]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - mm/memory.c
[PATCH] mm: page fault handler locking
[linux-2.6-omap-h63xx.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93         pgd_ERROR(*pgd);
94         pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99         pud_ERROR(*pud);
100         pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105         pmd_ERROR(*pmd);
106         pmd_clear(pmd);
107 }
108
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115         struct page *page = pmd_page(*pmd);
116         pmd_clear(pmd);
117         pte_free_tlb(tlb, page);
118         dec_page_state(nr_page_table_pages);
119         tlb->mm->nr_ptes--;
120 }
121
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123                                 unsigned long addr, unsigned long end,
124                                 unsigned long floor, unsigned long ceiling)
125 {
126         pmd_t *pmd;
127         unsigned long next;
128         unsigned long start;
129
130         start = addr;
131         pmd = pmd_offset(pud, addr);
132         do {
133                 next = pmd_addr_end(addr, end);
134                 if (pmd_none_or_clear_bad(pmd))
135                         continue;
136                 free_pte_range(tlb, pmd);
137         } while (pmd++, addr = next, addr != end);
138
139         start &= PUD_MASK;
140         if (start < floor)
141                 return;
142         if (ceiling) {
143                 ceiling &= PUD_MASK;
144                 if (!ceiling)
145                         return;
146         }
147         if (end - 1 > ceiling - 1)
148                 return;
149
150         pmd = pmd_offset(pud, start);
151         pud_clear(pud);
152         pmd_free_tlb(tlb, pmd);
153 }
154
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156                                 unsigned long addr, unsigned long end,
157                                 unsigned long floor, unsigned long ceiling)
158 {
159         pud_t *pud;
160         unsigned long next;
161         unsigned long start;
162
163         start = addr;
164         pud = pud_offset(pgd, addr);
165         do {
166                 next = pud_addr_end(addr, end);
167                 if (pud_none_or_clear_bad(pud))
168                         continue;
169                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170         } while (pud++, addr = next, addr != end);
171
172         start &= PGDIR_MASK;
173         if (start < floor)
174                 return;
175         if (ceiling) {
176                 ceiling &= PGDIR_MASK;
177                 if (!ceiling)
178                         return;
179         }
180         if (end - 1 > ceiling - 1)
181                 return;
182
183         pud = pud_offset(pgd, start);
184         pgd_clear(pgd);
185         pud_free_tlb(tlb, pud);
186 }
187
188 /*
189  * This function frees user-level page tables of a process.
190  *
191  * Must be called with pagetable lock held.
192  */
193 void free_pgd_range(struct mmu_gather **tlb,
194                         unsigned long addr, unsigned long end,
195                         unsigned long floor, unsigned long ceiling)
196 {
197         pgd_t *pgd;
198         unsigned long next;
199         unsigned long start;
200
201         /*
202          * The next few lines have given us lots of grief...
203          *
204          * Why are we testing PMD* at this top level?  Because often
205          * there will be no work to do at all, and we'd prefer not to
206          * go all the way down to the bottom just to discover that.
207          *
208          * Why all these "- 1"s?  Because 0 represents both the bottom
209          * of the address space and the top of it (using -1 for the
210          * top wouldn't help much: the masks would do the wrong thing).
211          * The rule is that addr 0 and floor 0 refer to the bottom of
212          * the address space, but end 0 and ceiling 0 refer to the top
213          * Comparisons need to use "end - 1" and "ceiling - 1" (though
214          * that end 0 case should be mythical).
215          *
216          * Wherever addr is brought up or ceiling brought down, we must
217          * be careful to reject "the opposite 0" before it confuses the
218          * subsequent tests.  But what about where end is brought down
219          * by PMD_SIZE below? no, end can't go down to 0 there.
220          *
221          * Whereas we round start (addr) and ceiling down, by different
222          * masks at different levels, in order to test whether a table
223          * now has no other vmas using it, so can be freed, we don't
224          * bother to round floor or end up - the tests don't need that.
225          */
226
227         addr &= PMD_MASK;
228         if (addr < floor) {
229                 addr += PMD_SIZE;
230                 if (!addr)
231                         return;
232         }
233         if (ceiling) {
234                 ceiling &= PMD_MASK;
235                 if (!ceiling)
236                         return;
237         }
238         if (end - 1 > ceiling - 1)
239                 end -= PMD_SIZE;
240         if (addr > end - 1)
241                 return;
242
243         start = addr;
244         pgd = pgd_offset((*tlb)->mm, addr);
245         do {
246                 next = pgd_addr_end(addr, end);
247                 if (pgd_none_or_clear_bad(pgd))
248                         continue;
249                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250         } while (pgd++, addr = next, addr != end);
251
252         if (!(*tlb)->fullmm)
253                 flush_tlb_pgtables((*tlb)->mm, start, end);
254 }
255
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257                 unsigned long floor, unsigned long ceiling)
258 {
259         while (vma) {
260                 struct vm_area_struct *next = vma->vm_next;
261                 unsigned long addr = vma->vm_start;
262
263                 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265                                 floor, next? next->vm_start: ceiling);
266                 } else {
267                         /*
268                          * Optimization: gather nearby vmas into one call down
269                          */
270                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271                           && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272                                                         HPAGE_SIZE)) {
273                                 vma = next;
274                                 next = vma->vm_next;
275                         }
276                         free_pgd_range(tlb, addr, vma->vm_end,
277                                 floor, next? next->vm_start: ceiling);
278                 }
279                 vma = next;
280         }
281 }
282
283 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
284 {
285         struct page *new = pte_alloc_one(mm, address);
286         if (!new)
287                 return -ENOMEM;
288
289         spin_lock(&mm->page_table_lock);
290         if (pmd_present(*pmd))          /* Another has populated it */
291                 pte_free(new);
292         else {
293                 mm->nr_ptes++;
294                 inc_page_state(nr_page_table_pages);
295                 pmd_populate(mm, pmd, new);
296         }
297         spin_unlock(&mm->page_table_lock);
298         return 0;
299 }
300
301 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
302 {
303         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
304         if (!new)
305                 return -ENOMEM;
306
307         spin_lock(&init_mm.page_table_lock);
308         if (pmd_present(*pmd))          /* Another has populated it */
309                 pte_free_kernel(new);
310         else
311                 pmd_populate_kernel(&init_mm, pmd, new);
312         spin_unlock(&init_mm.page_table_lock);
313         return 0;
314 }
315
316 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
317 {
318         if (file_rss)
319                 add_mm_counter(mm, file_rss, file_rss);
320         if (anon_rss)
321                 add_mm_counter(mm, anon_rss, anon_rss);
322 }
323
324 /*
325  * This function is called to print an error when a pte in a
326  * !VM_RESERVED region is found pointing to an invalid pfn (which
327  * is an error.
328  *
329  * The calling function must still handle the error.
330  */
331 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
332 {
333         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
334                         "vm_flags = %lx, vaddr = %lx\n",
335                 (long long)pte_val(pte),
336                 (vma->vm_mm == current->mm ? current->comm : "???"),
337                 vma->vm_flags, vaddr);
338         dump_stack();
339 }
340
341 /*
342  * copy one vm_area from one task to the other. Assumes the page tables
343  * already present in the new task to be cleared in the whole range
344  * covered by this vma.
345  */
346
347 static inline void
348 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
349                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
350                 unsigned long addr, int *rss)
351 {
352         unsigned long vm_flags = vma->vm_flags;
353         pte_t pte = *src_pte;
354         struct page *page;
355         unsigned long pfn;
356
357         /* pte contains position in swap or file, so copy. */
358         if (unlikely(!pte_present(pte))) {
359                 if (!pte_file(pte)) {
360                         swap_duplicate(pte_to_swp_entry(pte));
361                         /* make sure dst_mm is on swapoff's mmlist. */
362                         if (unlikely(list_empty(&dst_mm->mmlist))) {
363                                 spin_lock(&mmlist_lock);
364                                 list_add(&dst_mm->mmlist, &src_mm->mmlist);
365                                 spin_unlock(&mmlist_lock);
366                         }
367                 }
368                 goto out_set_pte;
369         }
370
371         /* If the region is VM_RESERVED, the mapping is not
372          * mapped via rmap - duplicate the pte as is.
373          */
374         if (vm_flags & VM_RESERVED)
375                 goto out_set_pte;
376
377         pfn = pte_pfn(pte);
378         /* If the pte points outside of valid memory but
379          * the region is not VM_RESERVED, we have a problem.
380          */
381         if (unlikely(!pfn_valid(pfn))) {
382                 print_bad_pte(vma, pte, addr);
383                 goto out_set_pte; /* try to do something sane */
384         }
385
386         page = pfn_to_page(pfn);
387
388         /*
389          * If it's a COW mapping, write protect it both
390          * in the parent and the child
391          */
392         if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
393                 ptep_set_wrprotect(src_mm, addr, src_pte);
394                 pte = *src_pte;
395         }
396
397         /*
398          * If it's a shared mapping, mark it clean in
399          * the child
400          */
401         if (vm_flags & VM_SHARED)
402                 pte = pte_mkclean(pte);
403         pte = pte_mkold(pte);
404         get_page(page);
405         page_dup_rmap(page);
406         rss[!!PageAnon(page)]++;
407
408 out_set_pte:
409         set_pte_at(dst_mm, addr, dst_pte, pte);
410 }
411
412 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
413                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
414                 unsigned long addr, unsigned long end)
415 {
416         pte_t *src_pte, *dst_pte;
417         spinlock_t *src_ptl, *dst_ptl;
418         int progress = 0;
419         int rss[2];
420
421 again:
422         rss[1] = rss[0] = 0;
423         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
424         if (!dst_pte)
425                 return -ENOMEM;
426         src_pte = pte_offset_map_nested(src_pmd, addr);
427         src_ptl = &src_mm->page_table_lock;
428         spin_lock(src_ptl);
429
430         do {
431                 /*
432                  * We are holding two locks at this point - either of them
433                  * could generate latencies in another task on another CPU.
434                  */
435                 if (progress >= 32) {
436                         progress = 0;
437                         if (need_resched() ||
438                             need_lockbreak(src_ptl) ||
439                             need_lockbreak(dst_ptl))
440                                 break;
441                 }
442                 if (pte_none(*src_pte)) {
443                         progress++;
444                         continue;
445                 }
446                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
447                 progress += 8;
448         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
449
450         spin_unlock(src_ptl);
451         pte_unmap_nested(src_pte - 1);
452         add_mm_rss(dst_mm, rss[0], rss[1]);
453         pte_unmap_unlock(dst_pte - 1, dst_ptl);
454         cond_resched();
455         if (addr != end)
456                 goto again;
457         return 0;
458 }
459
460 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
461                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
462                 unsigned long addr, unsigned long end)
463 {
464         pmd_t *src_pmd, *dst_pmd;
465         unsigned long next;
466
467         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
468         if (!dst_pmd)
469                 return -ENOMEM;
470         src_pmd = pmd_offset(src_pud, addr);
471         do {
472                 next = pmd_addr_end(addr, end);
473                 if (pmd_none_or_clear_bad(src_pmd))
474                         continue;
475                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
476                                                 vma, addr, next))
477                         return -ENOMEM;
478         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
479         return 0;
480 }
481
482 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
483                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
484                 unsigned long addr, unsigned long end)
485 {
486         pud_t *src_pud, *dst_pud;
487         unsigned long next;
488
489         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
490         if (!dst_pud)
491                 return -ENOMEM;
492         src_pud = pud_offset(src_pgd, addr);
493         do {
494                 next = pud_addr_end(addr, end);
495                 if (pud_none_or_clear_bad(src_pud))
496                         continue;
497                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
498                                                 vma, addr, next))
499                         return -ENOMEM;
500         } while (dst_pud++, src_pud++, addr = next, addr != end);
501         return 0;
502 }
503
504 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
505                 struct vm_area_struct *vma)
506 {
507         pgd_t *src_pgd, *dst_pgd;
508         unsigned long next;
509         unsigned long addr = vma->vm_start;
510         unsigned long end = vma->vm_end;
511
512         /*
513          * Don't copy ptes where a page fault will fill them correctly.
514          * Fork becomes much lighter when there are big shared or private
515          * readonly mappings. The tradeoff is that copy_page_range is more
516          * efficient than faulting.
517          */
518         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
519                 if (!vma->anon_vma)
520                         return 0;
521         }
522
523         if (is_vm_hugetlb_page(vma))
524                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
525
526         dst_pgd = pgd_offset(dst_mm, addr);
527         src_pgd = pgd_offset(src_mm, addr);
528         do {
529                 next = pgd_addr_end(addr, end);
530                 if (pgd_none_or_clear_bad(src_pgd))
531                         continue;
532                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
533                                                 vma, addr, next))
534                         return -ENOMEM;
535         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
536         return 0;
537 }
538
539 static void zap_pte_range(struct mmu_gather *tlb,
540                                 struct vm_area_struct *vma, pmd_t *pmd,
541                                 unsigned long addr, unsigned long end,
542                                 struct zap_details *details)
543 {
544         struct mm_struct *mm = tlb->mm;
545         pte_t *pte;
546         int file_rss = 0;
547         int anon_rss = 0;
548
549         pte = pte_offset_map(pmd, addr);
550         do {
551                 pte_t ptent = *pte;
552                 if (pte_none(ptent))
553                         continue;
554                 if (pte_present(ptent)) {
555                         struct page *page = NULL;
556                         if (!(vma->vm_flags & VM_RESERVED)) {
557                                 unsigned long pfn = pte_pfn(ptent);
558                                 if (unlikely(!pfn_valid(pfn)))
559                                         print_bad_pte(vma, ptent, addr);
560                                 else
561                                         page = pfn_to_page(pfn);
562                         }
563                         if (unlikely(details) && page) {
564                                 /*
565                                  * unmap_shared_mapping_pages() wants to
566                                  * invalidate cache without truncating:
567                                  * unmap shared but keep private pages.
568                                  */
569                                 if (details->check_mapping &&
570                                     details->check_mapping != page->mapping)
571                                         continue;
572                                 /*
573                                  * Each page->index must be checked when
574                                  * invalidating or truncating nonlinear.
575                                  */
576                                 if (details->nonlinear_vma &&
577                                     (page->index < details->first_index ||
578                                      page->index > details->last_index))
579                                         continue;
580                         }
581                         ptent = ptep_get_and_clear_full(mm, addr, pte,
582                                                         tlb->fullmm);
583                         tlb_remove_tlb_entry(tlb, pte, addr);
584                         if (unlikely(!page))
585                                 continue;
586                         if (unlikely(details) && details->nonlinear_vma
587                             && linear_page_index(details->nonlinear_vma,
588                                                 addr) != page->index)
589                                 set_pte_at(mm, addr, pte,
590                                            pgoff_to_pte(page->index));
591                         if (PageAnon(page))
592                                 anon_rss--;
593                         else {
594                                 if (pte_dirty(ptent))
595                                         set_page_dirty(page);
596                                 if (pte_young(ptent))
597                                         mark_page_accessed(page);
598                                 file_rss--;
599                         }
600                         page_remove_rmap(page);
601                         tlb_remove_page(tlb, page);
602                         continue;
603                 }
604                 /*
605                  * If details->check_mapping, we leave swap entries;
606                  * if details->nonlinear_vma, we leave file entries.
607                  */
608                 if (unlikely(details))
609                         continue;
610                 if (!pte_file(ptent))
611                         free_swap_and_cache(pte_to_swp_entry(ptent));
612                 pte_clear_full(mm, addr, pte, tlb->fullmm);
613         } while (pte++, addr += PAGE_SIZE, addr != end);
614
615         add_mm_rss(mm, file_rss, anon_rss);
616         pte_unmap(pte - 1);
617 }
618
619 static inline void zap_pmd_range(struct mmu_gather *tlb,
620                                 struct vm_area_struct *vma, pud_t *pud,
621                                 unsigned long addr, unsigned long end,
622                                 struct zap_details *details)
623 {
624         pmd_t *pmd;
625         unsigned long next;
626
627         pmd = pmd_offset(pud, addr);
628         do {
629                 next = pmd_addr_end(addr, end);
630                 if (pmd_none_or_clear_bad(pmd))
631                         continue;
632                 zap_pte_range(tlb, vma, pmd, addr, next, details);
633         } while (pmd++, addr = next, addr != end);
634 }
635
636 static inline void zap_pud_range(struct mmu_gather *tlb,
637                                 struct vm_area_struct *vma, pgd_t *pgd,
638                                 unsigned long addr, unsigned long end,
639                                 struct zap_details *details)
640 {
641         pud_t *pud;
642         unsigned long next;
643
644         pud = pud_offset(pgd, addr);
645         do {
646                 next = pud_addr_end(addr, end);
647                 if (pud_none_or_clear_bad(pud))
648                         continue;
649                 zap_pmd_range(tlb, vma, pud, addr, next, details);
650         } while (pud++, addr = next, addr != end);
651 }
652
653 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
654                                 unsigned long addr, unsigned long end,
655                                 struct zap_details *details)
656 {
657         pgd_t *pgd;
658         unsigned long next;
659
660         if (details && !details->check_mapping && !details->nonlinear_vma)
661                 details = NULL;
662
663         BUG_ON(addr >= end);
664         tlb_start_vma(tlb, vma);
665         pgd = pgd_offset(vma->vm_mm, addr);
666         do {
667                 next = pgd_addr_end(addr, end);
668                 if (pgd_none_or_clear_bad(pgd))
669                         continue;
670                 zap_pud_range(tlb, vma, pgd, addr, next, details);
671         } while (pgd++, addr = next, addr != end);
672         tlb_end_vma(tlb, vma);
673 }
674
675 #ifdef CONFIG_PREEMPT
676 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
677 #else
678 /* No preempt: go for improved straight-line efficiency */
679 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
680 #endif
681
682 /**
683  * unmap_vmas - unmap a range of memory covered by a list of vma's
684  * @tlbp: address of the caller's struct mmu_gather
685  * @mm: the controlling mm_struct
686  * @vma: the starting vma
687  * @start_addr: virtual address at which to start unmapping
688  * @end_addr: virtual address at which to end unmapping
689  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
690  * @details: details of nonlinear truncation or shared cache invalidation
691  *
692  * Returns the end address of the unmapping (restart addr if interrupted).
693  *
694  * Unmap all pages in the vma list.  Called under page_table_lock.
695  *
696  * We aim to not hold page_table_lock for too long (for scheduling latency
697  * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
698  * return the ending mmu_gather to the caller.
699  *
700  * Only addresses between `start' and `end' will be unmapped.
701  *
702  * The VMA list must be sorted in ascending virtual address order.
703  *
704  * unmap_vmas() assumes that the caller will flush the whole unmapped address
705  * range after unmap_vmas() returns.  So the only responsibility here is to
706  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
707  * drops the lock and schedules.
708  */
709 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
710                 struct vm_area_struct *vma, unsigned long start_addr,
711                 unsigned long end_addr, unsigned long *nr_accounted,
712                 struct zap_details *details)
713 {
714         unsigned long zap_bytes = ZAP_BLOCK_SIZE;
715         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
716         int tlb_start_valid = 0;
717         unsigned long start = start_addr;
718         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
719         int fullmm = (*tlbp)->fullmm;
720
721         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
722                 unsigned long end;
723
724                 start = max(vma->vm_start, start_addr);
725                 if (start >= vma->vm_end)
726                         continue;
727                 end = min(vma->vm_end, end_addr);
728                 if (end <= vma->vm_start)
729                         continue;
730
731                 if (vma->vm_flags & VM_ACCOUNT)
732                         *nr_accounted += (end - start) >> PAGE_SHIFT;
733
734                 while (start != end) {
735                         unsigned long block;
736
737                         if (!tlb_start_valid) {
738                                 tlb_start = start;
739                                 tlb_start_valid = 1;
740                         }
741
742                         if (is_vm_hugetlb_page(vma)) {
743                                 block = end - start;
744                                 unmap_hugepage_range(vma, start, end);
745                         } else {
746                                 block = min(zap_bytes, end - start);
747                                 unmap_page_range(*tlbp, vma, start,
748                                                 start + block, details);
749                         }
750
751                         start += block;
752                         zap_bytes -= block;
753                         if ((long)zap_bytes > 0)
754                                 continue;
755
756                         tlb_finish_mmu(*tlbp, tlb_start, start);
757
758                         if (need_resched() ||
759                                 need_lockbreak(&mm->page_table_lock) ||
760                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
761                                 if (i_mmap_lock) {
762                                         /* must reset count of rss freed */
763                                         *tlbp = tlb_gather_mmu(mm, fullmm);
764                                         goto out;
765                                 }
766                                 spin_unlock(&mm->page_table_lock);
767                                 cond_resched();
768                                 spin_lock(&mm->page_table_lock);
769                         }
770
771                         *tlbp = tlb_gather_mmu(mm, fullmm);
772                         tlb_start_valid = 0;
773                         zap_bytes = ZAP_BLOCK_SIZE;
774                 }
775         }
776 out:
777         return start;   /* which is now the end (or restart) address */
778 }
779
780 /**
781  * zap_page_range - remove user pages in a given range
782  * @vma: vm_area_struct holding the applicable pages
783  * @address: starting address of pages to zap
784  * @size: number of bytes to zap
785  * @details: details of nonlinear truncation or shared cache invalidation
786  */
787 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
788                 unsigned long size, struct zap_details *details)
789 {
790         struct mm_struct *mm = vma->vm_mm;
791         struct mmu_gather *tlb;
792         unsigned long end = address + size;
793         unsigned long nr_accounted = 0;
794
795         if (is_vm_hugetlb_page(vma)) {
796                 zap_hugepage_range(vma, address, size);
797                 return end;
798         }
799
800         lru_add_drain();
801         spin_lock(&mm->page_table_lock);
802         tlb = tlb_gather_mmu(mm, 0);
803         update_hiwater_rss(mm);
804         end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
805         tlb_finish_mmu(tlb, address, end);
806         spin_unlock(&mm->page_table_lock);
807         return end;
808 }
809
810 /*
811  * Do a quick page-table lookup for a single page.
812  * mm->page_table_lock must be held.
813  */
814 static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
815                         int read, int write, int accessed)
816 {
817         pgd_t *pgd;
818         pud_t *pud;
819         pmd_t *pmd;
820         pte_t *ptep, pte;
821         unsigned long pfn;
822         struct page *page;
823
824         page = follow_huge_addr(mm, address, write);
825         if (! IS_ERR(page))
826                 return page;
827
828         pgd = pgd_offset(mm, address);
829         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
830                 goto out;
831
832         pud = pud_offset(pgd, address);
833         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
834                 goto out;
835         
836         pmd = pmd_offset(pud, address);
837         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
838                 goto out;
839         if (pmd_huge(*pmd))
840                 return follow_huge_pmd(mm, address, pmd, write);
841
842         ptep = pte_offset_map(pmd, address);
843         if (!ptep)
844                 goto out;
845
846         pte = *ptep;
847         pte_unmap(ptep);
848         if (pte_present(pte)) {
849                 if (write && !pte_write(pte))
850                         goto out;
851                 if (read && !pte_read(pte))
852                         goto out;
853                 pfn = pte_pfn(pte);
854                 if (pfn_valid(pfn)) {
855                         page = pfn_to_page(pfn);
856                         if (accessed) {
857                                 if (write && !pte_dirty(pte) &&!PageDirty(page))
858                                         set_page_dirty(page);
859                                 mark_page_accessed(page);
860                         }
861                         return page;
862                 }
863         }
864
865 out:
866         return NULL;
867 }
868
869 inline struct page *
870 follow_page(struct mm_struct *mm, unsigned long address, int write)
871 {
872         return __follow_page(mm, address, 0, write, 1);
873 }
874
875 /*
876  * check_user_page_readable() can be called frm niterrupt context by oprofile,
877  * so we need to avoid taking any non-irq-safe locks
878  */
879 int check_user_page_readable(struct mm_struct *mm, unsigned long address)
880 {
881         return __follow_page(mm, address, 1, 0, 0) != NULL;
882 }
883 EXPORT_SYMBOL(check_user_page_readable);
884
885 static inline int
886 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
887                          unsigned long address)
888 {
889         pgd_t *pgd;
890         pud_t *pud;
891         pmd_t *pmd;
892
893         /* Check if the vma is for an anonymous mapping. */
894         if (vma->vm_ops && vma->vm_ops->nopage)
895                 return 0;
896
897         /* Check if page directory entry exists. */
898         pgd = pgd_offset(mm, address);
899         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
900                 return 1;
901
902         pud = pud_offset(pgd, address);
903         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
904                 return 1;
905
906         /* Check if page middle directory entry exists. */
907         pmd = pmd_offset(pud, address);
908         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
909                 return 1;
910
911         /* There is a pte slot for 'address' in 'mm'. */
912         return 0;
913 }
914
915 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
916                 unsigned long start, int len, int write, int force,
917                 struct page **pages, struct vm_area_struct **vmas)
918 {
919         int i;
920         unsigned int flags;
921
922         /* 
923          * Require read or write permissions.
924          * If 'force' is set, we only require the "MAY" flags.
925          */
926         flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
927         flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
928         i = 0;
929
930         do {
931                 struct vm_area_struct * vma;
932
933                 vma = find_extend_vma(mm, start);
934                 if (!vma && in_gate_area(tsk, start)) {
935                         unsigned long pg = start & PAGE_MASK;
936                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
937                         pgd_t *pgd;
938                         pud_t *pud;
939                         pmd_t *pmd;
940                         pte_t *pte;
941                         if (write) /* user gate pages are read-only */
942                                 return i ? : -EFAULT;
943                         if (pg > TASK_SIZE)
944                                 pgd = pgd_offset_k(pg);
945                         else
946                                 pgd = pgd_offset_gate(mm, pg);
947                         BUG_ON(pgd_none(*pgd));
948                         pud = pud_offset(pgd, pg);
949                         BUG_ON(pud_none(*pud));
950                         pmd = pmd_offset(pud, pg);
951                         if (pmd_none(*pmd))
952                                 return i ? : -EFAULT;
953                         pte = pte_offset_map(pmd, pg);
954                         if (pte_none(*pte)) {
955                                 pte_unmap(pte);
956                                 return i ? : -EFAULT;
957                         }
958                         if (pages) {
959                                 pages[i] = pte_page(*pte);
960                                 get_page(pages[i]);
961                         }
962                         pte_unmap(pte);
963                         if (vmas)
964                                 vmas[i] = gate_vma;
965                         i++;
966                         start += PAGE_SIZE;
967                         len--;
968                         continue;
969                 }
970
971                 if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
972                                 || !(flags & vma->vm_flags))
973                         return i ? : -EFAULT;
974
975                 if (is_vm_hugetlb_page(vma)) {
976                         i = follow_hugetlb_page(mm, vma, pages, vmas,
977                                                 &start, &len, i);
978                         continue;
979                 }
980                 spin_lock(&mm->page_table_lock);
981                 do {
982                         int write_access = write;
983                         struct page *page;
984
985                         cond_resched_lock(&mm->page_table_lock);
986                         while (!(page = follow_page(mm, start, write_access))) {
987                                 int ret;
988
989                                 /*
990                                  * Shortcut for anonymous pages. We don't want
991                                  * to force the creation of pages tables for
992                                  * insanely big anonymously mapped areas that
993                                  * nobody touched so far. This is important
994                                  * for doing a core dump for these mappings.
995                                  */
996                                 if (!write && untouched_anonymous_page(mm,vma,start)) {
997                                         page = ZERO_PAGE(start);
998                                         break;
999                                 }
1000                                 spin_unlock(&mm->page_table_lock);
1001                                 ret = __handle_mm_fault(mm, vma, start, write_access);
1002
1003                                 /*
1004                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
1005                                  * broken COW when necessary, even if maybe_mkwrite
1006                                  * decided not to set pte_write. We can thus safely do
1007                                  * subsequent page lookups as if they were reads.
1008                                  */
1009                                 if (ret & VM_FAULT_WRITE)
1010                                         write_access = 0;
1011                                 
1012                                 switch (ret & ~VM_FAULT_WRITE) {
1013                                 case VM_FAULT_MINOR:
1014                                         tsk->min_flt++;
1015                                         break;
1016                                 case VM_FAULT_MAJOR:
1017                                         tsk->maj_flt++;
1018                                         break;
1019                                 case VM_FAULT_SIGBUS:
1020                                         return i ? i : -EFAULT;
1021                                 case VM_FAULT_OOM:
1022                                         return i ? i : -ENOMEM;
1023                                 default:
1024                                         BUG();
1025                                 }
1026                                 spin_lock(&mm->page_table_lock);
1027                         }
1028                         if (pages) {
1029                                 pages[i] = page;
1030                                 flush_dcache_page(page);
1031                                 page_cache_get(page);
1032                         }
1033                         if (vmas)
1034                                 vmas[i] = vma;
1035                         i++;
1036                         start += PAGE_SIZE;
1037                         len--;
1038                 } while (len && start < vma->vm_end);
1039                 spin_unlock(&mm->page_table_lock);
1040         } while (len);
1041         return i;
1042 }
1043 EXPORT_SYMBOL(get_user_pages);
1044
1045 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1046                         unsigned long addr, unsigned long end, pgprot_t prot)
1047 {
1048         pte_t *pte;
1049         spinlock_t *ptl;
1050
1051         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1052         if (!pte)
1053                 return -ENOMEM;
1054         do {
1055                 struct page *page = ZERO_PAGE(addr);
1056                 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1057                 page_cache_get(page);
1058                 page_add_file_rmap(page);
1059                 inc_mm_counter(mm, file_rss);
1060                 BUG_ON(!pte_none(*pte));
1061                 set_pte_at(mm, addr, pte, zero_pte);
1062         } while (pte++, addr += PAGE_SIZE, addr != end);
1063         pte_unmap_unlock(pte - 1, ptl);
1064         return 0;
1065 }
1066
1067 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1068                         unsigned long addr, unsigned long end, pgprot_t prot)
1069 {
1070         pmd_t *pmd;
1071         unsigned long next;
1072
1073         pmd = pmd_alloc(mm, pud, addr);
1074         if (!pmd)
1075                 return -ENOMEM;
1076         do {
1077                 next = pmd_addr_end(addr, end);
1078                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1079                         return -ENOMEM;
1080         } while (pmd++, addr = next, addr != end);
1081         return 0;
1082 }
1083
1084 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1085                         unsigned long addr, unsigned long end, pgprot_t prot)
1086 {
1087         pud_t *pud;
1088         unsigned long next;
1089
1090         pud = pud_alloc(mm, pgd, addr);
1091         if (!pud)
1092                 return -ENOMEM;
1093         do {
1094                 next = pud_addr_end(addr, end);
1095                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1096                         return -ENOMEM;
1097         } while (pud++, addr = next, addr != end);
1098         return 0;
1099 }
1100
1101 int zeromap_page_range(struct vm_area_struct *vma,
1102                         unsigned long addr, unsigned long size, pgprot_t prot)
1103 {
1104         pgd_t *pgd;
1105         unsigned long next;
1106         unsigned long end = addr + size;
1107         struct mm_struct *mm = vma->vm_mm;
1108         int err;
1109
1110         BUG_ON(addr >= end);
1111         pgd = pgd_offset(mm, addr);
1112         flush_cache_range(vma, addr, end);
1113         do {
1114                 next = pgd_addr_end(addr, end);
1115                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1116                 if (err)
1117                         break;
1118         } while (pgd++, addr = next, addr != end);
1119         return err;
1120 }
1121
1122 /*
1123  * maps a range of physical memory into the requested pages. the old
1124  * mappings are removed. any references to nonexistent pages results
1125  * in null mappings (currently treated as "copy-on-access")
1126  */
1127 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1128                         unsigned long addr, unsigned long end,
1129                         unsigned long pfn, pgprot_t prot)
1130 {
1131         pte_t *pte;
1132         spinlock_t *ptl;
1133
1134         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1135         if (!pte)
1136                 return -ENOMEM;
1137         do {
1138                 BUG_ON(!pte_none(*pte));
1139                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1140                 pfn++;
1141         } while (pte++, addr += PAGE_SIZE, addr != end);
1142         pte_unmap_unlock(pte - 1, ptl);
1143         return 0;
1144 }
1145
1146 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1147                         unsigned long addr, unsigned long end,
1148                         unsigned long pfn, pgprot_t prot)
1149 {
1150         pmd_t *pmd;
1151         unsigned long next;
1152
1153         pfn -= addr >> PAGE_SHIFT;
1154         pmd = pmd_alloc(mm, pud, addr);
1155         if (!pmd)
1156                 return -ENOMEM;
1157         do {
1158                 next = pmd_addr_end(addr, end);
1159                 if (remap_pte_range(mm, pmd, addr, next,
1160                                 pfn + (addr >> PAGE_SHIFT), prot))
1161                         return -ENOMEM;
1162         } while (pmd++, addr = next, addr != end);
1163         return 0;
1164 }
1165
1166 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1167                         unsigned long addr, unsigned long end,
1168                         unsigned long pfn, pgprot_t prot)
1169 {
1170         pud_t *pud;
1171         unsigned long next;
1172
1173         pfn -= addr >> PAGE_SHIFT;
1174         pud = pud_alloc(mm, pgd, addr);
1175         if (!pud)
1176                 return -ENOMEM;
1177         do {
1178                 next = pud_addr_end(addr, end);
1179                 if (remap_pmd_range(mm, pud, addr, next,
1180                                 pfn + (addr >> PAGE_SHIFT), prot))
1181                         return -ENOMEM;
1182         } while (pud++, addr = next, addr != end);
1183         return 0;
1184 }
1185
1186 /*  Note: this is only safe if the mm semaphore is held when called. */
1187 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1188                     unsigned long pfn, unsigned long size, pgprot_t prot)
1189 {
1190         pgd_t *pgd;
1191         unsigned long next;
1192         unsigned long end = addr + PAGE_ALIGN(size);
1193         struct mm_struct *mm = vma->vm_mm;
1194         int err;
1195
1196         /*
1197          * Physically remapped pages are special. Tell the
1198          * rest of the world about it:
1199          *   VM_IO tells people not to look at these pages
1200          *      (accesses can have side effects).
1201          *   VM_RESERVED tells the core MM not to "manage" these pages
1202          *      (e.g. refcount, mapcount, try to swap them out).
1203          */
1204         vma->vm_flags |= VM_IO | VM_RESERVED;
1205
1206         BUG_ON(addr >= end);
1207         pfn -= addr >> PAGE_SHIFT;
1208         pgd = pgd_offset(mm, addr);
1209         flush_cache_range(vma, addr, end);
1210         do {
1211                 next = pgd_addr_end(addr, end);
1212                 err = remap_pud_range(mm, pgd, addr, next,
1213                                 pfn + (addr >> PAGE_SHIFT), prot);
1214                 if (err)
1215                         break;
1216         } while (pgd++, addr = next, addr != end);
1217         return err;
1218 }
1219 EXPORT_SYMBOL(remap_pfn_range);
1220
1221 /*
1222  * handle_pte_fault chooses page fault handler according to an entry
1223  * which was read non-atomically.  Before making any commitment, on
1224  * those architectures or configurations (e.g. i386 with PAE) which
1225  * might give a mix of unmatched parts, do_swap_page and do_file_page
1226  * must check under lock before unmapping the pte and proceeding
1227  * (but do_wp_page is only called after already making such a check;
1228  * and do_anonymous_page and do_no_page can safely check later on).
1229  */
1230 static inline int pte_unmap_same(struct mm_struct *mm,
1231                                 pte_t *page_table, pte_t orig_pte)
1232 {
1233         int same = 1;
1234 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1235         if (sizeof(pte_t) > sizeof(unsigned long)) {
1236                 spin_lock(&mm->page_table_lock);
1237                 same = pte_same(*page_table, orig_pte);
1238                 spin_unlock(&mm->page_table_lock);
1239         }
1240 #endif
1241         pte_unmap(page_table);
1242         return same;
1243 }
1244
1245 /*
1246  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1247  * servicing faults for write access.  In the normal case, do always want
1248  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1249  * that do not have writing enabled, when used by access_process_vm.
1250  */
1251 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1252 {
1253         if (likely(vma->vm_flags & VM_WRITE))
1254                 pte = pte_mkwrite(pte);
1255         return pte;
1256 }
1257
1258 /*
1259  * This routine handles present pages, when users try to write
1260  * to a shared page. It is done by copying the page to a new address
1261  * and decrementing the shared-page counter for the old page.
1262  *
1263  * Note that this routine assumes that the protection checks have been
1264  * done by the caller (the low-level page fault routine in most cases).
1265  * Thus we can safely just mark it writable once we've done any necessary
1266  * COW.
1267  *
1268  * We also mark the page dirty at this point even though the page will
1269  * change only once the write actually happens. This avoids a few races,
1270  * and potentially makes it more efficient.
1271  *
1272  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1273  * but allow concurrent faults), with pte both mapped and locked.
1274  * We return with mmap_sem still held, but pte unmapped and unlocked.
1275  */
1276 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1277                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1278                 spinlock_t *ptl, pte_t orig_pte)
1279 {
1280         struct page *old_page, *new_page;
1281         unsigned long pfn = pte_pfn(orig_pte);
1282         pte_t entry;
1283         int ret = VM_FAULT_MINOR;
1284
1285         BUG_ON(vma->vm_flags & VM_RESERVED);
1286
1287         if (unlikely(!pfn_valid(pfn))) {
1288                 /*
1289                  * Page table corrupted: show pte and kill process.
1290                  */
1291                 print_bad_pte(vma, orig_pte, address);
1292                 ret = VM_FAULT_OOM;
1293                 goto unlock;
1294         }
1295         old_page = pfn_to_page(pfn);
1296
1297         if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1298                 int reuse = can_share_swap_page(old_page);
1299                 unlock_page(old_page);
1300                 if (reuse) {
1301                         flush_cache_page(vma, address, pfn);
1302                         entry = pte_mkyoung(orig_pte);
1303                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1304                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1305                         update_mmu_cache(vma, address, entry);
1306                         lazy_mmu_prot_update(entry);
1307                         ret |= VM_FAULT_WRITE;
1308                         goto unlock;
1309                 }
1310         }
1311
1312         /*
1313          * Ok, we need to copy. Oh, well..
1314          */
1315         page_cache_get(old_page);
1316         pte_unmap_unlock(page_table, ptl);
1317
1318         if (unlikely(anon_vma_prepare(vma)))
1319                 goto oom;
1320         if (old_page == ZERO_PAGE(address)) {
1321                 new_page = alloc_zeroed_user_highpage(vma, address);
1322                 if (!new_page)
1323                         goto oom;
1324         } else {
1325                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1326                 if (!new_page)
1327                         goto oom;
1328                 copy_user_highpage(new_page, old_page, address);
1329         }
1330
1331         /*
1332          * Re-check the pte - we dropped the lock
1333          */
1334         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1335         if (likely(pte_same(*page_table, orig_pte))) {
1336                 page_remove_rmap(old_page);
1337                 if (!PageAnon(old_page)) {
1338                         inc_mm_counter(mm, anon_rss);
1339                         dec_mm_counter(mm, file_rss);
1340                 }
1341                 flush_cache_page(vma, address, pfn);
1342                 entry = mk_pte(new_page, vma->vm_page_prot);
1343                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1344                 ptep_establish(vma, address, page_table, entry);
1345                 update_mmu_cache(vma, address, entry);
1346                 lazy_mmu_prot_update(entry);
1347                 lru_cache_add_active(new_page);
1348                 page_add_anon_rmap(new_page, vma, address);
1349
1350                 /* Free the old page.. */
1351                 new_page = old_page;
1352                 ret |= VM_FAULT_WRITE;
1353         }
1354         page_cache_release(new_page);
1355         page_cache_release(old_page);
1356 unlock:
1357         pte_unmap_unlock(page_table, ptl);
1358         return ret;
1359 oom:
1360         page_cache_release(old_page);
1361         return VM_FAULT_OOM;
1362 }
1363
1364 /*
1365  * Helper functions for unmap_mapping_range().
1366  *
1367  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1368  *
1369  * We have to restart searching the prio_tree whenever we drop the lock,
1370  * since the iterator is only valid while the lock is held, and anyway
1371  * a later vma might be split and reinserted earlier while lock dropped.
1372  *
1373  * The list of nonlinear vmas could be handled more efficiently, using
1374  * a placeholder, but handle it in the same way until a need is shown.
1375  * It is important to search the prio_tree before nonlinear list: a vma
1376  * may become nonlinear and be shifted from prio_tree to nonlinear list
1377  * while the lock is dropped; but never shifted from list to prio_tree.
1378  *
1379  * In order to make forward progress despite restarting the search,
1380  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1381  * quickly skip it next time around.  Since the prio_tree search only
1382  * shows us those vmas affected by unmapping the range in question, we
1383  * can't efficiently keep all vmas in step with mapping->truncate_count:
1384  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1385  * mapping->truncate_count and vma->vm_truncate_count are protected by
1386  * i_mmap_lock.
1387  *
1388  * In order to make forward progress despite repeatedly restarting some
1389  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1390  * and restart from that address when we reach that vma again.  It might
1391  * have been split or merged, shrunk or extended, but never shifted: so
1392  * restart_addr remains valid so long as it remains in the vma's range.
1393  * unmap_mapping_range forces truncate_count to leap over page-aligned
1394  * values so we can save vma's restart_addr in its truncate_count field.
1395  */
1396 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1397
1398 static void reset_vma_truncate_counts(struct address_space *mapping)
1399 {
1400         struct vm_area_struct *vma;
1401         struct prio_tree_iter iter;
1402
1403         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1404                 vma->vm_truncate_count = 0;
1405         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1406                 vma->vm_truncate_count = 0;
1407 }
1408
1409 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1410                 unsigned long start_addr, unsigned long end_addr,
1411                 struct zap_details *details)
1412 {
1413         unsigned long restart_addr;
1414         int need_break;
1415
1416 again:
1417         restart_addr = vma->vm_truncate_count;
1418         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1419                 start_addr = restart_addr;
1420                 if (start_addr >= end_addr) {
1421                         /* Top of vma has been split off since last time */
1422                         vma->vm_truncate_count = details->truncate_count;
1423                         return 0;
1424                 }
1425         }
1426
1427         restart_addr = zap_page_range(vma, start_addr,
1428                                         end_addr - start_addr, details);
1429
1430         /*
1431          * We cannot rely on the break test in unmap_vmas:
1432          * on the one hand, we don't want to restart our loop
1433          * just because that broke out for the page_table_lock;
1434          * on the other hand, it does no test when vma is small.
1435          */
1436         need_break = need_resched() ||
1437                         need_lockbreak(details->i_mmap_lock);
1438
1439         if (restart_addr >= end_addr) {
1440                 /* We have now completed this vma: mark it so */
1441                 vma->vm_truncate_count = details->truncate_count;
1442                 if (!need_break)
1443                         return 0;
1444         } else {
1445                 /* Note restart_addr in vma's truncate_count field */
1446                 vma->vm_truncate_count = restart_addr;
1447                 if (!need_break)
1448                         goto again;
1449         }
1450
1451         spin_unlock(details->i_mmap_lock);
1452         cond_resched();
1453         spin_lock(details->i_mmap_lock);
1454         return -EINTR;
1455 }
1456
1457 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1458                                             struct zap_details *details)
1459 {
1460         struct vm_area_struct *vma;
1461         struct prio_tree_iter iter;
1462         pgoff_t vba, vea, zba, zea;
1463
1464 restart:
1465         vma_prio_tree_foreach(vma, &iter, root,
1466                         details->first_index, details->last_index) {
1467                 /* Skip quickly over those we have already dealt with */
1468                 if (vma->vm_truncate_count == details->truncate_count)
1469                         continue;
1470
1471                 vba = vma->vm_pgoff;
1472                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1473                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1474                 zba = details->first_index;
1475                 if (zba < vba)
1476                         zba = vba;
1477                 zea = details->last_index;
1478                 if (zea > vea)
1479                         zea = vea;
1480
1481                 if (unmap_mapping_range_vma(vma,
1482                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1483                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1484                                 details) < 0)
1485                         goto restart;
1486         }
1487 }
1488
1489 static inline void unmap_mapping_range_list(struct list_head *head,
1490                                             struct zap_details *details)
1491 {
1492         struct vm_area_struct *vma;
1493
1494         /*
1495          * In nonlinear VMAs there is no correspondence between virtual address
1496          * offset and file offset.  So we must perform an exhaustive search
1497          * across *all* the pages in each nonlinear VMA, not just the pages
1498          * whose virtual address lies outside the file truncation point.
1499          */
1500 restart:
1501         list_for_each_entry(vma, head, shared.vm_set.list) {
1502                 /* Skip quickly over those we have already dealt with */
1503                 if (vma->vm_truncate_count == details->truncate_count)
1504                         continue;
1505                 details->nonlinear_vma = vma;
1506                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1507                                         vma->vm_end, details) < 0)
1508                         goto restart;
1509         }
1510 }
1511
1512 /**
1513  * unmap_mapping_range - unmap the portion of all mmaps
1514  * in the specified address_space corresponding to the specified
1515  * page range in the underlying file.
1516  * @mapping: the address space containing mmaps to be unmapped.
1517  * @holebegin: byte in first page to unmap, relative to the start of
1518  * the underlying file.  This will be rounded down to a PAGE_SIZE
1519  * boundary.  Note that this is different from vmtruncate(), which
1520  * must keep the partial page.  In contrast, we must get rid of
1521  * partial pages.
1522  * @holelen: size of prospective hole in bytes.  This will be rounded
1523  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1524  * end of the file.
1525  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1526  * but 0 when invalidating pagecache, don't throw away private data.
1527  */
1528 void unmap_mapping_range(struct address_space *mapping,
1529                 loff_t const holebegin, loff_t const holelen, int even_cows)
1530 {
1531         struct zap_details details;
1532         pgoff_t hba = holebegin >> PAGE_SHIFT;
1533         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1534
1535         /* Check for overflow. */
1536         if (sizeof(holelen) > sizeof(hlen)) {
1537                 long long holeend =
1538                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1539                 if (holeend & ~(long long)ULONG_MAX)
1540                         hlen = ULONG_MAX - hba + 1;
1541         }
1542
1543         details.check_mapping = even_cows? NULL: mapping;
1544         details.nonlinear_vma = NULL;
1545         details.first_index = hba;
1546         details.last_index = hba + hlen - 1;
1547         if (details.last_index < details.first_index)
1548                 details.last_index = ULONG_MAX;
1549         details.i_mmap_lock = &mapping->i_mmap_lock;
1550
1551         spin_lock(&mapping->i_mmap_lock);
1552
1553         /* serialize i_size write against truncate_count write */
1554         smp_wmb();
1555         /* Protect against page faults, and endless unmapping loops */
1556         mapping->truncate_count++;
1557         /*
1558          * For archs where spin_lock has inclusive semantics like ia64
1559          * this smp_mb() will prevent to read pagetable contents
1560          * before the truncate_count increment is visible to
1561          * other cpus.
1562          */
1563         smp_mb();
1564         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1565                 if (mapping->truncate_count == 0)
1566                         reset_vma_truncate_counts(mapping);
1567                 mapping->truncate_count++;
1568         }
1569         details.truncate_count = mapping->truncate_count;
1570
1571         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1572                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1573         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1574                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1575         spin_unlock(&mapping->i_mmap_lock);
1576 }
1577 EXPORT_SYMBOL(unmap_mapping_range);
1578
1579 /*
1580  * Handle all mappings that got truncated by a "truncate()"
1581  * system call.
1582  *
1583  * NOTE! We have to be ready to update the memory sharing
1584  * between the file and the memory map for a potential last
1585  * incomplete page.  Ugly, but necessary.
1586  */
1587 int vmtruncate(struct inode * inode, loff_t offset)
1588 {
1589         struct address_space *mapping = inode->i_mapping;
1590         unsigned long limit;
1591
1592         if (inode->i_size < offset)
1593                 goto do_expand;
1594         /*
1595          * truncation of in-use swapfiles is disallowed - it would cause
1596          * subsequent swapout to scribble on the now-freed blocks.
1597          */
1598         if (IS_SWAPFILE(inode))
1599                 goto out_busy;
1600         i_size_write(inode, offset);
1601         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1602         truncate_inode_pages(mapping, offset);
1603         goto out_truncate;
1604
1605 do_expand:
1606         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1607         if (limit != RLIM_INFINITY && offset > limit)
1608                 goto out_sig;
1609         if (offset > inode->i_sb->s_maxbytes)
1610                 goto out_big;
1611         i_size_write(inode, offset);
1612
1613 out_truncate:
1614         if (inode->i_op && inode->i_op->truncate)
1615                 inode->i_op->truncate(inode);
1616         return 0;
1617 out_sig:
1618         send_sig(SIGXFSZ, current, 0);
1619 out_big:
1620         return -EFBIG;
1621 out_busy:
1622         return -ETXTBSY;
1623 }
1624
1625 EXPORT_SYMBOL(vmtruncate);
1626
1627 /* 
1628  * Primitive swap readahead code. We simply read an aligned block of
1629  * (1 << page_cluster) entries in the swap area. This method is chosen
1630  * because it doesn't cost us any seek time.  We also make sure to queue
1631  * the 'original' request together with the readahead ones...  
1632  *
1633  * This has been extended to use the NUMA policies from the mm triggering
1634  * the readahead.
1635  *
1636  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1637  */
1638 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1639 {
1640 #ifdef CONFIG_NUMA
1641         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1642 #endif
1643         int i, num;
1644         struct page *new_page;
1645         unsigned long offset;
1646
1647         /*
1648          * Get the number of handles we should do readahead io to.
1649          */
1650         num = valid_swaphandles(entry, &offset);
1651         for (i = 0; i < num; offset++, i++) {
1652                 /* Ok, do the async read-ahead now */
1653                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1654                                                            offset), vma, addr);
1655                 if (!new_page)
1656                         break;
1657                 page_cache_release(new_page);
1658 #ifdef CONFIG_NUMA
1659                 /*
1660                  * Find the next applicable VMA for the NUMA policy.
1661                  */
1662                 addr += PAGE_SIZE;
1663                 if (addr == 0)
1664                         vma = NULL;
1665                 if (vma) {
1666                         if (addr >= vma->vm_end) {
1667                                 vma = next_vma;
1668                                 next_vma = vma ? vma->vm_next : NULL;
1669                         }
1670                         if (vma && addr < vma->vm_start)
1671                                 vma = NULL;
1672                 } else {
1673                         if (next_vma && addr >= next_vma->vm_start) {
1674                                 vma = next_vma;
1675                                 next_vma = vma->vm_next;
1676                         }
1677                 }
1678 #endif
1679         }
1680         lru_add_drain();        /* Push any new pages onto the LRU now */
1681 }
1682
1683 /*
1684  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1685  * but allow concurrent faults), and pte mapped but not yet locked.
1686  * We return with mmap_sem still held, but pte unmapped and unlocked.
1687  */
1688 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1689                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1690                 int write_access, pte_t orig_pte)
1691 {
1692         spinlock_t *ptl;
1693         struct page *page;
1694         swp_entry_t entry;
1695         pte_t pte;
1696         int ret = VM_FAULT_MINOR;
1697
1698         if (!pte_unmap_same(mm, page_table, orig_pte))
1699                 goto out;
1700
1701         entry = pte_to_swp_entry(orig_pte);
1702         page = lookup_swap_cache(entry);
1703         if (!page) {
1704                 swapin_readahead(entry, address, vma);
1705                 page = read_swap_cache_async(entry, vma, address);
1706                 if (!page) {
1707                         /*
1708                          * Back out if somebody else faulted in this pte
1709                          * while we released the pte lock.
1710                          */
1711                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1712                         if (likely(pte_same(*page_table, orig_pte)))
1713                                 ret = VM_FAULT_OOM;
1714                         goto unlock;
1715                 }
1716
1717                 /* Had to read the page from swap area: Major fault */
1718                 ret = VM_FAULT_MAJOR;
1719                 inc_page_state(pgmajfault);
1720                 grab_swap_token();
1721         }
1722
1723         mark_page_accessed(page);
1724         lock_page(page);
1725
1726         /*
1727          * Back out if somebody else already faulted in this pte.
1728          */
1729         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1730         if (unlikely(!pte_same(*page_table, orig_pte)))
1731                 goto out_nomap;
1732
1733         if (unlikely(!PageUptodate(page))) {
1734                 ret = VM_FAULT_SIGBUS;
1735                 goto out_nomap;
1736         }
1737
1738         /* The page isn't present yet, go ahead with the fault. */
1739
1740         inc_mm_counter(mm, anon_rss);
1741         pte = mk_pte(page, vma->vm_page_prot);
1742         if (write_access && can_share_swap_page(page)) {
1743                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1744                 write_access = 0;
1745         }
1746
1747         flush_icache_page(vma, page);
1748         set_pte_at(mm, address, page_table, pte);
1749         page_add_anon_rmap(page, vma, address);
1750
1751         swap_free(entry);
1752         if (vm_swap_full())
1753                 remove_exclusive_swap_page(page);
1754         unlock_page(page);
1755
1756         if (write_access) {
1757                 if (do_wp_page(mm, vma, address,
1758                                 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1759                         ret = VM_FAULT_OOM;
1760                 goto out;
1761         }
1762
1763         /* No need to invalidate - it was non-present before */
1764         update_mmu_cache(vma, address, pte);
1765         lazy_mmu_prot_update(pte);
1766 unlock:
1767         pte_unmap_unlock(page_table, ptl);
1768 out:
1769         return ret;
1770 out_nomap:
1771         pte_unmap_unlock(page_table, ptl);
1772         unlock_page(page);
1773         page_cache_release(page);
1774         return ret;
1775 }
1776
1777 /*
1778  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1779  * but allow concurrent faults), and pte mapped but not yet locked.
1780  * We return with mmap_sem still held, but pte unmapped and unlocked.
1781  */
1782 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1783                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1784                 int write_access)
1785 {
1786         struct page *page;
1787         spinlock_t *ptl;
1788         pte_t entry;
1789
1790         if (write_access) {
1791                 /* Allocate our own private page. */
1792                 pte_unmap(page_table);
1793
1794                 if (unlikely(anon_vma_prepare(vma)))
1795                         goto oom;
1796                 page = alloc_zeroed_user_highpage(vma, address);
1797                 if (!page)
1798                         goto oom;
1799
1800                 entry = mk_pte(page, vma->vm_page_prot);
1801                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1802
1803                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1804                 if (!pte_none(*page_table))
1805                         goto release;
1806                 inc_mm_counter(mm, anon_rss);
1807                 lru_cache_add_active(page);
1808                 SetPageReferenced(page);
1809                 page_add_anon_rmap(page, vma, address);
1810         } else {
1811                 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1812                 page = ZERO_PAGE(address);
1813                 page_cache_get(page);
1814                 entry = mk_pte(page, vma->vm_page_prot);
1815
1816                 ptl = &mm->page_table_lock;
1817                 spin_lock(ptl);
1818                 if (!pte_none(*page_table))
1819                         goto release;
1820                 inc_mm_counter(mm, file_rss);
1821                 page_add_file_rmap(page);
1822         }
1823
1824         set_pte_at(mm, address, page_table, entry);
1825
1826         /* No need to invalidate - it was non-present before */
1827         update_mmu_cache(vma, address, entry);
1828         lazy_mmu_prot_update(entry);
1829 unlock:
1830         pte_unmap_unlock(page_table, ptl);
1831         return VM_FAULT_MINOR;
1832 release:
1833         page_cache_release(page);
1834         goto unlock;
1835 oom:
1836         return VM_FAULT_OOM;
1837 }
1838
1839 /*
1840  * do_no_page() tries to create a new page mapping. It aggressively
1841  * tries to share with existing pages, but makes a separate copy if
1842  * the "write_access" parameter is true in order to avoid the next
1843  * page fault.
1844  *
1845  * As this is called only for pages that do not currently exist, we
1846  * do not need to flush old virtual caches or the TLB.
1847  *
1848  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1849  * but allow concurrent faults), and pte mapped but not yet locked.
1850  * We return with mmap_sem still held, but pte unmapped and unlocked.
1851  */
1852 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1853                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1854                 int write_access)
1855 {
1856         spinlock_t *ptl;
1857         struct page *new_page;
1858         struct address_space *mapping = NULL;
1859         pte_t entry;
1860         unsigned int sequence = 0;
1861         int ret = VM_FAULT_MINOR;
1862         int anon = 0;
1863
1864         pte_unmap(page_table);
1865
1866         if (vma->vm_file) {
1867                 mapping = vma->vm_file->f_mapping;
1868                 sequence = mapping->truncate_count;
1869                 smp_rmb(); /* serializes i_size against truncate_count */
1870         }
1871 retry:
1872         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1873         /*
1874          * No smp_rmb is needed here as long as there's a full
1875          * spin_lock/unlock sequence inside the ->nopage callback
1876          * (for the pagecache lookup) that acts as an implicit
1877          * smp_mb() and prevents the i_size read to happen
1878          * after the next truncate_count read.
1879          */
1880
1881         /* no page was available -- either SIGBUS or OOM */
1882         if (new_page == NOPAGE_SIGBUS)
1883                 return VM_FAULT_SIGBUS;
1884         if (new_page == NOPAGE_OOM)
1885                 return VM_FAULT_OOM;
1886
1887         /*
1888          * Should we do an early C-O-W break?
1889          */
1890         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1891                 struct page *page;
1892
1893                 if (unlikely(anon_vma_prepare(vma)))
1894                         goto oom;
1895                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1896                 if (!page)
1897                         goto oom;
1898                 copy_user_highpage(page, new_page, address);
1899                 page_cache_release(new_page);
1900                 new_page = page;
1901                 anon = 1;
1902         }
1903
1904         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1905         /*
1906          * For a file-backed vma, someone could have truncated or otherwise
1907          * invalidated this page.  If unmap_mapping_range got called,
1908          * retry getting the page.
1909          */
1910         if (mapping && unlikely(sequence != mapping->truncate_count)) {
1911                 pte_unmap_unlock(page_table, ptl);
1912                 page_cache_release(new_page);
1913                 cond_resched();
1914                 sequence = mapping->truncate_count;
1915                 smp_rmb();
1916                 goto retry;
1917         }
1918
1919         /*
1920          * This silly early PAGE_DIRTY setting removes a race
1921          * due to the bad i386 page protection. But it's valid
1922          * for other architectures too.
1923          *
1924          * Note that if write_access is true, we either now have
1925          * an exclusive copy of the page, or this is a shared mapping,
1926          * so we can make it writable and dirty to avoid having to
1927          * handle that later.
1928          */
1929         /* Only go through if we didn't race with anybody else... */
1930         if (pte_none(*page_table)) {
1931                 flush_icache_page(vma, new_page);
1932                 entry = mk_pte(new_page, vma->vm_page_prot);
1933                 if (write_access)
1934                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1935                 set_pte_at(mm, address, page_table, entry);
1936                 if (anon) {
1937                         inc_mm_counter(mm, anon_rss);
1938                         lru_cache_add_active(new_page);
1939                         page_add_anon_rmap(new_page, vma, address);
1940                 } else if (!(vma->vm_flags & VM_RESERVED)) {
1941                         inc_mm_counter(mm, file_rss);
1942                         page_add_file_rmap(new_page);
1943                 }
1944         } else {
1945                 /* One of our sibling threads was faster, back out. */
1946                 page_cache_release(new_page);
1947                 goto unlock;
1948         }
1949
1950         /* no need to invalidate: a not-present page shouldn't be cached */
1951         update_mmu_cache(vma, address, entry);
1952         lazy_mmu_prot_update(entry);
1953 unlock:
1954         pte_unmap_unlock(page_table, ptl);
1955         return ret;
1956 oom:
1957         page_cache_release(new_page);
1958         return VM_FAULT_OOM;
1959 }
1960
1961 /*
1962  * Fault of a previously existing named mapping. Repopulate the pte
1963  * from the encoded file_pte if possible. This enables swappable
1964  * nonlinear vmas.
1965  *
1966  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1967  * but allow concurrent faults), and pte mapped but not yet locked.
1968  * We return with mmap_sem still held, but pte unmapped and unlocked.
1969  */
1970 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1971                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1972                 int write_access, pte_t orig_pte)
1973 {
1974         pgoff_t pgoff;
1975         int err;
1976
1977         if (!pte_unmap_same(mm, page_table, orig_pte))
1978                 return VM_FAULT_MINOR;
1979
1980         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1981                 /*
1982                  * Page table corrupted: show pte and kill process.
1983                  */
1984                 print_bad_pte(vma, orig_pte, address);
1985                 return VM_FAULT_OOM;
1986         }
1987         /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1988
1989         pgoff = pte_to_pgoff(orig_pte);
1990         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1991                                         vma->vm_page_prot, pgoff, 0);
1992         if (err == -ENOMEM)
1993                 return VM_FAULT_OOM;
1994         if (err)
1995                 return VM_FAULT_SIGBUS;
1996         return VM_FAULT_MAJOR;
1997 }
1998
1999 /*
2000  * These routines also need to handle stuff like marking pages dirty
2001  * and/or accessed for architectures that don't do it in hardware (most
2002  * RISC architectures).  The early dirtying is also good on the i386.
2003  *
2004  * There is also a hook called "update_mmu_cache()" that architectures
2005  * with external mmu caches can use to update those (ie the Sparc or
2006  * PowerPC hashed page tables that act as extended TLBs).
2007  *
2008  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2009  * but allow concurrent faults), and pte mapped but not yet locked.
2010  * We return with mmap_sem still held, but pte unmapped and unlocked.
2011  */
2012 static inline int handle_pte_fault(struct mm_struct *mm,
2013                 struct vm_area_struct *vma, unsigned long address,
2014                 pte_t *pte, pmd_t *pmd, int write_access)
2015 {
2016         pte_t entry;
2017         spinlock_t *ptl;
2018
2019         entry = *pte;
2020         if (!pte_present(entry)) {
2021                 if (pte_none(entry)) {
2022                         if (!vma->vm_ops || !vma->vm_ops->nopage)
2023                                 return do_anonymous_page(mm, vma, address,
2024                                         pte, pmd, write_access);
2025                         return do_no_page(mm, vma, address,
2026                                         pte, pmd, write_access);
2027                 }
2028                 if (pte_file(entry))
2029                         return do_file_page(mm, vma, address,
2030                                         pte, pmd, write_access, entry);
2031                 return do_swap_page(mm, vma, address,
2032                                         pte, pmd, write_access, entry);
2033         }
2034
2035         ptl = &mm->page_table_lock;
2036         spin_lock(ptl);
2037         if (unlikely(!pte_same(*pte, entry)))
2038                 goto unlock;
2039         if (write_access) {
2040                 if (!pte_write(entry))
2041                         return do_wp_page(mm, vma, address,
2042                                         pte, pmd, ptl, entry);
2043                 entry = pte_mkdirty(entry);
2044         }
2045         entry = pte_mkyoung(entry);
2046         ptep_set_access_flags(vma, address, pte, entry, write_access);
2047         update_mmu_cache(vma, address, entry);
2048         lazy_mmu_prot_update(entry);
2049 unlock:
2050         pte_unmap_unlock(pte, ptl);
2051         return VM_FAULT_MINOR;
2052 }
2053
2054 /*
2055  * By the time we get here, we already hold the mm semaphore
2056  */
2057 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2058                 unsigned long address, int write_access)
2059 {
2060         pgd_t *pgd;
2061         pud_t *pud;
2062         pmd_t *pmd;
2063         pte_t *pte;
2064
2065         __set_current_state(TASK_RUNNING);
2066
2067         inc_page_state(pgfault);
2068
2069         if (unlikely(is_vm_hugetlb_page(vma)))
2070                 return hugetlb_fault(mm, vma, address, write_access);
2071
2072         pgd = pgd_offset(mm, address);
2073         pud = pud_alloc(mm, pgd, address);
2074         if (!pud)
2075                 return VM_FAULT_OOM;
2076         pmd = pmd_alloc(mm, pud, address);
2077         if (!pmd)
2078                 return VM_FAULT_OOM;
2079         pte = pte_alloc_map(mm, pmd, address);
2080         if (!pte)
2081                 return VM_FAULT_OOM;
2082
2083         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2084 }
2085
2086 #ifndef __PAGETABLE_PUD_FOLDED
2087 /*
2088  * Allocate page upper directory.
2089  * We've already handled the fast-path in-line.
2090  */
2091 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2092 {
2093         pud_t *new = pud_alloc_one(mm, address);
2094         if (!new)
2095                 return -ENOMEM;
2096
2097         spin_lock(&mm->page_table_lock);
2098         if (pgd_present(*pgd))          /* Another has populated it */
2099                 pud_free(new);
2100         else
2101                 pgd_populate(mm, pgd, new);
2102         spin_unlock(&mm->page_table_lock);
2103         return 0;
2104 }
2105 #endif /* __PAGETABLE_PUD_FOLDED */
2106
2107 #ifndef __PAGETABLE_PMD_FOLDED
2108 /*
2109  * Allocate page middle directory.
2110  * We've already handled the fast-path in-line.
2111  */
2112 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2113 {
2114         pmd_t *new = pmd_alloc_one(mm, address);
2115         if (!new)
2116                 return -ENOMEM;
2117
2118         spin_lock(&mm->page_table_lock);
2119 #ifndef __ARCH_HAS_4LEVEL_HACK
2120         if (pud_present(*pud))          /* Another has populated it */
2121                 pmd_free(new);
2122         else
2123                 pud_populate(mm, pud, new);
2124 #else
2125         if (pgd_present(*pud))          /* Another has populated it */
2126                 pmd_free(new);
2127         else
2128                 pgd_populate(mm, pud, new);
2129 #endif /* __ARCH_HAS_4LEVEL_HACK */
2130         spin_unlock(&mm->page_table_lock);
2131         return 0;
2132 }
2133 #endif /* __PAGETABLE_PMD_FOLDED */
2134
2135 int make_pages_present(unsigned long addr, unsigned long end)
2136 {
2137         int ret, len, write;
2138         struct vm_area_struct * vma;
2139
2140         vma = find_vma(current->mm, addr);
2141         if (!vma)
2142                 return -1;
2143         write = (vma->vm_flags & VM_WRITE) != 0;
2144         if (addr >= end)
2145                 BUG();
2146         if (end > vma->vm_end)
2147                 BUG();
2148         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2149         ret = get_user_pages(current, current->mm, addr,
2150                         len, write, 0, NULL, NULL);
2151         if (ret < 0)
2152                 return ret;
2153         return ret == len ? 0 : -1;
2154 }
2155
2156 /* 
2157  * Map a vmalloc()-space virtual address to the physical page.
2158  */
2159 struct page * vmalloc_to_page(void * vmalloc_addr)
2160 {
2161         unsigned long addr = (unsigned long) vmalloc_addr;
2162         struct page *page = NULL;
2163         pgd_t *pgd = pgd_offset_k(addr);
2164         pud_t *pud;
2165         pmd_t *pmd;
2166         pte_t *ptep, pte;
2167   
2168         if (!pgd_none(*pgd)) {
2169                 pud = pud_offset(pgd, addr);
2170                 if (!pud_none(*pud)) {
2171                         pmd = pmd_offset(pud, addr);
2172                         if (!pmd_none(*pmd)) {
2173                                 ptep = pte_offset_map(pmd, addr);
2174                                 pte = *ptep;
2175                                 if (pte_present(pte))
2176                                         page = pte_page(pte);
2177                                 pte_unmap(ptep);
2178                         }
2179                 }
2180         }
2181         return page;
2182 }
2183
2184 EXPORT_SYMBOL(vmalloc_to_page);
2185
2186 /*
2187  * Map a vmalloc()-space virtual address to the physical page frame number.
2188  */
2189 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2190 {
2191         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2192 }
2193
2194 EXPORT_SYMBOL(vmalloc_to_pfn);
2195
2196 #if !defined(__HAVE_ARCH_GATE_AREA)
2197
2198 #if defined(AT_SYSINFO_EHDR)
2199 static struct vm_area_struct gate_vma;
2200
2201 static int __init gate_vma_init(void)
2202 {
2203         gate_vma.vm_mm = NULL;
2204         gate_vma.vm_start = FIXADDR_USER_START;
2205         gate_vma.vm_end = FIXADDR_USER_END;
2206         gate_vma.vm_page_prot = PAGE_READONLY;
2207         gate_vma.vm_flags = VM_RESERVED;
2208         return 0;
2209 }
2210 __initcall(gate_vma_init);
2211 #endif
2212
2213 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2214 {
2215 #ifdef AT_SYSINFO_EHDR
2216         return &gate_vma;
2217 #else
2218         return NULL;
2219 #endif
2220 }
2221
2222 int in_gate_area_no_task(unsigned long addr)
2223 {
2224 #ifdef AT_SYSINFO_EHDR
2225         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2226                 return 1;
2227 #endif
2228         return 0;
2229 }
2230
2231 #endif  /* __HAVE_ARCH_GATE_AREA */