update(entry);
1961 unlock:
1962         pte_unmap_unlock(page_table, ptl);
1963         return ret;
1964 oom:
1965         page_cache_release(new_page);
1966         return VM_FAULT_OOM;
1967 }
1968
1969 /*
1970  * Fault of a previously existing named mapping. Repopulate the pte
1971  * from the encoded file_pte if possible. This enables swappable
1972  * nonlinear vmas.
1973  *
1974  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1975  * but allow concurrent faults), and pte mapped but not yet locked.
1976  * We return with mmap_sem still held, but pte unmapped and unlocked.
1977  */
1978 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1979                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1980                 int write_access, pte_t orig_pte)
1981 {
1982         pgoff_t pgoff;
1983         int err;
1984
1985         if (!pte_unmap_same(mm, page_table, orig_pte))
1986                 return VM_FAULT_MINOR;
1987
1988         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1989                 /*
1990                  * Page table corrupted: show pte and kill process.
1991                  */
1992                 print_bad_pte(vma, orig_pte, address);
1993                 return VM_FAULT_OOM;
1994         }
1995         /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1996
1997         pgoff = pte_to_pgoff(orig_pte);
1998         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1999                                         vma->vm_page_prot, pgoff, 0);
2000         if (err == -ENOMEM)
2001                 return VM_FAULT_OOM;
2002         if (err)
2003                 return VM_FAULT_SIGBUS;
2004         return VM_FAULT_MAJOR;
2005 }
2006
2007 /*
2008  * These routines also need to handle stuff like marking pages dirty
2009  * and/or accessed for architectures that don't do it in hardware (most
2010  * RISC architectures).  The early dirtying is also good on the i386.
2011  *
2012  * There is also a hook called "update_mmu_cache()" that architectures
2013  * with external mmu caches can use to update those (ie the Sparc or
2014  * PowerPC hashed page tables that act as extended TLBs).
2015  *
2016  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2017  * but allow concurrent faults), and pte mapped but not yet locked.
2018  * We return with mmap_sem still held, but pte unmapped and unlocked.
2019  */
2020 static inline int handle_pte_fault(struct mm_struct *mm,
2021                 struct vm_area_struct *vma, unsigned long address,
2022                 pte_t *pte, pmd_t *pmd, int write_access)
2023 {
2024         pte_t entry;
2025         spinlock_t *ptl;
2026
2027         entry = *pte;
2028         if (!pte_present(entry)) {
2029                 if (pte_none(entry)) {
2030                         if (!vma->vm_ops || !vma->vm_ops->nopage)
2031                                 return do_anonymous_page(mm, vma, address,
2032                                         pte, pmd, write_access);
2033                         return do_no_page(mm, vma, address,
2034                                         pte, pmd, write_access);
2035                 }
2036                 if (pte_file(entry))
2037                         return do_file_page(mm, vma, address,
2038                                         pte, pmd, write_access, entry);
2039                 return do_swap_page(mm, vma, address,
2040                                         pte, pmd, write_access, entry);
2041         }
2042
2043         ptl = &mm->page_table_lock;
2044         spin_lock(ptl);
2045         if (unlikely(!pte_same(*pte, entry)))
2046                 goto unlock;
2047         if (write_access) {
2048                 if (!pte_write(entry))
2049                         return do_wp_page(mm, vma, address,
2050                                         pte, pmd, ptl, entry);
2051                 entry = pte_mkdirty(entry);
2052         }
2053         entry = pte_mkyoung(entry);
2054         ptep_set_access_flags(vma, address, pte, entry, write_access);
2055         update_mmu_cache(vma, address, entry);
2056         lazy_mmu_prot_update(entry);
2057 unlock:
2058         pte_unmap_unlock(pte, ptl);
2059         return VM_FAULT_MINOR;
2060 }
2061
2062 /*
2063  * By the time we get here, we already hold the mm semaphore
2064  */
2065 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2066                 unsigned long address, int write_access)
2067 {
2068         pgd_t *pgd;
2069         pud_t *pud;
2070         pmd_t *pmd;
2071         pte_t *pte;
2072
2073         __set_current_state(TASK_RUNNING);
2074
2075         inc_page_state(pgfault);
2076
2077         if (unlikely(is_vm_hugetlb_page(vma)))
2078                 return hugetlb_fault(mm, vma, address, write_access);
2079
2080         pgd = pgd_offset(mm, address);
2081         pud = pud_alloc(mm, pgd, address);
2082         if (!pud)
2083                 return VM_FAULT_OOM;
2084         pmd = pmd_alloc(mm, pud, address);
2085         if (!pmd)
2086                 return VM_FAULT_OOM;
2087         pte = pte_alloc_map(mm, pmd, address);
2088         if (!pte)
2089                 return VM_FAULT_OOM;
2090
2091         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2092 }
2093
2094 #ifndef __PAGETABLE_PUD_FOLDED
2095 /*
2096  * Allocate page upper directory.
2097  * We've already handled the fast-path in-line.
2098  */
2099 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2100 {
2101         pud_t *new = pud_alloc_one(mm, address);
2102         if (!new)
2103                 return -ENOMEM;
2104
2105         spin_lock(&mm->page_table_lock);
2106         if (pgd_present(*pgd))          /* Another has populated it */
2107                 pud_free(new);
2108         else
2109                 pgd_populate(mm, pgd, new);
2110         spin_unlock(&mm->page_table_lock);
2111         return 0;
2112 }
2113 #endif /* __PAGETABLE_PUD_FOLDED */
2114
2115 #ifndef __PAGETABLE_PMD_FOLDED
2116 /*
2117  * Allocate page middle directory.
2118  * We've already handled the fast-path in-line.
2119  */
2120 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2121 {
2122         pmd_t *new = pmd_alloc_one(mm, address);
2123         if (!new)
2124                 return -ENOMEM;
2125
2126         spin_lock(&mm->page_table_lock);
2127 #ifndef __ARCH_HAS_4LEVEL_HACK
2128         if (pud_present(*pud))          /* Another has populated it */
2129                 pmd_free(new);
2130         else
2131                 pud_populate(mm, pud, new);
2132 #else
2133         if (pgd_present(*pud))          /* Another has populated it */
2134                 pmd_free(new);
2135         else
2136                 pgd_populate(mm, pud, new);
2137 #endif /* __ARCH_HAS_4LEVEL_HACK */
2138         spin_unlock(&mm->page_table_lock);
2139         return 0;
2140 }
2141 #endif /* __PAGETABLE_PMD_FOLDED */
2142
2143 int make_pages_present(unsigned long addr, unsigned long end)
2144 {
2145         int ret, len, write;
2146         struct vm_area_struct * vma;
2147
2148         vma = find_vma(current->mm, addr);
2149         if (!vma)
2150                 return -1;
2151         write = (vma->vm_flags & VM_WRITE) != 0;
2152         if (addr >= end)
2153                 BUG();
2154         if (end > vma->vm_end)
2155                 BUG();
2156         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2157         ret = get_user_pages(current, current->mm, addr,
2158                         len, write, 0, NULL, NULL);
2159         if (ret < 0)
2160                 return ret;
2161         return ret == len ? 0 : -1;
2162 }
2163
2164 /* 
2165  * Map a vmalloc()-space virtual address to the physical page.
2166  */
2167 struct page * vmalloc_to_page(void * vmalloc_addr)
2168 {
2169         unsigned long addr = (unsigned long) vmalloc_addr;
2170         struct page *page = NULL;
2171         pgd_t *pgd = pgd_offset_k(addr);
2172         pud_t *pud;
2173         pmd_t *pmd;
2174         pte_t *ptep, pte;
2175   
2176         if (!pgd_none(*pgd)) {
2177                 pud = pud_offset(pgd, addr);
2178                 if (!pud_none(*pud)) {
2179                         pmd = pmd_offset(pud, addr);
2180                         if (!pmd_none(*pmd)) {
2181                                 ptep = pte_offset_map(pmd, addr);
2182                                 pte = *ptep;
2183                                 if (pte_present(pte))
2184                                         page = pte_page(pte);
2185                                 pte_unmap(ptep);
2186                         }
2187                 }
2188         }
2189         return page;
2190 }
2191
2192 EXPORT_SYMBOL(vmalloc_to_page);
2193
2194 /*
2195  * Map a vmalloc()-space virtual address to the physical page frame number.
2196  */
2197 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2198 {
2199         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2200 }
2201
2202 EXPORT_SYMBOL(vmalloc_to_pfn);
2203
2204 #if !defined(__HAVE_ARCH_GATE_AREA)
2205
2206 #if defined(AT_SYSINFO_EHDR)
2207 static struct vm_area_struct gate_vma;
2208
2209 static int __init gate_vma_init(void)
2210 {
2211         gate_vma.vm_mm = NULL;
2212         gate_vma.vm_start = FIXADDR_USER_START;
2213         gate_vma.vm_end = FIXADDR_USER_END;
2214         gate_vma.vm_page_prot = PAGE_READONLY;
2215         gate_vma.vm_flags = VM_RESERVED;
2216         return 0;
2217 }
2218 __initcall(gate_vma_init);
2219 #endif
2220
2221 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2222 {
2223 #ifdef AT_SYSINFO_EHDR
2224         return &gate_vma;
2225 #else
2226         return NULL;
2227 #endif
2228 }
2229
2230 int in_gate_area_no_task(unsigned long addr)
2231 {
2232 #ifdef AT_SYSINFO_EHDR
2233         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2234                 return 1;
2235 #endif
2236         return 0;
2237 }
2238
2239 #endif  /* __HAVE_ARCH_GATE_AREA */