]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - mm/filemap.c
memory controller BUG_ON()
[linux-2.6-omap-h63xx.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/cpuset.h>
35 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
36 #include <linux/memcontrol.h>
37 #include "internal.h"
38
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
43
44 #include <asm/mman.h>
45
46 static ssize_t
47 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
48         loff_t offset, unsigned long nr_segs);
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_lock               (vmtruncate)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_lock
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_file_buffered_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  ->i_mutex
85  *    ->i_alloc_sem             (various)
86  *
87  *  ->inode_lock
88  *    ->sb_lock                 (fs/fs-writeback.c)
89  *    ->mapping->tree_lock      (__sync_single_inode)
90  *
91  *  ->i_mmap_lock
92  *    ->anon_vma.lock           (vma_adjust)
93  *
94  *  ->anon_vma.lock
95  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
96  *
97  *  ->page_table_lock or pte_lock
98  *    ->swap_lock               (try_to_unmap_one)
99  *    ->private_lock            (try_to_unmap_one)
100  *    ->tree_lock               (try_to_unmap_one)
101  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
102  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
103  *    ->private_lock            (page_remove_rmap->set_page_dirty)
104  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
105  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
106  *    ->inode_lock              (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  *  ->task->proc_lock
110  *    ->dcache_lock             (proc_pid_lookup)
111  */
112
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120         struct address_space *mapping = page->mapping;
121
122         mem_cgroup_uncharge_page(page);
123         radix_tree_delete(&mapping->page_tree, page->index);
124         page->mapping = NULL;
125         mapping->nrpages--;
126         __dec_zone_page_state(page, NR_FILE_PAGES);
127         BUG_ON(page_mapped(page));
128
129         /*
130          * Some filesystems seem to re-dirty the page even after
131          * the VM has canceled the dirty bit (eg ext3 journaling).
132          *
133          * Fix it up by doing a final dirty accounting check after
134          * having removed the page entirely.
135          */
136         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
137                 dec_zone_page_state(page, NR_FILE_DIRTY);
138                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
139         }
140 }
141
142 void remove_from_page_cache(struct page *page)
143 {
144         struct address_space *mapping = page->mapping;
145
146         BUG_ON(!PageLocked(page));
147
148         write_lock_irq(&mapping->tree_lock);
149         __remove_from_page_cache(page);
150         write_unlock_irq(&mapping->tree_lock);
151 }
152
153 static int sync_page(void *word)
154 {
155         struct address_space *mapping;
156         struct page *page;
157
158         page = container_of((unsigned long *)word, struct page, flags);
159
160         /*
161          * page_mapping() is being called without PG_locked held.
162          * Some knowledge of the state and use of the page is used to
163          * reduce the requirements down to a memory barrier.
164          * The danger here is of a stale page_mapping() return value
165          * indicating a struct address_space different from the one it's
166          * associated with when it is associated with one.
167          * After smp_mb(), it's either the correct page_mapping() for
168          * the page, or an old page_mapping() and the page's own
169          * page_mapping() has gone NULL.
170          * The ->sync_page() address_space operation must tolerate
171          * page_mapping() going NULL. By an amazing coincidence,
172          * this comes about because none of the users of the page
173          * in the ->sync_page() methods make essential use of the
174          * page_mapping(), merely passing the page down to the backing
175          * device's unplug functions when it's non-NULL, which in turn
176          * ignore it for all cases but swap, where only page_private(page) is
177          * of interest. When page_mapping() does go NULL, the entire
178          * call stack gracefully ignores the page and returns.
179          * -- wli
180          */
181         smp_mb();
182         mapping = page_mapping(page);
183         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
184                 mapping->a_ops->sync_page(page);
185         io_schedule();
186         return 0;
187 }
188
189 static int sync_page_killable(void *word)
190 {
191         sync_page(word);
192         return fatal_signal_pending(current) ? -EINTR : 0;
193 }
194
195 /**
196  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
197  * @mapping:    address space structure to write
198  * @start:      offset in bytes where the range starts
199  * @end:        offset in bytes where the range ends (inclusive)
200  * @sync_mode:  enable synchronous operation
201  *
202  * Start writeback against all of a mapping's dirty pages that lie
203  * within the byte offsets <start, end> inclusive.
204  *
205  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
206  * opposed to a regular memory cleansing writeback.  The difference between
207  * these two operations is that if a dirty page/buffer is encountered, it must
208  * be waited upon, and not just skipped over.
209  */
210 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
211                                 loff_t end, int sync_mode)
212 {
213         int ret;
214         struct writeback_control wbc = {
215                 .sync_mode = sync_mode,
216                 .nr_to_write = mapping->nrpages * 2,
217                 .range_start = start,
218                 .range_end = end,
219         };
220
221         if (!mapping_cap_writeback_dirty(mapping))
222                 return 0;
223
224         ret = do_writepages(mapping, &wbc);
225         return ret;
226 }
227
228 static inline int __filemap_fdatawrite(struct address_space *mapping,
229         int sync_mode)
230 {
231         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
232 }
233
234 int filemap_fdatawrite(struct address_space *mapping)
235 {
236         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
237 }
238 EXPORT_SYMBOL(filemap_fdatawrite);
239
240 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
241                                 loff_t end)
242 {
243         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
244 }
245
246 /**
247  * filemap_flush - mostly a non-blocking flush
248  * @mapping:    target address_space
249  *
250  * This is a mostly non-blocking flush.  Not suitable for data-integrity
251  * purposes - I/O may not be started against all dirty pages.
252  */
253 int filemap_flush(struct address_space *mapping)
254 {
255         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
256 }
257 EXPORT_SYMBOL(filemap_flush);
258
259 /**
260  * wait_on_page_writeback_range - wait for writeback to complete
261  * @mapping:    target address_space
262  * @start:      beginning page index
263  * @end:        ending page index
264  *
265  * Wait for writeback to complete against pages indexed by start->end
266  * inclusive
267  */
268 int wait_on_page_writeback_range(struct address_space *mapping,
269                                 pgoff_t start, pgoff_t end)
270 {
271         struct pagevec pvec;
272         int nr_pages;
273         int ret = 0;
274         pgoff_t index;
275
276         if (end < start)
277                 return 0;
278
279         pagevec_init(&pvec, 0);
280         index = start;
281         while ((index <= end) &&
282                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
283                         PAGECACHE_TAG_WRITEBACK,
284                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
285                 unsigned i;
286
287                 for (i = 0; i < nr_pages; i++) {
288                         struct page *page = pvec.pages[i];
289
290                         /* until radix tree lookup accepts end_index */
291                         if (page->index > end)
292                                 continue;
293
294                         wait_on_page_writeback(page);
295                         if (PageError(page))
296                                 ret = -EIO;
297                 }
298                 pagevec_release(&pvec);
299                 cond_resched();
300         }
301
302         /* Check for outstanding write errors */
303         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304                 ret = -ENOSPC;
305         if (test_and_clear_bit(AS_EIO, &mapping->flags))
306                 ret = -EIO;
307
308         return ret;
309 }
310
311 /**
312  * sync_page_range - write and wait on all pages in the passed range
313  * @inode:      target inode
314  * @mapping:    target address_space
315  * @pos:        beginning offset in pages to write
316  * @count:      number of bytes to write
317  *
318  * Write and wait upon all the pages in the passed range.  This is a "data
319  * integrity" operation.  It waits upon in-flight writeout before starting and
320  * waiting upon new writeout.  If there was an IO error, return it.
321  *
322  * We need to re-take i_mutex during the generic_osync_inode list walk because
323  * it is otherwise livelockable.
324  */
325 int sync_page_range(struct inode *inode, struct address_space *mapping,
326                         loff_t pos, loff_t count)
327 {
328         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
329         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
330         int ret;
331
332         if (!mapping_cap_writeback_dirty(mapping) || !count)
333                 return 0;
334         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
335         if (ret == 0) {
336                 mutex_lock(&inode->i_mutex);
337                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
338                 mutex_unlock(&inode->i_mutex);
339         }
340         if (ret == 0)
341                 ret = wait_on_page_writeback_range(mapping, start, end);
342         return ret;
343 }
344 EXPORT_SYMBOL(sync_page_range);
345
346 /**
347  * sync_page_range_nolock
348  * @inode:      target inode
349  * @mapping:    target address_space
350  * @pos:        beginning offset in pages to write
351  * @count:      number of bytes to write
352  *
353  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
354  * as it forces O_SYNC writers to different parts of the same file
355  * to be serialised right until io completion.
356  */
357 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
358                            loff_t pos, loff_t count)
359 {
360         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
361         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
362         int ret;
363
364         if (!mapping_cap_writeback_dirty(mapping) || !count)
365                 return 0;
366         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
367         if (ret == 0)
368                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
369         if (ret == 0)
370                 ret = wait_on_page_writeback_range(mapping, start, end);
371         return ret;
372 }
373 EXPORT_SYMBOL(sync_page_range_nolock);
374
375 /**
376  * filemap_fdatawait - wait for all under-writeback pages to complete
377  * @mapping: address space structure to wait for
378  *
379  * Walk the list of under-writeback pages of the given address space
380  * and wait for all of them.
381  */
382 int filemap_fdatawait(struct address_space *mapping)
383 {
384         loff_t i_size = i_size_read(mapping->host);
385
386         if (i_size == 0)
387                 return 0;
388
389         return wait_on_page_writeback_range(mapping, 0,
390                                 (i_size - 1) >> PAGE_CACHE_SHIFT);
391 }
392 EXPORT_SYMBOL(filemap_fdatawait);
393
394 int filemap_write_and_wait(struct address_space *mapping)
395 {
396         int err = 0;
397
398         if (mapping->nrpages) {
399                 err = filemap_fdatawrite(mapping);
400                 /*
401                  * Even if the above returned error, the pages may be
402                  * written partially (e.g. -ENOSPC), so we wait for it.
403                  * But the -EIO is special case, it may indicate the worst
404                  * thing (e.g. bug) happened, so we avoid waiting for it.
405                  */
406                 if (err != -EIO) {
407                         int err2 = filemap_fdatawait(mapping);
408                         if (!err)
409                                 err = err2;
410                 }
411         }
412         return err;
413 }
414 EXPORT_SYMBOL(filemap_write_and_wait);
415
416 /**
417  * filemap_write_and_wait_range - write out & wait on a file range
418  * @mapping:    the address_space for the pages
419  * @lstart:     offset in bytes where the range starts
420  * @lend:       offset in bytes where the range ends (inclusive)
421  *
422  * Write out and wait upon file offsets lstart->lend, inclusive.
423  *
424  * Note that `lend' is inclusive (describes the last byte to be written) so
425  * that this function can be used to write to the very end-of-file (end = -1).
426  */
427 int filemap_write_and_wait_range(struct address_space *mapping,
428                                  loff_t lstart, loff_t lend)
429 {
430         int err = 0;
431
432         if (mapping->nrpages) {
433                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
434                                                  WB_SYNC_ALL);
435                 /* See comment of filemap_write_and_wait() */
436                 if (err != -EIO) {
437                         int err2 = wait_on_page_writeback_range(mapping,
438                                                 lstart >> PAGE_CACHE_SHIFT,
439                                                 lend >> PAGE_CACHE_SHIFT);
440                         if (!err)
441                                 err = err2;
442                 }
443         }
444         return err;
445 }
446
447 /**
448  * add_to_page_cache - add newly allocated pagecache pages
449  * @page:       page to add
450  * @mapping:    the page's address_space
451  * @offset:     page index
452  * @gfp_mask:   page allocation mode
453  *
454  * This function is used to add newly allocated pagecache pages;
455  * the page is new, so we can just run SetPageLocked() against it.
456  * The other page state flags were set by rmqueue().
457  *
458  * This function does not add the page to the LRU.  The caller must do that.
459  */
460 int add_to_page_cache(struct page *page, struct address_space *mapping,
461                 pgoff_t offset, gfp_t gfp_mask)
462 {
463         int error = mem_cgroup_cache_charge(page, current->mm, gfp_mask);
464         if (error)
465                 goto out;
466
467         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468         if (error == 0) {
469                 write_lock_irq(&mapping->tree_lock);
470                 error = radix_tree_insert(&mapping->page_tree, offset, page);
471                 if (!error) {
472                         page_cache_get(page);
473                         SetPageLocked(page);
474                         page->mapping = mapping;
475                         page->index = offset;
476                         mapping->nrpages++;
477                         __inc_zone_page_state(page, NR_FILE_PAGES);
478                 } else
479                         mem_cgroup_uncharge_page(page);
480
481                 write_unlock_irq(&mapping->tree_lock);
482                 radix_tree_preload_end();
483         } else
484                 mem_cgroup_uncharge_page(page);
485 out:
486         return error;
487 }
488 EXPORT_SYMBOL(add_to_page_cache);
489
490 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
491                                 pgoff_t offset, gfp_t gfp_mask)
492 {
493         int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
494         if (ret == 0)
495                 lru_cache_add(page);
496         return ret;
497 }
498
499 #ifdef CONFIG_NUMA
500 struct page *__page_cache_alloc(gfp_t gfp)
501 {
502         if (cpuset_do_page_mem_spread()) {
503                 int n = cpuset_mem_spread_node();
504                 return alloc_pages_node(n, gfp, 0);
505         }
506         return alloc_pages(gfp, 0);
507 }
508 EXPORT_SYMBOL(__page_cache_alloc);
509 #endif
510
511 static int __sleep_on_page_lock(void *word)
512 {
513         io_schedule();
514         return 0;
515 }
516
517 /*
518  * In order to wait for pages to become available there must be
519  * waitqueues associated with pages. By using a hash table of
520  * waitqueues where the bucket discipline is to maintain all
521  * waiters on the same queue and wake all when any of the pages
522  * become available, and for the woken contexts to check to be
523  * sure the appropriate page became available, this saves space
524  * at a cost of "thundering herd" phenomena during rare hash
525  * collisions.
526  */
527 static wait_queue_head_t *page_waitqueue(struct page *page)
528 {
529         const struct zone *zone = page_zone(page);
530
531         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
532 }
533
534 static inline void wake_up_page(struct page *page, int bit)
535 {
536         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
537 }
538
539 void wait_on_page_bit(struct page *page, int bit_nr)
540 {
541         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
542
543         if (test_bit(bit_nr, &page->flags))
544                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
545                                                         TASK_UNINTERRUPTIBLE);
546 }
547 EXPORT_SYMBOL(wait_on_page_bit);
548
549 /**
550  * unlock_page - unlock a locked page
551  * @page: the page
552  *
553  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
554  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
555  * mechananism between PageLocked pages and PageWriteback pages is shared.
556  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
557  *
558  * The first mb is necessary to safely close the critical section opened by the
559  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
560  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
561  * parallel wait_on_page_locked()).
562  */
563 void unlock_page(struct page *page)
564 {
565         smp_mb__before_clear_bit();
566         if (!TestClearPageLocked(page))
567                 BUG();
568         smp_mb__after_clear_bit(); 
569         wake_up_page(page, PG_locked);
570 }
571 EXPORT_SYMBOL(unlock_page);
572
573 /**
574  * end_page_writeback - end writeback against a page
575  * @page: the page
576  */
577 void end_page_writeback(struct page *page)
578 {
579         if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
580                 if (!test_clear_page_writeback(page))
581                         BUG();
582         }
583         smp_mb__after_clear_bit();
584         wake_up_page(page, PG_writeback);
585 }
586 EXPORT_SYMBOL(end_page_writeback);
587
588 /**
589  * __lock_page - get a lock on the page, assuming we need to sleep to get it
590  * @page: the page to lock
591  *
592  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
593  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
594  * chances are that on the second loop, the block layer's plug list is empty,
595  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
596  */
597 void __lock_page(struct page *page)
598 {
599         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
600
601         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
602                                                         TASK_UNINTERRUPTIBLE);
603 }
604 EXPORT_SYMBOL(__lock_page);
605
606 int fastcall __lock_page_killable(struct page *page)
607 {
608         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
609
610         return __wait_on_bit_lock(page_waitqueue(page), &wait,
611                                         sync_page_killable, TASK_KILLABLE);
612 }
613
614 /*
615  * Variant of lock_page that does not require the caller to hold a reference
616  * on the page's mapping.
617  */
618 void __lock_page_nosync(struct page *page)
619 {
620         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
621         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
622                                                         TASK_UNINTERRUPTIBLE);
623 }
624
625 /**
626  * find_get_page - find and get a page reference
627  * @mapping: the address_space to search
628  * @offset: the page index
629  *
630  * Is there a pagecache struct page at the given (mapping, offset) tuple?
631  * If yes, increment its refcount and return it; if no, return NULL.
632  */
633 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
634 {
635         struct page *page;
636
637         read_lock_irq(&mapping->tree_lock);
638         page = radix_tree_lookup(&mapping->page_tree, offset);
639         if (page)
640                 page_cache_get(page);
641         read_unlock_irq(&mapping->tree_lock);
642         return page;
643 }
644 EXPORT_SYMBOL(find_get_page);
645
646 /**
647  * find_lock_page - locate, pin and lock a pagecache page
648  * @mapping: the address_space to search
649  * @offset: the page index
650  *
651  * Locates the desired pagecache page, locks it, increments its reference
652  * count and returns its address.
653  *
654  * Returns zero if the page was not present. find_lock_page() may sleep.
655  */
656 struct page *find_lock_page(struct address_space *mapping,
657                                 pgoff_t offset)
658 {
659         struct page *page;
660
661 repeat:
662         read_lock_irq(&mapping->tree_lock);
663         page = radix_tree_lookup(&mapping->page_tree, offset);
664         if (page) {
665                 page_cache_get(page);
666                 if (TestSetPageLocked(page)) {
667                         read_unlock_irq(&mapping->tree_lock);
668                         __lock_page(page);
669
670                         /* Has the page been truncated while we slept? */
671                         if (unlikely(page->mapping != mapping)) {
672                                 unlock_page(page);
673                                 page_cache_release(page);
674                                 goto repeat;
675                         }
676                         VM_BUG_ON(page->index != offset);
677                         goto out;
678                 }
679         }
680         read_unlock_irq(&mapping->tree_lock);
681 out:
682         return page;
683 }
684 EXPORT_SYMBOL(find_lock_page);
685
686 /**
687  * find_or_create_page - locate or add a pagecache page
688  * @mapping: the page's address_space
689  * @index: the page's index into the mapping
690  * @gfp_mask: page allocation mode
691  *
692  * Locates a page in the pagecache.  If the page is not present, a new page
693  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
694  * LRU list.  The returned page is locked and has its reference count
695  * incremented.
696  *
697  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
698  * allocation!
699  *
700  * find_or_create_page() returns the desired page's address, or zero on
701  * memory exhaustion.
702  */
703 struct page *find_or_create_page(struct address_space *mapping,
704                 pgoff_t index, gfp_t gfp_mask)
705 {
706         struct page *page;
707         int err;
708 repeat:
709         page = find_lock_page(mapping, index);
710         if (!page) {
711                 page = __page_cache_alloc(gfp_mask);
712                 if (!page)
713                         return NULL;
714                 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
715                 if (unlikely(err)) {
716                         page_cache_release(page);
717                         page = NULL;
718                         if (err == -EEXIST)
719                                 goto repeat;
720                 }
721         }
722         return page;
723 }
724 EXPORT_SYMBOL(find_or_create_page);
725
726 /**
727  * find_get_pages - gang pagecache lookup
728  * @mapping:    The address_space to search
729  * @start:      The starting page index
730  * @nr_pages:   The maximum number of pages
731  * @pages:      Where the resulting pages are placed
732  *
733  * find_get_pages() will search for and return a group of up to
734  * @nr_pages pages in the mapping.  The pages are placed at @pages.
735  * find_get_pages() takes a reference against the returned pages.
736  *
737  * The search returns a group of mapping-contiguous pages with ascending
738  * indexes.  There may be holes in the indices due to not-present pages.
739  *
740  * find_get_pages() returns the number of pages which were found.
741  */
742 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
743                             unsigned int nr_pages, struct page **pages)
744 {
745         unsigned int i;
746         unsigned int ret;
747
748         read_lock_irq(&mapping->tree_lock);
749         ret = radix_tree_gang_lookup(&mapping->page_tree,
750                                 (void **)pages, start, nr_pages);
751         for (i = 0; i < ret; i++)
752                 page_cache_get(pages[i]);
753         read_unlock_irq(&mapping->tree_lock);
754         return ret;
755 }
756
757 /**
758  * find_get_pages_contig - gang contiguous pagecache lookup
759  * @mapping:    The address_space to search
760  * @index:      The starting page index
761  * @nr_pages:   The maximum number of pages
762  * @pages:      Where the resulting pages are placed
763  *
764  * find_get_pages_contig() works exactly like find_get_pages(), except
765  * that the returned number of pages are guaranteed to be contiguous.
766  *
767  * find_get_pages_contig() returns the number of pages which were found.
768  */
769 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
770                                unsigned int nr_pages, struct page **pages)
771 {
772         unsigned int i;
773         unsigned int ret;
774
775         read_lock_irq(&mapping->tree_lock);
776         ret = radix_tree_gang_lookup(&mapping->page_tree,
777                                 (void **)pages, index, nr_pages);
778         for (i = 0; i < ret; i++) {
779                 if (pages[i]->mapping == NULL || pages[i]->index != index)
780                         break;
781
782                 page_cache_get(pages[i]);
783                 index++;
784         }
785         read_unlock_irq(&mapping->tree_lock);
786         return i;
787 }
788 EXPORT_SYMBOL(find_get_pages_contig);
789
790 /**
791  * find_get_pages_tag - find and return pages that match @tag
792  * @mapping:    the address_space to search
793  * @index:      the starting page index
794  * @tag:        the tag index
795  * @nr_pages:   the maximum number of pages
796  * @pages:      where the resulting pages are placed
797  *
798  * Like find_get_pages, except we only return pages which are tagged with
799  * @tag.   We update @index to index the next page for the traversal.
800  */
801 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
802                         int tag, unsigned int nr_pages, struct page **pages)
803 {
804         unsigned int i;
805         unsigned int ret;
806
807         read_lock_irq(&mapping->tree_lock);
808         ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
809                                 (void **)pages, *index, nr_pages, tag);
810         for (i = 0; i < ret; i++)
811                 page_cache_get(pages[i]);
812         if (ret)
813                 *index = pages[ret - 1]->index + 1;
814         read_unlock_irq(&mapping->tree_lock);
815         return ret;
816 }
817 EXPORT_SYMBOL(find_get_pages_tag);
818
819 /**
820  * grab_cache_page_nowait - returns locked page at given index in given cache
821  * @mapping: target address_space
822  * @index: the page index
823  *
824  * Same as grab_cache_page(), but do not wait if the page is unavailable.
825  * This is intended for speculative data generators, where the data can
826  * be regenerated if the page couldn't be grabbed.  This routine should
827  * be safe to call while holding the lock for another page.
828  *
829  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
830  * and deadlock against the caller's locked page.
831  */
832 struct page *
833 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
834 {
835         struct page *page = find_get_page(mapping, index);
836
837         if (page) {
838                 if (!TestSetPageLocked(page))
839                         return page;
840                 page_cache_release(page);
841                 return NULL;
842         }
843         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
844         if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
845                 page_cache_release(page);
846                 page = NULL;
847         }
848         return page;
849 }
850 EXPORT_SYMBOL(grab_cache_page_nowait);
851
852 /*
853  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
854  * a _large_ part of the i/o request. Imagine the worst scenario:
855  *
856  *      ---R__________________________________________B__________
857  *         ^ reading here                             ^ bad block(assume 4k)
858  *
859  * read(R) => miss => readahead(R...B) => media error => frustrating retries
860  * => failing the whole request => read(R) => read(R+1) =>
861  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
862  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
863  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
864  *
865  * It is going insane. Fix it by quickly scaling down the readahead size.
866  */
867 static void shrink_readahead_size_eio(struct file *filp,
868                                         struct file_ra_state *ra)
869 {
870         if (!ra->ra_pages)
871                 return;
872
873         ra->ra_pages /= 4;
874 }
875
876 /**
877  * do_generic_mapping_read - generic file read routine
878  * @mapping:    address_space to be read
879  * @ra:         file's readahead state
880  * @filp:       the file to read
881  * @ppos:       current file position
882  * @desc:       read_descriptor
883  * @actor:      read method
884  *
885  * This is a generic file read routine, and uses the
886  * mapping->a_ops->readpage() function for the actual low-level stuff.
887  *
888  * This is really ugly. But the goto's actually try to clarify some
889  * of the logic when it comes to error handling etc.
890  *
891  * Note the struct file* is only passed for the use of readpage.
892  * It may be NULL.
893  */
894 void do_generic_mapping_read(struct address_space *mapping,
895                              struct file_ra_state *ra,
896                              struct file *filp,
897                              loff_t *ppos,
898                              read_descriptor_t *desc,
899                              read_actor_t actor)
900 {
901         struct inode *inode = mapping->host;
902         pgoff_t index;
903         pgoff_t last_index;
904         pgoff_t prev_index;
905         unsigned long offset;      /* offset into pagecache page */
906         unsigned int prev_offset;
907         int error;
908
909         index = *ppos >> PAGE_CACHE_SHIFT;
910         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
911         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
912         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
913         offset = *ppos & ~PAGE_CACHE_MASK;
914
915         for (;;) {
916                 struct page *page;
917                 pgoff_t end_index;
918                 loff_t isize;
919                 unsigned long nr, ret;
920
921                 cond_resched();
922 find_page:
923                 page = find_get_page(mapping, index);
924                 if (!page) {
925                         page_cache_sync_readahead(mapping,
926                                         ra, filp,
927                                         index, last_index - index);
928                         page = find_get_page(mapping, index);
929                         if (unlikely(page == NULL))
930                                 goto no_cached_page;
931                 }
932                 if (PageReadahead(page)) {
933                         page_cache_async_readahead(mapping,
934                                         ra, filp, page,
935                                         index, last_index - index);
936                 }
937                 if (!PageUptodate(page))
938                         goto page_not_up_to_date;
939 page_ok:
940                 /*
941                  * i_size must be checked after we know the page is Uptodate.
942                  *
943                  * Checking i_size after the check allows us to calculate
944                  * the correct value for "nr", which means the zero-filled
945                  * part of the page is not copied back to userspace (unless
946                  * another truncate extends the file - this is desired though).
947                  */
948
949                 isize = i_size_read(inode);
950                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
951                 if (unlikely(!isize || index > end_index)) {
952                         page_cache_release(page);
953                         goto out;
954                 }
955
956                 /* nr is the maximum number of bytes to copy from this page */
957                 nr = PAGE_CACHE_SIZE;
958                 if (index == end_index) {
959                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
960                         if (nr <= offset) {
961                                 page_cache_release(page);
962                                 goto out;
963                         }
964                 }
965                 nr = nr - offset;
966
967                 /* If users can be writing to this page using arbitrary
968                  * virtual addresses, take care about potential aliasing
969                  * before reading the page on the kernel side.
970                  */
971                 if (mapping_writably_mapped(mapping))
972                         flush_dcache_page(page);
973
974                 /*
975                  * When a sequential read accesses a page several times,
976                  * only mark it as accessed the first time.
977                  */
978                 if (prev_index != index || offset != prev_offset)
979                         mark_page_accessed(page);
980                 prev_index = index;
981
982                 /*
983                  * Ok, we have the page, and it's up-to-date, so
984                  * now we can copy it to user space...
985                  *
986                  * The actor routine returns how many bytes were actually used..
987                  * NOTE! This may not be the same as how much of a user buffer
988                  * we filled up (we may be padding etc), so we can only update
989                  * "pos" here (the actor routine has to update the user buffer
990                  * pointers and the remaining count).
991                  */
992                 ret = actor(desc, page, offset, nr);
993                 offset += ret;
994                 index += offset >> PAGE_CACHE_SHIFT;
995                 offset &= ~PAGE_CACHE_MASK;
996                 prev_offset = offset;
997
998                 page_cache_release(page);
999                 if (ret == nr && desc->count)
1000                         continue;
1001                 goto out;
1002
1003 page_not_up_to_date:
1004                 /* Get exclusive access to the page ... */
1005                 if (lock_page_killable(page))
1006                         goto readpage_eio;
1007
1008                 /* Did it get truncated before we got the lock? */
1009                 if (!page->mapping) {
1010                         unlock_page(page);
1011                         page_cache_release(page);
1012                         continue;
1013                 }
1014
1015                 /* Did somebody else fill it already? */
1016                 if (PageUptodate(page)) {
1017                         unlock_page(page);
1018                         goto page_ok;
1019                 }
1020
1021 readpage:
1022                 /* Start the actual read. The read will unlock the page. */
1023                 error = mapping->a_ops->readpage(filp, page);
1024
1025                 if (unlikely(error)) {
1026                         if (error == AOP_TRUNCATED_PAGE) {
1027                                 page_cache_release(page);
1028                                 goto find_page;
1029                         }
1030                         goto readpage_error;
1031                 }
1032
1033                 if (!PageUptodate(page)) {
1034                         if (lock_page_killable(page))
1035                                 goto readpage_eio;
1036                         if (!PageUptodate(page)) {
1037                                 if (page->mapping == NULL) {
1038                                         /*
1039                                          * invalidate_inode_pages got it
1040                                          */
1041                                         unlock_page(page);
1042                                         page_cache_release(page);
1043                                         goto find_page;
1044                                 }
1045                                 unlock_page(page);
1046                                 shrink_readahead_size_eio(filp, ra);
1047                                 goto readpage_eio;
1048                         }
1049                         unlock_page(page);
1050                 }
1051
1052                 goto page_ok;
1053
1054 readpage_eio:
1055                 error = -EIO;
1056 readpage_error:
1057                 /* UHHUH! A synchronous read error occurred. Report it */
1058                 desc->error = error;
1059                 page_cache_release(page);
1060                 goto out;
1061
1062 no_cached_page:
1063                 /*
1064                  * Ok, it wasn't cached, so we need to create a new
1065                  * page..
1066                  */
1067                 page = page_cache_alloc_cold(mapping);
1068                 if (!page) {
1069                         desc->error = -ENOMEM;
1070                         goto out;
1071                 }
1072                 error = add_to_page_cache_lru(page, mapping,
1073                                                 index, GFP_KERNEL);
1074                 if (error) {
1075                         page_cache_release(page);
1076                         if (error == -EEXIST)
1077                                 goto find_page;
1078                         desc->error = error;
1079                         goto out;
1080                 }
1081                 goto readpage;
1082         }
1083
1084 out:
1085         ra->prev_pos = prev_index;
1086         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1087         ra->prev_pos |= prev_offset;
1088
1089         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1090         if (filp)
1091                 file_accessed(filp);
1092 }
1093 EXPORT_SYMBOL(do_generic_mapping_read);
1094
1095 int file_read_actor(read_descriptor_t *desc, struct page *page,
1096                         unsigned long offset, unsigned long size)
1097 {
1098         char *kaddr;
1099         unsigned long left, count = desc->count;
1100
1101         if (size > count)
1102                 size = count;
1103
1104         /*
1105          * Faults on the destination of a read are common, so do it before
1106          * taking the kmap.
1107          */
1108         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1109                 kaddr = kmap_atomic(page, KM_USER0);
1110                 left = __copy_to_user_inatomic(desc->arg.buf,
1111                                                 kaddr + offset, size);
1112                 kunmap_atomic(kaddr, KM_USER0);
1113                 if (left == 0)
1114                         goto success;
1115         }
1116
1117         /* Do it the slow way */
1118         kaddr = kmap(page);
1119         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1120         kunmap(page);
1121
1122         if (left) {
1123                 size -= left;
1124                 desc->error = -EFAULT;
1125         }
1126 success:
1127         desc->count = count - size;
1128         desc->written += size;
1129         desc->arg.buf += size;
1130         return size;
1131 }
1132
1133 /*
1134  * Performs necessary checks before doing a write
1135  * @iov:        io vector request
1136  * @nr_segs:    number of segments in the iovec
1137  * @count:      number of bytes to write
1138  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1139  *
1140  * Adjust number of segments and amount of bytes to write (nr_segs should be
1141  * properly initialized first). Returns appropriate error code that caller
1142  * should return or zero in case that write should be allowed.
1143  */
1144 int generic_segment_checks(const struct iovec *iov,
1145                         unsigned long *nr_segs, size_t *count, int access_flags)
1146 {
1147         unsigned long   seg;
1148         size_t cnt = 0;
1149         for (seg = 0; seg < *nr_segs; seg++) {
1150                 const struct iovec *iv = &iov[seg];
1151
1152                 /*
1153                  * If any segment has a negative length, or the cumulative
1154                  * length ever wraps negative then return -EINVAL.
1155                  */
1156                 cnt += iv->iov_len;
1157                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1158                         return -EINVAL;
1159                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1160                         continue;
1161                 if (seg == 0)
1162                         return -EFAULT;
1163                 *nr_segs = seg;
1164                 cnt -= iv->iov_len;     /* This segment is no good */
1165                 break;
1166         }
1167         *count = cnt;
1168         return 0;
1169 }
1170 EXPORT_SYMBOL(generic_segment_checks);
1171
1172 /**
1173  * generic_file_aio_read - generic filesystem read routine
1174  * @iocb:       kernel I/O control block
1175  * @iov:        io vector request
1176  * @nr_segs:    number of segments in the iovec
1177  * @pos:        current file position
1178  *
1179  * This is the "read()" routine for all filesystems
1180  * that can use the page cache directly.
1181  */
1182 ssize_t
1183 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1184                 unsigned long nr_segs, loff_t pos)
1185 {
1186         struct file *filp = iocb->ki_filp;
1187         ssize_t retval;
1188         unsigned long seg;
1189         size_t count;
1190         loff_t *ppos = &iocb->ki_pos;
1191
1192         count = 0;
1193         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1194         if (retval)
1195                 return retval;
1196
1197         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1198         if (filp->f_flags & O_DIRECT) {
1199                 loff_t size;
1200                 struct address_space *mapping;
1201                 struct inode *inode;
1202
1203                 mapping = filp->f_mapping;
1204                 inode = mapping->host;
1205                 retval = 0;
1206                 if (!count)
1207                         goto out; /* skip atime */
1208                 size = i_size_read(inode);
1209                 if (pos < size) {
1210                         retval = generic_file_direct_IO(READ, iocb,
1211                                                 iov, pos, nr_segs);
1212                         if (retval > 0)
1213                                 *ppos = pos + retval;
1214                 }
1215                 if (likely(retval != 0)) {
1216                         file_accessed(filp);
1217                         goto out;
1218                 }
1219         }
1220
1221         retval = 0;
1222         if (count) {
1223                 for (seg = 0; seg < nr_segs; seg++) {
1224                         read_descriptor_t desc;
1225
1226                         desc.written = 0;
1227                         desc.arg.buf = iov[seg].iov_base;
1228                         desc.count = iov[seg].iov_len;
1229                         if (desc.count == 0)
1230                                 continue;
1231                         desc.error = 0;
1232                         do_generic_file_read(filp,ppos,&desc,file_read_actor);
1233                         retval += desc.written;
1234                         if (desc.error) {
1235                                 retval = retval ?: desc.error;
1236                                 break;
1237                         }
1238                         if (desc.count > 0)
1239                                 break;
1240                 }
1241         }
1242 out:
1243         return retval;
1244 }
1245 EXPORT_SYMBOL(generic_file_aio_read);
1246
1247 static ssize_t
1248 do_readahead(struct address_space *mapping, struct file *filp,
1249              pgoff_t index, unsigned long nr)
1250 {
1251         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1252                 return -EINVAL;
1253
1254         force_page_cache_readahead(mapping, filp, index,
1255                                         max_sane_readahead(nr));
1256         return 0;
1257 }
1258
1259 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1260 {
1261         ssize_t ret;
1262         struct file *file;
1263
1264         ret = -EBADF;
1265         file = fget(fd);
1266         if (file) {
1267                 if (file->f_mode & FMODE_READ) {
1268                         struct address_space *mapping = file->f_mapping;
1269                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1270                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1271                         unsigned long len = end - start + 1;
1272                         ret = do_readahead(mapping, file, start, len);
1273                 }
1274                 fput(file);
1275         }
1276         return ret;
1277 }
1278
1279 #ifdef CONFIG_MMU
1280 /**
1281  * page_cache_read - adds requested page to the page cache if not already there
1282  * @file:       file to read
1283  * @offset:     page index
1284  *
1285  * This adds the requested page to the page cache if it isn't already there,
1286  * and schedules an I/O to read in its contents from disk.
1287  */
1288 static int page_cache_read(struct file *file, pgoff_t offset)
1289 {
1290         struct address_space *mapping = file->f_mapping;
1291         struct page *page; 
1292         int ret;
1293
1294         do {
1295                 page = page_cache_alloc_cold(mapping);
1296                 if (!page)
1297                         return -ENOMEM;
1298
1299                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1300                 if (ret == 0)
1301                         ret = mapping->a_ops->readpage(file, page);
1302                 else if (ret == -EEXIST)
1303                         ret = 0; /* losing race to add is OK */
1304
1305                 page_cache_release(page);
1306
1307         } while (ret == AOP_TRUNCATED_PAGE);
1308                 
1309         return ret;
1310 }
1311
1312 #define MMAP_LOTSAMISS  (100)
1313
1314 /**
1315  * filemap_fault - read in file data for page fault handling
1316  * @vma:        vma in which the fault was taken
1317  * @vmf:        struct vm_fault containing details of the fault
1318  *
1319  * filemap_fault() is invoked via the vma operations vector for a
1320  * mapped memory region to read in file data during a page fault.
1321  *
1322  * The goto's are kind of ugly, but this streamlines the normal case of having
1323  * it in the page cache, and handles the special cases reasonably without
1324  * having a lot of duplicated code.
1325  */
1326 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1327 {
1328         int error;
1329         struct file *file = vma->vm_file;
1330         struct address_space *mapping = file->f_mapping;
1331         struct file_ra_state *ra = &file->f_ra;
1332         struct inode *inode = mapping->host;
1333         struct page *page;
1334         unsigned long size;
1335         int did_readaround = 0;
1336         int ret = 0;
1337
1338         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1339         if (vmf->pgoff >= size)
1340                 return VM_FAULT_SIGBUS;
1341
1342         /* If we don't want any read-ahead, don't bother */
1343         if (VM_RandomReadHint(vma))
1344                 goto no_cached_page;
1345
1346         /*
1347          * Do we have something in the page cache already?
1348          */
1349 retry_find:
1350         page = find_lock_page(mapping, vmf->pgoff);
1351         /*
1352          * For sequential accesses, we use the generic readahead logic.
1353          */
1354         if (VM_SequentialReadHint(vma)) {
1355                 if (!page) {
1356                         page_cache_sync_readahead(mapping, ra, file,
1357                                                            vmf->pgoff, 1);
1358                         page = find_lock_page(mapping, vmf->pgoff);
1359                         if (!page)
1360                                 goto no_cached_page;
1361                 }
1362                 if (PageReadahead(page)) {
1363                         page_cache_async_readahead(mapping, ra, file, page,
1364                                                            vmf->pgoff, 1);
1365                 }
1366         }
1367
1368         if (!page) {
1369                 unsigned long ra_pages;
1370
1371                 ra->mmap_miss++;
1372
1373                 /*
1374                  * Do we miss much more than hit in this file? If so,
1375                  * stop bothering with read-ahead. It will only hurt.
1376                  */
1377                 if (ra->mmap_miss > MMAP_LOTSAMISS)
1378                         goto no_cached_page;
1379
1380                 /*
1381                  * To keep the pgmajfault counter straight, we need to
1382                  * check did_readaround, as this is an inner loop.
1383                  */
1384                 if (!did_readaround) {
1385                         ret = VM_FAULT_MAJOR;
1386                         count_vm_event(PGMAJFAULT);
1387                 }
1388                 did_readaround = 1;
1389                 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1390                 if (ra_pages) {
1391                         pgoff_t start = 0;
1392
1393                         if (vmf->pgoff > ra_pages / 2)
1394                                 start = vmf->pgoff - ra_pages / 2;
1395                         do_page_cache_readahead(mapping, file, start, ra_pages);
1396                 }
1397                 page = find_lock_page(mapping, vmf->pgoff);
1398                 if (!page)
1399                         goto no_cached_page;
1400         }
1401
1402         if (!did_readaround)
1403                 ra->mmap_miss--;
1404
1405         /*
1406          * We have a locked page in the page cache, now we need to check
1407          * that it's up-to-date. If not, it is going to be due to an error.
1408          */
1409         if (unlikely(!PageUptodate(page)))
1410                 goto page_not_uptodate;
1411
1412         /* Must recheck i_size under page lock */
1413         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1414         if (unlikely(vmf->pgoff >= size)) {
1415                 unlock_page(page);
1416                 page_cache_release(page);
1417                 return VM_FAULT_SIGBUS;
1418         }
1419
1420         /*
1421          * Found the page and have a reference on it.
1422          */
1423         mark_page_accessed(page);
1424         ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1425         vmf->page = page;
1426         return ret | VM_FAULT_LOCKED;
1427
1428 no_cached_page:
1429         /*
1430          * We're only likely to ever get here if MADV_RANDOM is in
1431          * effect.
1432          */
1433         error = page_cache_read(file, vmf->pgoff);
1434
1435         /*
1436          * The page we want has now been added to the page cache.
1437          * In the unlikely event that someone removed it in the
1438          * meantime, we'll just come back here and read it again.
1439          */
1440         if (error >= 0)
1441                 goto retry_find;
1442
1443         /*
1444          * An error return from page_cache_read can result if the
1445          * system is low on memory, or a problem occurs while trying
1446          * to schedule I/O.
1447          */
1448         if (error == -ENOMEM)
1449                 return VM_FAULT_OOM;
1450         return VM_FAULT_SIGBUS;
1451
1452 page_not_uptodate:
1453         /* IO error path */
1454         if (!did_readaround) {
1455                 ret = VM_FAULT_MAJOR;
1456                 count_vm_event(PGMAJFAULT);
1457         }
1458
1459         /*
1460          * Umm, take care of errors if the page isn't up-to-date.
1461          * Try to re-read it _once_. We do this synchronously,
1462          * because there really aren't any performance issues here
1463          * and we need to check for errors.
1464          */
1465         ClearPageError(page);
1466         error = mapping->a_ops->readpage(file, page);
1467         page_cache_release(page);
1468
1469         if (!error || error == AOP_TRUNCATED_PAGE)
1470                 goto retry_find;
1471
1472         /* Things didn't work out. Return zero to tell the mm layer so. */
1473         shrink_readahead_size_eio(file, ra);
1474         return VM_FAULT_SIGBUS;
1475 }
1476 EXPORT_SYMBOL(filemap_fault);
1477
1478 struct vm_operations_struct generic_file_vm_ops = {
1479         .fault          = filemap_fault,
1480 };
1481
1482 /* This is used for a general mmap of a disk file */
1483
1484 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1485 {
1486         struct address_space *mapping = file->f_mapping;
1487
1488         if (!mapping->a_ops->readpage)
1489                 return -ENOEXEC;
1490         file_accessed(file);
1491         vma->vm_ops = &generic_file_vm_ops;
1492         vma->vm_flags |= VM_CAN_NONLINEAR;
1493         return 0;
1494 }
1495
1496 /*
1497  * This is for filesystems which do not implement ->writepage.
1498  */
1499 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1500 {
1501         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1502                 return -EINVAL;
1503         return generic_file_mmap(file, vma);
1504 }
1505 #else
1506 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1507 {
1508         return -ENOSYS;
1509 }
1510 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1511 {
1512         return -ENOSYS;
1513 }
1514 #endif /* CONFIG_MMU */
1515
1516 EXPORT_SYMBOL(generic_file_mmap);
1517 EXPORT_SYMBOL(generic_file_readonly_mmap);
1518
1519 static struct page *__read_cache_page(struct address_space *mapping,
1520                                 pgoff_t index,
1521                                 int (*filler)(void *,struct page*),
1522                                 void *data)
1523 {
1524         struct page *page;
1525         int err;
1526 repeat:
1527         page = find_get_page(mapping, index);
1528         if (!page) {
1529                 page = page_cache_alloc_cold(mapping);
1530                 if (!page)
1531                         return ERR_PTR(-ENOMEM);
1532                 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1533                 if (unlikely(err)) {
1534                         page_cache_release(page);
1535                         if (err == -EEXIST)
1536                                 goto repeat;
1537                         /* Presumably ENOMEM for radix tree node */
1538                         return ERR_PTR(err);
1539                 }
1540                 err = filler(data, page);
1541                 if (err < 0) {
1542                         page_cache_release(page);
1543                         page = ERR_PTR(err);
1544                 }
1545         }
1546         return page;
1547 }
1548
1549 /*
1550  * Same as read_cache_page, but don't wait for page to become unlocked
1551  * after submitting it to the filler.
1552  */
1553 struct page *read_cache_page_async(struct address_space *mapping,
1554                                 pgoff_t index,
1555                                 int (*filler)(void *,struct page*),
1556                                 void *data)
1557 {
1558         struct page *page;
1559         int err;
1560
1561 retry:
1562         page = __read_cache_page(mapping, index, filler, data);
1563         if (IS_ERR(page))
1564                 return page;
1565         if (PageUptodate(page))
1566                 goto out;
1567
1568         lock_page(page);
1569         if (!page->mapping) {
1570                 unlock_page(page);
1571                 page_cache_release(page);
1572                 goto retry;
1573         }
1574         if (PageUptodate(page)) {
1575                 unlock_page(page);
1576                 goto out;
1577         }
1578         err = filler(data, page);
1579         if (err < 0) {
1580                 page_cache_release(page);
1581                 return ERR_PTR(err);
1582         }
1583 out:
1584         mark_page_accessed(page);
1585         return page;
1586 }
1587 EXPORT_SYMBOL(read_cache_page_async);
1588
1589 /**
1590  * read_cache_page - read into page cache, fill it if needed
1591  * @mapping:    the page's address_space
1592  * @index:      the page index
1593  * @filler:     function to perform the read
1594  * @data:       destination for read data
1595  *
1596  * Read into the page cache. If a page already exists, and PageUptodate() is
1597  * not set, try to fill the page then wait for it to become unlocked.
1598  *
1599  * If the page does not get brought uptodate, return -EIO.
1600  */
1601 struct page *read_cache_page(struct address_space *mapping,
1602                                 pgoff_t index,
1603                                 int (*filler)(void *,struct page*),
1604                                 void *data)
1605 {
1606         struct page *page;
1607
1608         page = read_cache_page_async(mapping, index, filler, data);
1609         if (IS_ERR(page))
1610                 goto out;
1611         wait_on_page_locked(page);
1612         if (!PageUptodate(page)) {
1613                 page_cache_release(page);
1614                 page = ERR_PTR(-EIO);
1615         }
1616  out:
1617         return page;
1618 }
1619 EXPORT_SYMBOL(read_cache_page);
1620
1621 /*
1622  * The logic we want is
1623  *
1624  *      if suid or (sgid and xgrp)
1625  *              remove privs
1626  */
1627 int should_remove_suid(struct dentry *dentry)
1628 {
1629         mode_t mode = dentry->d_inode->i_mode;
1630         int kill = 0;
1631
1632         /* suid always must be killed */
1633         if (unlikely(mode & S_ISUID))
1634                 kill = ATTR_KILL_SUID;
1635
1636         /*
1637          * sgid without any exec bits is just a mandatory locking mark; leave
1638          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1639          */
1640         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1641                 kill |= ATTR_KILL_SGID;
1642
1643         if (unlikely(kill && !capable(CAP_FSETID)))
1644                 return kill;
1645
1646         return 0;
1647 }
1648 EXPORT_SYMBOL(should_remove_suid);
1649
1650 int __remove_suid(struct dentry *dentry, int kill)
1651 {
1652         struct iattr newattrs;
1653
1654         newattrs.ia_valid = ATTR_FORCE | kill;
1655         return notify_change(dentry, &newattrs);
1656 }
1657
1658 int remove_suid(struct dentry *dentry)
1659 {
1660         int killsuid = should_remove_suid(dentry);
1661         int killpriv = security_inode_need_killpriv(dentry);
1662         int error = 0;
1663
1664         if (killpriv < 0)
1665                 return killpriv;
1666         if (killpriv)
1667                 error = security_inode_killpriv(dentry);
1668         if (!error && killsuid)
1669                 error = __remove_suid(dentry, killsuid);
1670
1671         return error;
1672 }
1673 EXPORT_SYMBOL(remove_suid);
1674
1675 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1676                         const struct iovec *iov, size_t base, size_t bytes)
1677 {
1678         size_t copied = 0, left = 0;
1679
1680         while (bytes) {
1681                 char __user *buf = iov->iov_base + base;
1682                 int copy = min(bytes, iov->iov_len - base);
1683
1684                 base = 0;
1685                 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1686                 copied += copy;
1687                 bytes -= copy;
1688                 vaddr += copy;
1689                 iov++;
1690
1691                 if (unlikely(left))
1692                         break;
1693         }
1694         return copied - left;
1695 }
1696
1697 /*
1698  * Copy as much as we can into the page and return the number of bytes which
1699  * were sucessfully copied.  If a fault is encountered then return the number of
1700  * bytes which were copied.
1701  */
1702 size_t iov_iter_copy_from_user_atomic(struct page *page,
1703                 struct iov_iter *i, unsigned long offset, size_t bytes)
1704 {
1705         char *kaddr;
1706         size_t copied;
1707
1708         BUG_ON(!in_atomic());
1709         kaddr = kmap_atomic(page, KM_USER0);
1710         if (likely(i->nr_segs == 1)) {
1711                 int left;
1712                 char __user *buf = i->iov->iov_base + i->iov_offset;
1713                 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1714                                                         buf, bytes);
1715                 copied = bytes - left;
1716         } else {
1717                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1718                                                 i->iov, i->iov_offset, bytes);
1719         }
1720         kunmap_atomic(kaddr, KM_USER0);
1721
1722         return copied;
1723 }
1724 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1725
1726 /*
1727  * This has the same sideeffects and return value as
1728  * iov_iter_copy_from_user_atomic().
1729  * The difference is that it attempts to resolve faults.
1730  * Page must not be locked.
1731  */
1732 size_t iov_iter_copy_from_user(struct page *page,
1733                 struct iov_iter *i, unsigned long offset, size_t bytes)
1734 {
1735         char *kaddr;
1736         size_t copied;
1737
1738         kaddr = kmap(page);
1739         if (likely(i->nr_segs == 1)) {
1740                 int left;
1741                 char __user *buf = i->iov->iov_base + i->iov_offset;
1742                 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1743                 copied = bytes - left;
1744         } else {
1745                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1746                                                 i->iov, i->iov_offset, bytes);
1747         }
1748         kunmap(page);
1749         return copied;
1750 }
1751 EXPORT_SYMBOL(iov_iter_copy_from_user);
1752
1753 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1754 {
1755         if (likely(i->nr_segs == 1)) {
1756                 i->iov_offset += bytes;
1757         } else {
1758                 const struct iovec *iov = i->iov;
1759                 size_t base = i->iov_offset;
1760
1761                 /*
1762                  * The !iov->iov_len check ensures we skip over unlikely
1763                  * zero-length segments.
1764                  */
1765                 while (bytes || !iov->iov_len) {
1766                         int copy = min(bytes, iov->iov_len - base);
1767
1768                         bytes -= copy;
1769                         base += copy;
1770                         if (iov->iov_len == base) {
1771                                 iov++;
1772                                 base = 0;
1773                         }
1774                 }
1775                 i->iov = iov;
1776                 i->iov_offset = base;
1777         }
1778 }
1779
1780 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1781 {
1782         BUG_ON(i->count < bytes);
1783
1784         __iov_iter_advance_iov(i, bytes);
1785         i->count -= bytes;
1786 }
1787 EXPORT_SYMBOL(iov_iter_advance);
1788
1789 /*
1790  * Fault in the first iovec of the given iov_iter, to a maximum length
1791  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1792  * accessed (ie. because it is an invalid address).
1793  *
1794  * writev-intensive code may want this to prefault several iovecs -- that
1795  * would be possible (callers must not rely on the fact that _only_ the
1796  * first iovec will be faulted with the current implementation).
1797  */
1798 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1799 {
1800         char __user *buf = i->iov->iov_base + i->iov_offset;
1801         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1802         return fault_in_pages_readable(buf, bytes);
1803 }
1804 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1805
1806 /*
1807  * Return the count of just the current iov_iter segment.
1808  */
1809 size_t iov_iter_single_seg_count(struct iov_iter *i)
1810 {
1811         const struct iovec *iov = i->iov;
1812         if (i->nr_segs == 1)
1813                 return i->count;
1814         else
1815                 return min(i->count, iov->iov_len - i->iov_offset);
1816 }
1817 EXPORT_SYMBOL(iov_iter_single_seg_count);
1818
1819 /*
1820  * Performs necessary checks before doing a write
1821  *
1822  * Can adjust writing position or amount of bytes to write.
1823  * Returns appropriate error code that caller should return or
1824  * zero in case that write should be allowed.
1825  */
1826 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1827 {
1828         struct inode *inode = file->f_mapping->host;
1829         unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1830
1831         if (unlikely(*pos < 0))
1832                 return -EINVAL;
1833
1834         if (!isblk) {
1835                 /* FIXME: this is for backwards compatibility with 2.4 */
1836                 if (file->f_flags & O_APPEND)
1837                         *pos = i_size_read(inode);
1838
1839                 if (limit != RLIM_INFINITY) {
1840                         if (*pos >= limit) {
1841                                 send_sig(SIGXFSZ, current, 0);
1842                                 return -EFBIG;
1843                         }
1844                         if (*count > limit - (typeof(limit))*pos) {
1845                                 *count = limit - (typeof(limit))*pos;
1846                         }
1847                 }
1848         }
1849
1850         /*
1851          * LFS rule
1852          */
1853         if (unlikely(*pos + *count > MAX_NON_LFS &&
1854                                 !(file->f_flags & O_LARGEFILE))) {
1855                 if (*pos >= MAX_NON_LFS) {
1856                         return -EFBIG;
1857                 }
1858                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1859                         *count = MAX_NON_LFS - (unsigned long)*pos;
1860                 }
1861         }
1862
1863         /*
1864          * Are we about to exceed the fs block limit ?
1865          *
1866          * If we have written data it becomes a short write.  If we have
1867          * exceeded without writing data we send a signal and return EFBIG.
1868          * Linus frestrict idea will clean these up nicely..
1869          */
1870         if (likely(!isblk)) {
1871                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1872                         if (*count || *pos > inode->i_sb->s_maxbytes) {
1873                                 return -EFBIG;
1874                         }
1875                         /* zero-length writes at ->s_maxbytes are OK */
1876                 }
1877
1878                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1879                         *count = inode->i_sb->s_maxbytes - *pos;
1880         } else {
1881 #ifdef CONFIG_BLOCK
1882                 loff_t isize;
1883                 if (bdev_read_only(I_BDEV(inode)))
1884                         return -EPERM;
1885                 isize = i_size_read(inode);
1886                 if (*pos >= isize) {
1887                         if (*count || *pos > isize)
1888                                 return -ENOSPC;
1889                 }
1890
1891                 if (*pos + *count > isize)
1892                         *count = isize - *pos;
1893 #else
1894                 return -EPERM;
1895 #endif
1896         }
1897         return 0;
1898 }
1899 EXPORT_SYMBOL(generic_write_checks);
1900
1901 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1902                                 loff_t pos, unsigned len, unsigned flags,
1903                                 struct page **pagep, void **fsdata)
1904 {
1905         const struct address_space_operations *aops = mapping->a_ops;
1906
1907         if (aops->write_begin) {
1908                 return aops->write_begin(file, mapping, pos, len, flags,
1909                                                         pagep, fsdata);
1910         } else {
1911                 int ret;
1912                 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1913                 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1914                 struct inode *inode = mapping->host;
1915                 struct page *page;
1916 again:
1917                 page = __grab_cache_page(mapping, index);
1918                 *pagep = page;
1919                 if (!page)
1920                         return -ENOMEM;
1921
1922                 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1923                         /*
1924                          * There is no way to resolve a short write situation
1925                          * for a !Uptodate page (except by double copying in
1926                          * the caller done by generic_perform_write_2copy).
1927                          *
1928                          * Instead, we have to bring it uptodate here.
1929                          */
1930                         ret = aops->readpage(file, page);
1931                         page_cache_release(page);
1932                         if (ret) {
1933                                 if (ret == AOP_TRUNCATED_PAGE)
1934                                         goto again;
1935                                 return ret;
1936                         }
1937                         goto again;
1938                 }
1939
1940                 ret = aops->prepare_write(file, page, offset, offset+len);
1941                 if (ret) {
1942                         unlock_page(page);
1943                         page_cache_release(page);
1944                         if (pos + len > inode->i_size)
1945                                 vmtruncate(inode, inode->i_size);
1946                 }
1947                 return ret;
1948         }
1949 }
1950 EXPORT_SYMBOL(pagecache_write_begin);
1951
1952 int pagecache_write_end(struct file *file, struct address_space *mapping,
1953                                 loff_t pos, unsigned len, unsigned copied,
1954                                 struct page *page, void *fsdata)
1955 {
1956         const struct address_space_operations *aops = mapping->a_ops;
1957         int ret;
1958
1959         if (aops->write_end) {
1960                 mark_page_accessed(page);
1961                 ret = aops->write_end(file, mapping, pos, len, copied,
1962                                                         page, fsdata);
1963         } else {
1964                 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1965                 struct inode *inode = mapping->host;
1966
1967                 flush_dcache_page(page);
1968                 ret = aops->commit_write(file, page, offset, offset+len);
1969                 unlock_page(page);
1970                 mark_page_accessed(page);
1971                 page_cache_release(page);
1972
1973                 if (ret < 0) {
1974                         if (pos + len > inode->i_size)
1975                                 vmtruncate(inode, inode->i_size);
1976                 } else if (ret > 0)
1977                         ret = min_t(size_t, copied, ret);
1978                 else
1979                         ret = copied;
1980         }
1981
1982         return ret;
1983 }
1984 EXPORT_SYMBOL(pagecache_write_end);
1985
1986 ssize_t
1987 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1988                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1989                 size_t count, size_t ocount)
1990 {
1991         struct file     *file = iocb->ki_filp;
1992         struct address_space *mapping = file->f_mapping;
1993         struct inode    *inode = mapping->host;
1994         ssize_t         written;
1995
1996         if (count != ocount)
1997                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1998
1999         written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2000         if (written > 0) {
2001                 loff_t end = pos + written;
2002                 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2003                         i_size_write(inode,  end);
2004                         mark_inode_dirty(inode);
2005                 }
2006                 *ppos = end;
2007         }
2008
2009         /*
2010          * Sync the fs metadata but not the minor inode changes and
2011          * of course not the data as we did direct DMA for the IO.
2012          * i_mutex is held, which protects generic_osync_inode() from
2013          * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2014          */
2015         if ((written >= 0 || written == -EIOCBQUEUED) &&
2016             ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2017                 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2018                 if (err < 0)
2019                         written = err;
2020         }
2021         return written;
2022 }
2023 EXPORT_SYMBOL(generic_file_direct_write);
2024
2025 /*
2026  * Find or create a page at the given pagecache position. Return the locked
2027  * page. This function is specifically for buffered writes.
2028  */
2029 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2030 {
2031         int status;
2032         struct page *page;
2033 repeat:
2034         page = find_lock_page(mapping, index);
2035         if (likely(page))
2036                 return page;
2037
2038         page = page_cache_alloc(mapping);
2039         if (!page)
2040                 return NULL;
2041         status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2042         if (unlikely(status)) {
2043                 page_cache_release(page);
2044                 if (status == -EEXIST)
2045                         goto repeat;
2046                 return NULL;
2047         }
2048         return page;
2049 }
2050 EXPORT_SYMBOL(__grab_cache_page);
2051
2052 static ssize_t generic_perform_write_2copy(struct file *file,
2053                                 struct iov_iter *i, loff_t pos)
2054 {
2055         struct address_space *mapping = file->f_mapping;
2056         const struct address_space_operations *a_ops = mapping->a_ops;
2057         struct inode *inode = mapping->host;
2058         long status = 0;
2059         ssize_t written = 0;
2060
2061         do {
2062                 struct page *src_page;
2063                 struct page *page;
2064                 pgoff_t index;          /* Pagecache index for current page */
2065                 unsigned long offset;   /* Offset into pagecache page */
2066                 unsigned long bytes;    /* Bytes to write to page */
2067                 size_t copied;          /* Bytes copied from user */
2068
2069                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2070                 index = pos >> PAGE_CACHE_SHIFT;
2071                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2072                                                 iov_iter_count(i));
2073
2074                 /*
2075                  * a non-NULL src_page indicates that we're doing the
2076                  * copy via get_user_pages and kmap.
2077                  */
2078                 src_page = NULL;
2079
2080                 /*
2081                  * Bring in the user page that we will copy from _first_.
2082                  * Otherwise there's a nasty deadlock on copying from the
2083                  * same page as we're writing to, without it being marked
2084                  * up-to-date.
2085                  *
2086                  * Not only is this an optimisation, but it is also required
2087                  * to check that the address is actually valid, when atomic
2088                  * usercopies are used, below.
2089                  */
2090                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2091                         status = -EFAULT;
2092                         break;
2093                 }
2094
2095                 page = __grab_cache_page(mapping, index);
2096                 if (!page) {
2097                         status = -ENOMEM;
2098                         break;
2099                 }
2100
2101                 /*
2102                  * non-uptodate pages cannot cope with short copies, and we
2103                  * cannot take a pagefault with the destination page locked.
2104                  * So pin the source page to copy it.
2105                  */
2106                 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2107                         unlock_page(page);
2108
2109                         src_page = alloc_page(GFP_KERNEL);
2110                         if (!src_page) {
2111                                 page_cache_release(page);
2112                                 status = -ENOMEM;
2113                                 break;
2114                         }
2115
2116                         /*
2117                          * Cannot get_user_pages with a page locked for the
2118                          * same reason as we can't take a page fault with a
2119                          * page locked (as explained below).
2120                          */
2121                         copied = iov_iter_copy_from_user(src_page, i,
2122                                                                 offset, bytes);
2123                         if (unlikely(copied == 0)) {
2124                                 status = -EFAULT;
2125                                 page_cache_release(page);
2126                                 page_cache_release(src_page);
2127                                 break;
2128                         }
2129                         bytes = copied;
2130
2131                         lock_page(page);
2132                         /*
2133                          * Can't handle the page going uptodate here, because
2134                          * that means we would use non-atomic usercopies, which
2135                          * zero out the tail of the page, which can cause
2136                          * zeroes to become transiently visible. We could just
2137                          * use a non-zeroing copy, but the APIs aren't too
2138                          * consistent.
2139                          */
2140                         if (unlikely(!page->mapping || PageUptodate(page))) {
2141                                 unlock_page(page);
2142                                 page_cache_release(page);
2143                                 page_cache_release(src_page);
2144                                 continue;
2145                         }
2146                 }
2147
2148                 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2149                 if (unlikely(status))
2150                         goto fs_write_aop_error;
2151
2152                 if (!src_page) {
2153                         /*
2154                          * Must not enter the pagefault handler here, because
2155                          * we hold the page lock, so we might recursively
2156                          * deadlock on the same lock, or get an ABBA deadlock
2157                          * against a different lock, or against the mmap_sem
2158                          * (which nests outside the page lock).  So increment
2159                          * preempt count, and use _atomic usercopies.
2160                          *
2161                          * The page is uptodate so we are OK to encounter a
2162                          * short copy: if unmodified parts of the page are
2163                          * marked dirty and written out to disk, it doesn't
2164                          * really matter.
2165                          */
2166                         pagefault_disable();
2167                         copied = iov_iter_copy_from_user_atomic(page, i,
2168                                                                 offset, bytes);
2169                         pagefault_enable();
2170                 } else {
2171                         void *src, *dst;
2172                         src = kmap_atomic(src_page, KM_USER0);
2173                         dst = kmap_atomic(page, KM_USER1);
2174                         memcpy(dst + offset, src + offset, bytes);
2175                         kunmap_atomic(dst, KM_USER1);
2176                         kunmap_atomic(src, KM_USER0);
2177                         copied = bytes;
2178                 }
2179                 flush_dcache_page(page);
2180
2181                 status = a_ops->commit_write(file, page, offset, offset+bytes);
2182                 if (unlikely(status < 0))
2183                         goto fs_write_aop_error;
2184                 if (unlikely(status > 0)) /* filesystem did partial write */
2185                         copied = min_t(size_t, copied, status);
2186
2187                 unlock_page(page);
2188                 mark_page_accessed(page);
2189                 page_cache_release(page);
2190                 if (src_page)
2191                         page_cache_release(src_page);
2192
2193                 iov_iter_advance(i, copied);
2194                 pos += copied;
2195                 written += copied;
2196
2197                 balance_dirty_pages_ratelimited(mapping);
2198                 cond_resched();
2199                 continue;
2200
2201 fs_write_aop_error:
2202                 unlock_page(page);
2203                 page_cache_release(page);
2204                 if (src_page)
2205                         page_cache_release(src_page);
2206
2207                 /*
2208                  * prepare_write() may have instantiated a few blocks
2209                  * outside i_size.  Trim these off again. Don't need
2210                  * i_size_read because we hold i_mutex.
2211                  */
2212                 if (pos + bytes > inode->i_size)
2213                         vmtruncate(inode, inode->i_size);
2214                 break;
2215         } while (iov_iter_count(i));
2216
2217         return written ? written : status;
2218 }
2219
2220 static ssize_t generic_perform_write(struct file *file,
2221                                 struct iov_iter *i, loff_t pos)
2222 {
2223         struct address_space *mapping = file->f_mapping;
2224         const struct address_space_operations *a_ops = mapping->a_ops;
2225         long status = 0;
2226         ssize_t written = 0;
2227         unsigned int flags = 0;
2228
2229         /*
2230          * Copies from kernel address space cannot fail (NFSD is a big user).
2231          */
2232         if (segment_eq(get_fs(), KERNEL_DS))
2233                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2234
2235         do {
2236                 struct page *page;
2237                 pgoff_t index;          /* Pagecache index for current page */
2238                 unsigned long offset;   /* Offset into pagecache page */
2239                 unsigned long bytes;    /* Bytes to write to page */
2240                 size_t copied;          /* Bytes copied from user */
2241                 void *fsdata;
2242
2243                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2244                 index = pos >> PAGE_CACHE_SHIFT;
2245                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2246                                                 iov_iter_count(i));
2247
2248 again:
2249
2250                 /*
2251                  * Bring in the user page that we will copy from _first_.
2252                  * Otherwise there's a nasty deadlock on copying from the
2253                  * same page as we're writing to, without it being marked
2254                  * up-to-date.
2255                  *
2256                  * Not only is this an optimisation, but it is also required
2257                  * to check that the address is actually valid, when atomic
2258                  * usercopies are used, below.
2259                  */
2260                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2261                         status = -EFAULT;
2262                         break;
2263                 }
2264
2265                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2266                                                 &page, &fsdata);
2267                 if (unlikely(status))
2268                         break;
2269
2270                 pagefault_disable();
2271                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2272                 pagefault_enable();
2273                 flush_dcache_page(page);
2274
2275                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2276                                                 page, fsdata);
2277                 if (unlikely(status < 0))
2278                         break;
2279                 copied = status;
2280
2281                 cond_resched();
2282
2283                 iov_iter_advance(i, copied);
2284                 if (unlikely(copied == 0)) {
2285                         /*
2286                          * If we were unable to copy any data at all, we must
2287                          * fall back to a single segment length write.
2288                          *
2289                          * If we didn't fallback here, we could livelock
2290                          * because not all segments in the iov can be copied at
2291                          * once without a pagefault.
2292                          */
2293                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2294                                                 iov_iter_single_seg_count(i));
2295                         goto again;
2296                 }
2297                 pos += copied;
2298                 written += copied;
2299
2300                 balance_dirty_pages_ratelimited(mapping);
2301
2302         } while (iov_iter_count(i));
2303
2304         return written ? written : status;
2305 }
2306
2307 ssize_t
2308 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2309                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2310                 size_t count, ssize_t written)
2311 {
2312         struct file *file = iocb->ki_filp;
2313         struct address_space *mapping = file->f_mapping;
2314         const struct address_space_operations *a_ops = mapping->a_ops;
2315         struct inode *inode = mapping->host;
2316         ssize_t status;
2317         struct iov_iter i;
2318
2319         iov_iter_init(&i, iov, nr_segs, count, written);
2320         if (a_ops->write_begin)
2321                 status = generic_perform_write(file, &i, pos);
2322         else
2323                 status = generic_perform_write_2copy(file, &i, pos);
2324
2325         if (likely(status >= 0)) {
2326                 written += status;
2327                 *ppos = pos + status;
2328
2329                 /*
2330                  * For now, when the user asks for O_SYNC, we'll actually give
2331                  * O_DSYNC
2332                  */
2333                 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2334                         if (!a_ops->writepage || !is_sync_kiocb(iocb))
2335                                 status = generic_osync_inode(inode, mapping,
2336                                                 OSYNC_METADATA|OSYNC_DATA);
2337                 }
2338         }
2339         
2340         /*
2341          * If we get here for O_DIRECT writes then we must have fallen through
2342          * to buffered writes (block instantiation inside i_size).  So we sync
2343          * the file data here, to try to honour O_DIRECT expectations.
2344          */
2345         if (unlikely(file->f_flags & O_DIRECT) && written)
2346                 status = filemap_write_and_wait(mapping);
2347
2348         return written ? written : status;
2349 }
2350 EXPORT_SYMBOL(generic_file_buffered_write);
2351
2352 static ssize_t
2353 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2354                                 unsigned long nr_segs, loff_t *ppos)
2355 {
2356         struct file *file = iocb->ki_filp;
2357         struct address_space * mapping = file->f_mapping;
2358         size_t ocount;          /* original count */
2359         size_t count;           /* after file limit checks */
2360         struct inode    *inode = mapping->host;
2361         loff_t          pos;
2362         ssize_t         written;
2363         ssize_t         err;
2364
2365         ocount = 0;
2366         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2367         if (err)
2368                 return err;
2369
2370         count = ocount;
2371         pos = *ppos;
2372
2373         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2374
2375         /* We can write back this queue in page reclaim */
2376         current->backing_dev_info = mapping->backing_dev_info;
2377         written = 0;
2378
2379         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2380         if (err)
2381                 goto out;
2382
2383         if (count == 0)
2384                 goto out;
2385
2386         err = remove_suid(file->f_path.dentry);
2387         if (err)
2388                 goto out;
2389
2390         file_update_time(file);
2391
2392         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2393         if (unlikely(file->f_flags & O_DIRECT)) {
2394                 loff_t endbyte;
2395                 ssize_t written_buffered;
2396
2397                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2398                                                         ppos, count, ocount);
2399                 if (written < 0 || written == count)
2400                         goto out;
2401                 /*
2402                  * direct-io write to a hole: fall through to buffered I/O
2403                  * for completing the rest of the request.
2404                  */
2405                 pos += written;
2406                 count -= written;
2407                 written_buffered = generic_file_buffered_write(iocb, iov,
2408                                                 nr_segs, pos, ppos, count,
2409                                                 written);
2410                 /*
2411                  * If generic_file_buffered_write() retuned a synchronous error
2412                  * then we want to return the number of bytes which were
2413                  * direct-written, or the error code if that was zero.  Note
2414                  * that this differs from normal direct-io semantics, which
2415                  * will return -EFOO even if some bytes were written.
2416                  */
2417                 if (written_buffered < 0) {
2418                         err = written_buffered;
2419                         goto out;
2420                 }
2421
2422                 /*
2423                  * We need to ensure that the page cache pages are written to
2424                  * disk and invalidated to preserve the expected O_DIRECT
2425                  * semantics.
2426                  */
2427                 endbyte = pos + written_buffered - written - 1;
2428                 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2429                                             SYNC_FILE_RANGE_WAIT_BEFORE|
2430                                             SYNC_FILE_RANGE_WRITE|
2431                                             SYNC_FILE_RANGE_WAIT_AFTER);
2432                 if (err == 0) {
2433                         written = written_buffered;
2434                         invalidate_mapping_pages(mapping,
2435                                                  pos >> PAGE_CACHE_SHIFT,
2436                                                  endbyte >> PAGE_CACHE_SHIFT);
2437                 } else {
2438                         /*
2439                          * We don't know how much we wrote, so just return
2440                          * the number of bytes which were direct-written
2441                          */
2442                 }
2443         } else {
2444                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2445                                 pos, ppos, count, written);
2446         }
2447 out:
2448         current->backing_dev_info = NULL;
2449         return written ? written : err;
2450 }
2451
2452 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2453                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2454 {
2455         struct file *file = iocb->ki_filp;
2456         struct address_space *mapping = file->f_mapping;
2457         struct inode *inode = mapping->host;
2458         ssize_t ret;
2459
2460         BUG_ON(iocb->ki_pos != pos);
2461
2462         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2463                         &iocb->ki_pos);
2464
2465         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2466                 ssize_t err;
2467
2468                 err = sync_page_range_nolock(inode, mapping, pos, ret);
2469                 if (err < 0)
2470                         ret = err;
2471         }
2472         return ret;
2473 }
2474 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2475
2476 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2477                 unsigned long nr_segs, loff_t pos)
2478 {
2479         struct file *file = iocb->ki_filp;
2480         struct address_space *mapping = file->f_mapping;
2481         struct inode *inode = mapping->host;
2482         ssize_t ret;
2483
2484         BUG_ON(iocb->ki_pos != pos);
2485
2486         mutex_lock(&inode->i_mutex);
2487         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2488                         &iocb->ki_pos);
2489         mutex_unlock(&inode->i_mutex);
2490
2491         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2492                 ssize_t err;
2493
2494                 err = sync_page_range(inode, mapping, pos, ret);
2495                 if (err < 0)
2496                         ret = err;
2497         }
2498         return ret;
2499 }
2500 EXPORT_SYMBOL(generic_file_aio_write);
2501
2502 /*
2503  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2504  * went wrong during pagecache shootdown.
2505  */
2506 static ssize_t
2507 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2508         loff_t offset, unsigned long nr_segs)
2509 {
2510         struct file *file = iocb->ki_filp;
2511         struct address_space *mapping = file->f_mapping;
2512         ssize_t retval;
2513         size_t write_len;
2514         pgoff_t end = 0; /* silence gcc */
2515
2516         /*
2517          * If it's a write, unmap all mmappings of the file up-front.  This
2518          * will cause any pte dirty bits to be propagated into the pageframes
2519          * for the subsequent filemap_write_and_wait().
2520          */
2521         if (rw == WRITE) {
2522                 write_len = iov_length(iov, nr_segs);
2523                 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2524                 if (mapping_mapped(mapping))
2525                         unmap_mapping_range(mapping, offset, write_len, 0);
2526         }
2527
2528         retval = filemap_write_and_wait(mapping);
2529         if (retval)
2530                 goto out;
2531
2532         /*
2533          * After a write we want buffered reads to be sure to go to disk to get
2534          * the new data.  We invalidate clean cached page from the region we're
2535          * about to write.  We do this *before* the write so that we can return
2536          * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2537          */
2538         if (rw == WRITE && mapping->nrpages) {
2539                 retval = invalidate_inode_pages2_range(mapping,
2540                                         offset >> PAGE_CACHE_SHIFT, end);
2541                 if (retval)
2542                         goto out;
2543         }
2544
2545         retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2546
2547         /*
2548          * Finally, try again to invalidate clean pages which might have been
2549          * cached by non-direct readahead, or faulted in by get_user_pages()
2550          * if the source of the write was an mmap'ed region of the file
2551          * we're writing.  Either one is a pretty crazy thing to do,
2552          * so we don't support it 100%.  If this invalidation
2553          * fails, tough, the write still worked...
2554          */
2555         if (rw == WRITE && mapping->nrpages) {
2556                 invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2557         }
2558 out:
2559         return retval;
2560 }
2561
2562 /**
2563  * try_to_release_page() - release old fs-specific metadata on a page
2564  *
2565  * @page: the page which the kernel is trying to free
2566  * @gfp_mask: memory allocation flags (and I/O mode)
2567  *
2568  * The address_space is to try to release any data against the page
2569  * (presumably at page->private).  If the release was successful, return `1'.
2570  * Otherwise return zero.
2571  *
2572  * The @gfp_mask argument specifies whether I/O may be performed to release
2573  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2574  *
2575  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2576  */
2577 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2578 {
2579         struct address_space * const mapping = page->mapping;
2580
2581         BUG_ON(!PageLocked(page));
2582         if (PageWriteback(page))
2583                 return 0;
2584
2585         if (mapping && mapping->a_ops->releasepage)
2586                 return mapping->a_ops->releasepage(page, gfp_mask);
2587         return try_to_free_buffers(page);
2588 }
2589
2590 EXPORT_SYMBOL(try_to_release_page);