]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - mm/memcontrol.c
memcg: fix LRU accounting for SwapCache
[linux-2.6-omap-h63xx.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
34 #include <linux/fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
39 #include "internal.h"
40
41 #include <asm/uaccess.h>
42
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44 #define MEM_CGROUP_RECLAIM_RETRIES      5
45
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly;
49 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50 #else
51 #define do_swap_account         (0)
52 #endif
53
54 static DEFINE_MUTEX(memcg_tasklist);    /* can be hold under cgroup_mutex */
55
56 /*
57  * Statistics for memory cgroup.
58  */
59 enum mem_cgroup_stat_index {
60         /*
61          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62          */
63         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
64         MEM_CGROUP_STAT_RSS,       /* # of pages charged as rss */
65         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
66         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
67
68         MEM_CGROUP_STAT_NSTATS,
69 };
70
71 struct mem_cgroup_stat_cpu {
72         s64 count[MEM_CGROUP_STAT_NSTATS];
73 } ____cacheline_aligned_in_smp;
74
75 struct mem_cgroup_stat {
76         struct mem_cgroup_stat_cpu cpustat[0];
77 };
78
79 /*
80  * For accounting under irq disable, no need for increment preempt count.
81  */
82 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83                 enum mem_cgroup_stat_index idx, int val)
84 {
85         stat->count[idx] += val;
86 }
87
88 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89                 enum mem_cgroup_stat_index idx)
90 {
91         int cpu;
92         s64 ret = 0;
93         for_each_possible_cpu(cpu)
94                 ret += stat->cpustat[cpu].count[idx];
95         return ret;
96 }
97
98 /*
99  * per-zone information in memory controller.
100  */
101 struct mem_cgroup_per_zone {
102         /*
103          * spin_lock to protect the per cgroup LRU
104          */
105         struct list_head        lists[NR_LRU_LISTS];
106         unsigned long           count[NR_LRU_LISTS];
107
108         struct zone_reclaim_stat reclaim_stat;
109 };
110 /* Macro for accessing counter */
111 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
112
113 struct mem_cgroup_per_node {
114         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
115 };
116
117 struct mem_cgroup_lru_info {
118         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119 };
120
121 /*
122  * The memory controller data structure. The memory controller controls both
123  * page cache and RSS per cgroup. We would eventually like to provide
124  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125  * to help the administrator determine what knobs to tune.
126  *
127  * TODO: Add a water mark for the memory controller. Reclaim will begin when
128  * we hit the water mark. May be even add a low water mark, such that
129  * no reclaim occurs from a cgroup at it's low water mark, this is
130  * a feature that will be implemented much later in the future.
131  */
132 struct mem_cgroup {
133         struct cgroup_subsys_state css;
134         /*
135          * the counter to account for memory usage
136          */
137         struct res_counter res;
138         /*
139          * the counter to account for mem+swap usage.
140          */
141         struct res_counter memsw;
142         /*
143          * Per cgroup active and inactive list, similar to the
144          * per zone LRU lists.
145          */
146         struct mem_cgroup_lru_info info;
147
148         /*
149           protect against reclaim related member.
150         */
151         spinlock_t reclaim_param_lock;
152
153         int     prev_priority;  /* for recording reclaim priority */
154
155         /*
156          * While reclaiming in a hiearchy, we cache the last child we
157          * reclaimed from. Protected by cgroup_lock()
158          */
159         struct mem_cgroup *last_scanned_child;
160         /*
161          * Should the accounting and control be hierarchical, per subtree?
162          */
163         bool use_hierarchy;
164         unsigned long   last_oom_jiffies;
165         atomic_t        refcnt;
166
167         unsigned int    swappiness;
168
169         /*
170          * statistics. This must be placed at the end of memcg.
171          */
172         struct mem_cgroup_stat stat;
173 };
174
175 enum charge_type {
176         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177         MEM_CGROUP_CHARGE_TYPE_MAPPED,
178         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
179         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
180         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
181         NR_CHARGE_TYPE,
182 };
183
184 /* only for here (for easy reading.) */
185 #define PCGF_CACHE      (1UL << PCG_CACHE)
186 #define PCGF_USED       (1UL << PCG_USED)
187 #define PCGF_LOCK       (1UL << PCG_LOCK)
188 static const unsigned long
189 pcg_default_flags[NR_CHARGE_TYPE] = {
190         PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191         PCGF_USED | PCGF_LOCK, /* Anon */
192         PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
193         0, /* FORCE */
194 };
195
196 /* for encoding cft->private value on file */
197 #define _MEM                    (0)
198 #define _MEMSWAP                (1)
199 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
201 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
202
203 static void mem_cgroup_get(struct mem_cgroup *mem);
204 static void mem_cgroup_put(struct mem_cgroup *mem);
205
206 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207                                          struct page_cgroup *pc,
208                                          bool charge)
209 {
210         int val = (charge)? 1 : -1;
211         struct mem_cgroup_stat *stat = &mem->stat;
212         struct mem_cgroup_stat_cpu *cpustat;
213         int cpu = get_cpu();
214
215         cpustat = &stat->cpustat[cpu];
216         if (PageCgroupCache(pc))
217                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
218         else
219                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
220
221         if (charge)
222                 __mem_cgroup_stat_add_safe(cpustat,
223                                 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224         else
225                 __mem_cgroup_stat_add_safe(cpustat,
226                                 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
227         put_cpu();
228 }
229
230 static struct mem_cgroup_per_zone *
231 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
232 {
233         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
234 }
235
236 static struct mem_cgroup_per_zone *
237 page_cgroup_zoneinfo(struct page_cgroup *pc)
238 {
239         struct mem_cgroup *mem = pc->mem_cgroup;
240         int nid = page_cgroup_nid(pc);
241         int zid = page_cgroup_zid(pc);
242
243         if (!mem)
244                 return NULL;
245
246         return mem_cgroup_zoneinfo(mem, nid, zid);
247 }
248
249 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
250                                         enum lru_list idx)
251 {
252         int nid, zid;
253         struct mem_cgroup_per_zone *mz;
254         u64 total = 0;
255
256         for_each_online_node(nid)
257                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
259                         total += MEM_CGROUP_ZSTAT(mz, idx);
260                 }
261         return total;
262 }
263
264 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
265 {
266         return container_of(cgroup_subsys_state(cont,
267                                 mem_cgroup_subsys_id), struct mem_cgroup,
268                                 css);
269 }
270
271 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
272 {
273         /*
274          * mm_update_next_owner() may clear mm->owner to NULL
275          * if it races with swapoff, page migration, etc.
276          * So this can be called with p == NULL.
277          */
278         if (unlikely(!p))
279                 return NULL;
280
281         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282                                 struct mem_cgroup, css);
283 }
284
285 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
286 {
287         struct mem_cgroup *mem = NULL;
288         /*
289          * Because we have no locks, mm->owner's may be being moved to other
290          * cgroup. We use css_tryget() here even if this looks
291          * pessimistic (rather than adding locks here).
292          */
293         rcu_read_lock();
294         do {
295                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
296                 if (unlikely(!mem))
297                         break;
298         } while (!css_tryget(&mem->css));
299         rcu_read_unlock();
300         return mem;
301 }
302
303 static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
304 {
305         if (!mem)
306                 return true;
307         return css_is_removed(&mem->css);
308 }
309
310 /*
311  * Following LRU functions are allowed to be used without PCG_LOCK.
312  * Operations are called by routine of global LRU independently from memcg.
313  * What we have to take care of here is validness of pc->mem_cgroup.
314  *
315  * Changes to pc->mem_cgroup happens when
316  * 1. charge
317  * 2. moving account
318  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319  * It is added to LRU before charge.
320  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321  * When moving account, the page is not on LRU. It's isolated.
322  */
323
324 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
325 {
326         struct page_cgroup *pc;
327         struct mem_cgroup *mem;
328         struct mem_cgroup_per_zone *mz;
329
330         if (mem_cgroup_disabled())
331                 return;
332         pc = lookup_page_cgroup(page);
333         /* can happen while we handle swapcache. */
334         if (list_empty(&pc->lru) || !pc->mem_cgroup)
335                 return;
336         /*
337          * We don't check PCG_USED bit. It's cleared when the "page" is finally
338          * removed from global LRU.
339          */
340         mz = page_cgroup_zoneinfo(pc);
341         mem = pc->mem_cgroup;
342         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
343         list_del_init(&pc->lru);
344         return;
345 }
346
347 void mem_cgroup_del_lru(struct page *page)
348 {
349         mem_cgroup_del_lru_list(page, page_lru(page));
350 }
351
352 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
353 {
354         struct mem_cgroup_per_zone *mz;
355         struct page_cgroup *pc;
356
357         if (mem_cgroup_disabled())
358                 return;
359
360         pc = lookup_page_cgroup(page);
361         smp_rmb();
362         /* unused page is not rotated. */
363         if (!PageCgroupUsed(pc))
364                 return;
365         mz = page_cgroup_zoneinfo(pc);
366         list_move(&pc->lru, &mz->lists[lru]);
367 }
368
369 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
370 {
371         struct page_cgroup *pc;
372         struct mem_cgroup_per_zone *mz;
373
374         if (mem_cgroup_disabled())
375                 return;
376         pc = lookup_page_cgroup(page);
377         /* barrier to sync with "charge" */
378         smp_rmb();
379         if (!PageCgroupUsed(pc))
380                 return;
381
382         mz = page_cgroup_zoneinfo(pc);
383         MEM_CGROUP_ZSTAT(mz, lru) += 1;
384         list_add(&pc->lru, &mz->lists[lru]);
385 }
386
387 /*
388  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
389  * lru because the page may.be reused after it's fully uncharged (because of
390  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
391  * it again. This function is only used to charge SwapCache. It's done under
392  * lock_page and expected that zone->lru_lock is never held.
393  */
394 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
395 {
396         unsigned long flags;
397         struct zone *zone = page_zone(page);
398         struct page_cgroup *pc = lookup_page_cgroup(page);
399
400         spin_lock_irqsave(&zone->lru_lock, flags);
401         /*
402          * Forget old LRU when this page_cgroup is *not* used. This Used bit
403          * is guarded by lock_page() because the page is SwapCache.
404          */
405         if (!PageCgroupUsed(pc))
406                 mem_cgroup_del_lru_list(page, page_lru(page));
407         spin_unlock_irqrestore(&zone->lru_lock, flags);
408 }
409
410 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
411 {
412         unsigned long flags;
413         struct zone *zone = page_zone(page);
414         struct page_cgroup *pc = lookup_page_cgroup(page);
415
416         spin_lock_irqsave(&zone->lru_lock, flags);
417         /* link when the page is linked to LRU but page_cgroup isn't */
418         if (PageLRU(page) && list_empty(&pc->lru))
419                 mem_cgroup_add_lru_list(page, page_lru(page));
420         spin_unlock_irqrestore(&zone->lru_lock, flags);
421 }
422
423
424 void mem_cgroup_move_lists(struct page *page,
425                            enum lru_list from, enum lru_list to)
426 {
427         if (mem_cgroup_disabled())
428                 return;
429         mem_cgroup_del_lru_list(page, from);
430         mem_cgroup_add_lru_list(page, to);
431 }
432
433 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
434 {
435         int ret;
436
437         task_lock(task);
438         ret = task->mm && mm_match_cgroup(task->mm, mem);
439         task_unlock(task);
440         return ret;
441 }
442
443 /*
444  * Calculate mapped_ratio under memory controller. This will be used in
445  * vmscan.c for deteremining we have to reclaim mapped pages.
446  */
447 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
448 {
449         long total, rss;
450
451         /*
452          * usage is recorded in bytes. But, here, we assume the number of
453          * physical pages can be represented by "long" on any arch.
454          */
455         total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
456         rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
457         return (int)((rss * 100L) / total);
458 }
459
460 /*
461  * prev_priority control...this will be used in memory reclaim path.
462  */
463 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
464 {
465         int prev_priority;
466
467         spin_lock(&mem->reclaim_param_lock);
468         prev_priority = mem->prev_priority;
469         spin_unlock(&mem->reclaim_param_lock);
470
471         return prev_priority;
472 }
473
474 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
475 {
476         spin_lock(&mem->reclaim_param_lock);
477         if (priority < mem->prev_priority)
478                 mem->prev_priority = priority;
479         spin_unlock(&mem->reclaim_param_lock);
480 }
481
482 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
483 {
484         spin_lock(&mem->reclaim_param_lock);
485         mem->prev_priority = priority;
486         spin_unlock(&mem->reclaim_param_lock);
487 }
488
489 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
490 {
491         unsigned long active;
492         unsigned long inactive;
493         unsigned long gb;
494         unsigned long inactive_ratio;
495
496         inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
497         active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
498
499         gb = (inactive + active) >> (30 - PAGE_SHIFT);
500         if (gb)
501                 inactive_ratio = int_sqrt(10 * gb);
502         else
503                 inactive_ratio = 1;
504
505         if (present_pages) {
506                 present_pages[0] = inactive;
507                 present_pages[1] = active;
508         }
509
510         return inactive_ratio;
511 }
512
513 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
514 {
515         unsigned long active;
516         unsigned long inactive;
517         unsigned long present_pages[2];
518         unsigned long inactive_ratio;
519
520         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
521
522         inactive = present_pages[0];
523         active = present_pages[1];
524
525         if (inactive * inactive_ratio < active)
526                 return 1;
527
528         return 0;
529 }
530
531 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
532                                        struct zone *zone,
533                                        enum lru_list lru)
534 {
535         int nid = zone->zone_pgdat->node_id;
536         int zid = zone_idx(zone);
537         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
538
539         return MEM_CGROUP_ZSTAT(mz, lru);
540 }
541
542 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
543                                                       struct zone *zone)
544 {
545         int nid = zone->zone_pgdat->node_id;
546         int zid = zone_idx(zone);
547         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
548
549         return &mz->reclaim_stat;
550 }
551
552 struct zone_reclaim_stat *
553 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
554 {
555         struct page_cgroup *pc;
556         struct mem_cgroup_per_zone *mz;
557
558         if (mem_cgroup_disabled())
559                 return NULL;
560
561         pc = lookup_page_cgroup(page);
562         mz = page_cgroup_zoneinfo(pc);
563         if (!mz)
564                 return NULL;
565
566         return &mz->reclaim_stat;
567 }
568
569 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
570                                         struct list_head *dst,
571                                         unsigned long *scanned, int order,
572                                         int mode, struct zone *z,
573                                         struct mem_cgroup *mem_cont,
574                                         int active, int file)
575 {
576         unsigned long nr_taken = 0;
577         struct page *page;
578         unsigned long scan;
579         LIST_HEAD(pc_list);
580         struct list_head *src;
581         struct page_cgroup *pc, *tmp;
582         int nid = z->zone_pgdat->node_id;
583         int zid = zone_idx(z);
584         struct mem_cgroup_per_zone *mz;
585         int lru = LRU_FILE * !!file + !!active;
586
587         BUG_ON(!mem_cont);
588         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
589         src = &mz->lists[lru];
590
591         scan = 0;
592         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
593                 if (scan >= nr_to_scan)
594                         break;
595
596                 page = pc->page;
597                 if (unlikely(!PageCgroupUsed(pc)))
598                         continue;
599                 if (unlikely(!PageLRU(page)))
600                         continue;
601
602                 scan++;
603                 if (__isolate_lru_page(page, mode, file) == 0) {
604                         list_move(&page->lru, dst);
605                         nr_taken++;
606                 }
607         }
608
609         *scanned = scan;
610         return nr_taken;
611 }
612
613 #define mem_cgroup_from_res_counter(counter, member)    \
614         container_of(counter, struct mem_cgroup, member)
615
616 /*
617  * This routine finds the DFS walk successor. This routine should be
618  * called with cgroup_mutex held
619  */
620 static struct mem_cgroup *
621 mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
622 {
623         struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
624
625         curr_cgroup = curr->css.cgroup;
626         root_cgroup = root_mem->css.cgroup;
627
628         if (!list_empty(&curr_cgroup->children)) {
629                 /*
630                  * Walk down to children
631                  */
632                 mem_cgroup_put(curr);
633                 cgroup = list_entry(curr_cgroup->children.next,
634                                                 struct cgroup, sibling);
635                 curr = mem_cgroup_from_cont(cgroup);
636                 mem_cgroup_get(curr);
637                 goto done;
638         }
639
640 visit_parent:
641         if (curr_cgroup == root_cgroup) {
642                 mem_cgroup_put(curr);
643                 curr = root_mem;
644                 mem_cgroup_get(curr);
645                 goto done;
646         }
647
648         /*
649          * Goto next sibling
650          */
651         if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
652                 mem_cgroup_put(curr);
653                 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
654                                                 sibling);
655                 curr = mem_cgroup_from_cont(cgroup);
656                 mem_cgroup_get(curr);
657                 goto done;
658         }
659
660         /*
661          * Go up to next parent and next parent's sibling if need be
662          */
663         curr_cgroup = curr_cgroup->parent;
664         goto visit_parent;
665
666 done:
667         root_mem->last_scanned_child = curr;
668         return curr;
669 }
670
671 /*
672  * Visit the first child (need not be the first child as per the ordering
673  * of the cgroup list, since we track last_scanned_child) of @mem and use
674  * that to reclaim free pages from.
675  */
676 static struct mem_cgroup *
677 mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
678 {
679         struct cgroup *cgroup;
680         struct mem_cgroup *ret;
681         bool obsolete;
682
683         obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child);
684
685         /*
686          * Scan all children under the mem_cgroup mem
687          */
688         cgroup_lock();
689         if (list_empty(&root_mem->css.cgroup->children)) {
690                 ret = root_mem;
691                 goto done;
692         }
693
694         if (!root_mem->last_scanned_child || obsolete) {
695
696                 if (obsolete && root_mem->last_scanned_child)
697                         mem_cgroup_put(root_mem->last_scanned_child);
698
699                 cgroup = list_first_entry(&root_mem->css.cgroup->children,
700                                 struct cgroup, sibling);
701                 ret = mem_cgroup_from_cont(cgroup);
702                 mem_cgroup_get(ret);
703         } else
704                 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
705                                                 root_mem);
706
707 done:
708         root_mem->last_scanned_child = ret;
709         cgroup_unlock();
710         return ret;
711 }
712
713 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
714 {
715         if (do_swap_account) {
716                 if (res_counter_check_under_limit(&mem->res) &&
717                         res_counter_check_under_limit(&mem->memsw))
718                         return true;
719         } else
720                 if (res_counter_check_under_limit(&mem->res))
721                         return true;
722         return false;
723 }
724
725 static unsigned int get_swappiness(struct mem_cgroup *memcg)
726 {
727         struct cgroup *cgrp = memcg->css.cgroup;
728         unsigned int swappiness;
729
730         /* root ? */
731         if (cgrp->parent == NULL)
732                 return vm_swappiness;
733
734         spin_lock(&memcg->reclaim_param_lock);
735         swappiness = memcg->swappiness;
736         spin_unlock(&memcg->reclaim_param_lock);
737
738         return swappiness;
739 }
740
741 /*
742  * Dance down the hierarchy if needed to reclaim memory. We remember the
743  * last child we reclaimed from, so that we don't end up penalizing
744  * one child extensively based on its position in the children list.
745  *
746  * root_mem is the original ancestor that we've been reclaim from.
747  */
748 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
749                                                 gfp_t gfp_mask, bool noswap)
750 {
751         struct mem_cgroup *next_mem;
752         int ret = 0;
753
754         /*
755          * Reclaim unconditionally and don't check for return value.
756          * We need to reclaim in the current group and down the tree.
757          * One might think about checking for children before reclaiming,
758          * but there might be left over accounting, even after children
759          * have left.
760          */
761         ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
762                                            get_swappiness(root_mem));
763         if (mem_cgroup_check_under_limit(root_mem))
764                 return 0;
765         if (!root_mem->use_hierarchy)
766                 return ret;
767
768         next_mem = mem_cgroup_get_first_node(root_mem);
769
770         while (next_mem != root_mem) {
771                 if (mem_cgroup_is_obsolete(next_mem)) {
772                         mem_cgroup_put(next_mem);
773                         cgroup_lock();
774                         next_mem = mem_cgroup_get_first_node(root_mem);
775                         cgroup_unlock();
776                         continue;
777                 }
778                 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
779                                                    get_swappiness(next_mem));
780                 if (mem_cgroup_check_under_limit(root_mem))
781                         return 0;
782                 cgroup_lock();
783                 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
784                 cgroup_unlock();
785         }
786         return ret;
787 }
788
789 bool mem_cgroup_oom_called(struct task_struct *task)
790 {
791         bool ret = false;
792         struct mem_cgroup *mem;
793         struct mm_struct *mm;
794
795         rcu_read_lock();
796         mm = task->mm;
797         if (!mm)
798                 mm = &init_mm;
799         mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
800         if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
801                 ret = true;
802         rcu_read_unlock();
803         return ret;
804 }
805 /*
806  * Unlike exported interface, "oom" parameter is added. if oom==true,
807  * oom-killer can be invoked.
808  */
809 static int __mem_cgroup_try_charge(struct mm_struct *mm,
810                         gfp_t gfp_mask, struct mem_cgroup **memcg,
811                         bool oom)
812 {
813         struct mem_cgroup *mem, *mem_over_limit;
814         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
815         struct res_counter *fail_res;
816
817         if (unlikely(test_thread_flag(TIF_MEMDIE))) {
818                 /* Don't account this! */
819                 *memcg = NULL;
820                 return 0;
821         }
822
823         /*
824          * We always charge the cgroup the mm_struct belongs to.
825          * The mm_struct's mem_cgroup changes on task migration if the
826          * thread group leader migrates. It's possible that mm is not
827          * set, if so charge the init_mm (happens for pagecache usage).
828          */
829         mem = *memcg;
830         if (likely(!mem)) {
831                 mem = try_get_mem_cgroup_from_mm(mm);
832                 *memcg = mem;
833         } else {
834                 css_get(&mem->css);
835         }
836         if (unlikely(!mem))
837                 return 0;
838
839         VM_BUG_ON(mem_cgroup_is_obsolete(mem));
840
841         while (1) {
842                 int ret;
843                 bool noswap = false;
844
845                 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
846                 if (likely(!ret)) {
847                         if (!do_swap_account)
848                                 break;
849                         ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
850                                                         &fail_res);
851                         if (likely(!ret))
852                                 break;
853                         /* mem+swap counter fails */
854                         res_counter_uncharge(&mem->res, PAGE_SIZE);
855                         noswap = true;
856                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
857                                                                         memsw);
858                 } else
859                         /* mem counter fails */
860                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
861                                                                         res);
862
863                 if (!(gfp_mask & __GFP_WAIT))
864                         goto nomem;
865
866                 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
867                                                         noswap);
868
869                 /*
870                  * try_to_free_mem_cgroup_pages() might not give us a full
871                  * picture of reclaim. Some pages are reclaimed and might be
872                  * moved to swap cache or just unmapped from the cgroup.
873                  * Check the limit again to see if the reclaim reduced the
874                  * current usage of the cgroup before giving up
875                  *
876                  */
877                 if (mem_cgroup_check_under_limit(mem_over_limit))
878                         continue;
879
880                 if (!nr_retries--) {
881                         if (oom) {
882                                 mutex_lock(&memcg_tasklist);
883                                 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
884                                 mutex_unlock(&memcg_tasklist);
885                                 mem_over_limit->last_oom_jiffies = jiffies;
886                         }
887                         goto nomem;
888                 }
889         }
890         return 0;
891 nomem:
892         css_put(&mem->css);
893         return -ENOMEM;
894 }
895
896 /*
897  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
898  * USED state. If already USED, uncharge and return.
899  */
900
901 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
902                                      struct page_cgroup *pc,
903                                      enum charge_type ctype)
904 {
905         /* try_charge() can return NULL to *memcg, taking care of it. */
906         if (!mem)
907                 return;
908
909         lock_page_cgroup(pc);
910         if (unlikely(PageCgroupUsed(pc))) {
911                 unlock_page_cgroup(pc);
912                 res_counter_uncharge(&mem->res, PAGE_SIZE);
913                 if (do_swap_account)
914                         res_counter_uncharge(&mem->memsw, PAGE_SIZE);
915                 css_put(&mem->css);
916                 return;
917         }
918         pc->mem_cgroup = mem;
919         smp_wmb();
920         pc->flags = pcg_default_flags[ctype];
921
922         mem_cgroup_charge_statistics(mem, pc, true);
923
924         unlock_page_cgroup(pc);
925 }
926
927 /**
928  * mem_cgroup_move_account - move account of the page
929  * @pc: page_cgroup of the page.
930  * @from: mem_cgroup which the page is moved from.
931  * @to: mem_cgroup which the page is moved to. @from != @to.
932  *
933  * The caller must confirm following.
934  * - page is not on LRU (isolate_page() is useful.)
935  *
936  * returns 0 at success,
937  * returns -EBUSY when lock is busy or "pc" is unstable.
938  *
939  * This function does "uncharge" from old cgroup but doesn't do "charge" to
940  * new cgroup. It should be done by a caller.
941  */
942
943 static int mem_cgroup_move_account(struct page_cgroup *pc,
944         struct mem_cgroup *from, struct mem_cgroup *to)
945 {
946         struct mem_cgroup_per_zone *from_mz, *to_mz;
947         int nid, zid;
948         int ret = -EBUSY;
949
950         VM_BUG_ON(from == to);
951         VM_BUG_ON(PageLRU(pc->page));
952
953         nid = page_cgroup_nid(pc);
954         zid = page_cgroup_zid(pc);
955         from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
956         to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
957
958         if (!trylock_page_cgroup(pc))
959                 return ret;
960
961         if (!PageCgroupUsed(pc))
962                 goto out;
963
964         if (pc->mem_cgroup != from)
965                 goto out;
966
967         css_put(&from->css);
968         res_counter_uncharge(&from->res, PAGE_SIZE);
969         mem_cgroup_charge_statistics(from, pc, false);
970         if (do_swap_account)
971                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
972         pc->mem_cgroup = to;
973         mem_cgroup_charge_statistics(to, pc, true);
974         css_get(&to->css);
975         ret = 0;
976 out:
977         unlock_page_cgroup(pc);
978         return ret;
979 }
980
981 /*
982  * move charges to its parent.
983  */
984
985 static int mem_cgroup_move_parent(struct page_cgroup *pc,
986                                   struct mem_cgroup *child,
987                                   gfp_t gfp_mask)
988 {
989         struct page *page = pc->page;
990         struct cgroup *cg = child->css.cgroup;
991         struct cgroup *pcg = cg->parent;
992         struct mem_cgroup *parent;
993         int ret;
994
995         /* Is ROOT ? */
996         if (!pcg)
997                 return -EINVAL;
998
999
1000         parent = mem_cgroup_from_cont(pcg);
1001
1002
1003         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1004         if (ret || !parent)
1005                 return ret;
1006
1007         if (!get_page_unless_zero(page))
1008                 return -EBUSY;
1009
1010         ret = isolate_lru_page(page);
1011
1012         if (ret)
1013                 goto cancel;
1014
1015         ret = mem_cgroup_move_account(pc, child, parent);
1016
1017         /* drop extra refcnt by try_charge() (move_account increment one) */
1018         css_put(&parent->css);
1019         putback_lru_page(page);
1020         if (!ret) {
1021                 put_page(page);
1022                 return 0;
1023         }
1024         /* uncharge if move fails */
1025 cancel:
1026         res_counter_uncharge(&parent->res, PAGE_SIZE);
1027         if (do_swap_account)
1028                 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1029         put_page(page);
1030         return ret;
1031 }
1032
1033 /*
1034  * Charge the memory controller for page usage.
1035  * Return
1036  * 0 if the charge was successful
1037  * < 0 if the cgroup is over its limit
1038  */
1039 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1040                                 gfp_t gfp_mask, enum charge_type ctype,
1041                                 struct mem_cgroup *memcg)
1042 {
1043         struct mem_cgroup *mem;
1044         struct page_cgroup *pc;
1045         int ret;
1046
1047         pc = lookup_page_cgroup(page);
1048         /* can happen at boot */
1049         if (unlikely(!pc))
1050                 return 0;
1051         prefetchw(pc);
1052
1053         mem = memcg;
1054         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1055         if (ret || !mem)
1056                 return ret;
1057
1058         __mem_cgroup_commit_charge(mem, pc, ctype);
1059         return 0;
1060 }
1061
1062 int mem_cgroup_newpage_charge(struct page *page,
1063                               struct mm_struct *mm, gfp_t gfp_mask)
1064 {
1065         if (mem_cgroup_disabled())
1066                 return 0;
1067         if (PageCompound(page))
1068                 return 0;
1069         /*
1070          * If already mapped, we don't have to account.
1071          * If page cache, page->mapping has address_space.
1072          * But page->mapping may have out-of-use anon_vma pointer,
1073          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1074          * is NULL.
1075          */
1076         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1077                 return 0;
1078         if (unlikely(!mm))
1079                 mm = &init_mm;
1080         return mem_cgroup_charge_common(page, mm, gfp_mask,
1081                                 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1082 }
1083
1084 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1085                                 gfp_t gfp_mask)
1086 {
1087         if (mem_cgroup_disabled())
1088                 return 0;
1089         if (PageCompound(page))
1090                 return 0;
1091         /*
1092          * Corner case handling. This is called from add_to_page_cache()
1093          * in usual. But some FS (shmem) precharges this page before calling it
1094          * and call add_to_page_cache() with GFP_NOWAIT.
1095          *
1096          * For GFP_NOWAIT case, the page may be pre-charged before calling
1097          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1098          * charge twice. (It works but has to pay a bit larger cost.)
1099          */
1100         if (!(gfp_mask & __GFP_WAIT)) {
1101                 struct page_cgroup *pc;
1102
1103
1104                 pc = lookup_page_cgroup(page);
1105                 if (!pc)
1106                         return 0;
1107                 lock_page_cgroup(pc);
1108                 if (PageCgroupUsed(pc)) {
1109                         unlock_page_cgroup(pc);
1110                         return 0;
1111                 }
1112                 unlock_page_cgroup(pc);
1113         }
1114
1115         if (unlikely(!mm))
1116                 mm = &init_mm;
1117
1118         if (page_is_file_cache(page))
1119                 return mem_cgroup_charge_common(page, mm, gfp_mask,
1120                                 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1121         else
1122                 return mem_cgroup_charge_common(page, mm, gfp_mask,
1123                                 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
1124 }
1125
1126 /*
1127  * While swap-in, try_charge -> commit or cancel, the page is locked.
1128  * And when try_charge() successfully returns, one refcnt to memcg without
1129  * struct page_cgroup is aquired. This refcnt will be cumsumed by
1130  * "commit()" or removed by "cancel()"
1131  */
1132 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1133                                  struct page *page,
1134                                  gfp_t mask, struct mem_cgroup **ptr)
1135 {
1136         struct mem_cgroup *mem;
1137         swp_entry_t     ent;
1138         int ret;
1139
1140         if (mem_cgroup_disabled())
1141                 return 0;
1142
1143         if (!do_swap_account)
1144                 goto charge_cur_mm;
1145
1146         /*
1147          * A racing thread's fault, or swapoff, may have already updated
1148          * the pte, and even removed page from swap cache: return success
1149          * to go on to do_swap_page()'s pte_same() test, which should fail.
1150          */
1151         if (!PageSwapCache(page))
1152                 return 0;
1153
1154         ent.val = page_private(page);
1155
1156         mem = lookup_swap_cgroup(ent);
1157         if (!mem)
1158                 goto charge_cur_mm;
1159         if (!css_tryget(&mem->css))
1160                 goto charge_cur_mm;
1161         *ptr = mem;
1162         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1163         /* drop extra refcnt from tryget */
1164         css_put(&mem->css);
1165         return ret;
1166 charge_cur_mm:
1167         if (unlikely(!mm))
1168                 mm = &init_mm;
1169         return __mem_cgroup_try_charge(mm, mask, ptr, true);
1170 }
1171
1172 #ifdef CONFIG_SWAP
1173
1174 int mem_cgroup_cache_charge_swapin(struct page *page,
1175                         struct mm_struct *mm, gfp_t mask, bool locked)
1176 {
1177         int ret = 0;
1178
1179         if (mem_cgroup_disabled())
1180                 return 0;
1181         if (unlikely(!mm))
1182                 mm = &init_mm;
1183         if (!locked)
1184                 lock_page(page);
1185         /*
1186          * If not locked, the page can be dropped from SwapCache until
1187          * we reach here.
1188          */
1189         if (PageSwapCache(page)) {
1190                 struct mem_cgroup *mem = NULL;
1191                 swp_entry_t ent;
1192
1193                 ent.val = page_private(page);
1194                 if (do_swap_account) {
1195                         mem = lookup_swap_cgroup(ent);
1196                         if (mem) {
1197                                 if (css_tryget(&mem->css))
1198                                         mm = NULL; /* charge to recorded */
1199                                 else
1200                                         mem = NULL; /* charge to current */
1201                         }
1202                 }
1203                 /* SwapCache may be still linked to LRU now. */
1204                 mem_cgroup_lru_del_before_commit_swapcache(page);
1205                 ret = mem_cgroup_charge_common(page, mm, mask,
1206                                 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1207                 mem_cgroup_lru_add_after_commit_swapcache(page);
1208                 /* drop extra refcnt from tryget */
1209                 if (mem)
1210                         css_put(&mem->css);
1211
1212                 if (!ret && do_swap_account) {
1213                         /* avoid double counting */
1214                         mem = swap_cgroup_record(ent, NULL);
1215                         if (mem) {
1216                                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1217                                 mem_cgroup_put(mem);
1218                         }
1219                 }
1220         }
1221         if (!locked)
1222                 unlock_page(page);
1223
1224         return ret;
1225 }
1226 #endif
1227
1228 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1229 {
1230         struct page_cgroup *pc;
1231
1232         if (mem_cgroup_disabled())
1233                 return;
1234         if (!ptr)
1235                 return;
1236         pc = lookup_page_cgroup(page);
1237         mem_cgroup_lru_del_before_commit_swapcache(page);
1238         __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1239         mem_cgroup_lru_add_after_commit_swapcache(page);
1240         /*
1241          * Now swap is on-memory. This means this page may be
1242          * counted both as mem and swap....double count.
1243          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1244          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1245          * may call delete_from_swap_cache() before reach here.
1246          */
1247         if (do_swap_account && PageSwapCache(page)) {
1248                 swp_entry_t ent = {.val = page_private(page)};
1249                 struct mem_cgroup *memcg;
1250                 memcg = swap_cgroup_record(ent, NULL);
1251                 if (memcg) {
1252                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1253                         mem_cgroup_put(memcg);
1254                 }
1255
1256         }
1257         /* add this page(page_cgroup) to the LRU we want. */
1258
1259 }
1260
1261 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1262 {
1263         if (mem_cgroup_disabled())
1264                 return;
1265         if (!mem)
1266                 return;
1267         res_counter_uncharge(&mem->res, PAGE_SIZE);
1268         if (do_swap_account)
1269                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1270         css_put(&mem->css);
1271 }
1272
1273
1274 /*
1275  * uncharge if !page_mapped(page)
1276  */
1277 static struct mem_cgroup *
1278 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1279 {
1280         struct page_cgroup *pc;
1281         struct mem_cgroup *mem = NULL;
1282         struct mem_cgroup_per_zone *mz;
1283
1284         if (mem_cgroup_disabled())
1285                 return NULL;
1286
1287         if (PageSwapCache(page))
1288                 return NULL;
1289
1290         /*
1291          * Check if our page_cgroup is valid
1292          */
1293         pc = lookup_page_cgroup(page);
1294         if (unlikely(!pc || !PageCgroupUsed(pc)))
1295                 return NULL;
1296
1297         lock_page_cgroup(pc);
1298
1299         mem = pc->mem_cgroup;
1300
1301         if (!PageCgroupUsed(pc))
1302                 goto unlock_out;
1303
1304         switch (ctype) {
1305         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1306                 if (page_mapped(page))
1307                         goto unlock_out;
1308                 break;
1309         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1310                 if (!PageAnon(page)) {  /* Shared memory */
1311                         if (page->mapping && !page_is_file_cache(page))
1312                                 goto unlock_out;
1313                 } else if (page_mapped(page)) /* Anon */
1314                                 goto unlock_out;
1315                 break;
1316         default:
1317                 break;
1318         }
1319
1320         res_counter_uncharge(&mem->res, PAGE_SIZE);
1321         if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1322                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1323
1324         mem_cgroup_charge_statistics(mem, pc, false);
1325         ClearPageCgroupUsed(pc);
1326         /*
1327          * pc->mem_cgroup is not cleared here. It will be accessed when it's
1328          * freed from LRU. This is safe because uncharged page is expected not
1329          * to be reused (freed soon). Exception is SwapCache, it's handled by
1330          * special functions.
1331          */
1332
1333         mz = page_cgroup_zoneinfo(pc);
1334         unlock_page_cgroup(pc);
1335
1336         /* at swapout, this memcg will be accessed to record to swap */
1337         if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1338                 css_put(&mem->css);
1339
1340         return mem;
1341
1342 unlock_out:
1343         unlock_page_cgroup(pc);
1344         return NULL;
1345 }
1346
1347 void mem_cgroup_uncharge_page(struct page *page)
1348 {
1349         /* early check. */
1350         if (page_mapped(page))
1351                 return;
1352         if (page->mapping && !PageAnon(page))
1353                 return;
1354         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1355 }
1356
1357 void mem_cgroup_uncharge_cache_page(struct page *page)
1358 {
1359         VM_BUG_ON(page_mapped(page));
1360         VM_BUG_ON(page->mapping);
1361         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1362 }
1363
1364 /*
1365  * called from __delete_from_swap_cache() and drop "page" account.
1366  * memcg information is recorded to swap_cgroup of "ent"
1367  */
1368 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1369 {
1370         struct mem_cgroup *memcg;
1371
1372         memcg = __mem_cgroup_uncharge_common(page,
1373                                         MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1374         /* record memcg information */
1375         if (do_swap_account && memcg) {
1376                 swap_cgroup_record(ent, memcg);
1377                 mem_cgroup_get(memcg);
1378         }
1379         if (memcg)
1380                 css_put(&memcg->css);
1381 }
1382
1383 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1384 /*
1385  * called from swap_entry_free(). remove record in swap_cgroup and
1386  * uncharge "memsw" account.
1387  */
1388 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1389 {
1390         struct mem_cgroup *memcg;
1391
1392         if (!do_swap_account)
1393                 return;
1394
1395         memcg = swap_cgroup_record(ent, NULL);
1396         if (memcg) {
1397                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1398                 mem_cgroup_put(memcg);
1399         }
1400 }
1401 #endif
1402
1403 /*
1404  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1405  * page belongs to.
1406  */
1407 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1408 {
1409         struct page_cgroup *pc;
1410         struct mem_cgroup *mem = NULL;
1411         int ret = 0;
1412
1413         if (mem_cgroup_disabled())
1414                 return 0;
1415
1416         pc = lookup_page_cgroup(page);
1417         lock_page_cgroup(pc);
1418         if (PageCgroupUsed(pc)) {
1419                 mem = pc->mem_cgroup;
1420                 css_get(&mem->css);
1421         }
1422         unlock_page_cgroup(pc);
1423
1424         if (mem) {
1425                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1426                 css_put(&mem->css);
1427         }
1428         *ptr = mem;
1429         return ret;
1430 }
1431
1432 /* remove redundant charge if migration failed*/
1433 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1434                 struct page *oldpage, struct page *newpage)
1435 {
1436         struct page *target, *unused;
1437         struct page_cgroup *pc;
1438         enum charge_type ctype;
1439
1440         if (!mem)
1441                 return;
1442
1443         /* at migration success, oldpage->mapping is NULL. */
1444         if (oldpage->mapping) {
1445                 target = oldpage;
1446                 unused = NULL;
1447         } else {
1448                 target = newpage;
1449                 unused = oldpage;
1450         }
1451
1452         if (PageAnon(target))
1453                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1454         else if (page_is_file_cache(target))
1455                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1456         else
1457                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1458
1459         /* unused page is not on radix-tree now. */
1460         if (unused)
1461                 __mem_cgroup_uncharge_common(unused, ctype);
1462
1463         pc = lookup_page_cgroup(target);
1464         /*
1465          * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1466          * So, double-counting is effectively avoided.
1467          */
1468         __mem_cgroup_commit_charge(mem, pc, ctype);
1469
1470         /*
1471          * Both of oldpage and newpage are still under lock_page().
1472          * Then, we don't have to care about race in radix-tree.
1473          * But we have to be careful that this page is unmapped or not.
1474          *
1475          * There is a case for !page_mapped(). At the start of
1476          * migration, oldpage was mapped. But now, it's zapped.
1477          * But we know *target* page is not freed/reused under us.
1478          * mem_cgroup_uncharge_page() does all necessary checks.
1479          */
1480         if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1481                 mem_cgroup_uncharge_page(target);
1482 }
1483
1484 /*
1485  * A call to try to shrink memory usage under specified resource controller.
1486  * This is typically used for page reclaiming for shmem for reducing side
1487  * effect of page allocation from shmem, which is used by some mem_cgroup.
1488  */
1489 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1490 {
1491         struct mem_cgroup *mem;
1492         int progress = 0;
1493         int retry = MEM_CGROUP_RECLAIM_RETRIES;
1494
1495         if (mem_cgroup_disabled())
1496                 return 0;
1497         if (!mm)
1498                 return 0;
1499
1500         mem = try_get_mem_cgroup_from_mm(mm);
1501         if (unlikely(!mem))
1502                 return 0;
1503
1504         do {
1505                 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
1506                 progress += mem_cgroup_check_under_limit(mem);
1507         } while (!progress && --retry);
1508
1509         css_put(&mem->css);
1510         if (!retry)
1511                 return -ENOMEM;
1512         return 0;
1513 }
1514
1515 static DEFINE_MUTEX(set_limit_mutex);
1516
1517 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1518                                 unsigned long long val)
1519 {
1520
1521         int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1522         int progress;
1523         u64 memswlimit;
1524         int ret = 0;
1525
1526         while (retry_count) {
1527                 if (signal_pending(current)) {
1528                         ret = -EINTR;
1529                         break;
1530                 }
1531                 /*
1532                  * Rather than hide all in some function, I do this in
1533                  * open coded manner. You see what this really does.
1534                  * We have to guarantee mem->res.limit < mem->memsw.limit.
1535                  */
1536                 mutex_lock(&set_limit_mutex);
1537                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1538                 if (memswlimit < val) {
1539                         ret = -EINVAL;
1540                         mutex_unlock(&set_limit_mutex);
1541                         break;
1542                 }
1543                 ret = res_counter_set_limit(&memcg->res, val);
1544                 mutex_unlock(&set_limit_mutex);
1545
1546                 if (!ret)
1547                         break;
1548
1549                 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1550                                                            false);
1551                 if (!progress)                  retry_count--;
1552         }
1553
1554         return ret;
1555 }
1556
1557 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1558                                 unsigned long long val)
1559 {
1560         int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1561         u64 memlimit, oldusage, curusage;
1562         int ret;
1563
1564         if (!do_swap_account)
1565                 return -EINVAL;
1566
1567         while (retry_count) {
1568                 if (signal_pending(current)) {
1569                         ret = -EINTR;
1570                         break;
1571                 }
1572                 /*
1573                  * Rather than hide all in some function, I do this in
1574                  * open coded manner. You see what this really does.
1575                  * We have to guarantee mem->res.limit < mem->memsw.limit.
1576                  */
1577                 mutex_lock(&set_limit_mutex);
1578                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1579                 if (memlimit > val) {
1580                         ret = -EINVAL;
1581                         mutex_unlock(&set_limit_mutex);
1582                         break;
1583                 }
1584                 ret = res_counter_set_limit(&memcg->memsw, val);
1585                 mutex_unlock(&set_limit_mutex);
1586
1587                 if (!ret)
1588                         break;
1589
1590                 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1591                 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1592                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1593                 if (curusage >= oldusage)
1594                         retry_count--;
1595         }
1596         return ret;
1597 }
1598
1599 /*
1600  * This routine traverse page_cgroup in given list and drop them all.
1601  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1602  */
1603 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1604                                 int node, int zid, enum lru_list lru)
1605 {
1606         struct zone *zone;
1607         struct mem_cgroup_per_zone *mz;
1608         struct page_cgroup *pc, *busy;
1609         unsigned long flags, loop;
1610         struct list_head *list;
1611         int ret = 0;
1612
1613         zone = &NODE_DATA(node)->node_zones[zid];
1614         mz = mem_cgroup_zoneinfo(mem, node, zid);
1615         list = &mz->lists[lru];
1616
1617         loop = MEM_CGROUP_ZSTAT(mz, lru);
1618         /* give some margin against EBUSY etc...*/
1619         loop += 256;
1620         busy = NULL;
1621         while (loop--) {
1622                 ret = 0;
1623                 spin_lock_irqsave(&zone->lru_lock, flags);
1624                 if (list_empty(list)) {
1625                         spin_unlock_irqrestore(&zone->lru_lock, flags);
1626                         break;
1627                 }
1628                 pc = list_entry(list->prev, struct page_cgroup, lru);
1629                 if (busy == pc) {
1630                         list_move(&pc->lru, list);
1631                         busy = 0;
1632                         spin_unlock_irqrestore(&zone->lru_lock, flags);
1633                         continue;
1634                 }
1635                 spin_unlock_irqrestore(&zone->lru_lock, flags);
1636
1637                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1638                 if (ret == -ENOMEM)
1639                         break;
1640
1641                 if (ret == -EBUSY || ret == -EINVAL) {
1642                         /* found lock contention or "pc" is obsolete. */
1643                         busy = pc;
1644                         cond_resched();
1645                 } else
1646                         busy = NULL;
1647         }
1648
1649         if (!ret && !list_empty(list))
1650                 return -EBUSY;
1651         return ret;
1652 }
1653
1654 /*
1655  * make mem_cgroup's charge to be 0 if there is no task.
1656  * This enables deleting this mem_cgroup.
1657  */
1658 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1659 {
1660         int ret;
1661         int node, zid, shrink;
1662         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1663         struct cgroup *cgrp = mem->css.cgroup;
1664
1665         css_get(&mem->css);
1666
1667         shrink = 0;
1668         /* should free all ? */
1669         if (free_all)
1670                 goto try_to_free;
1671 move_account:
1672         while (mem->res.usage > 0) {
1673                 ret = -EBUSY;
1674                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1675                         goto out;
1676                 ret = -EINTR;
1677                 if (signal_pending(current))
1678                         goto out;
1679                 /* This is for making all *used* pages to be on LRU. */
1680                 lru_add_drain_all();
1681                 ret = 0;
1682                 for_each_node_state(node, N_POSSIBLE) {
1683                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1684                                 enum lru_list l;
1685                                 for_each_lru(l) {
1686                                         ret = mem_cgroup_force_empty_list(mem,
1687                                                         node, zid, l);
1688                                         if (ret)
1689                                                 break;
1690                                 }
1691                         }
1692                         if (ret)
1693                                 break;
1694                 }
1695                 /* it seems parent cgroup doesn't have enough mem */
1696                 if (ret == -ENOMEM)
1697                         goto try_to_free;
1698                 cond_resched();
1699         }
1700         ret = 0;
1701 out:
1702         css_put(&mem->css);
1703         return ret;
1704
1705 try_to_free:
1706         /* returns EBUSY if there is a task or if we come here twice. */
1707         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1708                 ret = -EBUSY;
1709                 goto out;
1710         }
1711         /* we call try-to-free pages for make this cgroup empty */
1712         lru_add_drain_all();
1713         /* try to free all pages in this cgroup */
1714         shrink = 1;
1715         while (nr_retries && mem->res.usage > 0) {
1716                 int progress;
1717
1718                 if (signal_pending(current)) {
1719                         ret = -EINTR;
1720                         goto out;
1721                 }
1722                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1723                                                 false, get_swappiness(mem));
1724                 if (!progress) {
1725                         nr_retries--;
1726                         /* maybe some writeback is necessary */
1727                         congestion_wait(WRITE, HZ/10);
1728                 }
1729
1730         }
1731         lru_add_drain();
1732         /* try move_account...there may be some *locked* pages. */
1733         if (mem->res.usage)
1734                 goto move_account;
1735         ret = 0;
1736         goto out;
1737 }
1738
1739 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1740 {
1741         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1742 }
1743
1744
1745 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1746 {
1747         return mem_cgroup_from_cont(cont)->use_hierarchy;
1748 }
1749
1750 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1751                                         u64 val)
1752 {
1753         int retval = 0;
1754         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1755         struct cgroup *parent = cont->parent;
1756         struct mem_cgroup *parent_mem = NULL;
1757
1758         if (parent)
1759                 parent_mem = mem_cgroup_from_cont(parent);
1760
1761         cgroup_lock();
1762         /*
1763          * If parent's use_hiearchy is set, we can't make any modifications
1764          * in the child subtrees. If it is unset, then the change can
1765          * occur, provided the current cgroup has no children.
1766          *
1767          * For the root cgroup, parent_mem is NULL, we allow value to be
1768          * set if there are no children.
1769          */
1770         if ((!parent_mem || !parent_mem->use_hierarchy) &&
1771                                 (val == 1 || val == 0)) {
1772                 if (list_empty(&cont->children))
1773                         mem->use_hierarchy = val;
1774                 else
1775                         retval = -EBUSY;
1776         } else
1777                 retval = -EINVAL;
1778         cgroup_unlock();
1779
1780         return retval;
1781 }
1782
1783 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1784 {
1785         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1786         u64 val = 0;
1787         int type, name;
1788
1789         type = MEMFILE_TYPE(cft->private);
1790         name = MEMFILE_ATTR(cft->private);
1791         switch (type) {
1792         case _MEM:
1793                 val = res_counter_read_u64(&mem->res, name);
1794                 break;
1795         case _MEMSWAP:
1796                 if (do_swap_account)
1797                         val = res_counter_read_u64(&mem->memsw, name);
1798                 break;
1799         default:
1800                 BUG();
1801                 break;
1802         }
1803         return val;
1804 }
1805 /*
1806  * The user of this function is...
1807  * RES_LIMIT.
1808  */
1809 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1810                             const char *buffer)
1811 {
1812         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1813         int type, name;
1814         unsigned long long val;
1815         int ret;
1816
1817         type = MEMFILE_TYPE(cft->private);
1818         name = MEMFILE_ATTR(cft->private);
1819         switch (name) {
1820         case RES_LIMIT:
1821                 /* This function does all necessary parse...reuse it */
1822                 ret = res_counter_memparse_write_strategy(buffer, &val);
1823                 if (ret)
1824                         break;
1825                 if (type == _MEM)
1826                         ret = mem_cgroup_resize_limit(memcg, val);
1827                 else
1828                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
1829                 break;
1830         default:
1831                 ret = -EINVAL; /* should be BUG() ? */
1832                 break;
1833         }
1834         return ret;
1835 }
1836
1837 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1838                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1839 {
1840         struct cgroup *cgroup;
1841         unsigned long long min_limit, min_memsw_limit, tmp;
1842
1843         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1844         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1845         cgroup = memcg->css.cgroup;
1846         if (!memcg->use_hierarchy)
1847                 goto out;
1848
1849         while (cgroup->parent) {
1850                 cgroup = cgroup->parent;
1851                 memcg = mem_cgroup_from_cont(cgroup);
1852                 if (!memcg->use_hierarchy)
1853                         break;
1854                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1855                 min_limit = min(min_limit, tmp);
1856                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1857                 min_memsw_limit = min(min_memsw_limit, tmp);
1858         }
1859 out:
1860         *mem_limit = min_limit;
1861         *memsw_limit = min_memsw_limit;
1862         return;
1863 }
1864
1865 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1866 {
1867         struct mem_cgroup *mem;
1868         int type, name;
1869
1870         mem = mem_cgroup_from_cont(cont);
1871         type = MEMFILE_TYPE(event);
1872         name = MEMFILE_ATTR(event);
1873         switch (name) {
1874         case RES_MAX_USAGE:
1875                 if (type == _MEM)
1876                         res_counter_reset_max(&mem->res);
1877                 else
1878                         res_counter_reset_max(&mem->memsw);
1879                 break;
1880         case RES_FAILCNT:
1881                 if (type == _MEM)
1882                         res_counter_reset_failcnt(&mem->res);
1883                 else
1884                         res_counter_reset_failcnt(&mem->memsw);
1885                 break;
1886         }
1887         return 0;
1888 }
1889
1890 static const struct mem_cgroup_stat_desc {
1891         const char *msg;
1892         u64 unit;
1893 } mem_cgroup_stat_desc[] = {
1894         [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1895         [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1896         [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1897         [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1898 };
1899
1900 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1901                                  struct cgroup_map_cb *cb)
1902 {
1903         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1904         struct mem_cgroup_stat *stat = &mem_cont->stat;
1905         int i;
1906
1907         for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1908                 s64 val;
1909
1910                 val = mem_cgroup_read_stat(stat, i);
1911                 val *= mem_cgroup_stat_desc[i].unit;
1912                 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1913         }
1914         /* showing # of active pages */
1915         {
1916                 unsigned long active_anon, inactive_anon;
1917                 unsigned long active_file, inactive_file;
1918                 unsigned long unevictable;
1919
1920                 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1921                                                 LRU_INACTIVE_ANON);
1922                 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1923                                                 LRU_ACTIVE_ANON);
1924                 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1925                                                 LRU_INACTIVE_FILE);
1926                 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1927                                                 LRU_ACTIVE_FILE);
1928                 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1929                                                         LRU_UNEVICTABLE);
1930
1931                 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1932                 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1933                 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1934                 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1935                 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1936
1937         }
1938         {
1939                 unsigned long long limit, memsw_limit;
1940                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1941                 cb->fill(cb, "hierarchical_memory_limit", limit);
1942                 if (do_swap_account)
1943                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1944         }
1945
1946 #ifdef CONFIG_DEBUG_VM
1947         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1948
1949         {
1950                 int nid, zid;
1951                 struct mem_cgroup_per_zone *mz;
1952                 unsigned long recent_rotated[2] = {0, 0};
1953                 unsigned long recent_scanned[2] = {0, 0};
1954
1955                 for_each_online_node(nid)
1956                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1957                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1958
1959                                 recent_rotated[0] +=
1960                                         mz->reclaim_stat.recent_rotated[0];
1961                                 recent_rotated[1] +=
1962                                         mz->reclaim_stat.recent_rotated[1];
1963                                 recent_scanned[0] +=
1964                                         mz->reclaim_stat.recent_scanned[0];
1965                                 recent_scanned[1] +=
1966                                         mz->reclaim_stat.recent_scanned[1];
1967                         }
1968                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1969                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1970                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1971                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1972         }
1973 #endif
1974
1975         return 0;
1976 }
1977
1978 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1979 {
1980         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1981
1982         return get_swappiness(memcg);
1983 }
1984
1985 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1986                                        u64 val)
1987 {
1988         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1989         struct mem_cgroup *parent;
1990         if (val > 100)
1991                 return -EINVAL;
1992
1993         if (cgrp->parent == NULL)
1994                 return -EINVAL;
1995
1996         parent = mem_cgroup_from_cont(cgrp->parent);
1997         /* If under hierarchy, only empty-root can set this value */
1998         if ((parent->use_hierarchy) ||
1999             (memcg->use_hierarchy && !list_empty(&cgrp->children)))
2000                 return -EINVAL;
2001
2002         spin_lock(&memcg->reclaim_param_lock);
2003         memcg->swappiness = val;
2004         spin_unlock(&memcg->reclaim_param_lock);
2005
2006         return 0;
2007 }
2008
2009
2010 static struct cftype mem_cgroup_files[] = {
2011         {
2012                 .name = "usage_in_bytes",
2013                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2014                 .read_u64 = mem_cgroup_read,
2015         },
2016         {
2017                 .name = "max_usage_in_bytes",
2018                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2019                 .trigger = mem_cgroup_reset,
2020                 .read_u64 = mem_cgroup_read,
2021         },
2022         {
2023                 .name = "limit_in_bytes",
2024                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2025                 .write_string = mem_cgroup_write,
2026                 .read_u64 = mem_cgroup_read,
2027         },
2028         {
2029                 .name = "failcnt",
2030                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2031                 .trigger = mem_cgroup_reset,
2032                 .read_u64 = mem_cgroup_read,
2033         },
2034         {
2035                 .name = "stat",
2036                 .read_map = mem_control_stat_show,
2037         },
2038         {
2039                 .name = "force_empty",
2040                 .trigger = mem_cgroup_force_empty_write,
2041         },
2042         {
2043                 .name = "use_hierarchy",
2044                 .write_u64 = mem_cgroup_hierarchy_write,
2045                 .read_u64 = mem_cgroup_hierarchy_read,
2046         },
2047         {
2048                 .name = "swappiness",
2049                 .read_u64 = mem_cgroup_swappiness_read,
2050                 .write_u64 = mem_cgroup_swappiness_write,
2051         },
2052 };
2053
2054 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2055 static struct cftype memsw_cgroup_files[] = {
2056         {
2057                 .name = "memsw.usage_in_bytes",
2058                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2059                 .read_u64 = mem_cgroup_read,
2060         },
2061         {
2062                 .name = "memsw.max_usage_in_bytes",
2063                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2064                 .trigger = mem_cgroup_reset,
2065                 .read_u64 = mem_cgroup_read,
2066         },
2067         {
2068                 .name = "memsw.limit_in_bytes",
2069                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2070                 .write_string = mem_cgroup_write,
2071                 .read_u64 = mem_cgroup_read,
2072         },
2073         {
2074                 .name = "memsw.failcnt",
2075                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2076                 .trigger = mem_cgroup_reset,
2077                 .read_u64 = mem_cgroup_read,
2078         },
2079 };
2080
2081 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2082 {
2083         if (!do_swap_account)
2084                 return 0;
2085         return cgroup_add_files(cont, ss, memsw_cgroup_files,
2086                                 ARRAY_SIZE(memsw_cgroup_files));
2087 };
2088 #else
2089 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2090 {
2091         return 0;
2092 }
2093 #endif
2094
2095 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2096 {
2097         struct mem_cgroup_per_node *pn;
2098         struct mem_cgroup_per_zone *mz;
2099         enum lru_list l;
2100         int zone, tmp = node;
2101         /*
2102          * This routine is called against possible nodes.
2103          * But it's BUG to call kmalloc() against offline node.
2104          *
2105          * TODO: this routine can waste much memory for nodes which will
2106          *       never be onlined. It's better to use memory hotplug callback
2107          *       function.
2108          */
2109         if (!node_state(node, N_NORMAL_MEMORY))
2110                 tmp = -1;
2111         pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2112         if (!pn)
2113                 return 1;
2114
2115         mem->info.nodeinfo[node] = pn;
2116         memset(pn, 0, sizeof(*pn));
2117
2118         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2119                 mz = &pn->zoneinfo[zone];
2120                 for_each_lru(l)
2121                         INIT_LIST_HEAD(&mz->lists[l]);
2122         }
2123         return 0;
2124 }
2125
2126 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2127 {
2128         kfree(mem->info.nodeinfo[node]);
2129 }
2130
2131 static int mem_cgroup_size(void)
2132 {
2133         int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2134         return sizeof(struct mem_cgroup) + cpustat_size;
2135 }
2136
2137 static struct mem_cgroup *mem_cgroup_alloc(void)
2138 {
2139         struct mem_cgroup *mem;
2140         int size = mem_cgroup_size();
2141
2142         if (size < PAGE_SIZE)
2143                 mem = kmalloc(size, GFP_KERNEL);
2144         else
2145                 mem = vmalloc(size);
2146
2147         if (mem)
2148                 memset(mem, 0, size);
2149         return mem;
2150 }
2151
2152 /*
2153  * At destroying mem_cgroup, references from swap_cgroup can remain.
2154  * (scanning all at force_empty is too costly...)
2155  *
2156  * Instead of clearing all references at force_empty, we remember
2157  * the number of reference from swap_cgroup and free mem_cgroup when
2158  * it goes down to 0.
2159  *
2160  * Removal of cgroup itself succeeds regardless of refs from swap.
2161  */
2162
2163 static void __mem_cgroup_free(struct mem_cgroup *mem)
2164 {
2165         int node;
2166
2167         for_each_node_state(node, N_POSSIBLE)
2168                 free_mem_cgroup_per_zone_info(mem, node);
2169
2170         if (mem_cgroup_size() < PAGE_SIZE)
2171                 kfree(mem);
2172         else
2173                 vfree(mem);
2174 }
2175
2176 static void mem_cgroup_get(struct mem_cgroup *mem)
2177 {
2178         atomic_inc(&mem->refcnt);
2179 }
2180
2181 static void mem_cgroup_put(struct mem_cgroup *mem)
2182 {
2183         if (atomic_dec_and_test(&mem->refcnt))
2184                 __mem_cgroup_free(mem);
2185 }
2186
2187
2188 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2189 static void __init enable_swap_cgroup(void)
2190 {
2191         if (!mem_cgroup_disabled() && really_do_swap_account)
2192                 do_swap_account = 1;
2193 }
2194 #else
2195 static void __init enable_swap_cgroup(void)
2196 {
2197 }
2198 #endif
2199
2200 static struct cgroup_subsys_state *
2201 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2202 {
2203         struct mem_cgroup *mem, *parent;
2204         int node;
2205
2206         mem = mem_cgroup_alloc();
2207         if (!mem)
2208                 return ERR_PTR(-ENOMEM);
2209
2210         for_each_node_state(node, N_POSSIBLE)
2211                 if (alloc_mem_cgroup_per_zone_info(mem, node))
2212                         goto free_out;
2213         /* root ? */
2214         if (cont->parent == NULL) {
2215                 enable_swap_cgroup();
2216                 parent = NULL;
2217         } else {
2218                 parent = mem_cgroup_from_cont(cont->parent);
2219                 mem->use_hierarchy = parent->use_hierarchy;
2220         }
2221
2222         if (parent && parent->use_hierarchy) {
2223                 res_counter_init(&mem->res, &parent->res);
2224                 res_counter_init(&mem->memsw, &parent->memsw);
2225         } else {
2226                 res_counter_init(&mem->res, NULL);
2227                 res_counter_init(&mem->memsw, NULL);
2228         }
2229         mem->last_scanned_child = NULL;
2230         spin_lock_init(&mem->reclaim_param_lock);
2231
2232         if (parent)
2233                 mem->swappiness = get_swappiness(parent);
2234         atomic_set(&mem->refcnt, 1);
2235         return &mem->css;
2236 free_out:
2237         __mem_cgroup_free(mem);
2238         return ERR_PTR(-ENOMEM);
2239 }
2240
2241 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2242                                         struct cgroup *cont)
2243 {
2244         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2245         mem_cgroup_force_empty(mem, false);
2246 }
2247
2248 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2249                                 struct cgroup *cont)
2250 {
2251         mem_cgroup_put(mem_cgroup_from_cont(cont));
2252 }
2253
2254 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2255                                 struct cgroup *cont)
2256 {
2257         int ret;
2258
2259         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2260                                 ARRAY_SIZE(mem_cgroup_files));
2261
2262         if (!ret)
2263                 ret = register_memsw_files(cont, ss);
2264         return ret;
2265 }
2266
2267 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2268                                 struct cgroup *cont,
2269                                 struct cgroup *old_cont,
2270                                 struct task_struct *p)
2271 {
2272         mutex_lock(&memcg_tasklist);
2273         /*
2274          * FIXME: It's better to move charges of this process from old
2275          * memcg to new memcg. But it's just on TODO-List now.
2276          */
2277         mutex_unlock(&memcg_tasklist);
2278 }
2279
2280 struct cgroup_subsys mem_cgroup_subsys = {
2281         .name = "memory",
2282         .subsys_id = mem_cgroup_subsys_id,
2283         .create = mem_cgroup_create,
2284         .pre_destroy = mem_cgroup_pre_destroy,
2285         .destroy = mem_cgroup_destroy,
2286         .populate = mem_cgroup_populate,
2287         .attach = mem_cgroup_move_task,
2288         .early_init = 0,
2289 };
2290
2291 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2292
2293 static int __init disable_swap_account(char *s)
2294 {
2295         really_do_swap_account = 0;
2296         return 1;
2297 }
2298 __setup("noswapaccount", disable_swap_account);
2299 #endif