]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/sched_rt.c
sched: rt-group: heirarchy aware throttle
[linux-2.6-omap-h63xx.git] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10         return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15         cpu_set(rq->cpu, rq->rd->rto_mask);
16         /*
17          * Make sure the mask is visible before we set
18          * the overload count. That is checked to determine
19          * if we should look at the mask. It would be a shame
20          * if we looked at the mask, but the mask was not
21          * updated yet.
22          */
23         wmb();
24         atomic_inc(&rq->rd->rto_count);
25 }
26
27 static inline void rt_clear_overload(struct rq *rq)
28 {
29         /* the order here really doesn't matter */
30         atomic_dec(&rq->rd->rto_count);
31         cpu_clear(rq->cpu, rq->rd->rto_mask);
32 }
33
34 static void update_rt_migration(struct rq *rq)
35 {
36         if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37                 if (!rq->rt.overloaded) {
38                         rt_set_overload(rq);
39                         rq->rt.overloaded = 1;
40                 }
41         } else if (rq->rt.overloaded) {
42                 rt_clear_overload(rq);
43                 rq->rt.overloaded = 0;
44         }
45 }
46 #endif /* CONFIG_SMP */
47
48 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
49 {
50         return container_of(rt_se, struct task_struct, rt);
51 }
52
53 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54 {
55         return !list_empty(&rt_se->run_list);
56 }
57
58 #ifdef CONFIG_RT_GROUP_SCHED
59
60 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
61 {
62         if (!rt_rq->tg)
63                 return RUNTIME_INF;
64
65         return rt_rq->rt_runtime;
66 }
67
68 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
69 {
70         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
71 }
72
73 #define for_each_leaf_rt_rq(rt_rq, rq) \
74         list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
75
76 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
77 {
78         return rt_rq->rq;
79 }
80
81 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
82 {
83         return rt_se->rt_rq;
84 }
85
86 #define for_each_sched_rt_entity(rt_se) \
87         for (; rt_se; rt_se = rt_se->parent)
88
89 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
90 {
91         return rt_se->my_q;
92 }
93
94 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
95 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
96
97 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
98 {
99         struct sched_rt_entity *rt_se = rt_rq->rt_se;
100
101         if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
102                 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
103
104                 enqueue_rt_entity(rt_se);
105                 if (rt_rq->highest_prio < curr->prio)
106                         resched_task(curr);
107         }
108 }
109
110 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
111 {
112         struct sched_rt_entity *rt_se = rt_rq->rt_se;
113
114         if (rt_se && on_rt_rq(rt_se))
115                 dequeue_rt_entity(rt_se);
116 }
117
118 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
119 {
120         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
121 }
122
123 static int rt_se_boosted(struct sched_rt_entity *rt_se)
124 {
125         struct rt_rq *rt_rq = group_rt_rq(rt_se);
126         struct task_struct *p;
127
128         if (rt_rq)
129                 return !!rt_rq->rt_nr_boosted;
130
131         p = rt_task_of(rt_se);
132         return p->prio != p->normal_prio;
133 }
134
135 #ifdef CONFIG_SMP
136 static inline cpumask_t sched_rt_period_mask(void)
137 {
138         return cpu_rq(smp_processor_id())->rd->span;
139 }
140 #else
141 static inline cpumask_t sched_rt_period_mask(void)
142 {
143         return cpu_online_map;
144 }
145 #endif
146
147 static inline
148 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
149 {
150         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
151 }
152
153 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
154 {
155         return &rt_rq->tg->rt_bandwidth;
156 }
157
158 #else
159
160 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
161 {
162         return rt_rq->rt_runtime;
163 }
164
165 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
166 {
167         return ktime_to_ns(def_rt_bandwidth.rt_period);
168 }
169
170 #define for_each_leaf_rt_rq(rt_rq, rq) \
171         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
172
173 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
174 {
175         return container_of(rt_rq, struct rq, rt);
176 }
177
178 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
179 {
180         struct task_struct *p = rt_task_of(rt_se);
181         struct rq *rq = task_rq(p);
182
183         return &rq->rt;
184 }
185
186 #define for_each_sched_rt_entity(rt_se) \
187         for (; rt_se; rt_se = NULL)
188
189 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
190 {
191         return NULL;
192 }
193
194 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
195 {
196 }
197
198 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
199 {
200 }
201
202 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
203 {
204         return rt_rq->rt_throttled;
205 }
206
207 static inline cpumask_t sched_rt_period_mask(void)
208 {
209         return cpu_online_map;
210 }
211
212 static inline
213 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
214 {
215         return &cpu_rq(cpu)->rt;
216 }
217
218 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
219 {
220         return &def_rt_bandwidth;
221 }
222
223 #endif
224
225 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
226 {
227         int i, idle = 1;
228         cpumask_t span;
229
230         if (rt_b->rt_runtime == RUNTIME_INF)
231                 return 1;
232
233         span = sched_rt_period_mask();
234         for_each_cpu_mask(i, span) {
235                 int enqueue = 0;
236                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
237                 struct rq *rq = rq_of_rt_rq(rt_rq);
238
239                 spin_lock(&rq->lock);
240                 if (rt_rq->rt_time) {
241                         u64 runtime;
242
243                         spin_lock(&rt_rq->rt_runtime_lock);
244                         runtime = rt_rq->rt_runtime;
245                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
246                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
247                                 rt_rq->rt_throttled = 0;
248                                 enqueue = 1;
249                         }
250                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
251                                 idle = 0;
252                         spin_unlock(&rt_rq->rt_runtime_lock);
253                 }
254
255                 if (enqueue)
256                         sched_rt_rq_enqueue(rt_rq);
257                 spin_unlock(&rq->lock);
258         }
259
260         return idle;
261 }
262
263 #ifdef CONFIG_SMP
264 static int balance_runtime(struct rt_rq *rt_rq)
265 {
266         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
267         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
268         int i, weight, more = 0;
269         u64 rt_period;
270
271         weight = cpus_weight(rd->span);
272
273         spin_lock(&rt_b->rt_runtime_lock);
274         rt_period = ktime_to_ns(rt_b->rt_period);
275         for_each_cpu_mask(i, rd->span) {
276                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
277                 s64 diff;
278
279                 if (iter == rt_rq)
280                         continue;
281
282                 spin_lock(&iter->rt_runtime_lock);
283                 diff = iter->rt_runtime - iter->rt_time;
284                 if (diff > 0) {
285                         do_div(diff, weight);
286                         if (rt_rq->rt_runtime + diff > rt_period)
287                                 diff = rt_period - rt_rq->rt_runtime;
288                         iter->rt_runtime -= diff;
289                         rt_rq->rt_runtime += diff;
290                         more = 1;
291                         if (rt_rq->rt_runtime == rt_period) {
292                                 spin_unlock(&iter->rt_runtime_lock);
293                                 break;
294                         }
295                 }
296                 spin_unlock(&iter->rt_runtime_lock);
297         }
298         spin_unlock(&rt_b->rt_runtime_lock);
299
300         return more;
301 }
302 #endif
303
304 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
305 {
306 #ifdef CONFIG_RT_GROUP_SCHED
307         struct rt_rq *rt_rq = group_rt_rq(rt_se);
308
309         if (rt_rq)
310                 return rt_rq->highest_prio;
311 #endif
312
313         return rt_task_of(rt_se)->prio;
314 }
315
316 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
317 {
318         u64 runtime = sched_rt_runtime(rt_rq);
319
320         if (runtime == RUNTIME_INF)
321                 return 0;
322
323         if (rt_rq->rt_throttled)
324                 return rt_rq_throttled(rt_rq);
325
326         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
327                 return 0;
328
329 #ifdef CONFIG_SMP
330         if (rt_rq->rt_time > runtime) {
331                 int more;
332
333                 spin_unlock(&rt_rq->rt_runtime_lock);
334                 more = balance_runtime(rt_rq);
335                 spin_lock(&rt_rq->rt_runtime_lock);
336
337                 if (more)
338                         runtime = sched_rt_runtime(rt_rq);
339         }
340 #endif
341
342         if (rt_rq->rt_time > runtime) {
343                 rt_rq->rt_throttled = 1;
344                 if (rt_rq_throttled(rt_rq)) {
345                         sched_rt_rq_dequeue(rt_rq);
346                         return 1;
347                 }
348         }
349
350         return 0;
351 }
352
353 /*
354  * Update the current task's runtime statistics. Skip current tasks that
355  * are not in our scheduling class.
356  */
357 static void update_curr_rt(struct rq *rq)
358 {
359         struct task_struct *curr = rq->curr;
360         struct sched_rt_entity *rt_se = &curr->rt;
361         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
362         u64 delta_exec;
363
364         if (!task_has_rt_policy(curr))
365                 return;
366
367         delta_exec = rq->clock - curr->se.exec_start;
368         if (unlikely((s64)delta_exec < 0))
369                 delta_exec = 0;
370
371         schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
372
373         curr->se.sum_exec_runtime += delta_exec;
374         curr->se.exec_start = rq->clock;
375         cpuacct_charge(curr, delta_exec);
376
377         for_each_sched_rt_entity(rt_se) {
378                 rt_rq = rt_rq_of_se(rt_se);
379
380                 spin_lock(&rt_rq->rt_runtime_lock);
381                 rt_rq->rt_time += delta_exec;
382                 if (sched_rt_runtime_exceeded(rt_rq))
383                         resched_task(curr);
384                 spin_unlock(&rt_rq->rt_runtime_lock);
385         }
386 }
387
388 static inline
389 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
390 {
391         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
392         rt_rq->rt_nr_running++;
393 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
394         if (rt_se_prio(rt_se) < rt_rq->highest_prio)
395                 rt_rq->highest_prio = rt_se_prio(rt_se);
396 #endif
397 #ifdef CONFIG_SMP
398         if (rt_se->nr_cpus_allowed > 1) {
399                 struct rq *rq = rq_of_rt_rq(rt_rq);
400                 rq->rt.rt_nr_migratory++;
401         }
402
403         update_rt_migration(rq_of_rt_rq(rt_rq));
404 #endif
405 #ifdef CONFIG_RT_GROUP_SCHED
406         if (rt_se_boosted(rt_se))
407                 rt_rq->rt_nr_boosted++;
408
409         if (rt_rq->tg)
410                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
411 #else
412         start_rt_bandwidth(&def_rt_bandwidth);
413 #endif
414 }
415
416 static inline
417 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
418 {
419         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
420         WARN_ON(!rt_rq->rt_nr_running);
421         rt_rq->rt_nr_running--;
422 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
423         if (rt_rq->rt_nr_running) {
424                 struct rt_prio_array *array;
425
426                 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
427                 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
428                         /* recalculate */
429                         array = &rt_rq->active;
430                         rt_rq->highest_prio =
431                                 sched_find_first_bit(array->bitmap);
432                 } /* otherwise leave rq->highest prio alone */
433         } else
434                 rt_rq->highest_prio = MAX_RT_PRIO;
435 #endif
436 #ifdef CONFIG_SMP
437         if (rt_se->nr_cpus_allowed > 1) {
438                 struct rq *rq = rq_of_rt_rq(rt_rq);
439                 rq->rt.rt_nr_migratory--;
440         }
441
442         update_rt_migration(rq_of_rt_rq(rt_rq));
443 #endif /* CONFIG_SMP */
444 #ifdef CONFIG_RT_GROUP_SCHED
445         if (rt_se_boosted(rt_se))
446                 rt_rq->rt_nr_boosted--;
447
448         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
449 #endif
450 }
451
452 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
453 {
454         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
455         struct rt_prio_array *array = &rt_rq->active;
456         struct rt_rq *group_rq = group_rt_rq(rt_se);
457
458         /*
459          * Don't enqueue the group if its throttled, or when empty.
460          * The latter is a consequence of the former when a child group
461          * get throttled and the current group doesn't have any other
462          * active members.
463          */
464         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
465                 return;
466
467         list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
468         __set_bit(rt_se_prio(rt_se), array->bitmap);
469
470         inc_rt_tasks(rt_se, rt_rq);
471 }
472
473 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
474 {
475         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
476         struct rt_prio_array *array = &rt_rq->active;
477
478         list_del_init(&rt_se->run_list);
479         if (list_empty(array->queue + rt_se_prio(rt_se)))
480                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
481
482         dec_rt_tasks(rt_se, rt_rq);
483 }
484
485 /*
486  * Because the prio of an upper entry depends on the lower
487  * entries, we must remove entries top - down.
488  */
489 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
490 {
491         struct sched_rt_entity *back = NULL;
492
493         for_each_sched_rt_entity(rt_se) {
494                 rt_se->back = back;
495                 back = rt_se;
496         }
497
498         for (rt_se = back; rt_se; rt_se = rt_se->back) {
499                 if (on_rt_rq(rt_se))
500                         __dequeue_rt_entity(rt_se);
501         }
502 }
503
504 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
505 {
506         dequeue_rt_stack(rt_se);
507         for_each_sched_rt_entity(rt_se)
508                 __enqueue_rt_entity(rt_se);
509 }
510
511 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
512 {
513         dequeue_rt_stack(rt_se);
514
515         for_each_sched_rt_entity(rt_se) {
516                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
517
518                 if (rt_rq && rt_rq->rt_nr_running)
519                         __enqueue_rt_entity(rt_se);
520         }
521 }
522
523 /*
524  * Adding/removing a task to/from a priority array:
525  */
526 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
527 {
528         struct sched_rt_entity *rt_se = &p->rt;
529
530         if (wakeup)
531                 rt_se->timeout = 0;
532
533         enqueue_rt_entity(rt_se);
534 }
535
536 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
537 {
538         struct sched_rt_entity *rt_se = &p->rt;
539
540         update_curr_rt(rq);
541         dequeue_rt_entity(rt_se);
542 }
543
544 /*
545  * Put task to the end of the run list without the overhead of dequeue
546  * followed by enqueue.
547  */
548 static
549 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
550 {
551         struct rt_prio_array *array = &rt_rq->active;
552
553         list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
554 }
555
556 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
557 {
558         struct sched_rt_entity *rt_se = &p->rt;
559         struct rt_rq *rt_rq;
560
561         for_each_sched_rt_entity(rt_se) {
562                 rt_rq = rt_rq_of_se(rt_se);
563                 requeue_rt_entity(rt_rq, rt_se);
564         }
565 }
566
567 static void yield_task_rt(struct rq *rq)
568 {
569         requeue_task_rt(rq, rq->curr);
570 }
571
572 #ifdef CONFIG_SMP
573 static int find_lowest_rq(struct task_struct *task);
574
575 static int select_task_rq_rt(struct task_struct *p, int sync)
576 {
577         struct rq *rq = task_rq(p);
578
579         /*
580          * If the current task is an RT task, then
581          * try to see if we can wake this RT task up on another
582          * runqueue. Otherwise simply start this RT task
583          * on its current runqueue.
584          *
585          * We want to avoid overloading runqueues. Even if
586          * the RT task is of higher priority than the current RT task.
587          * RT tasks behave differently than other tasks. If
588          * one gets preempted, we try to push it off to another queue.
589          * So trying to keep a preempting RT task on the same
590          * cache hot CPU will force the running RT task to
591          * a cold CPU. So we waste all the cache for the lower
592          * RT task in hopes of saving some of a RT task
593          * that is just being woken and probably will have
594          * cold cache anyway.
595          */
596         if (unlikely(rt_task(rq->curr)) &&
597             (p->rt.nr_cpus_allowed > 1)) {
598                 int cpu = find_lowest_rq(p);
599
600                 return (cpu == -1) ? task_cpu(p) : cpu;
601         }
602
603         /*
604          * Otherwise, just let it ride on the affined RQ and the
605          * post-schedule router will push the preempted task away
606          */
607         return task_cpu(p);
608 }
609 #endif /* CONFIG_SMP */
610
611 /*
612  * Preempt the current task with a newly woken task if needed:
613  */
614 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
615 {
616         if (p->prio < rq->curr->prio)
617                 resched_task(rq->curr);
618 }
619
620 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
621                                                    struct rt_rq *rt_rq)
622 {
623         struct rt_prio_array *array = &rt_rq->active;
624         struct sched_rt_entity *next = NULL;
625         struct list_head *queue;
626         int idx;
627
628         idx = sched_find_first_bit(array->bitmap);
629         BUG_ON(idx >= MAX_RT_PRIO);
630
631         queue = array->queue + idx;
632         next = list_entry(queue->next, struct sched_rt_entity, run_list);
633
634         return next;
635 }
636
637 static struct task_struct *pick_next_task_rt(struct rq *rq)
638 {
639         struct sched_rt_entity *rt_se;
640         struct task_struct *p;
641         struct rt_rq *rt_rq;
642
643         rt_rq = &rq->rt;
644
645         if (unlikely(!rt_rq->rt_nr_running))
646                 return NULL;
647
648         if (rt_rq_throttled(rt_rq))
649                 return NULL;
650
651         do {
652                 rt_se = pick_next_rt_entity(rq, rt_rq);
653                 BUG_ON(!rt_se);
654                 rt_rq = group_rt_rq(rt_se);
655         } while (rt_rq);
656
657         p = rt_task_of(rt_se);
658         p->se.exec_start = rq->clock;
659         return p;
660 }
661
662 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
663 {
664         update_curr_rt(rq);
665         p->se.exec_start = 0;
666 }
667
668 #ifdef CONFIG_SMP
669
670 /* Only try algorithms three times */
671 #define RT_MAX_TRIES 3
672
673 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
674 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
675
676 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
677 {
678         if (!task_running(rq, p) &&
679             (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
680             (p->rt.nr_cpus_allowed > 1))
681                 return 1;
682         return 0;
683 }
684
685 /* Return the second highest RT task, NULL otherwise */
686 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
687 {
688         struct task_struct *next = NULL;
689         struct sched_rt_entity *rt_se;
690         struct rt_prio_array *array;
691         struct rt_rq *rt_rq;
692         int idx;
693
694         for_each_leaf_rt_rq(rt_rq, rq) {
695                 array = &rt_rq->active;
696                 idx = sched_find_first_bit(array->bitmap);
697  next_idx:
698                 if (idx >= MAX_RT_PRIO)
699                         continue;
700                 if (next && next->prio < idx)
701                         continue;
702                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
703                         struct task_struct *p = rt_task_of(rt_se);
704                         if (pick_rt_task(rq, p, cpu)) {
705                                 next = p;
706                                 break;
707                         }
708                 }
709                 if (!next) {
710                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
711                         goto next_idx;
712                 }
713         }
714
715         return next;
716 }
717
718 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
719
720 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
721 {
722         int       lowest_prio = -1;
723         int       lowest_cpu  = -1;
724         int       count       = 0;
725         int       cpu;
726
727         cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
728
729         /*
730          * Scan each rq for the lowest prio.
731          */
732         for_each_cpu_mask(cpu, *lowest_mask) {
733                 struct rq *rq = cpu_rq(cpu);
734
735                 /* We look for lowest RT prio or non-rt CPU */
736                 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
737                         /*
738                          * if we already found a low RT queue
739                          * and now we found this non-rt queue
740                          * clear the mask and set our bit.
741                          * Otherwise just return the queue as is
742                          * and the count==1 will cause the algorithm
743                          * to use the first bit found.
744                          */
745                         if (lowest_cpu != -1) {
746                                 cpus_clear(*lowest_mask);
747                                 cpu_set(rq->cpu, *lowest_mask);
748                         }
749                         return 1;
750                 }
751
752                 /* no locking for now */
753                 if ((rq->rt.highest_prio > task->prio)
754                     && (rq->rt.highest_prio >= lowest_prio)) {
755                         if (rq->rt.highest_prio > lowest_prio) {
756                                 /* new low - clear old data */
757                                 lowest_prio = rq->rt.highest_prio;
758                                 lowest_cpu = cpu;
759                                 count = 0;
760                         }
761                         count++;
762                 } else
763                         cpu_clear(cpu, *lowest_mask);
764         }
765
766         /*
767          * Clear out all the set bits that represent
768          * runqueues that were of higher prio than
769          * the lowest_prio.
770          */
771         if (lowest_cpu > 0) {
772                 /*
773                  * Perhaps we could add another cpumask op to
774                  * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
775                  * Then that could be optimized to use memset and such.
776                  */
777                 for_each_cpu_mask(cpu, *lowest_mask) {
778                         if (cpu >= lowest_cpu)
779                                 break;
780                         cpu_clear(cpu, *lowest_mask);
781                 }
782         }
783
784         return count;
785 }
786
787 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
788 {
789         int first;
790
791         /* "this_cpu" is cheaper to preempt than a remote processor */
792         if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
793                 return this_cpu;
794
795         first = first_cpu(*mask);
796         if (first != NR_CPUS)
797                 return first;
798
799         return -1;
800 }
801
802 static int find_lowest_rq(struct task_struct *task)
803 {
804         struct sched_domain *sd;
805         cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
806         int this_cpu = smp_processor_id();
807         int cpu      = task_cpu(task);
808         int count    = find_lowest_cpus(task, lowest_mask);
809
810         if (!count)
811                 return -1; /* No targets found */
812
813         /*
814          * There is no sense in performing an optimal search if only one
815          * target is found.
816          */
817         if (count == 1)
818                 return first_cpu(*lowest_mask);
819
820         /*
821          * At this point we have built a mask of cpus representing the
822          * lowest priority tasks in the system.  Now we want to elect
823          * the best one based on our affinity and topology.
824          *
825          * We prioritize the last cpu that the task executed on since
826          * it is most likely cache-hot in that location.
827          */
828         if (cpu_isset(cpu, *lowest_mask))
829                 return cpu;
830
831         /*
832          * Otherwise, we consult the sched_domains span maps to figure
833          * out which cpu is logically closest to our hot cache data.
834          */
835         if (this_cpu == cpu)
836                 this_cpu = -1; /* Skip this_cpu opt if the same */
837
838         for_each_domain(cpu, sd) {
839                 if (sd->flags & SD_WAKE_AFFINE) {
840                         cpumask_t domain_mask;
841                         int       best_cpu;
842
843                         cpus_and(domain_mask, sd->span, *lowest_mask);
844
845                         best_cpu = pick_optimal_cpu(this_cpu,
846                                                     &domain_mask);
847                         if (best_cpu != -1)
848                                 return best_cpu;
849                 }
850         }
851
852         /*
853          * And finally, if there were no matches within the domains
854          * just give the caller *something* to work with from the compatible
855          * locations.
856          */
857         return pick_optimal_cpu(this_cpu, lowest_mask);
858 }
859
860 /* Will lock the rq it finds */
861 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
862 {
863         struct rq *lowest_rq = NULL;
864         int tries;
865         int cpu;
866
867         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
868                 cpu = find_lowest_rq(task);
869
870                 if ((cpu == -1) || (cpu == rq->cpu))
871                         break;
872
873                 lowest_rq = cpu_rq(cpu);
874
875                 /* if the prio of this runqueue changed, try again */
876                 if (double_lock_balance(rq, lowest_rq)) {
877                         /*
878                          * We had to unlock the run queue. In
879                          * the mean time, task could have
880                          * migrated already or had its affinity changed.
881                          * Also make sure that it wasn't scheduled on its rq.
882                          */
883                         if (unlikely(task_rq(task) != rq ||
884                                      !cpu_isset(lowest_rq->cpu,
885                                                 task->cpus_allowed) ||
886                                      task_running(rq, task) ||
887                                      !task->se.on_rq)) {
888
889                                 spin_unlock(&lowest_rq->lock);
890                                 lowest_rq = NULL;
891                                 break;
892                         }
893                 }
894
895                 /* If this rq is still suitable use it. */
896                 if (lowest_rq->rt.highest_prio > task->prio)
897                         break;
898
899                 /* try again */
900                 spin_unlock(&lowest_rq->lock);
901                 lowest_rq = NULL;
902         }
903
904         return lowest_rq;
905 }
906
907 /*
908  * If the current CPU has more than one RT task, see if the non
909  * running task can migrate over to a CPU that is running a task
910  * of lesser priority.
911  */
912 static int push_rt_task(struct rq *rq)
913 {
914         struct task_struct *next_task;
915         struct rq *lowest_rq;
916         int ret = 0;
917         int paranoid = RT_MAX_TRIES;
918
919         if (!rq->rt.overloaded)
920                 return 0;
921
922         next_task = pick_next_highest_task_rt(rq, -1);
923         if (!next_task)
924                 return 0;
925
926  retry:
927         if (unlikely(next_task == rq->curr)) {
928                 WARN_ON(1);
929                 return 0;
930         }
931
932         /*
933          * It's possible that the next_task slipped in of
934          * higher priority than current. If that's the case
935          * just reschedule current.
936          */
937         if (unlikely(next_task->prio < rq->curr->prio)) {
938                 resched_task(rq->curr);
939                 return 0;
940         }
941
942         /* We might release rq lock */
943         get_task_struct(next_task);
944
945         /* find_lock_lowest_rq locks the rq if found */
946         lowest_rq = find_lock_lowest_rq(next_task, rq);
947         if (!lowest_rq) {
948                 struct task_struct *task;
949                 /*
950                  * find lock_lowest_rq releases rq->lock
951                  * so it is possible that next_task has changed.
952                  * If it has, then try again.
953                  */
954                 task = pick_next_highest_task_rt(rq, -1);
955                 if (unlikely(task != next_task) && task && paranoid--) {
956                         put_task_struct(next_task);
957                         next_task = task;
958                         goto retry;
959                 }
960                 goto out;
961         }
962
963         deactivate_task(rq, next_task, 0);
964         set_task_cpu(next_task, lowest_rq->cpu);
965         activate_task(lowest_rq, next_task, 0);
966
967         resched_task(lowest_rq->curr);
968
969         spin_unlock(&lowest_rq->lock);
970
971         ret = 1;
972 out:
973         put_task_struct(next_task);
974
975         return ret;
976 }
977
978 /*
979  * TODO: Currently we just use the second highest prio task on
980  *       the queue, and stop when it can't migrate (or there's
981  *       no more RT tasks).  There may be a case where a lower
982  *       priority RT task has a different affinity than the
983  *       higher RT task. In this case the lower RT task could
984  *       possibly be able to migrate where as the higher priority
985  *       RT task could not.  We currently ignore this issue.
986  *       Enhancements are welcome!
987  */
988 static void push_rt_tasks(struct rq *rq)
989 {
990         /* push_rt_task will return true if it moved an RT */
991         while (push_rt_task(rq))
992                 ;
993 }
994
995 static int pull_rt_task(struct rq *this_rq)
996 {
997         int this_cpu = this_rq->cpu, ret = 0, cpu;
998         struct task_struct *p, *next;
999         struct rq *src_rq;
1000
1001         if (likely(!rt_overloaded(this_rq)))
1002                 return 0;
1003
1004         next = pick_next_task_rt(this_rq);
1005
1006         for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1007                 if (this_cpu == cpu)
1008                         continue;
1009
1010                 src_rq = cpu_rq(cpu);
1011                 /*
1012                  * We can potentially drop this_rq's lock in
1013                  * double_lock_balance, and another CPU could
1014                  * steal our next task - hence we must cause
1015                  * the caller to recalculate the next task
1016                  * in that case:
1017                  */
1018                 if (double_lock_balance(this_rq, src_rq)) {
1019                         struct task_struct *old_next = next;
1020
1021                         next = pick_next_task_rt(this_rq);
1022                         if (next != old_next)
1023                                 ret = 1;
1024                 }
1025
1026                 /*
1027                  * Are there still pullable RT tasks?
1028                  */
1029                 if (src_rq->rt.rt_nr_running <= 1)
1030                         goto skip;
1031
1032                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1033
1034                 /*
1035                  * Do we have an RT task that preempts
1036                  * the to-be-scheduled task?
1037                  */
1038                 if (p && (!next || (p->prio < next->prio))) {
1039                         WARN_ON(p == src_rq->curr);
1040                         WARN_ON(!p->se.on_rq);
1041
1042                         /*
1043                          * There's a chance that p is higher in priority
1044                          * than what's currently running on its cpu.
1045                          * This is just that p is wakeing up and hasn't
1046                          * had a chance to schedule. We only pull
1047                          * p if it is lower in priority than the
1048                          * current task on the run queue or
1049                          * this_rq next task is lower in prio than
1050                          * the current task on that rq.
1051                          */
1052                         if (p->prio < src_rq->curr->prio ||
1053                             (next && next->prio < src_rq->curr->prio))
1054                                 goto skip;
1055
1056                         ret = 1;
1057
1058                         deactivate_task(src_rq, p, 0);
1059                         set_task_cpu(p, this_cpu);
1060                         activate_task(this_rq, p, 0);
1061                         /*
1062                          * We continue with the search, just in
1063                          * case there's an even higher prio task
1064                          * in another runqueue. (low likelyhood
1065                          * but possible)
1066                          *
1067                          * Update next so that we won't pick a task
1068                          * on another cpu with a priority lower (or equal)
1069                          * than the one we just picked.
1070                          */
1071                         next = p;
1072
1073                 }
1074  skip:
1075                 spin_unlock(&src_rq->lock);
1076         }
1077
1078         return ret;
1079 }
1080
1081 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1082 {
1083         /* Try to pull RT tasks here if we lower this rq's prio */
1084         if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1085                 pull_rt_task(rq);
1086 }
1087
1088 static void post_schedule_rt(struct rq *rq)
1089 {
1090         /*
1091          * If we have more than one rt_task queued, then
1092          * see if we can push the other rt_tasks off to other CPUS.
1093          * Note we may release the rq lock, and since
1094          * the lock was owned by prev, we need to release it
1095          * first via finish_lock_switch and then reaquire it here.
1096          */
1097         if (unlikely(rq->rt.overloaded)) {
1098                 spin_lock_irq(&rq->lock);
1099                 push_rt_tasks(rq);
1100                 spin_unlock_irq(&rq->lock);
1101         }
1102 }
1103
1104 /*
1105  * If we are not running and we are not going to reschedule soon, we should
1106  * try to push tasks away now
1107  */
1108 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1109 {
1110         if (!task_running(rq, p) &&
1111             !test_tsk_need_resched(rq->curr) &&
1112             rq->rt.overloaded)
1113                 push_rt_tasks(rq);
1114 }
1115
1116 static unsigned long
1117 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1118                 unsigned long max_load_move,
1119                 struct sched_domain *sd, enum cpu_idle_type idle,
1120                 int *all_pinned, int *this_best_prio)
1121 {
1122         /* don't touch RT tasks */
1123         return 0;
1124 }
1125
1126 static int
1127 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1128                  struct sched_domain *sd, enum cpu_idle_type idle)
1129 {
1130         /* don't touch RT tasks */
1131         return 0;
1132 }
1133
1134 static void set_cpus_allowed_rt(struct task_struct *p,
1135                                 const cpumask_t *new_mask)
1136 {
1137         int weight = cpus_weight(*new_mask);
1138
1139         BUG_ON(!rt_task(p));
1140
1141         /*
1142          * Update the migration status of the RQ if we have an RT task
1143          * which is running AND changing its weight value.
1144          */
1145         if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1146                 struct rq *rq = task_rq(p);
1147
1148                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1149                         rq->rt.rt_nr_migratory++;
1150                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1151                         BUG_ON(!rq->rt.rt_nr_migratory);
1152                         rq->rt.rt_nr_migratory--;
1153                 }
1154
1155                 update_rt_migration(rq);
1156         }
1157
1158         p->cpus_allowed    = *new_mask;
1159         p->rt.nr_cpus_allowed = weight;
1160 }
1161
1162 /* Assumes rq->lock is held */
1163 static void join_domain_rt(struct rq *rq)
1164 {
1165         if (rq->rt.overloaded)
1166                 rt_set_overload(rq);
1167 }
1168
1169 /* Assumes rq->lock is held */
1170 static void leave_domain_rt(struct rq *rq)
1171 {
1172         if (rq->rt.overloaded)
1173                 rt_clear_overload(rq);
1174 }
1175
1176 /*
1177  * When switch from the rt queue, we bring ourselves to a position
1178  * that we might want to pull RT tasks from other runqueues.
1179  */
1180 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1181                            int running)
1182 {
1183         /*
1184          * If there are other RT tasks then we will reschedule
1185          * and the scheduling of the other RT tasks will handle
1186          * the balancing. But if we are the last RT task
1187          * we may need to handle the pulling of RT tasks
1188          * now.
1189          */
1190         if (!rq->rt.rt_nr_running)
1191                 pull_rt_task(rq);
1192 }
1193 #endif /* CONFIG_SMP */
1194
1195 /*
1196  * When switching a task to RT, we may overload the runqueue
1197  * with RT tasks. In this case we try to push them off to
1198  * other runqueues.
1199  */
1200 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1201                            int running)
1202 {
1203         int check_resched = 1;
1204
1205         /*
1206          * If we are already running, then there's nothing
1207          * that needs to be done. But if we are not running
1208          * we may need to preempt the current running task.
1209          * If that current running task is also an RT task
1210          * then see if we can move to another run queue.
1211          */
1212         if (!running) {
1213 #ifdef CONFIG_SMP
1214                 if (rq->rt.overloaded && push_rt_task(rq) &&
1215                     /* Don't resched if we changed runqueues */
1216                     rq != task_rq(p))
1217                         check_resched = 0;
1218 #endif /* CONFIG_SMP */
1219                 if (check_resched && p->prio < rq->curr->prio)
1220                         resched_task(rq->curr);
1221         }
1222 }
1223
1224 /*
1225  * Priority of the task has changed. This may cause
1226  * us to initiate a push or pull.
1227  */
1228 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1229                             int oldprio, int running)
1230 {
1231         if (running) {
1232 #ifdef CONFIG_SMP
1233                 /*
1234                  * If our priority decreases while running, we
1235                  * may need to pull tasks to this runqueue.
1236                  */
1237                 if (oldprio < p->prio)
1238                         pull_rt_task(rq);
1239                 /*
1240                  * If there's a higher priority task waiting to run
1241                  * then reschedule. Note, the above pull_rt_task
1242                  * can release the rq lock and p could migrate.
1243                  * Only reschedule if p is still on the same runqueue.
1244                  */
1245                 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1246                         resched_task(p);
1247 #else
1248                 /* For UP simply resched on drop of prio */
1249                 if (oldprio < p->prio)
1250                         resched_task(p);
1251 #endif /* CONFIG_SMP */
1252         } else {
1253                 /*
1254                  * This task is not running, but if it is
1255                  * greater than the current running task
1256                  * then reschedule.
1257                  */
1258                 if (p->prio < rq->curr->prio)
1259                         resched_task(rq->curr);
1260         }
1261 }
1262
1263 static void watchdog(struct rq *rq, struct task_struct *p)
1264 {
1265         unsigned long soft, hard;
1266
1267         if (!p->signal)
1268                 return;
1269
1270         soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1271         hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1272
1273         if (soft != RLIM_INFINITY) {
1274                 unsigned long next;
1275
1276                 p->rt.timeout++;
1277                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1278                 if (p->rt.timeout > next)
1279                         p->it_sched_expires = p->se.sum_exec_runtime;
1280         }
1281 }
1282
1283 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1284 {
1285         update_curr_rt(rq);
1286
1287         watchdog(rq, p);
1288
1289         /*
1290          * RR tasks need a special form of timeslice management.
1291          * FIFO tasks have no timeslices.
1292          */
1293         if (p->policy != SCHED_RR)
1294                 return;
1295
1296         if (--p->rt.time_slice)
1297                 return;
1298
1299         p->rt.time_slice = DEF_TIMESLICE;
1300
1301         /*
1302          * Requeue to the end of queue if we are not the only element
1303          * on the queue:
1304          */
1305         if (p->rt.run_list.prev != p->rt.run_list.next) {
1306                 requeue_task_rt(rq, p);
1307                 set_tsk_need_resched(p);
1308         }
1309 }
1310
1311 static void set_curr_task_rt(struct rq *rq)
1312 {
1313         struct task_struct *p = rq->curr;
1314
1315         p->se.exec_start = rq->clock;
1316 }
1317
1318 static const struct sched_class rt_sched_class = {
1319         .next                   = &fair_sched_class,
1320         .enqueue_task           = enqueue_task_rt,
1321         .dequeue_task           = dequeue_task_rt,
1322         .yield_task             = yield_task_rt,
1323 #ifdef CONFIG_SMP
1324         .select_task_rq         = select_task_rq_rt,
1325 #endif /* CONFIG_SMP */
1326
1327         .check_preempt_curr     = check_preempt_curr_rt,
1328
1329         .pick_next_task         = pick_next_task_rt,
1330         .put_prev_task          = put_prev_task_rt,
1331
1332 #ifdef CONFIG_SMP
1333         .load_balance           = load_balance_rt,
1334         .move_one_task          = move_one_task_rt,
1335         .set_cpus_allowed       = set_cpus_allowed_rt,
1336         .join_domain            = join_domain_rt,
1337         .leave_domain           = leave_domain_rt,
1338         .pre_schedule           = pre_schedule_rt,
1339         .post_schedule          = post_schedule_rt,
1340         .task_wake_up           = task_wake_up_rt,
1341         .switched_from          = switched_from_rt,
1342 #endif
1343
1344         .set_curr_task          = set_curr_task_rt,
1345         .task_tick              = task_tick_rt,
1346
1347         .prio_changed           = prio_changed_rt,
1348         .switched_to            = switched_to_rt,
1349 };