]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/signal.c
[PATCH] kill_proc_info_as_uid: don't use hardcoded constants
[linux-2.6-omap-h63xx.git] / kernel / signal.c
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *              Changes to use preallocated sigqueue structures
10  *              to allow signals to be sent reliably.
11  */
12
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
32
33 /*
34  * SLAB caches for signal bits.
35  */
36
37 static kmem_cache_t *sigqueue_cachep;
38
39 /*
40  * In POSIX a signal is sent either to a specific thread (Linux task)
41  * or to the process as a whole (Linux thread group).  How the signal
42  * is sent determines whether it's to one thread or the whole group,
43  * which determines which signal mask(s) are involved in blocking it
44  * from being delivered until later.  When the signal is delivered,
45  * either it's caught or ignored by a user handler or it has a default
46  * effect that applies to the whole thread group (POSIX process).
47  *
48  * The possible effects an unblocked signal set to SIG_DFL can have are:
49  *   ignore     - Nothing Happens
50  *   terminate  - kill the process, i.e. all threads in the group,
51  *                similar to exit_group.  The group leader (only) reports
52  *                WIFSIGNALED status to its parent.
53  *   coredump   - write a core dump file describing all threads using
54  *                the same mm and then kill all those threads
55  *   stop       - stop all the threads in the group, i.e. TASK_STOPPED state
56  *
57  * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58  * Other signals when not blocked and set to SIG_DFL behaves as follows.
59  * The job control signals also have other special effects.
60  *
61  *      +--------------------+------------------+
62  *      |  POSIX signal      |  default action  |
63  *      +--------------------+------------------+
64  *      |  SIGHUP            |  terminate       |
65  *      |  SIGINT            |  terminate       |
66  *      |  SIGQUIT           |  coredump        |
67  *      |  SIGILL            |  coredump        |
68  *      |  SIGTRAP           |  coredump        |
69  *      |  SIGABRT/SIGIOT    |  coredump        |
70  *      |  SIGBUS            |  coredump        |
71  *      |  SIGFPE            |  coredump        |
72  *      |  SIGKILL           |  terminate(+)    |
73  *      |  SIGUSR1           |  terminate       |
74  *      |  SIGSEGV           |  coredump        |
75  *      |  SIGUSR2           |  terminate       |
76  *      |  SIGPIPE           |  terminate       |
77  *      |  SIGALRM           |  terminate       |
78  *      |  SIGTERM           |  terminate       |
79  *      |  SIGCHLD           |  ignore          |
80  *      |  SIGCONT           |  ignore(*)       |
81  *      |  SIGSTOP           |  stop(*)(+)      |
82  *      |  SIGTSTP           |  stop(*)         |
83  *      |  SIGTTIN           |  stop(*)         |
84  *      |  SIGTTOU           |  stop(*)         |
85  *      |  SIGURG            |  ignore          |
86  *      |  SIGXCPU           |  coredump        |
87  *      |  SIGXFSZ           |  coredump        |
88  *      |  SIGVTALRM         |  terminate       |
89  *      |  SIGPROF           |  terminate       |
90  *      |  SIGPOLL/SIGIO     |  terminate       |
91  *      |  SIGSYS/SIGUNUSED  |  coredump        |
92  *      |  SIGSTKFLT         |  terminate       |
93  *      |  SIGWINCH          |  ignore          |
94  *      |  SIGPWR            |  terminate       |
95  *      |  SIGRTMIN-SIGRTMAX |  terminate       |
96  *      +--------------------+------------------+
97  *      |  non-POSIX signal  |  default action  |
98  *      +--------------------+------------------+
99  *      |  SIGEMT            |  coredump        |
100  *      +--------------------+------------------+
101  *
102  * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103  * (*) Special job control effects:
104  * When SIGCONT is sent, it resumes the process (all threads in the group)
105  * from TASK_STOPPED state and also clears any pending/queued stop signals
106  * (any of those marked with "stop(*)").  This happens regardless of blocking,
107  * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears
108  * any pending/queued SIGCONT signals; this happens regardless of blocking,
109  * catching, or ignored the stop signal, though (except for SIGSTOP) the
110  * default action of stopping the process may happen later or never.
111  */
112
113 #ifdef SIGEMT
114 #define M_SIGEMT        M(SIGEMT)
115 #else
116 #define M_SIGEMT        0
117 #endif
118
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125
126 #define SIG_KERNEL_ONLY_MASK (\
127         M(SIGKILL)   |  M(SIGSTOP)                                   )
128
129 #define SIG_KERNEL_STOP_MASK (\
130         M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   )
131
132 #define SIG_KERNEL_COREDUMP_MASK (\
133         M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \
134         M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \
135         M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     )
136
137 #define SIG_KERNEL_IGNORE_MASK (\
138         M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    )
139
140 #define sig_kernel_only(sig) \
141                 (((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143                 (((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145                 (((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147                 (((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK))
148
149 #define sig_user_defined(t, signr) \
150         (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&  \
151          ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153 #define sig_fatal(t, signr) \
154         (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155          (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157 static int sig_ignored(struct task_struct *t, int sig)
158 {
159         void __user * handler;
160
161         /*
162          * Tracers always want to know about signals..
163          */
164         if (t->ptrace & PT_PTRACED)
165                 return 0;
166
167         /*
168          * Blocked signals are never ignored, since the
169          * signal handler may change by the time it is
170          * unblocked.
171          */
172         if (sigismember(&t->blocked, sig))
173                 return 0;
174
175         /* Is it explicitly or implicitly ignored? */
176         handler = t->sighand->action[sig-1].sa.sa_handler;
177         return   handler == SIG_IGN ||
178                 (handler == SIG_DFL && sig_kernel_ignore(sig));
179 }
180
181 /*
182  * Re-calculate pending state from the set of locally pending
183  * signals, globally pending signals, and blocked signals.
184  */
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186 {
187         unsigned long ready;
188         long i;
189
190         switch (_NSIG_WORDS) {
191         default:
192                 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193                         ready |= signal->sig[i] &~ blocked->sig[i];
194                 break;
195
196         case 4: ready  = signal->sig[3] &~ blocked->sig[3];
197                 ready |= signal->sig[2] &~ blocked->sig[2];
198                 ready |= signal->sig[1] &~ blocked->sig[1];
199                 ready |= signal->sig[0] &~ blocked->sig[0];
200                 break;
201
202         case 2: ready  = signal->sig[1] &~ blocked->sig[1];
203                 ready |= signal->sig[0] &~ blocked->sig[0];
204                 break;
205
206         case 1: ready  = signal->sig[0] &~ blocked->sig[0];
207         }
208         return ready != 0;
209 }
210
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
214 {
215         if (t->signal->group_stop_count > 0 ||
216             (freezing(t)) ||
217             PENDING(&t->pending, &t->blocked) ||
218             PENDING(&t->signal->shared_pending, &t->blocked))
219                 set_tsk_thread_flag(t, TIF_SIGPENDING);
220         else
221                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222 }
223
224 void recalc_sigpending(void)
225 {
226         recalc_sigpending_tsk(current);
227 }
228
229 /* Given the mask, find the first available signal that should be serviced. */
230
231 static int
232 next_signal(struct sigpending *pending, sigset_t *mask)
233 {
234         unsigned long i, *s, *m, x;
235         int sig = 0;
236         
237         s = pending->signal.sig;
238         m = mask->sig;
239         switch (_NSIG_WORDS) {
240         default:
241                 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242                         if ((x = *s &~ *m) != 0) {
243                                 sig = ffz(~x) + i*_NSIG_BPW + 1;
244                                 break;
245                         }
246                 break;
247
248         case 2: if ((x = s[0] &~ m[0]) != 0)
249                         sig = 1;
250                 else if ((x = s[1] &~ m[1]) != 0)
251                         sig = _NSIG_BPW + 1;
252                 else
253                         break;
254                 sig += ffz(~x);
255                 break;
256
257         case 1: if ((x = *s &~ *m) != 0)
258                         sig = ffz(~x) + 1;
259                 break;
260         }
261         
262         return sig;
263 }
264
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
266                                          int override_rlimit)
267 {
268         struct sigqueue *q = NULL;
269
270         atomic_inc(&t->user->sigpending);
271         if (override_rlimit ||
272             atomic_read(&t->user->sigpending) <=
273                         t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274                 q = kmem_cache_alloc(sigqueue_cachep, flags);
275         if (unlikely(q == NULL)) {
276                 atomic_dec(&t->user->sigpending);
277         } else {
278                 INIT_LIST_HEAD(&q->list);
279                 q->flags = 0;
280                 q->user = get_uid(t->user);
281         }
282         return(q);
283 }
284
285 static inline void __sigqueue_free(struct sigqueue *q)
286 {
287         if (q->flags & SIGQUEUE_PREALLOC)
288                 return;
289         atomic_dec(&q->user->sigpending);
290         free_uid(q->user);
291         kmem_cache_free(sigqueue_cachep, q);
292 }
293
294 static void flush_sigqueue(struct sigpending *queue)
295 {
296         struct sigqueue *q;
297
298         sigemptyset(&queue->signal);
299         while (!list_empty(&queue->list)) {
300                 q = list_entry(queue->list.next, struct sigqueue , list);
301                 list_del_init(&q->list);
302                 __sigqueue_free(q);
303         }
304 }
305
306 /*
307  * Flush all pending signals for a task.
308  */
309
310 void
311 flush_signals(struct task_struct *t)
312 {
313         unsigned long flags;
314
315         spin_lock_irqsave(&t->sighand->siglock, flags);
316         clear_tsk_thread_flag(t,TIF_SIGPENDING);
317         flush_sigqueue(&t->pending);
318         flush_sigqueue(&t->signal->shared_pending);
319         spin_unlock_irqrestore(&t->sighand->siglock, flags);
320 }
321
322 /*
323  * This function expects the tasklist_lock write-locked.
324  */
325 void __exit_sighand(struct task_struct *tsk)
326 {
327         struct sighand_struct * sighand = tsk->sighand;
328
329         /* Ok, we're done with the signal handlers */
330         tsk->sighand = NULL;
331         if (atomic_dec_and_test(&sighand->count))
332                 sighand_free(sighand);
333 }
334
335 void exit_sighand(struct task_struct *tsk)
336 {
337         write_lock_irq(&tasklist_lock);
338         rcu_read_lock();
339         if (tsk->sighand != NULL) {
340                 struct sighand_struct *sighand = rcu_dereference(tsk->sighand);
341                 spin_lock(&sighand->siglock);
342                 __exit_sighand(tsk);
343                 spin_unlock(&sighand->siglock);
344         }
345         rcu_read_unlock();
346         write_unlock_irq(&tasklist_lock);
347 }
348
349 /*
350  * This function expects the tasklist_lock write-locked.
351  */
352 void __exit_signal(struct task_struct *tsk)
353 {
354         struct signal_struct * sig = tsk->signal;
355         struct sighand_struct * sighand;
356
357         if (!sig)
358                 BUG();
359         if (!atomic_read(&sig->count))
360                 BUG();
361         rcu_read_lock();
362         sighand = rcu_dereference(tsk->sighand);
363         spin_lock(&sighand->siglock);
364         posix_cpu_timers_exit(tsk);
365         if (atomic_dec_and_test(&sig->count)) {
366                 posix_cpu_timers_exit_group(tsk);
367                 if (tsk == sig->curr_target)
368                         sig->curr_target = next_thread(tsk);
369                 tsk->signal = NULL;
370                 __exit_sighand(tsk);
371                 spin_unlock(&sighand->siglock);
372                 flush_sigqueue(&sig->shared_pending);
373         } else {
374                 /*
375                  * If there is any task waiting for the group exit
376                  * then notify it:
377                  */
378                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
379                         wake_up_process(sig->group_exit_task);
380                         sig->group_exit_task = NULL;
381                 }
382                 if (tsk == sig->curr_target)
383                         sig->curr_target = next_thread(tsk);
384                 tsk->signal = NULL;
385                 /*
386                  * Accumulate here the counters for all threads but the
387                  * group leader as they die, so they can be added into
388                  * the process-wide totals when those are taken.
389                  * The group leader stays around as a zombie as long
390                  * as there are other threads.  When it gets reaped,
391                  * the exit.c code will add its counts into these totals.
392                  * We won't ever get here for the group leader, since it
393                  * will have been the last reference on the signal_struct.
394                  */
395                 sig->utime = cputime_add(sig->utime, tsk->utime);
396                 sig->stime = cputime_add(sig->stime, tsk->stime);
397                 sig->min_flt += tsk->min_flt;
398                 sig->maj_flt += tsk->maj_flt;
399                 sig->nvcsw += tsk->nvcsw;
400                 sig->nivcsw += tsk->nivcsw;
401                 sig->sched_time += tsk->sched_time;
402                 __exit_sighand(tsk);
403                 spin_unlock(&sighand->siglock);
404                 sig = NULL;     /* Marker for below.  */
405         }
406         rcu_read_unlock();
407         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
408         flush_sigqueue(&tsk->pending);
409         if (sig) {
410                 /*
411                  * We are cleaning up the signal_struct here.
412                  */
413                 exit_thread_group_keys(sig);
414                 kmem_cache_free(signal_cachep, sig);
415         }
416 }
417
418 void exit_signal(struct task_struct *tsk)
419 {
420         atomic_dec(&tsk->signal->live);
421
422         write_lock_irq(&tasklist_lock);
423         __exit_signal(tsk);
424         write_unlock_irq(&tasklist_lock);
425 }
426
427 /*
428  * Flush all handlers for a task.
429  */
430
431 void
432 flush_signal_handlers(struct task_struct *t, int force_default)
433 {
434         int i;
435         struct k_sigaction *ka = &t->sighand->action[0];
436         for (i = _NSIG ; i != 0 ; i--) {
437                 if (force_default || ka->sa.sa_handler != SIG_IGN)
438                         ka->sa.sa_handler = SIG_DFL;
439                 ka->sa.sa_flags = 0;
440                 sigemptyset(&ka->sa.sa_mask);
441                 ka++;
442         }
443 }
444
445
446 /* Notify the system that a driver wants to block all signals for this
447  * process, and wants to be notified if any signals at all were to be
448  * sent/acted upon.  If the notifier routine returns non-zero, then the
449  * signal will be acted upon after all.  If the notifier routine returns 0,
450  * then then signal will be blocked.  Only one block per process is
451  * allowed.  priv is a pointer to private data that the notifier routine
452  * can use to determine if the signal should be blocked or not.  */
453
454 void
455 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
456 {
457         unsigned long flags;
458
459         spin_lock_irqsave(&current->sighand->siglock, flags);
460         current->notifier_mask = mask;
461         current->notifier_data = priv;
462         current->notifier = notifier;
463         spin_unlock_irqrestore(&current->sighand->siglock, flags);
464 }
465
466 /* Notify the system that blocking has ended. */
467
468 void
469 unblock_all_signals(void)
470 {
471         unsigned long flags;
472
473         spin_lock_irqsave(&current->sighand->siglock, flags);
474         current->notifier = NULL;
475         current->notifier_data = NULL;
476         recalc_sigpending();
477         spin_unlock_irqrestore(&current->sighand->siglock, flags);
478 }
479
480 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
481 {
482         struct sigqueue *q, *first = NULL;
483         int still_pending = 0;
484
485         if (unlikely(!sigismember(&list->signal, sig)))
486                 return 0;
487
488         /*
489          * Collect the siginfo appropriate to this signal.  Check if
490          * there is another siginfo for the same signal.
491         */
492         list_for_each_entry(q, &list->list, list) {
493                 if (q->info.si_signo == sig) {
494                         if (first) {
495                                 still_pending = 1;
496                                 break;
497                         }
498                         first = q;
499                 }
500         }
501         if (first) {
502                 list_del_init(&first->list);
503                 copy_siginfo(info, &first->info);
504                 __sigqueue_free(first);
505                 if (!still_pending)
506                         sigdelset(&list->signal, sig);
507         } else {
508
509                 /* Ok, it wasn't in the queue.  This must be
510                    a fast-pathed signal or we must have been
511                    out of queue space.  So zero out the info.
512                  */
513                 sigdelset(&list->signal, sig);
514                 info->si_signo = sig;
515                 info->si_errno = 0;
516                 info->si_code = 0;
517                 info->si_pid = 0;
518                 info->si_uid = 0;
519         }
520         return 1;
521 }
522
523 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
524                         siginfo_t *info)
525 {
526         int sig = 0;
527
528         sig = next_signal(pending, mask);
529         if (sig) {
530                 if (current->notifier) {
531                         if (sigismember(current->notifier_mask, sig)) {
532                                 if (!(current->notifier)(current->notifier_data)) {
533                                         clear_thread_flag(TIF_SIGPENDING);
534                                         return 0;
535                                 }
536                         }
537                 }
538
539                 if (!collect_signal(sig, pending, info))
540                         sig = 0;
541                                 
542         }
543         recalc_sigpending();
544
545         return sig;
546 }
547
548 /*
549  * Dequeue a signal and return the element to the caller, which is 
550  * expected to free it.
551  *
552  * All callers have to hold the siglock.
553  */
554 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
555 {
556         int signr = __dequeue_signal(&tsk->pending, mask, info);
557         if (!signr)
558                 signr = __dequeue_signal(&tsk->signal->shared_pending,
559                                          mask, info);
560         if (signr && unlikely(sig_kernel_stop(signr))) {
561                 /*
562                  * Set a marker that we have dequeued a stop signal.  Our
563                  * caller might release the siglock and then the pending
564                  * stop signal it is about to process is no longer in the
565                  * pending bitmasks, but must still be cleared by a SIGCONT
566                  * (and overruled by a SIGKILL).  So those cases clear this
567                  * shared flag after we've set it.  Note that this flag may
568                  * remain set after the signal we return is ignored or
569                  * handled.  That doesn't matter because its only purpose
570                  * is to alert stop-signal processing code when another
571                  * processor has come along and cleared the flag.
572                  */
573                 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
574                         tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
575         }
576         if ( signr &&
577              ((info->si_code & __SI_MASK) == __SI_TIMER) &&
578              info->si_sys_private){
579                 /*
580                  * Release the siglock to ensure proper locking order
581                  * of timer locks outside of siglocks.  Note, we leave
582                  * irqs disabled here, since the posix-timers code is
583                  * about to disable them again anyway.
584                  */
585                 spin_unlock(&tsk->sighand->siglock);
586                 do_schedule_next_timer(info);
587                 spin_lock(&tsk->sighand->siglock);
588         }
589         return signr;
590 }
591
592 /*
593  * Tell a process that it has a new active signal..
594  *
595  * NOTE! we rely on the previous spin_lock to
596  * lock interrupts for us! We can only be called with
597  * "siglock" held, and the local interrupt must
598  * have been disabled when that got acquired!
599  *
600  * No need to set need_resched since signal event passing
601  * goes through ->blocked
602  */
603 void signal_wake_up(struct task_struct *t, int resume)
604 {
605         unsigned int mask;
606
607         set_tsk_thread_flag(t, TIF_SIGPENDING);
608
609         /*
610          * For SIGKILL, we want to wake it up in the stopped/traced case.
611          * We don't check t->state here because there is a race with it
612          * executing another processor and just now entering stopped state.
613          * By using wake_up_state, we ensure the process will wake up and
614          * handle its death signal.
615          */
616         mask = TASK_INTERRUPTIBLE;
617         if (resume)
618                 mask |= TASK_STOPPED | TASK_TRACED;
619         if (!wake_up_state(t, mask))
620                 kick_process(t);
621 }
622
623 /*
624  * Remove signals in mask from the pending set and queue.
625  * Returns 1 if any signals were found.
626  *
627  * All callers must be holding the siglock.
628  *
629  * This version takes a sigset mask and looks at all signals,
630  * not just those in the first mask word.
631  */
632 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
633 {
634         struct sigqueue *q, *n;
635         sigset_t m;
636
637         sigandsets(&m, mask, &s->signal);
638         if (sigisemptyset(&m))
639                 return 0;
640
641         signandsets(&s->signal, &s->signal, mask);
642         list_for_each_entry_safe(q, n, &s->list, list) {
643                 if (sigismember(mask, q->info.si_signo)) {
644                         list_del_init(&q->list);
645                         __sigqueue_free(q);
646                 }
647         }
648         return 1;
649 }
650 /*
651  * Remove signals in mask from the pending set and queue.
652  * Returns 1 if any signals were found.
653  *
654  * All callers must be holding the siglock.
655  */
656 static int rm_from_queue(unsigned long mask, struct sigpending *s)
657 {
658         struct sigqueue *q, *n;
659
660         if (!sigtestsetmask(&s->signal, mask))
661                 return 0;
662
663         sigdelsetmask(&s->signal, mask);
664         list_for_each_entry_safe(q, n, &s->list, list) {
665                 if (q->info.si_signo < SIGRTMIN &&
666                     (mask & sigmask(q->info.si_signo))) {
667                         list_del_init(&q->list);
668                         __sigqueue_free(q);
669                 }
670         }
671         return 1;
672 }
673
674 /*
675  * Bad permissions for sending the signal
676  */
677 static int check_kill_permission(int sig, struct siginfo *info,
678                                  struct task_struct *t)
679 {
680         int error = -EINVAL;
681         if (!valid_signal(sig))
682                 return error;
683         error = -EPERM;
684         if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
685             && ((sig != SIGCONT) ||
686                 (current->signal->session != t->signal->session))
687             && (current->euid ^ t->suid) && (current->euid ^ t->uid)
688             && (current->uid ^ t->suid) && (current->uid ^ t->uid)
689             && !capable(CAP_KILL))
690                 return error;
691
692         error = security_task_kill(t, info, sig);
693         if (!error)
694                 audit_signal_info(sig, t); /* Let audit system see the signal */
695         return error;
696 }
697
698 /* forward decl */
699 static void do_notify_parent_cldstop(struct task_struct *tsk,
700                                      int to_self,
701                                      int why);
702
703 /*
704  * Handle magic process-wide effects of stop/continue signals.
705  * Unlike the signal actions, these happen immediately at signal-generation
706  * time regardless of blocking, ignoring, or handling.  This does the
707  * actual continuing for SIGCONT, but not the actual stopping for stop
708  * signals.  The process stop is done as a signal action for SIG_DFL.
709  */
710 static void handle_stop_signal(int sig, struct task_struct *p)
711 {
712         struct task_struct *t;
713
714         if (p->signal->flags & SIGNAL_GROUP_EXIT)
715                 /*
716                  * The process is in the middle of dying already.
717                  */
718                 return;
719
720         if (sig_kernel_stop(sig)) {
721                 /*
722                  * This is a stop signal.  Remove SIGCONT from all queues.
723                  */
724                 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
725                 t = p;
726                 do {
727                         rm_from_queue(sigmask(SIGCONT), &t->pending);
728                         t = next_thread(t);
729                 } while (t != p);
730         } else if (sig == SIGCONT) {
731                 /*
732                  * Remove all stop signals from all queues,
733                  * and wake all threads.
734                  */
735                 if (unlikely(p->signal->group_stop_count > 0)) {
736                         /*
737                          * There was a group stop in progress.  We'll
738                          * pretend it finished before we got here.  We are
739                          * obliged to report it to the parent: if the
740                          * SIGSTOP happened "after" this SIGCONT, then it
741                          * would have cleared this pending SIGCONT.  If it
742                          * happened "before" this SIGCONT, then the parent
743                          * got the SIGCHLD about the stop finishing before
744                          * the continue happened.  We do the notification
745                          * now, and it's as if the stop had finished and
746                          * the SIGCHLD was pending on entry to this kill.
747                          */
748                         p->signal->group_stop_count = 0;
749                         p->signal->flags = SIGNAL_STOP_CONTINUED;
750                         spin_unlock(&p->sighand->siglock);
751                         do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
752                         spin_lock(&p->sighand->siglock);
753                 }
754                 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
755                 t = p;
756                 do {
757                         unsigned int state;
758                         rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
759                         
760                         /*
761                          * If there is a handler for SIGCONT, we must make
762                          * sure that no thread returns to user mode before
763                          * we post the signal, in case it was the only
764                          * thread eligible to run the signal handler--then
765                          * it must not do anything between resuming and
766                          * running the handler.  With the TIF_SIGPENDING
767                          * flag set, the thread will pause and acquire the
768                          * siglock that we hold now and until we've queued
769                          * the pending signal. 
770                          *
771                          * Wake up the stopped thread _after_ setting
772                          * TIF_SIGPENDING
773                          */
774                         state = TASK_STOPPED;
775                         if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
776                                 set_tsk_thread_flag(t, TIF_SIGPENDING);
777                                 state |= TASK_INTERRUPTIBLE;
778                         }
779                         wake_up_state(t, state);
780
781                         t = next_thread(t);
782                 } while (t != p);
783
784                 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
785                         /*
786                          * We were in fact stopped, and are now continued.
787                          * Notify the parent with CLD_CONTINUED.
788                          */
789                         p->signal->flags = SIGNAL_STOP_CONTINUED;
790                         p->signal->group_exit_code = 0;
791                         spin_unlock(&p->sighand->siglock);
792                         do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
793                         spin_lock(&p->sighand->siglock);
794                 } else {
795                         /*
796                          * We are not stopped, but there could be a stop
797                          * signal in the middle of being processed after
798                          * being removed from the queue.  Clear that too.
799                          */
800                         p->signal->flags = 0;
801                 }
802         } else if (sig == SIGKILL) {
803                 /*
804                  * Make sure that any pending stop signal already dequeued
805                  * is undone by the wakeup for SIGKILL.
806                  */
807                 p->signal->flags = 0;
808         }
809 }
810
811 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
812                         struct sigpending *signals)
813 {
814         struct sigqueue * q = NULL;
815         int ret = 0;
816
817         /*
818          * fast-pathed signals for kernel-internal things like SIGSTOP
819          * or SIGKILL.
820          */
821         if (info == SEND_SIG_FORCED)
822                 goto out_set;
823
824         /* Real-time signals must be queued if sent by sigqueue, or
825            some other real-time mechanism.  It is implementation
826            defined whether kill() does so.  We attempt to do so, on
827            the principle of least surprise, but since kill is not
828            allowed to fail with EAGAIN when low on memory we just
829            make sure at least one signal gets delivered and don't
830            pass on the info struct.  */
831
832         q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
833                                              (is_si_special(info) ||
834                                               info->si_code >= 0)));
835         if (q) {
836                 list_add_tail(&q->list, &signals->list);
837                 switch ((unsigned long) info) {
838                 case (unsigned long) SEND_SIG_NOINFO:
839                         q->info.si_signo = sig;
840                         q->info.si_errno = 0;
841                         q->info.si_code = SI_USER;
842                         q->info.si_pid = current->pid;
843                         q->info.si_uid = current->uid;
844                         break;
845                 case (unsigned long) SEND_SIG_PRIV:
846                         q->info.si_signo = sig;
847                         q->info.si_errno = 0;
848                         q->info.si_code = SI_KERNEL;
849                         q->info.si_pid = 0;
850                         q->info.si_uid = 0;
851                         break;
852                 default:
853                         copy_siginfo(&q->info, info);
854                         break;
855                 }
856         } else if (!is_si_special(info)) {
857                 if (sig >= SIGRTMIN && info->si_code != SI_USER)
858                 /*
859                  * Queue overflow, abort.  We may abort if the signal was rt
860                  * and sent by user using something other than kill().
861                  */
862                         return -EAGAIN;
863         }
864
865 out_set:
866         sigaddset(&signals->signal, sig);
867         return ret;
868 }
869
870 #define LEGACY_QUEUE(sigptr, sig) \
871         (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
872
873
874 static int
875 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
876 {
877         int ret = 0;
878
879         if (!irqs_disabled())
880                 BUG();
881         assert_spin_locked(&t->sighand->siglock);
882
883         /* Short-circuit ignored signals.  */
884         if (sig_ignored(t, sig))
885                 goto out;
886
887         /* Support queueing exactly one non-rt signal, so that we
888            can get more detailed information about the cause of
889            the signal. */
890         if (LEGACY_QUEUE(&t->pending, sig))
891                 goto out;
892
893         ret = send_signal(sig, info, t, &t->pending);
894         if (!ret && !sigismember(&t->blocked, sig))
895                 signal_wake_up(t, sig == SIGKILL);
896 out:
897         return ret;
898 }
899
900 /*
901  * Force a signal that the process can't ignore: if necessary
902  * we unblock the signal and change any SIG_IGN to SIG_DFL.
903  */
904
905 int
906 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
907 {
908         unsigned long int flags;
909         int ret;
910
911         spin_lock_irqsave(&t->sighand->siglock, flags);
912         if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
913                 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
914         }
915         if (sigismember(&t->blocked, sig)) {
916                 sigdelset(&t->blocked, sig);
917         }
918         recalc_sigpending_tsk(t);
919         ret = specific_send_sig_info(sig, info, t);
920         spin_unlock_irqrestore(&t->sighand->siglock, flags);
921
922         return ret;
923 }
924
925 void
926 force_sig_specific(int sig, struct task_struct *t)
927 {
928         force_sig_info(sig, SEND_SIG_FORCED, t);
929 }
930
931 /*
932  * Test if P wants to take SIG.  After we've checked all threads with this,
933  * it's equivalent to finding no threads not blocking SIG.  Any threads not
934  * blocking SIG were ruled out because they are not running and already
935  * have pending signals.  Such threads will dequeue from the shared queue
936  * as soon as they're available, so putting the signal on the shared queue
937  * will be equivalent to sending it to one such thread.
938  */
939 static inline int wants_signal(int sig, struct task_struct *p)
940 {
941         if (sigismember(&p->blocked, sig))
942                 return 0;
943         if (p->flags & PF_EXITING)
944                 return 0;
945         if (sig == SIGKILL)
946                 return 1;
947         if (p->state & (TASK_STOPPED | TASK_TRACED))
948                 return 0;
949         return task_curr(p) || !signal_pending(p);
950 }
951
952 static void
953 __group_complete_signal(int sig, struct task_struct *p)
954 {
955         struct task_struct *t;
956
957         /*
958          * Now find a thread we can wake up to take the signal off the queue.
959          *
960          * If the main thread wants the signal, it gets first crack.
961          * Probably the least surprising to the average bear.
962          */
963         if (wants_signal(sig, p))
964                 t = p;
965         else if (thread_group_empty(p))
966                 /*
967                  * There is just one thread and it does not need to be woken.
968                  * It will dequeue unblocked signals before it runs again.
969                  */
970                 return;
971         else {
972                 /*
973                  * Otherwise try to find a suitable thread.
974                  */
975                 t = p->signal->curr_target;
976                 if (t == NULL)
977                         /* restart balancing at this thread */
978                         t = p->signal->curr_target = p;
979                 BUG_ON(t->tgid != p->tgid);
980
981                 while (!wants_signal(sig, t)) {
982                         t = next_thread(t);
983                         if (t == p->signal->curr_target)
984                                 /*
985                                  * No thread needs to be woken.
986                                  * Any eligible threads will see
987                                  * the signal in the queue soon.
988                                  */
989                                 return;
990                 }
991                 p->signal->curr_target = t;
992         }
993
994         /*
995          * Found a killable thread.  If the signal will be fatal,
996          * then start taking the whole group down immediately.
997          */
998         if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
999             !sigismember(&t->real_blocked, sig) &&
1000             (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1001                 /*
1002                  * This signal will be fatal to the whole group.
1003                  */
1004                 if (!sig_kernel_coredump(sig)) {
1005                         /*
1006                          * Start a group exit and wake everybody up.
1007                          * This way we don't have other threads
1008                          * running and doing things after a slower
1009                          * thread has the fatal signal pending.
1010                          */
1011                         p->signal->flags = SIGNAL_GROUP_EXIT;
1012                         p->signal->group_exit_code = sig;
1013                         p->signal->group_stop_count = 0;
1014                         t = p;
1015                         do {
1016                                 sigaddset(&t->pending.signal, SIGKILL);
1017                                 signal_wake_up(t, 1);
1018                                 t = next_thread(t);
1019                         } while (t != p);
1020                         return;
1021                 }
1022
1023                 /*
1024                  * There will be a core dump.  We make all threads other
1025                  * than the chosen one go into a group stop so that nothing
1026                  * happens until it gets scheduled, takes the signal off
1027                  * the shared queue, and does the core dump.  This is a
1028                  * little more complicated than strictly necessary, but it
1029                  * keeps the signal state that winds up in the core dump
1030                  * unchanged from the death state, e.g. which thread had
1031                  * the core-dump signal unblocked.
1032                  */
1033                 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1034                 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1035                 p->signal->group_stop_count = 0;
1036                 p->signal->group_exit_task = t;
1037                 t = p;
1038                 do {
1039                         p->signal->group_stop_count++;
1040                         signal_wake_up(t, 0);
1041                         t = next_thread(t);
1042                 } while (t != p);
1043                 wake_up_process(p->signal->group_exit_task);
1044                 return;
1045         }
1046
1047         /*
1048          * The signal is already in the shared-pending queue.
1049          * Tell the chosen thread to wake up and dequeue it.
1050          */
1051         signal_wake_up(t, sig == SIGKILL);
1052         return;
1053 }
1054
1055 int
1056 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1057 {
1058         int ret = 0;
1059
1060         assert_spin_locked(&p->sighand->siglock);
1061         handle_stop_signal(sig, p);
1062
1063         /* Short-circuit ignored signals.  */
1064         if (sig_ignored(p, sig))
1065                 return ret;
1066
1067         if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1068                 /* This is a non-RT signal and we already have one queued.  */
1069                 return ret;
1070
1071         /*
1072          * Put this signal on the shared-pending queue, or fail with EAGAIN.
1073          * We always use the shared queue for process-wide signals,
1074          * to avoid several races.
1075          */
1076         ret = send_signal(sig, info, p, &p->signal->shared_pending);
1077         if (unlikely(ret))
1078                 return ret;
1079
1080         __group_complete_signal(sig, p);
1081         return 0;
1082 }
1083
1084 /*
1085  * Nuke all other threads in the group.
1086  */
1087 void zap_other_threads(struct task_struct *p)
1088 {
1089         struct task_struct *t;
1090
1091         p->signal->flags = SIGNAL_GROUP_EXIT;
1092         p->signal->group_stop_count = 0;
1093
1094         if (thread_group_empty(p))
1095                 return;
1096
1097         for (t = next_thread(p); t != p; t = next_thread(t)) {
1098                 /*
1099                  * Don't bother with already dead threads
1100                  */
1101                 if (t->exit_state)
1102                         continue;
1103
1104                 /*
1105                  * We don't want to notify the parent, since we are
1106                  * killed as part of a thread group due to another
1107                  * thread doing an execve() or similar. So set the
1108                  * exit signal to -1 to allow immediate reaping of
1109                  * the process.  But don't detach the thread group
1110                  * leader.
1111                  */
1112                 if (t != p->group_leader)
1113                         t->exit_signal = -1;
1114
1115                 /* SIGKILL will be handled before any pending SIGSTOP */
1116                 sigaddset(&t->pending.signal, SIGKILL);
1117                 signal_wake_up(t, 1);
1118         }
1119 }
1120
1121 /*
1122  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1123  */
1124 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1125 {
1126         unsigned long flags;
1127         struct sighand_struct *sp;
1128         int ret;
1129
1130 retry:
1131         ret = check_kill_permission(sig, info, p);
1132         if (!ret && sig && (sp = rcu_dereference(p->sighand))) {
1133                 spin_lock_irqsave(&sp->siglock, flags);
1134                 if (p->sighand != sp) {
1135                         spin_unlock_irqrestore(&sp->siglock, flags);
1136                         goto retry;
1137                 }
1138                 if ((atomic_read(&sp->count) == 0) ||
1139                                 (atomic_read(&p->usage) == 0)) {
1140                         spin_unlock_irqrestore(&sp->siglock, flags);
1141                         return -ESRCH;
1142                 }
1143                 ret = __group_send_sig_info(sig, info, p);
1144                 spin_unlock_irqrestore(&sp->siglock, flags);
1145         }
1146
1147         return ret;
1148 }
1149
1150 /*
1151  * kill_pg_info() sends a signal to a process group: this is what the tty
1152  * control characters do (^C, ^Z etc)
1153  */
1154
1155 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1156 {
1157         struct task_struct *p = NULL;
1158         int retval, success;
1159
1160         if (pgrp <= 0)
1161                 return -EINVAL;
1162
1163         success = 0;
1164         retval = -ESRCH;
1165         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1166                 int err = group_send_sig_info(sig, info, p);
1167                 success |= !err;
1168                 retval = err;
1169         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1170         return success ? 0 : retval;
1171 }
1172
1173 int
1174 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1175 {
1176         int retval;
1177
1178         read_lock(&tasklist_lock);
1179         retval = __kill_pg_info(sig, info, pgrp);
1180         read_unlock(&tasklist_lock);
1181
1182         return retval;
1183 }
1184
1185 int
1186 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1187 {
1188         int error;
1189         int acquired_tasklist_lock = 0;
1190         struct task_struct *p;
1191
1192         rcu_read_lock();
1193         if (unlikely(sig_kernel_stop(sig) || sig == SIGCONT)) {
1194                 read_lock(&tasklist_lock);
1195                 acquired_tasklist_lock = 1;
1196         }
1197         p = find_task_by_pid(pid);
1198         error = -ESRCH;
1199         if (p)
1200                 error = group_send_sig_info(sig, info, p);
1201         if (unlikely(acquired_tasklist_lock))
1202                 read_unlock(&tasklist_lock);
1203         rcu_read_unlock();
1204         return error;
1205 }
1206
1207 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1208 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1209                       uid_t uid, uid_t euid)
1210 {
1211         int ret = -EINVAL;
1212         struct task_struct *p;
1213
1214         if (!valid_signal(sig))
1215                 return ret;
1216
1217         read_lock(&tasklist_lock);
1218         p = find_task_by_pid(pid);
1219         if (!p) {
1220                 ret = -ESRCH;
1221                 goto out_unlock;
1222         }
1223         if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1224             && (euid != p->suid) && (euid != p->uid)
1225             && (uid != p->suid) && (uid != p->uid)) {
1226                 ret = -EPERM;
1227                 goto out_unlock;
1228         }
1229         if (sig && p->sighand) {
1230                 unsigned long flags;
1231                 spin_lock_irqsave(&p->sighand->siglock, flags);
1232                 ret = __group_send_sig_info(sig, info, p);
1233                 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1234         }
1235 out_unlock:
1236         read_unlock(&tasklist_lock);
1237         return ret;
1238 }
1239 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1240
1241 /*
1242  * kill_something_info() interprets pid in interesting ways just like kill(2).
1243  *
1244  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1245  * is probably wrong.  Should make it like BSD or SYSV.
1246  */
1247
1248 static int kill_something_info(int sig, struct siginfo *info, int pid)
1249 {
1250         if (!pid) {
1251                 return kill_pg_info(sig, info, process_group(current));
1252         } else if (pid == -1) {
1253                 int retval = 0, count = 0;
1254                 struct task_struct * p;
1255
1256                 read_lock(&tasklist_lock);
1257                 for_each_process(p) {
1258                         if (p->pid > 1 && p->tgid != current->tgid) {
1259                                 int err = group_send_sig_info(sig, info, p);
1260                                 ++count;
1261                                 if (err != -EPERM)
1262                                         retval = err;
1263                         }
1264                 }
1265                 read_unlock(&tasklist_lock);
1266                 return count ? retval : -ESRCH;
1267         } else if (pid < 0) {
1268                 return kill_pg_info(sig, info, -pid);
1269         } else {
1270                 return kill_proc_info(sig, info, pid);
1271         }
1272 }
1273
1274 /*
1275  * These are for backward compatibility with the rest of the kernel source.
1276  */
1277
1278 /*
1279  * These two are the most common entry points.  They send a signal
1280  * just to the specific thread.
1281  */
1282 int
1283 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1284 {
1285         int ret;
1286         unsigned long flags;
1287
1288         /*
1289          * Make sure legacy kernel users don't send in bad values
1290          * (normal paths check this in check_kill_permission).
1291          */
1292         if (!valid_signal(sig))
1293                 return -EINVAL;
1294
1295         /*
1296          * We need the tasklist lock even for the specific
1297          * thread case (when we don't need to follow the group
1298          * lists) in order to avoid races with "p->sighand"
1299          * going away or changing from under us.
1300          */
1301         read_lock(&tasklist_lock);  
1302         spin_lock_irqsave(&p->sighand->siglock, flags);
1303         ret = specific_send_sig_info(sig, info, p);
1304         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1305         read_unlock(&tasklist_lock);
1306         return ret;
1307 }
1308
1309 #define __si_special(priv) \
1310         ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1311
1312 int
1313 send_sig(int sig, struct task_struct *p, int priv)
1314 {
1315         return send_sig_info(sig, __si_special(priv), p);
1316 }
1317
1318 /*
1319  * This is the entry point for "process-wide" signals.
1320  * They will go to an appropriate thread in the thread group.
1321  */
1322 int
1323 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1324 {
1325         int ret;
1326         read_lock(&tasklist_lock);
1327         ret = group_send_sig_info(sig, info, p);
1328         read_unlock(&tasklist_lock);
1329         return ret;
1330 }
1331
1332 void
1333 force_sig(int sig, struct task_struct *p)
1334 {
1335         force_sig_info(sig, SEND_SIG_PRIV, p);
1336 }
1337
1338 /*
1339  * When things go south during signal handling, we
1340  * will force a SIGSEGV. And if the signal that caused
1341  * the problem was already a SIGSEGV, we'll want to
1342  * make sure we don't even try to deliver the signal..
1343  */
1344 int
1345 force_sigsegv(int sig, struct task_struct *p)
1346 {
1347         if (sig == SIGSEGV) {
1348                 unsigned long flags;
1349                 spin_lock_irqsave(&p->sighand->siglock, flags);
1350                 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1351                 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1352         }
1353         force_sig(SIGSEGV, p);
1354         return 0;
1355 }
1356
1357 int
1358 kill_pg(pid_t pgrp, int sig, int priv)
1359 {
1360         return kill_pg_info(sig, __si_special(priv), pgrp);
1361 }
1362
1363 int
1364 kill_proc(pid_t pid, int sig, int priv)
1365 {
1366         return kill_proc_info(sig, __si_special(priv), pid);
1367 }
1368
1369 /*
1370  * These functions support sending signals using preallocated sigqueue
1371  * structures.  This is needed "because realtime applications cannot
1372  * afford to lose notifications of asynchronous events, like timer
1373  * expirations or I/O completions".  In the case of Posix Timers 
1374  * we allocate the sigqueue structure from the timer_create.  If this
1375  * allocation fails we are able to report the failure to the application
1376  * with an EAGAIN error.
1377  */
1378  
1379 struct sigqueue *sigqueue_alloc(void)
1380 {
1381         struct sigqueue *q;
1382
1383         if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1384                 q->flags |= SIGQUEUE_PREALLOC;
1385         return(q);
1386 }
1387
1388 void sigqueue_free(struct sigqueue *q)
1389 {
1390         unsigned long flags;
1391         BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1392         /*
1393          * If the signal is still pending remove it from the
1394          * pending queue.
1395          */
1396         if (unlikely(!list_empty(&q->list))) {
1397                 spinlock_t *lock = &current->sighand->siglock;
1398                 read_lock(&tasklist_lock);
1399                 spin_lock_irqsave(lock, flags);
1400                 if (!list_empty(&q->list))
1401                         list_del_init(&q->list);
1402                 spin_unlock_irqrestore(lock, flags);
1403                 read_unlock(&tasklist_lock);
1404         }
1405         q->flags &= ~SIGQUEUE_PREALLOC;
1406         __sigqueue_free(q);
1407 }
1408
1409 int
1410 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1411 {
1412         unsigned long flags;
1413         int ret = 0;
1414         struct sighand_struct *sh;
1415
1416         BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1417
1418         /*
1419          * The rcu based delayed sighand destroy makes it possible to
1420          * run this without tasklist lock held. The task struct itself
1421          * cannot go away as create_timer did get_task_struct().
1422          *
1423          * We return -1, when the task is marked exiting, so
1424          * posix_timer_event can redirect it to the group leader
1425          */
1426         rcu_read_lock();
1427
1428         if (unlikely(p->flags & PF_EXITING)) {
1429                 ret = -1;
1430                 goto out_err;
1431         }
1432
1433 retry:
1434         sh = rcu_dereference(p->sighand);
1435
1436         spin_lock_irqsave(&sh->siglock, flags);
1437         if (p->sighand != sh) {
1438                 /* We raced with exec() in a multithreaded process... */
1439                 spin_unlock_irqrestore(&sh->siglock, flags);
1440                 goto retry;
1441         }
1442
1443         /*
1444          * We do the check here again to handle the following scenario:
1445          *
1446          * CPU 0                CPU 1
1447          * send_sigqueue
1448          * check PF_EXITING
1449          * interrupt            exit code running
1450          *                      __exit_signal
1451          *                      lock sighand->siglock
1452          *                      unlock sighand->siglock
1453          * lock sh->siglock
1454          * add(tsk->pending)    flush_sigqueue(tsk->pending)
1455          *
1456          */
1457
1458         if (unlikely(p->flags & PF_EXITING)) {
1459                 ret = -1;
1460                 goto out;
1461         }
1462
1463         if (unlikely(!list_empty(&q->list))) {
1464                 /*
1465                  * If an SI_TIMER entry is already queue just increment
1466                  * the overrun count.
1467                  */
1468                 if (q->info.si_code != SI_TIMER)
1469                         BUG();
1470                 q->info.si_overrun++;
1471                 goto out;
1472         }
1473         /* Short-circuit ignored signals.  */
1474         if (sig_ignored(p, sig)) {
1475                 ret = 1;
1476                 goto out;
1477         }
1478
1479         list_add_tail(&q->list, &p->pending.list);
1480         sigaddset(&p->pending.signal, sig);
1481         if (!sigismember(&p->blocked, sig))
1482                 signal_wake_up(p, sig == SIGKILL);
1483
1484 out:
1485         spin_unlock_irqrestore(&sh->siglock, flags);
1486 out_err:
1487         rcu_read_unlock();
1488
1489         return ret;
1490 }
1491
1492 int
1493 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1494 {
1495         unsigned long flags;
1496         int ret = 0;
1497
1498         BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1499
1500         read_lock(&tasklist_lock);
1501         /* Since it_lock is held, p->sighand cannot be NULL. */
1502         spin_lock_irqsave(&p->sighand->siglock, flags);
1503         handle_stop_signal(sig, p);
1504
1505         /* Short-circuit ignored signals.  */
1506         if (sig_ignored(p, sig)) {
1507                 ret = 1;
1508                 goto out;
1509         }
1510
1511         if (unlikely(!list_empty(&q->list))) {
1512                 /*
1513                  * If an SI_TIMER entry is already queue just increment
1514                  * the overrun count.  Other uses should not try to
1515                  * send the signal multiple times.
1516                  */
1517                 if (q->info.si_code != SI_TIMER)
1518                         BUG();
1519                 q->info.si_overrun++;
1520                 goto out;
1521         } 
1522
1523         /*
1524          * Put this signal on the shared-pending queue.
1525          * We always use the shared queue for process-wide signals,
1526          * to avoid several races.
1527          */
1528         list_add_tail(&q->list, &p->signal->shared_pending.list);
1529         sigaddset(&p->signal->shared_pending.signal, sig);
1530
1531         __group_complete_signal(sig, p);
1532 out:
1533         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1534         read_unlock(&tasklist_lock);
1535         return ret;
1536 }
1537
1538 /*
1539  * Wake up any threads in the parent blocked in wait* syscalls.
1540  */
1541 static inline void __wake_up_parent(struct task_struct *p,
1542                                     struct task_struct *parent)
1543 {
1544         wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1545 }
1546
1547 /*
1548  * Let a parent know about the death of a child.
1549  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1550  */
1551
1552 void do_notify_parent(struct task_struct *tsk, int sig)
1553 {
1554         struct siginfo info;
1555         unsigned long flags;
1556         struct sighand_struct *psig;
1557
1558         BUG_ON(sig == -1);
1559
1560         /* do_notify_parent_cldstop should have been called instead.  */
1561         BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1562
1563         BUG_ON(!tsk->ptrace &&
1564                (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1565
1566         info.si_signo = sig;
1567         info.si_errno = 0;
1568         info.si_pid = tsk->pid;
1569         info.si_uid = tsk->uid;
1570
1571         /* FIXME: find out whether or not this is supposed to be c*time. */
1572         info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1573                                                        tsk->signal->utime));
1574         info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1575                                                        tsk->signal->stime));
1576
1577         info.si_status = tsk->exit_code & 0x7f;
1578         if (tsk->exit_code & 0x80)
1579                 info.si_code = CLD_DUMPED;
1580         else if (tsk->exit_code & 0x7f)
1581                 info.si_code = CLD_KILLED;
1582         else {
1583                 info.si_code = CLD_EXITED;
1584                 info.si_status = tsk->exit_code >> 8;
1585         }
1586
1587         psig = tsk->parent->sighand;
1588         spin_lock_irqsave(&psig->siglock, flags);
1589         if (!tsk->ptrace && sig == SIGCHLD &&
1590             (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1591              (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1592                 /*
1593                  * We are exiting and our parent doesn't care.  POSIX.1
1594                  * defines special semantics for setting SIGCHLD to SIG_IGN
1595                  * or setting the SA_NOCLDWAIT flag: we should be reaped
1596                  * automatically and not left for our parent's wait4 call.
1597                  * Rather than having the parent do it as a magic kind of
1598                  * signal handler, we just set this to tell do_exit that we
1599                  * can be cleaned up without becoming a zombie.  Note that
1600                  * we still call __wake_up_parent in this case, because a
1601                  * blocked sys_wait4 might now return -ECHILD.
1602                  *
1603                  * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1604                  * is implementation-defined: we do (if you don't want
1605                  * it, just use SIG_IGN instead).
1606                  */
1607                 tsk->exit_signal = -1;
1608                 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1609                         sig = 0;
1610         }
1611         if (valid_signal(sig) && sig > 0)
1612                 __group_send_sig_info(sig, &info, tsk->parent);
1613         __wake_up_parent(tsk, tsk->parent);
1614         spin_unlock_irqrestore(&psig->siglock, flags);
1615 }
1616
1617 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1618 {
1619         struct siginfo info;
1620         unsigned long flags;
1621         struct task_struct *parent;
1622         struct sighand_struct *sighand;
1623
1624         if (to_self)
1625                 parent = tsk->parent;
1626         else {
1627                 tsk = tsk->group_leader;
1628                 parent = tsk->real_parent;
1629         }
1630
1631         info.si_signo = SIGCHLD;
1632         info.si_errno = 0;
1633         info.si_pid = tsk->pid;
1634         info.si_uid = tsk->uid;
1635
1636         /* FIXME: find out whether or not this is supposed to be c*time. */
1637         info.si_utime = cputime_to_jiffies(tsk->utime);
1638         info.si_stime = cputime_to_jiffies(tsk->stime);
1639
1640         info.si_code = why;
1641         switch (why) {
1642         case CLD_CONTINUED:
1643                 info.si_status = SIGCONT;
1644                 break;
1645         case CLD_STOPPED:
1646                 info.si_status = tsk->signal->group_exit_code & 0x7f;
1647                 break;
1648         case CLD_TRAPPED:
1649                 info.si_status = tsk->exit_code & 0x7f;
1650                 break;
1651         default:
1652                 BUG();
1653         }
1654
1655         sighand = parent->sighand;
1656         spin_lock_irqsave(&sighand->siglock, flags);
1657         if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1658             !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1659                 __group_send_sig_info(SIGCHLD, &info, parent);
1660         /*
1661          * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1662          */
1663         __wake_up_parent(tsk, parent);
1664         spin_unlock_irqrestore(&sighand->siglock, flags);
1665 }
1666
1667 /*
1668  * This must be called with current->sighand->siglock held.
1669  *
1670  * This should be the path for all ptrace stops.
1671  * We always set current->last_siginfo while stopped here.
1672  * That makes it a way to test a stopped process for
1673  * being ptrace-stopped vs being job-control-stopped.
1674  *
1675  * If we actually decide not to stop at all because the tracer is gone,
1676  * we leave nostop_code in current->exit_code.
1677  */
1678 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1679 {
1680         /*
1681          * If there is a group stop in progress,
1682          * we must participate in the bookkeeping.
1683          */
1684         if (current->signal->group_stop_count > 0)
1685                 --current->signal->group_stop_count;
1686
1687         current->last_siginfo = info;
1688         current->exit_code = exit_code;
1689
1690         /* Let the debugger run.  */
1691         set_current_state(TASK_TRACED);
1692         spin_unlock_irq(&current->sighand->siglock);
1693         read_lock(&tasklist_lock);
1694         if (likely(current->ptrace & PT_PTRACED) &&
1695             likely(current->parent != current->real_parent ||
1696                    !(current->ptrace & PT_ATTACHED)) &&
1697             (likely(current->parent->signal != current->signal) ||
1698              !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1699                 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1700                 read_unlock(&tasklist_lock);
1701                 schedule();
1702         } else {
1703                 /*
1704                  * By the time we got the lock, our tracer went away.
1705                  * Don't stop here.
1706                  */
1707                 read_unlock(&tasklist_lock);
1708                 set_current_state(TASK_RUNNING);
1709                 current->exit_code = nostop_code;
1710         }
1711
1712         /*
1713          * We are back.  Now reacquire the siglock before touching
1714          * last_siginfo, so that we are sure to have synchronized with
1715          * any signal-sending on another CPU that wants to examine it.
1716          */
1717         spin_lock_irq(&current->sighand->siglock);
1718         current->last_siginfo = NULL;
1719
1720         /*
1721          * Queued signals ignored us while we were stopped for tracing.
1722          * So check for any that we should take before resuming user mode.
1723          */
1724         recalc_sigpending();
1725 }
1726
1727 void ptrace_notify(int exit_code)
1728 {
1729         siginfo_t info;
1730
1731         BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1732
1733         memset(&info, 0, sizeof info);
1734         info.si_signo = SIGTRAP;
1735         info.si_code = exit_code;
1736         info.si_pid = current->pid;
1737         info.si_uid = current->uid;
1738
1739         /* Let the debugger run.  */
1740         spin_lock_irq(&current->sighand->siglock);
1741         ptrace_stop(exit_code, 0, &info);
1742         spin_unlock_irq(&current->sighand->siglock);
1743 }
1744
1745 static void
1746 finish_stop(int stop_count)
1747 {
1748         int to_self;
1749
1750         /*
1751          * If there are no other threads in the group, or if there is
1752          * a group stop in progress and we are the last to stop,
1753          * report to the parent.  When ptraced, every thread reports itself.
1754          */
1755         if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1756                 to_self = 1;
1757         else if (stop_count == 0)
1758                 to_self = 0;
1759         else
1760                 goto out;
1761
1762         read_lock(&tasklist_lock);
1763         do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1764         read_unlock(&tasklist_lock);
1765
1766 out:
1767         schedule();
1768         /*
1769          * Now we don't run again until continued.
1770          */
1771         current->exit_code = 0;
1772 }
1773
1774 /*
1775  * This performs the stopping for SIGSTOP and other stop signals.
1776  * We have to stop all threads in the thread group.
1777  * Returns nonzero if we've actually stopped and released the siglock.
1778  * Returns zero if we didn't stop and still hold the siglock.
1779  */
1780 static int
1781 do_signal_stop(int signr)
1782 {
1783         struct signal_struct *sig = current->signal;
1784         struct sighand_struct *sighand = current->sighand;
1785         int stop_count = -1;
1786
1787         if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1788                 return 0;
1789
1790         if (sig->group_stop_count > 0) {
1791                 /*
1792                  * There is a group stop in progress.  We don't need to
1793                  * start another one.
1794                  */
1795                 signr = sig->group_exit_code;
1796                 stop_count = --sig->group_stop_count;
1797                 current->exit_code = signr;
1798                 set_current_state(TASK_STOPPED);
1799                 if (stop_count == 0)
1800                         sig->flags = SIGNAL_STOP_STOPPED;
1801                 spin_unlock_irq(&sighand->siglock);
1802         }
1803         else if (thread_group_empty(current)) {
1804                 /*
1805                  * Lock must be held through transition to stopped state.
1806                  */
1807                 current->exit_code = current->signal->group_exit_code = signr;
1808                 set_current_state(TASK_STOPPED);
1809                 sig->flags = SIGNAL_STOP_STOPPED;
1810                 spin_unlock_irq(&sighand->siglock);
1811         }
1812         else {
1813                 /*
1814                  * There is no group stop already in progress.
1815                  * We must initiate one now, but that requires
1816                  * dropping siglock to get both the tasklist lock
1817                  * and siglock again in the proper order.  Note that
1818                  * this allows an intervening SIGCONT to be posted.
1819                  * We need to check for that and bail out if necessary.
1820                  */
1821                 struct task_struct *t;
1822
1823                 spin_unlock_irq(&sighand->siglock);
1824
1825                 /* signals can be posted during this window */
1826
1827                 read_lock(&tasklist_lock);
1828                 spin_lock_irq(&sighand->siglock);
1829
1830                 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1831                         /*
1832                          * Another stop or continue happened while we
1833                          * didn't have the lock.  We can just swallow this
1834                          * signal now.  If we raced with a SIGCONT, that
1835                          * should have just cleared it now.  If we raced
1836                          * with another processor delivering a stop signal,
1837                          * then the SIGCONT that wakes us up should clear it.
1838                          */
1839                         read_unlock(&tasklist_lock);
1840                         return 0;
1841                 }
1842
1843                 if (sig->group_stop_count == 0) {
1844                         sig->group_exit_code = signr;
1845                         stop_count = 0;
1846                         for (t = next_thread(current); t != current;
1847                              t = next_thread(t))
1848                                 /*
1849                                  * Setting state to TASK_STOPPED for a group
1850                                  * stop is always done with the siglock held,
1851                                  * so this check has no races.
1852                                  */
1853                                 if (!t->exit_state &&
1854                                     !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1855                                         stop_count++;
1856                                         signal_wake_up(t, 0);
1857                                 }
1858                         sig->group_stop_count = stop_count;
1859                 }
1860                 else {
1861                         /* A race with another thread while unlocked.  */
1862                         signr = sig->group_exit_code;
1863                         stop_count = --sig->group_stop_count;
1864                 }
1865
1866                 current->exit_code = signr;
1867                 set_current_state(TASK_STOPPED);
1868                 if (stop_count == 0)
1869                         sig->flags = SIGNAL_STOP_STOPPED;
1870
1871                 spin_unlock_irq(&sighand->siglock);
1872                 read_unlock(&tasklist_lock);
1873         }
1874
1875         finish_stop(stop_count);
1876         return 1;
1877 }
1878
1879 /*
1880  * Do appropriate magic when group_stop_count > 0.
1881  * We return nonzero if we stopped, after releasing the siglock.
1882  * We return zero if we still hold the siglock and should look
1883  * for another signal without checking group_stop_count again.
1884  */
1885 static inline int handle_group_stop(void)
1886 {
1887         int stop_count;
1888
1889         if (current->signal->group_exit_task == current) {
1890                 /*
1891                  * Group stop is so we can do a core dump,
1892                  * We are the initiating thread, so get on with it.
1893                  */
1894                 current->signal->group_exit_task = NULL;
1895                 return 0;
1896         }
1897
1898         if (current->signal->flags & SIGNAL_GROUP_EXIT)
1899                 /*
1900                  * Group stop is so another thread can do a core dump,
1901                  * or else we are racing against a death signal.
1902                  * Just punt the stop so we can get the next signal.
1903                  */
1904                 return 0;
1905
1906         /*
1907          * There is a group stop in progress.  We stop
1908          * without any associated signal being in our queue.
1909          */
1910         stop_count = --current->signal->group_stop_count;
1911         if (stop_count == 0)
1912                 current->signal->flags = SIGNAL_STOP_STOPPED;
1913         current->exit_code = current->signal->group_exit_code;
1914         set_current_state(TASK_STOPPED);
1915         spin_unlock_irq(&current->sighand->siglock);
1916         finish_stop(stop_count);
1917         return 1;
1918 }
1919
1920 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1921                           struct pt_regs *regs, void *cookie)
1922 {
1923         sigset_t *mask = &current->blocked;
1924         int signr = 0;
1925
1926 relock:
1927         spin_lock_irq(&current->sighand->siglock);
1928         for (;;) {
1929                 struct k_sigaction *ka;
1930
1931                 if (unlikely(current->signal->group_stop_count > 0) &&
1932                     handle_group_stop())
1933                         goto relock;
1934
1935                 signr = dequeue_signal(current, mask, info);
1936
1937                 if (!signr)
1938                         break; /* will return 0 */
1939
1940                 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1941                         ptrace_signal_deliver(regs, cookie);
1942
1943                         /* Let the debugger run.  */
1944                         ptrace_stop(signr, signr, info);
1945
1946                         /* We're back.  Did the debugger cancel the sig or group_exit? */
1947                         signr = current->exit_code;
1948                         if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1949                                 continue;
1950
1951                         current->exit_code = 0;
1952
1953                         /* Update the siginfo structure if the signal has
1954                            changed.  If the debugger wanted something
1955                            specific in the siginfo structure then it should
1956                            have updated *info via PTRACE_SETSIGINFO.  */
1957                         if (signr != info->si_signo) {
1958                                 info->si_signo = signr;
1959                                 info->si_errno = 0;
1960                                 info->si_code = SI_USER;
1961                                 info->si_pid = current->parent->pid;
1962                                 info->si_uid = current->parent->uid;
1963                         }
1964
1965                         /* If the (new) signal is now blocked, requeue it.  */
1966                         if (sigismember(&current->blocked, signr)) {
1967                                 specific_send_sig_info(signr, info, current);
1968                                 continue;
1969                         }
1970                 }
1971
1972                 ka = &current->sighand->action[signr-1];
1973                 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1974                         continue;
1975                 if (ka->sa.sa_handler != SIG_DFL) {
1976                         /* Run the handler.  */
1977                         *return_ka = *ka;
1978
1979                         if (ka->sa.sa_flags & SA_ONESHOT)
1980                                 ka->sa.sa_handler = SIG_DFL;
1981
1982                         break; /* will return non-zero "signr" value */
1983                 }
1984
1985                 /*
1986                  * Now we are doing the default action for this signal.
1987                  */
1988                 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1989                         continue;
1990
1991                 /* Init gets no signals it doesn't want.  */
1992                 if (current->pid == 1)
1993                         continue;
1994
1995                 if (sig_kernel_stop(signr)) {
1996                         /*
1997                          * The default action is to stop all threads in
1998                          * the thread group.  The job control signals
1999                          * do nothing in an orphaned pgrp, but SIGSTOP
2000                          * always works.  Note that siglock needs to be
2001                          * dropped during the call to is_orphaned_pgrp()
2002                          * because of lock ordering with tasklist_lock.
2003                          * This allows an intervening SIGCONT to be posted.
2004                          * We need to check for that and bail out if necessary.
2005                          */
2006                         if (signr != SIGSTOP) {
2007                                 spin_unlock_irq(&current->sighand->siglock);
2008
2009                                 /* signals can be posted during this window */
2010
2011                                 if (is_orphaned_pgrp(process_group(current)))
2012                                         goto relock;
2013
2014                                 spin_lock_irq(&current->sighand->siglock);
2015                         }
2016
2017                         if (likely(do_signal_stop(signr))) {
2018                                 /* It released the siglock.  */
2019                                 goto relock;
2020                         }
2021
2022                         /*
2023                          * We didn't actually stop, due to a race
2024                          * with SIGCONT or something like that.
2025                          */
2026                         continue;
2027                 }
2028
2029                 spin_unlock_irq(&current->sighand->siglock);
2030
2031                 /*
2032                  * Anything else is fatal, maybe with a core dump.
2033                  */
2034                 current->flags |= PF_SIGNALED;
2035                 if (sig_kernel_coredump(signr)) {
2036                         /*
2037                          * If it was able to dump core, this kills all
2038                          * other threads in the group and synchronizes with
2039                          * their demise.  If we lost the race with another
2040                          * thread getting here, it set group_exit_code
2041                          * first and our do_group_exit call below will use
2042                          * that value and ignore the one we pass it.
2043                          */
2044                         do_coredump((long)signr, signr, regs);
2045                 }
2046
2047                 /*
2048                  * Death signals, no core dump.
2049                  */
2050                 do_group_exit(signr);
2051                 /* NOTREACHED */
2052         }
2053         spin_unlock_irq(&current->sighand->siglock);
2054         return signr;
2055 }
2056
2057 EXPORT_SYMBOL(recalc_sigpending);
2058 EXPORT_SYMBOL_GPL(dequeue_signal);
2059 EXPORT_SYMBOL(flush_signals);
2060 EXPORT_SYMBOL(force_sig);
2061 EXPORT_SYMBOL(kill_pg);
2062 EXPORT_SYMBOL(kill_proc);
2063 EXPORT_SYMBOL(ptrace_notify);
2064 EXPORT_SYMBOL(send_sig);
2065 EXPORT_SYMBOL(send_sig_info);
2066 EXPORT_SYMBOL(sigprocmask);
2067 EXPORT_SYMBOL(block_all_signals);
2068 EXPORT_SYMBOL(unblock_all_signals);
2069
2070
2071 /*
2072  * System call entry points.
2073  */
2074
2075 asmlinkage long sys_restart_syscall(void)
2076 {
2077         struct restart_block *restart = &current_thread_info()->restart_block;
2078         return restart->fn(restart);
2079 }
2080
2081 long do_no_restart_syscall(struct restart_block *param)
2082 {
2083         return -EINTR;
2084 }
2085
2086 /*
2087  * We don't need to get the kernel lock - this is all local to this
2088  * particular thread.. (and that's good, because this is _heavily_
2089  * used by various programs)
2090  */
2091
2092 /*
2093  * This is also useful for kernel threads that want to temporarily
2094  * (or permanently) block certain signals.
2095  *
2096  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2097  * interface happily blocks "unblockable" signals like SIGKILL
2098  * and friends.
2099  */
2100 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2101 {
2102         int error;
2103         sigset_t old_block;
2104
2105         spin_lock_irq(&current->sighand->siglock);
2106         old_block = current->blocked;
2107         error = 0;
2108         switch (how) {
2109         case SIG_BLOCK:
2110                 sigorsets(&current->blocked, &current->blocked, set);
2111                 break;
2112         case SIG_UNBLOCK:
2113                 signandsets(&current->blocked, &current->blocked, set);
2114                 break;
2115         case SIG_SETMASK:
2116                 current->blocked = *set;
2117                 break;
2118         default:
2119                 error = -EINVAL;
2120         }
2121         recalc_sigpending();
2122         spin_unlock_irq(&current->sighand->siglock);
2123         if (oldset)
2124                 *oldset = old_block;
2125         return error;
2126 }
2127
2128 asmlinkage long
2129 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2130 {
2131         int error = -EINVAL;
2132         sigset_t old_set, new_set;
2133
2134         /* XXX: Don't preclude handling different sized sigset_t's.  */
2135         if (sigsetsize != sizeof(sigset_t))
2136                 goto out;
2137
2138         if (set) {
2139                 error = -EFAULT;
2140                 if (copy_from_user(&new_set, set, sizeof(*set)))
2141                         goto out;
2142                 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2143
2144                 error = sigprocmask(how, &new_set, &old_set);
2145                 if (error)
2146                         goto out;
2147                 if (oset)
2148                         goto set_old;
2149         } else if (oset) {
2150                 spin_lock_irq(&current->sighand->siglock);
2151                 old_set = current->blocked;
2152                 spin_unlock_irq(&current->sighand->siglock);
2153
2154         set_old:
2155                 error = -EFAULT;
2156                 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2157                         goto out;
2158         }
2159         error = 0;
2160 out:
2161         return error;
2162 }
2163
2164 long do_sigpending(void __user *set, unsigned long sigsetsize)
2165 {
2166         long error = -EINVAL;
2167         sigset_t pending;
2168
2169         if (sigsetsize > sizeof(sigset_t))
2170                 goto out;
2171
2172         spin_lock_irq(&current->sighand->siglock);
2173         sigorsets(&pending, &current->pending.signal,
2174                   &current->signal->shared_pending.signal);
2175         spin_unlock_irq(&current->sighand->siglock);
2176
2177         /* Outside the lock because only this thread touches it.  */
2178         sigandsets(&pending, &current->blocked, &pending);
2179
2180         error = -EFAULT;
2181         if (!copy_to_user(set, &pending, sigsetsize))
2182                 error = 0;
2183
2184 out:
2185         return error;
2186 }       
2187
2188 asmlinkage long
2189 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2190 {
2191         return do_sigpending(set, sigsetsize);
2192 }
2193
2194 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2195
2196 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2197 {
2198         int err;
2199
2200         if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2201                 return -EFAULT;
2202         if (from->si_code < 0)
2203                 return __copy_to_user(to, from, sizeof(siginfo_t))
2204                         ? -EFAULT : 0;
2205         /*
2206          * If you change siginfo_t structure, please be sure
2207          * this code is fixed accordingly.
2208          * It should never copy any pad contained in the structure
2209          * to avoid security leaks, but must copy the generic
2210          * 3 ints plus the relevant union member.
2211          */
2212         err = __put_user(from->si_signo, &to->si_signo);
2213         err |= __put_user(from->si_errno, &to->si_errno);
2214         err |= __put_user((short)from->si_code, &to->si_code);
2215         switch (from->si_code & __SI_MASK) {
2216         case __SI_KILL:
2217                 err |= __put_user(from->si_pid, &to->si_pid);
2218                 err |= __put_user(from->si_uid, &to->si_uid);
2219                 break;
2220         case __SI_TIMER:
2221                  err |= __put_user(from->si_tid, &to->si_tid);
2222                  err |= __put_user(from->si_overrun, &to->si_overrun);
2223                  err |= __put_user(from->si_ptr, &to->si_ptr);
2224                 break;
2225         case __SI_POLL:
2226                 err |= __put_user(from->si_band, &to->si_band);
2227                 err |= __put_user(from->si_fd, &to->si_fd);
2228                 break;
2229         case __SI_FAULT:
2230                 err |= __put_user(from->si_addr, &to->si_addr);
2231 #ifdef __ARCH_SI_TRAPNO
2232                 err |= __put_user(from->si_trapno, &to->si_trapno);
2233 #endif
2234                 break;
2235         case __SI_CHLD:
2236                 err |= __put_user(from->si_pid, &to->si_pid);
2237                 err |= __put_user(from->si_uid, &to->si_uid);
2238                 err |= __put_user(from->si_status, &to->si_status);
2239                 err |= __put_user(from->si_utime, &to->si_utime);
2240                 err |= __put_user(from->si_stime, &to->si_stime);
2241                 break;
2242         case __SI_RT: /* This is not generated by the kernel as of now. */
2243         case __SI_MESGQ: /* But this is */
2244                 err |= __put_user(from->si_pid, &to->si_pid);
2245                 err |= __put_user(from->si_uid, &to->si_uid);
2246                 err |= __put_user(from->si_ptr, &to->si_ptr);
2247                 break;
2248         default: /* this is just in case for now ... */
2249                 err |= __put_user(from->si_pid, &to->si_pid);
2250                 err |= __put_user(from->si_uid, &to->si_uid);
2251                 break;
2252         }
2253         return err;
2254 }
2255
2256 #endif
2257
2258 asmlinkage long
2259 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2260                     siginfo_t __user *uinfo,
2261                     const struct timespec __user *uts,
2262                     size_t sigsetsize)
2263 {
2264         int ret, sig;
2265         sigset_t these;
2266         struct timespec ts;
2267         siginfo_t info;
2268         long timeout = 0;
2269
2270         /* XXX: Don't preclude handling different sized sigset_t's.  */
2271         if (sigsetsize != sizeof(sigset_t))
2272                 return -EINVAL;
2273
2274         if (copy_from_user(&these, uthese, sizeof(these)))
2275                 return -EFAULT;
2276                 
2277         /*
2278          * Invert the set of allowed signals to get those we
2279          * want to block.
2280          */
2281         sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2282         signotset(&these);
2283
2284         if (uts) {
2285                 if (copy_from_user(&ts, uts, sizeof(ts)))
2286                         return -EFAULT;
2287                 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2288                     || ts.tv_sec < 0)
2289                         return -EINVAL;
2290         }
2291
2292         spin_lock_irq(&current->sighand->siglock);
2293         sig = dequeue_signal(current, &these, &info);
2294         if (!sig) {
2295                 timeout = MAX_SCHEDULE_TIMEOUT;
2296                 if (uts)
2297                         timeout = (timespec_to_jiffies(&ts)
2298                                    + (ts.tv_sec || ts.tv_nsec));
2299
2300                 if (timeout) {
2301                         /* None ready -- temporarily unblock those we're
2302                          * interested while we are sleeping in so that we'll
2303                          * be awakened when they arrive.  */
2304                         current->real_blocked = current->blocked;
2305                         sigandsets(&current->blocked, &current->blocked, &these);
2306                         recalc_sigpending();
2307                         spin_unlock_irq(&current->sighand->siglock);
2308
2309                         timeout = schedule_timeout_interruptible(timeout);
2310
2311                         try_to_freeze();
2312                         spin_lock_irq(&current->sighand->siglock);
2313                         sig = dequeue_signal(current, &these, &info);
2314                         current->blocked = current->real_blocked;
2315                         siginitset(&current->real_blocked, 0);
2316                         recalc_sigpending();
2317                 }
2318         }
2319         spin_unlock_irq(&current->sighand->siglock);
2320
2321         if (sig) {
2322                 ret = sig;
2323                 if (uinfo) {
2324                         if (copy_siginfo_to_user(uinfo, &info))
2325                                 ret = -EFAULT;
2326                 }
2327         } else {
2328                 ret = -EAGAIN;
2329                 if (timeout)
2330                         ret = -EINTR;
2331         }
2332
2333         return ret;
2334 }
2335
2336 asmlinkage long
2337 sys_kill(int pid, int sig)
2338 {
2339         struct siginfo info;
2340
2341         info.si_signo = sig;
2342         info.si_errno = 0;
2343         info.si_code = SI_USER;
2344         info.si_pid = current->tgid;
2345         info.si_uid = current->uid;
2346
2347         return kill_something_info(sig, &info, pid);
2348 }
2349
2350 static int do_tkill(int tgid, int pid, int sig)
2351 {
2352         int error;
2353         struct siginfo info;
2354         struct task_struct *p;
2355
2356         error = -ESRCH;
2357         info.si_signo = sig;
2358         info.si_errno = 0;
2359         info.si_code = SI_TKILL;
2360         info.si_pid = current->tgid;
2361         info.si_uid = current->uid;
2362
2363         read_lock(&tasklist_lock);
2364         p = find_task_by_pid(pid);
2365         if (p && (tgid <= 0 || p->tgid == tgid)) {
2366                 error = check_kill_permission(sig, &info, p);
2367                 /*
2368                  * The null signal is a permissions and process existence
2369                  * probe.  No signal is actually delivered.
2370                  */
2371                 if (!error && sig && p->sighand) {
2372                         spin_lock_irq(&p->sighand->siglock);
2373                         handle_stop_signal(sig, p);
2374                         error = specific_send_sig_info(sig, &info, p);
2375                         spin_unlock_irq(&p->sighand->siglock);
2376                 }
2377         }
2378         read_unlock(&tasklist_lock);
2379
2380         return error;
2381 }
2382
2383 /**
2384  *  sys_tgkill - send signal to one specific thread
2385  *  @tgid: the thread group ID of the thread
2386  *  @pid: the PID of the thread
2387  *  @sig: signal to be sent
2388  *
2389  *  This syscall also checks the tgid and returns -ESRCH even if the PID
2390  *  exists but it's not belonging to the target process anymore. This
2391  *  method solves the problem of threads exiting and PIDs getting reused.
2392  */
2393 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2394 {
2395         /* This is only valid for single tasks */
2396         if (pid <= 0 || tgid <= 0)
2397                 return -EINVAL;
2398
2399         return do_tkill(tgid, pid, sig);
2400 }
2401
2402 /*
2403  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2404  */
2405 asmlinkage long
2406 sys_tkill(int pid, int sig)
2407 {
2408         /* This is only valid for single tasks */
2409         if (pid <= 0)
2410                 return -EINVAL;
2411
2412         return do_tkill(0, pid, sig);
2413 }
2414
2415 asmlinkage long
2416 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2417 {
2418         siginfo_t info;
2419
2420         if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2421                 return -EFAULT;
2422
2423         /* Not even root can pretend to send signals from the kernel.
2424            Nor can they impersonate a kill(), which adds source info.  */
2425         if (info.si_code >= 0)
2426                 return -EPERM;
2427         info.si_signo = sig;
2428
2429         /* POSIX.1b doesn't mention process groups.  */
2430         return kill_proc_info(sig, &info, pid);
2431 }
2432
2433 int
2434 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2435 {
2436         struct k_sigaction *k;
2437         sigset_t mask;
2438
2439         if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2440                 return -EINVAL;
2441
2442         k = &current->sighand->action[sig-1];
2443
2444         spin_lock_irq(&current->sighand->siglock);
2445         if (signal_pending(current)) {
2446                 /*
2447                  * If there might be a fatal signal pending on multiple
2448                  * threads, make sure we take it before changing the action.
2449                  */
2450                 spin_unlock_irq(&current->sighand->siglock);
2451                 return -ERESTARTNOINTR;
2452         }
2453
2454         if (oact)
2455                 *oact = *k;
2456
2457         if (act) {
2458                 /*
2459                  * POSIX 3.3.1.3:
2460                  *  "Setting a signal action to SIG_IGN for a signal that is
2461                  *   pending shall cause the pending signal to be discarded,
2462                  *   whether or not it is blocked."
2463                  *
2464                  *  "Setting a signal action to SIG_DFL for a signal that is
2465                  *   pending and whose default action is to ignore the signal
2466                  *   (for example, SIGCHLD), shall cause the pending signal to
2467                  *   be discarded, whether or not it is blocked"
2468                  */
2469                 if (act->sa.sa_handler == SIG_IGN ||
2470                     (act->sa.sa_handler == SIG_DFL &&
2471                      sig_kernel_ignore(sig))) {
2472                         /*
2473                          * This is a fairly rare case, so we only take the
2474                          * tasklist_lock once we're sure we'll need it.
2475                          * Now we must do this little unlock and relock
2476                          * dance to maintain the lock hierarchy.
2477                          */
2478                         struct task_struct *t = current;
2479                         spin_unlock_irq(&t->sighand->siglock);
2480                         read_lock(&tasklist_lock);
2481                         spin_lock_irq(&t->sighand->siglock);
2482                         *k = *act;
2483                         sigdelsetmask(&k->sa.sa_mask,
2484                                       sigmask(SIGKILL) | sigmask(SIGSTOP));
2485                         sigemptyset(&mask);
2486                         sigaddset(&mask, sig);
2487                         rm_from_queue_full(&mask, &t->signal->shared_pending);
2488                         do {
2489                                 rm_from_queue_full(&mask, &t->pending);
2490                                 recalc_sigpending_tsk(t);
2491                                 t = next_thread(t);
2492                         } while (t != current);
2493                         spin_unlock_irq(&current->sighand->siglock);
2494                         read_unlock(&tasklist_lock);
2495                         return 0;
2496                 }
2497
2498                 *k = *act;
2499                 sigdelsetmask(&k->sa.sa_mask,
2500                               sigmask(SIGKILL) | sigmask(SIGSTOP));
2501         }
2502
2503         spin_unlock_irq(&current->sighand->siglock);
2504         return 0;
2505 }
2506
2507 int 
2508 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2509 {
2510         stack_t oss;
2511         int error;
2512
2513         if (uoss) {
2514                 oss.ss_sp = (void __user *) current->sas_ss_sp;
2515                 oss.ss_size = current->sas_ss_size;
2516                 oss.ss_flags = sas_ss_flags(sp);
2517         }
2518
2519         if (uss) {
2520                 void __user *ss_sp;
2521                 size_t ss_size;
2522                 int ss_flags;
2523
2524                 error = -EFAULT;
2525                 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2526                     || __get_user(ss_sp, &uss->ss_sp)
2527                     || __get_user(ss_flags, &uss->ss_flags)
2528                     || __get_user(ss_size, &uss->ss_size))
2529                         goto out;
2530
2531                 error = -EPERM;
2532                 if (on_sig_stack(sp))
2533                         goto out;
2534
2535                 error = -EINVAL;
2536                 /*
2537                  *
2538                  * Note - this code used to test ss_flags incorrectly
2539                  *        old code may have been written using ss_flags==0
2540                  *        to mean ss_flags==SS_ONSTACK (as this was the only
2541                  *        way that worked) - this fix preserves that older
2542                  *        mechanism
2543                  */
2544                 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2545                         goto out;
2546
2547                 if (ss_flags == SS_DISABLE) {
2548                         ss_size = 0;
2549                         ss_sp = NULL;
2550                 } else {
2551                         error = -ENOMEM;
2552                         if (ss_size < MINSIGSTKSZ)
2553                                 goto out;
2554                 }
2555
2556                 current->sas_ss_sp = (unsigned long) ss_sp;
2557                 current->sas_ss_size = ss_size;
2558         }
2559
2560         if (uoss) {
2561                 error = -EFAULT;
2562                 if (copy_to_user(uoss, &oss, sizeof(oss)))
2563                         goto out;
2564         }
2565
2566         error = 0;
2567 out:
2568         return error;
2569 }
2570
2571 #ifdef __ARCH_WANT_SYS_SIGPENDING
2572
2573 asmlinkage long
2574 sys_sigpending(old_sigset_t __user *set)
2575 {
2576         return do_sigpending(set, sizeof(*set));
2577 }
2578
2579 #endif
2580
2581 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2582 /* Some platforms have their own version with special arguments others
2583    support only sys_rt_sigprocmask.  */
2584
2585 asmlinkage long
2586 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2587 {
2588         int error;
2589         old_sigset_t old_set, new_set;
2590
2591         if (set) {
2592                 error = -EFAULT;
2593                 if (copy_from_user(&new_set, set, sizeof(*set)))
2594                         goto out;
2595                 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2596
2597                 spin_lock_irq(&current->sighand->siglock);
2598                 old_set = current->blocked.sig[0];
2599
2600                 error = 0;
2601                 switch (how) {
2602                 default:
2603                         error = -EINVAL;
2604                         break;
2605                 case SIG_BLOCK:
2606                         sigaddsetmask(&current->blocked, new_set);
2607                         break;
2608                 case SIG_UNBLOCK:
2609                         sigdelsetmask(&current->blocked, new_set);
2610                         break;
2611                 case SIG_SETMASK:
2612                         current->blocked.sig[0] = new_set;
2613                         break;
2614                 }
2615
2616                 recalc_sigpending();
2617                 spin_unlock_irq(&current->sighand->siglock);
2618                 if (error)
2619                         goto out;
2620                 if (oset)
2621                         goto set_old;
2622         } else if (oset) {
2623                 old_set = current->blocked.sig[0];
2624         set_old:
2625                 error = -EFAULT;
2626                 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2627                         goto out;
2628         }
2629         error = 0;
2630 out:
2631         return error;
2632 }
2633 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2634
2635 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2636 asmlinkage long
2637 sys_rt_sigaction(int sig,
2638                  const struct sigaction __user *act,
2639                  struct sigaction __user *oact,
2640                  size_t sigsetsize)
2641 {
2642         struct k_sigaction new_sa, old_sa;
2643         int ret = -EINVAL;
2644
2645         /* XXX: Don't preclude handling different sized sigset_t's.  */
2646         if (sigsetsize != sizeof(sigset_t))
2647                 goto out;
2648
2649         if (act) {
2650                 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2651                         return -EFAULT;
2652         }
2653
2654         ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2655
2656         if (!ret && oact) {
2657                 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2658                         return -EFAULT;
2659         }
2660 out:
2661         return ret;
2662 }
2663 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2664
2665 #ifdef __ARCH_WANT_SYS_SGETMASK
2666
2667 /*
2668  * For backwards compatibility.  Functionality superseded by sigprocmask.
2669  */
2670 asmlinkage long
2671 sys_sgetmask(void)
2672 {
2673         /* SMP safe */
2674         return current->blocked.sig[0];
2675 }
2676
2677 asmlinkage long
2678 sys_ssetmask(int newmask)
2679 {
2680         int old;
2681
2682         spin_lock_irq(&current->sighand->siglock);
2683         old = current->blocked.sig[0];
2684
2685         siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2686                                                   sigmask(SIGSTOP)));
2687         recalc_sigpending();
2688         spin_unlock_irq(&current->sighand->siglock);
2689
2690         return old;
2691 }
2692 #endif /* __ARCH_WANT_SGETMASK */
2693
2694 #ifdef __ARCH_WANT_SYS_SIGNAL
2695 /*
2696  * For backwards compatibility.  Functionality superseded by sigaction.
2697  */
2698 asmlinkage unsigned long
2699 sys_signal(int sig, __sighandler_t handler)
2700 {
2701         struct k_sigaction new_sa, old_sa;
2702         int ret;
2703
2704         new_sa.sa.sa_handler = handler;
2705         new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2706
2707         ret = do_sigaction(sig, &new_sa, &old_sa);
2708
2709         return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2710 }
2711 #endif /* __ARCH_WANT_SYS_SIGNAL */
2712
2713 #ifdef __ARCH_WANT_SYS_PAUSE
2714
2715 asmlinkage long
2716 sys_pause(void)
2717 {
2718         current->state = TASK_INTERRUPTIBLE;
2719         schedule();
2720         return -ERESTARTNOHAND;
2721 }
2722
2723 #endif
2724
2725 void __init signals_init(void)
2726 {
2727         sigqueue_cachep =
2728                 kmem_cache_create("sigqueue",
2729                                   sizeof(struct sigqueue),
2730                                   __alignof__(struct sigqueue),
2731                                   SLAB_PANIC, NULL, NULL);
2732 }